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Abstract

Understanding the factors that drive extreme water levels is key to an accurate assessment
of flood hazard. The city of Venice has always been affected by flooding due to extreme
water levels. In this study, we examine the factors driving and influencing extreme water
levels in the Venice lagoon, aiming at deriving accurate extreme water level estimates in the
Venice lagoon.

Due to the shallowness of the Venice lagoon, extreme water levels are influenced by
both atmospheric forcing (surge) and water level of the lagoon (tide and bottom level) and
interactions between these two. Furthermore, these extreme water levels have been chang-
ing over time due to variations in the bottom level. These variations are reportedly due to
local (anthropogenic and natural) subsidence and sea level rise.

In this study we resort to the available long-term water level observations of the Punta
della Salute tide-gauge. Given the effects of subsidence and sea level rise in these data, we
start by homogenizing the data by removing these trends and jumps from the time-series.
Using the homogenized time-series, we study the influence of the dependence between
tide and surge components on the extreme water level estimates. Finally, we quantify the
effect in the estimates of modelling this dependence in the extreme value models.

To homogenize the data and better understand the underlying trends, a time-series
analysis was performed on the time-series of water level observations. Mann-Kendall tests
for monotonic trend were performed, followed by an analysis using changepoint detection
methods. Changepoint detection was performed using the RHtest and BEAST methods on
the Punta della Salute time-series as well as time-series from neighbouring tide-gauge sta-
tions. Ultimately trend decomposition using the BEAST method was used to detrend and
homogenize the Punta della Salute time-series.

After detrending, the tide and surge components were separated using tidal harmonic
analysis and reconstruction. The relationship of these now separated components was
quantified during extreme water levels using the Pearson r correlation and the Kendall τ
rank correlation.

This relationship between tide and surge was described using copulas to estimate ex-
treme water levels. Different copula variants were evaluated and extreme water level esti-
mates derived using copulas that describe dependence were compared to extreme water
level estimates using a copula that describes tide and surge as independent components.
Lastly, these were compared to those derived from univariate extreme value analysis to as-
sess the influence of separation of tide and surge components combined with copulas as
opposed to a more traditional univariate extreme value analysis.

The main conclusions of this study are as follows.

• The water level observations of the Punta della Salute tide-gauge are indeed affected
by jumps and trends due to subsidence and sea level rise. These can be successfully
removed using the applied techniques.

• There is a clear dependence between tide and surge in the Venice lagoon, with lower
tide levels leading to higher surge levels. The non-inclusion of this dependence (by
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assuming independence) in the combined analysis of tide and surge signals to drive
total extreme water levels leads to an overestimation of the total water level extremes.

• Extreme water level estimates from the combined analysis of the tidal and surge sig-
nal are higher, but compatible with those from the analysis of the total water level
signal (without separation of tidal and surge signal). This gives confidence in the
combined analysis accounting for the dependence between the signals and allowing
for a further application of the models to account for projected climate changes.
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1
Introduction

The first chapter will describe background situation and the location of the city of Venice;
this will be followed by the problem description. Afterwards, the main objective of this
thesis will be presented. Finally, the structure of the report is outlined.

1.1. Background

The city of Venice is located in the northwestern Adriatic in the middle of a shallow lagoon.
The city was originally built on piles and clusters of low lying islands and has been in a
constant struggle with its hostile environment. The fragile equilibrium of the lagoon has
been artificially preserved for ages, bringing with it disturbances of biological, ecological,
geomorphological and chemical nature [Lionello et al., 2020]. The city is frequently sub-
ject to high waters events named "Acqua Alta" (high water). The frequency and severity
of Acqua Alta events has drastically increased over the last century [Camuffo et al., 2006]
[Cavaleri, 2000] [Gatto and Carbognin, 1981] [Pirazzoli, 1987]. 11 of the 20 highest waters
occurred during the last 20 years for the almost 100 year of water level observations. The
cause of this increase is due to land subsidence and the impact of the rise in sea level
[Carbognin et al., 2010][Zanchettin et al., 2021].

This land subsidence used to originate only from natural consolidation of the sediment
and tectonic processes causing land subsidence of a constant rate of 1.3 mm/y over the last
millennia [Antonioli et al., 2009], up to the turn of the 20th century, when it fell to 0.4 mm/y
[Gatto and Carbognin, 1981]. During the 20th century, groundwater extraction in Venice’s
mainland port, Porto Marghera, has led to an anthropogenic subsidence in the order of
10 cm over the last century [Emery and Aubrey, 1991]. Groundwater extraction started af-
ter the construction of the industrial zone in 1930 and increased after the port expansion
in the 1950s. As a result, both the port and the nearby city of Venice started to sink at in-
creased rates. When in 1966 the water reached a height of 194 cm during an extreme Acqua
Alta event, extensive damage was done to many cultural sites, and many inhabitants were
left homeless. After this extreme storm surge event, measures were taken to prevent future
flooding of the city. In the period after the 1966 flood, more funding became available to
better understand and predict future Acqua Alta events. In 1969 the Istituto Studio Dinam-
ica Grandi Masse (ISDGM) was founded with the objective of studying causes related to
frequent flooding [Cavaleri, 2000], which resulted in the construction of the oceanographic
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2 1. Introduction

tower; Piattaforma Acqua Alta, a measurement station off the coast of Venice. Addition-
ally, in this period, due to strong new regulations, groundwater extraction progressively
stopped. The restoration of the aquifer caused an uplift after this period equal to 15% of
the total subsidence (2 cm) [Gatto and Carbognin, 1981]. After this period of uplift, there
was no significant long-term subsidence; however, high rates of subsidence still occur for
short periods [Tosi et al., 2013]. These can be attributed to renovation works that cause
large loads on the wooden piles and the ongoing consolidation of the soil of the later con-
structed parts of the city.

While anthropogenic subsidence has come to an end, sea level rise is expected to con-
tinue to increase in the coming century, and the natural subsidence of the soil remains. The
recently built mobile storm surge barriers (MoSE) constructed between the barrier islands
can close the three inlets to the lagoon. This barrier addresses the problem of increased
frequency in floods and closes with tides greater than 110 cm. First operated in 2020, the
barriers bring an end to extreme events in the near future; bringing an end to one of the
longest records of water level observations in the Adriatic coast (1924-2020) for the pur-
pose of extreme value analysis.

1.2. Problem Description

Flooding of coastal regions is recognized as a major threat to people [Lopes and Dias, 2015]
and is one of the most frequently occurring disasters in the world [Jonkman, 2005]. The
probability of the occurrence of potentially damaging flood events is called flood hazard
[Schanze et al., 2006]. Flood hazard assessment is crucial for coastal protection strategies.

Accurate predictions of the combination of factors driving extreme water levels is a
key component of assessing and understanding flood hazard [Lyddon et al., 2018], and
good quality extreme water level estimates are essential for flood hazard assessment
[Batstone et al., 2009] [Arns et al., 2020]. However, extreme water level estimates are al-
ways associated with large amounts of uncertainty and this uncertainty further increases
in complex coastal regions containing shallow bathymetry. This can partly be contributed
to the non-linear interactions between the tides and storm surges. The tide-surge in-
teraction (TSI) is strongest in regions of shallow bathymetry [Mawdsley and Haigh, 2016].
Since Venice is located in the largest Italian estuary with a mean depth of around 0.8-1.1
m [Rapaglia et al., 2010] [Day et al., 1998], non-linear interactions are likely to occur. The
non-linear interactions or (TSI) cause lower total water levels in comparison to the case
where they are assumed independent [Olbert et al., 2013]. Additionally in light of sea level
rise projections [Masson-Delmotte et al., 2021], bottom depth will change affecting this re-
lationship between tide and surge.

Therefore, there is need to investigate tide-surge interactions and incorporate the im-
pact of tide-surge interaction in extreme water level estimation to improve flood hazard
assessment for the Venice lagoon.
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1.3. Research Objective

The main objective of this thesis will be to

Quantify the influence of tide-surge interaction on extreme water level esti-
mates and investigate the use of copulas in extreme water level estimation

To this end, the sub-questions formulated below are addressed.

1. How can the (non-)stationarity of a time-series be evaluated?

2. How can the tide and non-tidal components of the water level be separated from one
each other?

3. How can the relationship between tide and surge be quantified?

4. How is extreme value analysis performed when tide and storm surge are dependent
on one another?

5. What should be the selection criteria of a copula function?

6. How can the the influence of the relationship between tide and non-tidal residual on
extreme water level estimations be quantified?

The remainder of this thesis report is divided into 6 chapters. First, the literature review
is discussed in which the steps towards answering the research objective are explained.
This is followed by a chapter on the exploratory time-series analysis & homogenization.
Thereafter the quantification of the dependence and the extreme value analysis using cop-
ula functions is performed. After this chapter, the results will be presented followed by the
discussion. Lastly we arrive at the conclusion.





2
Literature review

This chapter starts with a case study highlighting the city of Venice and its history of hy-
draulic interventions and relative sea level rise followed by the data acquisition. Thereafter,
the required background information is discussed to understand the underlying processes
and methods used in this thesis.

2.1. Case study: Venice lagoon

Venice is located in the northeastern part of the Adriatic Sea. The large lagoon surround-
ing the low-lying city is connected to the Adriatic by three inlets, the Chioggia, Malamocco
and finally the Lido inlet, closest to the city [Robinson et al., 1973]. The city is an iconic
place of great cultural and historical importance and has been selected as a UNESCO World
Heritage Site since 1987 [WCED, 1987]. The city and its lagoon have a long history of hy-
draulic interventions. Historically, the surrounding water was always of great military and
strategic importance [Pirazzoli, 1987] [Bevilacqua, 2009], so the aim of many of these in-
terventions was to prevent the lagoon from silting up [Gatto and Carbognin, 1981]. Up to
the 20th century, any construction that caused deposition was prohibited or strictly reg-
ulated [Pirazzoli, 1987]. One of the largest interventions that began in the 15th century
[Brambati et al., 2003] [Gatto and Carbognin, 1981] [Lionello et al., 2020] was the redirec-
tion of all the major rivers that used to flow into the lagoon. This was done to prevent
sedimentation of the lagoon. This stop in sedimentation due to rivers caused natural sub-
sidence to no longer be compensated for by alluvial sediments [Brambati et al., 2003].

More recently, since the 19th century, many more interventions have been carried out,
the consequences of which are still being felt today. While the cross-sectional area of the
inlets to the lagoon has increased as a result of dredging, the surface area of the lagoon
has progressively decreased. The tidal flats have been reclaimed and are now used for the
industrial zone, first constructed in 1930 and later expanded in 1953 and the 1960s. Ad-
ditional land reclamation was for urban development, waste disposal, agriculture, and for
the construction of the airport. In this way, the surface area of the lagoon has decreased by
30% since 1830. Furthermore, until the end of the 19th century, the Lido inlet had a depth
of 3m and the Malamocco inlet one of 4-5m. During the 20th century, especially once the
industrial port, Porto Marghera was established, the depths of the Lido, Malamocco, and
Chioggia inlets increased to up to 14 m deep [Pirazzoli, 1987] and breakwaters were built
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6 2. Literature review

at the inlets. As a result, there has been a large change in the ratio between the lagoon
surface area and the cross-sectional area of the inlets. Consequently, the tidal range and
erosion rates have increased due to the deepening of the inlets. The effects of morpholog-
ical interventions combined with the sea level rise has caused tidal flats and salt marshes
to disappear at an increasing rate and have caused extensive damage to flora and fauna
[Pirazzoli, 1987]. The man-made changes along with the effects of sea level rise contribute
to large amounts of relative sea level rise.

Relative mean sea level change
It is important to make a distinction between relative sea level and absolute sea level. Many
records of water level observations before the days of satellite altimetry contain relative sea
level observations as opposed to absolute sea level observations. This is because measure-
ment stations themselves are subject to changes in vertical position relative to the sea sur-
face. These changes are caused by many different processes, such as plate tectonic move-
ment, subsidence from aquifer withdrawal, post-glacial rebound, or earthquakes. These
processes contribute towards a total vertical land motion which forms the difference be-
tween mean sea level and relative mean sea level.

Vertical land motions causing subsidence or uplift of the bottom level of the lagoon
impact the measurements obtained from tide-gauges. Figure 2.1 shows how a tide-gauge
is fixed to the sea floor. When the sea floor rises or falls, the difference in measurements
is recorded by the tide-gauge. Since the second half of the 20th century, more and more
satellite measurements have become available that can help circumvent this problem.

Figure 2.1: Schematic overview of tide-gauge water level measurements.

Vertical land motion (VLM) is a critical contributor to the change in relative mean sea
level (RMSL) in the Venice lagoon [Zanchettin et al., 2021]. This vertical land motion can
be separated into anthropogenic and natural causes. One of the components of natural
VLM is the Glacial Isostatic Adjustment (GIA). GIA is the result of large ice masses that cov-
ered large parts of Europe during the last ice age thousands of years ago. These ice masses
pressed down to the Earth’s surface with extreme loads. The Earth’s surface is still rebound-
ing towards isostatic equilibrium, causing either local uplift or subsidence. The influence of
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GIA on the change in RMSL in Venice is between -0.2 mm / year (uplift) and +0.5 mm / year
(subsidence) [Antonioli et al., 2009]. Other natural causes of ground deformations are plate
tectonics, volcanism, and sediment compaction [Wöppelmann and Marcos, 2016]. Sedi-
ment compaction played a role after the formation of the lagoon, leading to a total natural
land subsidence rate of 1.3 mm/year [Carbognin et al., 2004]. At the turn of the 20th cen-
tury, this subsidence was still ongoing at 0.9-1.3 mm/y [Zerbini et al., 2017], however dur-
ing the period 1900-1930, this changed to 0.4 m / y, probably due to a stop in the long-term
influence of river diversion that occurred centuries ago [Gatto and Carbognin, 1981].

An even greater contributor to the more frequent acqua alta events is the loss of ele-
vation resulting from man-induced subsidence [Gatto and Carbognin, 1981]. From 1930
and especially during the second half of the 20th, anthropogenic processes began to have
a significant effect, resulting in additional land subsidence. This anthropogenic subsi-
dence is due to the very intensive extraction of groundwater in the period of the highest
industrial growth after the second world war, causing a drop in the piezometric head of up
to 20 m [Gatto and Carbognin, 1981][Zanchettin et al., 2021][Lionello et al., 2020]. Conse-
quently, large amounts of land subsidence were reported over the period 1930-1950, and
even larger ones during 1950-1970 attributed to an expansion of the nearby port bring-
ing an increasing groundwater extraction. Since the 1970s, measures have been taken to
prevent further groundwater extraction, after which there has been a significant decrease
in anthropogenic subsidence [Zerbini et al., 2017]. Levelling measurements in 1973 and
1993 recorded a slowdown in subsidence and a small uplift after restoration of the ground-
water level. One of the available time-series of observations comes from a measurement
point at Punta Salute in the city of Venice. Since the rising of the Mean Sea Level (MSL)
and the subsiding of the tide-gauge influence the relative mean sea level (RMSL), noth-
ing can be said about their independent magnitude. In recent decades, the subsidence
in the city has been quasi-stable at 0.25 mm / y on the tide-gauge [Carbognin et al., 2004]
[Carbognin et al., 2010]. Today, large-scale subsidence caused by anthropogenic influence
has stopped, as confirmed by regional studies in 1993 and 2000 [Carbognin et al., 2005]
[Brambati et al., 2003]. Most of the still remaining anthropogenic subsidence caused by
renovations is very local and lasts only for short periods of time [Tosi et al., 2013]. No fur-
ther large-scale anthropogenic subsidence is expected in the future in the city. However, in
the MoSE inlets, up to 70mm/y of local settlements occurred [Tosi et al., 2018].

Many authors have found different but comparable numbers for man-induced subsi-
dence during the period of heavy groundwater extraction. In the table below, an overview
is given.

The authors seem to agree with an uplift of 2 cm after the closure of the aquifers
and a total subsidence over the 20th century in the range of 23-26 cm, of which 9-11
cm is due to anthropogenic influence [Pirazzoli, 1987] [Tosi, 1995] [Brambati et al., 2003]
[Tosi et al., 2013] [Cavallaro et al., 2017] [Pirazzoli and Tomasin, 2002].

In addition to the influence of vertical land motions, another factor that influences the
relative sea level is the rise of the sea level.

Sea level rise
As mentioned in the previous chapter, it is expected that the anthropogenic subsidence that
has occurred in the last century will not continue into the future. Therefore, its contribu-
tion to the relative change in sea level should not be considered. This leaves two ongoing
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Author(s) Anthropogenic subsidence Time Period

[Gatto and Carbognin, 1981]
1 mm/y 1930-1950
5 mm/y 1950-1970

-0.5 mm/y 1971-1975

[Carbognin et al., 2004]

2.3 mm/y 1931-1970
5 mm/y 1952-1968

14 mm/y 1968-1969
± 0 mm/y 1993-2000

[Carbognin and Tosi, 1995]
5 mm/y 1950-1970

-0.5 mm/y 1971-1975
[Tosi et al., 2018] 5 mm/y 2008

[Carbognin et al., 2005] 3.5 mm/y 1930-1973
[Carbognin et al., 2010] -0.5 mm/y 1971-1975

Table 2.1: Anthropogenic subsidence from literature

processes to take into consideration; SLR and natural VLM. The influences of these two
contributors to RSLR will need to be included in the ESL estimates. Natural VLM is simple
to include, as it is a very stable contributor to RSLR, determined at a rate of −0.4mm/y .
One of the difficulties in accounting for future sea level rise is that there is still great un-
certainty in future SLR projections. ICCP has made SLR projections for different climate
scenarios [Masson-Delmotte et al., 2021]. The plot below (Figure 2.2) shows the regional
SLR projection for different Shared Socioeconomic Pathways (SSP). These SSPs are differ-
ent potential future scenarios, each with its own projected greenhouse gas emissions and
its own sea level rise. Of these potential story-lines, the SSP1-1.9 scenario can be consid-
ered to have very low amounts of greenhouse gas emissions, while the opposite was true
for the SSP5-8.5 scenarios. Figure 2.2 is specifically for the local SLR in and around Venice.
Large confidence intervals indicate the large uncertainties in these projections. One of the
reasons is the uncertainty in the total Antarctic contribution towards future SLR.

The projected sea level rise from the figure is much higher than the past global sea level
rise rate. The global sea level rise rates of 1901-2010 report a total global sea level rise of
0.19 m on average [Masson-Delmotte et al., 2021] over this period. Local sea level rise for
Venice specifically report lower rates of around 1.23±0.13 mm / y during the period 1872-
2019 [Zanchettin et al., 2021].

Data acquisition

From the beginning of the 20th century, mechanical tide recorders were developed and be-
came more and more popular as time progressed [Emery and Aubrey, 1991]. These were
practical as they did not require a human observer. One such tide-gauge is shown in Fig-
ure 2.3, where, using a float and a pulley system, the location of a pen is controlled by the
water level, which then marks the paper attached to a rotating recording drum. The still-
ing well, the construction around the float, stills (filters out) the wave activity [IOC, 2006].
This stilling ensures that long-period processes, such as tides, can be recorded very accu-
rately. This mechanical tide recorder was developed for the Punta della Salute tide-gauge
and can be seen in Figure 2.4. The first tide-gauge in Venice was built in 1871 and was lo-
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Figure 2.2: Sea level rise estimation for Venice up to 2150.

cated at Campo Santo Stefano, recording only high and low tides. An additional tide-gauge
was installed in 1888 at the Venetian Arsenal (Arsenale). Later on in the year 1906 the cur-
rent Punta della Salute tide-gauge was installed at Saint Mark’s Basin and it was not until
1923 that it was relocated to its where it is now in The Giudecca Canal next to Punta della
Dogana. Previously, as a reference, Venetians always used the brown-green line made up of
algae as the average high tide level named "Comune Marino" (CM) [Carbognin et al., 2010].
Later, the tide-gauge "Zero Mareografico Punta Salute" (ZMPS) became the reference
plane, based on the mean tide level between 1885 and 1909 [Zanchettin et al., 2021].

Monthly mean sea-level data are available from San Stefano (Venezia) from 1872 un-
til 1920, but the tide-gauge was moved to a new location in 1911. Furthermore, relative
sea level (RSL) observations are available from the Punta Della Salute tide-gauge located
in the city centre of Venice, which contains measurements from 1909-2020. Unfortunately,
both of these time-series contain large gaps of missing data up to 1924. Therefore, from
these 150 years of data, 97 years of RSL measurements were used from 1924 until the end
of 2020. Since the newly built storm surge barrier "Modulo Sperimentale Elettromecca-
nico" (MoSE) began operation in October 2020, data beyond this point are not useful when
extreme sea level (ESL) observations are of interest. Starting from 1924, 4 daily tide obser-
vations are available from the Punta Della Salute tide-gauge corresponding to high and low
tides. From the start of 1983, hourly measurements were available until 2020. These values
were interpolated as such to have 15-minute intervals. These data contain mean tide levels
(MTL) rather than mean sea level. The difference between the two is caused by shallow-
water tidal effects and is reported to be negligible in Venice [Zanchettin et al., 2021]. The
difference obtained between the two is reported in MTL-MSL=−0.1±0.1 cm.

Furthermore, 5-minute RSL observations are available from Piattaforma Acqua Alta
(1983-2020), a measurement station in the Adriatic Sea located some 15 km from the coast
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Figure 2.3: Tide-gauge schematic

(a) (b)

Figure 2.4: (a) floater gauges resting on top of the water surface inside of the stilling well,
(b) recording drum with pen and counterweights.
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Figure 2.5: Map of the Northern Adriatic and used tide-gauges

of the Venice lagoon [Cavaleri, 2000] (see also Figure 2.5). This measurement tower was
constructed in 1970, resulting from an increased effort to monitor the state of the sea
after the disastrous flood of 1966. Long records of monthly tide-gauge data from Ma-
rina di Ravenna from 1896 – 1972 (Porto Corsini), Trieste 1875-2021, and Marghera 1989-
2020, were available from the Permanent Service of Mean Sea Level (PSMSL) (https:
//www.psmsl.org/data). Higher temporal resolution observations were also obtained
from Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA) https://www.
venezia.isprambiente.it/index.php for the Trieste (1988-2009), Marghera(1989-2020)
and Marina di Ravenna (1986-2020) time-series. These are observations at half-hour to 5-
minute intervals dependent on the year of monitoring. All of these tide-gauges are located
in the northern Adriatic within a relatively short distance from each other. Figure 2.5 shows
where the tide-gauge stations are located within the northern Adriatic. Long tide-gauges
are beneficial for the observations of extreme events.

Extreme events in Venice
Acqua alta events in Venice are due to a combination of processes, most importantly, the
combination of tide and storm surge. A storm surge is an abnormal rise in water level due
to atmospheric processes (wind, pressure, etc.). Storm surges in Venice are caused by a
combination of these atmospheric processes, mainly due to cyclones during the winter pe-
riod that bring south-eastern winds (Sirocco) or north-eastern winds (Bora) accompanied
by low-pressure systems[Umgiesser et al., 2021]. Additionally, Sirocco winds can lead to
sieches in the Adriatic due to wind setup with periods of up to 21-23 hours. Tides in the

https://www.psmsl.org/data
https://www.psmsl.org/data
https://www.venezia.isprambiente.it/index.php
https://www.venezia.isprambiente.it/index.php
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Adriatic are among the largest in the Mediterranean. During spring tide, the tidal range will
reach values of more than 1 m [Umgiesser et al., 2021]. The Venice lagoon is an estuary with
shallow bathymetry. This shallow bathymetry is likely to lead to interactions between the
tide and storm surge components. The interaction between tide and non-tidal residual is
called the Tide-Surge interaction (TSI) and is mainly caused by wind stress, which is more
effective in producing storm surges in shallow water. Since surface stress is inversely pro-
portional to depth, this causes an increase in water level, which in turn causes an increase
in propagation speed [Santamaria-Aguilar and Vafeidis, 2018].

Fs = τs

Dρ
(2.1)

c =√
g D (2.2)

where τs is the wind stress, ρ is the density of the water, and D is the depth of the water.
Tide-surge interactions for extreme water levels in shallow regions often lead to peaks of
storm surges occurring during low tides. The influence of this interactions will be quanti-
fied in this work. To better understand the time-series and to ultimately homogenize the
data, first an exploratory data-analysis is performed.

2.2. Exploratory Data Analysis

An exploratory data analysis is an approach in which data sets are analysed in order to
summarise their main characteristics, often with the help of statistical graphics and plots.
A statistical model can be used, but the main goal of exploratory data analysis is to see what
the data can tell us beyond the formal modelling or hypothesis testing task. It is essentially
an analysis to better understand the data sets that are being worked on.

One of the main characteristics that the time-series will be analysed for is the presence
of trend. The influence of vertical land motions as laid out in the previous section indi-
cates that the observations of the relative mean sea level observations from the Punta della
Salute tide-gauge are likely to contain a trend. A trending mean is a violation of stationarity
and this stationarity is needed to calculate the statistics that are needed to define extremes
[Wang, 2008a]. This is why it is necessary to evaluate the time-series for stationarity. Below
the concept of stationarity will be explained and a method will be described to test for a
monotonic (always increasing or decreasing) trend.

If the water level at some location is constant in some statistical sense, then the statis-
tical characteristics of the water level are independent of time and this process is said to
be stationary [Holthuijsen, 2007]. Stationarity greatly simplifies a process as only the sta-
tistical characteristics of a single time step are required to describe the process. Consider a
sequence of random variables X1, X2, . . .. Then the definition of stationarity is as follows:

Definition 2.2.1 [Coles, 2001, page 25] A random process X1, X2, . . . is said to be station-
ary if, given any set of integers {i1, . . . , ik } and any integer m, the joint distributions of
(Xi1 , . . . , Xik ) and (Xi1+m , . . . , Xik+m ) are identical.

The stationarity of a time-series implies that its stochastic properties are homogeneous
in time. The opposite then is the non-stationary processes, which are processes that in-
stead have characteristics that systematically change over time [Coles, 2001]. An exam-
ple of such a non-stationary process is temperature variations throughout the year or over
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longer periods of time due to effects of climate change. The two concepts of stationarity
and homogeneity are similar. Stationarity refers to a process that is homogeneous in time
or time-homogeneous. While homogeneity can refer to some variable being constant with
regard to a different variable like space.

Statistical tests can be used to identify (Non-)stationarity in a time-series. In this work,
the trend will be evaluated using the non-parametric Mann-Kendall test [Mann, 1945]
[Kendall, 1975]. Non-parametric tests have the advantage that they are less sensitive
to outliers and can test for trend without specifying whether the trend is linear or not
[Wang et al., 2005].

Trend analysis
The Mann-Kendall test (MK) is a statistical test used to determine whether a time-series
always increases or always decreases over time. This is called a monotonic trend. Non-
parametric tests are tests that do not make assumption about the distribution of the under-
lying data, for example if the data are independent. The MK test tests the null hypothesis
H0 that a series of observations x1, . . . , xN for observations N come from an independent
identically distributed (IID) population. The Mann-Kendall test statistic is given as

S =
N−1∑
i=1

N∑
j=i+1

sgn(x j −xi ) (2.3)

with sgn being the sign function,

sgn(x) =


+1, x > 0

0, x = 0

−1, x < 0

(2.4)

To test the strength of the monotonic relationship between x and y [Kendall, 1938] in-
troduced τ as

τ= 2S

N (N −1)
(2.5)

With the test for significance introduced by [Mann, 1945]. The probability that the test
statistic will produce values at least as extreme as the value it produced for your sample
is expressed as the p-value. The p-value can be seen as evidence against a null hypothesis.
Since positive autocorrelation increases S and consequently the probability of rejecting the
null hypothesis [Wang et al., 2005]. When working with a time-series of water level obser-
vations, seasonality/autocorrelation is likely present, and so it will need to be accounted
for.

Deseasonalization can be performed as [van Belle and Hughes, 1984]: With Hi , j denot-
ing the monthly mean and i = 1, ...,12 denoting the month, and j = 1, ...,k the year 1, . . . ,k,

Yi , j =
Hi −Hi , j

σHi

(2.6)

Yi , j are the deseasonalized monthly mean observations. The non-parametric Mann-
Kendall (MK) tests can then be run on these deseasonalized monthly observations for sig-
nificance level α = 5%. This significance level is introduced to avoid rejecting the null hy-
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pothesis when it is true. For p values higher than the significance level of 5%, the null
hypothesis will be retained, and for other values it will be rejected.

These tests will give an indication if the trends found in the series are statistically signif-
icant. In addition to the Mann-Kendall test, the Sen slope estimator can be used to assess
the magnitude and sign of the trend [Sen, 1968]. The advantage of Sen’s slope is that this
method is less sensitive to outliers and missing data than simple linear regression. The
magnitude and sign of the trend are of interest, as it allows for comparison of trends during
different periods of time. Both the sign of the Sen slope as well as the significance of the MK
test can then be applied to different time periods to understand the time-series’ behaviour
over time. Each individual slope is calculated as

Qi =
x j −xi

j − i
, i = 1,2, . . . , N , (2.7)

where xi and x j are observations at time i and j ( j > i ) [Aditya et al., 2021]. For n ob-
servations, there will be N = n(n −1)/2 estimates of the slope. With N sorted in ascending
order for Qi , a median value is calculated [Sen, 1968].

When performing regression analysis, autoregressive errors or are a form of serial cor-
relation in the error term. First order autoregressive errors or AR(1) errors can be explained
in the following way.

Following [Liu et al., 2020], assuming one has a dependent variable y which has a rela-
tionship with k explanatory variables x1, . . . , xk with an AR(1) error process we have:

yt =β0 +β1xt1 + . . .+βk xtk +ut (2.8)

ut =ρut−1 +ϵt (2.9)

where ϵt are uncorrelated random variables ϵt has the probability distribution of
N (0,σ2) and |ρ| < 1 is required for errors to be stationary. This is an example of an autore-
gressive model. This model represents a time-varying random process which is dependent
on its own previous values. In an AR(1) model, the AR model is only dependent on its previ-
ous value (not the ones before the previous). Most climatic models exhibit autocorrelation
or autoregressive behaviour, as an example one can think of seasonality. A first order au-
toregressive error, or AR(1) error is then an error at time step ϵt which is dependent on the
error of the previous time-step ϵt−1. This can be expressed as

ϵt = ρϵt−1 +ωt . (2.10)

Where now ωt ∼ N (0,σ2).
The Mann-Kendall monotonic trend test is sensitive to autocorrelation. Autocorrela-

tion can cause an increase of type I errors. Type I errors occur when the null hypothesis is
rejected while it is true. This is why variants of the Mann-Kendall tests are also introduced
in this work which account for this problem of autocorrelation. One of these methods is
the pre-whitening approach. Pre-whitening is a method of identifying a filter for the data
which can transform the data into serially independent values (without autocorrelation).
Autocorrelation is not a problem in extreme value analysis because in this case extreme
events are separated by enough time for them to be serially independent. This is done by a
process of declustering. This process will be explained in section 2.3.
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Changepoint detection and signal decomposition
Quality control and homogenization of time-series must be performed prior to assessing
future change and variability, or when using observations to forecast future scenarios. This
quality control as well as the homogenization of the time-series can be done using change-
point detection methods. changepoint detection identifies abrupt variation in the process
behaviour due to changes in the time-series [Zhang et al., 2022].

To identify changes in a time-series, the RHtestV4 method [Wang, 2008a] and the BEAST
method [Zhao et al., 2019] can be used. Examples of changes for a tide-gauge could be
changes in measurement techniques, location of tide-gauge, undocumented dredging
near/below the gauge, and more. Additionally, the BEAST method allows signal decom-
position into a trend, a seasonal component and noise. If a statistically significant change-
point is identified at any time t , historical information from recorded events at t can be
explored to find a possible cause.

The two methods are explained below; the main difference between the two is that the
RHtest detects shifts in mean while the BEAST method detects both shifts in mean and in
trend (slope).

RHtest
The RHtestV4 is a software package in R that can be used to detect and adjust for change
points (shifts) that could exist in a time-series that may have first-order autoregressive er-
rors [Wang, 2008b]. RHtest was designed to homogenize daily and monthly temperature
data, but can also be applied to time-series of different kinds. Homogenization of the time-
series is important in preparation of extreme value analysis, which is where the RHtest will
be helpful. Furthermore, the changepoint analysis can increase the understanding of the
underlying signal.

The RHtest method uses the Penalized Maximum F Test (PMFT) by [Wang et al., 2007]
for this which is an extension of the F test. The F test uses an F statistic to compare two
statistical models fitted to the time-series to identify which best represents the underlying
data. The F-test is performed as follows:

1. Defining the null hypothesis and the alternative hypothesis.

2. Calculate the F value.

3. Find the critical F-value.

4. Compare the F-value with the critical F-value.

5. Consider the p value.

6. Choose whether to reject the null hypothesis.

The F-test compares the fit of two linear models. Specifically for the RHtest, a linear
function will be tested against a fit using a piecewise linear function. The penalized max-
imal F test is an extension of the regular F test. Let ϵt be an independent and identically
distributed (IID) Gaussian. To identify a sudden change at time t = k in a time-series {X t }
with a linear trend β is to test the null hypothesis [Wang et al., 2007].

H0 : X t =µ+βt +ϵ, t = 1,2, . . . , N (2.11)
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against the alternative hypothesis

Ha :

{
X t =µ1 +βt +ϵt , t ≤ k

X t =µ2 +βt +ϵt ,k −1 ≤ t ≤ N ,
(2.12)

where µ1 ̸= µ2. If the alternative hypothesis Ha is true at a point t = k, then the point is
called a changepoint and ∆= |µ1 −µ2| is the magnitude of the mean change. The maximal
in the definition of the PMFT comes from the most probable points of the changepoints
associated with Fmax

Fmax = max
1≤k≤N−1

Fc (k) (2.13)

and

Fc (k) = (SSE0 −SSEa)

SSEa/(N −3)
, (2.14)

SSE A =
k∑

t=1
(X t − µ̂1 − β̂t )2 +

N∑
t=k+1

(X t − µ̂2 − β̂t )2, (2.15)

SSE0 =
N∑

t=1
(X t − µ̂0 − β̂0t )2 (2.16)

Here SSE is the abbreviation for the sum of squared estimate of errors. µ̂0 and β̂0 are
estimated with constraint µ1 = µ2 =µ. A changepoint is declared whenever the Fmax statis-
tic is greater than Fcr i t corresponding to the nominal level of significance α, i.e. the rate
at which the null-hypothesis is rejected when true (type I error). α is arbitrary but usually
the value of α = 0.05 is used (95% confidence interval). If the alternative hypothesis is ac-
cepted, the series is divided into two samples at t = k with identical trend but difference
in mean µ1 ̸= µ2. Since the false alarm rate (FAR), or type I error as above (when a change-
point is mistakenly declared) depends on location k, an empirical penalty factor is applied
P (k). Therefore, the penalized maximal F test. This method can be applied to any time-
series with a trend and approximately IID Gaussian errors. As advised in [Wang et al., 2007],
the time-series should be roughly deseasonalized by subtracting the 12 monthly sample
means; this can also be performed by the RHtest itself.

Bayesian change-point detection & time-series decomposition
The Bayesian Estimator of Abrupt change, Seasonal change, and Trend (BEAST) is a Matlab
tool which can decompose a 1D time-series into trend components, seasonal components,
abrupt changes, and noise [Zhao et al., 2019]. This model can be used grow a better under-
standing of the data as well as assist with homogenization.

The decomposition of the signal is based on the concept of the Bayesian paradigm. In-
stead of using the single-best model approach, this framework allows for consideration of
many possible models and uses Bayesian Model Averaging (BMA) via Markov Chain Monte
Carlo sampling. Using the BMA approximation of non-linear signals and separation of
components (trend and periodic) is possible. The changepoints found using BEAST are
also indicated by the probability of occurrence calculated by counting the frequency of the
sample containing the knot (changepoint) divided by the total number of samples N from
the MCMC.

It is based on the assumption that a time-series G = {t , y} is composed of these three
components:
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yi = S(ti ;ΘS)+T (ti ,ΘT )+ϵi (2.17)

Here, S and T are the seasonal and trend signals that are parameterised by general linear
models and ϵ is the random error that is assumed to be normally distributed with magni-
tude σ.

Both the seasonal and the trend terms are approximated as piecewise linear functions.
The seasonal signal is approximated using a piecewise harmonic function with break points
p at timings ξk , k = 1, . . . , p. These breakpoints split the time-series into intervals of p + 1
and each of these intervals is then approximated by the piecewise harmonic function in the
following form.

S(t ) =
Lk∑

l=1

[
ak,l · sin

(
2πl t

P

)
+bk,l ·cos

(
2πl t

P

)]
(2.18)

Lk is the harmonic order of the corresponding segment k, varies from segment to seg-
ment and is assumed to be unknown. P is the period of the seasonal signal, the period used
is 12 months for 12 subsequent monthly means. ak,l and bk,l are also segment-specific pa-
rameters and are also assumed to be unknown, such as the number of breakpoints p and
their timings ξk . In the same way, the piecewise linear function approximating the trend is
defined as:

T (t ) = c j +d j t for τ j ≤ t < τ j+1, j = 0, . . . ,m (2.19)

Here c j and d j are segment-specific parameters, m is the number of change-points
with timings τ j , j = 1, . . . ,m. Again, the number of changepoints and their timings are
unknown. Note that the notation for the number of change-points and their timings are
different for the Seasonal and the Trend function, this is because they may not be the same.
The parameters from the Trend and Seasonal signals as defined above are then split into
a model structure M containing all changepoints and their timings, βx then contains all
parameter values and its structure is dependent on the Model (more breakpoints means
more sections, and thus more parameters are required). The general form of Equation 2.17
then becomes

y(ti ) = xM (ti )βx +ϵi (2.20)

where xM is the matrix which size depends on M containing parameters of the piece-
wise harmonic and piecewise linear functions. All of these unknown parameters, as well as
the number of breaks and their timings, are then assumed to be random in order to build a
Bayesian model for BMA. The posterior probability p(βM ,σ2, M | f ) is then desired and, by
Bayes’ theorem, can be described as

p(βM ,σ2, M | f )︸ ︷︷ ︸
Posterior

= p( f |βM ,σ2, M)︸ ︷︷ ︸
Likelihood

π(βM ,σ2, M)︸ ︷︷ ︸
Prior

The likelihood in this context p( f |βM ,σ2, M) is the probability of producing the obser-
vations f for parameters βM ,σ2 and M . The prior π(βM ,σ2, M , M) can be described as

π(βM ,σ2, M) =π(βM ,σ2|M)π(M) (2.21)
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These can then be separated into conditional priors π(βM ,σ2|M) and π(M), which are
both considered to be flat priors (we have no existing knowledge about the model param-
eters). However, these can be influenced by user input, for example, the minimum and
maximum number of changepoints. Here π(M) is the prior of the model structure and
π(βM ,σ2|M) is the prior for the model coefficients. The posterior distribution can then
be sampled using Markov chain Monte Carlo (MCMC) sampling using a hybrid reversible
jump sampler which allows jumping between different models (as they will have different
numbers of changepoints and thus different numbers of parameters). In this way, a chain
of posterior samples can be generated that includes different model structures and param-
eters for every sample. Using these many individual estimates, a Bayesian model average
can be made, and a signal can be decomposed into a trend and a seasonal signal, which
can then be analyzed for changepoints [Zhao et al., 2019].

A very powerful tool in Bayesian inference is the Monte Carlo Markov chain (MCMC).
First, the Monte Carlo method is addressed. Using the Monte Carlo method, one can ran-
domly sample a large amount of data from a distribution and make estimations of the
properties of the distribution based on those samples. This can often be easier to calcu-
late, or this method can be used when distribution equations are very complicated proper-
ties (e.g. mean, standard deviation) of a distribution directly [van Ravenzwaaij et al., 2018].
The Markov chain is a stochastic model that describes the sequence of events/samples. In
this process, the outcome of a given event will affect the outcome of the next event, this
is where the ’chain’ comes from [van Ravenzwaaij et al., 2018] [Levin et al., 2017]. The first-
order Markov chain is defined as [Coles, 2001]

Definition 2.2.2 A random process X1, X2, . . . is a first-order Markov chain if, for every i =
2,3, . . . , the conditional density function satisfies

f (xi |xi−1, . . . , x1) = f (xi |xi−1) (2.22)

An important property of the Markov chain is also that each new sample depends only
on the previous sample and on the ones before it. There are different approaches for
the Markov chain sequence, like Metropolis-Hastings MCMC and Reversible-jump MCMC
as mentioned above, which is a variant of Gibbs sampling (a variant of the Metropolis-
Hastings MCMC) that allows simulation of different dimensions.

2.3. Statistical methods

This chapter will outline the statistical methods that are used in this thesis and will explain
the concepts behind statistical modeling of extreme values, dependence and the copula
function.

Extreme Value Analysis
Extreme value analysis (EVA) is a branch of statistics that describes the unusual. EVA is ap-
plied in many fields, for example earthquakes, weather extremes or ocean wave modelling.
In this thesis it will be used to estimate extreme sea levels. This section will explain theory
essential to extreme value analysis and how EVA can be applied to time-series in order to
estimate return values.
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Asymptotic theory Asymptotic theory, or large sample theory are methods of assessing
behaviour of samples n as the sample size grows to infinity n →∞. This theory assumes
that any sample size will infinitely grow. The asymptotic theory allows for other theorems
to be used like the law of large numbers (LLN) and the central limit theorem (CLT).

The law of large numbers states that as a n →∞, the average of the samples will be the
expected value. This can be denoted as

lim
n→∞

n∑
i=1

Xi

n
= X (2.23)

Another important law in probability theory is the central limit theorem (CLT).

Theorem 2.3.1 [Coles, 2001, page 27] Let X1, X2, . . ., be a sequence of IID random variables
with mean µ and finite, positive variance a σ2. Then,

X n = X1 + . . .+Xn

n
, (2.24)

p
n(X n −µ)

σ

d−→ Z (2.25)

as n −→∞, where Z ∼ N (0,1).

For a large amount of samples, Equation 2.24 can be written as

X ∼̇N (µ,
σ

n
) (2.26)

where ∼̇ stands for ’is approximately distributed as" [Coles, 2001]. The CLT states that
the distribution of sample means are approximately normally distributed, regardless of
parent distribution. This implies that statistical methods that work for a normal distribu-
tion are also applicable to problems involving other types of distributions.

Extreme value theory provides a framework for extrapolation based on data from ob-
servations. If one has a time-series with observations X1, X2, . . . , Xn , then

Mn = max(X1, . . . , Xn), (2.27)

is the maximum of n observations [Coles, 2001]. Since the behaviour of Xi is unknown,
finding an exact Mn is not possible. However under asymptotic theory ( n →∞) the approx-
imate behaviour of Mn can be derived by family of models calibrated with observations of
Mn [Coles, 2001]. Extreme value analysis provides a family of models to extrapolate from
(few) observed extremes to many "unobserved" extremes [Coles, 2001]. Two frequently ap-
plied methods of extreme value analysis (EVA) are described in the following two subsec-
tion*s.

Annual Maxima The annual maxima (AM) method is a classic method in frequency
analysis. It is derived from the block maxima approach which decomposes the data
into blocks of equal duration (often 1 year) and takes the maximum value for each pe-
riod. If the variables are IID, the extremes will converge to a GEV distribution as per the
Fisher–Tippett–Gnedenko theorem:
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Statement 2.3.1 Let X1, X2, . . . , Xn be a sequence of iid random variables with cumulative
distribution function F . Suppose that there exist two sequences of real numbers an > 0 and
bn ∈R such that the following limits converge to a non-degenerate distribution function:

lim
n→∞P

(
max{X1, . . . , Xn}−bn

an
≤ x

)
=G(x), (2.28)

In this case G belongs to the Gumbel, the Fréchet or the Weibull family [Mood, 1950]. If
Equation 2.28 converges that G will assume the GEV as below.

G(X ) = exp

(
−

(
1+ξ

(
x −µ
σ

)− 1
ξ

)
, for 1+ξ(x −µ)/σ> 0 (2.29)

where ξ is the shape parameter, µ is the location parameter, and σ is the scale parame-
ter. Depending on the shape parameter ξ, governing the tail behaviour of the distribution,
the distribution will belong to a different family of extreme value distributions denoted I,
II and III. These families are known as the Gumbel, Fréchet, and reversed Weibull extreme
value distributions for type I, II, and III, respectively. For ξ < 0 and ξ > 0, this will mean a
type III and II distribution, while for ξ= 0 this will lead to the Gumbel family [Coles, 2001]
[Caires, 2011]. These three different types of distributions have different shapes and tail be-
haviour as is highlighted in Figure 2.6. While the Gumbel or type I distribution is unlimited,
the type II has got an lower limit and the type III has got an upper limit.

Figure 2.6: GEV density plots for different shape parameters for µ= 0 and σ= 1

From these distributions, the m-year return value can be determined using:

Zm =

µ−
σ
ξ

(
1−

{
− log

(
1− 1

m

)}−ξ)
, for ξ ̸= 0

µ−σ log
{
− log

(
1− 1

m

)}
, for ξ= 0.

(2.30)
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where m is the return period

Peak Over Threshold Instead of separating observations into years and selecting a maxi-
mum for each block, one can also define an event as extreme if it falls above some threshold
value [Coles, 2001]. In this way, more data is included, which is especially useful for shorter
time-series. This different approach is the peak-over-threshold (POT) method. Using this
method, one chooses a threshold for the selection of extremes. All extreme events above
this threshold are then included in the analysis. To ensure independent extremes, a d pe-
riod has to be chosen so as not to include effects from the same event more than once. The
declustering period depends on the duration of the storm at the location of interest.

Declustering is a process applied to a time-series to ensure independent observations
of extremes. An important assumption in declustering is that two extreme events Xi > u
and X j > u are approximately independent if u is high enough and the time between i and
j is high enough. Going back to the temperature example above, if the temperature is high
today, this might make it more likely that it is high tomorrow, but not so much over longer
time-periods like a month [Coles, 2001].

Definition 2.3.1 [Coles, 2001, page 93] A stationary series X1, X2, . . . is said to satisfy the
D(un) condition if, for all i1 < . . . < ip < ji < . . . < jq with j1 − ip > l

|Pr{Xi ≤ un , . . . , Xip ≤ un , X j1 ≤ un , . . . , X jq ≤ un}

− Pr{Xi1 ≤ un , . . . , Xip ≤ un} Pr{X j1 lequn , . . . , X jq ≤ un}| ≤α(n, l )
(2.31)

where α(n, l ) → 0 for some sequence ln such that ln/n → 0 as n →∞.

The D(un) condition makes sure that when variables are far enough apart, the difference
in probabilities will will be close enough to zero to not influence the limit laws for extremes
(see also section 2.3 on asymptotic theory).

Theorem 2.3.2 [Coles, 2001, page 93] Let X1, X2, . . . be a stationary process and define Mn =
max{X1, X2, . . . , Xn}. Then if an > 0 and bn are sequences of constants such that

Pr{(Mn −bn)/an ≤ z} →G(z), (2.32)

Where G is a distribution function where D(un) is satisfied, un being an z +bn . For every
z ∈ R, G is a member of the GEV family of distributions [Coles, 2001]. This theorem states
that the maxima of a stationary series converges provided the D(un) condition is satisfied.

A difference between AM and POT is the way extremes are defined. In the AM method,
they are defined as block maxima while using POT, extremes are defined as observations
that exceed some type of threshold. This difference in approach requires a different model
development.

Let X1, X2, . . . be an array of IID random variables from a marginal distribution function
H . With a threshold value u, extreme events are observed when Xi > u. The stochastic
behavior can then be described by the conditional probability

Pr (X > u + y |X > u) = 1−H(u + y)

1−H(u)
, y > 0 (2.33)
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Where for block maxima, the unknown parent distribution is approximated using the
GEV, for values above some high threshold, this approximation is performed using the gen-
eralized Pareto distribution (GPD) [Coles, 2001]. Using Equation 2.29 for ξ, µ> 0 and σ> 0,
for some high value of u, the distribution function is

F (y) = 1−
(
1+ ξy

σ̃

)−1/ξ

(2.34)

where

σ̃=σ+ξ(u −µ) (2.35)

where ξ is the shape parameter andσ is the scale parameter. The selection of the thresh-
old for POT plays a very important role, and there are multiple methods to choose this
threshold [Caires, 2011]. The sample mean excess function is defined as

en(u) = ∑
i≤n

(xi −u)I (u < xi )∑
i≤n I (u < xi )

. (2.36)

en is plotted and termed a mean residual life plot. From the mean residual life plot, one
can subjectively assess in the plot above which threshold u the plot shows approximately
linear behaviour.

Another procedure is to estimate the model at different thresholds. Above a level u0
at which the asymptotic motivation for the generalized Pareto distribution is valid, esti-
mates of the shape parameter ξ should be approximately constant, while estimates of scale
σ should be linear in u [Coles, 2001]. Using this method, one reparameterizes the scale
parameter as

σ∗ =σu −ξu (2.37)

where

σu =σu0 +ξ(u −u0). (2.38)

σ∗ should remain constant with respect to u [Coles, 2001], and if some u0 is a valid
threshold, then both σ∗ and ξ should remain approximately constant above this threshold
value.

In the case of interdependence, the assessment using a univariate analysis may not give
satisfactory recurrence intervals of extreme events [Sadegh et al., 2017], the bivariate distri-
bution of the two including their dependence can be modeled using a copula [Sklar, 1959].
which will be explained below however first the tide and surge components must be sepa-
rated and evluated for dependence.

Separation of tide and surge components
In order to separate tidal and surge components of a time-series of water level observa-
tions, both analytical methods (Fourier transform/Fast Fourier transform/Wavelet trans-
form) and empirical methods (EMD, EEMD, IF, ALIF) are available. Analytical tidal de-
composition methods have the advantage of having a strong mathematical foundation.
Most analytical methods have their basis in Fourier transforms or Fast Fourier transforms.
The advantage of using empirical methods over analytical methods is that it is better at
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processing nonlinear and non-stationary data, and the basis is dictated by data (no pre-
scribed system), which extracts physically meaningful modes. However, many of the em-
pirical methods are highly susceptible to small perturbations and mode and noise mix-
ing [Stallone et al., 2020], additionally, there is no mathematical proof of convergence and
their mathematical basis is still lacking [Lin et al., 2009]. With the phases of harmonic con-
stituents are known (these are dependent on the latitude of a time-series), tidal harmonic
analysis is preferred for longer time-series where there is good separability of tidal con-
stituents. For shorter time-series empirical methods are worth considering. Therefore, this
method was chosen for the decomposition of the tidal signal. Many software packages are
available to simplify the process of separating the tide and the NTR on the basis of an an-
alytical approach. These include Delft3D-tide [Deltares, 2021], Task2000, Trappy, T_tide
[Pawlowicz et al., 2002] and U_tide [Codiga, 2011]. Many of these methods use the general
formula for astronomical tides.

H(t ) = A0 +
k∑

i=1
Ai Fi cos(ωi t + (V0 +u)i −Gi ) (2.39)

H(t ) water level at time t
A0 mean water level over a certain period
k number of relevant constituents
i index of a constituent

Ai local tidal amplitude of a constituent
Fi nodal amplitude factors

(V0 +u)i astronomical argument
Gi improved kappa number (local phase lag)

Due to advantages over other methods and because they use Matlab as their working
environment, the T_tide and U_tide were chosen. Both allow for non-uniformly spaced
time-series and U_tide also includes the lunar nodal cycle and the lunar apsidal cycle.

The aim of tidal analysis or prediction is to reproduce significant time-stable param-
eters that at the place of observation describe the tidal regime [Pugh, 1987]. It is assumed
that tidal forcing does not change with time and that with a sufficiently long time-series, the
true value for each constant is obtained. Tidal harmonic analysis is an analysis that treats
tidal observations as the sum of a finite number of harmonic constituents [Pugh, 1987].
Astronomical arguments determine the phases and angular speeds of these constituents.
Using tidal harmonic analysis, constituents are selected via an iterative process. By analyz-
ing the diagnostics of the output, constituents can be kept or rejected. This choice can be
motivated on the basis of the signal-to-noise ratio of the constituents and on the rate of in-
dependence of an included constituent [Codiga, 2011]. The ability to resolve independent
constituents is based on the observation duration of the tidal observations. The separa-
bility of the constituents is quantified using the Rayleigh criterion, which states that two
constituents can be separated if the relative phase difference between the two is at least 2π
[Godin G., 1970]. If this criterion is not met, it is difficult to distinguish different sources
with relatively close frequencies. Since the time-series used in this thesis is of sufficient
length, the Rayleigh criterion is met, meaning separability of constituents is not a problem.
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Correlation and dependence modelling
This section will explain the concept of correlation in statistics and how to quantify corre-
lation between variables using statistical tests. Furthermore it will explain how to model
dependence using copulas.

Dependence or correlation is the statistical relationship between two random variables.
This dependence can be seen as the extend to which two components increase or decrease
in harmony [Coles, 2001]. Using correlation tests such as Pearson’s correlation coefficient,
Kendall’s rank correlation τ, and Spearman’s rank correlation, dependence can be quanti-
fied. These tests give insight on how large the dependence is between both and if they are
positively, negatively or not correlated. Here the Pearson’s correlation coefficient and the
Kendall rank coefficient are explained.

Let (X1,Y1), . . . , (Xn ,Yn) be IID vectors containing observations of tide (X) and storm
surge (Y), then the dependence between these variables X and Y can be expressed in Pear-
son’s correlation coefficient [Stepanov, 2015]:

ρn =
∑n

i=1(Xi −X )(Yi −X )√∑n
i=1(Xi −X )2 ∑n

i=1(Yi −Y )2
(2.40)

For Kendall’s rank correlation, the concept of concordant pairs and discordant pairs will
be explained first. Again, let (X1,Y1), . . . , (Xn ,Yn) be IID, then a pair of observations Xi ,Yi

and X j ,Y j with i < j are concordant if both Xi > X j and Yi > Y j or if both Xi < X j and
Yi < Y j . If a pair is not concordant, they are instead discordant [Kendall, 1938]. Then the
Kendall τ coefficient is defined as [Nelsen, 2021]:

τ= 1− 2(number of discordant pairs)

n(n −1)
(2.41)

Both ρn and τ will be a number in [−1,+1], where a positive sign indicates a positive rela-
tionship between the two variables and vise versa. The further away from 0, the stronger
the dependence between the two variables. An example of a positive correlation between
two variables are the weight and height of people, taller people often weigh more, hence
the positive correlation.

An important difference between the two methods is that the Pearson method is less
robust to outliers than rank correlation methods. The Spearman ρ rank correlation is not
explained here as the confidence intervals for these ρ are less reliable and less interpretable
than confidence intervals for Kendall’s τ [Newton et al., 2002]. Furthermore, the Pearson
correlation tests for linear relationship where the Kendall correlation tests for a monotonic
relationship. Therefore the Kendall τ rank correlation is preferred. The quantified depen-
dence can be described by a copula function.

Modelling of dependence For specific cases, modelling of dependence can be performed
using copulas. Copulas are functions that allow for the separation of multiple marginal
distributions and their dependency structure.

Definition 2.3.2 [Haugh, 2016, page 1] A d-dimensional copula, C : [0,1]d : → [0,1] is a
cumulative distribution function (CDF) with uniform marginals.
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According to Sklar’s theorem [Sklar, 1959], any number of uniform and univariate marginal
distributions can be combined with a copula isolating the dependency structure in a mul-
tivariate joint distribution [Haugh, 2016].

Marginal fitting
When fitting a marginal distribution, one can choose to do so using a non-parametric dis-
tribution or a parametric one. Non-parametric methods can be advantageous, as they can
be used without making assumptions about the underlying distribution of the data. An-
other advantage is that they can be used when parametric distribution functions cannot
describe the data [Bowman and Azzalini, 1999]. However, it may be more difficult to inter-
pret non-parametric models and these models are less sensitive to outliers.

Non-parametric functions The most simple non-parametric method is the empirical cu-
mulative distribution function (ECDF), which is a step function.

Let X1, . . . , Xn be the results of observations n in ascending order with

F (x) = P {X ≤ x} (2.42)

Fn(x) is known as an empirical distribution function and can be defined as

Fn(x) = 0, x < X1;

Fn(x) = k

n +1
, Xk ≤ x < Xk+1,k = 1,2, . . . ,n −1;

Fn(x) = 1, Xn < x

Doing so, nFn(x) represents the total number of values of X that are smaller than or
equal to x [Kolmogorov, 1992].

Another non-parametric method is the kernel density estimation (KDE). Kernel density
estimation allows for the estimation of a probability density function. Unlike the empirical
cumulative density function, the kernel density estimation produces a continuous smooth
estimate of the probability function [Wȩglarczyk, 2018]. Again, let X1, . . . , Xn be an IID sam-
ple of observations n with an unknown parent distribution function f(x). The kernel esti-
mate f̂ (x) of f(x) then allocates each i -th sample observation xi a function K (xi , t defined
as [Wȩglarczyk, 2018]:

f̂ (t ) = 1

n

n∑
i=1

K (xi , t ), 0 ≤ K (x, t ) <∞ forx, t ∈R (2.43)

Where

for x ∈R
∫ ∞

−∞
K (x, t )d t = 1 (2.44)

So that ∫ ∞

∞
f̂ (t )d t = 1

n

n∑
i=1

∫ ∞

∞
K (xi , t )d t = 1 (2.45)

This kernel smoothens the points as from the empirical cumulative distribution into
intervals, an example is shown in Figure 2.7. While this method uses bandwidth it is still
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considered a non-parametric method as it does not assume anything about the shape of the
resulting distribution, in other words, there is no a priori distribution or model structure.
The bandwidth is a free parameter and determines the interval over which the points are
smoothened.

(a) Histogram and KDE of normally distributed
data

(b) ECDF and KDE of normally distributed data

Figure 2.7: Example of the empirical cumulative distribution function and smoothing ob-
tained using the kernel density estimation method.

For the kernel density estimation, there are multiple kernel smoother functions avail-
able that smooth the data in a different way; examples are the normal, box, triangle and
Epanechnikov functions. The different smoothing functions can be seen in Figure 2.8.

Figure 2.8: Comparison between different kernel smoothing functions.

Parametric functions In the parametric method, one assumes that the true data lie
within a family of models. The model can be chosen on physical or empirical grounds.
An example, shown before, shows that the AM method is bound to follow a Generalized ex-
treme value distribution, while the Peak-over-Threshold approach follows the Generalized
Pareto distribution. However, more often, one looks for a family of models that seem to be
consistent with the true observations [Coles, 2001].
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Estimation of model parameters is performed using maximum likelihood estimation
(MLE). For an unknown parameter θ0 of the probability density function f (x;θ0) where
x1, . . . , xn are independent random observations of f , the likelihood function is

L(θ) =
n∏

i=1
f (xi ;θ) (2.46)

Then the maximum likelihood L̂ is the value of θ that maximizes the likelihood function
[Coles, 2001] [Edwards, 1972].

Transformation to uniform distribution
The copula method requires the marginal probability distributions of each variable to be
uniform, marginals of the tide and non-tidal residual will have to be transformed to a uni-
form distribution via the probability integral transform.

To transform monotonic increasing continuous cumulative distribution functions into
a uniform distribution function, one can use the probability integral transform (PIT). Let
F (x) = P {ω : X (ω) ≤ x} define the CDF where X is IID. Then if X has F as its CDF, then
the random variable Y = F (X ) has for its CDF the uniform distribution function U (0,1)
[Casella and Berger, 1990].

Following [Salvadori et al., 2007], for generating observations (x, y) from a pair of ran-
dom variables (X ,Y ), with marginals FX ,FY and joint distribution FX Y and copula C. Fol-
lowing Sklar’s theorem, one can generate (u, v) from random variables (U ,V ) uniform on
[0,1]x[0,1] and having the same copula C. Then using the probability integral transform one
can transform (u, v) into (x, y): {

x = F−1
X (u)

y = F−1
Y (v).

(2.47)

In this way one can transform to the uniform marginal distribution.

Model selection criteria
Statistical tests such as the Akaike information criterion (AIC) [Akaike, 1974] and log-
likelihood allow comparison between different models based on (relative) goodness-of-fit.
The log-likelihood function is simply

l (θ) = logL(θ) (2.48)

with L as in Equation 2.46. The log-likelihood measures the goodness-of-fit for a model
and is useful for comparing different model fits. Higher log-likelihood scores will mean
a better fit; however, this score is also dependent on the number of model parameters.
Therefore, the comparison of log-likelihood scores between two models with a different
number of model parameters is not as useful. This is why the Akaike information criterion
is also used. The Akaike information criterion (AIC) value is calculated in the following way:

AIC = 2k −2ln(L̂) (2.49)

where L̂ is the maximum of the likelihood as in Equation 2.46 [Akaike, 1974]. AIC im-
poses penalties on functions with a high number of parameters. AIC scores do not inform
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about the quality of the fit, but rather about the relative quality compared to other fits.
Lower AIC scores will mean a better fit.

Finally, the Bayesian information criterion (BIC) will be explained; this method is re-
lated to the AIC but (for n > 7) imposes a higher penalty for models including more param-
eters [Schwarz, 1978]. The BIC value is calculated as follows:

B IC = k ln(n)−2ln(L̂) (2.50)

where n is the number of observations. Like the AIC, lower scores are preferred over higher
ones. When comparing models, the difference in AIC and BIC scores will weigh more heav-
ily than that of the log likelihood because of the inclusion of these penalty terms.

Additionally, statistical tests can be used to evaluate how well a chosen model repre-
sents the data. These tests can be parametric like the chi-square or non-parametric like the
Kolmogorov-Smirnov test.

Let X be a continuous random variable with distribution function F (x). To evaluate the
goodness-of-fit, the following can be tested.

H0 : F (x) = F0(x) (2.51)

where F0(x) is a specified distribution function of X .

One-sample Kolmogorov-Smirnov test The one-sample Kolmogorov Smirnov test tests
if the population CDF of the observations is the same as the hypothesized distribution
function F (x) using the null hypothesis Equation 2.51. The Kolmogorov-Smirnov statistic
for F (x) is given as: sample

Dn = supx |Fn(x)−F (x)| (2.52)

with supx being the supremum. Dn converges to 0 for n −→∞ if the sample comes from
F (x) [Massey, 1951][Slakter, 1965]. The rejection/acceptance of the null hypothesis and the
evidence in the form of the p-value is used to determine how well the proposed probability
distribution represents the sample data.

Pearson Chi-square test The Pearson chi-square test tests the same null hypothesis. The
difference is that Pearson’s chi-square test groups observations into bins and calculates the
difference between the calculated and expected counts for each bin [Slakter, 1965].

χ2 =
N∑

i=1
(Oi −Ei )2/Ei (2.53)

Here, Ei are the expected counts for F (x) and Oi are the observed counts. For n −→∞,
the test statistic follows the chi-square distribution. Again, a p-value can be used to support
or reject the null hypothesis.



3
Exploratory Time-Series Analysis &

Homogenization

This chapter will focus on the exploratory analysis of the water level observations in Venice
with the aim of better understanding the current and past behaviour of the Punta della
Salute time-series.

A large difference in the trend of the Punta della Salute time-series as compared to the
reported SLR over a similar period [Zanchettin et al., 2021] [Stocker et al., 2013] was found.
This chapter serves as a framework to explain the differences between the relative sea level
rise as compared to the sea level rise for the Punta della Salute time-series.

The time-series of observations will be evaluated for trend and for changepoints. Us-
ing this changepoint analysis, the number of changes and estimates of the timings of each
change can be determined. This analysis will be performed using RHtestV4 [Wang, 2008a]
and BEAST [Zhao et al., 2019]. The timings of identified changepoints can be linked to his-
torical events, where possible, to confirm their presence and give an indication of their
possible cause. Finally, the time-series will be homogenized in preparation for extreme
value analysis.

3.1. Trend detection

The Punta della Salute time-series was evaluated for monotonic trend using the Mann-
Kendall test and variants of this test [Mann, 1945] [Kendall, 1975]. Since the Mann-Kendall
test is not suitable for data that contain seasonality, the time-series was first deseasonalized
using Equation 2.6. Following [Masina et al., 2022], multiple variants of the Mann-Kendall
tests were used to reduce the uncertainty of the testing methods and to take into account
the effects of autocorrellation. The R packages ‘modifiedmk’ (modified Mann-Kendall)
[Patakamuri and O’Brien, 2021] and ’HKprocess’ (Hurst-Kolmogorov) [Tyralis, 2016] in R
were used to run these tests. These packages contain tests for

1. The original Mann-Kendall (MK) trend test [Mann, 1945] [Kendall, 1975] tests the null
hypothesis that there is no trend versus the alternative hypothesis that there is a
monotonic trend.

2. Mann-Kendall test using the pre-whitening approach (PW) [von Storch, 1999], uses
the lag-1 autocorrelation coefficient for pre-whitening.
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3. Modified Mann-Kendall test for serially correlated data using the
[Hamed and Rao, 1998] (HR) approach. The input data are detrended and an
effective sample size is calculated based on the ranks of significant autocorrelation
coefficients

4. The Mann-Kendall test includes the variance correction approach (PS) proposed by
[Yue and Wang, 2004]. Using this method, the input data is first detrended and an
effective sample size is calculated using significant autocorrellation coefficients to
address the problem of autocorrelation.

5. Mann-Kendall test under the scaling hypothesis (HK) of the data [Hamed, 2008] in
which the Hurst exponent is used to measure the long-range dependence / persis-
tence.

These tests were applied over different periods to evaluate the presence of trend over
different time-spans and to compare to trends found from literature and reported sea level
rise. Alongside tests of monotonic trends, Sen’s slopes were calculated over all of these time
periods in order to be able to compare their relative slopes. Sen’s slope is less sensitive to
outliers and the sign of the slope will reveal if statistically significant monotonic trends re-
sulting from the Mann-Kendall tests are upward (subsidence) or downward (uplift). Time-
periods evaluated for the Mann-Kendall monotonic trend test and evaluation of Sen’s
slope were chosen based on the changes in suspected anthropogenic subsidence as from
literature [Gatto and Carbognin, 1981] [Carbognin et al., 2004] [Carbognin and Tosi, 1995]
[Tosi et al., 2018].

3.2. Changepoint analysis

Statistically significant trends found using MK tests for different periods alongside results
from Sen’s slope support in identification of past changes in relative sea level within the
time-series. To further evaluate the Punta della Salute time-series for (un)documented
shifts in relative vertical position, changepoint detection methods can be used. In addi-
tion, signal decomposition will be performed to isolate the underlying trend. The analysis
of changepoint and trend decomposition will help to understand the temporal pattern of
the relative change in mean sea level [Duan et al., 2022]. The changepoint analysis meth-
ods used are the RHtestV4 method [Wang, 2008a] and the BEAST method [Zhao et al., 2019]
in order to identify undocumented changes and to evaluate the trend.

Both RHtest and BEAST use the term changepoints, however, a distinction has to be
made between the two. While RHtests tests for sudden changes of mean only, BEAST
tests for abrupt changes, here defined as not only sudden changes but also breakpoints
for the trend and seasonal signal to deviate from their previous directories. Both methods
of changepoint analysis will be used in this work to compare the results of both methods
and their usefulness in exploratory data analysis.

Neighbouring tide-gauge stations of the Punta della Salute station were included in this
analysis as well as observations from the Trieste tide-gauge. These were included to be able
to attribute identified changepoints to local causes or non-local causes. Here local causes
are interpreted as causes for changes in mean/trend that only affect the water level obser-
vations of the Marghera, Piattaforma Acqua Alta and Punta della Salute time-series. The
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tide-gauge stations of these locations are all within a relatively short distance of one an-
other. If a changepoint is identified in all before-mentioned stations and is also identified
in the Trieste water level observations, this is interpreted as a change caused by non-local
causes.

To quantify the influence of this anthropogenic subsidence in the Punta della Salute
time-series is possible under the assumption of (vertical) stability of the Trieste tide-gauge.
Trieste is in a relatively stable area, where vertical land motions are in the range of tenths
of mm/y or negligible [Antonioli et al., 2009] [Furlani et al., 2011] [Zerbini et al., 2021]
[De Biasio et al., 2020]. Both Venice and Trieste are coastal cities connected to the north-
ern Adriatic and sea level rise rates are assumed to be equal. This assumption is reinforced
by a strong Pearson’s correlation coefficient for the cross-correlation of sea level anomalies
in the northern Adriatic in the range of 0.83 and 0.87 [Bergant et al., 2005]. Furthermore,
[Zerbini et al., 2021] indicates a difference of 0.08±0.11 mm/y between the east and west
coasts of the Adriatic, based on the averages of the Venice, Marina di Ravenna and Trieste
data. Trend decomposition using the BEAST method was applied to the Trieste time-series.
With the Trieste tide-gauge as a stable point, this decomposed trend will be similar to the
trend in sea level rise. Under the assumption that both the Punta della Salute and Trieste
stations experience equal amounts of sea level rise, in this way the trend for Punta della
Salute can be separated in SLR and VLM component. This is done by subtracting the de-
composed trend from the Trieste tide-series from the decomposed trend of the Punta della
Salute time-series.

3.3. Homogenization of the Punta della Salute time-series

The data will need to be homogeneous for extreme value analysis. This is because due to
relative sea level rise, the probability of occurrence of extreme events changes over time.
In the case of sea level rise, events that were considered extreme in the past may not be
considered extreme today. This is why the time-series will need to be converted to some
reference point in time. This conversion can be performed using the decomposed trend
from the BEAST method, since this trend will contain the total change of the relative po-
sition of the city over time. The decomposed trend was subtracted from the time-series of
Punta della Salute detrending of the time-series. After this the homogenized time-series
was shifted to the mean of the relative sea level observations of 2020. With a homogenized
time-series, extreme value analysis can be performed. As trend analysis revealed large dif-
ferences in Sen’s slope for different time-periods, homogenization was performed using the
BEAST method as opposed to the RHtest. This is because the RHtest can not approximate
the non-linear behaviour when using linear regression to approximate the trend of relative
sea level rise.





4
Combined analysis of extreme water levels

This chapter will describe the necessary steps to arrive at an estimation of extreme sea lev-
els from the combination of tide and storm surge components, taking into account the
possible dependence between the two. First, the process of separation of the deterministic
tide from the stochastic residual will be described. This procedure is performed to eval-
uate if there is a statistically significant dependence between the two. This dependence
will be quantified using statistical tests. This is followed by extreme value analysis using a
peak-over-threshold approach for a univariate case to be used as a reference model. Sub-
sequently, a copula approach will be used in order to perform a combined analysis of the
tide and surge under influence of dependence. This is done to assess the use of copulas in
extreme value analysis. Modelling of dependence between surge and tide via copulas for
shallow coastal regions is interesting in light of climate change. Sea level rise affects the
bottom depth relative to the sea surface, which changes the relationship between tide and
surge in shallow coastal regions.

4.1. Quantification of dependence of tide and surge compo-
nents

In order to evaluate the dependence between the tide and surge components, these must
first be separated from the Punta della Salute time-sreies of water level observations. The
astronomical tide is deterministic in nature and can be separated from the sea level to form
the non-tidal-residual (NTR). NTR is the sea level contribution caused by meteorological
processes such as storm surges and can be described as a stochastic process. Tidal decom-
position and projection can be performed using tidal harmonic analysis. A joint probability
density function can then be formed from the convolution of the extreme value distribu-
tion of the storm surge and the probability density function of the tide [Caires, 2011]. This
can only be done under the assumption that the tide and storm surge are independent of
each other. This assumption will be investigated, as it may not be likely for shallow coastal
regions [Tawn, 1992] [Pugh et al., 1980].

In order to separate the tidal signal from the non-tidal residual (NTR), tidal harmonic
analysis was performed on the homogenized Punta della Salute time-series. Tidal har-
monic analysis is performed using the Unified tidal analysis and prediction using "UTide"
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Matlab functions [Codiga, 2011]. This step is necessary to be able to quantify the depen-
dence between tide and non-tidal residual. Once the tidal analysis and reconstruction was
performed. The reconstructed tide was subtracted from the homogenized time-series to
calculate the non-tidal residual. With the tidal signal and the non-tidal signal separated,
the dependence between the two could be quantified. However, first extreme events had to
be selected. While both the annual maxima method and the peak-over-threshold method
should have similar results for a time-series of water level observations of this length, the
Peak-Over-Threshold (POT) method was chosen.

The threshold selection was performed based on the mean excess plot also known as
the mean residual life based on the homogenized observations of the Punta della Salute
tide-gauge. With the threshold selected, extreme water levels could now be determined.
A declustering period of 48 h was chosen [Tomasicchio et al., 2021] to guarantee the inde-
pendence (serially independent observations) between consecutive extremes.

To quantify the dependence between tide and surge during extreme events, the sep-
arated NTR and tidal signal were evaluated for dependence during the timings of the se-
lected extreme water levels. The dependence was expressed by the Kendall τ rank coeffi-
cient and the Pearson r correlation coefficient.

For the univariate reference of extreme sea level estimates, the generalized Pareto dis-
tribution was fitted to extreme events using the maximum likelihood method for parameter
estimation. Uncertainty was included in the form of adjusted bootstrap confidence inter-
vals [Coles and Simiu, 2003]. m-yr return values were calculated using: [Coles, 2001]

zm =
{

u + σ
ξ

[(ζu ·m)ξ−1] for ξ ̸= 0

u +σlog(ζu ·m), for ξ= 0

Where σ and ξ are the scale and shape parameters, ζu is described by ζu = Pr {xi > u}
with u the POT threshold value and xi the sea level in cm. The rate of occurrence was
included in the ζu parameter, Which is

ζu = N

Nt
(4.1)

Where N represents the number of events that exceed the threshold and Nt represents
the total number of data during k years [Far et al., 2016]. In this way, the rate of occurrence
takes into account the number of average yearly events.

The results of this univariate analysis are used as a reference for the results obtained
from the combined analysis of tide and surge. For this combined analysis.

4.2. Combined extreme water level estimation using copula
functions

In order to evaluate the use of copulas for the estimation of extreme water levels which
take into account dependence between the water level’s components of tide and surge, a
combined analysis was performed which will be compared to the results of the standard
univariate extreme value analysis.

According to Sklar’s Theorem [Sklar, 1959] and as stated in Definition 2.3.2, a multi-
variate distribution can be described using uniform marginal distributions and a copula
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describing the dependence. This requires (uniform) marginal distributions to describe the
NTR and tide observations.

This is why first the marginal distributions were fit to the tide and surge observations
and afterwards be transformed into U [0,1], resulting in uniform marginal distribution. The
marginal variables are the separated tide and NTR components of the extreme events of
the homogenized Punta della Salute time-series. Different distributions will be evaluated,
among the considered distributions are the GEV, generalized Pareto, lognormal, gamma,
and Weibull distributions. The parameters of these distributions will be estimated using the
maximum likelihood estimation [Coles, 2001]. Non-parametric functions were also tested
for the combined analysis however these were not used due to complications further ex-
plained in section A.5.

This was followed by model selection using log-likelihood and the Akaike information
criterion (AIC) to determine their goodness-of-fit and their relative goodness-of-fit. Af-
ter the marginal distributions for Tide and NTR were chosen, the distributions were trans-
formed into uniform marginal distributions. This was done using their corresponding in-
verse cumulative distribution function. The dependence between the two is not altered
using this transformation.

In this study, we will be working with the VineCopula package in R as it includes more
copula families than are available in Matlab. This package includes 37 different versions
(they are listed in section A.3) of Copula variants. The copula functions were fit to the data
and then evaluated using the AIC and Bayesian information criterion (BIC). AIC and BIC
for copulas are similarly calculated to those of univariate distributions as follows:

AIC =−2
N∑

i=1
l n[c(ui ,1,ui ,2|θ]+2k,

where ui , j is the i th element of the j th data vector, i = 1, . . . , N and j = 2 for a bivariate
copula. c is the bivariate copula family with parameters θ.

B IC =−2
N∑

i=1
ln[c(ui ,1,ui ,2|θ]+ ln(N )k

Based on AIC and BIC results, four best copula families were selected. First, all available
copulas are fitted using maximum likelihood estimation. Then the AIC, BIC and log likeli-
hood scores are computed for the available copula families. Lastly, an independent copula
was fitted to the marginals in order to quantify the effect of the tide-surge interaction on
extreme water level estimates. Based on the results of the (relative) goodness-of-fit tests,
the Gaussian copula, t copula, 90 ° rotated Tawn type 1 copula and the Frank copula were
chosen for sampling. Furthermore sampling was done from the independent copula.

Of the four copulas, the Gaussian method was chosen as the best fit (as in Table 5.7).
This was based on this copula scoring best on AIC, BIC, and log likelihood. Furthermore,
the extreme water level estimates were more in line with the extreme water level observa-
tions.

From each of the copulas in Table 5.7, 105 samples were taken from the copula space
U [0,1]x[0,1]. The number of 105 was used to guarantee at least 104 year of samples for the
occurrence interval of ζu = 2.72. The inverse cumulative distribution function using the
GEV parameters of the respective marginal distributions of NTR and tide was used to trans-
form the samples from their respective uniform marginal distribution to physical quanti-
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ties. The new sampled tide and sampled NTR extremes were added together to form a se-
ries of sampled extreme water levels. Combinations of the sampled tide and sampled surge
level resulted in extremes below the threshold. These values below the chosen threshold
of u = 116cm were replaced by resampling. In doing so, these were replaced by a random
ESL sample above the threshold value (see also section A.2). Points below threshold were a
consequence of sampling from separated series of NTR and tide, allowing for new combi-
nations below the selected ESL threshold.

To the extreme water level samples of the five copula functions, probability distribu-
tions were fitted using MLE. Finally, from these distribution functions, return values were
calculated and relative differences were computed.

Lastly, an indication of the influence of sea level rise for the extreme water level es-
timation was made for Venice, under the assumption that the distribution of extremes is
independent of SLR. This was done to express the influence of sea level rise on the return
values under different SSP scenarios [Masson-Delmotte et al., 2021].



5
Results

This chapter will lay out the results of the performed methods and analysis with the aim
to support to answering the main and sub research questions. Firstly the results from the
exploratory time-series analysis & homogenization will be presented followed by that of
the quantification of the dependence and extreme value analysis.

5.1. Trend analysis of water level observations

The difference in mean water level observations between the year 2021 and 1924 of the
Punta della Salute time-series is more than 28 cm. Compared to the effects of global sea
level rise over a similar but longer time period (1901-2010), 19 cm of global sea level rise is
reported [Stocker et al., 2013]. Table 5.1 shows the results of least squares regression of the
Punta della Salute time-series over different time periods of the time-series.

The results of the Mann-Kendall tests and variants of this test evaluated for the desea-
sonalized Punta della Saluta time-series are shown in Table 5.2. p-values of 5% or lower are
indicated in bold with an asterisk, p-values of less than 10% but higher than 5% are indi-
cated in bold. The absence of both indicates a p-value greater than 10%. For this study,
a significance level of 5% is chosen. Therefore, values with a p-value of 5% of lower sig-
nificance signify a statistically significant monotonic trend in the data. The numbers in the
table indicate the magnitude of the Sen’s slope over their respective period of the deseason-
alized monthly means. The Sen’s slope gives an indication of the magnitude of the slope.
Positive numbers indicate a positive trend signifying an increase in relative sea level while
negative numbers indicate a negative trend signifying a decrease in relative sea level.

period Trend PS Trend Trieste Trend PS - Trend Trieste

1930-1949 2.51 mm/y 0.29 mm/y 2.22 mm/y
1950-1969 5.25 mm/y 2.53 mm/y 2.74 mm/y
1970-1975 -3.91 mm/y -2.66 mm/y -1.24 mm/y
1976-1988 -0.63 mm/y -0.15 mm/y -0.48 mm/y
1989-2022 4.78 mm/y 3.19 mm/y 1.59 mm/y

Table 5.1: Trends of RSL over different periods using ordinary least squares regression.
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Period n MK PW HR PS HK

1924-2020 1164 2.22* 7.02* 2.22* 2.22* -
1924-1929 72 -0.747 -0.484 -0.747 -0.747 -0.747
1924-1949 312 2.27* 1.26* 2.27 2.27* 2.27
1930-1949 480 0.965 0.353 0.965 0.965 0.965
1940-1987 576 2.29* 1.29* 2.29* 2.29* 2.29*
1940-1959 480 2.43* 1.69* 2.43* 2.43* 2.43
1950-1975 552 2.47* 1.45* 2.47* 2.47* 2.47*
1950-1969 480 4.13* 2.45* 4.13* 4.13* 4.13
1960-1987 336 0.746 0.582 0.746 0.746* 0.746
1970-2020 612 2.43* 1.18* 2.43* 2.43* 2.43*
1970-1987 216 1.30 1.21 1.30 1.30* 1.30
1970-1975 72 -8.94* -6.47 -8.94* -8.94* -8.94
1976-1987 144 2.40 1.84 2.40 2.40* 2.40
1988-2020 396 2.81* 1.3* 2.81* 2.81* 2.81*

Table 5.2: Sen’s slope values ·103 for deseasonalized Punta Salute over different time peri-
ods, n denotes the number of monthly observations included in the statistical tests, num-
bers in bold denotes a p-value of 10% or less and those with an asterisk denote p-values <
5%.

The different variants of the Mann-Kendall test are denoted MK for the standard Mann-
Kendall test, PW for the pre-whitening approach, HR for the Hamed & Rao variance correc-
tion approach, PS for the Trend-Free Pre-whitening approach and lastly the Mann-Kendall
test using the Hurst-Kolmogorov process HK.

A common statistically significant monotonic trend was found for 5 of 14 selected peri-
ods for all tests. These are for the periods 1924-2021, 1940-1988, 1950-1976, 1950-1970 and
1970-2021, the periods with the largest number of observations. Statistical significance of
these tests depends on the length of the period, as well as the variant of the test that is used.

Except for the two periods of 1924-1930 and 1970-1976, all periods have a positive Sen’s
slope. Sen’s slope results indicate that, of the tested periods, the largest positive trend oc-
curs in the period 1950-1970. This means that over the period of 1950-1970, the largest
relative sea level rise occurs. The results also indicate negative slopes from 1924-1930 and
one in 1970-1976. While it has the lowest number of observations, the monotonic trend in
1970-1976 was determined to be statistically significant by most tests and all tests report
p-values below 10%.

The shift in sign of the sen slope for consecutive periods (1950-1970, 1970-1976, 1976-
1988) that have statistically significant monotonic trend for multiple tests led to change-
point analysis in order to detect changes that may have occurred in the time-series.
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Figure 5.1: RHtest changepoint analysis results of Punta della Salute time-series.

5.2. Changepoint analysis & homogenization

Here, the results of changepoint analysis are reported. Changepoint analysis was per-
formed to identify undocumented changes in the time-series. The time-series of Punta
della Salute as well as the neighbouring tide-gauge observations of Trieste, Marghera and
Piattaforma Acqua Alta were included in this analysis. First the results of the changepoint
analysis performed using the RHtest method are shown, followed by those by the BEAST
method. It is important to distinguish the way these two methods test for changepoints.
RHtest detects shifts in mean using the penalized maximal F-test (in absence of a refer-
ence series) while the BEAST method detects both shifts in mean and trend on the basis of
Bayesian model averaging. Lastly the result of the homogenization of the Punta della Salute
time-series is shown.

Figure 5.1 show the changepoints resulting from the RHtest method for the Punta della
Salute time-series. Three shifts were found using this method in 11-1941, 05-1972 and 08-
1988.

Using the RHtest method, the number of identified changepoints and their timings de-
pend on the number of observations. This can be seen from the RHtest result of the Punta
della Salute time-series over the same period as that of the Piattaforma Acqua Alta time-
series (1983-2021) as in Figure 5.2. The timings of identified changepoints for the time-
series of both stations are identical.

Only one changepoint was found resulting from the RHtest on the longer Trieste time-
series (1875-2021). This changepoint was found in 2008. Lastly, no changepoints were
found for the Marghera time-series (1989-2020).
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Figure 5.2: RHtest changepoint analysis results of the Punta della Salute and the Pi-
attaforma Acqua Alta time-series when tested over the same time period of 1983-2020.

The same time-series were tested using the Bayesian Estimator of Abrupt change, Sea-
sonal change, and Trend (BEAST) method. This test decomposes a time-series into trend,
a seasonal signal and noise. The trend and seasonal signal are then analysed both indi-
vidually for changepoints. The time-series that were tested are from the tide-gauge sta-
tions of Punta della Salute, Trieste, Marghera and Piattaforma Acqua Alta. No change-
points were found for any of these time-series in the (decomposed) seasonal signal. Us-
ing Bayesian Model Averaging (BMA) of the BEAST method, the probability of occurrence
for every changepoint based on the model result as well as the mean number of change-
points is calculated. To elaborate, if N is the total number of MCMC samples and a chain of
trend changepoints mi

i=1,...,N containing the number of changepoints of each MCMC sam-

ple then the mean number of changepoints can be denoted m = ∑N
i=1 mi /N for samples

i , . . . , N . In this way, for all time-series the mean number of changepoints containing only
the most likely changepoints are shown.

The decomposed trend along with 95% confidence intervals and the mean number of
changepoints as from BEAST for Punta della Salute (14) and Trieste (21) are shown in Fig-
ure 5.3.

The changepoints identified in the Punta della Salute time-series using the BEAST
method are also found in the Trieste time-series except for one changepoint identified in
1968. The decomposed trend from the Punta della Salute time-series shows a steeper slope
than that of the Trieste time-series.

The same method was applied to the Marghera and Piattaforma Acqua Alta time-series
which can be found in Appendix A. However, no unique changepoints were identified for
the Punta della Salute time-series in this way.

Using the BEAST methods, the timings of most changepoints coincide between differ-
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Figure 5.3: Changepoints and the decomposed trend along with confidence bands of the
Punta della Salute and Trieste time-series resulting from the BEAST method.

ent tide-gauge stations. It was assumed that these changepoints are caused by the same
large-scale events. Changepoints that are exclusively identified in the Punta della Salute
time-series and in no other time-series are attributed to local causes which only affect the
city of Venice. The changepoint in 1968 is unique to the Punta della Salute time-series and
is attributed to local causes.

Figure 5.4 shows the relative number of samples that have a negative rate of change at
a given time for both the PS and the Trieste time-series. This can be seen as the number of
samples with a positive rate-of-change at time t divided by the total number of samples Nt

at that time. Indicators of anthropogenic influence can be identified using the slope of the
decomposed trends of the Punta della Salute time-series when compared with the Trieste
time-series.

In Figure 5.4 the number of samples with negative rate-of change are consequently
higher for the Trieste time-series up to 1968. From 1968-1976 more samples report a
negative rate-of-change which is a consequence of the period of uplift during this time.
From 1993, the number of samples with negative rate-of-change for both time-series are
comparable. This result is indicative of the stop of anthropogenic subsidence and agrees
with what was found by the regional studies in 1993 and 2000 [Carbognin et al., 2005]
[Brambati et al., 2003].

Using trend decomposition in combination with the stable reference point of Trieste,
total VLM caused by natural and anthropogenic drivers could be isolated. Due to their
different locations, exceptional events of different magnitudes in the eastern and western
Adriatic caused large differences in monthly mean RSL. Figure 5.5 shows the difference
between the two, which is assumed to be the combination of anthropogenic and natural
vertical land motion. The influence of natural VLM is well known and ranges between 0
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Figure 5.4: Relative rate-of-change over time resulting from the BEAST method for the
Punta della Salute and Trieste time-series, higher values indicate a steeper positive slope
in RSL.

and 0.5 mm/y [Brambati et al., 2003] [Zanchettin et al., 2021] [Gatto and Carbognin, 1981]
[Antonioli et al., 2009] a linear trend of 0.4 mm/y was removed from this residual VLM leav-
ing anthropogenic VLM over time. The total anthropogenic VLM throughout the time-
series (1924-2020) was approximately 10 cm, in line with previous estimates by various
authors that ranged from 8 to 11 cm [Brambati et al., 2003] [Gatto and Carbognin, 1981]
[Carbognin et al., 2005] [Tosi et al., 2013] [Pirazzoli, 1987]. Natural VLM contributed to al-
most 4 cm during this period.

The difference in trend between PS and Trieste is seen in Figure 5.5. This difference was
attributed to be due to VLM. Large shifts in this VLM, pointed out as periods of interest,
were investigated.

1. No explanation could be found for this event, both time-series include changepoints
during this period. This could be attributed to a more pronounced storm on the east
coast like the 2008 storm surge [Med̄ugorac et al., 2015].

2. The large jump happens in 1968 and is caused by the largest anthropogenic sub-
sidence in Venice during this period [Tosi et al., 2002] [Carbognin et al., 2004]. This
jump is followed by a negative slope that indicates the uplift period in Venice.

3. This short peak was marked between 06-2008 and 08-2009 is caused by the reno-
vations of Punta della Dogana during this period [Punta della Dogana, 2016]. Punta
della Dogana is located right next to the tide-gauge, and experienced large amounts
of local anthropogenic subsidence in this period [Tosi et al., 2013].

4. The difference in peak can be attributed to the Bora wind event during the win-
ter of 2012 coinciding with the eastern European cold wave [Davolio et al., 2015]
[Mihanović et al., 2013].
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Figure 5.5: The decomposed trend of the Trieste time-series subtracted from the decom-
posed trend of the Punta della Salute time-series alongside 95% confidence bands. BEAST
method was used for the trend decomposition, the blue line is the assumed vertical land
motions of the Punta della Salute time-series.

Furthermore, a trend decline for the period 1971 to 1993 [Carbognin et al., 2004]
is caused by the increase in sea level that slowly decreased over this period; the
same behaviour is observed for the western Mediterranean Sea and Adriatic since 1960
[Tsimplis and Baker, 2000]. During the period of the time-series (1924-2020), the total rela-
tive sea level rise was found to be 2.882 mm / y. Of this increase, 1.458 mm / y was caused
by VLM and 1.431 mm / y by the rise in sea level.

The BEAST trend decomposition was use for the homogenization of the time-series.
The decomposed trend was removed from the relative sea level observations and then
shifted to the mean of the relative sea level observations of 2020. Figure 5.6 shows the
yearly mean relative sea level observations of Punta della Salute along with the decom-
posed trend, the mean of the relative sea level observations of 2020 and the new homoge-
nized time-series.
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Figure 5.6: Yearly mean relative sea level, decomposed trend from BEAST trend decompoi-
sition, the mean of 2020 relative sea level observations and the homogenized time-series of
the Punta della Salute time-series.
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5.3. Results of the combined analysis of extreme water levels

This section will show the results of chapter 4, starting with the results of the separation of
the tide and the non-tidal component. This is followed by the evaluation of the dependence
by the two and the extreme value analysis for the univariate reference case. Lastly, the
results of the marginal fitting for the multivariate copula method are shown as well as the
return values obtained using this method and a comparison between this method and the
univariate reference case is given.

Univariate ESL estimation
For the selection of extreme events, the Peak-Over-Threshold (POT) method was used, the
threshold selection was based on the mean excess plot based on the converted time-series
as shown in Figure 5.7. The threshold chosen in this way was u = 116cm. With the declus-
tering time of 48h, this led to 264 total extreme value observations, leading to a number of
ζu = 2.72 yearly events on average. Figure 5.8 show the homogenized Punta della Salute
time-series along with the threshold and the peaks above this threshold.

Figure 5.7: Mean excess plot of the homogenized Punta della Salute time-series used for
threshold selection with vertical line at u = 116 cm.

For the univariate extreme value analysis, the Generalized Pareto Distribution (GPD)
was fit to these extremes using MLE for parameter estimation, including 95% confidence
intervals using the adjusted bootstrap method. The result is shown in Figure 5.10 for a re-
turn period of up to 104 years. This univariate ESL estimation. The values for the 102,103

and 104 year return periods and of the corresponding 95% confidence intervals are shown
in Table 5.3. GPD parameters from the MLE are ξ = −0.0046 and σ = 12.31. The ESL ob-
servation with the highest return period corresponds to that of the 1966 Acqua Alta with a
height of 204 cm (after homogenization) and a return period of 97 years.

Tidal harmonic analysis and quantification of dependence
Using tidal harmonic analysis, the Punta della Salute time-series is analysed for tide and
the tidal series is reconstructed. The 10 most influential tidal constituents are shown in
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Figure 5.8: Selected peaks higher than threshold of u = 116cm of the homogenized Punta
della Salute time-series.

Figure 5.9: Example of the separation of tide and non-tidal residual for extremes of the
Punta della Salute time-series.
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Figure 5.10: Univariate return value plot of the POT-GPD for the homogenized Punta della
Salute time-series with threshold u = 116cm including bootstrapped 95% confidence in-
tervals

m-year RP Return value (cm) Upper CI (cm) Lower CI (cm)
100 184.11 204.57 167.82

1000 211.58 263.67 177.85
10000 238.76 330.24 189.68

Table 5.3: Return values of the POT/GPD including 95% confidence intervals
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Constituent Amp (cm) Phase(°)

M2 21.0 316.0
K1 17.0 92.0
S2 12.2 326.0
P1 5.51 87.9
O1 5.15 78.3
SA 4.08 281.0
K2 3.70 322.0
N2 3.44 315.0
SSA 3.09 112.0
S1 1.96 287.0

Table 5.4: first ten tidal constituents sorted by contribution to tidal amplitude in descend-
ing order.

Table 5.4.
After removal of the reconstructed tide from the Punta della Salute time-series, two se-

ries were formed, one of the tide and one of the non-tidal residual (NTR). For the evalua-
tion of dependence, only the tide and NTR during extreme events were selected. Figure 5.9
shows how the non-tidal residual and tide events are chosen, the tide and the non-tidal
residual (NTR) are separated as in Equation 2.3 and the depdendence was evaluated. A sta-
tistically significant correlation between tide and NTR was found to be -0.61 at Punta della
Salute with p-value < 0.001 for the Kendall rank correlation. Using the Pearson r correlation
this value was found to be -0.81 with a p-value < 0.001. The minus sign of the correlation
coefficients indicates a higher number of discordant pairs, meaning that NTR peaks occur
more frequently during low tides and high tides more frequently coincide with low NTR.
Figure 5.11 shows this influence; the top left and bottom right quadrants contain all discor-
dant pairs.
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Figure 5.11: Dependence between NTR and tide

Marginal distributions tide and non-tidal residual

In preparation for the copula-based method of extreme value estimation, marginal distri-
butions were evaluated for both tide and non-tidal residual. The results of this evaluation
of the NTR can be seen in Figure 5.12. In this plot, the five best-fitting distributions of
those that were considered are shown. These five were chosen based on the log likelihood
criteria. Parameter estimation was performed using maximum likelihood. Statistical test
scores for these distributions can be seen in Table 5.5 which include the log likelihood,
Aikake Information Criterion (AIC), Kolmogorov-Smirnov (K-S) test p-values, and the chi-
square p-value. The log likelihood measure goodness-of-fit; however, it does not penalise
parameter usage, as such a function with more parameters is more likely to generate better
log likelihood scores. A lower AIC values means a relative better goodness-of-fit (as com-
pared to other models). For the Kolmogorov-Smirnov test and the chi-square test, higher
p-values are considered to be better, a value below 5% means that the null hypothesis that
the NTR sample data comes from the listed probability distribution is rejected. The Gen-
eralized Extreme Value distribution (GEV) outperformed all other distributions for all tests
except the Chi-square goodness-of-fit test, where the null hypothesis is rejected. From Fig-
ure 5.12 it can also be seen that it best represents the sample data. The GEV parameters are
ξ= 0.04307, σ= 13.96 and µ= 64.16.

The same procedure was applied to the reconstructed tide of the Punta della Salute
time-series. The histogram of the tide samples along with the distributions with the high-
est log likelihood scores are shown in Figure 5.13. Test scores for the distributions are found
in Table 5.6. The GEV outperforms other methods in terms of relative goodness-of-fit,
goodness-of-fit and p-values for the Kolmogorov-Smirnov test and Chi-square goodness-
of-fit test. GEV parameters are ξ=−0.5394, σ= 14.02 and µ= 52.58.
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Figure 5.12: Histogram of the NTR data and fit of different families of probability distribu-
tion functions to the observed NTR of the Punta della Salute time-series

Family log likelihood AIC K-S p-value Chi-square p-value
Generalized Extreme Value -1115 2235 0.7055 0.045

Lognormal -1118 2241 0.3407 0.24
Inverse Gaussian -1119 2241 0.3391 0.25

Gamma -1125 2253 0.2587 0.30
Nakagami -1134 2272 0.2227 0.25

Table 5.5: Statistical test scores of marginal fits for the non tidal residual.

Family log likelihood AIC K-S p-value Chi-square p-value
Generalized Extreme Value -1028 2061 0.945 0.858

Extreme Value -1032 2067 0.487 0.469
Weibull -1039 2082 0.459 0.603

t location scale -1044 2095 0.302 0.0875
logistic -1045 2095 0.440 0.118

Table 5.6: Statistical test scores of marginal fits for the tidal signal.
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Figure 5.13: Histogram of the NTR data and fit of different families of probability distribu-
tion functions to the observed NTR of the Punta della Salute time-series

Copula Familiy Log likelihood AIC BIC Kendall τ
Gaussian 137.4 -272.8 -269.23 -0.6
Student t 136.66 -269.32 -262.18 -0.59

90° Rotated Tawn type 1 130.95 -257.89 -250.75 -0.53
Frank 129.49 -256.98 -253.41 -0.6

Table 5.7: Log likelihood, Aikake Information Criterion, Kolmogorov-Smirnov and the Chi-
square goodness-of-fit scores for distribution MLE fits to the non-tidal residual’s contribu-
tion to water level of extreme events.

Results of the combined analysis of tide and surge
The results of the criteria for the copula functions are shown in Table 5.7. This table shows
the log likelihood, AIC, Bayesian Information Criterion (BIC), and lastly the Kendall τ rank
correlation coefficient. From the copula families tested, the Gaussian and Student t cop-
ulas showed similar results in goodness-of-fit and AIC & BIC scores. While the Kendall τ
rank correlation coefficient of the Gaussian, Student t and Frank copula closely resemble
the calculated dependence of -0.61, the 90° rotated Tawn type 1 copula reports a correla-
tion coefficient of -0.53. The kernel estimation of the copula density along with the copula
density plots of the four copulas described above can be found in section A.1.

Figure 5.14 and Figure 5.15 show the copula isolines of the Gaussian copula and the
Rotated Tawn type 1 copula in addition to the isolines of the independent copula and
observational data. Isolines are lines containing points that share common probabilities
[Lucey et al., 2022]. Large differences can be observed between the independent copula
and the dependent copulas, but also between the dependent copulas. While they share the
same correlation, the difference between the density of the Gaussian copula and the Frank
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Figure 5.14: Observed data and isolines from the Gaussian copula and independent copula

Family log likelihood AIC
Generalized Extreme Value -3.606e+05 7.212e+05

Lognormal -3.744e+05 7.489e+05
Inverse Gaussian -3.745e+05 7.490e+05

Gamma -3.763e+05 7.527e+05
Nakagami -3.785e+05 7.569e+05

Generalized Pareto -3.641e+05 7.281e+05

Table 5.8: Statistical test scores of distribution fits to the sampled extreme water level sam-
ples resulting from the combined analysis of tide and surge.

copula can be seen from the difference in isolines (e.g. see the 0.4 isolines). Furthermore,
in the plots the 2 most extreme events have been highlighted, which are the 1966 and 2019
acqua alta. Lastly, it shows that the occurrences of the highest extreme water levels are
caused by storm surge as opposed to tide.

Figure 5.16 show the fit of the probability distribution to the sampled extreme water
level. These sampled extreme water levels are the combination of the sampled tide and
sampled non-tidal residual using the Gaussian copula function. Generated extreme water
level samples below the threshold were resampled and Table 5.8 show the log likelihood
and AIC scores for the six probability distributions with highest log likelihood scores. These
distributions were fitted using MLE.

The result is the return value plot in Figure 5.17, which shows the return values using
sampled data from the five different copulas along with the results of the univariate fit.
The independent copula and the Tawn copula report large return values compared to the
univariate case. The 100, 1000 and 10000 year return values and their confidence intervals
are shown in Table 5.9.
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Figure 5.15: Observed data and isolines from the 90°Rotated Tawn type 1 copula and inde-
pendent copula

Figure 5.16: Histogram of extreme water level samples from the combined analysis of tide
and surge using the Gaussian copula and probability distribution function fits using MLE.
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Figure 5.17: Return values for Punta della Salute resulting from the POT-GPD and from
the combined analysis using the dependent Gaussian copula and the independent copula
along with 95% confidence bands and extreme water level observations.

Method m-year RP Return value (cm) Upper CI (cm) Lower CI (cm)

Univariate GPD
100 184.11 204.57 167.82

1000 211.58 263.67 177.85
10000 238.76 330.24 189.68

Gaussian copula
100 187.57 209.94 172.29

1000 234.44 301.38 195.69
10000 301.95 467.09 222.05

T copula
100 188.27 213.09 172.48

1000 236.09 306.63 195.98
10000 305.40 475.92 222.65

Tawn copula
100 263.94 322.93 223.86

1000 515.16 819.08 344.06
10000 1171.15 2476.80 581.11

Frank copula
100 194.67 228.39 176.54

1000 254.71 348.52 207.05
10000 349.39 580.04 244.87

Independent copula
100 253.55 316.23 218.90

1000 368.41 574.05 272.65
10000 558.03 1130.79 340.90

Table 5.9: m-year return values for different approaches
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Figure 5.18: Return value plot as result from bivariate copulas and univariate GPD.

The Gaussian copula and the Frank copula use a correlation coefficient of τ−0.6, more
representative of the found correlation of -0.61. The T copula reported a correlation coeffi-
cient of τ=−0.59, while the 90° rotated Tawn type 1 copula used τ=−0.52. A comparison
between the return values resulting from the independent copula, the Gaussian copula,
and the univariate GPD return values is represented in Figure 5.18. The influence of de-
pendence on return values is represented in the higher return values for the independent
copula.

The relative difference between the POT-GPD return values to those resulting from the
combined analysis using the Gaussian copula are found in Table 5.10 along with those of
the combined analysis from the independent copula relative to those from the Gaussian
copula. Relative difference between the 100 and 1000-year return period of the GPD-POT

Method m-year RP Return value (cm))

Univariate GPD
100 -0.018

1000 -0.098
10000 -0.21

Independent copula
100 0.35

1000 0.57
10000 0.85

Table 5.10: relative difference for m-year return values for the univariate GPD and the in-
dependent copula relative to that of the Gaussian copula method.
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approach and the results from the combined analysis using the Gaussian copula are smaller
than 10%. This difference gets larger for the 10000-year return values. This is a result of
the difference in tail between the two distribution functions. The GPD parameters are ξ=
−0.0046 and σ = 12.31 and for the GEV fit to the Gaussian copula samples are ξ = −0.160,
σ= 6.93 and µ= 125.

Lastly the influence of the projected sea level rise on return values is shown in Fig-
ure 5.19. This figure indicates how the current 100-year return value changes over time
due to the effects of SLR for different SSP scenarios. The difference in height between a
100-year return level and a 200-year return level is 6 cm. This means that after 6cm of SLR,
what is now considered a 200-year return-level will be expected to occur on average once
every 100 years instead. Depending on the SSP scenario, the SLR in 2100 will be in the range
of 14 to 119 cm. This indicates the large influence a relatively small amount of relative sea
level rise has on the average rate of occurrence of extreme water level events.

Figure 5.19: Return period as function of time
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Discussion and Recommendations

This thesis presents an estimation of extreme water levels for Venice, including a new ap-
proach to account for trends in water level time-series using a Bayesian algorithm for sig-
nal decomposition. In addition, the use of copulas functions to describe the dependence
between storm surge and tide was evaluated for a combined extreme value analysis was
evaluated. This chapter will underline and discuss the results of this method.

The modelling of this tide-surge relationship for shallow coastal regions is valuable in
the light of climate change. That is because this relationship will change for many (shallow)
coastal regions in the future due to a changing bottom depth caused by sea level rise affect-
ing the impact of non-linear interactions. This relationship between tide and surge affects
extreme water levels and for many shallow coastal regions this interaction results in lower
extreme water levels. Therefore, successfully describing this relationship can increase the
accuracy of extreme water level estimation to benefit flood hazard assessment.

The investigation into the use of copulas for a combined analysis including dependence
between tide and surge is a step towards a combined analysis taking into account temporal
variation of the dependence.

6.1. Exploratory analysis

Large differences of mean water level between the start and the end of the Punta della
Salute time-series were reported. These were higher than the average global sea level rise
over a longer period spanning these measurements.

A potential explanation for this difference is the effects of anthropogenic subsidence.
Based on these large differences a trend analysis using the Mann-Kendall monotonic trend
test was performed, which allowed for the evaluation of (non-)stationarity over different
periods in time. The results of these tests reported a statistically significant trend over most
of the longer periods of time. The Sen slope calculated during these periods gives indica-
tions of the periods during which the trend was relatively the largest. These results indicate
the greatest subsidence during the period 1950-1969 and the greatest uplift during 1970-
1975. The non-stationarity and the subsidence and uplift during these periods agree with
what is known from the literature.

During 1950-1969, the most severe period of subsidence was reported in Venice; the
cause of this subsidence was groundwater withdrawal for the port close to the city. This
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was followed by a period of uplift starting in 1970-1975, during which the aquifers below
the city were actively being restored.

This shift between slopes led to further investigation using changepoint analysis meth-
ods; RHtest and BEAST. Both methods were considered in order to compare and evaluate
their use in the exploratory analysis of the time-series.

Both methods found changepoints in the Punta della Salute time-series which could
be attributed to anthropogenic subsidence. The 05-1972 changepoint found by the RHt-
est coincides with the largest consistent downward slope in the decomposed trend of the
time-series. All the changepoints found using the RHtest method were also found by apply-
ing the BEAST method to the same time-series. More changepoints were identified using
the BEAST method, as this method detects shifts in mean and trend as opposed to only
the mean by the RHtest. Additionally, changepoint analysis using BEAST (combined with
reference time-series of Marghera, Piattaforma Acqua Alta and Trieste) allowed for the sep-
aration of local- and large-scale events attributed to sudden shifts or changes in trend and
seasonality.

The changepoint analysis using the BEAST method revealed a very large overlap
of changepoints between all considered time-series (Punta della Salute, Marghera, Pi-
attaforma Acqua Alta and Trieste). The overlap in changepoints indicates that mainly large-
scale events have affected the time-series. Similarly, unique changepoints can be linked
to local-scale events. In this way, unique changepoints could be attributed to local-scale
events such as construction works next to the tide-gauge. Using this method, the influ-
ence of recorded events was confirmed to be present in the time-series data. Furthermore
the 1968 changepoint which was attributed to local causes can be tied to the period of the
largest (anthropogenic) subsidence of 14 mm / y [Tosi et al., 2002][Carbognin et al., 2004].
Using the changepoint analysis especially large-scale events can be captured. More
changepoints attributed to local events were expected considering the long history of an-
thropogenic intervention in and near the city of Venice as outlined in the literature study.
This is most likely due to atmospheric effects causing larger and more sudden changes in
water level observations as compared to anthropogenic subsidence.

Under the assumption of an equal amount of sea level rise between the Trieste and
Punta della Salute time-series, the influence of vertical land motion was isolated. The re-
sulting trend of Vertical Land Motion for the city of Venice shows behaviour that agrees with
literature regarding upward and downward slopes during certain time frames. Change-
point analysis provides useful information, especially in combination with trend decom-
position and the use of reference series. Information about past events may help form
a better understanding of the time-series and forecast future behaviour. The separation
of VLM and sea level rise using trend decomposition using this method may be interest-
ing for conducting research on the rise of global sea level. Since for this type of research,
long-term tide-gauge observations are used as a primary source of information. At the mo-
ment, mostly tide-gauges that are located in areas of relatively stable land motion are used
[Zervas et al., 2013]. The isolation of the vertical land motion component using reference
series may increase the number of tide-gauge stations available for research on global sea
level change.

The trend decomposition using the BEAST method was used to homogenize the time-
series data. Many methods make use of a 19-year-centered running mean that is used
to account for the metonic cycle and the lunar nodal cycle [Pirazzoli and Tomasin, 2002]
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[Ferrarin et al., 2022]. Regression, moving mean and filtering all are problematic in dealing
with non-linear non-stationary data [Wu et al., 2007]. The difference between the decom-
posed trend and the moving mean, in particular, is that the decomposed trend is much less
smooth than a 19-year moving average. This is also where large differences between BEAST
and RHtest can be observed. RHtest uses linear regression in between changepoints to ap-
proximate trend over the entire time-series. However, when a trend is non-linear this ap-
proximation does not represent the true trend accurately. A comparison between the two
changepoint analysis methods indicates that the BEAST method is more suited when ap-
proximating time-series containing non-linear behaviour and may therefore be beneficial
for time-series homogenization.

While the Bayesian ensemble algorithm BEAST brings forward interesting results in
changepoints analysis and signal decomposition, a form of caution must be taken in in-
terpreting their results. While some timings of change-points as analyzed by RHtest and
BEAST were linked to historical events, their timings may be coincidental. This highlights
one of the difficulties in using changepoint analysis methods, which is the validation of the
result. In this study, BEAST was used to correct for anthropogenic vertical land motion and
the decomposed trend was used, in which trends from the literature and recorded extreme
events were recognized. While such a decomposed trend may agree with expected values,
it may not represent the true trend.

6.2. Combined Analysis of Tide and Surge

In shallow coastal regions, interdependence between tide and storm surge is likely, and
this relationship was quantified for the Punta della Salute time-series. A negative depen-
dence between tide and storm surge was found to be −0.61, comparable to the depen-
dence found elsewhere [Ferrarin et al., 2022]. When considering the plot of isolines, the
1966 acqua alta follows the reported negative dependence. This acqua alta was a combi-
nation of one of the lowest tides in our ESL observations combined with the highest storm
surges on record. The 2019 event shows a very different behaviour. Although this acqua
alta is still paired with one of the highest storm surges on record, it occurred along with
a relatively high tide. Interestingly, the negative dependence is less evident for the most
exceptional extreme events. This was an unexpected finding and could not be explained.
This could be further explored by performing research on how tide-surge interactions af-
fect the maximum extreme water levels in shallow coastal regions. The shapes of the chosen
copula functions were consistent with the tide and NTR samples. However, the difference
in results for other copula selection methods, such as the inference function of margins
(IFM) method [Wainwright, 2005] [Pons et al., 2021] and the semiparametric method (SP)
[Kim et al., 2007] were not included in this analysis and may be interesting to investigate in
the future.

Using the peak-over-threshold (POT) method for the selection of extreme events and
the separation of tide and surge components of these extremes in the combined analysis
resulted in sampled extreme water levels below the threshold. This is a result of new combi-
nations from the marginal distributions of tide and surge that allowed combinations below
the threshold value and is also shown in section A.2. This problem was solved by remov-
ing values below the threshold and by resampling from the samples above this threshold.
Using this approach combined with the use of the GEV for both marginal distributions, the
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GEV was chosen to best resemble the sampled extreme water levels as opposed to the ex-
pected generalized Pareto distribution. The problem with generating new samples below
the threshold was unexpected; investigation into using the Annual Maxima method for the
selection of extremes as opposed to the POT method is therefore recommended, as this
circumvents this problem.

Although the AIC and BIC scores of the copula were quite similar, large differences were
found in the return value estimates. The Tawn copula reported as the third-best copula fit
generated exceptionally large return values, exceeding the independent copula. This em-
phasizes the importance of the copula selection process. These large differences may be
attributed in part to its difference in Kendall τ correlation, compared to the other copu-
las considered. A large difference could be seen between the independent and dependent
copulas. This was to be expected, as for the independent copula, any tide can occur during
any storm surge.

The return value plot of the combined analysis of the Gaussian copula function suggests
that this model is appropriate for the observations. It also shows that these are compatible
with those of the univariate analysis.

In this study it was assumed that the distribution of extremes are independent on sea
level rise. However, SLR causes a redistribution of the ocean’s mass to change the location
of amphidromic points, altering tidal characteristics. Additionally, climate change also af-
fects local storminess, leading to different storm surge behavior over time. This increase
in storminess may be even more important to include in the Adriatic, as it can also lead
to different behavior of Sieches in the basin (Adriatic). Lastly, SLR will influence the bot-
tom depth and therefore also the non-linear interactions between tide and surge. Temporal
variation of these two components as well as the dependence should be accounted for to
improve accuracy of extreme water level estimation.

To further improve the accuracy of the combined analysis using copula functions, this
non-stationarity should be accounted for in the analysis. In a combined analysis one can
work with time-dependent marginal distributions in order to account for non-stationarity
in the tidal and surge components. These marginal distributions contain time dependent
location and/or scale parameters µ(t ), σ(t ).

Additionally, an approach may be to include the temporal variation of the dependence
between the tide and surge components. A time-varying copula function can be used to
describe the temporal variation of dependence between tide and surge as the affects of
non-linear interactions change due to a changing bathymetry.

Lastly, in this study, tide-gauge observations from 1924-2020 were used. The San Ste-
fano tide-gauge began operation in 1872 within a relatively short distance (1km) of the cur-
rently used tide-gauge Punta della Salute. It is recommended to investigate the inclusion
of the observations of this tide-gauge to the Punta della Salute observations to increase the
length of the observational period. This may increase accuracy of extreme water level es-
timation and is especially useful when considering a non-stationary analysis in the future,
as this method of analysis increases the level of uncertainty.
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Conclusion

This final chapter explains the outcome of the proposed research objective. In addition, the
sub-questions are answered as stated in chapter 1. The main objective of this thesis was to:

Quantify the influence of tide-surge interaction on extreme sea level estimates and in-
vestigate the use of copulas in extreme sea level estimation as compared to extreme sea
level estimation using a univariate approach.

The main conclusions of this report are as follows.

• The dependence between storm surge and tide is statistically significant and quan-
tified. The Pearson r correlation coefficient reports a value −0.81 and the Kendall
τ correlation reports a value of −0.61. This negative dependence means that, during
extreme events, the highest storm surges are more likely to occur during low tide. The
non-linear (tide-surge) interactions in the shallow lagoon result in a lowering of the
extreme sea level. This is confirmed from the combined analysis of tide and surge us-
ing a copula functions. From this combined analysis it can be seen that higher return
values are reported using a copula function that excludes this dependence.

• Extreme water level estimates from the combined analysis of the tidal and surge sig-
nal using the copula function report higher return values than those resulting from
the univariate analysis. These two methods are compatible considering the small rel-
ative difference in the return values between the two. This gives confidence in the
combined analysis, which accounts for the dependence between the tide and surge
water level components. This is a promising approach for the integration of tide-
surge dependence in extreme water level estimation. As this work focused only on
a stationary approach, in the light of climate change opportunities to consider are
adapting this method for the inclusion of non-stationarity.

• Trend analysis of the Punta della Salute time-series report statistically significant
monotonic trend over the entire period of observations. When comparing the mean
sea level between 1924 and 2021, a relative sea level rise of 2.882 mm/y is found.
This rate is much higher than both reported global sea level rise of 1.743 mm/y and
the relative sea level rise for Venice of 1.23± 0.13 mm/y. Under an assumption of
equal sea level rise between Venice and Trieste and using the changepoint analysis
and trend decomposition allowed for separation of the vertical land motion from
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the relative sea level rise. By doing so, this study finds a sea level rise rate of 1.431
mm/y. 1.458 mm/y could be attributed to vertical land motion over this same pe-
riod, of which 1.058 was caused by anthropogenic subsidence assuming the constant
rate of 0.4 mm/y resulting from natural processes. This leads to a total anthropogenic
subsidence of 10.26 cm. Long-term anthropogenic subsidence is no longer present,
however short-term effects of human-induced effects are still occurring and can be
traced back in the time-series.

Lastly, the sub-questions are answered below.

1. How can the (non-)stationarity of a time-series be evaluated?

Non-stationarity can be evaluated using trend analysis like the non-parametric
Mann-Kendall (MK) test. In the case were a statistical significant monotonic trend
is found there is a temporal change in mean. Alternatively, one can test for sta-
tionarity using the two common tests; Augmented Dickey-Fuller test (ADF Test) and
Kwiatkowski-Phillips-Schmidt-Shin test (KPSS test)

2. How can the tide and non-tidal components of the water level be separated from each
other?

The separation of these two components is based on the deterministic nature of the
tide. Using harmonic analysis, a Fourier series approach, the phases and amplitudes
of tidal constituents can be determined and the tide can be reconstructed. In this
thesis, 64 tidal constituents are considered and tidal reconstruction is performed us-
ing U_tide. Removing the (reconstructed) tidal signal from the signal of water level
observations separates the time-series into a tidal and a non-tidal signal (or non-tidal
residual).

3. How can the relationship between tide and surge be quantified?

The correlation is the degree to which two variables are linearly related. The three
most comment methods to quantify the relationship between two variables, are the
Pearson r correlation coefficient, the Spearman ρ rank correlation coefficient and
the Kendall τ rank correlation. These methods all quantify correlation; however, they
quantify correlation in a different way. Pearson’s correlation measures the strength
of the linear relationship between two variables. The Spearman rank correlation
and the Kendall rank correlation measure the strength of monotonic relationship be-
tween variables.

4. How is extreme value analysis performed when tide and storm surge depend on each
other?

In this work, this was performed using the POT method to select extremes water level
observations. Marginal distributions were fit to the tide and surge water level com-
ponents of these extreme water level observations. After transforming both distribu-
tions into uniform marginal distributions, a suitable copula function will need to be
found to describe the dependence between the two. Using the copula function and
uniform marginal distributions, new tide and surge samples can be generated. Ex-
treme sea level estimates are calculated using the combination of these samples to
generate samples of extremes.
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5. What should be the selection criteria of a copula function?

Copula sampling should be based on (relative) goodness-of-fit criteria like the AIC,
BIC and log likelihood scores and also on how well the dependence parameter of the
copula function represents the true correlation coefficient between the observations.

6. How can the influence of the relationship between tide and non-tidal residual on
extreme water level estimations be quantified?

A comparison can be made between extreme water level estimation resulting from
a copula with a dependence parameter ̸= 0 and the results from extreme water level
estimation using the independent copula. The difference between the return values
is due to the impact of the tide-surge interactions on the water level.
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Supplementary Material

Additional changepoint analysis results

The results of the Beast method for the Punta della Salute time-series and the Marghera
time-series are shown in Figure A.1. Results from the Trend decomposition show similar
behaviour of trend between Punta della Salute and Marghera. The changepoint identified
using in 09-1993 in the Punta della Salute is not found in the similar time-series of the
Marghera station, however this changepoint was found in the Trieste time-series.

Figure A.1: Changepoints and the decomposed trend and its confidence band of the Punta
della Salute and Marghera time-series

and for the Punta della Salute and Piattaforma Acqua Alta (PFAA) results of the BEAST
trend decomposition and changepoint analysis is shown in Figure A.2. More changepoints
are found in the PFAA time-series than in that of the Punta della Salute time-series. The dif-
ference is due to the more extreme conditions at these measurement stations as compared
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Figure A.2: Changepoints and the decomposed trend and its confidence band of the Punta
della Salute and Piattaforma Acqua Alta time-series

to that of Punta della Salute of which the tide-gauge is located in the shallow Venice la-
goon. This can also be seen in the decomposed trend of the PFAA time-series which shows
the same local maxima and minima that of the Punta della Salute time-series but in this
time-series these are more extreme.

Lastly the RHtest results are shown for the Trieste and Marghera time-series in Fig-
ure A.3 and Figure A.4
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Figure A.3: RHtest changepoint analysis results of the Trieste time-series.

Figure A.4: RHtest changepoint analysis results of the Marghera time-series.
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A.1. Copula densities

Figure A.5: Kernel estimate of bivariate copula density of transformed observations where
u1 and u2 are NTR and tide transformed to U [0,1].

(a) Gaussian Copula fit p = -0.81 (b) student t Copula fit p1 = -0.88, p2 = 30

(c) Tawn type 1 rotated 90°, p1 = -3.12, p2 = 0.71 (d) Frank copula fit, p1 = -7.81

Figure A.6: Density plots of the four best copula fits where u1 and u2 are NTR and tide
transformed to U [0,1].
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A.2. Sampled extremes below threshold

The figures below show the extremes resulting from the combination of the sampled tide
and surge from the Gaussian copula function Figure A.7 and the independent copula func-
tion Figure A.8. For sampling from dependent copula, 10% of the combination of generated
tide and surge are below the threshold value of u = 116cm, for the independent copula 30%
was below this threshold value.

Figure A.7: Generated Gaussian copula samples with indicated POT threshold

Figure A.8: Generated independent copula samples with indicated POT threshold
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A.3. VineCopula copula families

Via the VineCopula, many different multivariate copula families can be fit to marginal dis-
tribution functions. Below is the list of all multivariate copula families which are included
in VineCopula. Only copulas able to capture negative dependence were tested for fit.

• independence copula
• Gaussian copula
• Student t copula (t-copula)
• Clayton copula
• Gumbel copula
• Frank copula
• Joe copula
• BB1 copula
• BB6 copula
• BB7 copula
• BB8 copula
• rotated Clayton copula (180 degrees; survival Clayton”)
• rotated Gumbel copulavival Gumbel”)
• rotated Joe copula (180 degrees; survival Joe”)
• rotated BB1 copula (180 degreevival BB1”)
• rotated BB6 copula (180 degrees; survival BB6”)
• rotated BB7 copula (180 degreevival BB7”)
• rotated BB8 copula (180 degrees; “survival BB8”)
• rotated Clayton copula (90 degrees)
• rotated Gumbel copula (90 degrees)
• rotated Joe copula (90 degrees)
• rotated BB1 copula (90 degrees)
• rotated BB6 copula (90 degrees)
• rotated BB7 copula (90 degrees)
• rotated BB8 copula (90 degrees)
• rotated Clayton copula (270 degrees)
• rotated Gumbel copula (270 degrees)
• rotated Joe copula (270 degrees)
• rotated BB1 copula (270 degrees)
• rotated BB6 copula (270 degrees)
• rotated BB7 copula (270 degrees)
• rotated BB8 copula (270 degrees)
• Tawn type 1 copula
• rotated Tawn type 1 copula (180 degrees)
• rotated Tawn type 1 copula (90 degrees)
• rotated Tawn type 1 copula (270 degrees)
• Tawn type 2 copula
• rotated Tawn type 2 copula (180 degrees)
• rotated Tawn type 2 copula (90 degrees)
• rotated Tawn type 2 copula (270 degrees)
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A.4. Tidal regime

Form factors were used to determine the tidal regime at the Punta della Salute tide-gauge,
determined by the K1,O1, M2 and S2 constituents [Van Der Stock, 1897] [Courtier, 1938].
These constituents were calculated for this tide-gauge by the tidal harmonic analysis and
reconstruction.

F = K1 +O1

M2 +S2
(A.1)

Four types of tidal regimes are classified. For the constituents in Table 5.4, Equation A.4
finds 0.25 < F < 2, which is indicative of a mixed semi-diurnal regime. A mixed semi-
diurnal regime is characterized by two daily high waters (HWs) and two daily low waters
(LWs) of different heights.

A.5. Complications parametric methods

Using the kernel density estimator and the empirical cumulative distribution function,
complications were encountered for different reasons. Using the empirical cumulative dis-
tribution function (ecdf), the sampling was performed as follows.

• An empirical cumulative distribution was made.

• The distribution was transformed to U [0,1].

• VineCopula package was used to find copula functions for the dependence structure
of the uniform marginal distributions.

• Samples were transformed back to physical quantities using the quantile function.

The quantile function can be used as the inverse cumulative distribution function of the
ecdf and allows transformation from probability of occurrence to physical quantities. The
problem encountered originates from the linear interpolation used by the quantile func-
tion. As the ecdf is a step-wise function, linear interpolation is used in order to be able to
generate points in between observations. This interpolation was performed as follows.

y = f (x) = y1 + x −x1

x2 −x1
(y2 − y1), (A.2)

where f (x) is the value of interest with x between two points x1, x2 for known data
points (x1, y1), (x2, y2) where y1 = f (x1) and y2 = f (x2). The linear interpolation will cause
problems at the outer edges, as there is no next point to perform the linear interpolation.
The result was that for all probabilities in [1− 1

2n ,1] that are transformed using the quan-
tile function, the same value equal to the highest extreme observed is assigned. The same
holds for the interval [0, 1

2n ]. As a consequence, there will be clustering of the maxima and
minimum observed extremes. In Figure A.9a this clustering is shown for the highest NTR
value.

Using the kernel density estimator lead to complications when sampling non-tidal
residual due to the large difference between the highest observed NTR (193cm) and the
second highest NTR (138cm). This resulted in a lack of observations between these highest
NTR events; this is highlighted in Figure A.9b



72 A. Supplementary Material

(a) (b)

Figure A.9: Copula samples of contribution to sea level (cm) of non-tidal residual using the
(a) ecdf as marginals and (b) KDE for marginals

A.6. Verification of seasonal decomposition of the BEAST
method

The accuracy of seasonal decomposition using the BEAST method was tested by comparing
the decomposed seasonal signal as per beast and comparing it with results from a stable
seasonal filter. This stable seasonal filter is applied to the monthly RSL observations and
composed of the means per month (e.g. mean of all January means) after detrending using
a 13-term moving average [Brockwell and Springer, 2002]. This seasonal filter is then cen-
tered around 0 and compared to the decomposed seasonal signal resulting from the BEAST
method. The difference in results from both methods can be seen in Figure A.10a. Follow-
ing this procedure, trend decomposition was performed by BEAST after removing seasonal
trend using BEAST trend decomposition and by deseasonalization using the stable filter.
These results can be found in Figure A.10b.
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(a) Comparison between stable filter and the
piece-wise harmonic function resulting from
BEAST

(b) Comparison between decomposed trends for
pre-deseasonalized signal and unaltered signal

Figure A.10: Verification of decomposition using the BEAST method

One of the problems of MCMC sampling is that subsequent samples are correlated.
This is because each subsequent sample is based on the current sample. To prevent au-
tocorrelation in the sampling process, a thinning factor was applied. A thinning factor
reduces the amount of correlation by thinning out the Markov Chain. The sensitivity to
thinning factors of 1, 3, 5, 10 was tested, meaning when sampling 1, 3, 5 or 10 samples are
discarded before taking a next sample. Furthermore, the user defined input for minimum
and maximum number of changepoints from which sampling is performed was varied.
With the minimum set to 0, sensitivity to the maximum number of changepoints was in-
vestigated. Decomposition was performed for a maximum number of 10, 20, 30, 40, 50 and
100 changepoints.
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