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USING INTRAVASCULAR ULTRASOUND

T AGGEDPSHENGNAN LIU,* TARA NELEMAN,* ELINE M.J. HARTMAN,* JURGEN M.R. LIGTHART,*

KAREN T. WITBERG,* ANTONIUS F.W. VAN DER STEEN,*,y,z JOLANDA J. WENTZEL,*

JOOST DAEMEN,* and GIJS VAN SOEST*T AGGEDEND
*Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands; yDepartment of Imaging Physics,

Faculty of Applied Sciences, Delft University of Technology, The Netherlands; and zShenzhen Institutes of Advanced Technologies,
Shenzhen, China
A
CA Ro
Abstract—Coronary calcification represents a challenge in the treatment of coronary artery disease by stent place-
ment. It negatively affects stent expansion and has been related to future adverse cardiac events. Intravascular
ultrasound (IVUS) is known for its high sensitivity in detecting coronary calcification. At present, automated quan-
tification of calcium as detected by IVUS is not available. For this reason, we developed and validated an optimized
framework for accurate automated detection and quantification of calcified plaque in coronary atherosclerosis as
seen by IVUS. Calcified lesions were detected by training a supported vector classifier per IVUS A-line on manually
annotated IVUS images, followed by post-processing using regional information. We applied our framework to 35
IVUS pullbacks from each of the three commonly used IVUS systems. Cross-validation accuracy for each system
was >0.9, and the testing accuracy was 0.87, 0.89 and 0.89 for the three systems. Using the detection result, we pro-
pose an IVUS calcium score, based on the fraction of calcium-positive A-lines in a pullback segment, to quantify
the extent of calcified plaque. The high accuracy of the proposed classifier suggests that it may provide a robust
and accurate tool to assess the presence and amount of coronary calcification and, thus, may play a role in image-
guided coronary interventions. (E-mail: g.vansoest@erasmusmc.nl) © 2020 The Author(s). Published by Elsevier
Inc. on behalf of World Federation for Ultrasound in Medicine & Biology. This is an open access article under the
CC BY license. (http://creativecommons.org/licenses/by/4.0/).

Key Words: Calcified plaque, Intravascular ultrasound, Automated quantification, Intravascular imaging, Coro-
nary artery disease.
INTRODUCTION

Coronary artery disease, the most common heart disease,

is caused by a long-term accumulation of atherosclerotic

plaque in the intima of the arterial vessel wall

(Falk 2006; Hong 2010). As plaques grow, they may

impinge on the free coronary lumen, causing a stenosis

that limits blood flow to the myocardial territory served

by the coronary artery. Severe or acute coronary artery

disease is frequently treated by stent implantation in a

procedure called percutaneous coronary intervention

(PCI). Atherosclerotic plaques are frequently heteroge-

neous in their composition, and typically consist of

fibrous, lipid-rich and calcified tissue.

The presence of calcium, in particular, can hamper

the feasibility of PCI (Hoffmann et al. 1998). Because of
ddress correspondence to: Gijs van Soest, PO Box 2040, 3000
tterdam, The Netherlands. E-mail: g.vansoest@erasmusmc.nl
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its rigidity, circumferential calcification may prevent full

dilation of the stent, which may lead to stent underexpan-

sion, associated with increased risk of target vessel failure

(Witzenbichler et al. 2014). Specialized techniques, such

as cutting balloons, rotational atherectomy or intracoro-

nary lithotripsy (Sharma et al. 2019), can be used to pre-

pare calcified plaques to enable complete stent expansion.

The beneficial effects of these plaque modification techni-

ques depend directly on the extent and severity of calcifi-

cation, so detailed knowledge is needed to guide the

choice of lesion preparation method (Wijns et al. 2015).

Large calcified plaques can often be unambiguously

identified in intravascular ultrasound (IVUS) images

because of their high reflection of and low penetration by

ultrasound signals (Pu et al. 2014; Mintz and Guagliumi

2017). As illustrated in Figure 1, coronary calcium is

characterized as a narrow band with high echo intensities,

with a dark shadow behind it. Current IVUS software

does not allow automated calcium quantification.
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Fig. 1. Three images in gray scale from Infraredx (a), Volcano (b) and Boston Scientific (c). The calcified plaque is
marked with a red arch.
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Because of the presence of inherent speckle, various

system- and anatomy-dependent artifacts, limited resolu-

tion and image contrast, automated structure detection in

IVUS remains a challenging task (Katouzian et al. 2012).

Simple approaches, using thresholding (Kim et al. 2014)

and adaptive thresholding, have been reported

(Dos Santos Filho et al. 2007). A more complex approach

to segmentation of the leading edge of calcified plaque

combining Rayleigh mixture models, Markov random

fields, graph searching and prior knowledge, has been

reported (Gao et al. 2014). After detection of the intima

and the media�adventitia borders, calcified regions were

detected using a Bayesian classifier (Taki et al. 2008).

Two recent studies have reported the detection of calcifi-

cation per frame using a deep learning network

(Balocco et al. 2018; Sofian et al. 2018).

In this work, we present a framework for accurate

automated detection and quantification of the extent

of calcification in coronary atherosclerosis as seen by

IVUS. Without multistep pre-processing, extraction

of complex features or design of a deep learning

approach to perform the task, we found that accurate

classification can be achieved by applying a kernel-

based support vector classifier on simple statistical

features, originating from the imaging physics,

extracted directly from un-processed images. Using

data from three commonly used IVUS systems, we

trained the classifier for recognition of calcified pla-

ques per A-line. Using the detection result, we pro-

pose an IVUS calcium score (ICS) to evaluate the
Table 1. Data d

Vendor Population Pullback Frame rate

Infraredx 34 35 16
Volcano 35 35 30
Boston Scientific 35 35 30
calcified plaque load and compare it with the calcium

score based on manual labels.
METHODS

IVUS data

IVUS pullback data sets, acquired in native coro-

nary arteries, were extracted from the clinical database

of the Department of Cardiology, Erasmus MC. The

data sets were anonymized and contained no identify-

ing information; all selected patients consented to the

use of their data in retrospective studies. All data in

this study were collected as part of routine clinical

care. Consequently, institutional review board

approval and individual patient consent are not

required under Dutch law. We selected 105 pullbacks,

35 each from three commonly used systems: Infraredx

(40 MHz, TVC NIRS Catheter System, Infraredx Inc.,

Burlington, MA, USA), Volcano (20 MHz, Eagle Eye

Platinum Rx, and ST Rx, Digital IVUS Catheters, Vol-

cano Corp., Rancho Cordova, CA, USA) and Boston

Scientific (40 MHz, Atlatis SR Pro and OptiCross Cor-

onary Imaging Catheter, Boston Scientific Corp.,

Natick, MA, USA). Example images from the three

systems are provided in Figure 1.

An overview is given in Table 1. Pullbacks, stored

in DICOM format, were manually annotated by trained

experts (E.M.J.H. and T.N.) at 1-mm intervals. Centering

at the imaging catheter, we divided and labeled each

frame as a calcified or non-calcified pie sector (Fig. 2).
escription

(fs/s) Pullback speed (mm/s) Training Test

0.5 31 4
0.5 31 4
0.5 31 4



Fig. 2. Pullback stacks were labeled in Cartesian coordinates and converted to polar coordinates. ‘P’ marks the pull-
backs, and ‘L’ marks the label stack. In the zoomed-in red rectangular box, a scale bar is given indicating the pullbacks

were labeled every 1 mm. The labeled stacks in the right panels are shown with transparency.
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Frames (in Cartesian coordinates) and their correspond-

ing labels were converted into polar coordinates, such

that each A-line was binary labeled as 1 (calcified) or 0

(non-calcified).
Identifying features

Calcified plaque can be confidently classified by

human observers. The A-line profile itself is quite vari-

able though, within each (calcified or non-calcified) cate-

gory. By comparing the A-line amplitude statistics, we

observed that the typical combination of a thin reflection

and dorsal shadow of calcium in IVUS may be used as a

discriminating characteristic, whereas an A-line scan of

soft tissue contains many gray values and most ampli-

tude values in a line sampling calcium are low (lumen

and shadow), with a few very high ones (calcium bor-

der). To build an unbiased classifier, we decided to train

it upon a rich feature set, including 10 distribution densi-

ties, 10 distribution quantiles and the mean value (21 in

total; examples for calcified and non-calcified A-lines

are illustrated in Fig. 3).
Training the detection model

We trained a radial basis function (RBF) support

vector classification (SVC) model to classify IVUS A-

lines. An SVC is a flexible structure used to classify

high-dimensional data. A basic trained SVC is a linear
hyperplane, which can separate only linearly separable

clusters. To deal with data that are not linearly separable,

a non-linear kernel needs to be introduced. When little is

known about the structure of data, a Gaussian RBF ker-

nel is a robust choice, assuming only general smoothness

(Smola and Sch€olkopf 2004).
Each A-line is characterized by a set of statistical

features xi,and has a binary label yi identifying it as calci-

fied or not. For M labeled A-line distributions, {(xi, yi)|

yi 2 {0, 1}, i 2 {0, ���,M}}, a classifier

f xð Þ ¼ sgn
Xn
i¼1

aiyiK xi; xð Þ þ b

" #

was trained to optimize the problem (Guyon et al. 1993)

mina
1

2
aTQa�eTa such that yTa ¼ 0;

0�ai�C; i ¼ 1;⋯; n
ð1Þ

Here, e is a vector of ones, and C is a parameter balanc-

ing the complexity and training error to be tolerated. Q is

a n£ n positive semidefinite matrix, andQij� yiyjK

(xi, xj) and Kðxi; xjÞ ¼ expð k�xi�xj k 2=2s2Þ is the

commonly used Gaussian RBF kernel. s governs the lin-

earity of the classifier: larger s values allow greater non-

linearity. The hyperparameters C and s were determined

by an exhaustive grid search optimizing overall classifi-

cation performance.



Fig. 3. Features extracted from image intensities, depicting an example of a calcified A-line (blue) and a non-calcified
A-line (red) from the manually annotated set. The mean value and the distribution densities are given in the left panel,

and the quantiles, in the right panel.

Fig. 4. Flowchart for training the support vector machine. The numbered steps are explained in the text under Training
the Detection Model.

Table 2. Overview of performance of support vector machine

Vendor Experiment Measurement

Accuracy* Precision Recall F1 score

Infraredx Training 0.9170 § 0.0003 0.95 0.91 0.93
Testing 0.87 0.96 0.77 0.86

Volcano Training 0.9113 § 0.0002 0.92 0.93 0.92
Testing 0.89 0.89 0.90 0.89

Boston Scientific Training 0.9084 § 0.0004 0.92 0.91 0.92
Testing 0.89 0.92 0.85 0.88

* For training we report the cross-validation accuracy.
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Figure 4 is the flowchart for model training and test-

ing; the numbered steps are as follows:

Step 1. The pullbacks in polar coordinates were ran-

domly split 9:1; 90% were used for training and 10%

were used for testing. The splitting numbers of pullbacks

for each system are given in Table 2.

Step 2. After generating the training and testing data

set, we extracted the image gray values for each A-line

in the labeled frames.

Step 3. The distribution densities were calculated by

generating a histogram of the image gray values in [0;

255] in 10 bins. They were normalized such that the sum

is 1. The 10 quantiles were linearly sampled in the range

0.5%�99.5%.

Step 4. Because there were more non-calcified than

calcified A-lines, we balanced the training categories by

randomly downsampling the non-calcified A-lines such

that the total number of non-calcified A-lines was equal

to that of calcified A-lines.

Step 5. The input was further normalized using Z-

score normalization. The estimated mean ðm̂Þ and the

standard deviation ðŝÞ were derived from the training set

and later applied to Z-score normalize the testing set.

Step 6. Hyperparameters C and s were selected.

Grid points were evenly chosen on a double log scale,

fCi ¼ 10ui jui 2 ½�3; 3�; i ¼ 1;⋯;Mg � f
sj ¼ 10yj jyj 2 ½�5; 3�; j ¼ 1;⋯;Ng; M ¼ N ¼ 21. The

A-lines were randomized in the ratio 3:7 to training and

validation sets for threefold cross-validation. The

parameters with the highest accuracy were chosen for

use in the final model. We find that there is a large

range with nearly optimal performance for

s 2 ½10�4; 10�1�, approximately, with minimal effect of

the value of C, indicating limited sensitivity to algo-

rithm or data specifics.

Step 7. The final trained model was applied to the

testing data. Precision, recall and the F1 score, given in

eqn (2), were computed on balanced data where the neg-

ative examples were downsampled to be equal to the

amount of positive examples.
Post-processing

After performing the classification, we applied the

dense fully connected conditional random field (CRF)

as the post-processing for noise removal

(Kr€ahenbühl and Koltun 2011). The method applies a

Gaussian penalty when two pixels in the defined neigh-

borhood have different labels. In combination of prior

probability, the a posteriori probability was maxi-

mized with an optimized labeling solution. Here the

prior probability was estimated for each pullback using

the SVC-detected label, and the neighborhood was
empirically chosen to be 10 frames and 21 A-lines.

Followed by an in-frame morphological closing

(1£ 21) and opening (1£ 51), the post-processing

steps remove isolated positive and negative classifica-

tions and integrate labels with small gaps.
Validation and reporting

The model was trained for each system separately.

Performance in the testing set was evaluated in the num-

ber of true/false positive/negative (TP, TN, FP, FN) A-

line classifications, and reported in precision, recall and

F1 score (Fawcett 2006):

precision ¼ TP

TP þ FP

recall ¼ TP

TP þ FP

ð2Þ

F1 score ¼ 2 ¢ precision ¢ recall
precision þ recall

For further validation, we introduced the ICS, which is

defined as the fraction of detected calcified A-lines in

the total acquired number. Two ICSs were calculated

using labeled frames; one was estimated using the man-

ual labels (denoted as s) and the other was estimated

using the detection results (denoted as ŝ):

s ¼ # labeled calcified A�linesð Þ
# all A�linesð Þ in all labeled frames

ŝ ¼ # detected calcified A�linesð Þ
# all A�linesð Þ in all labeled frames

During the comparison we observed that s and ŝ are

linearly related to each other. Therefore, we applied the

random sample consensus (RANSAC) regression to high-

light outliers and to fit a linear function ðŝ ¼ ksþ bÞ with
inliers. Outliers were removed before computing

Pearson’s correlation coefficient:

rxy ¼ n
P

xiyi�
P

xi
P

yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
P

x2i
P

xið Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
P

y2i �
P

yið Þ2
q ; for i2 0; 1;⋯; nf g

We further adjusted the detected values by applying the

linear transform f ðŝÞ ¼ ðŝ�bÞ=k.
Using the estimation result on a whole pullback, we

then calculated a total ICS (denoted as ŝtotal), which can

give an overall indication of the amount of calcified pla-

que in the whole pullback.

ŝtotal ¼ # detected calcified A�linesð Þ
# all A�linesð Þ



ARTICLE IN PRESS
6 Ultrasound in Medicine & Biology Volume 00, Number 00, 2020
Furthermore, similar to intravascular near-infrared

spectroscopy (Gardner et al. 2008), we present a local

ICS (denoted as ŝM) in short segments, for instance,

2 mm, which can intuitively highlight artery sections

with a heavy calcium burden:

ŝM ¼ # detected calcified A�linesð Þ
# all A�linesð Þ inM neighboring frames

Again inspired by previous work on IVUS palpogra-

phy (Schaar et al. 2004) and parametric intravascular opti-

cal coherence tomography (Gnanadesigan et al. 2016), we

represent the detection result in a so-called “carpet view”,

depicting the classification result in a display with dimen-

sions of circumferential angle and pullback length.
RESULTS

Table 2 summarizes the overall performance of A-

line-based calcium detection by the support vector

machine (SVM) trained on the data. We observe that an

average accuracy >0.9 was achieved, with small varia-

tions across validation experiments and similarly high in

testing sets. The manual ICS s and the detected ICS ŝ are
compared in scatterplots in Figure 5. Despite a moderate

overestimation, the two numbers are highly correlated

(Infraredx: r = 0:94, Volcano: r = 0:88, Boston Scientific:

r = 0:97). The Wilcoxon tests suggest that the manual

and automated measurements are sampled from the

same distribution (Infraredx: p = 0.6138, Volcano:

p = 0.9426, Boston Scientific: p = 0.8370).

A carpet view representation of the calcium detec-

tion results is provided in Figure 6. White areas indicate

calcification. Vertical lines represent manually labeled

frames, where red and blue designate calcium-positive

and calcium-negative A-lines, respectively. The color

bar above the carpet view displays the local ICS calcu-

lated every 2 mm. The local ICS provides an intuitive

overview of the distribution of calcified plaques, with
Fig. 5. Scatterplot of ground-truth intravascular ultrasound cal
the ICS calculated using the detected labels ðŝÞ, acquired with

Infraredx, (b) Volcano, (c) Boston Scientific.
circumferential calcium (s2mm = 1000) occurring in

Figure 6a and b.
DISCUSSION

In the present study, we developed a pipeline for

automated detection of calcified plaque on IVUS images.

Using an SVC classifier and CRF post-processing, we

attempted to use simple statistical features of image

intensities for an A-line-based identification of calcium

in the arterial wall. Results indicate that the proposed

framework can be used for a robust estimation of an

IVUS-based calcium score, which can be used as an

objective evaluation of the presence and amount of calci-

fied plaque in the vessel, overall and locally.
ICS overestimates calcium in specific situations

In total, 16 pullbacks were detected as outliers

(Infraredx: 9, Volcano: 6, Boston Scientific: 1), 15 of

which are overestimations comparing with the manual

scores. All outliers were part of the training set. If the out-

liers had arisen in testing data, they could be indicative of

overfitting. Rather, post hoc examination suggested that

the overestimation occurred mainly in three scenarios.

First, some non-calcium image features cannot be

distinguished from calcium features, based on A-line

intensity statistics only. When the pericardial cavity is vis-

ible in the IVUS image, it appears as a thin bright band

(visceral pericardium) followed by an abrupt dark cavity.

This structure usually appears in large series of consecu-

tive frames and can lead to massive overestimation. This

was observed in three arteries and, in one case, was

observed in 4264 of 5281 frames in one pullback. Occa-

sionally, when large arteries are imaged with an eccentric

catheter, leaving only a bright band of signals on the far

wall, the statistical features can be similar to those from

calcified regions. This was observed in five arteries.
cium score (ICS) calculated using manual labels (s) and
the three different intravascular ultrasound systems: (a)
RANSAC = random sample consensus.



Fig. 6. Detection results in carpet views (circumferential angle£ frame number), where detected calcified regions are in
white and non-calcified regions are in black. Positive manual labels are represented by red lines, and the negative coun-
terparts, by blue lines. The colored strip above each carpet view represents the local intravascular ultrasound calcium
score (2 mm windows), ranging from 0 to 1000 (colorbar on the right). Examples from three different systems: (a) Infrar-

edx, (b) Volcano, (c) Boston Scientific.
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Second, post-processing is designed to remove

small positive regions (which are likely to be false).

False positives that are adjacent to a lesion are difficult

to rule out, however. This may cause structures such as

the guidewire to be classified as calcium.

Third, calcified regions appearing as a bright band,

with a dorsal shadow, are relatively easy to identify for

the experts. However, some calcified plaques exhibit

normal brightness with dark shadows (in the case of a

directional reflection from a non-normal surface not

received by the transducer). The correct classification of

this appearance of calcified plaque requires the observa-

tion of several neighboring frames, which were not avail-

able to the experts in this study. Compared with the

experts’ labels, the detection framework performs more

consistently for the detection of ’’dark’’ calcified lesions.

However, in our reporting this is counted as an overesti-

mation when compared with the experts’ labels.

Comparison with previous work

The present approach differs in a number of ways

from recent work, which employed deep learning frame-

works (Balocco et al. 2018; Sofian et al. 2018). First, we

employed data from three different IVUS systems and

developed a universally applicable analysis that differs
only in the weights of the SVM. Second, our analysis did

not require pre-processing (motion correction, gating,

conversion to polar coordinates). This formulation of the

calcium detection problem, which respects the indepen-

dence of A-lines and relies on statistical features in the

data that result directly from the imaging physics, out-

performs the convolutional neural network-based classi-

fier described by Balocco et al. (2018) as measured by

the F1 score. Sofian et al. (2018) analyzed only isolated,

selected frames, which are not necessarily representative

of clinical data.

Outlook on application: Clinical research

For analysis of large intravascular imaging data

sets, algorithmic quantification of plaque features can

accelerate quantification studies by eliminating the time-

consuming manual annotation of thousands of images,

while simultaneously improving reproducibility and

reducing inter-observer variation. Future work, including

prospective studies, will be needed to evaluate the value

of the ICS for stratification of the risk of follow-up

events after the index PCI.

For asymptomatic populations, the relation between

calcified atherosclerosis and cardiovascular events has

been quantified in the coronary artery calcium score, an
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important non-invasive diagnostic metric used to predict

cardiac risk with computed tomography (CT) (Shah and

Coulter 2012). CT detects calcified plaque with high

accuracy, with a systematic overestimation of the plaque

volume (Leber et al. 2006; Sun et al. 2008;

Voros et al. 2011). CT lacks sensitivity to small calcifi-

cations compared with IVUS (Van Der Giessen

et al. 2011). In our study, no such independent assess-

ment of coronary calcium was available. As a result, the

ICS has not been validated as a measure of the true

amount of calcification in a vessel.
Outlook on application: Intervention guidance

Operator experience plays an important role in the

practical use and utility of IVUS in PCI. Automated

image analysis can be helpful for the development of

objective and fast IVUS-guided PCI strategies. Many

studies have found that imaging techniques can effec-

tively reduce periprocedural (Witzenbichler et al. 2014;

Zhang et al. 2018) and late ischemic events (Di Mario

et al. 2018). Robust, real-time automated detection of

plaque features can make the technology easier to use

and thus more accessible.

Observational studies reported that calcified lesions

can be associated with post-PCI adverse events, including

restenosis and stent thrombosis (Witzenbichler et al. 2014).

Moderate and severe calcifications were associated with

major adverse events and revascularization in the target

artery observed in the 3 years after the implantation of a

stent (Shiode et al. 2018). Untreated calcified lesions may

also trigger later adverse cardiac events (Mintz 2015).

Exposed calcified nodules have been identified as a sub-

strate for thrombus formation, leading to acute coronary

syndrome (Virmani et al. 2000; Jia et al. 2013).

We introduced here a local measure of the calcium

burden, by computing the ICS in short (2-mm) segments.

In the future, the ICS may serve to indicate heavily calci-

fied regions that may be likely to benefit from lesion

preparation during PCI. A threshold value of the ICS for

intervention guidance remains to be determined in fol-

low-up research.
CONCLUSIONS

We presented an optimized framework for accurate

automated detection and quantification of the presence

and extent of calcification in coronary atherosclerosis as

seen by IVUS. Calcified lesions were detected by train-

ing a support vector classifier per IVUS A-line on manu-

ally annotated pullback data, followed by post-

processing using regional information.

With manual annotations as a standard, an overall

accuracy of » 0:9 was achieved. Based on this classifier,
we proposed an ICS that comprehensively characterizes

the extent of coronary calcification in a vessel examined

by IVUS.

Conflict of interest disclosure—The authors have no conflicts of inter-
est to declare.
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