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Executive Summary 

With an expected rise in air traffic of 50% [1], new paradigms such as trajectory-based 

operations (TBO) are in development for air traffic control to enable more efficient aircraft 

trajectories. Because of this expected development, a great interest is currently shown in 

methods which can help determine the best trajectory for aircraft to fly given a certain 

optimization goal. The research field of aircraft trajectory optimization arose as a result, and 

in general studies in this field are based on optimal control theory using continuous variables. 

In this thesis, a Hybrid Optimal Control (HOC) framework which can be used in conjunction 

with existing optimal control software is presented.  

Hybrid optimal control theory aims to deal with systems that are both discrete time 

and continuous time from a mathematical perspective. The hybrid optimal control problem is 

“to find optimal hybrid – i.e., continuous and discrete – control trajectories such that an 

integral cost index – typically an integral of a function of the hybrid system state and control 

input – is minimized subject to the system dynamics, initial, terminal and further equality or 

inequality constraints” [2]. Much of the complexity of a hybrid optimal control problem 

depends on how much is known a priori about the switching structure between discrete states. 

A case study on multi-aircraft formation flying for civil aviation is chosen as an 

application to demonstrate the capabilities of the designed HOC method. In formation flight, 

trailing aircraft can experience a significant reduction in induced drag by ‘surfing’ the upwash 

of wing tip vortices generated by a leading aircraft. This in turn leads to a significant reduction 

in fuel burn for the trailing aircraft, making formation flight a more economical and 

environmentally friendly flying strategy. In previous research [3], the optimization of 

commercial flights for minimum fuel consumption was studied using multiple-phase 

trajectory optimization. However, only two-aircraft formations and three-aircraft formations 

with a fixed phase structure (the sequence in which aircraft join and leave the formation) are 

considered. By approaching this case as a hybrid optimal control problem, the phase structure 

can be left open as a discrete optimization parameter, enabling larger and more optimal 

formation trajectories. 

The existing software GPOPS [4], which is already capable of solving multiple-phase 

optimal control problems, is used as a basis for the developed HOC method. An efficient 

algorithm for the evaluation of the discrete solution space of the HOC problem, essentially all 

possible phase structures, is developed through implementation of a branch-and-bound 

method. In this approach, the discrete solution space is categorized in a tree structure where 

each tree level represents an additional discrete variable. The algorithm then only evaluates 

‘branches’ which show promising characteristics, while ‘chopping’ the other branches. This 

way, a significant computation time reduction is achieved since a major part of the discrete 

solution space can be discarded. An initial guess adaptation method which translates 

trajectories to a correct initial guess for a given phase structure is also developed, as well as an 

implementation of multi-threaded computing. 
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The aircraft dynamics are evaluated as a reduced-order point mass model, with the 

formation flight phases using a single point, multiple mass model to accommodate the 

presence of multiple aircraft. The induced drag benefit for trailing aircraft is modelled in the 

aircraft dynamics by implementing a static reduction factor for each trailing aircraft in the 

relevant formation phases. All phases are connected appropriately using linkage constraints 

for the state vectors of the linked phases. The used aircraft model characteristics are based on 

the Boeing 747-400 aircraft.  

In several case studies, both a three-aircraft and a four-aircraft transatlantic formation 

flight scenario are evaluated using the developed HOC tool. The three-aircraft case yields a 

4,74% overall reduction in fuel burn, while the four-aircraft case yields an 8.90% reduction. 

However, when using more pessimistic values for the induced drag reduction (50% less 

benefit), the fuel burn saving for the four-aircraft case is reduced to 3.48%. The fuel burn 

reduction also comes at the expense of flight time, since aircraft have to make a detour to join 

the formation. A three-aircraft case with existing scheduled flights to New York (JFK) is also 

evaluated, and yields an 11.47% fuel burn saving, a higher value because no significant detours 

have to be flown. In all experiments, a suboptimality is identified because the aircraft order in 

the formation is not part of the optimization. 

An alternative method for evaluating the fuel burn for the cruise formation phase, by 

using an analytical Bréguet range equation instead of a dynamic model is also tested. This 

method yields promising results; no significant deviation is observed in the fuel burn values 

compared to the point-mass dynamic model. However, the method turns out to be less 

computationally efficient for GPOPS. 

It is found that the developed tool is efficient and functional at evaluating the HOC 

problem of multi-aircraft formation flight trajectory optimization. Even for the four-aircraft 

experiments, computation time remains within practical limits at 5 hours. The convergence 

behavior of GPOPS is identified to be heavily influenced by the accuracy of the adapted initial 

guess. However, the robustness of the developed HOC tool leaves room for improvement. 

To conclude, it is found that the usefulness of a HOC approach is very high for the 

chosen application of trajectory optimization for multi-aircraft formation flying, since a 

promising fuel saving potential is identified. Given the number of flights that are performed 

every day, the impact of saving fuel just by optimizing their trajectories using formation flying 

can be very high on a global scale, both environmentally and economically.  
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1 Introduction 

As both environmental and economic concerns continue to put pressure on the aviation 

industry, continuous research is being done on how to improve the performance of aircraft in 

such a way that both the environmental impact and the operational costs are minimized. At 

the same time, forecasts indicate that by 2035, air traffic in Europe will have increased by 50% 

compared to 2012, to 14.4 million flights per year [1]. Within the scope of air traffic 

management, it is expected that operating procedures will be newly developed based on the 

concept of trajectory-based operations (TBO) [1]. This shift will enable aircraft to fly with a 

focus on optimal performance since they no longer have to follow relatively inefficient airway 

paths instructed by air traffic control (ATC). ATC will then only provide restrictions on the 

trajectories flown by aircraft to ensure maximum safety. This new paradigm means that 

airspace can be used more flexibly and efficiently, and also that aircraft will be able to fly more 

efficient trajectories. 

Because of this expected development, a great interest is currently shown in methods 

which can help determine the best trajectory for aircraft to fly given a certain optimization 

goal. This field of research is called trajectory optimization, and studies on this topic have been 

performed for several decades. Trajectory optimization studies are usually based on optimal 

control theory, as it is the only rigorous method which considers all dynamic effects [5]. In 

optimal control theory applications for aviation, continuous variables are used which describe 

the state of the aircraft, which evolves along its trajectory through differential-algebraic 

equations. Several numerical methods for solving optimal control problems for trajectory 

optimization purposes have been developed, and a survey on these methods is given in [6].  

1.1 Hybrid Optimal Control 

The usefulness of using optimal control theory has been demonstrated numerous 

times. However, having only continuous variables modeled poses several limitations on the 

applicability to real-world problems, as many flight trajectories consist of multiple phases and 

routing elements, each with their own performance objectives and constraints. Traditional 

optimal control theory cannot incorporate such a trajectory with discrete changes and can thus 

not optimize for the best possible structure of phases. Therefore, commonly only separate 

phases are analyzed with optimal control theory individually and then linked together. This 

however does not give the overall optimal trajectory, because the interaction between different 

phases is not taken into account. To tackle this, it is attempted to solve trajectory optimization 

problems by seeing an aircraft as a hybrid system, with both continuous and discrete (integer) 

variables being modeled simultaneously. This approach to trajectory optimization problems is 

called Hybrid Optimal Control Theory (HOC), and in the last decade, significant strides have 

been made in research concerned with finding a practical and solvable way to deal with hybrid 

optimal control problems.  
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1.2 Formation Flying in Civil Aviation 

Based on the phenomenon of the formation in which birds tend to fly, which was 

studied in the 1970s by Lissaman et al. [7], formation flight as a concept for civil aviation to 

reduce fuel consumption is a field of research where significant knowledge has been obtained 

by various researchers in the last two decades. The idea is that by letting civil aircraft which 

share a long enough section of their flight path fly in formation together, the trailing aircraft 

will experience a significant reduction in fuel consumption through aerodynamic benefits. An 

additional benefit of this concept is that with aircraft flying closer together in a formation 

airspace is used more efficiently, allowing for a larger number of flights. With the expected 

arrival of TBO and the associated higher individual freedom of aircraft routing, civil aviation 

formation flying becomes more feasible, which leads to a higher interest in the development 

of solutions for practical implementation. 

In a thesis by M.E.G. van Hellenberg Hubar [3], the optimization of commercial flights 

for minimum fuel consumption was studied using multiple-phase trajectory optimization. A 

tool was developed which is capable of finding the optimal trajectories of multiple aircraft 

which join in formation with the objective of minimizing the total fuel consumption of these 

aircraft. Using this tool, it was successfully demonstrated with several experiments that 

formation flight could lead to significant fuel savings on transatlantic flights while keeping the 

increase in flight time within limits. In most of the experiments performed in this thesis, a case 

was simulated with two identical aircraft making a rendezvous to form a formation at an 

optimal point along their way to their destination and also going out of formation to fly 

individually at the most optimal point. Also, an experiment was performed where instead of 

two, three aircraft would join in formation, which is potentially beneficial since then two 

aircraft can benefit from a reduction in induced drag, even though there remains only one 

aircraft which does not benefit from the formation (the leading aircraft). However, finding an 

optimization approach to finding the optimal formation composition and scheduling was 

considered beyond the scope of the thesis, resulting in arbitrarily chosen values for the 

experiments. It was recommended that further investigation would be done regarding the 

possibility of flying with three or more aircraft of different types in formation, since such 

scenarios could heavily influence the operational performance of formation flying.  

This is a research gap where a hybrid optimal control approach could make a direct 

impact to the solvability of such problems, making it a suitable application for which a HOC 

software tool could be developed.  
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Figure 1: Five civil aircraft flying in formation for demonstration purposes [40] 

1.3 Optimization software 

Trajectory optimization problems, especially concerning aviation, are in general 

computationally intensive problems to solve. Therefore, choosing a suitable numerical 

solution which can deal with such type of problems in an efficient manner is of high 

importance for a successful outcome. There are several software packages available which 

already integrate one or more methods to solve optimal control problems, and using one of 

these software packages as a foundation for further research is recommended to keep the size 

of a hybrid optimal control-focused research project within limits. Having a user interface 

readily available to solve problems makes for a much easier process of testing multiple 

optimization cases. 

 

GPOPS (General Pseudospectral Optimization Software) [4] is an optimization tool 

integrated in the versatile MATLAB environment, and has been made available to use as a 

foundation for hybrid optimal control development. GPOPS is already capable of solving 

multiple-phase optimal control problems, where phases are linked as defined by the user such 

that the total outcome is valid for the user’s mission requirements. Since GPOPS is already 

capable of solving multi-phase optimal control problems, where the switching times between 

phases can be left open to be solved for, this software package already incorporates hybrid 

functionality to a certain degree. In its current state, GPOPS is however not able to solve 

problems where the sequence and number of phases is also left open. Theoretically, a solver 

would then be able to pick the best scenario described as a set of switches and their respective 

times of occurrence. The aim of this research project is to incorporate a degree of 

combinatorial complexity to the functionality of GPOPS, such that an overall more optimal 

solution to hybrid problems can be obtained. 
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1.4 Research Proposal 

In this thesis, an in-depth study is presented covering the development of a software 

optimization tool based on hybrid optimal control principles. The research goal is to develop 

a working numerical implementation of hybrid optimal control theory as an extension to 

existing optimal control software, designed to solve a civil aviation formation flying 

optimization problem.  It is proposed to develop a HOC optimization algorithm which can 

extend on the thesis research performed by [3] by finding the optimal formation strategy when 

the number of aircraft is larger than two.  Using this tool, multiple scenarios with aircraft flying 

a similar route can be simulated. The sequence and timing of aircraft forming one or possibly 

more than one formation is to be found by the HOC algorithm in combination with GPOPS 

with minimal overall fuel consumption being the objective.  

The research question can be defined as follows: 

“Can the existing optimal control software tool GPOPS be extended with functionality 

that is capable of solving the hybrid optimal control problem of formation flying trajectory 

optimization with 3 or more aircraft, and can this be both verified and demonstrated with 

case studies?” 

Sub-questions to this main research question are: 

1) How, and using which approach should the hybrid functionality be implemented? 

a) To what extent must GPOPS be modified to adapt to HOC techniques? 

b) How are the trade-off criteria for the choice of hybrid approach defined? 

c) How can the implementation be made such that it is suitable for use and 

development in further research? 

d) Is the complexity of the chosen approach manageable within the timeframe of an 

MSc thesis? 

 

2) Is the chosen and developed implementation valid and verifiable? 

a) Are there any limitations to the chosen approach which limit the applicability? 

b) Can results of an existing research case study be reproduced with the developed 

algorithm? 

c) Does the algorithm provide the output that is actually needed? 

 

3) What difference does using hybrid control software make compared to conventional 

optimal control techniques? 

a) Using case studies which can be used with regular OC and HOC, is the difference 

in cost functional significant? 

b) Will the additional complexity added by HOC be justifiable given the achieved 

results? 

 

 

Hybrid optimal control theory should be regarded as the cornerstone behind the 

upcoming MSc Thesis project. The objective of the project will be: 
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“To have a working aircraft trajectory optimization model based on GPOPS which is 

extended with the working principle of hybrid optimal control theory in such a way that it 

enables trajectory optimization for a formation flight of 3 or more aircraft. At least one case 

study which verifies the correct functionality of the code, as well as at least one case study 

which demonstrates the capabilities of the code for multi-aircraft formation flight should be 

executed and analyzed. “ 

Sub-goals to this project objective are then defined as follows: 

1) To find a suitable numerical approach to HOC from (combinations of) work published 

in existing literature 

2) To analyze and understand the working principles behind GPOPS and identify which 

elements to modify or extend 

3) To build a HOC algorithm based on acquired knowledge 

4) To test the algorithm using simple case studies and iterate until outcomes are as 

desired 

5) To use the newly built algorithm to solve an aviation trajectory optimization problem 

not done before, e.g. formation determination in formation flight trajectories. 

6) To draw conclusions about the effectiveness of the chosen HOC method as well as the 

applicability to the chosen case study 

1.5 Thesis Structure 

The scope of this thesis covers the development of a software tool based on hybrid 

optimal control for the trajectory optimization of civil aviation formation flying, as well as 

several numerical case studies which are performed using this tool and analyzed. Chapter 2 

discusses the concepts behind conventional optimal control theory and hybrid optimal control 

theory. Also, an analysis of currently available methods for dealing with hybrid optimal control 

problems and an overview of previous research on this topic is presented here. Chapter 3 

covers the concept of formation flying and the potential aerodynamic benefits which can be 

applied to civil aviation. Chapter 4 discusses the optimization problem which arises when 

planning the trajectories for multiple aircraft which are candidates to join each other in 

formation, as well as the nature of this problem as a hybrid optimal control problem. Next, in 

Chapter 5 the methodology for solving this optimization problem by developing a hybrid 

optimal control-based optimization tool is covered. Chapter 6 then discusses the experimental 

set-up for the case studies, including the aircraft dynamic modelling in formation flight and 

solo. The results of the performed case studies are presented in Chapter 7, and also assessed 

per case study individually. In Chapter 8, a more general discussion about the trajectory 

optimization results as well as the performance of the developed hybrid optimal control tool 

is presented, and based on this, conclusions regarding this thesis project and 

recommendations for future research are presented in Chapter 9.  
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2 Optimization using hybrid optimal control 

2.1 Conventional optimal control and numerical methods review 

Because Hybrid optimal control theory can be seen as an extension to traditional 

optimal control theory and trajectory optimization, it is essential that this theory is also 

understood to the extent that the major principles are clear. Additionally, having sufficient 

knowledge about the numerical methods used in the available software packages which utilize 

optimal control theory is also considered useful.  

 

 

Figure 2: Different kinds of systems [5] 
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2.1.1 Statement of the Optimal Control Problem 

The theme which covers the entire scope of this research is optimization. Real world 

optimization problems can be modeled mathematically using a systems approach. Systems 

can be classified according to the types of equations used to describe them. This classification 

is presented in Figure 2. Several approaches exist towards dealing with optimization 

problems, however in this research a major focus lies on the approach using optimal control 

theory, which is useful for dealing with continuous time, nonlinear systems. The end goal of 

this research is to successfully implement hybrid optimal control theory, which aims to deal 

with systems that are both discrete time and continuous time from a mathematical 

perspective. 

Continuous time systems are often discretized: an approximation of the continuous 

time model is made using discrete-time system models to make the optimization problem 

solvable using numerical methods (i.e. using computers). 

Systems can be determined by a descriptive set of parameters, called the state of the 

system. Each of these parameters is called a state variable and is denoted as xi, i=1,2,…,n. The 

state of systems is generally not steady, but it evolves through time, and this evolution often 

depends on the inputs to the system. These inputs are mathematically represented as control 

variables, and denoted as u𝑘, k = 1,2,…,m. The (physical) behavior of the system is then 

described by ordinary differential equations in the following form: 

𝑥̇ = 𝑓[𝑥(𝑡), 𝑢(𝑡), 𝑡] (2.1) 

 The trajectory x of a system is then defined as a description of the evolution of the 

state between the initial and final time. The control u of a system is the evolution of the applied 

control inputs between the initial and final time. Controls are usually constrained to certain 

(physical) limits i.e. u ∈ U. Generally, in an optimization problem, one aims to optimize the 

trajectory. Before one can do this, it is necessary to define a performance measure which 

describes how optimal a trajectory is with respect to the ultimate goal of the optimization 

problem. Then, an optimal control is a control which minimizes the performance measure. 

The performance measure J is expressed as follows: 

J = Φ[𝑥(𝑡𝑓), 𝑡𝑓] + ∫ 𝐿
𝑡𝑓

𝑡0

[𝑥(𝑡), 𝑢(𝑡), 𝑡] 𝑑𝑡 (2.2) 

Where Φ represents the endpoint cost (Mayer term), and L represents the running 

cost (Lagrange term). J is also referred to as the cost functional. 
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Finally, the “Optimal Control Problem” can be stated as follows: 

“From among all admissible control functions 𝑢 ∈ 𝑈, find that one which minimizes J 

of Eq. (2.2) subject to the dynamic constraints of Eq. (2.1) and all initial and terminal 

boundary conditions that may be specified.”  [5] 

This type of optimal control formulation (with both a Mayer and a Lagrange term) is 

also called the Continuous Bolza Problem. The optimal control function that is found is 

denoted 𝑢* and the respective optimal trajectory is then denoted as 𝑥*. 

2.1.2 First-Order Optimality Conditions 

Now that the optimal control problem has been defined, the next step is to assess how 

to solve the problem. This procedure is concisely summarized in [8]. To do this, an augmented 

cost functional can be constructed where the dynamic constraints (Eq. (2.1)) as well as the 

boundary conditions (𝜙(x(𝑡0), 𝑡0,x(𝑡𝑓), 𝑡𝑓) = 0) are adjoined to the original cost functionals as 

follows: 

J𝑎 = Φ− 𝜈
𝑇𝜙 + ∫ [𝐿 + 𝝀𝑻(𝑓 − ẋ

𝑡𝑓

𝑡0

)] 𝑑𝑡 (2.3) 

Where 𝜈 are Lagrange multipliers for the boundary conditions, and 𝜆 are the adjoints 

to the differential equations. The Hamiltonian is defined as the following element of the 

augmented cost functional 

ℋ =  𝐿 + 𝜆𝑇𝑓 (2.4) 

One aims to find the minimal solution to Eq. (2.3), and for this Pontryagin’s Minimum 

Principle can be applied [9]. This principle states that the gradient of the cost functional in 

any direction equals zero if 𝑥∗ is a minimal solution: 

𝛿J(𝑥∗, 𝛿𝑥) = 0  ∀ 𝑎𝑑𝑚𝑖𝑠𝑠𝑖𝑏𝑙𝑒 𝛿𝑥 (2.5) 

Further application of this principle to Eq. (2.3), leads to a set of conditions which, 

when satisfied, indicate a candidate optimal solution. These conditions are the First-Order 

Optimality Conditions and together with the existing constraints they form the Hamiltonian 

Boundary-Value Problem (HBVP). They are defined as follows: 

ẋ =  f(x(𝑡),u(𝑡), 𝑡) (2.6) 
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𝜙(x(𝑡0), 𝑡0,x(𝑡𝑓), 𝑡𝑓) = 0 (2.7) 

𝜆(𝑡0) =  − [
𝜕Φ

𝜕x(𝑡0)
]
𝑇

+ [
𝜕𝜙

𝜕x(𝑡0)
]
𝑇

𝜈 (2.8) 

𝜆(𝑡𝑓) =  − [
𝜕Φ

𝜕x(𝑡𝑓)
]

𝑇

+ [
𝜕𝜙

𝜕x(𝑡𝑓)
]

𝑇

𝜈 (2.9) 

ℋ(𝑡0) =  
𝜕Φ

𝜕𝑡0
− 𝜈𝑇

𝜕𝜙

𝜕𝑡0
 (2.10) 

ℋ(𝑡𝑓) =  
𝜕Φ

𝜕𝑡𝑓
− 𝜈𝑇

𝜕𝜙

𝜕𝑡𝑓
 (2.11) 

λ̇ =  − [
𝜕ℋ

𝜕x
]
𝑻

 (2.12) 

[
𝜕ℋ

𝜕u
]
𝑻

= 0 (2.13) 

Except for very simple problems, it is impossible to solve the HBVP analytically. 

Therefore, numerical methods are used to find an optimal solution. 

2.1.3 Numerical methods for optimal control problems: Direct vs. indirect 

Generally, numerical methods for finding optimal solutions can be divided into two 

categories: indirect and direct methods. The difference between these methods is the route 

which is taken to get to the final solution. Whereas indirect methods aim to solve the HBVP of 

Section 2.1.2 first and then discretize the result to be processed numerically (optimize then 

discretize), direct methods make a discrete approximation of the ODE’s, and then compute an 

optimal solution from this as a Nonlinear Programming (NLP) problem (discretize then 

optimize) [6], [8], [10]. A visualization on how these two approaches will lead to the same 

result is shown in Figure 3: 
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Figure 3: Visualization of indirect versus direct methods for solving an optimal control problem numerically [4]. 

Naturally, the question then arises which of the two approaches is the better one to 

take for the types of problems that are dealt with here.  

O. von Stryk and R. Bulirsch published a paper in the Annals of Operations Research 

on direct and indirect methods for trajectory optimization in 1992 [11]. It is mentioned that 

indirect methods have the advantage that very accurate results can be obtained using multiple 

shooting. However, several drawbacks are also mentioned: 

- A very good initial approximation of the optimal trajectory is needed 

- Deriving the adjoint differential equations is a daunting task 

- The switching structure of the constraints must be known a priori (or guessed) 

These observations were confirmed by John T. Betts [10], and in this textbook another 

comment was that the robustness of this method can be questioned: The adjoint variables 𝜆 

must be guessed, which is unintuitive since they are not a physical quantity, and on top of this, 

the sensitivity of the numerical solution to these guesses is so high that a slightly poor guess 

of the initial conditions can lead to very unexpected trajectories in the state space. Another 

practical problem which is mentioned is the fact that whenever even a small change in the 

constraints or dynamics of the problem needs to be made, the entire derivation must be 

redone. 

The potential of a direct method was recognized in 1992 by von Stryk and Bulirsch [11], 

as they found that it was much easier to achieve a convergent result, even when no initial 

information was given about trajectories. The drawbacks that hold for indirect methods do not 

hold for direct methods. However, they were not entirely satisfied with the accuracy of the 

results compared to the exact solution obtained from indirect methods. However, given the 
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drastic developments in NLP solving techniques and the availability of more computing 

power, it is expected that this disadvantage is much less relevant today. This expectation is 

also confirmed in [10], given that this book dismisses indirect methods in favor of direct 

methods because of the mentioned drawbacks for indirect methods. 

2.1.4 Shooting versus collocation 

When using direct methods, it is necessary to perform a transcription of the optimal 

control problems into (finite dimensional) NLPs by a parametrization of the control variable 

𝑢. There are two strategies for this transcription, being direct shooting and direct collocation. 

M. Buss et al. [2] discusses these two strategies, and although there are advantages and 

disadvantages to either strategy, generally the direct collocation approach is favored due to 

the fact that it only satisfies the equations of motion at a successful termination of the 

optimization procedure, resulting in higher accuracy. Also, in [8], it is mentioned that direct 

collocation allows for a complex set of path constraints to be imposed, which is likely to be 

necessary in the scenarios that will be tested. 

2.1.5 Further considerations 

Within collocation methods, a choice can be subsequently made between global and 

local collocation, both of which use a different approach to approximate the state and control 

variables. According to [8], global collocation, and then specifically Pseudospectral 

collocation offers the greatest accuracy, as they are based on a form of Gaussian quadrature to 

integrate the system dynamics. Additionally, the problem size can remain within limits since 

the number of discretization points required is lower. 

There are three types of Gaussian quadrature which can be used: Legendre-Gauss 

(LG), Legendre-Gauss-Lobatto (LGL) and Legendre-Gauss-Radau (LGR) quadrature rules. 

In [8], it is mentioned that LGR is probably the most useful type, as it shows the best 

convergence characteristics and also includes one boundary point, which is favorable for 

problems with either an initial or final time fixed. However, different applications might favor 

other quadrature rules, so it is worthwhile to study this further when an application is built. 

A decision tree which summarizes the process of breaking down the numerical 

methods to solve optimal control problems was presented in [8], and since it clearly shows the 

core decision process, it is presented in Figure 4: 
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Figure 4: Selection process of the optimization method performed by Dr. ir. S. Hartjes [8]. 

2.2 Hybrid Optimal Control Theory 

‘Hybrid’ is a term which can be used very flexibly in many (research) fields. In this 

section, it is described what is understood to be the definition of hybrid optimal control based 

on existing research papers. From this, a conclusion will follow on how this term will be 

defined for the thesis project, such that there will be no more confusion regarding this matter. 

2.2.1 Definition of the hybrid optimal control Problem 

According to Branicky et al. [12], at the base of a HOC problem is a hybrid system - the 

actual system to be controlled -, which is defined as a system which “involves both continuous-

valued and discrete-valued variables”. Further, four types of discrete phenomena are classified 

which can occur in a hybrid system, being Autonomous Switching, Autonomous Impulses, 

Controlled Switching and Controlled Impulses. This work has thus presented a more 

generalized and complete definition of what makes a system a “hybrid” system. 
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Figure 5: (a) Hybrid system. (b). Hybrid control system [12]. 

 

The definition of a hybrid optimal control problem given in [2] is as follows: 

“The hybrid optimal control problem is to find optimal hybrid – i.e., continuous u and 

discrete v – control trajectories such that an integral cost index – typically an integral of a 

function of the hybrid system state and control input – is minimized subject to the system 

dynamics, initial, terminal and further equality or inequality constraints.” 

Or, as a mathematical definition, “it is defined as the minimization of the hybrid cost 

index J: 

(2.14) 

Subject to: 

(2.15) 

(2.16) 
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(2.17) 

(2.18) 

(2.19) 

 terminal conditions, (2.20) 

Where the initial and final times 𝑡𝑎 , 𝑡𝑒 are free or fixed, 𝑠𝑗 are the 𝑛𝑠 switching 

functions and 𝜙𝑗 denotes the explicit phase transition conditions (jump maps) occurring at 

the zeros of one of the switching functions. The Mayer type part 𝛩 of the performance index 

is a general function of the phase transition times (events) 𝑡𝑖 , 𝑖 = 0,… ,𝑁, of the continuous 

x(𝒕𝑖
−), x(𝑡𝑖

+) and dicrete states q(𝑡𝑖
−), q(𝑡𝑖

+) just before and just after the transition event 

written as: 

𝛩 ∶=  𝛩[ x(𝒕0
−), x(𝑡0

+),…  x(𝒕𝑁
−), x(𝑡𝑁

+);  q(𝑡0
−), q(𝑡0

+),… , q(𝑡𝑁
−), q(𝑡𝑁

+); 𝑡0, … , 𝑡𝑁] (2.21) 

Here, 𝑡𝑎 = 𝑡0, 𝑡𝑒 = 𝑡𝑁 is assumed while the number of phases N may be given or free. 

The integrand 𝜓 is a real-valued function of the continuous/discrete state and control 

variables and of time. 

The minimization of (2.14) is subject to the initial and terminal conditions (2.19), 

(2.20) admissible values for the continuous/discrete control variables (2.17), and inequality 

constraints (2.18). Obviously, valid hybrid optimal trajectories have to obey the differential 

equations (2.15) and the phase transition equations (2.16) of the discrete aspect. The 

optimization parameters to be determined are the continuous u(t) and discrete control input 

trajectories v(t) and all, some or none of the phase transition times.” [2] 

The above presented mathematical definition can be seen as an extended version of the 

traditional optimal control problem such as described in Section 2.1.1.  

2.2.2 Complexity of hybrid systems 

In  (Buss et al., 2000) [2], it is pointed out that the level of complexity of hybrid systems 

can vary on several levels. Conventionally, optimal control problems have been presented in 

the form of two- or multi-point boundary value problems (TPBVP or MPBVP), often extended 

to cases with inequality constraints on the state and control variables. Later, this was applied 

to multi-phase problems, where discontinuities exist at intermediate time points. These time 

points are denoted as switching times, and each phase has its own dynamics. Control problems 
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with multiple phases are considered “hybrid” problems by some, since discrete changes in the 

state occur when the model switches between phases. However, to solve these multi-phase 

problems, as the assumption is made that the sequence of these phases (switching structure) 

is known. This assumption is a major limiting factor for many real world multiphase problems, 

since in many dynamical systems with both continuous and discrete variables, this switching 

sequence is not known and assuming a certain sequence will likely lead to a suboptimal overall 

solution. In the most generic form of hybrid optimal control problems, neither the sequence, 

nor the times nor the number of the switches is available. To quote, “It is the intrinsic 

combinatorial complexity, in addition to the nonlinearity of the continuous optimal control 

problem that forms the challenges in the theoretical and numerical solution of hybrid optimal 

control problems.” 

To conclude, it can be said that the definition of the general class of hybrid optimal 

control problems is consistently agreed upon. All systems which involve both continuous and 

discrete input and state variables can be considered hybrid systems, and all optimization 

problems that aim to find the optimal trajectory of these states using an optimal set of inputs 

can be considered hybrid optimal control problems. However, within this definition there is a 

lot of variation possible in the level of complexity of these problems. Much of this complexity 

depends on how much is known a priori about the switching structure between discrete states. 

For example, if the switching sequence and switching times are already known, the hybrid 

multiphase problem is not much more complex than a conventional trajectory optimization 

problem. It is in this case only necessary to solve the phases individually using conventional 

methods and then link them together with linkage constraints. If the switching times are 

unknown, the complexity is increased but still solvable, but if also the sequence of the switches 

– or even the number of switches – is also still to be determined, the intrinsic combinatorial 

complexity becomes of a much higher order. It is this latter category of hybrid optimal control 

problems, where the discrete part is to be determined almost completely, which requires 

additional methods to be implemented before it can be solved. This is however also the 

category where the most promising improvements can be made in trajectory optimization. The 

further aim of this thesis project is to address this generic form of hybrid optimal control 

problems with simplifications only made when it has no significant effect on the applicability 

of the method in case studies.  

2.3 Overview of recent aviation research involving hybrid optimal control 

Research on hybrid optimal control theory applications for aviation operations has also 

been done. The field of trajectory optimization is especially relevant, and thus the prospect of 

using HOC in this field is being heavily investigated. Especially since 2010, one can observe a 

significant increase in publications discussing aerospace applications of hybrid optimal 

control models.  

2.3.1 Optimal Control of Hybrid Systems in Air Traffic Applications (M. Kamgarpour, 

2010)  

For a PhD Thesis, M. Kamgarpour covered the topic of Air Traffic Control challenges, 

and the proposal of incorporating Trajectory Based Operations (TBO) into future Air Traffic 

Management (ATM) infrastructure [13]. Such proposals are currently already addressed in 
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Europe within the framework of the Single European Sky ATM Research (SESAR) [1] and also 

in the United States with NextGen. [14]. In TBO, individual flights would have the freedom to 

adjust their trajectories according to real time traffic and weather conditions. The research by 

Kamgarpour proposes a hybrid system modeling framework, and the task of optimal trajectory 

design is formulated as a hybrid optimal control problem subject to constraints of collision 

and hazardous weather avoidance. Additionally, a case is studied where an optimal runway 

scheduling for a major airport subject to weather constraints is posed as a hybrid optimal 

control problem, where in the hybrid system the runway configuration represents the discrete 

modes and the current airspace situation represents the continuous state. 

2.3.2 Hybrid Optimal Control Approach to Commercial Aircraft Trajectory Planning (M. 

Soler, 2010) [15] 

Several papers have also been published by M. Soler investigating feasible use cases for 

using a hybrid optimal control approach to solve relevant optimization problems in aviation. 

In [15], an application for commercial aircraft trajectory planning is presented. It is recognized 

that a generally suboptimal flight profile is being flown by commercial aircraft due to the need 

to fit aircraft trajectories to the ATM system requirements. By incorporating different flight 

phases and optimal procedures into a single optimal control problem using HOC theory, it is 

aimed to improve the efficiency of flight trajectories.  

2.3.3 Multiphase Mixed-Integer Optimal Control Approach to Aircraft Trajectory 

Optimization (Bonami et al, 2013) [16] 

P. Bonami released a paper in 2012 which discusses and introduces a methodology for 

designing and solving a Hybrid Flight Trajectory optimization problem with both discrete and 

continuous variables. The studies presented in this paper are of major importance since 

several concepts discussed in earlier studies ([17][15]) are combined to arrive at a method 

which can find an optimal solution for a more general level of HOC problems. A fifth degree 

Gaus-Lobatto collocation method is used to discretize the continuous problem. The discrete 

part of the problem is dealt with in two stages; first, the unknown switching times are dealt 

with by making them part of the state, and introducing a new independent variable with 

respect to which the switching times are fixed. This is the same approach as introduced by M. 

Soler [15]. The resulting MINLP problem, where the step sequence is yet to be determined, is 

then dealt with using a branch-and-bound algorithm as discussed in Section 2.4. 

2.3.4 Flight trajectory design in the presence of contrails: Application of a multiphase 

mixed-integer optimal control approach (M. Soler et al., 2014) [18] 

In another paper by M. Soler et al. [18], further research is presented which involves 

using the already established method for solving HOC problems introduced by P. Bonami 

discussed in Section 2.3.3 [16]. In this case, the discussed application is contrail formation, 

which is identified as a possible cause for the greenhouse effect due to the reflective properties 

of the contrail clouds. The discrete aspect in this optimization problem is the flight level at 

which the aircraft flies, which can change in steps of 200 ft. between FL270 and FL410 when 

it is beneficial with respect to minimizing contrail formation. An interesting extension to 

previous work is discussed here, since this HOC problem involves an unknown sequence of 

switches of flight level. Therefore, a branch-and-bound method is implemented to find the 
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most optimal combination of discrete switches and their timings. This branch-and-bound 

method is based on work presented by P. Bonami [16], [19], [20], to which Soler has also 

contributed.  

2.3.5 A Hybrid Optimal Control Approach to Fuel-Efficient Aircraft Confict Avoidance 

(M. Soler, M. Kamgarpour et al., 2016) [21] 

Soler and Kamgarpour also collaborated to formulate a fuel-optimal conflict-free 

aircraft trajectory planning as a hybrid optimal control problem, where the discrete aspect of 

the system represents the air traffic procedures for conflict resolution, e.g. speed and turn 

advisories. The purpose of such a method is that it allows for TBO in ATM to be more feasible, 

since an optimal conflict resolution is generated by the algorithm and then available to all 

aircraft for execution. This research can be seen as a follow-up to the work presented in [22].  

An interesting aspect of this research application of hybrid optimal control is that a 

multi-agent case study is considered here, with multiple aircraft being incorporated into the 

hybrid system to compute trajectories for each aircraft which together result in an overall 

optimal performance. To deal with this increased number of aircraft and therefore the number 

of binary variables in the system, it was decided to not use the branch-and-bound techniques 

as implemented by M. Soler in his previous research [18]. Branch-and-bound was deemed 

unsuitable since the MINLP becomes intractable with a large number of binary variables. Also, 

for branch-and-bound, the number of switches must be set a priori, but in this case study this 

would be impractical. Instead, the approach was taken to relax the binary functions associated 

to the mode switches from a discrete {0,1} domain to a continuous [0,1] domain, effectively 

turning the problem into a standard constrained optimal control problem. To ensure that only 

trajectories are taken which do satisfy the original binary constraints (and are therefore 

feasible in real life), a penalty weight is introduced to solutions that are non-binary. Through 

this approach, off-the-shelf NLP solvers can be used. 

2.4 Analysis of currently common HOC problem-solving techniques 

In the previous sections, the principles of hybrid optimal control and its applications 

in aviation trajectory optimization have been discussed. In this section, an analysis and 

comparison is presented of the methods for dealing with the discrete part in hybrid optimal 

control problems that have proven to be successful and practical. This way, a trade-off matrix 

can be made between the methods, such that it can easily be determined which method is 

appropriate for which problem, and which method should be considered for this thesis. 

2.4.1 Branch-and-bound 

One of the most common methods in use for discrete and combinatorial optimization 

problems is the so-called branch-and-bound paradigm. branch-and-bound has proved itself 

for decades in Mixed Integer Linear Programming (MILP)[19]. Using a branch-and-bound 

approach to solve fairly general hybrid optimal control problems was proposed by O. von Stryk 

and M. Glocker [2] in 2000, and several researchers have since demonstrated how branch-
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and-bound can be applied to optimize the discrete aspects of a hybrid optimal control problem 

present in their own work such as [16] and [18], which were already discussed in Section 2.3. 

Branch-and-bound is a decomposition approach which aims to reduce the number of 

iterations needed when calculating an optimal control. This is achieved by solving sequences 

of problems providing rigorous upper and lower bounds which are applied adequately to each 

problem in the sequence. This way, an explicit enumeration of the entire feasible discrete 

control space is avoided, saving significant computing time [17]. Sometimes, the feasible 

discrete control space is of too large size, making this ‘naïve’ approach of just calculating the 

outcome of every combination impossible. 

 

Figure 6: Example of a branch-and-bound search tree. 

A requirement for the method is that a solution to relaxed versions of this hybrid 

optimal control problem (the RIOCP) – where (most of) the discrete switches relaxed to the 

continuous domain – exists. These solutions provide the lower bounds 𝛽ℒ to the branch-and-

bound discrete tree 𝒯. Step by step, this continuous solution is then narrowed down to satisfy 

the discrete constraints of the HOC by making one more node 𝒩 in the search tree discrete. 

Then, the resulting relaxed problems are solved for again. An upper bound 𝛽𝒰 is also 

introduced, initially with value +∞ , and this upper bound is updated every time a new more 

optimal integer-feasible solution is found. In the end, the algorithm should have found a 

solution 𝑣∗ along a ‘tree branch’ which is the most optimal while satisfying all integer 

constraints. Pseudo-code for NLP-based branch-and-bound as presented by Bonami et al. [16] 

[19] is presented in Algorithm 1: 
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Algorithm 1: NLP-Branch-and-bound pseudo-code [16]. 

A major complication to branch-and-bound is the fact that finding suitable lower 

bounds through solving the relaxed problems is not straightforward, because the relaxed 

problems are often nonconvex, whereas a convex approximation of the optimization problem 

is required. [16] has experimented with systematic methods which compute convex 

approximations for nonlinear systems, but without much success. Instead, a heuristic 

approach with approximate solutions for the lower bounds was applied. It was admitted that 

because of this, the final solution is also not exactly optimal, and that the quality of the 

approximation is highly important for the quality of the final solution.  

It can however still be said that branch-and-bound is a promising means of extending 

the solving capabilities of earlier discussed direct collocation methods used for multiphase 

problems, by allowing not only the discrete switching times to be unknown but also the 

sequence of the switches (provided that a good initial guess for the upper and lower bounds is 

available). This makes this method very appealing, since it could be built on top of existing 

numerical programs and thus not everything needs to be built from the ground up. 

2.4.2 Relaxation of binary constraints through a penalty term 

This approach was applied in [21] to deal with hybrid problems in a simpler way than 

branch-and-bound, because the HOC problem is essentially converted into an ordinary OC 

problem. This procedure is as follows: 

The hybrid optimal control problem is formulated as a mixed integer optimal control 

problem of the following form:  
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min 𝐽(𝑢, 𝑤) = Φ(𝑥(𝑡𝑓)) + ∫ 𝐿(𝑥(𝑡), 𝑢(𝑡), 𝑤(𝑡))𝑑𝑡
𝑡𝑓

𝑡0

(2.22) 

subject to: 

𝑥(𝑡0) = 𝑥0 𝑎𝑛𝑑 ∀ 𝑡 ∈ [𝑡0, 𝑡𝑓] (2.23) 

𝑥̇(𝑡) = 𝑓̅(𝑥(𝑡), 𝑢(𝑡), 𝑤(𝑡)) (2.24) 

ℎ̅(𝑥(𝑡), 𝑢(𝑡), 𝑤(𝑡)) ≤  0 (2.25) 

𝓌𝑞(𝑡) ∈ {0,1}, 𝑞 = 1,… , 𝑛𝑞 (2.26) 

∑𝓌𝑞(𝑡) = 1

𝑛𝑞

𝑞=1

(2.27) 

 Instead of discretizing the problem at this stage to form a MINLP, the binary 

constraints are first relaxed, similar to the approach used in branch-and-bound techniques to 

find lower bounds, thus, 𝓌𝑞(𝑡) ∈ [0,1]. Then, to incorporate the penalty for non-binary results, 

auxiliary optimization variables are introduced for every relaxed constraint as 𝛽𝑞 ∶ [𝑡0, 𝑡𝑓] →

[−1,1] 𝑓𝑜𝑟 𝑞 = 1,… , 𝑛𝑞 with 𝛽𝑞(𝑡) = 2𝑤𝑞(𝑡) − 1 being the relationship between  𝛽𝑞 and 𝓌𝑞. 

Next, a penalty cost function 𝑙 ∶ [0,1] →  ℝ≥0 is defined as a strictly monotonically decreasing 

function with 𝑙(1) = 0. Then, the MIOCP can be rewritten as a classical optimal control 

problem as: 

min 𝐽(𝑢, 𝑤) = Φ(𝑥(𝑡𝑓)) + ∫ (𝐿(𝑥(𝑡), 𝑢(𝑡), 𝑤(𝑡)) + 𝛼∑ 𝑙(|𝛽𝑞(𝑡)|)

𝑛𝑞

𝑞=1

)𝑑𝑡
𝑡𝑓

𝑡0

(2.28) 

subject to: 

𝑥(𝑡0) = 𝑥0 𝑎𝑛𝑑 ∀ 𝑡 ∈ [𝑡0, 𝑡𝑓] (2.29) 

𝑥̇(𝑡) = 𝑓̅(𝑥(𝑡), 𝑢(𝑡), 𝑤(𝑡)) (2.30) 

ℎ̅(𝑥(𝑡), 𝑢(𝑡), 𝑤(𝑡)) ≤  0 (2.31) 
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𝛽𝑞(𝑡) ∈ [0,1], 𝑞 = 1,… , 𝑛𝑞 (2.32) 

𝓌𝑞(𝑡) =
1

2
(1 − 𝛽𝑞(𝑡)) , 𝑞 = 1,… , 𝑛𝑞 (2.33) 

∑𝓌𝑞(𝑡) = 1

𝑛𝑞

𝑞=1

(2.34) 

 This way, no discrete elements remain present and off-the-shelf NLP solvers can be 

used to discretize the OCP and solve it. By choosing 𝛼 sufficiently large (approaching infinity), 

all (infeasible) non-binary controls for 𝓌 are eliminated from the solution space. 

 An important advantage over branch-and-bound is the relatively low complexity of 

implementing it, because only the problem has to be rewritten. However, rewriting the 

problem could be an impractical approach in light of this thesis research. In general, this 

method is relatively new in terms of being applied to aircraft trajectory optimization problems 

and thus less proven, but very promising. 

2.4.3 Conversion of integer constraints to decision variables 

Another method of tackling the optimization of hybrid (switched) systems is the 

parametrization of discrete constraints. This approach was first introduced by X. Xu and P.J. 

Antsaklis [23], and was later applied to an aircraft trajectory optimization problem with 

unknown switching times for the various flight phases by M. Soler et al. [15] as discussed in 

Section 2.3.2.  

For a switched system where the sequence of the switches is known and the number of 

switches is N, but where the switching times are to be determined, the process of applying this 

technique is as follows (based on [15]): 

1. Introduce new state variables 𝑥𝑛+1, … , 𝑥𝑛+𝑁 for each switching moment to the state 

vector 𝑥 = [𝑥1, … , 𝑥𝑛]. The new extended state vector will then be 𝑥 =

[𝑥1, … , 𝑥𝑛, 𝑥𝑛+1, … , 𝑥𝑛+𝑁] In the end, values for these added state variables will be 

obtained by the optimization model and these will represent the optimal switching 

times 𝑡𝑖. 
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Figure 7: Relation between scaled time 𝝉 and real (unscaled) time t [15] 

 

2. Introduce the new independent variable 𝜏, which will replace t in the original 

problem and has a value in [0,1]. The relation between 𝜏 and t will be different on 

each interval between switching moments, but will always be linear. A valid 

expression for the relation between t and 𝜏 is as follows: 

𝑡 =  {

(𝑁 + 1)𝑥𝑛+1𝜏                                                                    
(𝑁 + 1)(𝑥𝑛+𝑖+1 − 𝑥𝑛+𝑖)𝜏 + (𝑖 + 1)𝑥𝑛+𝑖 − 𝑖𝑥𝑛+𝑖+1 
(𝑁 + 1)(𝑥𝑛+𝑁)𝜏 + (𝑁 + 1)𝑥𝑛+𝑁 − 𝑁                         

 
    0 ≤ 𝜏 ≤ 1/(𝑁 + 1)

𝑖(𝑁 + 1) ≤ 𝜏 ≤ (𝑖 + 1)/(𝑁 + 1)
1/(𝑁 + 1) ≤ 𝜏 ≤ 1                               

(2.35) 

Where 𝑖 = 1,… ,𝑁. 

3. Then, the cost function can be written as 

𝐽 = 𝜙(𝑥(1)) + ∫ 𝐿1̂(𝑥̂, 𝑢, 𝜏)𝑑𝜏 + ⋯+∫ 𝐿𝑁̂(𝑥̂, 𝑢, 𝜏)𝑑𝜏
1

𝑁
𝑁+1

1
𝑁+1

0

(2.36) 

Where  

𝐿𝑖̂(𝑥, 𝑢, 𝜏) = (𝑁 + 1)(𝑥𝑛+𝑖+1 − 𝑥𝑛+𝑖)𝐿(𝑥, 𝑢, 𝑡(𝜏)) 

On each interval 𝑖(𝑁 + 1)  ≤ 𝜏 ≤ (𝑖 + 1)/(𝑁 + 1). 

The problem of minimizing J is now a conventional control problem subject to the 

parametrized system  

𝑥′ = (𝑁 + 1)(𝑥𝑛+𝑖+1 − 𝑥𝑛+𝑖)𝑓𝑖̂(𝑥, 𝑢, 𝜏) (2.37) 
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,where 𝑓𝑖̂(𝑥, 𝑢, 𝜏) = 𝑓𝑖(𝑥, 𝑢, 𝑡(𝜏)), and also subject to any corresponding path constraints 

of equality or inequality form. The resulting optimal trajectory 𝑥∗ will then also describe the 

optimal switching times in the last N components. 

This is thus also a method in which instead of trying to solve HOC problems in their 

original form, one manipulates the problem into a form which can be solved by regular optimal 

control solving methods. An issue with this methodology is that when there is more than one 

discrete variable present in the system (i.e. also an unknown switching sequence), the problem 

becomes extremely complex and the computational effort required will likely be too much. 

However, as demonstrated in [16], using this technique for the switching times at least reduces 

the complexity of the discrete aspect of the HOC by one dimension, allowing for a less rigorous 

implementation of additional methods which deal with the remaining discrete variables (such 

as branch-and-bound). Given that GPOPS is already capable of solving this degree of hybrid 

problems by linking phases but leaving the switching times free, implementing this approach 

is not necessary.  

2.4.4 Assuming the switching structure 

This approach is how multiphase optimal control problems are currently already being 

dealt with in optimal control software such as GPOPS. Instead of determining the switching 

structure through an algorithm, linkage constraints are defined for the switching moments. 

Depending on the problem, it might be more practical to use this approach when one already 

has a good idea of the most optimal switching structure [2]. Also, assuming the switching 

structure can be used as a first step in HOC problems, as a means of obtaining an initial guess 

for the ultimately optimal solution. 

2.4.5 Comparison matrix of HOC solving techniques 

Based on the studied literature concerning each of the techniques described in this 

chapter, one can make a qualitative assessment of the usefulness of each of them when 

analyzing them with respect to certain criteria. This assessment is presented in Table 1. It 

should be noted that there is no clear ‘winner’, with each method having its potential strengths 

and drawbacks. Also, an important remark is that these methods do not exclude each other, 

as they could be used in combination. However, with regards to this thesis research, branch-

and-bound is the most promising method since it can be implemented without modifying the 

problem significantly, while allowing for a much greater degree of hybrid problem to be solved. 
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Table 1: Assessment of HOC solving techniques 

 Branch-and-

bound 

Relaxed integers 

to conventional 

OCP 

Convert 

constraints to 

decision variables 

Assume switching 

structure and 

solve regularly 

Applicability +/- +/- - ++ 

Accuracy ++ + ++ -- 

Reliability/ 

convergence 
+/- + + + 

Computational 

efficiency 
+ ++ ++ ++ 

Complexity + + ++ + 

Ease of 

implementation 
- +/- + + 
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3 Formation flight and its application for civil 

aviation 

Over the last decades, a growing amount of interest has been shown in researching the 

aerodynamic benefits of formation flying. Based on the observation made by Lissaman et al. 

[7] that birds who were flying together in a V-shaped formation could achieve a range benefit 

of as much as 70%, theories were formulated which described the background of this 

aerodynamic advantage. These theories were later also applied to aircraft. 

3.1 Aerodynamic concept 

The aerodynamic benefit of formation flight is obtained as a result of wing tip vortices 

generated by the leading aircraft (Figure 8). These vortices have an upward vertical component 

(upwash) on the outboard side with respect to the leading aircraft as well as a downward 

vertical component (downwash) on the inboard side (Figure 9). A trailing aircraft benefits 

from this wing tip vortex generated ahead by flying through the upwash region. This causes 

the velocity vector of the air relative to the trailing aircraft to have an upward component, 

resulting in a forward component of the generated lift and an upward component for the 

generated drag (with inherently a smaller rearward component) (see Figure 10). As a result, 

less engine thrust is required for the trailing aircraft to maintain steady flight conditions, such 

that fuel can be saved. Essentially, the trailing aircraft is ‘surfing’ the upwash of the wingtip 

vortices of the leading aircraft. This aerodynamic effect results in a reduction of induced drag 

for the trailing aircraft. 

 

Figure 8: Visualization of wing tip vortices generated by an aircraft. 
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Figure 9: Vertical component of air velocity induced by an aircraft wingtip vortices behind an aircraft [24]. 

 

 

Figure 10: Effect of upwash on thrust required for forward flight [25]. 

Another effect of flying through the wake of the leading aircraft is that there is an 

asymmetric load on the trailing aircraft’s wings, since the upwash effect is smaller at the 

outward wing relative to the formation. This in turn creates a roll effect, which needs to be 

compensated for by the trailing aircraft through trimming. The increased drag generated by 

extra control surface usage is an aspect which needs consideration when determining the total 

aerodynamic benefit. 

3.2 Positioning between aircraft in formation 

Blake et al. researched how a formation of aircraft which are positioned within a few 

wingspans from each other (close formation) could lead to savings in induced drag [26]. It was 

concluded that significant reductions could be achieved in an optimal formation structure. 

Because having multiple aircraft fly close to each other within a formation would clearly violate 

current safety regulations due to a high risk of mid-air collisions, it is of importance to 

investigate whether the positive aerodynamic effect of formation flying can also be obtained 

with a safe streamwise separation between aircraft.  Given the fact that many aircraft in cruise 

conditions generate wakes which persist for long distances, S.A. Ning et al found that in 

atmospheric conditions with low to moderate turbulence levels, a streamwise separation of up 

to 40 wingspans could still result in significant reductions in induced drag levels [27]. At a 30 

wingspan streamwise separation distance, a maximum of 40 ± 6% total formation induced 

drag reduction was estimated to be achievable in a three-aircraft formation. With this 
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perspective, civil aviation formation flying became a much more feasible approach to reducing 

fuel consumption. 

Laterally, a high degree of variance in aerodynamic benefits is observed. An accurate 

relative lateral and vertical position of the trailing aircraft with respect to the leading aircraft 

is considered highly important for a successful formation flying operation [26]. Optimally, the 

lateral spacing between the aircraft wing tips is slightly negative [27]. However, if it is too 

negative, a part of the trailing aircraft wing will experience a negative downwash effect, so this 

should be avoided. 

With this knowledge, it is of interest to determine the optimal formation shape for a 

multi-aircraft formation. [24] concluded that a V-formation is the most robust in extended 

formation flight, with the highest induced drag savings even in less optimal conditions. 

However, the inverted-V formation shape, although more sensitive to positioning errors, has 

some beneficial characteristics such as a more symmetric loading for the trailing aircraft, 

resulting in less roll behavior. Of course, V or inverted-V formations are only possible with a 

formation of three aircraft or more. In a two-aircraft formation, the echelon formation is the 

best setup. 

In this thesis, the exact shape of the formation nor the relative spacing between the 

aircraft are a part of the model. However, numerical values which are used are derived from 

the characteristics of an extended V-shape formation flight described here. 

 

Figure 11: Three common formation shapes [27]. 
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4 Optimization problem description 

With the obtained knowledge about optimal control, hybrid optimal control and 

formation flight, a trajectory optimization problem can be formulated which deals with 

formation flight using hybrid optimal control techniques. This chapter describes the problem 

and assesses its validity as an application of hybrid optimal control theory. 

4.1 Problem background 

When it comes to the implementation of formation flight in real world civil aviation 

operations, a planning problem arises concerning the optimal approach to schedule and 

execute formation flights with the highest economic and environmental benefit. Given the 

sheer number of candidate flights which are performed every day between, for example, 

Europe and North-America, there is a need to find a method which selects the sets of flights 

which benefit the most from joining each other in a formation. Additionally, the problem of 

finding the best trajectory for all aircraft joining this formation, including their rendezvous 

and split-up locations, to generate the highest cumulative fuel savings is also introduced. 

These two aspects combined create a highly complex problem, where generally a trade-off is 

made between problem size (i.e. number of flights considered) and the fidelity of the 

trajectory. 

In previous research, this trade-off has been made in various ways. Van Hellenberg 

Hubar, Hartjes et al. [3] developed a trajectory optimization tool which optimizes the 4D 

trajectories for two aircraft joining in an extended formation for the minimum overall fuel 

consumption with a relatively high fidelity. The aircraft dynamics are modelled with a 

reduced-order point mass system. Case studies performed with this tool gave satisfying results 

and yielded significant fuel consumption reductions with a limited increase in flight time. 

However, it was noted that having only two aircraft modelled was a limiting factor. It was 

recommended that larger formations were investigated, but in the current framework it would 

prove too time consuming to run such multi-aircraft simulations.  

H.G. Visser et al. [28] performed a simulation with a very large number of flights being 

modeled as agents which could, if the conditions at that moment are beneficial, join a 

formation en-route with aircraft flying a similar trajectory nearby. This decentralized 

approach is especially useful when a high degree of flexibility is required: formation flying is 

in this case only seen as an option rather than an objective. However, major simplifications 

were made to the flight model: A constant altitude and velocity are assumed, so the flights are 

modeled as being permanently in cruise mode. Moreover, the fuel usage benefit was expressed 

as a constant 10% reduction for trailing aircraft, rather than a value as a function of the induced 

drag reduction. Also, it was concluded that that suboptimal formations were formed as agents 

were modeled to always join the first viable formation. 
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4.2 Problem statement 

The research presented in this thesis, as mentioned in the research goals, aims to find 

a new optimization framework which is positioned between the research performed in [3] and 

[28]. This is to be achieved by designing it such that a simulation with four aircraft can be 

performed, enabling four-aircraft formations as a possibility. To achieve accurate trajectories, 

all aircraft are to be modelled with a reduced order point mass system.  

Although four aircraft is mainly chosen as the maximum because of the dramatic 

increase in complexity introduced with a problem of five or more aircraft, it has been 

mentioned in [27] that in formations of a size larger than four, the additional aircraft will have 

relatively less benefit from being in the formation. In [28], this reduced benefit for large 

formations is not taken into account, which resulted in many formations of size seven and 

larger. If this was modelled more accurately, such large formations would possibly not have 

occurred. Also, from a practical standpoint, the feasibility of coordinating and safely operating 

formation flight sizes larger than four is questionable. 

Compared to [28], a higher degree of accuracy can be achieved, since the aircraft 

dynamics are to be modelled as a point mass system. However, the flexibility of a decentralized 

approach will be lost with this centralized method, which is based on pre-planning. Since one 

of the conclusions of [28] is that even with their decentralized model, a certain degree of pre-

planning would be beneficial for finding more optimal formation pairs, this disadvantage is 

readily accepted. With a simulation size of only four aircraft, a methodology will have to be 

developed separately which finds the four best candidate flights to be modelled. This is 

however deemed beyond the scope of this thesis. 

4.3 Optimization goal 

In an optimization problem, it is regularly the case that a single optimization objective 

is not clearly definable. In the case of formation flying, there are several aspects in addition to 

fuel burn which could influence the definition of an optimal trajectory. First, aircraft will 

deviate from their shortest great circle route to join the formation. This, together with the fact 

that cruise speeds in formation are generally slightly lower than in solo flight, means that the 

flight time will increase. This can be seen as a disadvantage for travelers, and could pose a 

planning problem for airlines as well, with potentially higher operating costs. Additionally, the 

fuel saving benefits are not distributed evenly among the participating aircraft in the 

formation. The leading aircraft of the formation will experience an increase in fuel burn due 

to the extra distance flown to accommodate the formation, while the aircraft flying in the most 

rearward position will profit the most. If only individual interests of aircraft are considered, 

this would mean that the likelihood that an aircraft is prepared to lead a formation is rather 

minimal. Lastly, the robustness of the formation trajectory is another factor to consider, since 

if a disturbance in one of the participating flights or a small change in one of the input 

parameters would heavily influence the formation feasibility, the solution outcome might not 

be reliable. 
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In this optimization problem, it is chosen to simplify the optimization goal to a 

minimization of only the cumulative fuel usage of all aircraft over their entire respective 

flights. In a cost function, this is expressed with a Mayer term as the difference between all 

cumulative final aircraft weights and their respective initial weights: 

( )  (4.1)

where: 

Φ = ∑(𝑊𝑖(𝑡0) −𝑊𝑖(𝑡𝑓))

𝑛

𝑖=1

 (4.2) 

for  number of simulated flights. W is a part of the aircraft state x. 

 However, the mentioned additional considerations can still be kept in mind when 

analyses are made about the obtained results. For instance, making a qualitative assessment 

about the total extra flight time compared to the solo flight scenario can be valuable for 

validating the usefulness of the results. Similarly, a sensitivity analysis can be performed to 

determine the robustness of the found solution. 

4.4 Application of hybrid optimal control theory 

The problem statement in Section 4.2 poses a challenge in managing the complexity of 

the problem, since the number of possible solutions increases dramatically with additional 

aircraft. It is for this reason that the presented problem statement provides an excellent 

opportunity to approach the problem as a hybrid problem. Discrete switches occur in the 

trajectory each time when an aircraft joins or leaves a formation, and the timing, the sequence 

and the number of the switches are to be determined. This exactly matches the definition of 

the hybrid optimal control problem presented in Section 2.2. Finding a suitable method which 

deals with this combinatorically complex problem in an efficient manner is the main challenge 

of this thesis project. With the cost functional already defined in Section 4.3, the hybrid 

optimal control problem considered in this thesis otherwise follows the format of the hybrid 

optimal control problem presented in Section 2.2.1.  
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5 Methodology for trajectory optimization  

Now that the optimization goal and the hybrid optimal control problem clearly defined, 

a numerical implementation is to be developed. This chapter describes the groundwork which 

was used to build the optimization tool, as well as the chosen approach with respect to the 

hybrid optimal control functionality of the developed tool. 

5.1 Optimization tool requirements 

Based on the research goals stated in Section 1.4 and the optimization problem 

description of Chapter 4, requirements can be formulated for the hybrid optimal control 

trajectory optimization tool. These requirements are presented below: 

1. The tool should work with existing optimal control software. 

2. The tool should enable formation flight trajectory optimization for three or more 

aircraft. 

3. Computational times must remain within a practical limit. 

4. Model should generate an accurate approximation of a real-world trajectory using 

realistic flight dynamics. 

5. A smart way to reduce the combinatorial complexity of HOC problems should be 

implemented. 

6. The tool should be built with flexibility in mind for different experiments. 

7. The tool should work automatically. 

8. The tool should have a clear structure which is comprehensible for future users and 

adaptable for future modification. 

5.2 Existing optimal control software as a starting point 

Several approaches exist towards dealing with optimization problems, however in this 

research a major focus lies on the approach using optimal control theory. There are multiple 

software packages available which already integrate one or more methods to solve optimal 

control problems, and using one of these software packages as a foundation for further 

research is essential to keep the size of the research project within limits. Having a user 

interface readily available to solve problems makes for a much easier process of testing 

multiple optimization cases. 

In [8], several of these software packages are compared and their respective advantages 

and disadvantages are presented. The considered packages are EzOpt, Sparse Optimal 

Control Software (SOCS), DIDO and General Pseudospectral OPtimal control Software 

(GPOPS). It was concluded that for the discussed research in this publication, GPOPS is the 

most suitable for trajectory optimization research at TU Delft as it offers multiple options for 

both collocation and differentiation. Also, GPOPS is integrated in the versatile MATLAB 

environment, making it especially easy to use. Since the formation flight optimization problem 
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is in a similar field, with similar constraints in terms of operations compared to the ECHO 

project discussed in [8], it is concluded that also for this thesis project GPOPS is a suitable 

choice. 

GPOPS is already capable of solving multiple-phase optimal control problems, where 

phases are linked as defined by the user such that the total outcome is valid for the user’s 

mission requirements. Since GPOPS is already capable of solving multi-phase optimal control 

problems, where the switching times between phases can be left open to be solved for, this 

software package already incorporates hybrid functionality to a certain degree. In its current 

state, GPOPS is however not able to solve problems where the sequence and number of phases 

is also left open. As discussed in Chapter 1, the aim of this research project is to incorporate 

support for a degree of combinatorial complexity into the functionality of GPOPS, such that 

an overall more optimal solution to hybrid problems can be obtained. 

GPOPS [4] essentially acts as an interface which translates an infinitely-dimensional 

optimal control problem into a discretized, finite-dimensional nonlinear programming 

problem (NLP) which can subsequently be solved using a NLP solver. For the NLP solver to 

function, the derivatives of the objective function gradient have to be supplied to the NLP 

solver. Several NLP solvers as well as automatic differentiation tools can be used in 

combination with GPOPS. In previous research [8][29][3], the NLP solver SNOPT (Sparse 

Nonlinear OPTimizer) has been successfully exploited in combination with the automatic 

differentiation software INTLAB (Interval Laboratory) to solve the designed aircraft trajectory 

optimization problems. This combination of solver and differentiation software is also used 

for this thesis. Lastly, he choice of collocation method is to be defined. Based on the studies 

presented in Section 2.1, the Radau Pseudospectral Method (RPM) [30] is chosen, which is 

also supported by default in GPOPS. 

Specifically for aircraft trajectory optimization, Dr. Ir. S. Hartjes developed FORT, a 

fixed-wing aircraft optimization tool, a setup wrapper for GPOPS which includes aircraft 

dynamic models, atmospheric models, relevant parameter conversion tools and diagram 

generation tools. Also, templates are included for the cost function, the differential algebraic 

equations, the linkage file and the setup parameters. FORT is used in [3] for the optimization 

of the multiple-phase two aircraft formation flight trajectories, and is thus deemed to be a 

suitable basis for the hybrid multi-aircraft problem considered here. 

5.3 FORT (GPOPS) working structure and limitations 

5.3.1 Description of GPOPS input parameters 

For GPOPS to process an optimal control problem, the following input parameters 

must be specified: 
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Table 2: Description of GPOPS input parameters 

Input parameter Description 

Cost functional 

The cost functional J (Section 4.3), consisting of a Mayer term 

and/or a Lagrange term, defining the value which is to be 

minimized. 

Differential equations 

The right side of the differential equations which define the 

model state behavior as a result of the defined controls. The 

path of the trajectory is also defined here if constraints need 

to be imposed on it. 

Linkage setup 

Parameter which defines the linkage of the state between 

phases in a multi-phase problem: Which phases are linked 

and how are the states connected. 

Linkage constraints The state difference margins between the linked phases. 

Intervals 
The number of intervals at which the solution is evaluated per 

phase 

Nodes 
The number of nodes per interval. This determines the order 

of polynomial used to fit the collocation points. 

Time constraints Time range in which the solution can exist. 

Duration constraints Minimum and maximum durations of a phase. 

State constraints (limits) Minimum and maximum state values during a phase. 

Boundary conditions 
Minimum and maximum values for the state at the beginning 

and end of each phase and overall. 

Control constraints Limits for the controls per phase. 

Path constraints Minimum and maximum values for the path. 

Initial guess 

A structure in the same format as the required solution, with 

a guess of the expected result for the time, state, control and 

static parameters. 

Solver setup specifications 
The choice for a solver, differentiator and their respective 

setup parameters. 

 

5.3.2 FORT working structure 

The GPOPS shell FORT, specifically designed for fixed-wing aircraft trajectory 

optimization, incorporates a range of files which describe all the required inputs for GPOPS in 

a structured way which is logical for this application. Figure 12 describes how FORT processes 

all required inputs and uses GPOPS to obtain a solution: 
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Figure 12: Working structure of FORT 

5.3.3 Limitations of the existing FORT tool 

FORT was used by [3] to perform the two aircraft multi-phase transatlantic formation 

flight optimization cases, and this existing set of input files were used as a starting point for 

this thesis. Although these setup files were designed well for a two-aircraft case with a fixed 

number of phases, there is no support for a flexible number of aircraft and phases. Regardless 

of the approach to solving the hybrid optimal control problem described in Chapter 4, FORT 

needs a major redevelopment to allow for a flexible case setup with just the required phase 

structure and the number of aircraft considered as an input. 

5.4 Hybrid Optimal Control approach – Branch-and-bound 

The end goal of this research is to successfully implement hybrid optimal control 

theory, which aims to deal with systems that are both discrete time and continuous time from 

a mathematical perspective. In this research, the methodology of using hybrid optimal control 

theory is not just seen as a means to an end. A successful understanding and implementation 

of a numerical approach to hybrid optimal control is actually defined as part of the research 

objective, with the actual application of hybrid optimal control to a case study being a 

complimentary objective. This section describes the approach which was taken to hybrid 

optimal control for this thesis. 
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5.4.1 Redesign of existing files 

To make the existing FORT design compatible with a hybrid version of the formation 

flying optimal control problem, where the number of phases as well as their order and linkages 

are not fixed but part of the optimization, it needs to be changed in such a way that the setup 

files adapt automatically to any valid phase structure. To achieve this, FORT is redesigned by 

making all outputs dependent on the given phase structure and the number of aircraft. Also, 

several formatting and diagram generation improvements are made to the existing code. 

5.4.2 Notation of formation phase structures 

To enable a quick and flexible input for processing a range of formation phase 

structures, a numerical notation paradigm is developed which contains all required 

information for the redesigned FORT input files to generate the correct case setup. A multi-

aircraft formation flight trajectory consists of five major stages: 

1. Departure solo flight 

2. Formation buildup: Sequentially growing formation phases 

3. Formation cruise: Phase(s) containing the largest formation(s) 

4. Formation breakdown: Sequentially splitting formation phases 

5. Arrival solo flight 

The phases of each stage are then described numerically in an array. With a given 

number of aircraft N, each aircraft is named with an integer number 1,2,…,N respectively. 

Then, formations are described by a concatenation of the respective aircraft names, e.g. ‘12’ 

describes a formation phase with aircraft 1 and 2. Solo flight stages 1 and 5 are denoted with 

the value ‘0’, indicating that no formations are present and N phases containing one aircraft 

are to be generated. Using this notation, a complete formation flight phase structure can be 

denoted in an array. One three-aircraft example looks as follows: 

[ 0  12  123  23  0 ] 

Here, aircraft 1 and 2 join each other before aircraft 3 completes the formation (stage 

2). During breakdown (stage 4), aircraft 1 leaves the formation first, so aircraft 2 and 3 remain 

until they eventually split up again as well. The phase structure based on this array notation is 

graphically represented in Figure 13. It should be noted that stage 2 and 4 will consist of 

multiple array elements (one for each aircraft joining or splitting moment) when more than 

three aircraft are considered. 
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Figure 13: Graphical representation of a phase structure array. 

In a four-aircraft scenario, the possibility arises that in one stage, two formations of 

two aircraft exist. This is then denoted as a non-integer number, with the decimal values 

indicating the second formation. For example, ’13.24’ indicates a formation phase with aircraft 

1 and 3 and a separate formation phase with aircraft 2 and 4. Lastly, it should be noted that 

for this thesis it is assumed that an aircraft can only enter and leave one formation during a 

flight. 

5.4.3 Branch-and-bound algorithm 

Since in this hybrid optimal control problem, all discrete phase switches are part of the 

optimization, the number of possible discrete solutions (phase structures) increases 

dramatically with every extra added aircraft. The trajectory optimization problem for one 

discrete solution is already computationally heavy, so it is impractical to try and run the 

optimization with all possible phase structures (347 for a four-aircraft case) and simply select 

the best-found solution. A smarter way to deal with this combinatorial problem is a branch-

and-bound algorithm, which was discussed in Section 2.4.1. This method reduces the amount 

of evaluated phase structures by selecting only the promising ones. In Section 2.4, several 

other methods of dealing with hybrid optimal control problems were also analyzed, however 

they are deemed unsuitable for application in this thesis since they can’t be modelled as an 

external algorithm but rather require a rewriting of the original problem. 

5.4.3.1 Concept 

In the branch-and-bound algorithm applied to formation flying, the discrete solution 

space is categorized in a tree structure where each depth level of the tree represents an 

additional discrete variable. For formation flight phase structures, this tree is generated as 

follows: The top node is ‘Case 0’, with all flights being flown solo. Then, on the second level, 

intermediate phase structures are generated based on the number of aircraft N, where only 

stage 1, 3 and 5 are included. This means that stage 2 (buildup) and 5 (breakdown) are not 

considered yet and all aircraft join and leave the main formation (stage 3) simultaneously. In 

a three-aircraft case, this level would have four nodes; one for the three-aircraft formation, 

and three nodes for each possible two-aircraft formation, with the remaining aircraft flying 

solo completely. From the next level onwards, a formation phase is added step by step while 

alternating between the buildup and breakdown stage, until no more phase switches exist 

where more than one aircraft joins or leaves a formation at the same time. For a three-aircraft 

case, the solution tree which is to be evaluated is presented in Figure 14. 
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Figure 14: Solution tree for a three-aircraft formation flight case. 0* indicates that phases are still to be added on 

here further down the tree. 

5.4.3.2 Assumptions for bounding (cut off) conditions 

Generally, a requirement for the method is that a solution to relaxed versions of this 

hybrid optimal control problem – where (most of) the discrete switches are relaxed to the 

continuous domain – exists. These solutions provide the lower bounds 𝛽ℒ to the branch-and-

bound solution tree. However, for formation flight it is practically impossible to model the 

discrete switches on a continuous domain, since there is no easily modelled physical 

representation of being ‘somewhere between solo and in formation’. To overcome this, a more 

heuristic approach can be applied (which was also done in [16]). In this case, the assumption 

is made that, with a defined margin, the node(s) with the best solution(s) at tree level i will 

also yield the most optimal solution at the bottom of the tree. This assumption is made based 

on the observation that: 

- Per two tree levels which are evaluated, the scale at which the solution is further 

optimized reduces drastically 

- Due to the alternation between buildup and breakdown per level, the solutions at 

one level (buildup) will have no significant influence on the evaluation of the next 

level (breakdown). 

Still, this assumption will have to be validated after every run by inspecting the 

generated solution tree. 

The algorithm is now able to chop off all the branches attached to the nodes which yield 

a cost functional which is higher than the best cost functional of that level plus the defined 

margin. Because of this, major portions of the tree can be disregarded and won’t have to be 

evaluated at all, which results in a significant computation time benefit.  

5.4.3.3 Implementation 

For this thesis, the branch-and-bound algorithm needs to be implemented to work with 

the existing FORT environment. This is achieved by running the algorithm as an external shell 
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which calls FORT with the input parameters of the currently evaluated node. A flowchart for 

the developed Formation Flight Branch-and-bound algorithm is presented in Appendix A. 

5.4.4 Initial guess adaptation algorithm 

Since every node in the generated solution tree contains a unique phase structure, 

every node also requires an initial guess in the exact format of its phase structure. It is 

therefore necessary to create unique initial guesses for each node. Doing this manually would 

be a daunting task, so an algorithm is developed which generates a valid initial guess in the 

format of the node which is to be evaluated, based on an original initial guess in a different 

format. In addition to being in the right format, it is also essential that the initial guess 

approximates the final solution closely enough such that the optimization tool converges 

quickly into the global optimum. Otherwise, the found solutions might be suboptimal (local 

optimum), not valid at all, or the computation time is increased drastically. 

 In the branch-and-bound algorithm, for every node except the tree root node (‘Case 

0’) the solution of its parent node is taken as an input to the initial guess adaptation algorithm. 

To achieve a correct and accurate modified initial guess, several methods are applied to the 

original initial guess: First, the original initial guess is checked for formation phases which are 

identical to a formation phase in the target phase structure, starting with the formation cruise 

phase. If this phase is found to be identical, the buildup phases and finally the breakdown 

phases are compared next. If identical phases are found, the solution for these phases can be 

kept without modification. The remaining non-identical phases of the original guess are re-

arranged into a single solo flight phase for each aircraft. From these solo phases, if necessary, 

new formation phases are constructed by taking a fraction from the relevant solo phases and 

combining these fractions into a formation phase. Lastly, since the trajectories of each phase 

will not connect properly anymore, new time and state values are calculated where necessary 

to eliminate phase linkage discontinuities in the modified initial guess. Appendix B presents 

the general functionality of the developed guess adaptation algorithm which is used for this 

thesis. 

5.4.5 Implementation of multi-threaded computing 

To improve the efficiency of the evaluation of the hybrid optimal control problem even 

more, a method is developed to allow for multi-threaded computation using the Parallel 

Computing Toolbox available in MATLAB. Since it is inherent to the branch-and-bound 

paradigm that the number of nodes to be evaluated is not known a priori, it is initially not 

possible to evaluate multiple nodes independently and simultaneously using a so called parfor 

loop in MATLAB. To still be able to simultaneously evaluate multiple solution tree nodes, the 

evaluation is divided per tree depth level. For each tree depth level, the number of nodes will 

be known by the time the evaluation of that tree depth level starts. Also, since the initial guess 

for the evaluation of a node is by design taken from the parent node, these can also be 

generated independently. This way, the entire range tree depth level nodes can be evaluated 

using multi-threaded computation, allowing for a higher computational performance. 

A drawback to this chosen approach is that parallel thread workers cannot continue to 

the next tree depth level when one worker is still evaluating a node in the current level. This 
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could cause a situation where one worker is holding up the rest of the evaluation, causing a 

delay in computation. Additionally, all SNOPT instances are programmed to write their 

solving progress log to the same file, causing a mix of log data from multiple threads. However, 

both these issues do not pose any major practical problems, and in this branch-and-bound 

algorithm, this implementation of multi-threaded computing can be used without worries. 

Technically, this approach could enable the highest performance on machines with as 

many CPU cores as the size of the largest tree depth level. However, in this thesis only dual-

core and quad-core CPUs are used. 

5.5 Outputs and final structure 

The optimization tools and algorithms described in this chapter which are developed 

and used, are of course designed to solve the hybrid trajectory optimization problem stated in 

Chapter 4. This means that the correct outputs must be generated to allow for an adequate 

assessment of this problem. A list of all relevant generated outputs is presented in Table 3: 

Table 3: Outputs generated by the developed HOC tool 

Output parameter Description 

Optimal cost functional The minimized cost functional value J (Section 4.3),  

Optimal phase structure 
The phase structure associated with the optimal cost 

functional. 

Solution 

A solution structure containing the time vector and, state, 

control and static parameters associated with the optimal 

cost functional. 

Total calculation time Time elapsed since starting the simulation 

Tree structure with remaining nodes 
A graphical and vector representation of the tree nodes 

which were evaluated. 

Calculation times vector Vector with the elapsed time per node calculation. 

Objective value vector 
Vector with the obtained objective value of each evaluated 

node. 

Diagrams Diagrams showing the 4-D trajectory of the optimal solution. 

Solution of all nodes 
Folder containing the solution structures of all evaluated 

nodes. 

SNOPT log of all nodes 
Log file of all evaluated nodes created by the solver SNOPT, 

containing information about the solving process. 

From these generated outputs, several results of interest relevant for the problem to be 

solved can be derived. These are defined as follows: 

- Total fuel consumption 
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- Fuel consumption per aircraft 

- Total flight time 

- Flight time per aircraft 

- The performance of the optimization framework 

The final hierarchical structure of the developed HOC tool, describing how several 

elements relate to each other in the global setup, is presented in Figure 15.  

 

Figure 15: Hierarchical structure of various HOC tool elements 
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6 Case Studies: Experimental set-up 

With the trajectory optimization framework for the hybrid optimal control formation 

flight problem ready, case studies can be performed in which several formation flight 

trajectories are evaluated. This chapter discusses the experimental set-up which is used for the 

performed case studies. First, it is described how the aircraft dynamics are modelled. This is 

followed by an elaboration on the approach which was taken to model the formation flight 

characteristics of the trajectory. Next, the constraints which are to be applied to the model are 

presented. After this, the used aircraft model parameters are discussed. It is then discussed 

how the cruise formation phase can be evaluated using Bréguet range equations. Lastly, an 

overview is given of the assumptions and simplifications which are made for the various 

experiments which are performed. 

6.1 Aircraft dynamics model 

In an aircraft trajectory optimization project, it is important to get a good balance 

between accuracy and computational speed. One of the most influential parts in this trade-off 

is the modelling of the aircraft dynamics. Like in [3], a reduced-order point mass model is 

applied to achieve this. Since the model should work with long-haul flights, the dynamics are 

placed in the “World Geodetic System”, a polar coordinate system which has its origin at the 

center of the earth, the zero latitude 𝜙-axis at the equator and the zero longitude 𝜆-axis near 

Greenwich, UK. The altitude 𝑧 is denoted in meters above the surface of the earth, of which 

the radius 𝑅𝑒 is estimated at 6378*10^3 m. An unusual but non-influential anomaly is that 

heading 𝜒 is zero in a completely eastward direction and increases counterclockwise. The 

aircraft states and controls are: 

𝐱 =

[
 
 
 
 
 
 
𝜙
𝜆
𝑧
𝑉
𝜒
𝑊
𝛾 ]
 
 
 
 
 
 

 ,          𝐮 = [

𝜂
𝛾̇
𝜇
] (6.1) 

Where 𝜙 is the latitude [rad], 𝜆 is the longitude [rad], 𝑧 is the altitude [m], 𝑉 is the 

velocity [m/s], 𝜒 is the heading angle [rad], 𝑊 is the aircraft weight [N] and 𝛾 is the flight path 

angle [rad]. For the controls, 𝜂 is the engine thrust setting between 0 and 1 [-], 𝛾̇ is the change 

in flight path angle [rad/s] and 𝜇 is the aircraft bank angle [rad]. The dynamics of the state, 

ẋ = 𝑓(x, u), are described per state variable as follows: 

𝜙̇ =  
𝑉𝑐𝑜𝑠(𝛾) sin(𝜒)

𝑅𝑒 + 𝑧
(6.2) 
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𝜆̇ =
𝑉𝑐𝑜𝑠(𝛾)𝑐𝑜𝑠(𝜒)

(𝑅𝑒 + 𝑧)cos (𝜙)
(6.3) 

𝑧̇ = 𝑉𝑠𝑖𝑛(𝛾) (6.4) 

𝑉̇ = 𝑔0 (
𝑇 − 𝐷

𝑊
− sin(𝛾)) (6.5) 

𝜒̇ = 𝑔0
𝑡𝑎𝑛 (𝜇)

𝑉
(6.6) 

𝑊̇ =  −𝑚̇𝑓𝑢𝑒𝑙 ∗ 𝑔0 (6.7) 

𝛾̇ =  𝛾̇ (6.8) 

Here, 𝑔0 is the gravitational force of the earth (9.81 m/s2).  𝑇 is defined as the thrust 

force, 𝐷 is the drag force, and 𝑚̇𝑓𝑢𝑒𝑙 is the fuel flow of the aircraft. These parameters are 

obtained through the following equations: 

𝑇 = 𝑇𝑚𝑖𝑛 + 𝜂(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛) (6.9) 

𝐷 = 𝐶𝐷
1

2
𝜌𝑉2𝑆 (6.10) 

𝑚̇𝑓𝑢𝑒𝑙 = 𝑓(𝑧, 𝑉, 𝑇) (6.11) 

Where 𝑇𝑚𝑖𝑛 is the idle thrust and 𝑇𝑚𝑎𝑥 is the maximum thrust [N]. 𝜌 is the air density 

[kg/m3] and 𝑆 is the wing surface area [m2]. The total drag coefficient 𝐶𝐷 is described as 

follows: 

𝐶𝐷 = 𝐶𝐷0(𝑀) + 𝐾(𝑀)𝐶𝐿
2 (6.12) 

Here, 𝐶𝐷0(𝑀) and 𝐾(𝑀) are the zero-lift drag and the induced drag coefficient as a 

function of Mach number 𝑀, 𝐶𝐿 is the lift coefficient. 𝑇𝑚𝑎𝑥, 𝑇𝑚𝑖𝑛, 𝜌, 𝐶𝐷0(𝑀), 𝐾(𝑀) and 𝐶𝐿 are 

(also) dependent on the atmospheric conditions. To obtain these values, the atmosphere is 

modelled after the International Standard Atmosphere (ISA), which is a function of altitude 𝑧 

only. 
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6.2 Formation flight set-up 

For the proposed trajectory optimization to work, the formation flight dynamics have 

to be implemented adequately into the aircraft dynamics model. This section describes which 

adaptations are made to incorporate formation flight dynamic behavior into the optimization 

model. 

6.2.1 Formation flight aircraft dynamics model 

In phases where a formation occurs, two or more aircraft need to be modelled. To 

reduce the complexity, all aircraft are modelled together as a one point system with multiple 

masses. This means that for the model, all states except 𝑊 can be represented by the same 

value for all aircraft. On a practical level this is a rather big simplification, since in real life 

aircraft in extended formation would be separated streamwise by a significant distance. 

However, for the optimization it is assumed that this has little impact on the accuracy of the 

model, as long as the induced drag reduction factor 𝐶𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 is chosen realistically. 

For a phase with formation size N, the state and control vectors then look as follows: 

𝐱 =

[
 
 
 
 
 
 
 
 
 
𝜙
𝜆
𝑧
𝑉
𝜒
𝑊1
𝑊2

⋮
𝑊𝑁

𝛾 ]
 
 
 
 
 
 
 
 
 

 ,          𝐮 = [

𝜂1
𝛾̇
𝜇
] (6.13) 

It can be observed that in the control, only the thrust setting for aircraft 1, 𝜂1, is 

controlled. For the other aircraft, the thrust is actually solved for by using the available settings 

of the lead aircraft and the ratio between the lead aircraft weight and the trailing aircraft 

weight: 

𝑇𝑡𝑟𝑎𝑖𝑙 = [
𝑇 − 𝐷

𝑊
]
𝑙𝑒𝑎𝑑

𝑊𝑡𝑟𝑎𝑖𝑙 +𝐷𝑡𝑟𝑎𝑖𝑙 (6.14) 

This value is then in turn used to compute the fuel flow of the trailing aircraft. Of 

course, the thrust values of any aircraft in the formation cannot exceed the maximum thrust 

value of that respective aircraft. Therefore, the following constraint is added for every trailing 

aircraft: 

𝑇𝑡𝑟𝑎𝑖𝑙 − 𝑇𝑚𝑖𝑛
𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛

= 𝜂𝑡𝑟𝑎𝑖𝑙 ≤ 1 (6.15) 
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6.2.2 Induced drag reduction factor 

In Chapter 3 it was described how formation flight can be beneficial in terms of fuel 

consumption for trailing aircraft. Fuel is saved because there is less induced drag experienced 

by the trailing aircraft, so in the aircraft model, the reduction in induced drag must be 

modelled as well. For this, the already discussed equation for the drag coefficient 𝐶𝐷 (Eq. 6.12) 

is adapted as follows: 

𝐶𝐷 = 𝐶𝐷0(𝑀) + 𝐾(𝑀)𝐶𝐿
2 ∗ 𝑐𝑓 (6.16) 

Where 𝑐𝑓 is the induced drag reduction factor for trailing aircraft in a formation. If an 

aircraft is either leading the formation or not in formation at all, 𝑐𝑓 = 1. Based on the study 

presented in Chapter 3, values for 𝑐𝑓 are chosen as follows: 

Table 4: Values for 𝒄𝒇 in all experiments unless stated otherwise 

Aircraft 𝒄𝒇 

Leading 1 

First trailing 0.75 

Second trailing 0.5 

Third trailing 0.5 

 

Using Eq. 6.16 and the values above, for every aircraft 𝑖 in a formation of size N the 

respective 𝑚̇𝑓𝑢𝑒𝑙𝑖 and 𝑊𝑖̇  can be calculated individually by plugging them into Eq. 6.11 and 6.7 

respectively. An extra point of consideration is that the assignment of the 𝑐𝑓 values of Table 4 

is fixed: Aircraft N in a phase (last weight element 𝑊𝑁 in the state vector) will be the leading 

aircraft with 𝑐𝑓 = 1. Then, aircraft 1,2,…,N-1 will have the respective 𝑐𝑓 values assigned from 

the ‘First trailing’ value of Table 4 onwards. So, the order of the aircraft in the formation is not 

a (discrete) optimizable variable. 

6.3 Model constraints 

Constraints are added to the model to limit the values which the state and control 

variables are allowed to take. This way unrealistic solutions are avoided, and the solver is 

helped with finding the correct solution. This section describes the constraints which are 

placed onto the model. 

6.3.1 Time and duration constraints 

The time vector used for the optimization is arbitrarily chosen in the sense that for the 

solution, it does not matter what the time values are, as long as the unit is consistent with the 
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model (e.g. seconds) and that the size of the vector is long enough to accommodate the 

solution. Along with the time vector, also the minimum and maximum duration is defined. 

Finally, for each sequence of phases which is independent (i.e. they do not have any phase 

linkages in common), one phase in Stage 1 (departure solo) has its initial time fixed. This 

prevents trajectories from spreading out over the time vector. 

Time constraint: 

−50000 ≤ 𝑡 ≤ 60000 𝑠  

Duration constraint: climb and descent solo phases; 

600 ≤ 𝑡𝑓𝑝ℎ𝑎𝑠𝑒 − 𝑡0𝑝ℎ𝑎𝑠𝑒 ≤ 5000 𝑠  

Duration constraint: other phases: 

5 ≤ 𝑡𝑓𝑝ℎ𝑎𝑠𝑒 − 𝑡0𝑝ℎ𝑎𝑠𝑒 ≤ 60000 𝑠1  

Initial time constraint for one stage 1 phase per unlinked sequence: 

𝑡0𝑝ℎ𝑎𝑠𝑒 = 0 𝑠  

6.3.2 State and control limits 

For each aircraft state and control, limits must be specified as well. These limits are 

either chosen manually to narrow down the feasible trajectory space (only transatlantic flights 

are considered), or they are defined by limitations of the aircraft. 

State limits 

−40 ≤ 𝜙 ≤ 70 ° 

−115 ≤ 𝜆 ≤ 15 °  

10000 ≤ 𝑧 ≤ 𝑧𝑚𝑎𝑥  

250 ≤ 𝑉 ≤ 540 𝑘𝑡𝑠  

110 ≤ 𝜒 ≤ 250 °  

−20 ≤ 𝛾 ≤ 20 °  

For each aircraft 𝑖 

𝑊𝑚𝑖𝑛 ≤ 𝑊𝑖 ≤ 𝑊𝑚𝑎𝑥  
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Where 𝑊𝑚𝑎𝑥 equals the Maximum Take-off Weight (MTOW) [N] of the aircraft, and 

𝑊𝑚𝑖𝑛 is defined as follows: 

𝑊𝑚𝑖𝑛 = 𝑂𝐸𝑊 +𝑊𝑃𝐿 + 0.05 ∗ 𝑊𝐹𝐶 (6.17) 

Here, OEW is the Operational Empty Weight [N], 𝑊𝑃𝐿 is the payload weight [N] and 

𝑊𝐹𝐶 is the fuel capacity [N]. 

Control limits 

0 ≤ 𝜂 ≤ 1  

−10 ≤ 𝛾̇ ≤ 10  

−25 ≤ 𝜇 < 25 °  

6.3.3 Path constraints 

The state and control limits by themselves are insufficient to guarantee a realistic 

trajectory, as they mostly have a mathematical meaning. The flight envelope or operational 

constraints must also be implemented, but these mostly depend on the current state of the 

aircraft, as well as the phase which is considered. To do this, path constraints are defined per 

flight stage. These path constraints are presented in Table 5. 
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Table 5 Overview of incorporated path constraints 

 Parameter (In)equality constraint Notes 
G

e
n

e
ra

l 

co
n

st
ra

in
ts

 
Turning rate |𝜒̇| ≤ 1 ° ∗ 𝑠−1 Limited for passenger comfort 

Speed limits 𝑉𝑚𝑖𝑛 ≤ 𝑉 ≤   𝑉𝑠𝑜𝑢𝑛𝑑 ∗ 𝑀𝑀𝑂  [
𝑚

𝑠
] 

Limits determined by aircraft 

model and atmosphere 

C
lim

b
in

g
 

st
a
g

e
 (

1)
 

Vertical speed 0 ≤ 𝑧̇ ≤ 200 𝑚/𝑠 Prevents aircraft descent 

Energy rate 𝐸̇ =
(𝑇 − 𝐷)𝑉

𝑊
≥ 0 

Reduces unnecessary exchange of 

velocity and altitude 

D
e
sc

e
n

t 

st
a
g

e
 (

5
) 

Vertical speed 𝑧̇ ≤ 1 𝑚/𝑠 Prevents steep aircraft climbing 

Acceleration 𝑉̇ ≤ 0 𝑚/𝑠2 
Prevents aircraft acceleration 

during descent 

(F
o

rm
a
ti
o

n
) 

cr
u

is
e
 s

ta
g

e
 

(2
/3

/4
) 

Vertical speed |𝑧̇| ≤ 1 𝑚/𝑠 
Prevents steep aircraft climbing or 

descent 

Acceleration |𝑉̇| ≤ 1 𝑚/𝑠2 For passenger comfort  

Energy rate 𝐸̇ =
(𝑇 − 𝐷)𝑉

𝑊
≥ 0 

Reduces unnecessary exchange of 

velocity and altitude 

Engine thrust setting of 

each trailing aircraft 𝒊 
0 ≤ 𝜂𝑖 ≤ 1 

Ensures that no aircraft in the 

formation (if a formation is flown) 

exceeds its thrust limit 

 

6.3.4 Phase linkages 

The trajectory optimization problem is a multi-phase problem, which consists of 

multiple continuous trajectory phases which are linked together at discrete switching points. 

The linkage between two phases is to be defined such that the final state values of the left phase 

x𝒇,𝒍 equal the initial state values of the right phase x0,𝑟. However, in this case the phase 

switching point also represents a change in formation size, and therefore also a change in the 

weight vector size. The linkage constraints are then defined as follows: 

If formation size increases from the left phase to the right phase (formation buildup): 

[
 
 
 
 
 
 
 
𝜙0,𝑟
𝜆0,𝑟
𝑧0,𝑟
𝑉0,𝑟
𝜒0,𝑟

𝑊0,𝑟
𝐿

𝛾0,𝑟 ]
 
 
 
 
 
 
 

−

[
 
 
 
 
 
 
 
𝜙𝑓,𝑙
𝜆𝑓,𝑙
𝑧𝑓,𝑙
𝑉𝑓,𝑙
𝜒𝑓,𝑙

𝑊𝑓,𝑙
𝐿

𝛾𝑓,𝑙 ]
 
 
 
 
 
 
 

= 𝟎 (6.18) 

If formation size decreases from the left to the right phase (formation breakdown): 
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[
 
 
 
 
 
 
 
𝜙0,𝑟
𝜆0,𝑟
𝑧0,𝑟
𝑉0,𝑟
𝜒0,𝑟

𝑊0,𝑟
𝑅

𝛾0,𝑟 ]
 
 
 
 
 
 
 

−

[
 
 
 
 
 
 
 
𝜙𝑓,𝑙
𝜆𝑓,𝑙
𝑧𝑓,𝑙
𝑉𝑓,𝑙
𝜒𝑓,𝑙

𝑊𝑓,𝑙
𝑅

𝛾𝑓,𝑙 ]
 
 
 
 
 
 
 

= 𝟎 (6.19) 

Where 𝑊𝐿 and 𝑊𝑅 are the aircraft weights of the aircraft present in the left and right 

phase respectively. 

6.4 Aircraft model (Boeing 747-400) 

For this optimization case study, a model of a Boeing 747-400 aircraft is used unless 

stated otherwise. The specifications of this aircraft are listed in Table 6. 

Table 6: Boeing 747-400 parameters 

Parameter Description Value 

S Wing surface area [m2] 541.16 

MTOW Maximum Take-Off Weight [kg] 362,874 

OEW Operational Empty Weight [kg] 178,756 

MLW Maximum Landing Weight [kg] 260,362 

MZFW Maximum Zero Fuel Weight [kg] 242,672 

Fuel capacity Maximum weight of fuel [kg] 163,396 

Payload capacity Maximum weight of payload [kg] 63,917 

𝒛𝒎𝒂𝒙 Maximum altitude [m] 13,747 

𝑴𝑴𝑶 Maximum Mach number [-] 0.9 

𝑽𝒎𝒊𝒏 Minimum velocity [kts] 195 

 

For this aircraft, the parameters 𝐶𝐷0(𝑀) and 𝐾(𝑀) are represented as follows [3]: 

𝐶𝐷0(𝑀) =  −0.001𝑀
2 + 0.0006𝑀 + 0.0125 (6.20) 

𝐾(𝑀) = 0.0975𝑀2 − 0.0846𝑀 + 0.0705 (6.21) 
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Figure 16: Boeing 747-400 

6.5 Bréguet range equation for formation flight 

For this trajectory optimization, it is chosen to represent the aircraft dynamics with a 

reduced order point-mass model. To reduce the computational intensiveness, this model can 

be replaced with an analytic equation for the cruise formation phase. In normal aircraft 

trajectory calculations, the Bréguet range equation can be applied to obtain the fuel usage as 

a function of the required range, velocity and altitude. However, the traditional Bréguet range 

equation is not applicable to formation flight. Therefore M. Voskuijl presented a modified form 

of the Bréguet range equation which is adapted to work with formation flight under realistic 

operating conditions (constant Mach number and constant altitude at transonic speeds) [31].  

This modified equation incorporates all factors which determine the difference in fuel usage 

as a result of the induced drag benefit associated with flying in formation.  

6.5.1 Equations 

The modified Bréguet range equation, rewritten to express the final weight 𝑊𝑓, is 

presented below: 

For each aircraft in the formation 𝑁 with induced drag reduction factor 𝐶𝑓
𝑁: 

𝑊𝑓
𝑁 =

1

2
𝛾𝑝𝑀2𝑆

[
 
 
 

𝐶𝐿
∗ − √

𝐶𝐷
∗

𝐶𝑓
𝑁𝐾(𝑀)

tan

{
 

 𝐶0𝑅(1 + 𝐶𝑀𝑀) ∗ √𝐶𝑓
𝑁𝐾(𝑀)𝐶𝐷

∗

𝑎𝑀
+ tan−1 (√

𝐶𝑓
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𝐶𝐷
∗

(
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∗ −𝑊0
𝑁)

1
2
𝛾𝑝𝑀2𝑆

) 

}
 

 

]
 
 
 

(6.22) 

Where 𝐶0 and 𝐶𝑀 are empirical constants for the aircraft engine performance. 𝛾 here 

indicates the air specific heat ratio (1.4), 𝑝 is the air pressure [kg/m3] and 𝑎 is the speed of 

sound [m/s]. 𝐶𝑓 is an array of induced drag reduction factors 𝑐𝑓.  𝑅 [m] is the distance flown, 

but this parameter is not part of the state of the aircraft model. To solve this, 𝑅 is found as a 

function of 𝜙, 𝜆 and 𝑧 using the ‘haversine’ formula: 
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𝑅 = 2 ∗ (𝑧 + 𝑅𝑒) ∗ 𝑎𝑡𝑎𝑛2(√𝑘,√1 − 𝑘) (6.23) 

𝑘 = sin2 (
𝜙𝑓 −𝜙0

2
) + cos𝜙0 𝑐𝑜𝑠𝜙𝑓 sin

2 (
𝜆𝑓 − 𝜆0

2
) (6.24) 

With this method, the final weight at the end of a phase is a function of the change in 

latitude and longitude. Since all other states in the considered aircraft dynamics model are 

supposed to stay equal, an entire cruise phase can be replaced with an evaluation of the 

modified Bréguet range equation, reducing the number of nodes and intervals significantly. 

6.5.2 Implementation 

The modified Bréguet equations are to be implemented in such a way that the cruise 

phase with the largest formation size is evaluated. To achieve this, in GPOPS this phase is 

reduced to a ‘dummy phase’ with 2 nodes and a fixed duration of 5 seconds. This dummy phase 

is linked as usual to its preceding phases. Then, the modified Bréguet range equation is 

implemented in the phase linkages which link this dummy phase to its succeeding phases as 

follows: 

[
 
 
 
 
 
 
 
𝜙0,𝑟
𝜆0,𝑟
𝑧0,𝑟
𝑉0,𝑟
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−
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𝑅
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(6.25) 

Where 𝑓𝑏𝑟𝑒𝑔𝑢𝑒𝑡 represents the modified Bréguet range equation presented in Equation 

Eq. 6.22 and 𝐶𝑓 is the vector of all respective induced drag reduction factors 𝑐𝑓. GPOPS is then 

tasked with choosing 𝜙𝑓,𝑙 , 𝜆𝑓,𝑙 , 𝜙0,𝑟 and 𝜆0,𝑟 such that the original objective value is minimized. 

In practice, the reduced number of nodes and the associated computational efficiency 

benefit is found to be negated by the fact that GPOPS appears to have a great difficulty with 

linkage constraints where state variables are left free. Although during testing realistic 

solutions are still obtained, the convergence behavior is poor. Therefore, this method is only 

used in Experiment 5 (Section 7.5) for demonstration purposes. Another drawback is that time 

is not part of the model during this phase, leading to incorrect flight time values. 
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6.6 Optimization parameters 

For the developed hybrid trajectory optimization tool, several parameters influence the 

behavior of the optimization algorithm and therefore also the outcome. In general, values for 

these parameters are a trade-off between accuracy and computation time. The relevant 

parameters and their chosen values are presented in this section. 

6.6.1 Number of intervals, nodes per interval 

These parameters determine the resolution of the solution trajectories. The sum of 

these two parameters defines the total number of collocation points. The number of nodes per 

interval determines the order of the fitting polynomial for satisfying the dynamics model at 

each collocation point. In this thesis, a resolution of 25 intervals per phase with 2 nodes per 

interval (linear fit) is chosen as this keeps computation times low enough while providing 

sufficiently accurate trajectories. 

6.6.2 Feasibility tolerance, optimality tolerance 

Based on these parameters SNOPT determines to which degree the feasibility and 

optimality conditions must be satisfied before it can stop the optimization. A lower value 

means that a more accurate result is required, resulting in longer computation times. In this 

set-up, 10−6 is chosen for feasibility and 10−4 for optimality. 

6.6.3 Branch-and-bound cutoff margin 

This parameter describes to which percentage the solution of a node in the branch-

and-bound solution tree may exceed the objective value of the best node on the same tree level. 

If the margin is exceeded, the subtree will be cut off. In this set-up, the cutoff margin is set at 

0.5%. 

6.6.4 Iteration limit 

This parameter sets the number of iterations which SNOPT is allowed to perform 

before an optimization run is deemed infeasible due to lack of convergence. This value is set 

at 70000. 

6.7 Assumptions and simplifications for the experiments 

In the case studies performed for this thesis, several assumptions and simplifications 

are made which could cause significant deviations of the trajectory optimization results from 

a real-world scenario. These are presented in this section. 

6.7.1 Atmosphere and wind 

First of all, as mentioned in Section 6.1, the atmosphere is modelled after the 

International Standard Atmosphere (ISA), whereas in real life atmospheric conditions could 
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be significantly different. In addition, it is also assumed that there is no wind present, even 

though there are always wind effects present in real world transatlantic flights. Both of these 

aspects have a significant impact on the 4D trajectory of all modelled aircraft. 

6.7.2 Trajectory Based Operations 

The optimization is performed with a Trajectory Based Operations (TBO) 

implementation, meaning that the aircraft are free to move through the available airspace 

without any limitations posed by ATC infrastructure. Aircraft do not have to follow certain 

waypoints but can rather follow any route it wants. This is in real life impossible, but the 

movement towards TBO is clear as described in [32]. Thus, the experiments in this thesis focus 

on the expected development where TBO becomes reality. 

6.7.3 Constant induced drag reduction factor 

Regarding the induced drag during formation flight, it is assumed that this is reduced 

for trailing aircraft by a constant value. In real life however, it is more likely that the reduction 

in induced drag is varying constantly, as a result of non-static relative positioning of aircraft 

as well as disturbing factors such as wind. The induced drag reduction factor values should 

thus rather represent a good estimate for the average aerodynamic benefit. 

6.7.4 Start and landing 

For all experiments, the initial and final conditions for altitude and speed are set to 

1000 ft. and 250 knots respectively. This implies that landing and take-off phases are not 

simulated, but rather just the climb and descent. Also, the start and end locations are taken to 

be the official coordinates of the origin and destination airports, independent from the chosen 

runways and departure/arrival routes. 

6.7.5 Fuel reserve requirements 

Optimizing for fuel burn automatically leads to a solution where the aircraft will carry 

the minimum amount of fuel possible upon arrival. In the experiments, it is allowed for aircraft 

to take as little fuel as possible to achieve this. However, such an approach would in real life 

not be very robust, since a failed formation attempt could then lead to fuel capacity issues for 

aircraft which had ‘counted’ on the fuel benefits but did not get it. The results of the 

experiments therefore represent a theoretical optimum, which should be corrected for 

manually before the calculated trajectories are practically viable and safe. 

6.7.6 Payload 

In all experiments, it is assumed that the payload weight equals the maximum payload 

capacity. Since all experiments are performed with a Boeing 747-400 model, the payload will 

always be 63,917 kg. 
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7 Case Studies: Results 

This chapter presents and discusses the results of various multi-aircraft formation 

flying scenarios which were evaluated using the developed hybrid optimal control approach. 

In these experiments, each flight is assigned a different trajectory color to keep a clear 

distinction between them. For formation phases, again different colors are used for clarity. To 

make a useful analysis about the benefit of formation flying, all results are also to be compared 

to the results of an all solo flight scenario. 

7.1 Experiment 1: Model validation with three-aircraft transatlantic scenario 

The first experiment is designed to validate the developed branch-and-bound model 

by comparing its outcome to a full enumeration of the solution space. A three-aircraft case is 

considered with transatlantic flights from Europe to the United States. Each flight has unique 

departure and arrival airports, but given that their transatlantic trajectory is rather similar, 

formation flying possibilities still arise. These flights are presented in Table 7. All non-

intermediate phase structure possibilities were evaluated manually, and consecutively the 

branch-and-bound algorithm was used to find the optimal phase structure.  

Table 7: Flights for Experiment 1 

Flight Trajectory color Aircraft type Origin Destination 

1  Boeing 747-400 London (LHR) Atlanta (ATL) 

2  Boeing 747-400 Madrid (MAD) New York City (JFK) 

3  Boeing 747-400 Amsterdam (AMS) Boston (BOS) 

 

In Table 8, the cost values expressed as the cumulative fuel consumption of all flights 

are presented for each possible phase structure. In Figure 17, the evaluated branch-and-bound 

solution tree nodes are presented with their respective cost values.  

It can be seen that the branch-and-bound algorithm finds the same objective value 

(198,57 ∗ 103 kg) and optimal structure as a total enumeration of the tree, while the number 

of evaluated nodes is reduced. This proves the validity of the branch-and-bound approach for 

this experiment. The optimal phase structure is: 

[ 0 13 123 12 0 ] 

The associated cost value of 198,57 ∗ 103 kg is a 4,74% fuel saving compared to the solo 

flight trajectories. The trajectory diagrams of this phase structure are presented in Figure 18 

and Figure 19. 
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Table 8: Cost value of all phase structure combinations for Experiment 1 

Structure ID Formation phase structure 
Cost value: cumulative fuel 

consumption [10^3 kg] 

1 0 12 123 12 0 200,46 

2 0 13 123 12 0 198,57 

3 0 23 123 12 0 200,46 

4 0 12 123 13 0 200,87 

5 0 13 123 13 0 198,96 

6 0 23 123 13 0 200,88 

7 0 12 123 23 0 200,87 

8 0 13 123 23 0 198,98 

9 0 23 123 23 0 200,87 

10  0 12 0  204,63 

11  0 13 0  202,18 

12  0 23 0  209,46 

13   0   208,39 

 

 

Figure 17: Experiment 1 branch-and-bound evaluated solution tree with cost values per node [*10^3 kg] 
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Figure 18: Horizontal trajectory of Experiment 1: solo (dotted lines) vs. formation (solid lines) 

  

  

Figure 19: Experiment 1 with formations: a. Aircraft weight vs. time (top left), b. fuel flow vs. time (top right), c. altitude 

vs. time (bottom left), d. airspeed vs. time (bottom right). 

In Figure 18, it can be observed that Flight 2 makes a relatively big detour to join the 

formation. This is explained by the fact that this is the aircraft experiencing a 50% induced 

drag reduction, making the detour worthwhile. In Figure 19b, c and d, a general observation 

is that jagged lines are present. These are caused by the fact that the model is free to exchange 

velocity and altitude without fuel burn penalty, in combination with a low resolution of 25 
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intervals with 2 nodes per interval (linear fit). Also, it is clear that the velocity during cruise 

phases is lower than during solo phases. 

In this experiment, the savings in number of evaluated tree nodes are minor, since only 

two nodes less were evaluated effectively. However, the complete enumeration required 

manually generated initial guesses. The branch-and-bound algorithm is still significantly more 

convenient to use, since it evaluates the solution space automatically with better convergence. 

7.2 Experiment 2: Four-aircraft transatlantic formation 

In this experiment, an extra flight is added to the flights of Experiment 1 such that four 

fictional transatlantic flights are modelled which are candidates for a formation. This 

experiment is expected to take the most advantage of the branch-and-bound algorithm, since 

there are hundreds of combinatorial solutions possible which the algorithm is expected to 

narrow down to the most promising ones and eventually select the best solution. The modelled 

flights are as presented in Table 9: 

Table 9 Flights for Experiment 2 

Flight Trajectory color Aircraft type Origin Destination 

1  Boeing 747-400 London (LHR) Atlanta (ATL) 

2  Boeing 747-400 Madrid (MAD) New York City (JFK) 

3  Boeing 747-400 Amsterdam (AMS) Boston (BOS) 

4  Boeing 747-400 Rome (FCO) Toronto (YYZ) 

 

In Table 10 the trajectory optimization results for the solo and the formation case are 

presented together. The horizontal trajectories for both cases are also presented in Figure 20. 

In Figure 21, several other trajectory parameters are presented for the formation case only. 

Full trajectory diagrams for the solo case can be found in Appendix C.  

Table 10: Experiment 2 fuel consumption and fligt time results, solo vs formation. 

Flight 
Fuel consumption [10^3kg] Flight time [hh:mm:ss] 

solo formation difference  solo formation difference 

1 79.024 71.626 -7.398 (-9.36%) 07:55:23 08:21:22 00:26:00 (+5.47%) 

2 66.165 57.362 -8.803 (-13.30%) 06:48:01 07:23:15 00:35:14 (+8.64%) 

3 63.497 50.388 -13.109 (-20.64%) 06:33:39 06:58:51 00:25:13 (+6.41%) 

4 83.338 86.672 +3.334 (+4.00%) 08:17:13 08:53:07 00:35:54 (+7.22%) 

Total 292.026 266.050 -25.976 (-8.90%) 29:34:15 31:36:36 02:02:21 (+6.90%) 
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Figure 20: Horizontal trajectory of Experiment 2: solo (dotted lines) vs. formation (solid lines) 

 

Figure 21: Experiment 2 with formations: a. Aircraft weight vs. time (top left), b. fuel flow vs. time (top right), c. 

altitude vs. time (bottom left), d. airspeed vs. time (bottom right). 
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The optimal phase structure given by the branch-and-bound algorithm is: 

[ 0 34 134 1234  123  12  0 ] 

However, it can be observed from Figure 20 that aircraft 1, 3 and 4 join each other 

roughly at the same time. Similarly, aircraft 3 and 4 also leave the formation at roughly the 

same time. To reach this optimal result, the branch-and-bound algorithm evaluated 35 

different phase structures in the solution tree, which is 10,1% of the total amount of 347 

possible phase structures. 

The four evaluated flights in this experiment demonstrate that joining in formation can 

save a significant amount of fuel (25.976 kg / 8.90%) compared to their respective solo flights. 

Even for Flight 2 (MAD-JFK), which has to fly a relatively large detour to join the formation, 

the fuel savings are beneficial enough to do it. During the formation buildup, the staged 

approach where one aircraft joins after another is clearly the most optimal, since it allows for 

Flight 2 to join the formation much later than the other aircraft. However, the model appears 

to strongly prefer three-aircraft formation phases over two-aircraft formation phases, since 

the phase duration of the two-aircraft phases is relatively short during both the buildup and 

the breakdown of the formation. This can be readily explained by the significant induced drag 

reduction benefit assigned to the additional trailing aircraft in a three-aircraft formation. 

Regarding flight time, sacrifices are made to achieve the most fuel-efficient result. 

However, the additional flight time never exceeds 36 minutes, which could be deemed 

acceptable for a transatlantic flight.  Of course, the additional flight times can be attributed to 

the fact that all aircraft have to compromise on their shortest distance route to meet the other 

aircraft in a formation. However, the cruise speed during the formation is also significantly 

lower than during the solo phases (Figure 21 d). It appears that a lower induced drag also 

results in a lower optimal cruise speed with respect to fuel use. 

Due to the fact that the lay-out of the formation in terms of relative position is not 

optimized for, the overall solution could have been more optimal if a different aircraft was 

chosen as a leading aircraft. In this experiment, aircraft 4 leads the formation and thus receives 

no fuel benefit. However, it is flying the longest flight, and therefore it is one of the heavier 

aircraft during the formation. In previous research it was found that in formation flight with 

identical aircraft models, the lightest aircraft should lead the formation [3], which in this case 

should have been aircraft 3. 

The optimization problem is solved in 18437 seconds, or 5:07:07 using a quad-core 

CPU. The average calculation time per node is 1714 seconds. However, since the optimization 

is running multi-threaded, the effective calculation time per node is lower. These values 

indicate that the hybrid optimal control approach is still within practical limits for a four-

aircraft scenario, but still a significant amount of time is needed to obtain the solution. A real-

life implementation might require a faster method, especially when ‘on-the-fly’ iterations are 

required due to changing circumstances. 
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7.3 Experiment 3: Sensitivity analysis with less induced drag benefit 

Even though the standard values chosen for the induced drag reduction factor, 

presented in Section 6.2.2, are based on real experimental results, there is a lot or variance 

possible in the induced drag benefit due to disturbances (e.g. gust winds) or lateral positioning 

errors. Therefore, to analyze the sensitivity of the trajectory results of Experiment 2, the same 

experiment is repeated with a more pessimistic induced drag reduction factor. The values 

chosen for this experiment are presented in Table 11. Otherwise, the experimental input is 

identical to Experiment 2. The results of Experiment 3 are presented in Table 12, Figure 22 

and Figure 23. 

Table 11: Values for 𝒄𝒇 in Experiment 3 

Aircraft 𝒄𝒇 

Leading 1 

First trailing 0.875 

Second trailing 0.75 

Third trailing 0.75 

 

Table 12: Experiment 3 fuel consumption and fligt time results, solo vs formation. 

Flight 
Fuel consumption [10^3kg] Flight time [hh:mm:ss] 

solo formation difference  solo formation difference 

1 79.024 75.283 -3.741 (-4.73%) 07:55:23 08:09:46 00:14:24 (+3.03%) 

2 66.165 63.426 -2.739 (-4.14%) 06:48:01 07:04:51 00:16:50 (+4.13%) 

3 63.497 58.021 -5.476 (-8.62%) 06:33:39 06:44:57 00:11:19 (+2.87%) 

4 83.338 85.137 +1.799 (+2.16%) 08:17:13 08:32:58 00:15:45 (+3.17%) 

Total 292.026 281.867 -10.159 (-3.48%) 29:34:15 30:32:33 00:58:18 (+3.29%) 
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Figure 22: Horizontal trajectory of Experiment 3: solo (dotted lines) vs. formation (solid lines) 

 

 

Figure 23: Experiment 3 with formations: a. Aircraft weight vs. time (top left), b. fuel flow vs. time (top right), c. 

altitude vs. time (bottom left), d. airspeed vs. time (bottom right). 
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The optimal phase structure given by the branch-and-bound algorithm is: 

[ 0 13 134 1234  123  12  0 ] 

Which is slightly different from Experiment 2. To reach this optimal result, the branch-

and-bound algorithm evaluated 56 different phase structures in the solution tree, which is 

16,1% of the total amount of 347 possible phase structures. 

With a more pessimistic induced drag reduction scheme, the optimal trajectory still 

shows roughly the same characteristics when compared to Experiment 2. However, some 

major differences can be noted: Aircraft 2, which could have been expected to not join the 

formation at all due to the relatively marginal benefit, still joins the formation but at a much 

later stage. Moreover, aircraft 1 and 3 join each other early while the meeting with aircraft 4 is 

delayed a bit. The formation buildup and breakdown are more gradual, with only one aircraft 

joining or leaving at a time. This results in a slightly different optimal phase structure. 

Regarding fuel savings, the amount of fuel saved is reduced by more than half to 10.159 

kg (3.48%). However, this is still a significant fuel benefit, and the fact that the phase structure 

has not changed dramatically to achieve this shows that the chosen formation flight approach 

is robust enough. On the other hand, flight times are relatively beneficial, with the total 

increased flight time staying under an hour at 00:58:18 (+3.29%). The cruise velocity is higher 

in this experiment, and the model tends to follow a more direct route since the benefit of 

joining the formation is less strong. 

The fuel saving figure is very sensitive to changes in induced drag reduction, but this 

does not result in significant trajectory structure changes. It might be of interest to test a wide 

range of induced drag reduction schemes for the model’s sensitivity, but in a four-aircraft case 

this would demand too much computation time to be practically achievable. A induced drag 

reduction factor sensitivity analysis with a range of different values for a two aircraft scenario 

has been performed by [3]. 

7.4 Experiment 4: Joint-Venture scenario: KLM, Air France, Virgin Atlantic 

A practical implementation of formation flight from an airline perspective is generally 

challenging, because a good amount of cooperation between airlines who would plan the 

formation flight is necessary. Since they are likely to be competitors, making a formation 

arrangement which everyone agrees to would not be easy to achieve. However, there are also 

many airlines who cooperate through alliances, joint ventures or a joint shareholder interest. 

KLM and Air France are already operating under the same company (Air France-KLM Group), 

and share a lot of their resources to achieve higher efficiency. In August 2017, Air France-KLM 

Group also took a share of 31% in Virgin Atlantic, a long-haul airline which operates mostly 

from London Heathrow Airport (LHR) [33]. With an increased cooperation expected between 

AF-KLM Group and Virgin Atlantic, it is of interest to see if a flight of each airline in their 

current schedule could be operated in formation flight without changing the departure times 
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significantly. Three flights to New York JFK, each operated daily, were found which depart 

roughly at the same time [34]: 

Table 13: Flights for Experiment 4 

Flight no. Trajectory color Departure time Origin Destination 

KL 641  13:20 Amsterdam (AMS) New York City (JFK) 

AF 6  13:40 Paris (CDG) New York City (JFK) 

VS 45  14:00 London (LHR) New York City (JFK) 

 

This set of flights is taken as a case study to evaluate how much the formation flight 

benefit would be if the departure times are fixed to the times stated in Table 13. Since all flights 

have the same destination, it is expected that the formation can be maintained until descent. 

In real life, the aircraft which are used are a Boeing 777, an Airbus A380 and a Boeing 787. 

However, due to a lack of available flight models for these aircraft, all flights are modelled with 

a Boeing 747-400. Similar to Experiment 2, the solo versus formation trajectory optimization 

results are presented in Table 14, with the trajectories presented in Figure 24 and Figure 25. 

Solo trajectory diagrams are further presented in Appendix D. 

Table 14: Experiment 4 fuel consumption and fligt time results, solo vs formation. 

Flight 
Fuel consumption [10^3kg] Flight time [hh:mm:ss] 

solo formation difference  solo formation difference 

KL 641 67.302 61.452 -5.850 (-9.52%) 07:31:15 06:54:01 00:37:14 (+8.25%) 

AF 6 67.198 51.949 -15.248 (-29.35%) 07:11:28 06:53:22 00:18:06 (+4.19%) 

VS 45 63.453 64.189 +0.736 (+1.15%) 06:51:15 06:32:54 00:18:21 (+4.46%) 

Total 197.954 177.591 -20.362 (-11.47%) 21:33:58 20:20:17 01:13:42 (+5.70%) 
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Figure 24: Horizontal trajectory of Experiment 4: solo (dotted lines) vs. formation (solid lines) 

 

 

Figure 25: Experiment 4 with formations: a. Aircraft weight vs. time (top left), b. fuel flow vs. time (top right), c. 

altitude vs. time (bottom left), d. airspeed vs. time (bottom right). 

The optimal phase structure given by the branch-and-bound algorithm is: 

[ 0    12   123    13     0 ] 

Also in this case, all aircraft split up at around the same time, so the ‘13’ formation 

phase is of minimal duration. This is to be expected given that all aircraft have the same 

destination. However, this time also the rendezvous point is essentially such that all aircraft 

join at the same time. In the branch-and-bound algorithm, the buildup as well as the 

breakdown phase yield essentially the same outcome for all phase structures. This meant that 

all 17 possible phase structures were evaluated, because the cut off conditions for tree branches 

were never met. Since this is only a three-aircraft problem, the calculation time was still 

limited at 3844 seconds. 
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This experiment clearly demonstrates the feasibility of formation flying from a 

scheduling perspective. All three flights share a significant common path in their existing 

planning, and require no departure time adjustment to achieve the fuel benefits associated 

with formation flying. However, it can be observed that flight KL 641 flies at lower speeds and 

with a detour prior to joining the formation, since it needs to ‘wait’ for the other two flights to 

catch up. Delaying the departure time of KL 641 would thus have further increased the 

efficiency of this set of flights. Flight AF 6 and VS 45 are however well aligned in their current 

schedule. 

A combined fuel savings of 25.976 kg / 8.90% is achieved, which is rather high for a 

three-aircraft formation. Percentage wise this savings exactly matches the savings of 

Experiment 2, despite the higher average induced drag during formation. This can be 

explained with the fact that the solo trajectories are already much more aligned than the flights 

of Experiment 2, making for relatively smaller detours and a reduced associated fuel burn. The 

total flight time increase is limited at 01:13:42 / 5.70%, and seems to be mostly caused by the 

lower cruise speed attained during the formation flight. The detour made by KL 641 also 

contributes significantly, with the flight time increase of this flight being roughly twice as high 

as the other flights. 

Similar to experiments 1 and 2, a point can be made about the question which aircraft 

is in which position of the formation. Here it was deliberately chosen to make flight VS 45 the 

leading aircraft, since it has the shortest flight distance and therefore the lowest fuel 

requirement solo. However, due to the fact that it is leading the formation, it still had the 

highest initial weight of the three flights which were performed, making it the heaviest aircraft 

while leading the formation in the end. A vicious circle thus arises where the leading aircraft 

is by definition the heaviest even though it is suboptimal from a formation flying perspective. 

This situation is created because each aircraft is allowed to take as little fuel on board as 

needed to perform the flight with the chosen trajectory, meaning that flights KL 641 and AF 6 

take less fuel on board than when they would have flown solo. Adding a constraint which forces 

all flights to take the fuel which they would have needed to perform the solo flights would solve 

this problem for the most part. However, the situation might still arise that during a formation 

phase, a trailing aircraft becomes lighter than the leading aircraft. Then, switching the 

positions of these aircraft would be more optimal. This possibility is however not considered 

for this simulation. 

Regarding the numerical performance, the computation time stayed within practical 

limits at 3844 seconds. However, the evaluated solution tree reveals that the optimal result 

could have been obtained quicker if the branch-and-bound algorithm had a means to 

recognize the fact that the formation breakdown is virtually identical for all phase structures. 

9 nodes could have then been removed, which is more than half of the total amount of nodes 

of this relatively simple three-aircraft case. In effect, the branch-and-bound algorithm did not 

sort any time saving effect since all nodes in the solution tree were evaluated. 



 

69 

 

7.5 Experiment 5: Breguet vs. non-Breguet for cruise 

In this experiment, Experiment 4 is repeated but this case the modified Bréguet range 

equations (Section 6.5) are activated for the 3-aircraft formation cruise phase. The results of 

this experiment are presented in Table 15. The associated trajectory diagrams are presented 

in Figure 26 and Figure 27. 

Table 15: Experiment 5 fuel consumption results 

Flight 
Fuel consumption [10^3kg] 

Experiment 4 Experiment 5 difference  

KL 641 61.452 61.312 -0.140 (-0.25%) 

AF 6 51.949 52.196 +0.247 (+0.48%) 

VS 45 64.189 64.292 +0.103 (+0.16%) 

Total 177.59 177.80 +0.210 (+0.12%) 

 
 

 

Figure 26: Horizontal trajectory of Experiment 4: solo (dotted lines) vs. formation with Bréguet (solid lines, cruise 

phase is not modelled) 
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Figure 27: Experiment 5 with formations: a. Aircraft weight vs. time (top left), b. fuel flow vs. time (top right), c. 

altitude vs. time (bottom left), d. airspeed vs. time (bottom right). Cruise phase is not modelled. 

All flights show a deviation in terms of fuel usage which is no larger than 0.5% 

individually, while the total deviation is even more limited at just 0.12%. These results 

demonstrate that using the modified Bréguet range equations is a viable alternative for the 

cruise formation phase, since in terms of accuracy this approach yields desired results. The 

slight increase in net fuel burn could be explained by the limitation that with these equations, 

mach number and altitude are kept constant. Therefore, the designed implementation as 

discussed in Section 6.5 is also verified. 

In terms of trajectory, some differences can be noticed between Experiments 4 and 5. 

Flight KL 641 does not take a detour in its horizontal trajectory anymore to ‘wait’ for the other 

aircraft. Instead, it just joins flight AF 6 at a later stage. Connected to this phenomenon is the 

observation that KL 641 keeps a slightly higher velocity while waiting for AF 6, at a slightly 

higher altitude. 

Due to the fact that time is not a part of the Bréguet range equations, it’s not possible 

to incorporate flight time into the results. The trajectory diagrams therefore show a ‘gap’ for 

the cruise formation phase, and the time vectors are therefore also not representative in terms 

of absolute value. Because of this, flight time values between Experiment 4 and 5 cannot be 

compared. Another possible limitation of this approach is that a wind model cannot be 

implemented.  
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8 Discussion 

8.1 Overall evaluation of formation flight experiments 

Although the results of the formation flying trajectory optimization experiments are 

already discussed per experiment in Chapter 7, several more general observations are also 

made. First of all, between discrete phase switching points, aircraft follow a great circle arc 

horizontal trajectory. This is to be expected, as no wind effects or climate model is 

implemented. Only in Experiment 4, flight KL 641 makes a detour to accommodate the timing 

of the formation rendezvous. Next, it is observed in all experiments except Experiment 5 that 

as the aircraft become lighter, the altitude increases and the airspeed decreases. This is in line 

with the drag equation (Eq. 6.10) presented in Section 6.1, since the drag decreases at lower 

air densities 𝜌 as well as lower velocities 𝑉. As the lift requirement decreases due to a lighter 

aircraft weight, it thus becomes more efficient to climb (at higher altitudes the air density 

decreases) as well as slow down. Experiment 5 assumes a constant altitude and velocity during 

the cruise phase, so this behavior is not observed here. In these same experiments, it is found 

that compared to their respective solo trajectories, formation flight velocities are lower. This 

can be explained by the fact that with lower induced drag levels, form drag becomes more 

dominant (See Eq. 6.12). This type of drag is more affected by a higher airspeed, so a lower 

velocity becomes more optimal. At the same time, the optimal altitude in formation flight as 

determined by the model is actually higher.  

In all experiments, jagged lines are visible in the altitude vs. time and the airspeed vs. 

time graphs. Normally, one would expect a smoother trajectory. The phenomenon observed 

here is that the model decides to exchange altitude and velocity between each collocation 

point, since there is no fuel penalty attached to this. The relatively low resolution of 25 

intervals per phase and 2 nodes per interval (thus a linear fit) makes these jagged lines more 

prominent. The optimization is however not significantly negatively affected by this, however 

in real life the trajectories to be flown would have to be much smoother, especially during 

climb. At the cost of computation time, a smoother trajectory can be obtained by increasing 

the number of nodes per interval to 3 or 4 (enabling a higher order approximation) as well as 

the number of intervals. 

In the diagrams for fuel flow, discrete drops and increases in fuel flow can be observed 

every time an aircraft experiences a change in induced drag reduction factor. This behavior is 

as expected. Also, small gaps appear at every discrete phase switch in these diagrams. This is 

because the fuel flow is computed as a numerical derivative from the obtained weight data, 

meaning that for every phase one less data point is available. 
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8.2 Evaluation of the Hybrid Optimal Control approach 

8.2.1 Performance 

The developed hybrid optimal control approach has demonstrated clear benefits in 

achieving accurate trajectories with manageable computational effort. The combinatorial 

problem introduced by making the phase switching structure a part of the optimization is dealt 

with in an efficient manner by using a branch-and-bound algorithm implementation. Branch-

and-bound has especially useful characteristics when considering that the problem complexity 

of nodes in the solution tree increases with every deeper level of this tree, since more phases 

are added with more collocation points. The top-down approach where the number of phases 

gradually increases as branches are cut off ensures that the number of evaluated tree nodes in 

the more complex lower levels is relatively limited. 

Even though the branch-and-bound algorithm already reduced the number of 

evaluated nodes significantly for three-aircraft experiments such as Experiment 1, the four-

aircraft scenario of Experiment 2 showed the true potential of this method. The number of 

evaluated nodes was limited to just 35 of the possible 347. Without branch-and-bound, such 

a trajectory optimization problem could not have been solved with the currently used optimal 

control paradigm. Still, the total computation time for this case was quite high on a quadcore 

i7-870 desktop, taking over 5 hours to compute. 

The associated guess adaptation algorithm, which transforms solutions from parent 

nodes into initial guesses for their children nodes, has demonstrated to yield initial guesses 

which in the majority of the cases lead to quick convergence of the optimization. The accuracy 

of this algorithm also increases further down the solution tree, as the difference between 

parent and children nodes become smaller. This is especially useful since the complexity of the 

trajectories at lower tree levels is higher. 

8.2.2 Reliability 

In general, the developed tool performs according to the parameters set without issues. 

However, it is noted that the reliability of the existing SNOPT solving algorithm gave problems 

with obtaining the right result. Occasionally, SNOPT would encounter numerical errors while 

evaluating a node and terminate the optimization. The reason for these errors are unclear, 

since more often than not a second attempt of the same node evaluation with the same input 

would solve without problems. Normally, during a non-hybrid optimal control problem 

evaluation with only one phase structure, this would not pose a serious issue. The automatized 

nature of the branch-and-bound algorithm however requires a correct solution for every 

evaluated node because the proceedings of the entire optimization could depend on it. 

Especially in the case where a false solution has a more desirable objective value, subsequent 

results could be considered invalid. 

Additionally, there is also a significant variation observed in computation times per 

node. With a good initial guess, the problem should converge quickly to firstly a feasible and 

then also an optimal solution. Since obtaining accurate initial guesses is not straightforward, 

it occurs regularly that the initial guess generated by the guess adaptation algorithm is not 

close enough to the desired feasible solution region to achieve quick convergence. SNOPT then 

starts ‘searching around’ for a long period. This phenomenon occurred especially in the first 
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three levels of the solution tree, since here there is a large difference between the trajectories 

of the node and its parent. 

8.2.3 Applicability outside formation flying 

Initially, the goal of this thesis project was to investigate hybrid optimal control theory 

and successfully demonstrate its applicability to aviation trajectory optimization problems. 

The specific application towards formation flying was chosen later as a focus area, and this 

implementation has been demonstrated successfully. Still, it is of interest to see whether the 

developed algorithm could be used in other aviation applications as well. The concept of 

branch-and-bound for hybrid optimal control is flexible and general enough to be useful in 

many hybrid optimization problems, as has also been demonstrated in previous research [16], 

[18]. However, one can conclude that the majority of the development effort in this thesis has 

been spent on the specific formation implementation with the development of a formation 

flying phase structure notation and the adaptation of initial guesses between parent and 

children nodes in the branch-and-bound search tree. The development of the branch-and-

bound algorithm itself was relatively straightforward. Therefore, it is noted that the developed 

algorithms are too specific to formation flying to be used in other types of aircraft trajectory 

optimization problems without major modification. The general approach however is very 

promising, so using the approach presented in this thesis to deal with other types of aircraft 

trajectory optimization problems can be recommended. 

8.2.4 Limitations 

Although successful results have been obtained with the designed hybrid optimal 

control approach, several limitations of this method are identified which must be taken into 

account when using this approach for further experiments. First of all, it is of importance that 

the relative positioning between aircraft in a formation phase is a discrete aspect of the 

trajectory which is not taken into account for the model. The aircraft positions are thus chosen 

arbitrarily, which could lead to a suboptimal result. There is also an uncertainty present in the 

branch cut off parameters, so a poor choice of the cutoff margin could yield false results or an 

impractical computational time. Moreover, the optimization model has been kept simple by 

omitting wind and atmospheric effects. A more elaborate wind and atmospheric model 

implementation could be necessary to achieve the desired trajectory accuracy. This could 

however have drastic effects for the computation time. Lastly, it is noted that in its current 

state, the approach does not fully support a five-aircraft case. Not only will the solution tree 

be of impractical size with five aircraft, several modifications would also have to be made to 

the trajectory modelling to enable this.  
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9 Conclusion and Recommendations 

9.1 Conclusion 

9.1.1 Introduction 

In this thesis, a Hybrid Optimal Control (HOC) framework which can be used in 

conjunction with existing optimal control software (GPOPS) is presented. By using hybrid 

optimal control theory, trajectory optimization problems for systems that are both discrete 

time and continuous time from a mathematical perspective can be solved. While one main 

objective is to successfully build this algorithm, a case study on multi-aircraft formation flying 

for civil aviation has been performed which can demonstrate the capabilities of the designed 

method. Whilst previous research has dealt with either high accuracy trajectories for small 

formation flying problems or low accuracy modelling of very large formation flying 

trajectories, in this thesis HOC is used to achieve a high accuracy optimal trajectory for 

formations of three aircraft and larger, creating a step change in the state of the art with respect 

to these existing studies. 

It can be concluded that the main objective has been achieved. An extension to GPOPS 

which deals with the hybrid nature of multi-aircraft formation flying optimization problems 

by exploiting a branch-and-bound algorithm has been developed. Both a three- and a four-

aircraft formation optimization case study have been performed to test this developed tool. 

From the analysis of these case studies the conclusion can be drawn that the tool works as 

designed and provides a more efficient way to deal with the combinatorial complexity of these 

problems. 

The main objective is also supported by several sub-goals. All sub-goals have been 

treated in this thesis and can be marked as achieved. Existing literature on the topic of (hybrid) 

optimal control theory, trajectory optimization and nonlinear programming problems has 

been researched to obtain adequate knowledge about the topic of this research. Then, an 

analysis was made of several existing approaches to dealing with HOC problems in aviation 

trajectory optimization problems. Based on this analysis, a suitable approach to HOC, in the 

form of a branch-and-bound algorithm, was selected for the development of the framework. 

Literature on formation flying in civil aviation, including previous research on trajectory 

optimization in this field, was also researched to determine the requirements of the hybrid 

optimal control tool for this application. 

9.1.2 Model development 

The following step was then to get familiar with the working principles behind the 

existing optimal control software GPOPS and the associated aircraft optimization package 

FORT. It has been identified which elements needed rewriting or other modifications to enable 

support for a hybrid optimal control formation flying problem with three aircraft or more. The 

structure of FORT has been modified to a flexible version which automatically adapts the 

problem for a given structure of flight phases. After this, the HOC extension could be built by 
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adding an external branch-and-bound algorithm which evaluates a tree of the solution space 

top down, with each level adding extra complexity in the phase structure. The algorithm is 

capable of ‘chopping tree branches’ by evaluating at each level which branches are showing 

promising improvements to the objective value and which ones are stagnating. 

Since the HOC approach focuses on an application for a multi-aircraft formation flying 

trajectory optimization, a modelling approach for the aircraft dynamics also had to be chosen. 

Based on the existing models available in FORT, a reduced-order point mass system was used, 

with the state consisting of 7 + 𝑁 variables, where 𝑁 is the number of aircraft in formation. 

For control, three variables were used. From this point-mass system model the change in 

weight of each aircraft, which equals the fuel flow, is derived. The total objective value is then 

determined by the sum of all aircraft initial weights 𝑊0
𝑖 minus all aircraft final weights 𝑊𝑓

𝑖. 

Relevant time constraints, state limit constraints and path constraints were applied, and 

finally an assessment of the chosen assumptions and simplifications for the model was also 

made. 

9.1.3 Formation flight case studies 

To test the developed algorithm, a case with a three-aircraft formation flight was 

evaluated and compared with the results of a full enumeration of the solution space. Then, 

after validating the correct functionality of the algorithm, a significantly more complex four-

aircraft formation scenario with two different induced drag reduction factor schemes was 

evaluated. Next to this, another three-aircraft scenario case study was performed which 

focuses on the existing flight schedule of KLM, Air France and Virgin Atlantic. From the results 

of these optimization case studies, it can be concluded that three- and four-aircraft 

transatlantic formation flights demonstrate significant fuel benefit when compared to their 

respective solo trajectories. This is at the expense of additional total flight time, but generally 

the added flight times are relatively limited and should not pose a significant planning or 

operating costs disadvantage. Still, it is of importance to consider this potential drawback 

when planning real-life aircraft trajectories. 

A demonstrative scenario was also performed in which the aircraft dynamics for the 

largest formation cruise phase were not modelled with a point-mass system, but rather 

represented using modified Bréguet range equations for formation flight. The same flights 

were taken as in the presented three-aircraft scenario based on existing flight schedules, for 

comparison. A general conclusion is that this method shows potential for simplifying the 

optimization model, as only slight deviations were observed from the results of the regular 

experiment. However, computational time did not decrease, but actually increased using this 

model as GPOPS had troubles with convergence using this method. Therefore, in this thesis 

this method did not yield any additional benefit. 

Regarding the modelling approach, it was chosen not to consider the order of the 

aircraft in the formation as an optimization variable. However, this aspect could significantly 

influence the effectiveness of the optimization, since generally heavier aircraft benefit more 

from being in a trailing position. Therefore, this can be identified as a potential suboptimality 

for the results. Secondly, the resolution of the solution might not be sufficient, since jagged 
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lines were present in some trajectories which could have been eliminated by using more 

collocation points. This low resolution however does not significantly influence the actual 

trajectory performance characteristics. Lastly, it is identified that several simplifications are 

made to the model, such as the lack of wind and realistic atmospheric data, which might 

influence the accuracy of the results significantly. 

9.1.4 Effectiveness of the Hybrid Optimal Control approach 

Based on the performed case studies, several conclusions can be drawn about the 

effectiveness of the developed HOC approach for multi-aircraft formation flying trajectory 

optimization. First of all, the transformation of FORT towards a flexible set-up where the 

phase structure can be easily changed has been successful, as it enabled the development of 

smart HOC techniques. The chosen approach to solve the hybrid trajectory optimization 

problem efficiently, using a branch-and-bound algorithm, has proved to be effective in 

reducing the number of discrete evaluations required, especially in a four-aircraft scenario 

where the number of discrete formation possibilities exceeds 300. Using multi-threading also 

enabled a more efficient evaluation of the discrete solution tree. A great challenge has been to 

develop and optimize the initial guess adaptation tool, which converts initial guesses to the 

correct format for a different phase structure. The adapted guess accuracy heavily influences 

the convergence behavior of GPOPS, and thus also the computation time. In the end however, 

the guess adaptation tool proved accurate enough in most cases. 

With the chosen branch-and-bound method, attention had to be paid to the correctness 

of the lower bounds of each node, since the cut-off conditions are determined heuristically. In 

several cases, tree branches were kept unnecessarily because the differences between solutions 

were small. However, the opposite, where a false cut-off occurs, is a possible risk as well. Also, 

even though the number of evaluated nodes was reduced drastically using branch-and-bound, 

computation times were still suboptimal, with the four-aircraft case requiring more than 5 

hours to reach an optimum. Therefore, it can be concluded that branch-and-bound alone 

might not be sufficient to enable such trajectory optimizations for practical use, and that 

further improvements to the optimization model might be necessary. 

9.2 Recommendations 

It has been demonstrated that the objectives for the hybrid optimal control approach 

have largely been met. However, based on the conclusions drawn in this chapter, several 

recommendations can be made for future research to extend or improve upon the work 

presented in this thesis. 

Firstly, the hybrid optimal control approach can be further developed. For example, it 

can be investigated if computation times can be reduced significantly by removing tree nodes 

and branches containing phase structures which can be identified a priori as suboptimal. 

Another related aspect which can be investigated further is improving the branch cut-off 

conditions, since this heavily influences the computational efficiency as well as the reliability. 
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In terms of the trajectory modelling, several directions could be taken which might 

further improve the efficiency for the optimization in GPOPS. To start, it is recognized that the 

discrete combinatorial problem of determining the correct phase structure depends mostly on 

horizontal trajectories. Based on this observation, a method could be developed in which only 

these 2D horizontal trajectories are evaluated during the branch-and-bound run. Finally, the 

found optimal phase structure can then be evaluated in 4D, resulting in a complete trajectory. 

Using this approach, it might also be possible to achieve higher resolution trajectories using 

more collocation points. Another direction which could be taken is to further investigate the 

use of Bréguet range equations for cruise phases, which would reduce the complexity of the 

model significantly. 

To make the simulations more elaborate and accurate, there are also multiple 

identified research continuations. First of all, in this study only one aircraft type was evaluated, 

the Boeing 747-400. It is therefore of interest to determine how the optimization behaves with 

different aircraft models. The interaction between multiple aircraft types in one formation 

could be investigated, since there might be a variety in the induced drag reduction behavior 

when different aircraft types are involved. Secondly, an implementation of a more accurate 

atmosphere model, as well as a wind model, could drastically improve the realism of the 

obtained results, at the expense of a more complicated model. Thirdly, including the formation 

aircraft order into the optimization could yield some further fuel burn savings, since it would 

ensure that the right aircraft will lead or trail in the formation. Another factor which would 

improve the realism is the inclusion of a minimum initial fuel load which forces each aircraft 

to take enough fuel to fly the trajectories solo, since the current approach where just the 

minimum fuel is taken would pose serious risks in practical use. Lastly, a more elaborate cost 

function could be developed where not only fuel use, but also other aspects related to the Direct 

Operating Cost (DOC), such as flight time, are included. 

Finally, as demonstrated in previous literature, the methodology used in this research 

could be suitable for various other research topics in the field of aircraft trajectory 

optimization. Many discrete phenomena are identified in problems concerning aircraft 

trajectory planning, and using a hybrid optimal control approach for solving the discrete 

aspects as well as the continuous aspects of a planning problem has proven to yield useful 

results. 

9.3 Final remarks 

To conclude, it can be observed that the usefulness of a HOC approach is very high for 

the chosen application of multi-aircraft formation flying. Although the applied method is still 

not completely optimal in terms of practicality and accuracy, the results that have been found 

are very promising and could significantly improve the operations of civil aviation. This thesis 

confirms that investigating hybrid optimal control for this application has been a valuable 

exercise, and that there are many new opportunities which could be explored as a continuation 

of the research presented here. Multi-aircraft formation flying shows promising fuel saving 

potential. Therefore, given the number of flights that are performed every day, the impact of 

saving fuel just by optimizing their trajectories using formation flying can be very high on a 

global scale, both environmentally and economically.  
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A Branch-and-bound algorithm flowchart 

Branch and Bound – Formation flying tool flowchart
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B Initial guess adaptation tool flowchart 

Initial guess adaptation tool flowchart
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C Solo flight trajectories (Experiment 1,2,3) 
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D Solo flight trajectories (Experiment 4,5) 
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