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Abstract

Motivation: Clinical response to anti-cancer drugs varies between patients. A large portion of this

variation can be explained by differences in molecular features, such as mutation status, copy

number alterations, methylation and gene expression profiles. We show that the classic approach

for combining these molecular features (Elastic Net regression on all molecular features simultan-

eously) results in models that are almost exclusively based on gene expression. The gene expres-

sion features selected by the classic approach are difficult to interpret as they often represent

poorly studied combinations of genes, activated by aberrations in upstream signaling pathways.

Results: To utilize all data types in a more balanced way, we developed TANDEM, a two-stage

approach in which the first stage explains response using upstream features (mutations, copy

number, methylation and cancer type) and the second stage explains the remainder using down-

stream features (gene expression). Applying TANDEM to 934 cell lines profiled across 265 drugs

(GDSC1000), we show that the resulting models are more interpretable, while retaining the same

predictive performance as the classic approach. Using the more balanced contributions per data

type as determined with TANDEM, we find that response to MAPK pathway inhibitors is largely

predicted by mutation data, while predicting response to DNA damaging agents requires gene ex-

pression data, in particular SLFN11 expression.

Availability and Implementation: TANDEM is available as an R package on CRAN (for more infor-

mation, see http://ccb.nki.nl/software/tandem).

Contact: m.michaut@nki.nl or l.wessels@nki.nl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Large-scale pharmacogenomics screens provide a wealth of informa-

tion about potential mechanisms of drug response. In these screens,

cell lines of different cancer types have been profiled molecularly

(mutations, copy number alterations, DNA methylation and gene

expression), as well pharmacologically (response to anti-cancer

drugs) (Barretina et al., 2012; Iorio et al., 2016). Using drug re-

sponse prediction models, statistical associations can be identified

between the drug response and the molecular data. For example, the

presence of a BRAF mutation predicts sensitivity to Vemurafenib in

melanoma cell lines and a mutation in TP53 predicts resistance to

Nutlin-3a (Garnett et al., 2012). By combining various data types in

an integrative analysis, all molecular data can be employed to ex-

plain drug response. This is commonly achieved by performing

Elastic Net regression (Zou and Hastie, 2005) on all molecular data

types simultaneously (Barretina et al., 2012; Costello et al., 2014;

Garnett et al., 2012; Iorio et al., 2016; Jang et al., 2014).

Throughout this work, we will refer to this approach as the ‘classic

approach’ (Fig. 1A). While this approach could, in theory, use infor-

mation from all molecular data types, we find that it typically leads

to models that are mostly based on gene expression data. For in-

stance, a BRAF mutation activates, via a cascade of signaling events,

the transcription of many genes. As a result, the expression of these

genes is tightly linked to the mutation status of the BRAF gene, and

thus also predictive of response to Vemurafenib. When all molecular
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data are combined to build a predictive model for response to

Vemurafenib, expression of these genes may be selected instead of

the BRAF mutation, which would make the resulting model more

difficult to interpret. Instead, selecting the BRAF mutation as a fea-

ture in the model would be more informative about the mechanism

of the drug and thus lead to a more interpretable model.

We propose TANDEM, an approach that employs a two-stage

analysis to improve the interpretability of prediction models by pref-

erentially using the data types upstream of gene expression. To this

end, we first split the molecular data types into ‘upstream data’ (som-

atic mutation, copy number alteration (CNA), methylation and can-

cer type) and ‘downstream data’ (gene expression) (Fig. 1B). This

separation is based on the idea that mutation status, for example, af-

fects the transcription of genes downstream of the pathway in which

the mutation resides. TANDEM analyzes the upstream and down-

stream data ‘in tandem’: it first explains as much of the drug response

as possible using the upstream (more interpretable) data and then ex-

plains the remainder using gene expression data (Fig. 1C). Applying

TANDEM to a panel of 934 cell lines profiled across 265 drugs

(Iorio et al., 2016), we find that the upstream data types contribute

more to the prediction than in the classic approach. At the same

time, TANDEM retains the same predictive performance as the clas-

sic approach. The features selected by TANDEM result in twice as

many significant pathway enrichments compared with the classic ap-

proach, implying that the selected features are more informative

about the mechanisms of drug response. Additionally, using the

more balanced contributions of the various data types, we find that

response to MAPK targeting drugs is mostly explained by mutation

data, while predicting response to DNA damaging agents requires

gene expression data.

2 Methods

2.1 Data set
The Genomic Determinants of Sensitivity in Cancer 1000

(GDSC1000) data comprises a panel of cell lines screened for 265

anti-cancer drugs (Iorio et al., 2016). This panel contains 926 cell

lines that are fully characterized for point mutations, copy number

alterations (CNAs), methylation status and gene expression profiles.

Based on the human tumor data from The Cancer Gene Atlas

(TCGA) (The Cancer Genome Atlas Research Network et al.,

2013), Iorio et al. (2016) have performed feature selection resulting

in a set of 305 mutation, 409 CNA and 312 methylation features,

all of which are binary. Additionally, we considered 29 binary fea-

tures indicating the cancer type and 17 737 continuous gene expres-

sion features. The drug response was summarized by the IC50

(concentration that inhibits 50% of the target).

2.2 Drug response prediction using the classic approach
For drug response prediction models based on the classic approach,

we used linear Elastic Net regression (Zou and Hastie, 2005) imple-

mented in the R package glmnet (Friedman and Hastie, 2009). The

hyper-parameter k was optimized using 10-fold cross-validation and

a was set to 0.5. Predictive performance estimates were made using

double-loop cross-validation.

2.3 Predicting the binary value of upstream features

from gene expression
We first identified upstream features that are associated with drug

response using a Mann–Whitney U test, and only selecting features

significantly associated with response to at least one drug

(Benjamini–Hochberg corrected p<0.05). For each of the identified

upstream features, we then predicted its binary value using logistic

regression of the gene expression data. Again, we used the imple-

mentation from the R package glmnet (Friedman and Hastie, 2009),

optimized k using 10-fold cross-validation and set a to 0.5. The clas-

sification performance (area-under-the-ROC, AUROC) was deter-

mined using double loop cross-validation. Because the classes are

often highly unbalanced (i.e. a mutation typically only occurs in tens

of samples out of 926), we used stratified cross-validation for the

outer loop. This way, we ensured that each outer loop contains at

least one sample per class. For the same reason, we omitted all up-

stream features that appear in fewer than ten samples in total.

2.4 Relative contribution of each data type to the

prediction
In order to determine the relative contribution of each data source,

we created a prediction per data source. We determined the relative

contribution RCi for each data source by dividing the sum-of-

squares of a prediction from a certain data type by the sum-of-

squares of the overall prediction (see Supplementary materials and

Methods section). We only took into account drugs for which we

achieved a predictive performance r>0.4. This prevents models

with poor predictive performance from confounding the analysis.

2.5 The TANDEM algorithm
We used a two-stage approach to predict drug response: (i) Fit an

Elastic Net model to predict the drug response using the upstream

data types; (ii) Fit an Elastic Net model to predict the residuals from

the first stage using the gene expression data. Like in the classic ap-

proach, k was optimized using cross-validation and a was set to 0.5.

We used the same separation in cross-validation folds for both

stages. Similar to the classic approach, we used a double-loop cross-

validation to estimate performance.

Fig. 1. Illustration of TANDEM and the classic approach. (A) The classic ap-

proach: an Elastic Net regression trained on all data types simultaneously. (B)

The information predictive of drug response contained in the upstream data

types is also present in the gene expression data. (C) TANDEM: our two-stage

approach, which first uses the upstream data types to explain as much of the

drug response as possible, and then uses the gene expression to explain the

remainder
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2.6 Feature importance score
The feature importance FI for feature j was determined as follows:

FI ¼
kXjbjk2

2

kbyk2
2

(1)

where Xj is the column j of X. Without loss of generality, we assume

that all columns of X and the prediction ŷ are mean-centered.

2.7 Pathway enrichment
We downloaded version 5 of the KEGG pathways from MSigDB

(Subramanian et al., 2005) and used a hypergeometric test to quan-

tify the enrichment of selected features within a pathway. The P-val-

ues were controlled for FDR by applying Benjamini–Hochberg

correction per drug. For more details, see Supplementary materials

and Methods section.

3 Results

3.1 The information in all data types is captured

in the gene expression data
For each of the 265 drugs of the GDSC1000 pharmacogenomics

panel, we first built drug response models for each drug and each

data type separately using Elastic Net regression. We assessed the

predictive performance of these models using the Pearson correl-

ation coefficient between the observed and the predicted IC50s

(Supplementary Table S1). The most predictive data type was found

to be gene expression data: the median predictive performance of

these models is higher compared to models based on other data

types (Fig. 2A). This finding is consistent with previous work by

Costello et al. (2014) and Jang et al. (2014). Subsequently, we built

drug response models using all data types simultaneously, referred

to as the ‘classic approach’. We found that the predictive perform-

ance of models based on only gene expression and models based on

the classic approach was nearly identical (median difference across

drugs: 0.001, Fig. 2A). The predictive performance of these two

methods is not only comparable at the median, but it is also highly

correlated across all drugs in the panel (Pearson correlation coeffi-

cient across drugs: 0.99, Supplementary Fig. S1A), indicating that

both methods achieve similar performance for the same drugs.

Altogether, we found that adding upstream data does not improve a

model based on gene expression only, implying that the information

from the upstream data types is already contained in the gene ex-

pression data.

To investigate the possible redundancy between the upstream

and the downstream data, we attempted to predict the upstream fea-

tures (e.g. aberration status or cancer type) from downstream data

(gene expression). For the 503 upstream features associated with

drug response, predicting the aberration status or cancer type from

gene expression resulted in a median AUROC of 0.88

(Supplementary Fig. S1B). Hence, we found that it is indeed possible

to predict the upstream features with high accuracy from down-

stream data, which further corroborates that the information in the

upstream features is also present in the gene expression data.

Finally, we investigated the relative contribution of each data

type to models based on the classic approach. To assess the relative

contribution of a given data type, we determined what fraction of

the prediction using all data types is explained by that particular

data type (Methods section and Supplementary Table S1). Despite

the redundancy between the upstream and the downstream data, the

models preferentially select gene expression features (Fig. 2B). For

89% of the drugs, more than 90% of the variation in the prediction

was attributed to gene expression. To investigate whether the high

dimensionality and the continuous nature of the gene expression

data had an effect on this result, we reduced the number of features

and discretized the gene expression (Supplementary methods). In

both cases, we still observed the domination of the gene expression

in the models (Supplementary Fig. S1C). We concluded that neither

the dimensionality nor the continuous nature of the data explain the

high relative contribution of gene expression in the models based on

the classic approach.

Altogether, we have shown that, in the context of drug response

prediction, gene expression recapitulates the information contained

in upstream data. Thus, we set out to exploit the redundancy be-

tween the upstream and downstream data to create more interpret-

able models.

3.2 TANDEM produces a more balanced contribution of

different data types while maintaining the same

performance
To utilize the information from gene expression data, without

allowing it to completely dominate the models, we propose a two-

stage approach to predict drug sensitivity. In the first stage,

Fig. 2. Predictive performance of individual molecular data types. (A)

Predictive performance (Pearson correlation between measured IC50s and

predictions from the classic approach) across 265 drugs using individual data

types (mutation, CNA, tissue of origin, methylation, gene expression) or a

combination of all data types (combined) with the classic approach. (B)

Relative contribution of each data type in the combined models, across all

drugs for which we achieved a predictive performance r>0.4

TANDEM: maximizing the interpretability of drug response models i415

Deleted Text: Where 
Deleted Text: <italic>p</italic>
Deleted Text: -
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw449/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw449/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw449/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw449/-/DC1
Deleted Text: (Area Under the ROC curve)
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw449/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw449/-/DC1
Deleted Text: (
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw449/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw449/-/DC1
Deleted Text: Methods
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw449/-/DC1


TANDEM constructs a model to predict as much of the variation in

the drug response as possible using the—more interpretable—up-

stream data types only. In the second stage, TANDEM explains the

remainder of the variation in the drug response using gene expres-

sion data.

We illustrate the results of our method and its differences with

the classic approach using three well-characterized drugs:

Trametinib (a MEK inhibitor), Nutlin-3a (an MDM2 inhibitor) and

Nilotinib (a BCR-ABL inhibitor). Using the classic approach, gene

expression accounts for most of the prediction (Fig. 3A). For

Trametinib, 94% of the prediction is attributed to gene expression

data and only 6% is attributed to the upstream data types. In con-

trast, using TANDEM, we obtain a model where 32% of the predic-

tion is attributed to gene expression and 68% to the upstream data

types (Fig. 3B). The same holds for Nutlin-3a and Nilotinib: when

employing TANDEM, the contribution of upstream data types in-

creases dramatically, albeit in different proportions, while maintain-

ing the same level of predictive performance (Fig. 3A and B).

Across all drugs for which we obtained a predictive performance

r>0.4, the median percentage of variation attributed to gene ex-

pression was 100% when using the classic approach, while it

dropped to 52% when using TANDEM (Fig. 3C). In the latter case,

the median percentage of variation explained by mutations, CNAs,

methylation status and cancer type was 3%, 2%, 20% and 11%, re-

spectively (Fig. 3C). In addition, TANDEM obtains virtually the

same predictive performance as the classic approach (Fig. 3D)

(Pearson correlation: 0.99, median difference: 0.002). In summary,

TANDEM results in models that use all data types in a more bal-

anced fashion, while retaining the same predictive performance as

the classic approach.

3.3 TANDEM produces more interpretable models
TANDEM produces models that are mostly based on upstream data

features. As these upstream features are more likely causally related

to drug response, the resulting models are easier to interpret. To

demonstrate the improved interpretability, we performed a pathway

enrichment analysis of the genes identified by TANDEM as being

associated with drug response. Using the KEGG pathways

(Kanehisa and Goto, 2000; Kanehisa et al., 2014), we tested all

drug-pathway pairs for enrichment of predictive genes (i.e. genes

associated with response to the drug in our model) among the genes

annotated to this pathway. Since TANDEM preferentially uses the

upstream data, which is enriched for well-studied genes, we were

concerned with selection bias when testing for pathway enrichment

against a genome-wide background distribution. To account for this

bias, we instead defined the background distribution using only

genes present in at least one KEGG pathway (Methods section).

After correcting for multiple testing, TANDEM yielded more than

twice (164 versus 64) the number of significant enrichments as com-

pared to the classic approach (Supplementary Fig. S2A and B). The

features selected by TANDEM can thus be related to existing know-

ledge (pathways) more easily than those selected by the classic ap-

proach, implying that the resulting models are more easily

interpreted.

We illustrate these results using two significant enrichments from

TANDEM: the features in the MAPK pathway associated with re-

sponse to the MEK inhibitor Trametinib (Benjamini–Hochberg FDR

corrected P: 1.0e�3, Fig. 4A) and the features in the B cell receptor

signaling pathway associated with the HDAC6 inhibitor Tubastatin

(Benjamini–Hochberg FDR corrected P: 5.3e�5, Fig. 5B). In both

examples, the features selected by TANDEM resulted in a significant

enrichment, whereas the features selected by the classic approach did

not.

For Trametinib (a MEK inhibitor), both methods identified

KRAS, NRAS and BRAF mutations to be associated with sensitivity

(Supplementary Fig. S3A–C). This is expected as these mutations all

activate MAPK signaling through MEK, and inhibition of MEK

shuts down the pathway, thereby mitigating their effect and render-

ing mutated cell lines sensitive to Trametinib. TANDEM selected

two additional mutations in the pathway: HRAS and MYC

(Supplementary Fig. S3D and E). Like the aforementioned muta-

tions, HRAS signals through MEK and hence HRAS mutations are

associated with sensitivity. Myc proteins can harbor a mutation in

their regulatory phosphorylation site, which allows them to escape

ubiquitin/proteasome-mediated turnover and leads to accumulation

of Myc protein (Bahram et al., 2000). Because the mutated Myc pro-

teins activate the downstream targets of the pathway independently

of MEK, mutated cell lines are insensitive to the MEK inhibitor.

Thus, this mutation is associated with resistance to MEK inhibition.

In addition, both methods identified DUSP6 as a predictive feature

(Supplementary Fig. S3F). DUSP6 transcription is induced by ERK

activation (Furukawa et al., 2008). Hence, by proxy, high DUSP6

expression is an indication of high phospho-ERK levels. Since

phospho-ERK can be attenuated by MEK inhibition, high DUSP6

expression is associated with sensitivity to MEK inhibition (Jing

et al., 2012). DUSP6 is an example of a gene expression feature

Fig. 3. Data type contribution and predictive performance. Relative contribution of each data type (indicated by the colors) and predictive performance (r, the

Pearson correlation between observed and predicted IC50s) for three example drugs, using (A) the classic approach for data integration and (B) TANDEM. (C)

Relative contribution of each data type in TANDEM, across 265 drugs, across all drugs for which we achieve a predictive performance r>0.4. (D) Predictive per-

formance of the classical approach versus TANDEM
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whose selection not only increases the predictive performance but

also benefits the interpretability.

Our second example models the response to the HDAC6 inhibi-

tor Tubastatin (Fig. 4B), an anti-inflammatory drug (Butler et al.,

2010; Vishwakarma et al., 2013) that has shown anti-cancer poten-

tial (Hideshima et al., 2005; Minucci and Pelicci, 2006). Unlike

other members of the HDAC family, HDAC6 is exclusively local-

ized in the cytoplasm and hence does not have a histone deacetylase

Fig. 4. Features selected by TANDEM in the context of two pathways. Representation of (A) the MAPK signaling pathway and (B) the B cell receptor signaling

pathway from KEGG. Indicated in color are the genes associated with response to (A) Trametinib or (B) Tubastatin by TANDEM (dark green) or by both

approaches (light green)

Fig. 5. Most important features for predicting response to DNA damaging agents and MAPK pathway inhibitors. Top 10 most important features (based on their

average feature importance score) for predicting response to MAPK-targeting drugs (A and B) or DNA damaging agents (C and D) using the classic approach (A

and C) or TANDEM (B and D)
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function (Gao et al., 2007; Hubbert et al., 2002). Instead, Gao

et al. (2007) have proposed that HDAC6 is required for efficient

Rac1 activation. Interestingly, TANDEM identifies RAC1 amplifi-

cations to be associated with resistance to Tubastatin

(Supplementary Fig. S3G), whereas the classic approach does not.

This could mean that when Rac1 is available in abundant levels, ef-

ficient activation of Rac1 by HDAC6 is not required anymore and

hence HDAC6 inhibition has little effect, causing resistance. Both

methods associated PKCb expression with sensitivity to Tubastatin

(Supplementary Fig. S3H). One additional gene expression feature

was uniquely identified using TANDEM: the expression of Igb

(Supplementary Fig. S3I). As PKCb and Igb both reside in the B cell

receptor signaling pathway, their selection could mean that

Tubastatin is especially potent in B cell-derived lymphoid cancers

with active B cell receptor signaling. This is further supported by a

negative correlation between the expression of Igb (a component of

the B cell receptor) and response to Tubastatin within the 68 B cell

derived lymphoid cell lines in the GDSC1000 data set (Pearson cor-

relation coefficient: �0.49, Supplementary Fig. S3J).

Altogether, we found that the features identified by TANDEM

can be interpreted in the context of pathways. Due to the more bal-

anced contributions of upstream and downstream data types, we

show that our method leads to improved interpretability of the drug

response models, while achieving the same predictive performance.

3.4 Different data types predict response to different

drug classes
To test if certain data types better predicted response to certain

classes of drugs, we used the drug classification provided with the

GSDC1000 data (Iorio et al., 2016), where all 265 drugs are catego-

rized into 21 classes, based on either the mechanism of action (e.g.

DNA damaging agents) or the pathway in which the drug target res-

ides (e.g. MAPK pathway). For a given drug class, we considered the

relative contribution each data type makes to the prediction using

TANDEM, using only the drugs for which a model could be built

with predictive performance r>0.4. Using these relative contribu-

tions, we tested each drug class for association with each data type

(Supplementary Fig. S4). We further investigated two associations:

the most significant association using upstream data (MAPK path-

way inhibitors and mutation data) and the most significant associ-

ation using downstream data (DNA damaging agents (DDAs) and

gene expression). For these drug classes, we determined the top 10

most important features using both the classic approach and the

TANDEM. The feature importance was assessed based on the size

of the regression coefficient, corrected for the variance of the corres-

ponding feature (Supplementary Table S1).

3.5 Gene expression data is the best predictor of

response to DNA-damaging agents
For the 10 drugs from the DDA drug class, the response models pro-

duced by TANDEM had a higher contribution of gene expression

compared to other drug classes (Benjamini–Hochberg corrected P:

0.046, one-tailed Mann–Whitney test, Supplementary Fig. S5A).

Given that our method preferentially uses upstream features, we

found it intriguing that gene expression still accounts for a median

76% of the explained variation. In fact, the contribution of gene ex-

pression is mostly due to the expression of SLFN11, which is the

most important predictor of response to DDAs in both the classic

approach and TANDEM (Fig. 5A and B). Part of the information

contained in the expression of SLFN11 is also present in some up-

stream features, which results in a lower feature importance for

SLFN11 when using TANDEM. For example, SLFN11 expression

is significantly higher in the ALL (P-value: 5.2e�9, Supplementary

Fig. S5B). However, as TANDEM selects SLFN11 expression after

the acute lymphoid leukemia (ALL) cancer type has been selected,

we can rule out that SLFN11 is merely selected as a proxy for ALL.

Altogether, this points to an important role for SLFN11 in DDA re-

sponse. Indeed, Zoppoli et al. (2012) have found that knockdown of

SLFN11 leads to increased resistance to many DDAs, indicating a

causative role for SLFN11 expression.

3.6 Mutations are the best predictors of response to

MAPK pathway inhibitors
For the 16 drugs from the MAPK pathway inhibition class, the re-

sponse models produced by TANDEM had a significantly higher

contribution of mutation data compared to other drug classes

(Benjamini–Hochberg corrected P: 1.1e�5, one-tailed Mann–

Whitney test, Supplementary Fig. S5C). Investigating the most im-

portant features obtained using both methods (Fig. 5C and D), we

found that they both identified the BRAF mutation as the strongest

predictor of response, as expected (Downward, 2003). The remain-

ing part of the top 10 features is completely different between the

two methods: for the classic approach, it solely consists of gene ex-

pression features, whereas for TANDEM it consists of upstream fea-

tures. TANDEM identifies KRAS and NRAS, two canonical

mutations known to modulate response to MAPK pathway inhibi-

tors (Downward, 2003), while the gene expression features identi-

fied by the classic approach do not give clear insight into the

mechanisms of drug response. Consistent with the literature,

TANDEM also associates a number of cancer types with response to

MAPK inhibition: melanoma (SKCM), acute myeloid leukemia

(LAML) and chronic myeloid leukemia (LCML) are associated with

sensitivity (Geest and Coffer, 2009; Inamdar et al., 2010), whereas

small cell lung cancer (SCLC) is associated with resistance

(DeGregori, 2006; Ravi et al., 1998).

3.7 TANDEM prevents cancer type specific expression

from confounding the results
Using cancer type as an upstream feature, TANDEM avoids the se-

lection of genes whose expression is specific to one cancer type. In

the MAPK inhibitors example above, the classic approach selects

LAIR1 and PRSS57 as important features (positions 3 and 10 in the

top 15 classic approach features). However, these genes are prefer-

entially expressed in LAML and LCML (P<2.2e�16, Mann–

Whitney U test, Supplementary Fig. S6A and B). Thus, the selection

of LAML and LCML cancer types as important features by

TANDEM is much more informative. Similarly, the classic approach

selects BIN3 expression, but BIN3 is preferentially expressed in

SKCM (P<2.2e�16, Mann–Whitney U test, Supplementary Fig.

S6C). The selection of SKCM by TANDEM is, therefore, more

informative.

To further look for a possible link between expression of these

genes and drug response as identified by the classic approach, we

investigated whether these three genes are involved in the resistance

mechanism in the cell lines of the corresponding cancer type. To do

this, we tested the correlation between these genes and response to

MAPK pathway inhibitors within the respective cancer type. None

of these genes showed a significant correlation with the drug re-

sponse (Supplementary Fig. S6D–F) (Benjamini–Hochberg corrected

P>0.05, Pearson correlation). Unless this is due to small sample

size and multiple testing correction, this supports the conclusion

that these gene expression features are selected as a proxy for cancer
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type and are not directly associated with drug response. Hence,

TANDEM more accurately indicates the cancer type as a predictive

feature.

Altogether, we have shown that by using the different data types

in a more balanced fashion, TANDEM replaces part of the gene ex-

pression signatures by various upstream features, such as mutations

and cancer type features (MAPK pathway inhibitors). At the same

time, for the gene expression features that are selected by

TANDEM, such as DUSP6 (Trametinib) and SLFN11 (DDAs), we

can rule out that they are merely selected as a proxy for a specific

cancer type.

4 Discussion

Large-scale pharmacogenomics screens can offer insights into rela-

tions between molecular data and drug response. By integrating the

various data types, the molecular data can be comprehensively asso-

ciated to drug response. However, we have shown that the classic

approach for data integration (Elastic Net regression on all molecu-

lar data types simultaneously) results in models that are largely

based on gene expression. This can be attributed to the redundancy

in information between the upstream and downstream data. Here,

we introduced TANDEM, an approach that preferentially uses the

upstream data types, and only adds gene expression when necessary.

The resulting models have a much larger contribution of upstream

data types, while retaining the same predictive performance as the

classic approach.

The main advantage of TANDEM is that the resulting models

are more interpretable. By focusing on the upstream data types first,

the analysis is prevented from being confounded by the expression

of genes that are either specific to the cancer type or serve as ‘signa-

tures’ of the aberration status of upstream genes. Yet, because the

model uses gene expression in the second stage, our method also

identifies relevant genes, such as SLFN11 (DNA damaging agents)

or DUSP6 (Trametinib), based on their gene expression patterns.

De Bin et al. (2014) have investigated additional strategies to

combine redundant data, in particular clinical and molecular data.

In their ‘favoring’ strategy, they remove the regularization penalty

from the clinical data to ‘favor’ clinical data over the rest. This ap-

proach was not feasible in our setting, as the upstream data is high-

dimensional and removing the regularization would result in the in-

version of a singular matrix. Similar to their ‘dimension reduction’

strategy, we reduced the dimensionality of the gene expression data,

but we found that this still leads to models that are dominated by

gene expression data (Supplementary Fig. S1C). For the combination

of multiple molecular data types, we found that a two-stage ap-

proach (in their terminology: a ‘residuals strategy’) works well to

combine upstream and downstream data types.

Redundancy between molecular data types has been explored be-

fore. Wang et al. (2013) have shown that the information from

methylation status is captured in gene expression profiles. Although

they did not study drug response prediction in cell lines, but rather

investigated clinical outcome in patients, their results support our

idea of redundancy captured by upstream and downstream data

types. In the model by Wang et al., the gene expression is decom-

posed in two parts, based on whether it can be modulated by methy-

lation. This can provide insight in relations between methylation

and gene expression features. Explicitly modeling the relations be-

tween gene expression and upstream data could be an interesting ex-

tension for TANDEM.

Similar to the redundancy between methylation and gene expres-

sion, Iorio et al. (2016) observed that, in GDSC1000, the gene ex-

pression data captures a large fraction of the information regarding

the cancer type. In agreement with the observations made by Iorio

et al. (2016), we found that the cancer type features show the stron-

gest redundancy with gene expression. We extended these ideas by

considering not only the redundancy between gene expression and

either methylation or cancer type, but by jointly considering all

other data types. In the future, it would be interesting to assess

whether gene expression also captures information from other mo-

lecular effects, such as miRNAs.

In this work, we have introduced TANDEM, a two-stage ap-

proach that improves the interpretability of the resulting drug re-

sponse models by focusing on upstream features, while retaining

good predictive performance. We believe that advances in the inte-

grated analysis of multiple molecular data types will lead to a better

understanding of the mechanisms of drug response and ultimately to

improved treatments in the clinic.
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