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Abstract—We address the interpretability of convolutional neu-
ral networks (CNNs) for predicting a geo-location from an image.
In a pilot experiment we classify images of Pittsburgh vs Tokyo
and visualize the learned CNN filters. We found that varying the
CNN architecture leads to variating in the visualized filters. This
calls for further investigation of the effective parameters on the
interpretability of CNNs.
Index Terms—convolutional neural network (CNN), inter-

pretability, place recognition, visualization, classification.

I. CONTEXT

We investigate what visual cues can discriminate visual geo-

locations. We draw inspiration of [1], however using modern

deep learning methods to learn discriminative features in city

views. These features can be exploited by researchers in the

humanities to study various aspects of urban and architecture

design as well as its social attributes.

Human interpretability of intelligent systems is a key factor

for establishing trust between the user and the machine [2].

Initial attempts to visualize the learned attributes in convolu-

tional neural networks have commenced since the advent of

CNN to unfold the magic of the black box [3]–[5]. There is

yet an increasing interest in probing these popular deep neural

networks (DNN) [6]–[9]. We track the emerge of semantic

objects at the final layer representation of CNN as in [9].
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Fig. 1. Grad-Cam [10] visualizes a trained CNN model using the ground truth
label and the test image. The output is a corresponding importance heat-map
showing the most and the least discriminative areas with red (high value) to
blue (low value) colors, respectively.

II. METHOD & RESULTS

We use the recent Grad-Cam [10] to investigate how CNN

architectures vary in their interpretability (Fig. 1). We consider

three models in a visual place recognition (classification) task

between images of Tokyo and images of Pittsburgh [11]: 1. a

shallow (four convolutional layers and two fully connected lay-

ers with max pooling and ReLu activation layers in between),

2. the VGG11 model [12] and 3. the ResNet18 model [13].

All three models are trained using the cross-entropy loss. The

training, validation and test datasets are constructed with the

proportions as 6:2:2, respectively. Training sets are balanced

and consists of 45,000+ samples.
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Fig. 2. Different CNN models learn dissimilar attributes for place recognition.
Note that a shallow net triggers on the sky or on disjoint regions in the image.
The ResNet focuses on wider regions and VGG is more selective.

For all three models the test set classification accuracy

is consistently over 99%. The visualizations (Fig. 2), how-

ever, show high variation between networks. Our observations

indicate that VGG11 shows more semantically meaningful

representation at the final convolutional layer compared to the

ResNet18 and the shallow CNN. Moreover, the shallow CNN

picks up on the unwanted bias in the datasets, e.g. a clear

or cloudy sky than the deeper CNN models. Finally, VGG11

most often highlights pathways for Pittsburgh , while in Tokyo

it selects kanji signs as the most discriminative attributes.
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