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Accurate predictive simulations of human gait rely on optimisation criteria to solve the system’s redun-
dancy. Defining such criteria is challenging, as the objectives driving the optimization of human gait are
unclear. This study evaluated how minimising various physiologically-based criteria (i.e., cost of trans-
port, muscle activity, head stability, foot–ground impact, and knee ligament use) affects the predicted
gait, and developed and evaluated a combined, weighted cost function tuned to predict healthy gait.
A generic planar musculoskeletal model with 18 Hill-type muscles was actuated using a reflex-based,

parameterized controller. First, the criteria were applied into the base simulation framework separately.
The gait pattern predicted by minimising each criterion was compared to experimental data of healthy
gait using coefficients of determination (R2) and root mean square errors (RMSE) averaged over all biome-
chanical variables. Second, the optimal weighted combined cost function was created through stepwise
addition of the criteria. Third, performance of the resulting combined cost function was evaluated by
comparing the predicted gait to a simulation that was optimised solely to track experimental data.
Optimising for each of the criteria separately showed their individual contribution to distinct aspects of

gait (overall R2: 0.37–0.56; RMSE: 3.47–4.63 SD). An optimally weighted combined cost function pro-
vided improved overall agreement with experimental data (overall R2: 0.72; RMSE: 2.10 SD), and its per-
formance was close to what is maximally achievable for the underlying simulation framework. This study
showed how various optimisation criteria contribute to synthesising gait and that careful weighting of
them is essential in predicting healthy gait.
� 2021 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Forward dynamic simulations can be used to predict new pat-
terns of human movement without requiring experimental data.
Thus, such simulations have the potential to investigate the mech-
anistic cause-and-effect relationships in movement impairments,
optimise the prescription of assistive devices, and predict out-
comes of interventions. A critical aspect in predictive simulations
is the cost function, which sets the goal of the movement and aims
to replicate human gait optimisation. At present, it is not clearly
known how human gait is optimised, and how to specify and
weigh the involved criteria.

A number of different physiologically-based criteria have been
used in predictive simulations of human gait. Many experimental
studies have shown that the energetic cost of transport (CoT) is
involved in human gait selection (Abram et al., 2019; Bertram
and Ruina, 2001; Donelan et al., 2001; Minetti et al., 2020;
Selinger et al., 2015; Zarrugh et al., 1974) and, consequently, it is
also the most commonly considered criterion in predictive simula-
tions of gait (Anderson and Pandy, 2001; Dorn et al., 2015; Falisse
et al., 2019; Lai et al., 2018; Ong et al., 2019; Song and Geyer, 2015;
Wang et al., 2012). Besides energy cost, human gait might also be
optimised to prevent muscle fatigue by minimising muscle
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activation, as suggested by the muscle force-endurance relation-
ship (Crowninshield and Brand, 1981; Müller and Grosse-
Lordemann, 1937), and as applied in several predictive simulation
studies (Ackermann and van den Bogert, 2010; Falisse et al., 2019;
Lai et al., 2018). Head stability measures have also been used in
simulation studies (Dorn et al., 2015; Nguyen et al., 2019; Ong
et al., 2019) supported by the finding that human head accelera-
tions, detected by the otolith organs in the ear (Kandel et al.,
2013), remain similar across different walking conditions (Menz
et al., 2003). Further, a recent commentary has suggested how
the derivative of force, defined as ‘yank’, is an important factor in
sensorimotor systems (Lin et al., 2019). Indeed, mitigating the
impact of external forces, or yank, which could be detected by
the cutaneous mechanoreceptors in the foot (Kavounoudias and
Roll, 1998; Kennedy and Inglis, 2002), may be involved in human
walking, as a high rate of loading has been suggested to contribute
to injuries by applying high stresses to the leg’s tissues
(Mündermann et al., 2005; Nigg, 1985). Finally, the musculoskele-
tal models in previous simulation studies included a joint limit tor-
que, representing ligaments, that are activated during joint hyper-
flexion or -extension (Dorn et al., 2015; Geyer and Herr, 2010; Ong
et al., 2019). Mimicking type III joint receptors firing when reach-
ing these extreme joint angles (Nyland et al., 1994; Zimny and
Wink, 1991), those studies minimised using these joint limit tor-
Table 1
Overview of the musculotendon parameters that were used in the musculoskeletal model

MTU in model Gait2392
pathway

Tendon slack
length

Optimal fiber
length

Maximum
isometric force

Hamstrings bifemlh 0.326 0.109 2594
Biceps femoris

short head
bifemsh 0.089 0.173 1122

Gluteus maximus glut_max2 0.127 0.147 4759
Iliopsoas psoas 0.160 0.100 5148
Rectus femoris rect_fem 0.310 0.114 1169
Vasti vas_int 0.136 0.087 4530
Gastrocnemius med_gas 0.390 0.060 2241
Soleus soleus 0.250 0.050 7147
Tibialis anterior tib_ant 0.223 0.098 1597

Table 2
Overview of the gait phases and muscle reflexes used in our controller.

Early Stance Late Stance

Threshold measured to initiate
gait phase

GRF greater than
threshold*

Sagittal distance
stance foot*

Hamstrings C0
PD from pelvis tilt

C0
PD from pelvis tilt

Biceps femoris short head

Gluteus maximus C0
PD from pelvis tilt

C0
PD from pelvis tilt

Iliopsoas C0
PD from pelvis tilt

C0
PD from pelvis tilt

Rectus femoris C0
L+

C0
L+

Vasti C0
F+

C0
F+

Gastrocnemius F+ F+
Soleus F+ F+
Tibialis anterior C0

L+
F- from soleus

C0
L+
F- from soleus

* indicates thresholds differentiating gait phases that were optimised. C0 was a constan
angle. F was a force-based reflex, L a length-based reflex. + and – were positive and ne
between muscles (i.e., iliopsoas-hamstrings and soleus-tibialis anterior), to prevent co-c

2

ques (Dorn et al., 2015; Geyer and Herr, 2010; Ong et al., 2019),
which is particularly relevant for the knee joint that may approach
end-of-range of motion during gait.

Although it is likely that human gait is optimised for a variety of
these physiologically-based criteria, it is unclear how each of these
criteria contribute to gait. To achieve more representative predic-
tions, it is necessary to better understand the individual effects
of these criteria, as well as their relative contribution to human
gait. Therefore, this study’s two aims were to 1) evaluate the effects
of minimising the criteria CoT, muscle activity (MusAct), head sta-
bility (HeadStab), foot–ground impact (FGImpact), and knee hyper-
extension (KneeExt) on gait using predictive simulations, and 2)
develop and evaluate an optimally weighted, combined cost func-
tion tuned to predict healthy gait.

2. Methodology

2.1. Experimental gait data

Motion capture data was collected using the Plug-In-Gait mar-
ker set (Vicon Nexus 2.6.1; Davis, Õunpuu, Tyburski, & Gage, 1991;
Kadaba, Ramakrishnan, & Wootten, 1990) for ten healthy adults (4
males, age 26.8 ± 2.6 years, mass 67.2 ± 8.5 kg, height 1.76 ± 0.0
8 m) walking overground at their comfortable walking speed.
.

Pennation angle at optimal
fiber length

Tendon strain at maximum
isometric force

Slow twitch
ratio

0.000 0.049 0.499
0.401 0.049 0.529

0.000 0.049 0.550
0.144 0.049 0.500
0.052 0.049 0.387
0.087 0.049 0.484
0.297 0.100 0.546
0.436 0.100 0.759
0.087 0.049 0.721

Pre-swing Swing Late swing

Contralateral foot enters
early stance

GRF lower than
threshold*

Sagittal distance swing
foot*

C0
PD from pelvis tilt

F+ F+

C0
L+

C0
L+

C0
PD from pelvis tilt

F+ F+

C0
PD from pelvis tilt

C0
PD from pelvis tilt
L+
L- from hamstrings

C0
PD from pelvis tilt
L+
L- from hamstrings

C0
L+

C0
L+

C0
L+

C0
F+
F+
F+
C0
L+
F- from soleus

C0
L+

C0
L+

t stimulation value. PD was a proportional-derivative reflex, based on the pelvis tilt
gative feedback, respectively. Reflex loops mostly worked within muscles, but also
ontraction.
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Ground reaction forces (GRFs) were simultaneously collected from
two embedded force plates (AMTI, Watertown, MA, USA). Muscu-
loskeletal modelling was conducted in OpenSim (version 4.0;
Seth et al., 2018), scaling the gait2392 musculoskeletal model
(Delp et al., 1990) to each participant’s proportions using a static
T-pose trial. Inverse kinematic and inverse dynamic tools were
used to compute joint angles and moments from walking trials.
Joint powers were calculated from these angles and moments
using custom-written scripts in MATLAB 2016a (The MathWorks
Inc., MA). The ensembled averaged GRFs and joint angles, moments
and powers were used in further comparisons as normative exper-
imental data for healthy gait. Additionally, normative muscle acti-
vation patterns were derived from Bovi et al. (2011), including
electromyography data for the gluteus maximus, rectus femoris,
biceps femoris, vastus medialis, gastrocnemius medialis, soleus
and tibialis anterior muscles using a ZeroWire system (Aurion,
Milano, Italy).

2.2. Base simulation framework

Our base simulation framework was developed using the open-
source software SCONE (version 1.4.0; Geijtenbeek, 2019). A gen-
eric musculoskeletal model (gait2392; Delp et al., 1990) was sim-
plified to nine degrees of freedom (sagittal plane only; pelvis and
Fig. 1. The gait patterns predicted by minimising for different criteria, compared to norm
time-normalised gait cycles in the ten-second simulation, excluding the first two gait cy

3

trunk merged) and nine musculotendon units per leg. For each
group of muscles working around the same degrees of freedom,
the musculotendon pathway and parameters from a representative
muscle were selected, and its maximum isometric force was
updated by adding the forces from the other muscles to that group.
The Millard-equilibrium muscle model was used (Millard et al.,
2013) with Table 1 providing an overview of its parameters. Of
note, tendon strain at maximum isometric force was 4.9% for all
muscles (Millard et al., 2013; Rajagopal et al., 2016), except for
the gastrocnemius and soleus that were set to 10% (Arnold et al.,
2013; Ong et al., 2019). The ratio between slow and fast twitch
fibres for each muscle was similar to Ong et al. (2019). A knee
end-of-range of motion limit torque was added that was activated
when the knee extended below 5 degrees of flexion (Markolf et al.,
1990), with a stiffness of 2 N*m/degree and a dampening of 0.2 N
*m/(degrees*second). A Hunt-Crossley foot–ground contact model
with two viscoelastic spheres at each foot was added (Hunt and
Crossley, 1975) and the geometry of the spheres was initially opti-
mised minimising the error between simulated and experimental
GRFs and kinematics (see Appendix A for details).

A reflex-based controller (Geyer and Herr, 2010) was imple-
mented into our base simulation framework, detailed in Table 2.
This type of controller results in intrinsically stable neuromuscular
simulations, and was therefore favoured over open loop controller
ative experimental data. The variables from the simulated gait were averaged over
cles.
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in this study. The controller consisted of different types of muscle
force- and length-based reflex loops working within and between
muscles, activating the musculotendon units in different gait
phases (i.e., early stance, late stance, pre-swing, swing and late
swing). The trunk was controlled by a proportional-derivative
(PD) reflex controller based on the pelvis + trunk tilt angle. Reflex
delays were also set as in Geyer and Herr (2010). For the initial
state, the initial pose rate of change was selected from pilot exper-
iments. The initial muscle activation was set according to initial
controller output, while the initial length of the contractile ele-
ment was found after equilibration of the muscle tendon dynamics,
based on initial muscle–tendon length, velocity and activation. The
model’s initial pose, the thresholds between gait phases, and the
reflex gains and offsets of each muscle for each gait phase were
optimised. There were 98 design variables: seven for the model’s
initial pose, four to differentiate gait phases, and 87 for the muscle
reflexes. Except for the initial pose, all design variables were sym-
metric for the left and right legs.

The design variables were optimised by adding different cost
functions, specified below, to the base simulation framework.
When optimising for a cost function, the score, which is the
weighted sum of the involved cost function criteria over the ten-
second simulation, was minimised using a Covariance Matrix
Adaptation Evolution Strategy (CMA-ES; Hansen 2016). A 24-core
Intel Xeon CPU E5-2690 2.60 GHz processor was used. In the opti-
misation, penalties were applied when, (1) the model walked
below a speed of 0.5 m/s, (2) the ankle angle was beyond 60
degrees dorsi- or plantarflexion, (3) simulation time was less than
ten seconds, and (4) the centre of mass was below 0.75 m. These
penalties were used to avoid unrealistic local minima, with the lat-
ter measure, indicating a fall, also prematurely ending simulations
to increase optimisation speed. For each cost function, six optimi-
sations with different random seeds were performed, until, aver-
aged over the last 500 generations, the cost had not improved
Fig. 2. Quantified agreement (R2 and RMSE) of the gait patterns predicted by minimising
standard deviation of each variable. The right column shows the walking speed for each
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more than 0.01% per generation. The simulation with the lowest
score over all six optimisations was selected for subsequent evalu-
ation. From the ten-second simulation, the first two gait cycles
were excluded, and waveforms were time-normalised and aver-
aged over all subsequent gait cycles, which were typically all very
similar.

2.3. Evaluation cost functions

Various cost functions were added to the base simulation
framework, consisting of the following criteria in different
compositions:

i. CoT, an overall effort measure, was calculated using the mus-
cle metabolic model by Umberger, Gerritsen, & Martin (2003) and
implemented based on Uchida, Hicks, Dembia, & Delp (2016). The
calculated energy rate was summed for all muscles (m) over the
simulation (until tend), and divided by the mass of the model and
distance travelled, i.e.:

CoT ¼ 1
distance �mass

�
Z tend

0
½
X18
m¼1

_Em tð Þ�dt

Muscle fatigue (MusAct) was quantified by the muscle activa-
tion squared. The activation of each muscle (m) was squared,
summed over the simulation, and divided by the distance travelled,
i.e.:

MusAct ¼ 1
distance

�
Z tend

0
½
X18
m¼1

activationmðtÞ2�dt

iii. Head stability (HeadStab) was represented by the accelera-
tion of the head segment. The sum of the horizontal and vertical
accelerations of the head centre of mass (ax and ay, respectively)
during the simulation was divided by the distance travelled, i.e.:
for different criteria with normative experimental data. RMSE was normalized to the
criterion.
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HeadStab ¼ 1
distance

�
Z tend

0
½jax tð Þj þ jay tð Þj�dt

iv. The foot–ground impact (FGImpact) was assessed by the
GRFs derivative or yank, penalizing high increases/decreases in
the GRF. The sum of the time-derivative of horizontal and vertical
GRFs (GRFx and GRFy) from both the left and right leg during the
simulation was divided by the distance travelled, i.e.:

FGImpact ¼ 1
distance

�
Z tend

0
½j dGRFx;left tð Þ

dt
j þ j dGRFy;left tð Þ

dt
j

þ jdGRFx;right tð Þ
dt

j þ jdGRFy;right tð Þ
dt

j�dt
Fig. 3. The gait patterns predicted by each step in the combined cost function, compa
averaged over time-normalised gait cycles in the ten-second simulation, excluding the fi
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v. KneeExt involved a penalty to the use of the knee limit tor-
que, representing ligaments, (Flimit) that was summed over the
whole simulation for both the left and right knee, i.e.: KneeExt
became zero when the knee limit torque was not used (i.e., more
than 5 degrees of flexion during the whole simulation) and for this
reason, it could not be optimised independently.

KneeExt ¼
Z tend

0
½Flimit;left þ Flimit;right�dt

Note that tend was ten seconds for each simulation. Besides
these five physiologically-based criteria, a cost function criterion
was used to examine the base simulation framework’s best possi-
red to normative experimental data. The variables from the simulated gait were
rst two gait cycles.
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ble agreement with experimental data (ExpTrack). In this, we min-
imised the root mean square error (RMSE) between predicted and
experimental GRFs, joint angles, and muscle excitations. To give
equal weighting to each biomechanical category, the weighting
of each variable was divided by its experimental standard devia-
tion, and then divided by the number of variables within each
category.

Each cost functions’ performance was assessed by the agree-
ment between the average predicted and normative experimental
waveforms for different categories of biomechanical variables, i.e.
GRF, joint angles, moments, powers, and muscle excitations. The
performance metrics were coefficients of determination (R2) and
RMSE. RMSE of the excitations was excluded since matching mag-
nitudes is not straightforward as these rely on many factors, such
as EMG normalisation (Devaprakash et al., 2016). R2 was consid-
ered very weak when smaller than 0.3, weak between 0.3 and
0.5, moderate between 0.5 and 0.7 and strong above 0.7 (Hair Jr
et al., 2016). The RMSE for each variable was divided by its average
experimental standard deviation, to allow more fair comparison of
the RMSE between variables with different magnitudes. R2 and
RMSE were evaluated on three levels: for each variable separately,
averaged over each biomechanical category and averaged over all
categories. Walking speed was also assessed.

The cost functions were analysed in three stages. In the first
stage, criteria i-iv (CoT, MusAct, HeadStab and FGImpact) were
Fig. 4. The muscle excitation patterns predicted by each step in the combined cost fun
patterns from the simulated gait were averaged over time-normalised gait cycles in the
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optimised independently and their quantified performance was
evaluated. Second, these criteria were ranked by their overall
average R2 when optimised independently and then added in
a stepwise way to create a combined cost function. The crite-
rion with the highest average R2 was selected with a set
weighting of 1, and the criterion with the second-highest aver-
age R2 was added using five different systematically chosen
weightings. Out of these, the weighting providing the best aver-
age R2 and RMSE was selected, after which the next criterion
was added with five weightings, and so on until all criteria
were combined into an optimal, combined cost function.
KneeExt’s weighting was tuned when the knee showed more
extension than seen in experimental data. For each criterion,
its tested weightings were normalised to the criterion’s value
when independently optimised, except for KneeExt since its
minimal value was zero, to be able to evaluate the contribution
of each criterion in the combined cost function. When a new
criterion was added, the optimised design variables from the
previous stepwise combination of cost functions were used as
initial values. In stage three, ExpTrack was independently opti-
mised for and the performance of the optimised, combined cost
function was compared to this simulation. Here, R2 and RMSE
for the moments and powers were excluded in the evaluation,
since they could not be tracked using ExpTrack.
ction, compared to normative experimental data (Bovi et al., 2011). The excitation
ten-second simulation, excluding the first two gait cycles.



Fig. 5. Quantified agreement (R2 and RMSE) with normative experimental data of the gait patterns predicted in each step of combining the cost functions. RMSE was
normalized to the standard deviation of each variable. The right column shows the walking speed in each step.

Table 3
Overview of composition of the cost function combining all criteria, and the minimised cost function score.

Criteria Criterion’s score when optimised independently Criterion’s optimal cost function weighting* Criterion’s
weighted score
in best
simulation
optimal
combined cost
function

FGImpact Anterior-posterior
Vertical

1.34
2.67

1.0 0.47
1.10

15.4%

HeadStab Anterior-posterior
Vertical

0.63
0.62

1.5 0.92
0.96

18.4%

CoT 3.82 5.0 6.12 60.1%
KneeExt n/a 0.25 0.25 2.5%
MusAct 103.55 0.10 0.37 3.6%

* Normalized to its score when optimised independently (third column), except for KneeExt.
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3. Results

When optimising for each physiologically-based criterion inde-
pendently, different criteria performed best for distinct biome-
chanical categories (Figs. 1 and 2; more detailed in Appendix B).
Minimising CoT was best for predicting kinematics as it scored
highest R2 and lowest RMSE for all angles (strong average R2:
0.80; RMSE: 1.54 SD), although, it was worst for predicting GRFs
compared to the other criteria (moderate average R2: 0.53; RMSE:
9.09 SD). It resulted in the highest walking speed of 1.36 m/s. Min-
imising for MusAct resulted in the lowest average RMSE for joint
powers (3.66 SD), and resulted in the slowest walking speed
(0.51 m/s). Over all criteria, minimising HeadStab was best for pre-
7

dicting GRFs (strong average R2: 0.92; RMSE: 3.22 SD) and
moments (moderate average R2: 0.68; RMSE: 2.48 SD), performing
best for the knee moment (moderate R2: 0.54: RMSE: 2.33 SD). It
resulted in a walking speed of 0.92 m/s. FGImpact minimisation
was best for R2 of the joint powers (weak average R2: 0.46), for
which it resulted in the best ankle push-off power (moderate R2:
0.67; RMSE: 3.30 SD). Its walking speed was 1.13 m/s. Overall,
average R2 was highest for FGImpact (0.56), followed by HeadStab
(0.51), CoT (0.49) and MusAct (0.37). Hence, the cost functions
were combined in this stepwise order.

When combining the criteria, the average R2 and RMSE
improved in each step, indicating that each criterion contributed
positively to the combined cost function (Figs. 3, 4 and 5; more
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detailed in Appendix C). When combining all cost function criteria,
the average RMSE was 2.10 SD and the average R2 was 0.72, per-
forming strong for GRFs, kinematics and moments (average R2:
0.93, 0.80 and 0.83, respectively), moderate for powers (average
R2: 0.67) and weak for excitations (average R2: 0.36). In this cost
function, CoT had the biggest contribution (Table 3) and it also
had the highest normalised weighting.

The performance of the combined cost function was close to the
maximal quantified agreement obtained from the ExpTrack simu-
lation, (Figs. 6 and 7; comparison of excitation patterns in Appen-
dix D). When comparing GRFs, joint angles and excitation patterns,
the average R2 (0.70) was only slightly smaller than for the Exp-
Track simulation (0.73), while the average RMSE (2.15 SD) was
slightly higher than for ExpTrack (1.15 SD).
Fig. 6. The gait pattern and muscle excitation patterns predicted by the cost function com
joint angles and muscle excitations. The variables from the simulated gait were average
two gait cycles.
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4. Discussion

In this study we demonstrated that optimising gait for FGIm-
pact, HeadStab, CoT, and MusAct independently predicted different
gait patterns which showed good agreement with experimental
data for distinct biomechanical categories. Combining
physiologically-based criteria with tuned weightings in a stepwise
approach resulted in an overall improved agreement with experi-
mental data. Compared to ExpTrack simulations, the combined
cost function performed very well, which indicates that its agree-
ment with experimental data is close to its maximum given the
underlying constraints of the framework.

When optimising for the criteria separately, FGImpact overall
showed the best R2 compared to experimental data and its pre-
dicted walking speed was closest to 1.2 m/s, which in general cor-
bining all criteria, compared to a simulation tracking normative experimental GRFs,
d over time-normalised gait cycles in the ten-second simulation, excluding the first



Fig. 7. Quantified agreement of the gait predicted by the cost function combining all criteria and a simulation tracking normative experimental data with normative
experimental data. RMSE was normalized to the standard deviation of each variable.
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responds to the preferredwalking speed of humans (Ralston, 1958).
Itsmain benefitwas the improved ankle push-off, with a better tim-
ing of the ankle power compared to the other criteria, which
showed a peak in ankle power generation either too early (CoT
and HeadStab) or too late (MusAct). Remarkably, even though CoT
had only a weak R2 whenminimised individually, it had the highest
contribution in the optimal combined cost function (Table 3),
underlying its importance in human gait as also shown before in
predictive simulations and human experiments. Optimising for
CoT by itself led to relatively poor GRFs with a high peak directly
after initial contact for both the anterior-posterior and vertical
components. Ackermann and van den Bogert (2010) showed com-
parable peaks in the GRFs when optimising for comparable effort
and fatigue criteria. Contrarily, they showed that minimising for a
MusAct criterion contributed to a physiologically consistent early
stance knee flexion, whereas we did not see this when optimising
for MusAct. This difference could possibly be explained by a differ-
ence in walking speed, which was set to 1.1 m/s in the study of Ack-
ermann and van den Bogert, but was self-selected in our study and
went down to 0.5 m/s for MusAct.

Our combined, optimal cost function improved upon previous
work using a reflex-based controller in SCONE by showing a better
agreement with experimental data (current study vs Ong et al.,
2019: R2: 0.72 vs 0.63; RMSE: 2.10 vs 2.47 SD). The main improve-
ment was obtained for the knee moment, which lacked an external
knee flexion moment in early stance in their results, even though
their framework included minimisation of the head acceleration
(HeadStab) and of using the knee limit torque (KneeExt), which
we found to be important for obtaining knee flexion in early stance.
Other recent work, using open-loop control with a more complex
model and a manually-tuned five-term cost function, also found
limited knee flexion in early stance after including metabolic
energy rate in the cost function (Falisse et al., 2019). These compar-
isons underline the importance of not only including multiple cri-
9

teria but also optimising their relative contributions to get an
optimal agreement with experimental data.

Overall, performance of our framework was worst for tracking
the experimental muscle excitations, even in the ExpTrack simula-
tion. The reflex-based controller may be constraining the match
with experimental EMG, not allowing a wide enough range of mus-
cle excitation pattern for better tracking. It has been suggested that
reflexes, and their spinal loops, are important during walking
(Duysens and Forner-Cordero, 2019), but it is hard to validate
which type of reflexes are predominant for each muscle during
walking, as well as their gain values. We would suggest for future
studies to further tune the controller, by broadly testing and imple-
menting different sets of reflexes. For example, anticipatory activa-
tion patterns that act to stabilize the knee in the frontal plane
(Besier et al., 2001; Lloyd and Buchanan, 2001) may be under-
pinned by ligamento-muscular reflexes (Kim et al., 1995). Addi-
tionally, the musculotendon parameters of the musculoskeletal
model in our framework were based on generic values and may
not be accurate for our population, possibly explaining the overall
bad performance for muscle excitations while performing moder-
ate and strong for other biomechanical categories. Previous studies
have shown the importance of personalising these musculotendon
parameters (Lloyd and Besier, 2003) and we would suggest for
future studies to apply this personalisation, especially when work-
ing with pathological gait (Davico et al., 2020; Veerkamp et al.,
2019). Additionally, the match with the experimental moments
and powers was generally not as good as for the GRFs and kinemat-
ics. This could have been affected by the impact artifacts as seen in
the experimental data, which are too rapid to be produced by the
muscle model. Since this concerns only a small part of the gait
cycle (~3%), effects are expected to be minimal. Likely, it is also
caused by only having two foot–ground contact points, limiting
the path of the centre of pressure, directly affecting the joint
moments and thus also joint powers.



Table A1
The foot–ground contact model parameters used in the predictive simulations.

Heel sphere Toe sphere

Contact geometry
x-position* (m) 0.015 0.00
y-position* (m) 0.019 �0.20
z-position (m) �0.005 0.014
Radius* (m) 0.040 0.020
Hunt-Crossley force parameters
Stiffness (N/m) 2,000,000 2,000,000
Dissipation (s/m) 1 1
Frictions (static, dynamic, viscous) 1 1

* indicates optimised parameters.

Fig. A1. The resulting ground reaction forces and joint angles from the simulation
tracking experimental ground reaction forces and joint angles to optimise the
contact sphere geometry.
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Several factors need to be considered to ascertain whether
our weighted, combined cost function is indeed optimal. A more
ideal approach to obtain an optimal cost function matching
experimental data is to perform a bilevel optimisation, in which
the weightings are optimised such that an optimal agreement
with experimental data is obtained (Mombaur and Truong,
2010; Nguyen et al., 2019). We were limited by computational
power to do so, as solving for a cost function took around
14 hours using a shooting approach. The use of open loop con-
trol with trajectory optimization methods, such as direct colloca-
tion, is generally much faster, enabling the use of such bilevel
optimisation. However, those simulations are not intrinsically
stable, meaning they cannot handle uncertainty (such as pertur-
bations and noise) like reflex-based controllers (Groote and
Falisse, 2021), limiting their application. Nevertheless, both bile-
vel optimisation and the stepwise approach we used could be
considered a fitting process, with the risk of overfitting, espe-
cially given the low dimensionality of human gait (Schwartz
and Rozumalski, 2008). In our stepwise design, when adding a
criterion to the cost function, the match with experimental data
could not get worse than the previous result that lacked this cri-
terion (assuming the global minimum was found each time), and
it got close to optimal for our simulation framework. However,
this does not mean that this cost function is necessarily best
in predicting gait in all new conditions. Hence, to be able to
conclude what the best cost function in terms of predictive abil-
ity is, cross-validation on other gait conditions is needed. For
example, in a validation test, a person could walk at different
speeds and on different slopes, or with assistive/resistive devices,
and the best cost function should be able to capture all observa-
tions in the different experimental conditions. Also, before clini-
cal application, it is important to establish whether the used cost
function is valid for a range of pathological conditions.

A shortcoming of our framework is that it is only two-
dimensional and will therefore only be applicable to answer ques-
tions in which gait deviations occur mostly in the sagittal plane. A
three-dimensional analysis would become far more complex, and
other factors, such as medio-lateral stability, as discussed above,
will come into play. Also, more muscles and more control param-
eters will have to be added to the framework, which will consider-
ably slow down optimisation times even further. Another
challenge of our framework is that within predictive simulations
the risk of ending up in local instead of global minima depends
on chance. Therefore, we optimised each scenario for six random
seeds enabling broad exploration. Even though we found differ-
ences between the outcomes of these seeds to be minimal (Appen-
dix E), we cannot be sure that when the number of seeds would
have been increased, possibly lower and slightly different minima
would have been found. However, given the fact that we observed
clear trends in the stepwise combinations, and both the RMSE and
R2 clearly improved when combining criteria, we are confident that
it would not have affected the interpretation of the results. Lastly,
in this study, the speed and step length differed between simula-
tions with different cost functions, which allows the evaluation
of how these variables change in different conditions in future
work (i.e., in pathology). However, when interpreting the mechan-
ical effects of the different cost functions, it needs to be realized
that the speed and step length can be confounding factors.

In conclusion, this study showed how various optimisation cri-
teria can contribute to different gait features and that careful
weighting of them is essential in predicting healthy gait. Remark-
ably, a high contribution of CoT to gait only comes to expression
when combined with other criteria. After developing our frame-
work incorporating an optimal cost function that is tuned to per-
form well in predicting healthy gait, a next step is to validate its
predictive ability. This step is important to be able to answer clin-
10
ical what-if questions and to get closer to the ultimate goal of pre-
dicting treatment outcomes.
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Appendix A

The foot–ground contact model detects when the foot hits the
ground and calculates the ground reaction forces. The model is
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composed of spheres of specified size and force parameters, which
are positioned at specified locations on the foot. Previous studies
used different number of spheres, location of the spheres and the
force parameters (i.e. stiffness and dampening), which are often
determined by manual tuning and might therefore be suboptimal
and not consistent for the experimental data. Given recent research
suggesting that the predicted gait is highly sensitive to changes in
the foot contact model (Millard and Mombaur, 2019), we decided
to tune the foot–ground contact model in such a way that it can
fit with both experimental kinematics and GRFs as good as possi-
ble. In order to do this, we setup a tracking optimisation within
SCONE, in which the root mean square error (RMSE) between the
predicted and experimental kinematics and GRFs was minimised
while the geometries of the spheres (i.e. x-position, y-position,
and radius) were added to the design variables. The stiffness, dissi-
Fig. B1. The agreements between predicted and experimental da

11
pation, and friction of both spheres were set to pre-determined
values, based on the values used in previous studies.

We performed the optimisation with three random initial
guesses and the results from the best simulation (i.e. lowest RMSE)
were selected, which are shown in Fig. A1. Table A1 provides all
parameters for the foot–ground contact model used in the predic-
tive simulations in this study.

Ground reaction forces joint angles.
Appendix B

There was no EMG available for the iliopsoas and the biceps
femoris short head (see Fig. B1).
ta from each criterion’s independent optimised simulation.
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GRF x: anterior-posterior GRF y: vertical: Rect fem: rectus
femoris: Glut: gluteus maximus: Bifemsh: biceps femoris short
head: Tib ant: tibialis anterior: Gastroc: gastrocnemius
Appendix C

See There was no experimental data available for the activa-
tions of the iliopsoas and the biceps femoris short head (see
Fig. C1).
Fig. C1. The agreements between predicted and experimental data produced b
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GRF x: anterior-posterior: GRF y: vertical: Rect fem: rectus
femoris: Glut: gluteus maximus: Bifemsh: biceps femoris short
head: Tib ant: tibialis anterior: Gastroc: gastrocnemius.
Appendix D

See Fig. D1.
y the optimised simulations from each stepwise combination of criteria.



Fig. D1. The muscle excitation patterns predicted by the cost function tracking experimental data (ExpTrack) and the optimal, combined cost function.
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Appendix E

There was some variation in the simulation outcomes when six
different random seeds were used (Fig. E1), although gait features
were generally similar between the different optimisations. The
13
outcome with the lowest score was also the one with the best
agreement with experimental data (Figs. E1 and E2). Over all opti-
misations, the lowest R2 was 0.63, and the highest RMSE was 2.83
(Fig. E2).



Fig. E1. The variation between the simulation outcomes of the optimal combined cost function, in which six different random seeds were used. Blue indicates the best score
while red is the worse score.
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Fig. E2. The variation in the R2 and RMSE produced by the simulation outcomes of the final, combined cost function, in which six different random seeds were used.
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Appendix F. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.jbiomech.2021.110530.
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