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ABSTRACT 

 

Design for manufacturing and assembly (DfMA) is an engineering methodology which aims 

to increase ease of manufacture and efficiency of assembly by considering manufacturing and 

assembly constraints in the design process. However, current DfMA approaches in the 

construction sector are not automated enough to identify the design features that may cause 

project delay in real time. This leads to longer design cycle. Also, current scheduling algorithms 

rely on human intervention to generate activity network from a design output. Addressing these 

inefficiencies, we propose an interpretative machining learning model to predict the construction 

duration given a design output. More importantly, the same model identifies the design features 

that may cause the most delay in the project. The model is trained on a residential design dataset 

with various features, such as layout, geometry, and element typology. The output of the model 

is the project duration and an importance map, indicating the influence each feature of the given 

design has on the total project duration. The results from this model can considerably reduce the 

design cycle by supporting architects to create fabrication and assembly aware design even when 

they have little knowledge of production and assembly processes. This model will contribute to a 

novel computational approach for DfMA. 

 

INTRODUCTION 

 

The architecture, engineering and construction (AEC) sector must respond to an ongoing 

global housing crisis. By 2025, a third of the world’s urban dwellers—1.6 billion people—could 

struggle to secure adequate housing (Woetzel, 2014). In recent years, Europe has faced an 

exceptionally high demand for urban housing. This demand is fueled primarily by urbanization, 

increased immigration, and demographic trends towards one-person-households. 

To meet this demand, the European housing industry needs to develop high-end, customized 

solutions. However, it is questionable if the current system for the design and construction of 

housing is responsive enough to rapidly deliver customized housing without compromising 
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architectural quality. In current scenario, the architects must propose a completed design with 

details for the construction duration estimation. The feedback from contractor is not real-time but 

takes several days, also it is unable to point out the main reason or main feature causing a long 

duration, which results in a long-time, iterated “design modification – calculation” process that 

stultify the efforts of architects. 

New technology can help. Design for manufacturing and assembly (DfMA) is a new 

engineering methodology which aims to increase ease of manufacture and efficiency of assembly 

by considering manufacturing and assembly constraints in the design process (Lu et al., 2021). 

However, current DfMA approaches in the construction sector are not automated enough to 

identify the design features that may cause project delay in real-time.  

Longer construction duration caused mainly by large amount of complicated building 

components, that’s the reason why a detailed design is required for estimation nowadays. 

However, the amount and the complexity of building component is foreshadowed in the initial 

floorplan design, as the physical configuration of walls is dependent on the function and spatial 

relationship of rooms. 

The novel contribution of this research will be an interpretative machining learning model 

which can give the architects an immediate duration estimation even during the early design 

stage without development in details, and an importance map indicating which part or which 

elements in the floorplan contributes most to a long duration. In order to achieve this, three 

research questions were designed: 

1. How could early-stage floorplan be created using a generative model? 

2. How could fabrication duration be calculated based on domain knowledge by design 

synthesis? 

3. How could the duration be predicted, and the most important design features be 

identified? 

 

DATA ACQUISITION 

 

We use a large-scale benchmarking dataset, RPLAN (Wu et al., 2019). RPLAN is an image 

dataset sampled from real-world residential layouts in Asia, that consists over 80000 floorplans. 

As all the designs are within a squared region of 18m × 18m, we fix the scale to retrieve the real-

world value of room sizes from image. While RPLAN contains 13 types of rooms, we merge the 

same function type labels (e.g., master room and child room are all treated as bedroom). 

Each of the floorplan layouts in the dataset is denoted as a combination of a site condition B 

= {F, M} and a layout graph G = {T, C, A, S, R}, where F∈R^2 is the centra location of front 

door, and similar to the previous works (Nauata et al., 2020; Shi et al., 2020), M∈R ^ (128×128) 

refers to the boundary image. The layout graph G is representing geometrical and categorical 

features of rooms, parameterized by the room types T, the center coordinates C of the room 

rectangular regions, the adjacency matrix A indicating rooms spatial relations, the corresponding 

room sizes S, and the rooms aspect ratio R. Length. Length is determined by the conference 

technical committee or proceedings editor. Total paper length includes all text, graphics, 

references, and appendixes. 

GENERATIVE MODELS 

 

While the layout planning is initialized by giving a specific site condition I, the properties of 

each layout features in G might varies (e.g., room types T containing 1 bath or 2 baths). The 
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ideal generative model will be structured to learn P(G), the potential distributions of all the 

features in the layout. Our approach decodes these features procedurally and iteratively, that all 

the confirmed features will be conditional input to predict the next one. Structured as a joint 

probability distribution, the whole generation process will be formulated as Markov Chain 

(Figure 1), while the task P(G) is decomposed as: 

 

𝒫(𝐺) = 𝒫(𝑅|𝑆, 𝐴, 𝐶, 𝑇, 𝐼)𝒫(𝑆|𝐴, 𝐶, 𝑇, 𝐼) 

𝒫(𝐴|𝐶, 𝑇, 𝐼)𝒫(𝐶|𝑇, 𝐼)𝒫(𝑇|𝐼)𝒫(𝐼) 
(1) 

 

where P(I) is the given site condition, P(T│I), P(C│T,I), P(A│C,T,I), P(S│A,C,T,I), and 

P(R│S,A,C,T,I) respectively denote the step-wise forecasting of types T, centers C, adjacency A, 

size S, and ratio R. 

 

 
 

Figure 1. Layout generation process as Markov Chain 

 

DESIGN SYNTHESIS 

Design synthesis is an activity to develop the physical configuration capable of performing 

required functions. The physical configuration defines how building elements are fabricated and 

assembled, such as multi-layers of wall elements. The objective of design synthesis on the 

created layout is to specify the element physical configuration so that the construction duration 

could be estimated. In this study, we conduct design synthesis on wall elements for a given 

layout. The wall architecture could be defined by from two perspectives, functional layers and 

service layers.  

First, the functional layers could be determined by the adjacent rooms (as Figure 2). Taking a 

cue from the industrial practice, the walls, or prefabricated panels, must be divided into different 

categories with different layer configurations after the floor plan layout has been generated. The 

criteria for categorizing are primarily based on the demands for thermal insulation, 

waterproofing, and soundproofing. These specifications depend on how the rooms on either side 

of the panel are used. Thermal insulation and a waterproof coating are necessary for exterior 

walls that separate the indoor and outdoor environments. A waterproof is also necessary for 

interior walls separating "dry" rooms like the kitchen, bathroom, and other. The purpose of the 

rooms on the other side will determine whether a soundproof layer is necessary for noise-

sensitive rooms. 

In the industrial process, the panels are put together from various functional layers, each of 

which requires a specific amount of time for production. As a result, the panels with different 
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layer configurations require different amounts of time for production, which can be characterized 

as the sum of all the time units used by each layer. To simplify the duration calculation, the time 

unit consumed by each layer is set as 0.5. The core structure panel consumes 1 unit time, each 

time a layer is added, the time unit will be increased by 0.5. Figure 3 indicates the production 

time for each type of wall according to adjacent room requirements. 

 

 
 

Figure 2. Physical architecture of walls and corresponding task duration 

 

 
 

Figure 3. Wall production time under adjacent room requirements 

 

Second, the service layer is installed inside the wall for a ducting system. For a given layout 

plan, a starting point of the ducting system, as well as rooms with heating requirements are 

predefined. In this study, we set a wall from the kitchen as the starting point, and the living room 

as the heating room. Given above assumptions, a ducting layout could be generated using 

shortest path algorithm to minimize the ducting length and reduce the number of walls with a 

service layer (as Figure 4). The algorithm consists of following procedures: 

1. Find the path from the starting point to each wall that belong to the heating room. 

2. Calculate the ducting length by summing the length of walls on each path. 

3. Find the path with the shortest length and set the walls on that path with service property. 

Finally, the walls with a service layer could be identified and the time for installing service 

layer is added to the production time. 

 

FABRICATION-AWARE MODEL 

 

Given a generated layout, we consider the problem as training a regression model to predict 

the production duration of the layout, and training an explanation model to generate an 

importance index map for each feature. A higher index indicates that the relevant feature has a 

higher influence to the duration. 
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Figure 4. An approach to determine the ducting layout for a given floorplan 

 

• Regression model 

Graph neural networks (GNN) are used for the regression work. We follow the pipeline 

(Zhou et al., 2020), finding graph structure, specifying graph type and scale, designing loss 

function, selecting computational modules. We consider two graph structures, a room graph and 

a wall graph, both of which represent a same layout. The graphs are undirected and 

homogeneous. In a room graph, nodes represent rooms and edges represent adjacent relationship 

between rooms. In a wall graph, nodes represent walls while edges represent wall to wall 

connections. Specifically, continuous straight walls are divided at each intersection. Figure 5 

gives an example of a room graph and a wall graph for a layout. The room types or wall types 

are assigned to node features via one-hot encoding. There are 8 room types, including outside, 

entry, bathroom, closet, bedroom, kitchen, dining, balcony and living room. There are 45 wall 

types, which are determined by adjacent rooms, such as bedroom-kitchen wall. 

 

 

Figure 5. A layout (left) and a corresponding room graph (middle) and wall graph (right) 

 

The duration prediction is defined as a graph regression task. The mean absolute error 

(MAE) is selected as the loss function. The proposed architecture is shown in Figure 6, where a 

number of Graph Convolutional Networks (GCN) (Kipf & Welling, 2017) are used to get the 

graph embedding, followed by a multilayer perceptron (MLP) neural network for the regression 

task. Borrowing the idea of mini-batch training from common deep learning practice, a batch of 

multiple graphs are built together and send for one training iteration. 
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Figure 6. GNN-based regression model for the duration prediction 

 

• Explanation model 

The goal of explanation model is to identify compact subgraph structures and small subsets 

of node features that play a critical role in GNN-based graph regression. We adapted a GNN 

Explainer (Ying et al., 2019) which is originally designed for classification task and has not been 

validated in the regression task. GNN Explainer aims to find the feature importance by a node 

mask and an edge mask. A new prediction could be made after applying the feature mask on the 

node features and the edge mask on the graph. A mutual information that measures the 

probability change of prediction is set as the objective to be maximized. The large change of the 

prediction distribution indicates that the absence of the feature or the edge is a good 

counterfactual explanation.  

 

𝑚𝑎𝑥
𝐺,𝐹,𝑀 

𝑀𝐼  (𝑌, (𝐺, 𝐹, 𝑀)) = 𝐻(𝑌) − 𝐻(𝑌|𝐺 = 𝐺𝑠
𝑀, 𝑋 =  𝑋𝑠

𝐹)                      (2) 

 

Where G_s is the subgraph and X_s is the associated features. 𝐺𝑠 = 𝐺 ⨀𝑀, M is the edge 

mask that has the same size of the adjacency matrix of the graph, 𝑋𝑠
𝐹 = 𝑋𝑠 ⨀ 𝐹, F is the feature 

mask to be learned. ⨀ denotes the element-wise multiplication. To make the importance index 

within [0,1], a sigmoid function is applied to the mask. 

 

RESUTLS 

 

We investigate questions: does the GNN-based model obtain a good prediction result? How 

does the explanation generated by GNN Explainer compare with the ground-truth knowledge.  

 

 
 

Figure 7. Experiment results 
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From the Figure 7, we can see the regression model using wall graphs and room graphs 

performs a relatively good result with test error in [15% - 20%]. From the Figure 8, a layout is 

used as an example to test the explanation. The edge thickness indicates the importance index. 

There is a small difference between room-level explanation and wall-level explanation. The 

room-level explanation covers a larger portion of the layout. Considering that room-level has a 

coarse granularity, any wall components within that room could contribute to the room 

importance. 

 

 
 

Figure 8. A layout example (left) and explanation by room graph (middle) and wall graph 

(right) 

 

CONCLUSION 

 

This research proposes an interpretative machining learning model that can provide architects 

with an instant duration estimation even during the early design stage without development in 

details and identify the dominant feature in layout causing the delay. This can help to reduce the 

recurring cycles between contractors and architects, therefore shorten the time needed for the 

completion of whole project. 

The methodology is developed in 3 steps, Firstly, each of the conceptual design produced by 

generative model will be represented in two ways, the one is a “room graph” and the other “wall 

graph”, which both contain their attributes and location information. Secondly, the duration of 

project is estimated by summing up the production time of each wall. Thirdly, given a generated 

layout, a regression model is trained to predict the production time, and at the same time an 

explanation model is trained to generate an importance index map for each feature.  

Admittedly, the model we are presenting is suffered from the following limitations. Firstly, 

the size of sample set is still restricted, causing the suboptimal performance of the model. 

Secondly, the attributes retrieved from the floorplan for prediction and explanation are not 

comprehensive enough, for example the joints of panels, the connection method of adjacent 

rooms, whether there are openings on the panel haven’t been taken into consideration. Future 

research should be undertaken to overcome these challenges and fully exploit the potential of 

interpretative generative model. 
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