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Abstract 

Water demand forecasting is an essential task for water utilities, with increasing 

importance due to future societal and environmental changes. This paper suggests 

a new methodology for water demand forecasting, based on model stacking and 

bias correction that predicts daily demands for groups of ~120 properties. This 

methodology is compared to a number of models (Artificial Neural Network –

ANN, Generalised Linear Model – GLM, Random Forest - RF, Gradient 

Boosting Machine - GBM, Extreme Gradient Boosting – XGBoost, and Deep 

Neural Network - DNN), using real consumption data from the UK, collected at 

15-30 minute intervals from 1,793 properties. Results show that the newly 

proposed stacked  model that comprises of RF, GBM, DNN, and GLM models 

consistently outperformed other water demand forecasting techniques (peak R2 = 

74.1%). The stacked model’s accuracy on peak consumption days further 

improved by applying a bias correction method on the model’s output. 

Keywords: water demand forecasting; gradient boosting machines; machine 

learning; model stacking; bias correction; deep neural networks 

Introduction 

Satisfying the water supply-demand balance is a major challenge in many countries and 

a topic of increasing concern in the UK. According to the Government’s water strategy 

for England report (Defra, 2008), which plans strategies for securing the future of water 

resources and improving the water environment till 2030, an essential aspect of managing 
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water demand is by ensuring a good forecasting of future patterns. However, forecasting 

demand is a challenging task, due to the nature and quality of the available data, the 

numerous factors that influence water consumption, as well as the various forecast 

horizons and spatial scales (Mamade et al., 2014).  

With the advancement in technology and computing power as well as the increasing data 

availability, machine learning has become a popular approach for water demand 

forecasting (Froukh, 2001; Cutore et al., 2008; Firat, Turan and Urdusev, 2009; Bai et al., 

2014; Bakker et al., 2014; Romano and Kapelan, 2014; Shabani et al., 2016). There is 

currently an abundance of methods and models available, from the more researched 

Artificial Neural Networks (ANNs) to the relatively newer concept of ensemble machine 

learning.  

ANNs have been used in many studies and have been proven effective to predict short-

term, medium-term, and long-term water demand (Bougadis, Adamowski and Diduch, 

2005; Adamowski, 2008; Firat, Turan and Urdusev, 2009; Herrera et al., 2010; Dos 

Santos and Pereira, 2014; Mouatadid and Adamowski, 2017; Ghiassi, Fa’al and 

Abrishamchi, 2017; Altunkaynak and Nigussie, 2018). Adamowski (2008) used an ANN 

model to predict peak daily water demand for ~77,500 consumers in the city of Ottawa  

and found it performed better (R2 = 69%) than multiple linear regression and time-series 

analysis. Dos Santos and Pereira (2014) tested eight model configurations of an ANN (3-

layer, feed forward, back propagation) system for short-term water demand forecasting, 

using weather and temporal characteristics. The ANN was compared with multiple linear 

regression for hourly predictions for a large metropolitan area in Sao Paulo, Brazil. The 

best performance was obtained for the ANN that implemented 12-hour averages of the 

input variables and past consumption data as explanatory factors (R2 = 67.9%). However, 
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the authors argued that the model could benefit from additional explanatory variables. 

Ghalehkhondabi et al. (2017) reviewed the water demand forecasting literature between 

2005 and 2015 and concluded that although soft computing techniques have been 

extensively used, deep neural networks (DNN) have yet to be tested. 

In recent years, some of the most successful models in machine learning competitions 

have been ensemble methods, which create a strong learner by combining multiple, 

individual, weak learners. There are three ensemble techniques, bagging, boosting, and 

stacking. Bagging is a resampling technique that randomly chooses a sub-sample of the 

dataset with replacement for training each learner (Mao, 1998). An example of a 

commonly used bagging algorithm is Random Forests (RFs) (Breiman, 2001), which are 

based on training multiple decision trees on different samples of the original training set. 

Boosting is also a resampling technique but in this case the instances of the training data 

that got misclassified from previous learners typically gain additional weight while the 

ones that were classified correctly lose weight. This way, the model gradually becomes 

better as it focuses on harder areas of the problem. Gradient Boosting Machines (GBMs) 

are an example of a commonly used machine learning algorithm that uses this method. 

Finally, stacking is the process of feeding the outputs of different machine learning 

models (base models) into one meta-learner (Ngo, Ernst, and Tokekar, 2018). Stacked 

models have been found to outperform individual models since they combine the 

strengths and reduce the weaknesses of their individual counterparts. 

Although proven to perform better than their base models, ensemble models have been 

very rarely tested in water demand forecasting studies (Ghalehkhondabi et al., 2017). 

Herrera et al. (2010) used RFs to forecast hourly urban water demand for a region of 

~5,000 consumers and found them to perform worse than Support Vector Regression 
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(SVR), Multivariate Adaptive Regression Splines (MARS), and Projection Pursuit 

Regression (PPR). However, since not all parameters of the RFs were properly tuned, 

results could potentially improve. Tiwari, Adamowski and Adamowski (2016) assessed 

the capacity of extreme learning machines (ELMs) alone, or combined with wavelet 

analysis or bootstrap method and compared it with traditional ANN models. The aim was 

to forecast urban water demand for one day lead for the city of Calgary (~1.1 million 

consumers). The combined ELM wavelet (ELMw) model performed best for short-term 

forecasting and peak demands, with smaller errors and less computational time. However, 

there was a clear tendency in all models to over-predict the lower consumption days and 

under-predict the days with high consumption. Chen et al. (2017) also used RFs as well 

as a combined Wavelet Transform to predict daily water consumption for a supply area 

of 170,000 households and found that although the combined model performed better (R 

= 80%), it was still not capable of predicting the daily variations in water demand. Finally, 

Duerr et al. (2018) compared several time-series and machine learning models, including 

RFs and GBMs for monthly predictions at the household level and concluded that 

machine learning models generally underperformed when predicting monthly averages. 

However, the authors pointed out that improved data collection, high-resolution 

covariates, demographic information, as well as capturing the spatial dependence 

between neighbouring households could improve results. 

As it becomes apparent from the above, although machine learning models have been 

commonly used for water demand forecasting, the classical, single methods cannot 

produce the most accurate results (Ghalehkhondabi et al., 2017). Even when 

consumption is aggregated at a high temporal (e.g. monthly or quarterly) or spatial (e.g. 

city level) scale, the models commonly used in the literature struggle with accuracy, 

bias, and peak day predictions. Models based on deep learning, and ensemble 
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techniques, particularly model stacking, have been consistently found to produce 

excellent results in other fields. However, they have attracted very little to no attention 

in the water demand forecasting literature. Even when explored, essential aspects of the 

modelling and evaluation process like the tuning of the model’s parameters or the 

assessment of the model’s ability to perform on peak days and predict outliers are often 

overlooked. 

This paper aims to address this gap by developing a new methodology based on model 

stacking and bias correction. This methodology is compared with a selection of 

ensemble and artificial neural network based models using real data from the UK. A 

detailed description of the data used in this study is provided in the next section. Then, 

the overall structure and characteristics of each model are described, followed by the 

bias correction methods. This includes details about the technical implementation of the 

models, such as the software, programming language, and open-source tools used. Next, 

the prediction accuracy of each model is presented under different forecasting scenarios 

(for all days as well as peak consumption days, with and without past consumption as 

input). The paper concludes with a discussion of the key findings, followed by a 

summary of results, conclusions, and recommendations for further research. 

Data 

An essential aspect of developing machine learning models is getting access to 

sufficient, high quality data. This study uses real data from the Southwest of England 

(Figure 1) that are available at very high temporal and spatial resolutions. Specifically, 

the dataset comprises of past consumption data and partial postcodes that became 

available by Wessex Water, one of the UK water companies, as well as weather data 

collected by the Meteorological Office of the United Kingdom (Met Office). Water 



6 
 

consumption data were collected at the household level using smart meters that 

recorded consumption every 15-30 minutes, over a period of 3 years (10/2014 – 

9/2017), from 1,793 properties scattered around the study area. These data were cleaned 

and pre-processed in order to remove inconsistencies, errors, empty properties, and 

water-supply leakage. A more detailed description of this process is available in 

Xenochristou, Kapelan and Hutton (2020).  

Water consumption was aggregated at the daily scale among houses with the same area 

postcode. The study area includes six postcodes, with up to 212 properties/day in each 

one, depending on data availability on the corresponding day and postcode (Figure 1). 

Since there are six postcodes and 1,019 days in the data, this resulted in 6,114 groups 

(6*1,019). Spatial analysis of the dataset concluded that smaller groups of properties are 

associated with increased forecasting errors (Xenochristou et al., 2020a), therefore 

groups with less than 60 properties were excluded from the data. As a result, the final 

dataset comprised of 5,063 groups with 120 properties/day on average.  

The weather dataset included four weather variables, maximum air temperature, mean 

soil temperature at 10cm depth, mean relative humidity, and total rainfall. These data 

were recorded at the hourly or daily scale from hundreds of weather stations across the 

study area as part of the MIDAS (Met Office Integrated Data Archive System) dataset 

(Met Office, 2006a; Met Office, 2006b; Met Office, 2006c; Met Office, 2006d; Met 

Office, 2006e). In addition, the number of consecutive days without rain was calculated 

based on the daily rainfall. For each day in the data, one value for each weather variable 

was calculated as the weighted mean among the recorded values from multiple weather 

stations, based on their proximity to the properties in the study area. Weather stations 

that were located closer to the properties were assigned a higher weight whereas 
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weather stations with no households in close proximity (closer than any other weather 

station) were removed from the analysis. Weather records that had not been quality 

checked by the Met Office were also excluded. 

Methodology 

Model Inputs  

All demand forecasting models developed here have a single output (or response) 

variable and a variety of inputs (or predictors). The predictor variables are a selection of 

potential explanatory factors that can influence water consumption and are thus used to 

explain part of the variance in the model. In this case, the response variable is the water 

consumption one day ahead, for a given postcode area. The predictor variables are past 

consumption data, area postcodes, as well as temporal and weather characteristics 

(Table 1).  

Each input variable serves a different purpose into explaining demand variability. Water 

consumption is highly auto correlated from one day to the next one, therefore a sliding 

window of seven days (one input variable for each day) was chosen to capture the 

weekly repetition of water use. On the other hand, the location of a property is 

associated with a level of socio-economic status, property size, occupancy rate, garden 

size, property value, resident age, type of household (e.g. families with children, 

students, young professionals), or even certain habits. Since all of these customer and 

property characteristics are associated with different patterns and volumes of water use 

(Xenochristou et al., 2020b), the postcode was considered a valuable indicator of water 

habits. Finally, the temporal patterns of water use are a well-researched factor in the 

demand forecasting literature, therefore the type of day (working day vs 
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weekend/holiday) and the season were also used as model inputs (Bakker et al., 2013; 

Romano and Kapelan, 2014; Anele et al., 2017; Xenochristou et al., 2020b).  

Previous work found that the weather’s influence on water consumption varies over 

space and time (Xenochristou et al., 2018; Xenochristou, Kapelan and Hutton, 2020). 

Out of the six weather variables mentioned in the data section, the air and soil 

temperature as well as the rainfall and days without rain are highly correlated. Soil 

temperature has a lesser effect than air temperature and rainfall has little influence on 

water consumption in the UK (Xenochristou, Kapelan and Hutton, 2020), therefore 

these two variables were not used as model predictors. Only four weather variables, the 

number of sunshine hours, air temperature, humidity, and number of preceding, 

consecutive days without rain are used as model inputs (Table 1).  

Based on the above, two model configurations are tested, one that includes all inputs 

(Group 1, Table 1) as well as one that excludes past consumption data (Group 2, Table 

1). In terms of the practical value of this work, it is important to realise that many water 

utilities do not have access to high resolution consumption records. Even the ones that 

do, they do not have them in most cases for the whole extent of their network. 

Therefore, it is essential when evaluating the best model to also account for the model’s 

ability to deal with the absence of past consumption data. 

Model Tuning and Assessment  

In machine learning, hyperparameters are the model parameters chosen before the 

training begins. The hyperparameter tuning step is a vital part of building an efficient 

machine learning model. It refers to defining a set of input parameters that influence the 

model structure and thus the results. The available parameters for tuning depend on the 
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type of model and can determine how closely the model fits on the training data. Fitting 

too closely could mean that the model learns from the noise in the training dataset 

(overfitting) which will result in a poor prediction on the testing dataset. On the other 

hand, fitting too loosely (underfitting) means that the model has not learnt to represent 

the patterns in the data.  

Although there are different approaches to hyperparameter tuning (e.g. grid search, 

random search, evolutionary optimisation), in this study a random search as well as a 

simple grid search are used depending on the number of hyperparameters that need 

tuning at a time and the tools available. In a grid search, a number of values are defined 

for each parameter, creating a multi-dimensional grid space that includes every 

combination of hyperparameter values. Thus, when there is a high number of 

hyperparameters that need tuning, this approach can become time and computationally 

expensive. In a random search, the hyperparameter values are sampled from a pre-

defined range of values. In both cases, each candidate model is built on a unique set of 

hyperparameters and the best model is chosen as the one that achieves the lowest mean 

square error (MSE) on the test dataset. 

Initially, the dataset was shuffled and randomly divided into a training (70%) and 

a test (30%) dataset. The training set was used to fit the model and tune it for the 

optimum set of hyperparameters. The test set was used to perform an unbiased 

evaluation of the model’s ability to perform predictions on unseen data, i.e. data 

that were not used during the model-building phase. In order to enhance the 

robustness of the hyperparameter selection, by ensuring their performance on 

different sets of data, a 5-fold cross validation process (Zhang, 1993) was 

implemented for the hyperparameter selection. This means that in every run, the 
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training data was shuffled and divided into five parts, out of which each time four 

were used for training and one for testing. 

Three performance criteria were used to assess the model’s performance: the mean 

absolute percentage error (MAPE), mean square error (MSE), and R2 correlation 

coefficient, as each one of these provides slightly different, i.e. complementary 

information about the model’s performance. The MAPE is one of the most common 

metrics, as it is easy to interpret and it scales the error in relation to the actual value. 

The MSE is sensitive to outliers, while the R2 shows the variance in the dependent 

variable (model output) that can be explained by changes in the independent variables 

(model inputs) (Xenochristou, 2019). 

Modelling Techniques 

A number of modelling techniques such as neural networks, linear models, and 

representatives from every family of ensemble algorithms (bagging, boosting, and 

stacking) are compared in this study. All the model types that are used, either as a 

prediction tool or solely as a component of the stacked model are listed in the following. 

Random Forests 

Random Forests (RFs) were first introduced by Breiman (2001) as an ensemble of 

(hundreds or thousands) decision trees. The unique value of random forests is partly due 

to the implementation of randomness in the modelling process (Herrera et al., 2010). A 

RF model trains each tree on a slightly different set of data, while at each split of the 

tree, it chooses among a different subset of input variables. The final result in regression 

is calculated as the mean prediction among all the trees in the forest. RFs have been 

consistently found to perform better than other machine learning techniques whilst 
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being a method that has not been fully explored in the water demand forecasting 

literature (Herrera et al., 2010; Chen et al., 2017). 

There are three main parameters that need tuning in RFs, the mtry, ntrees, and tree 

depth (Scornet, 2017). The mtry is the number of variables randomly selected at each 

node and considered for splitting. Reducing the mtry increases the randomness of the 

tree-building process and therefore creates trees that are less similar to each other. The 

ntrees parameter is the number of trees used to build the forest. Model accuracy 

typically plateaus after a number of trees that are required to build a credible model. 

The tree depth is the point at which the tree stops growing, sometimes also denoted by 

the size of the final tree node (nodesize). The higher the tree depth, the closer the model 

fits on the training data, thus increasing the risk of overfitting. The RF model is tuned 

for the optimum values of all of the above three parameters.  

Extremely Randomized Trees (XRT) are a variation of RFs that introduce added 

randomness in the above process. Similarly to RFs, a random subset of variables is 

selected for splitting at each node, but in this case a number of cutting-points 

(thresholds) are also selected at random. The best of these randomly selected thresholds 

is chosen for splitting at the node. The level of randomness implemented in the process 

can be tuned and is controlled by the model hyperparameters. In the extreme case, the 

trees are built completely at random, independent of the training sample (Geurts et al., 

2006). 

Gradient Boosting  

Gradient Boosting Machines (GBMs) were first introduced by Friedman (2001) as an 

implementation of gradient boosting that explicitly deals with regression problems. 
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In the GBM implemented here, the base learner is also a decision tree. The boosting 

algorithm starts with one tree and at each iteration step, a new decision tree is fitted on 

the residuals of the previous tree and subsequently added to the model to update the 

residuals (Touzani et al., 2018). A shrinkage rate can also be applied on the algorithm, 

meaning that the new trees that are added to the model are gradually assigned lower 

weights. This increases the steps required for the algorithm to converge to a solution 

and reduces the risk of overfitting. The final result of the GBM is the weighted sum of 

the individual trees that were trained on weighted parts of the dataset (based on the 

accuracy achieved at the previous step).  

A total of nine hyperparameters are tuned for the GBM model that aim to assist the 

algorithm arrive at the best solution, by implementing randomness in the modelling 

process or avoiding overfitting. In addition to the number of trees (ntrees), maximum 

tree depth (max_depth), and number of variables sampled for splitting 

(col_sample_rate), the number of variables sampled for each tree 

(col_sample_rate_per_tree) is also defined by the user. The number of variables 

sampled at each node is then calculated as the product of the variables sampled for the 

tree, multiplied by the variables sampled for splitting. The learning rate of the algorithm 

(learn_rate) is the factor by which the contribution of each consecutive tree is reduced 

compared to the previous tree. Another parameter (histogram_type) defines the type of 

histogram used to speed up the selection of the best splitting point at each node. The 

‘auto’ histogram type means that the cutting points tested for splitting are chosen by 

dividing the range of values of each variable in equal steps. The subsample size 

(sample_rate) determines the size of the random sample used at each iteration. Smaller 

samples result in lower testing errors whereas larger samples generally improve the 

training accuracy. Finally, two hyperparameters determine if a further split in a tree will 
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occur, based on the minimum required relative improvement in squared error 

(min_split_improvement) and the minimum number of observations in a leaf node to 

allow further splitting (min_rows). More details regarding the implementation of the 

GBM algorithm can be found in Malohlava and Candel (2017).  

Extreme Gradient Boosting (XGBoost) is another implementation of a boosting 

algorithm. It was introduced by Chen and Guestrin (2016), as ‘an efficient and scalable 

implementation of the gradient boosting framework by Friedman (2001)’ (Chen and He, 

2015). XGboost aims to prevent overfitting as well as maximise the efficiency of 

computer resources (Fan et al., 2018). According to Chen and Guestrin (2016), 17 out 

of the 29 winning solutions published by Kaggle, an online coding competition 

platform, used XGBoost either as a single model or as part of a stacked model.  

The number of iterations (nround), the subsample size (subsample), maximum tree 

depth (max_depth), and fraction of explanatory variables sampled at each tree 

(colsample_bytree) are also hyperparameters of the XGBoost algorithm. In addition, the 

shrinkage rate (eta) determines the learning rate of the algorithm in the training step, i.e. 

the amount by which the contribution of each consecutive tree is reduced compared to 

the previous tree. Additional parameters that need tuning for this algorithm are the 

gamma and min_child_weight that determine how conservative the algorithm is in 

terms of further partitioning at a leaf node. The larger these parameters, the more 

conservative the algorithm. More details about the implementation of the XGBoost 

package can be found in Chen and Guestrin (2016). 

Artificial Neural Networks 
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Artificial Neural Networks (ANNs) are a family of machine learning algorithms 

inspired by nature, specifically biological neural networks, and are comprised of nodes, 

organised in layers. Each node receives information with a certain weight from another 

node or external stimuli, transforms it, and passes it to the next node or transfers it as 

external output. Nodes that belong in the same layer work collectively within the same 

depth of the network. The higher the number of layers, the deeper the ANN. The ANN 

implemented here is a feed-forward, single hidden layer neural network. It was tuned 

for the number of units in the hidden layer (size) as well as a gradient decay (decay), i.e. 

a factor less than 1 by which the weights are multiplied at each update, i.e. each 

iteration of the algorithm. 

Deep Neural Networks (DNNs) are ANNs composed of multiple layers, which allows 

them to transform information and learn from data with multiple abstraction levels 

(LeCun et al., 2015). The DNN implemented here is a multi-layer, feedforward ANN 

trained using stochastic gradient descent and back-propagation (Candel et al., 2014). In 

back-propagation, the model’s error is fed back into the model in order to update the 

weights and further improve results. This process evolves as an optimisation problem, 

where the objective is to minimise the model’s error using stochastic gradient descent 

(Bottou, 2010).  

Although there are many parameters in a DNN, the following eight are tuned in this 

study. The number of epochs indicates how many times the whole dataset, divided into 

smaller batches, will go back and forth through the neural network during the training 

process. The higher the number of epochs, the higher the risk of overfitting while too 

few could lead to underfitting. The activation function (activation) transforms the input 

in a node to a certain output, while the size of the hidden layers (hidden) determines the 
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number of nodes in each one. The dropout ratio of the input (input_dropout_ratio), as 

well as the dropout ratio of the hidden layers (hidden_dropout_ratio) aim to prevent 

model overfitting. At each training example, they suppress the activation of the nodes 

(in the input or hidden layers, respectively) by a certain probability (dropout ratio). As a 

result, each training example creates a different model. The combination of these 

learners resembles an ensemble model (Candel et al., 2014). There is also the option to 

activate an adaptive learning rate (adaptive_rate) method for gradient descent that 

determines how quickly the algorithm converges to an optimum solution. In this case, 

the momentum of the learning rate is determined by two more hyperparameters, the rho 

and epsilon (Candel et al., 2014). More information regarding the tuning parameters of 

a DNN can be found in Candel et al. (2014). 

Generalised Linear Models 

Generalised Linear Models (GLMs) are an extension of simple linear models for errors 

that do not follow the normal distribution or predictors whose influence is not linear 

(Aiello et al., 2016). GLMs typically create regression models that follow an 

exponential distribution (Aiello et al., 2016). There are two parameters tuned for the 

GLM, one that defines how the model deals with missing values and the alpha 

regularization parameter. The value of alpha determines the penalization function used 

to avoid model overfitting, reduce the variance in the error, and deal with correlated 

predictors (h2o.ai, 2019a). More information regarding the meaning of these two 

parameters can be found in Nykodym et al. (2019) 

Model Stacking 
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Stacking is the process of combining the results of individual learners into one super-

learner. The way of combining them could be a simple weighted average or using a 

machine learning model such as a RF or ANN to learn the best combination based on 

the residual errors. 

Bias correction methods 

The concept of model bias is well-documented in the machine learning literature (Zhang 

and Lu, 2012; Nguyen, Huang and Nguyen, 2015; Song, 2015; Ghosal and Hooker, 

2018; Hooker and Mentch, 2018). Especially in methods such as RFs, where the final 

prediction is estimated as the mean among the predictions of the individual trees, the 

range of the prediction becomes smaller due to averaging compared to the actual range 

in the response variable. This leads to overestimating the smaller values and 

underestimating the larger values in the dataset. As opposed to the above, which is a 

fundamental statistical concept, the systematic bias in the model’s results refers to a 

consistent overprediction or underprediction of the response variable. A well-

performing model should ideally exhibit a zero or near-zero systematic bias. 

In this paper, four methods for bias correction (BC) described in Song (2015) are tested 

for their ability to improve the accuracy of the final result. In the first BC method 

(BC1), a RF model is used to predict the residual errors based on a set of predictors in 

the training dataset that include the predicted values of the response variable. The final 

prediction of the model is then adjusted by adding the predicted residuals to the 

predicted outcome. In the second BC method (BC2), a simple linear model is fitted on 

the residuals of the training set but this time only the predicted values are used as input. 

The same linear model is then used to predict the residuals in the test dataset. As with 

BC1, the residuals are added in the final prediction to adjust it. BC methods 3 and 4 
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(BC3 and BC4) use a residual rotation approach. They first calculate the prediction and 

the residuals based on Method 1. Then a simple linear model is fitted on the residuals 

against the predicted values. In BC method 3, the residuals are rotated so that y=0, 

whilst in BC method 4 the best rotation angle is determined sequentially as the one that 

achieves the minimum MSE. An extensive description of the four methods can be found 

in Song (2015). The code used for the implementation of the four BC methods is 

adapted by Song (2015). 

Model Technical Implementation 

All models, analysis, and results produced in this work were created using R (R core 

team, 2013). The RF, XGBoost, and ANN models were trained using the algorithms 

implemented in the ‘randomForest’ (Liaw and Wiener, 2018), ‘xgboost’ (Chen et al., 

2019), and ‘nnet’ (Ripley and Venables, 2016) packages, respectively, and tuned using 

‘caret’ (Kuhn, 2019), which allows to perform a grid search for the optimum 

hyperparameter values. The GBM, DNN, GLM, and stacked models were built using an 

open source machine learning platform, ‘h2o’, and specifically its automated machine 

learning capability (‘autoML’), which was accessed through an R interface using 

package ‘h2o‘ (LeDell et al., 2019). This method was implemented for its high 

performance, speed, automation, and efficiency.  

The automatic capability ‘autoML’ of the ‘h2o’ platform currently provides support for 

the implementation of five machine learning methods, RF, XRT, GBM, DNN, GLM, 

and in some cases also for the XGBoost algorithm, which was not available here. 

However, it only tunes the GBM, DNN, and GLM models using random search, 

whereas it uses default versions of the XRT and RF models (h2o.ai, 2019b). In addition 

to this, ‘h2o autoML’ also trains two stacked ensemble models. The first one is based on 
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the best combination among all trained models, including multiple models from the 

same type (e.g. RF) that were trained as part of the hyperparameter tuning process. The 

second stacking technique includes only the best model of each type (h2o.ai, 2019b). 

The metalearner algorithm used to combine the models in the automated machine 

learning capability of ‘h2o’ is a GLM model with non-negative weights. The weights 

are determined based on the combination that produces the best stacked model, i.e. the 

one that achieves the lowest error (h2o.ai, 2019b). Only the three properly tuned ‘h2o’ 

models (GBM, DNN, and GLM) are presented in the results section, although both the 

default XRT and RF were used as components to build the final stacked models. 

Results 

In this section, the forecasting performance of seven models (RF, XGB, GBM, GLM, 

ANN, DNN, and stacked) is compared based on four evaluation metrics, the MAPE for 

all days as well as peak days, the R2, and the MSE. For comparison, the error of a 

simple model that assumes forecasted consumption for each day is equal to the mean 

consumption among all days in the dataset, was 10.1% for all days and 19.8% for the 

peak days, i.e. the 10% of the days with the highest consumption.  

Only the two best models of each type (one with and one without past consumption as 

input) after the tuning process was completed are presented in the following. In addition 

to this, four bias correction (BC1-BC4) methods are applied on top of the best 

performing model. Group 1 (Table 2) summarises the results of the models that include 

past consumption whereas Group 2 (Table 2) demonstrates the results achieved by the 

models that include only postcode location, temporal, and weather characteristics as 

input. The final hyperparameter values for each model are summarised in the Appendix.  
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According to Group 1 (Table 2), when past consumption is included as input, the model 

with the best performance (R2 = 74.1%, MAPE = 4%) is the stacked model created by 

‘h2o’ as an ensemble of five individual learners (the best from each family). 

Specifically, the stacked model comprises of a GBM, XRT, GLM, DRF, and DNN 

model, with a corresponding contribution to the output of 31%, 24%, 19%, 14%, and 

12%, respectively. Out of the four BC methods tested here, the second method (BC2, 

Table 2), which predicts residual errors based on the predicted value of the response 

variable, performs best. Although applying the BC2 method on top of the stacked 

model’s results did not improve the overall model performance, it did reduce the MAPE 

of the peak days from 5.1% to 4.6% (Model 7 & 9, Group 1, Table 2). Out of the rest, 

the GBM (R2 = 74.1%, MAPE = 4.1%) and RF (R2 = 72.8%, MAPE = 4.1%) models 

have the highest forecasting accuracy for all days in the data. The neural network based 

models have the lowest peak day errors, with a MAPE of 4.8% for the ANN and 5.2% 

for the DNN. However, the ANN model does not perform as well for the other two 

performance metrics (R2 = 70.8%, MSE = 55). This implies that the reason that the 

model performed better for peak days might be that it systematically overpredicts 

consumption, especially due to the high MSE value, which is an indicator of bias in the 

model. Finally, the worst performing model across most metrics (R2 = 70.6%, MAPE = 

4.2%, MSE = 55) is the GLM.  

When past consumption is not included as input, the best performing model is again the 

stacked model (MAPE = 4.3% for all days and 5.1% for peak days, R2 = 71.2%, MSE = 

54). This time, it comprises of a GBM, DNN, DRF, GLM, and XRT model, with a 

percentage contribution to the output of 53%, 15%, 11%, 11%, and 10%, respectively. 

Adding BC2 further reduces the MAPE to 5.1% for peak days. The second best 

performing model in this case is again the GBM, which has the same MAPE for all days 
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(R2 =70.9%, MAPE = 4.3%) and slightly higher (MAPE = 5.6%) for peak days. It is 

worth noting that the ANN model, which performes relatively well with past 

consumption input and is the model most commonly used in the literature, 

underperforms in this case (MAPE = 4.7% for all days and 5.8% for peak days, R2 = 

65.1%, MSE = 65). Similar results apply for the GLM model, which performs 

reasonably well with past consumption data (MAPE = 4.2% for all days and 5.8% for 

peak days, R2 = 70.6%, MSE = 55), but whose error increases significantly without 

(MAPE = 4.7% for all days and 6.8% for peak days, R2 = 63.8%, MSE = 67). 

Figure 2 demonstrates an example of the actual versus predicted values for two model 

types, the GLM and Stacked-BC2 (Stacked with Bias Correction method 2) model, 

without past consumption data. According to Figure 2, the days with the lowest 

consumption are most of the times ovrepredicted, while the days with unusually high 

consumption are underpredicted. Although this effect is particularly prominent for the 

GLM (plot a, Figure 2), it improves significantly in the case of the Stacked-BC2 model 

(plot b, Figure 2).Overall, predicting demand becomes slightly more challenging when 

past consumption data is not available as well as for peak days (Peak days, Table 2). 

However, certain models are able to deal significantly better with the lack of additional 

information (e.g. XGB, GBM) compared to others (ANN, GLM). The method that 

seems to be affected the most with forecasting demands without past consumption is the 

method that is frequently suggested as best in the literature - the ANN model. The 

MAPE of this method increases for the peak days from 4.8% to 6%, i.e. by 25% when 

comparing the cases with and without past consumption data as input. 

Finally, although slight differences exist, most models achieve very similar results for 

all days in the data, with a range in MAPE between 0.2% (with past consumption) and 
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0.4% (without past consumption) across the test dataset (MAPE – All days, Table 2, 

Groups 1 & 2, respectively). However, the range of errors increases significantly for 

peak days, i.e. the 10% of the days with the highest consumption, with a range in 

MAPE between 1.4% (with past consumption) and 1.7% (without past consumption) 

(MAPE – Peak days, Table 2, Groups 1 & 2, respectively). 

Discussion 

One of the main observations of this study is the power of stacked models to improve 

the prediction accuracy of their counterparts by adding up their individual strengths and 

overcoming their weaknesses. However, there is a time and cost sacrifice in exchange 

for improving accuracy. No machine learning technique is universally best for all types 

of data, purposes, and datasets. Therefore, it is important to account for the 

computational power, effort, as well as expertise that is required to identify and tailor 

the machine learning technique that will produce the best outcome.  

Another important point is the level of transparency and interpretability associated with 

each model. Generally, the fewer the number of model parameters and the simpler the 

model, the easier it is to understand, explain, and interpret. According to Molnar (2019), 

transparency refers to understanding how the algorithm learns from the data and is 

independent of the trained model, whereas interpretability is the knowledge of how the 

model makes decisions, based on its features, weights, and parameters. A linear 

regression model is transparent as the way the algorithm is built is thoroughly explored 

and understood and at the same time it is interpretable, as the weight of each predictor 

indicates its influence on the response variable. DNNs on the other hand are neither 

transparent, nor directly interpretable due to the complexity and number of 

hyperparameters and hidden layers. RFs on the other hand are easier to interpret and 
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explain as they are essentially an ensemble of decision trees. For example, the closer a 

variable is to the root of the tree, the higher its importance. Stacked models can achieve 

high accuracy as they combine the strengths of different models but at the same time 

they have limited interpretability, as they lack a model structure. In some cases, 

sacrificing some accuracy in order to increase the level of understanding is the preferred 

solution. However, model-agnostic interpretability methods (i.e. ones that can be used 

on any machine learning model) can assist with overcoming this issue by combining the 

high accuracy of stacked models with the understanding of more transparent and 

interpretable methods (Molnar, 2019; Xenochristou et al., 2020b). 

An interesting concept that has not been highlighted in previous water demand 

forecasting attempts is the concept of bias towards the mean. This is a combination of 

the elementary statistical concept of regression towards the mean and certain model 

structures (e.g. RF), prone to create biased results (Zhang and Lu, 2012). Regression 

towards the mean is the term for a statistical phenomenon that can be illustrated by a 

simple example as follows. For an extreme measurement of a variable, e.g. an unusually 

high daily temperature, it is unlikely that a second measurement would result in a 

similar or higher value. The most likely scenario is that the second measurement is 

going to be closer to the mean annual temperature. Another example described by 

Stigler (1997) is a student that scored really high at a test. In order for this high score to 

occur, it is likely that not only skill, but also luck was involved, a factor that might 

diminish if another test was taking place, resulting in a lower score. A similar concept 

can be applied to water demand. In order for a very high consumption to occur on a 

certain day for a population of 120 households, a number of factors need to contribute. 

For example, previous research (Xenochristou, Kapelan and Hutton, 2020) indicated 

that an affluent area on a Saturday with high air temperature, is likely to result in a high 
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consumption. However, there are a number of additional factors that will determine how 

high consumption is going to be on that day. This means that although days with the 

same weather characteristics, the same past consumption, in the same location, are 

likely to have a higher than normal consumption, for only one of these days 

consumption will be high enough to be an outlier in the data. As the model learns from 

all days that have the same characteristics, but not as an extreme consumption, the 

predictions are likely to gravitate towards mean values, which will naturally result in 

overpredicting and underpredicting the highest and the lowest values in the dataset, 

respectively. This effect is exaggerated in certain models such as RFs due to their 

structure, which is based around averaging among hundreds or thousands of individual 

predictions. Stacked models, on the other hand, are able to deal with outliers much 

better. In addition, a simple bias correction technique could achieve an additional 

reduction in errors for the days with the highest consumption. Therefore, choosing 

wisely the model structure and performing a bias correction on the results could 

significantly improve predictions on critical days. 

Finally, this research demonstrates how a simple tool, ‘h2o.ai’, can assist with the water 

demand forecasting model development process. As machine learning becomes the 

mainstream approach in many sectors, there is an increasing need for people that are not 

trained in the field of computer science to use these tools efficiently. The ‘h2o’ platform 

can be useful not only in order to choose the best algorithm but also in order to 

efficiently tune the model’s hyperparameters. One of the problems that were identified 

in previous studies is the lack of proper tuning of the machine learning algorithms that 

are used for forecasting. In addition, creating a grid space for hyperparameter tuning is a 

brute-force approach that is time-consuming and not computationally efficient for high-

dimensional problems, even when it is parallelised. Using the ‘autoML’ function of 
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‘h2o’ for choosing the model hyperparameters, even when the preferred algorithm is 

known, could significantly reduce complexity, computational time, as well as improve 

the model’s results. 

Summary and Conclusions 

This study explored the potential of a stacked ensemble model with added bias 

correction (BC) to produce improved water demand forecasts. In order to achieve 

maximum accuracy, a fine-tuning process was adopted. The potential of automating this 

process using the machine learning platform ‘h2o’ were explored and compared to 

model development using methods that require extensive user engagement and 

expertise. The proposed model was compared with several traditional (e.g. ANN) as 

well as more recent machine learning  methods (e.g. DNN, GBM, XGB) in the water 

demand forecasting literature and was found to consistently outperform them, especially 

for peak days when past consumption data was not available.  

Results show that the stacked-BC2 model performed best as it consistently achieved the 

best demand forecasting accuracy for both consumption cases (all days and peak days) 

and for both prediction model configurations (with and without past consumption as 

input). The MAPE of the stacked-BC2 model was 4% for all days and 4.6% for peak 

days when past consumption data was included as input, as opposed to 4.3% and 5.1%, 

respectively, when past consumption data was not available. 

The GBM model had a similar prediction accuracy (MAPE = 4.1% for all days and 

5.4% for peak days), especially when past consumption data was not available (MAPE 

= 4.3% for all days and 5.6% for peak days). At the same time, the GBM model turned 

out to be quicker and easier to build since it requires tuning only one set of parameters 
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whereas the stacked-BC2 model requires the development and tuning of multiple 

individual learners that are combined to create a super-learner. On top of all this, the 

GBM model has a higher level of transparency and interpretability, since the stacked-

BC2 is built as an ensemble of different base models and thus it lacks a model structure. 

This means that in situations where demand forecasting accuracy is not of the utmost 

importance, the GBM model is a viable alternative to the stacked model. 

Depending on the scenario, in terms of the data availability and forecasting goal, the 

choice of model could significantly alter results. For easier tasks (e.g. when past 

consumption data is available and when the focus is not on predicting outliers) most 

models perform well. However, in situations where data availability is limited and the 

goal is to predict days with abnormal consumption, different models produce a wider 

range of accuracy. Specifically, when predicting demand using past consumption data 

over all days in the dataset, all models perform similarly, with a range in MAPE from 

4.0% to 4.2%. However, when focusing on harder aspects of the same problem, e.g. 

when past consumption data is not available and for peak consumption days, the MAPE 

among different models varies from 5.1% (stacked-BC2) to 6.8% (GLM), an increase of 

33%.  

Finally, this study concluded that applying simple techniques like bias correction on top 

of the model’s results could improve predictions for the peak days. Although most 

demand forecasting models are accurate (achieving regularly MAPE lower than 5%), 

they struggle to predict outliers. This fact could be particularly problematic in the 

context of water demand forecasting since days with unusually high consumption are 

usually the critical ones for water utilities, a problem that could intensify with future 

changes in the climate. This technique, although it did not alter the overall accuracy of 



26 
 

the model, it improved predictions for the 10% of the days with the highest 

consumption (Table 2). 

Although the above models were tested under two scenarios, with and without past 

consumption data, as well as for peak consumption days, it is not clear how the models 

would perform with a less rich or more noisy dataset. An uncertainty analysis around 

the amount and quality of data necessary for each model type to perform well is needed 

to assess the model’s robustness and suitability to produce accurate forecasts under 

different data availability scenarios. 

Overall, this paper focused on identifying models and techniques that can be used to 

improve predictions in water demand forecasting. However, this analysis was 

performed at a certain spatial and temporal scale. Future work will explore what is the 

best accuracy that can be achieved at different spatial scales as well as specifically 

assess the contribution of several input factors (weather, temporal, and household 

characteristics) on the model’s prediction accuracy at each scale. 
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Appendix 

The ‘autoML’ module of ‘h2o’ trains a number of machine learning models (RF, XRT, 

GBM, DNN, and GLM) as well as tunes some of them (GLM, GBM, DNN) for the 

optimum set of hyperparameters. The model training stops according to a variety of 

stopping criteria. In this case, these were the stopping tolerance (0), stopping metric 

(MSE), and stopping rounds (1). This means that ‘h2o’ stops running when the MSE 

does not improve more than 0, over 2 consecutive iterations (for the same or different 

models). In addition, the maximum runtime was set to 2 hours, which means that the 

program stops running and saves the models developed up to this point, if none of the 

other criteria has been fulfilled. The same limits specified above were chosen for both 

groups of input parameters (Table 1), the one that includes past consumption, temporal, 

household, and weather characteristics, as well as the group that excludes past 

consumption. During this time, ‘h2o’ trained 335 models without past consumption and 

147 models including past consumption data. Since additional variables add complexity 

to the model, they consequently increase training time, leading to less than half of 

models being trained within the same time frame.  

Out of the six model types that were calibrated and tuned for the optimum set of 

hyperparameters, three of them (Random Forests - RFs, Extreme Gradient Boosting - 

XGBoost, Artificial Neural Networks - ANNs) were tuned using a pre-defined grid 

search space, whereas the Generalised Linear Model (GLM), Gradient Boosting 

Machine (GBM), and Deep Neural Network (DNN) were tuned automatically using a 

random grid search approach within the automated machine learning (‘autoML’) 

module of ‘h2o’ (h2o.ai, 2019b). The following section describes the number of 

hyperparameters used for tuning each model, as well as the final results of the search. 
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The implementations of the DRF and XRT models used to build the stacked model were 

the default model versions and are not described in the following.  

Random Forest (RF) 

The optimum (and default) value in regression for the number of random variables used 

for splitting (mtry) at each node is often considered to be the number of input variables 

divided by three. According to Table 1, the total number of variables is 14 for the 

models in Group 1, as opposed to 7 for the models in Group 2 (14 minus 7 days of past 

consumption). Therefore, the mtry was varied between 3 and 7 for the models with past 

consumption data and 2 to 4 without past consumption included as input. In both cases, 

the step size was set to 1. The number of trees was varied from 120 to 240, whereas the 

number of nodes from 20 to 120. In both cases, the step size was set to 20. The final 

values of mtry, ntree, and nodesize selected for each model (with and without past 

consumption) as a result of the grid search appear in Table A1.  

Table A1: Hyperparameters for the RF model with and without past consumption as input. 

Hyperparameters 
With past 

consumption 
Without past 
consumption 

Mtry 6 7 
Nodesize  100 40 
Ntrees 160 200 

Gradient Boosting Machine (GBM) 

A total of nine hyperparameters were tuned by the automated machine learning module 

of ‘h2o’ for the GBM model. The final parameter values for each model, with and 

without past consumption data appear in Table A2. The ‘auto’ histogram type means 

that the cutting points tested for splitting are chosen by dividing the range of values of 

each variable in equal steps (20 steps here).  

Table A2: Hyperparameters for the GBM model with and without past consumption as input. 
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Hyperparameters 
With past 

consumption 
Without past 
consumption 

Ntrees 104 109 
Max_depth 13 8 
Learn_rate 0.05 0.05 
Sample_rate 0.9 0.8 
Col_sample_rate 0.4 0.4 
Col_saple_rate_per_tree 0.4 1 
Histogram_type Auto Auto 
Min_split_imrpovement 1e-04 1e-05 
Min_rows 10 15 

Extreme Gradient Boosting (XGBoost) 

The number of hyperparameters required for the XGBoost algorithm makes it difficult 

to define an extended search range for each parameter, due to the high dimensionality of 

the problem. Here, the XGBoost algorithm was tuned for seven input parameters. The 

search range for each parameter, as well as the selection of the subsample size was 

based on trial and error. The final values of each parameter appear in Table A3.  

Table A3: Hyperparameters for the XGBoost model with and without past consumption as input. 

Hyperparameters 
With past 

consumption 
Without past 
consumption 

Nrounds 140 120 
Max_depth 6 5 
Colsample_bytree 0.4 0.7 
Eta 0.05 1 
Gamma 1 1 
Min_child_weight 1.3 1.3 
subsample 0.6 0.6 

Artificial Neural Network (ANN) 

The ANN implemented here has a single layer. The parameters used for tuning the 

model in this case were the size of the hidden layer and the decay, which where varied 

between 5-20 with a step of 1 and 0.01-0.1 with a step of 0.001, respectively. The above 

ranges for the grid space were chosen based on trial and error. The final values selected 

for each model are presented in Table A4.  
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Table A4: Hyperparameters for the ANN model with and without past consumption as input. 

Hyperparameters 
With past 

consumption 
Without past 
consumption 

Size 11 16 
Decay 0.002 0.006 

Deep Neural Network (DNN)  

The DNN model was tuned for eight hyperparameters by the ‘h2o autoML’ platform. 

The hyperparameter values selected for the two DNNs, with and without past 

consumption data, are presented in Table A5.  

Table A5: Hyperparameters for the DNN model with and without past consumption as input. 

Hyperparameters 
With past 

consumption 
Without past 
consumption 

epochs 270.4 131.2 
Adaptive_rate TRUE TRUE 
Activation RectifierWithDropout RectifierWithDropout 
Rho 0.9 0.95 
Epsilon 1e-08 1e-08 
Input_dropout_ratio 0.2 0.1 
Hidden 500 200 200 200 
Hidden_dropout_ratios 0.4 0.2 0.2 0.2 

Generalised Linear Model (GLM) 

The GLM model was tuned for two hyperparameters, the alpha and missing values. The 

alphahyperparameter was varied between 0 and 1, with a step size of 0.2. The final 

values selected for each hyperparameter appear in Table A6. An alpha value of 0 

indicates that a ridge regression (regularised linear regression) model is used to 

introduce penalties to the model building process, while MeanImputation means that the 

model replaces missing values with the mean. 

Table A6: Hyperparameters for the GLM model with and without past consumption as input. 

Hyperparameters 
With past 

consumption 
Without past 
consumption 

Alpha  0 0 
Missing values MeanImputation MeanImputation 
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More details regarding the model-building process as well as the hyperparameters 

available for tuning, their meaning, and the default hyperparameters of the models that 

were not mentioned here can be found in the online ‘h2o’ documentation (h2o.ai, 

2019c). 

All of the above hyperparameters are provided for reference only and for comparison 

purposes and do not replace the need to properly tune the above models based on the 

respective dataset.  
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Tables 

Table 1: Input variables used to train the models  

Variable Group Model Input Variables Group 1 Group 2 
Past Consumption 1-7 days prior X  

Temporal 
Type of Day X X 
Season X X 

Postcode Area Postcode X X 

Weather 

Sunshine hours X X 

Air Temperature X X 
Humidity X X 
Days without rain X X 

Total Variables  14 7 

 

 

Table 2: Model comparison with (Group 1) and without (Group 2) past consumption, based on the test dataset. The 
highlighted in bold numbers represent the best accuracy achieved for each metric.  

Model 
Groups  

ID 
Model 
Type 

Bias  
Correction  

Method 

MAPE (%) 
All days 

MAPE (%) 
Peak days 

R2 (%) 
MSE 

(l/postcode/day) 
Train Test Train  Test  Train Test Train Test 

Group 1 

1 RF - 1.8 4.1 2.8 5.6 95.5 72.8 10 51 
2 XGBoost - 3.0 4.2 4.5 6.0 86.3 72.5 27 53 

3 ANN - 3.9 4.2 4.8 4.8 74.9 70.8 45 55 
4 GLM  4.1 4.2 5.8 5.8 71.3 70.6 51 55 
5 GBM - 2.0 4.1 2.9 5.4 93.7 74.1 12 49 

6 DNN - 3.5 4.2 4.7 5.2 79.7 72.5 36 51 
7 Stacked - 2.2 4.0 3.2 5.1 91.8 74.1 15 48 
8 Stacked BC1 2.2 4.0 2.8 4.8 91.4 74.1 16 48 
9 Stacked BC2 2.6 4.0 3.3 4.6 88.7 74.1 20 48 

10 Stacked BC3 2.2 4.0 3.0 5.1 91.6 74.1 15 48 
11 Stacked BC4 2.2 4.0 2.9 4.8 91.5 74.1 15 48 

Group 2 

1 RF - 2.3 4.6 3.5 6.0 92.2 68.0 16 60 
2 XGBoost - 3.3 4.4 4.9 6.1 82.7 70.7 33 55 

3 ANN - 4.3 4.7 5.9 6.0 68.5 65.1 56 65 
4 GLM  4.6 4.7 6.8 6.8 64.7 63.8 63 67 
5 GBM - 3.1 4.3 4.2 5.6 84.0 70.9 29 54 

6 DNN - 3.7 4.5 5.4 6.2 76.6 68.5 43 59 
7 Stacked - 3.0 4.3 4.0 5.5 85.5 71.1 26 54 
8 Stacked BC1 2.7 4.4 3.3 5.1 87.9 70.2 22 51 
9 Stacked BC2 2.9 4.3 3.6 5.1 85.5 71.1 26 54 

10 Stacked BC3 2.7 4.4 3.7 5.5 88.1 70.0 22 56 

11 Stacked BC4 2.7 4.4 3.6 5.4 88.1 70.0 22 56 
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Figure 1: Location of area postcodes (red) and weather stations (blue). 

 

 

Figure 2: Metered VS predicted values for the GLM (plot a) and the stacked-BC2 model (plot b) when excluding past 
consumption data as input.  

 

 

 


