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Abstract
This paper analyses manually realised solutions to
the Train Unit Shunting Problem (TUSP) to find
patterns in train type. The parking element is most
important for the TUSP. Therefore, this research
specifically investigates the presence of train type
patterns in parking track and parking time. The
difference in the patterns between main train type
and train subtype is also analysed. The study uses
statistical hypothesis testing to look for biases be-
tween individual train types and parking tracks.
Kernel density estimation is used to analyse the dif-
ferences in parking time between the types. The
results show that there are strong patterns in type
and parking track, but no clear difference in park-
ing time. Considering subtype results in the differ-
ences being more specific. It is suspected that the
strongly present track pattern is a strategy used by
human planners.

1 Introduction
Railway companies base the size of their rolling stock on de-
mand during peak hours. Outside of peak hours and during
the night, demand is much lower and fewer trains are used.
Trains that are temporarily not in service must be parked
somewhere and optionally cleaned or serviced. This happens
at so-called shunting yards, locations close to train stations
with a large set of tracks. The Train Unit Shunting Prob-
lem (TUSP) concerns the challenge of deciding where to park
each unused train unit, how to route each unit through the
shunting yard and matching multiple units to form a new train
that is needed [1].

In the Netherlands, shunting yards are usually located close
to major stations, which means they are often enclosed within
the city centre with little room for expansion. Because of
growing passenger numbers, more trains will be needed in
the future, which only makes the TUSP more complex than
it already is [2]. To address this issue, Nederlandse Spoor-
wegen (NS, the Dutch national railway operator) is aiming to
automate the planning process by 2028. Although algorithms
exist, finding an optimal solution for this problem is compu-
tationally infeasible or yields an incomplete result, thus plan-
ning is still done manually by experienced planners [3], [4].

To address the flaws of these traditional algorithms, Van de
Gevel [2] has suggested improving the problem’s feasibility
by incorporating concepts (patterns) that are understood by
human planners into the algorithms. An example of such a
concept used by van de Gevel is the knowledge that a block
of train units arriving in a shunting yard is already in the cor-
rect order for departure. Hanou et al. [4] propose utilising
artificial intelligence methods to help find good solutions to
the TUSP and discover new insights that could be used to aid
human operators in their planning process.

Human-like insight or patterns in TUSP solutions can thus
be very helpful in making complex variants of the problem
feasible to solve. However, not much is known about these
patterns. While there has been research into how patterns

can be used, no formal research has been conducted to find
patterns in certain aspects of the shunting problem.

One such aspect is train type. This is a prominent charac-
teristic of modern train units. At first glance, train type may
seem easy to define. However, there is one important choice
that can be made in defining it. These days, NS mainly oper-
ates Multiple Unit (MU) trains. These are train units consist-
ing of multiple permanently joined self-propelled carriages
[5]. In their naming system, NS defines the type of each MU
on two levels: each unit has a type indicating the name of the
series (e.g. ICMm), but can also be listed as the series com-
bined with the number of carriages that the MU consists of
(e.g. ICMm-IV). In this paper the first is referred to as the
’type’ and the latter as the ’subtype’.

The goal of this study is to address part of the research gap
by finding patterns of train types in solutions to the Train Unit
Shunting Problem realised by manual planning. To achieve
this, the following main research question will be answered:
What patterns of train type can be found in realised solu-
tions of the Train Unit Shunting Problem?

By answering this question, this study hopes that the
knowledge of patterns in manual solutions can be used to im-
prove the feasibility of existing algorithms. Insight into how
train type is used by planners in existing solutions can help
simplify the problem and construct artificial intelligence sys-
tems that can find good TUSP solutions.

Finding patterns is a very broad objective. If one considers
the whole TUSP, there might be dozens of patterns that can be
looked into. Since no formal work has been done on finding
these patterns, this research will focus on the patterns that
play the biggest role in the TUSP. According to Kroon et al.
[6], the TUSP in its core consists of two main tasks: matching
and parking train units. Since trains operated by NS always
consist of units of the same type, it is already clear that train
type is the key factor in the matching problem and that there
is thus no need to look for patterns here. Instead, this research
focuses on finding train type patterns in the parking aspect.

In a previous collaboration with NS, Beerthuizen [7] has
developed a heuristic that involves parking train units of the
same type on the same track. This strategy is in turn based
on shipping container stacking [8]. If the heuristic has turned
out useful for manual planners, it should be a pattern present
in realised solutions. Furthermore, next to the track a unit is
parked at, the time it is parked could be a very useful heuris-
tic for parking units of different types on one track. Many
shunting yards consist of only Last In First Out (LIFO) tracks.
Units that stay parked for longer should be parked further
down the track and vice versa. Lastly, the exact definition
of a train unit’s type could play a role in the patterns. The
two hypothesised patterns are likely different when consider-
ing train unit subtype instead of just type. In summary, this
all leads to the following three subquestions:

• Can a pattern of train unit types be found in the track
where the units are parked in a shunting yard?

• Can a pattern of train unit types be found in the duration
the units are parked in the shunting yard?

• Are the patterns different when unit subtype is consid-
ered?



The research questions are answered by investigating data of
realised TUSP solutions constructed by manual planners. The
utilised dataset consists of real train movements in a number
of shunting yards over a period of ten months. The first two
subquestions are answered by conducting two individual ex-
periments with the data. The third subquestion is answered
by performing each experiment twice: once for train type and
once for train subtype.

Chapter 2 discusses relevant background in the methods
used for the experiments. Then, Chapter 3 explains data
preparation and the setup for the experiments. Chapters 4 and
5 discuss the experiments for the first and second subques-
tions respectively. Chapter 6 analyses the difference in results
when subtype is considered. Chapter 7 discusses aspects of
the reproducibility of this research and chapter 8 discusses
the results. Finally, the conclusions are listed in chapter 9.

2 A background on the methods
This section presents the background important for under-
standing the experiments conducted in chapters 4 and 5.
Firstly, section 2.1 briefly explains the dataset used for find-
ing patterns. Then, the next two sections look at methods
from literature that are useful for finding patterns. Section
2.2 explains biases and binomial significance, and section 2.3
explains kernel density estimation.

2.1 Dataset
The main objective of this research project is to find train type
patterns in good Train Unit Shunting Problem (TUSP) solu-
tions. The data used for finding patterns are real train move-
ments from a dataset provided by ProRail, the Dutch national
railway manager, and NS. They obtained the data by placing
GPS trackers in a large number of NS train units. The GPS lo-
cation data was combined with general information about the
unit itself to form the initial dataset. Additionally, the compa-
nies had already done some important processing of the raw
GPS data. Most notably, they combined it with a separate
dataset about the railway network to map all original GPS co-
ordinates to the exact track sections the train units were on
for each recorded location. They also added some fields to
the dataset representing general information about the cur-
rent movement of a unit and condensed it by combining all
records of a unit standing still into one. Finally, they split the
data into seven sub-datasets based on the geographical area
corresponding to seven shunting yards in the Netherlands.

2.2 Biases and significance
For the experiment with parking tracks in chapter 4 a pat-
tern is determined by analysing the difference between the
expected number of train units of a type per track and the ac-
tual number. This difference is referred to as the bias between
the type and track. It is crucial to determine if a bias is valid,
meaning the distribution is truly different than expected, or if
it is simply due to variance in the expected distribution. For
example, when tossing a coin 50 times and landing on heads
30 times, is it fair to say the coin is biased towards heads?
This depends on the significance of the bias. The signifi-
cance (or p-value) of a bias can be determined using Statisti-
cal Hypothesis Testing. While hypothesis testing in general

is a standard procedure, how it is applied in the experiment is
not straightforward. To make the method of the experiment
clear, the general method as described by Emmert-Streib [9]
is presented here first.

The first step is defining the test statistic T . This is a map-
ping between the data sample taken from the population and
the test statistic value t which is being tested for bias. Then,
the second step is to formally define the null hypothesis H0

and the alternative hypothesis H1. The null hypothesis is de-
fined as the situation where no bias is present and that θ, the
test statistic value for the entire population, follows the ex-
pected distribution. The alternative hypothesis is the oppo-
site, namely that θ does not match what is expected. Specifi-
cally, H1 can be defined either for the number to be less than
the expectation or greater (for now only one-sided biases are
considered). Formally, this is denoted as:

H0 : θ = θ0

H1 : θ < θ0 or θ > θ0
(1)

Step three is to determine the sampling distribution of T given
H0 is true. This can be any type of probability distribu-
tion and depends on the nature of the test statistic. For the
test described in section 4.1, each individual sample comes
from a single yes/no experiment called a Bernoulli trial. The
test statistic used here is the result of several Bernoulli trails,
which form a binomial distribution. The probability mass
function for such a distribution is given as [10]:

f(k, n, p) = P (X = k) =

(
n

k

)
pk(1− p)n−k (2)

Where k is the number of successes, n is the number of trials,
and p is the probability of success in one trial.

The fourth step is determining the significance level α.
This can be defined as the probability of making a type I
error. That is the probability that at the end of the test H0

is incorrectly rejected. The α thus determines if the bias is
significant enough to be considered real and must be chosen
before conducting the experiment.

Step five is to evaluate the test statistic T to obtain its value
t from the data. This is explained in section 4.1. The sixth
step is determining the p-value. This value is calculated by
comparing the observed data t with the hypothetical sampling
distribution of H0. The p-value is the probability of observing
the value t or more extreme values. For the binomial distri-
bution, the p-value is calculated as:

p =

{
P (X ≤ t) =

∑t
i=0

(
n
i

)
pi(1− p)n−i for H1 : θ < θ0

P (X ≥ t) =
∑n

i=t

(
n
i

)
pi(1− p)n−i for H1 : θ > θ0

(3)
The last step is to make a decision about the null hypothe-
sis. When the p-value is smaller than α, the probability of the
number of trains of the type occurring by chance alone is suf-
ficiently small and H0 is rejected. In this case, H1 is assumed
true and the bias is confirmed to be real.

Finally, next to determining the significance of the bias, its
value can also be estimated. Formally, the bias is the differ-
ence between a known or expected value and the observed
value. For the context of this study, the bias is defined as the



fraction of the two. Also, since the actual population value is
unknown, the bias can only be estimated using the data. The
value of the bias is thus defined as:

bias(θ) =
θ

θ0
≈ t

θ0
(4)

2.3 Kernel density estimation
Unlike the parking track, the parking duration is a continuous
variable. Therefore looking for patterns in duration involves
analysing the entire distribution of all data points, as opposed
to being able to group them. To obtain a probability distribu-
tion from the individual data points Kernel Density Estima-
tion (KDE) is used in the experiment of chapter 5.

Traditionally, to estimate the probability density of a set of
points one can use a histogram. However, this approach has
several drawbacks. Most significantly, the subjective choice
of the bin width greatly influences the shape [11]. To esti-
mate the probability density with a histogram, one divides
the space of all points into bins of a set size h and calculates
the probability of the points in the bin p(x) as:

p(x) =
K

Nh
(5)

Where K is the number of points that fall within the bin at x
and N is the total number of points.

KDE improves on this method by having an infinite num-
ber of bins centred at the location x of the data space [12].
This creates a continuous function of the probability density.
The number of points that fall into each bin is given as:

K =

N∑
i=1

k(
x− xi

h
) (6)

In this formula, it is determined for each point xi from the
data if it falls within the bin around location x. Here, the
function k(u) is the crucial part of the KDE method, called
the kernel. The kernel is a function that determines if each
point falls within the bin or not. The simplest kernel is similar
to the histogram approach. It only counts each point if it falls
within the bin:

k(u) =

{
1 if |u| ≤ 1

2

0 otherwise
(7)

Combining this with the original formula (5) gives a contin-
ues function for the probability density:

p(x) =
1

Nh

N∑
i=1

k(
x− xi

h
) (8)

Furthermore, the power of KDE lies in its different options
for the kernel. Where the kernel from (7), called a rectangular
kernel, only counts each point completely or not at all, other
kernels can give a continuous score based on the distance of
the point from the centre. This eliminates the ’blocky’ nature
caused by the bins by smoothing out the data points [13]. A
common function used as a kernel is the Gaussian distribu-
tion:

k(u) =
1√
2π

e−
1
2u

2

(9)

Finally, KDE is also very suitable for estimating a PDF in
multiple dimensions. This is achieved by slightly modifying
the kernel.

3 Data preparation and experimental setup
This chapter describes two matters that are important for con-
ducting the experiments described in chapters 4 and 5. Firstly,
section 3.1 discusses the initial operations on the data to pre-
pare them for answering both questions. Then, section 3.2
explains the technical setup that is used for computing the
results of both experiments.

3.1 Data preparation
While the originally provided data represents train movement
data, it does not represent TUSP solutions. To make the data
more useful, they are first condensed further by grouping the
individual location data points by each train unit’s appear-
ances in the shunting yard area. This means that one unit
visiting the area once is one row or data point. When the unit
leaves the area and returns at a later time it is considered a
new data-point. Each appearance of a unit consists of gen-
eral data about the unit and a list of movements in the area.
Each movement consists of a timestamp, a track section and
the type of movement. Furthermore, these data are filtered to
only include units that enter the shunting yard at one point.
In the end, the data are represented as a list of train unit ap-
pearances in a given timeframe and location, with each unit’s
exact movements in the shunting yard and surrounding area.
This is a good representation of the real train data as TUSP
solutions.

3.2 Experimental setup
The experiments are executed in Python, using Jupyter Note-
book to organise the steps of the experiments. The notebooks
are added to a small template provided by Prorail. This tem-
plate already contained functionality to retrieve the data from
their storage and some simple helper functions. On top of the
provided code, new helper functions are added for the data
preparation described in the previous section. The imple-
mentation utilises some external packages to make the data
processing and visualisation easier. These include Polars,
NumPy, SciPy, scikit-learn, Matplotlib and Seaborn.

4 Finding type-track patterns
This chapter explains the experiment that answers the first
subquestion. The objective of the experiment is to determine
if there is a pattern between train type and parking track and
analyse it if present. Section 4.1 describes the method of the
experiment and section 4.2 its results.

The hypothesis is that there is indeed a pattern for two rea-
sons: parking units of the same type on the same track 1)
makes the matching problem easier to solve and 2) makes
finding solutions for the whole TUSP more feasible for hu-
man planners. When the matching of units can be done on
the same track as they are parked, the cost of movement and
using other shunting tracks is saved. Even when matching is
not required (i.e. for trains consisting of one unit), human
planners might favour clustering the types on specific tracks.
With this tactic, when for example an SNG type is required,
planners can just take one from the ’SNG track’ and no addi-
tional movements are needed.



4.1 Method
The first subquestion is answered by looking for a pattern be-
tween train type and parking track in the data. Testing if this
pattern exists can be done quite exactly: because both train
type and parking track are discrete variables with a relatively
small number of values, it is feasible to consider every combi-
nation and determine patterns on the individual level. This is
done using the approach described in section 2.2. Following
this approach, firstly the test statistic T is defined. In the con-
text of this experiment, what is being investigated is if some
tracks have a stronger ’preference’ for certain train types as
opposed to all the types being spread equally over all park-
ing tracks. Therefore, what is formally being determined is if
the probability p of a unit of a certain type being parked on a
certain track is different from the fraction of all trains in the
shunting yard that are of that type, which here will be referred
to as p0. These probabilities are formally defined as:

p0 =
utype

utotal
p =

utype,track

utrack
(10)

Where utotal is the total number of units in the yard, utype

is the total number of units of the selected type, utrack is
the total number of units parked on the selected track, and
utype,track is the number of units of the type on the track.

The value of the test statistic t is the estimation of p ob-
tained by using the right formula on the unit counts that can
be obtained from the data. Similarly, p0 can be obtained using
the total number of units of a type in the shunting yard.

Since the alternative hypothesis H1 can be either left or
right-handed, the bias is first estimated. Using formula (4)
this gives:

bias(p) =
p

p0
≈ t

p0
(11)

Using this bias, the null and alternative hypotheses are de-
fined as:

H0 : p = p0

H1 :

{
p < p0 if bias(p) < 1

p > p0 if bias(p) > 1

(12)

The significance level α determines how low the p-value
needs to be for the bias to be valid. For this statistical test,
an α of 0.01 is used. This is lower than the popular 0.05
because for this research it is important that the patterns are
certain.

The distribution of the null hypothesis is binomial. This
is because every train unit parked on the track can be seen
as a single Bernoulli trial. Here, success is defined as the unit
being of the type that is being tested for and failure as the unit
being from one of the other types. Again, p0 is the chance of
each trial being a success when no bias is present.

Although the formal test statistic T used in this procedure
is the probability p, to calculate the p-value in a binomial
test the number of successes is used. In this context, this is
utype,track. This number is obtained from the TUSP solution
data described in section 3.1. It involves first filtering the list
of movements for each train unit appearance to only contain
the ’movements’ where the unit is listed as parked. A unit be-
ing parked is defined as a period of at least 30 minutes where
it is standing still.

A large part of units is listed multiple times as parked dur-
ing one visit to the shunting yard. This is because units that
need servicing are moved to the servicing track at some point,
parked there for a while, and then moved back to a parking
track. This behaviour creates multiple possibilities for how
the number of parked trains can be defined. Most crucially,
a unit being parked after returning from the servicing station
can be counted as a new unit being assigned a parking spot,
or it can be considered a different problem of its own. The
data shows that most often, a unit returns to its original park-
ing track. Therefore, for this experiment, each unit is only
counted once as being parked on a track. That is, the track it
is parked on when it first arrives in the shunting yard.

Each appearance of a train unit is thus converted to a tu-
ple consisting of only the unit type and the track it was first
parked at. This track must be one of the tracks that are reg-
ularly used for parking trains and not an unusual location
where the unit stood still for a longer time. The parking tracks
are defined manually for each shunting yard based on its lay-
out and units parked at other tracks are considered outliers
and removed. Next, to count the number of parked units, the
tuples can be grouped by train type with the parking tracks as
a list per type. Finally, for each train type, the occurrences of
each parking track can be counted using the list. The other
unit counts u in formulae (10) can be calculated using these
utype,track.

To calculate the p-value (pv) formula (3) for the bino-
mial test is used. As mentioned, instead of using t directly,
utype,track is used (here denoted as just u). Also in the for-
mula below, n is the total number of units on the track utrack.

pv =

{
P (X ≤ u) =

∑u
i=0

(
n
i

)
pi0(1− p0)

n−i for H1 : p < p0
P (X ≥ u) =

∑n
i=u

(
n
i

)
pi0(1− p0)

n−i for H1 : p > p0
(13)

By calculating the bias and the p-value for every type-track
combination, it can be determined exactly which tracks have
biases for which types and how strong these biases are.

Lastly, there is one interesting factor left to mention. The
bias can be seen and calculated from two perspectives: one
could say a track is biased for a particular train type, or a
train type is biased for a particular track. Because only one
combination of track and type is considered at a time, the bias
is always the same regardless of perspective. Note that each
type can have a bias in more than one combination with a
track. The same is true for each track. While the value of the
bias is the same regardless of from which perspective it is cal-
culated, the p-value can be different. This is because the pa-
rameters of the binomial distribution are different from each
perspective. In the steps mentioned, the process was formu-
lated from the perspective of the track being biased for a type.
When looking from the other perspective, p is the fraction of
all trains going into the selected track (utrack/utotal) and n
is the total number of units of the selected type utype. While
these two p-values are never too far apart for this dataset, it
does result in some biases being slightly below α when look-
ing from one perspective and slightly above α when looking
from the other. A bias is only considered significant when
both p-values are less than α.



4.2 Results

The results are obtained by running the experiment using the
setup described in section 3.2. The steps are executed indi-
vidually for each shunting yard in the data, except Arnhem
Goederenstation, because very few units from the data park
here. Since the global pattern over all tracks is similar for
each shunting yard, this section only covers the results for one
yard, Amersfoort Bokkeduinen. The results for this shunting
yard are presented as a heat map in table 1. This table ex-
cludes the type E1700 and track 365L because for both very
few units were in the data.

The table shows for each combination between a parking
track and a train type the bias and two values of the signifi-
cance ptr and pty . The latter are the p-values corresponding
to the biases calculated from the two perspectives. Here ptr
is the significance from the perspective of the tracks and pty
is the significance from the perspective of the types. The bi-
ases are represented as the fraction of the observed number
of units of each type on each track over the expected number.
Here a bias greater than 1 represents a positive bias where
more units were observed than expected and a bias less than
1 is a negative bias where fewer units were observed than ex-
pected. The colours highlight the severity of the bias. Biases
that are not significant are coloured in grey.

The table makes it immediately clear that there are indeed
significant biases between train types and parking tracks. Sig-
nificant biases are present for every type and every track in
the table. Out of 70 combinations, 51 have a significant
bias. Three tracks have a significant bias with every train
type. These are tracks 361AV, 381R and 383L. One train type,
SNG, has a significant bias for every track. The ICMm type
has only one insignificant bias. This can be explained by the
observation that these two types are also the most prominent
in this shunting yard. Because of the larger sample size for
these types, the biases are more easily significant.

The most prominent biases are found in types DDZ and
VIRM. These both have two positive biases of 2 or higher.
Looking at the tracks there are also differences. Track 361AV
is very strongly biased for two train types. 365L has two
very strong negative biases. This can be explained by the low
number of trains parking on the track.

One interesting observation is the correlation between pos-
itively biased track location and train service type. The tracks
in the table are ordered as they are structured geographically.
That is, 361AV (the first row) is the most northern parking
track in the shunting yard and 383L (the last row) is the
most southern track. The table shows types DDZ, ICMm and
VIRM solely having positive biases for the top half of tracks,
and SLT and SNG only having positive biases for the bottom
half of the track. These two groups of types correspond with
the two types of train service NS units are used for. DDZ,
ICMm and VIRM are all used for intercity services and SLT
and SNG are both used for sprinter (local) services.

For this shunting yard, there are no biases that are only sig-
nificant from one perspective. However, when running the
experiment on other shunting yards, there are biases like this.
These shunting yards are Watergraafsmeer, Carthesiusweg,
Hoofddorp, Arnhem West and Dordrecht.

5 Finding type-duration patterns
This chapter explains the second experiment to answer the
second subquestion. Firstly, section 5.1 explains the method
that is used to find a pattern between train type and duration.
Then, section 5.2 presents the results of the experiment.

The hypothesis for this subquestion is that there is a rela-
tion between train type parking duration because some types
might be needed for passenger service less frequently than
others. The parking duration is useful for the shunting prob-
lem because the time a unit stays parked can be linked to its
position on a First In Last Out (LIFO) track. The unit that
is parked the longest should enter the parking track first and
vice versa.

5.1 Method

The parking durations can be obtained from the TUSP solu-
tions using the list of movements for each unit. Each move-
ment has two timestamps: one for the beginning of the move-
ment and one for the end. When a unit is moving, the time
in between is ten seconds. When a unit is stationary, the
time in between the timestamps is the total time the unit has
not moved. For this research question, the total duration a
unit has been parked is defined as the total time it is listed
as parked. The time spent in the shunting yard moving and
standing still for short periods is insignificant and irrelevant.

Some units need servicing. In this case, they are usually
listed as parked three times: when they first park upon their
arrival in the yard, when they stand still in the servicing track
for a longer time, and when they are parked again after ser-
vicing is done. Unlike the other experiment where only the
initial parking spot is considered, here the times for the three
separate parking occasions are combined into one. This is be-
cause the total time parked in the shunting yard is important.

After calculating the parking times for each unit, the data
are converted to a list of just each unit’s type and the time that
it was parked. Finally, all units that were parked for longer
than 18 hours are removed. This is because units parked ’long
term’ are another special case that is not relevant to this ques-
tion. Here, only units that are in service each day are consid-
ered.

To determine if there are patterns, these type-duration data
are analysed on different levels. Firstly, a box plot of the
duration with the train types as different groups is used. The
box plot can highlight significant differences in the median
and variance of the duration between the types.

If the plot does not show significant differences, the prob-
ability densities are analysed. The probability density func-
tions (PDFs) are obtained by using Kernel Density Estima-
tion as described in section 2.3. To obtain a smooth distribu-
tion from the data points, the Gaussian kernel is used. The
bandwidth h that is used for the kernel is 1.0 because it is
found that this value smooths out any outliers without losing
too much detail. To find patterns, class conditional PDFs are
compared for significant differences. Here, the classes are the
types. Which classes are worth comparing is determined by
the analysis of the box plot. The comparisons can be between
two train types, or between one type and all other types.



Track DDZ ICMm SLT SNG VIRM
bias ptr pty bias ptr pty bias ptr pty bias ptr pty bias ptr pty

361AV 2.47 .000 .000 1.19 .000 .001 0.61 .000 .000 0.73 .000 .000 2.24 .000 .000
361BL 1.38 .012 .001 1.54 .000 .000 0.93 .187 .194 0.47 .000 .000 2.00 .000 .000
363R 2.12 .000 .000 1.40 .000 .000 1.02 .424 .426 0.58 .000 .000 0.75 .131 .127
365L 0 .101 .106 2.66 .000 .000 0 .000 .000 0.05 .000 .000 1.59 .293 .294
367L 0.90 .289 .282 1.82 .000 .000 0.71 .000 .000 0.43 .000 .000 1.15 .204 .197
273R 1.04 .433 .432 1.79 .000 .000 0.68 .000 .000 0.47 .000 .000 0.98 .503 .502
375R 1.10 .310 .307 1.47 .000 .000 0.85 .051 .059 0.61 .000 .000 1.66 .001 .001
377R 1.24 .124 .122 1.06 .135 .177 1.46 .000 .000 0.76 .000 .000 1.10 .339 .338
377L 0.77 .118 .114 0.41 .000 .000 1.62 .000 .000 1.34 .000 .000 0.36 .000 .000
379R 0.21 .000 .000 0.36 .000 .000 0.71 .001 .001 1.74 .000 .000 0.66 .051 .048
379L 0.35 .000 .000 0.31 .000 .000 0.44 .000 .000 1.85 .000 .000 0.67 .056 .053
381R 0.38 .000 .000 0.26 .000 .000 0.66 .000 .000 1.82 .000 .000 0.40 .002 .002
381L 0.33 .000 .000 0.30 .000 .000 0.98 .423 .427 1.70 .000 .000 0.22 .000 .000
383L 0.47 .001 .000 0.24 .000 .000 2.46 .000 .000 1.23 .000 .000 0.11 .000 .000

Table 1: Biases between train type and parking track at Amersfoort Bokkeduinen shunting yard. Note how a large majority of the combinations
have a significant bias.

Figure 1: Box plot of parking durations per type in Utrecht Carthe-
siusweg shunting yard. There are no large differences between the
types.

5.2 Results

The results for the experiment are computed by running it us-
ing the setup described in section 3.2. Only the most impor-
tant results for the Utrecht Carthesiusweg shunting yard are
presented here. Firstly, figure 1 shows the box plot of time
in the shunting yard per train type. The figure shows the five
boxes for the five types all laying on roughly the same inter-
val. All boxes have a lot of overlap with the others and no
box immediately stands out. This indicates that the parking
durations are mostly similar between the types.

To analyse the differences in greater detail, the class con-
dition probability density functions (PDF) are plotted. Here,
two are analysed. Firstly, figure 2 displays the plot of the PDF
of the DDZ train type and the PDF of all other types in this
shunting yard.

Figure 2: Class conditional probability density functions parking
durations of type DDZ and all other types in Utrecht Carthesiusweg
shunting yard. There are small differences, but the general distribu-
tions are very similar.

Interestingly, while the box plot shows the DDZ having a
median that is slightly higher than the rest, the PDF shows
its peak being before the peak of the combined other types.
This can be explained by the DDZ having more of its mass
in the PDF distributed over the longer durations. Also, DDZ
has two minor peaks at 7.5h and 11h. In contrast, the gen-
eral trend of the units is to have one clear peak. While this
plot shows small differences between the probabilities of the
types, it does not show a clear or notable distinction in shunt-
ing time.

Secondly, the PDFs of the ICMm type and all other types
are analysed using figure 3. The box plot shows this type
having the most variance. The PDF shows the cause of this
being a small peak for the ICMm between 12 and 17 hours.
While the probability of the other types being parked for a du-
ration longer than 12 hours is relatively small, the plot shows
ICMm units are more than twice as likely to be parked for



Figure 3: Class conditional probability density functions parking du-
rations of type ICMm and all other types in Utrecht Carthesiusweg
shunting yard. There is a notable difference in probability for times
between 12 and 17 hours.

this duration. Despite this notable difference for ICMm, the
distributions for other types are very similar.

Finally, similar results were obtained for the other exam-
ined LIFO shunting yards. These are Amersfoort Bokke-
duinen and Arnhem West. Generally, the trend is that the
box plots show most types having a median of around five
hours. The boxes align, but there are differences in variance.
When looking at the probability densities, some types show
peaks that do not match the other types in the yard. One note-
worthy example is the SNG type in Arnhem, which clearly
shows two individual peaks compared to one broad peak for
the other types.

6 Comparison with subtype
Train type is the main variable in this research and is key for
answering the first two subquestions. An important distinc-
tion can be made in defining train type: each train unit has
a main type indicating the name of the series (e.g. ICMm),
but can also be listed as the series combined with the number
of carriages that the unit consists of (e.g. ICMm-IV). In this
research the first is referred to as the ’type’ and the latter as
the ’subtype’.

When looking for patterns, the choice can thus be made to
look for patterns in type or subtype. It is hypothesised that
there is a difference in patterns when looking at subtype com-
pared to type. Therefore, the objective of this research’s third
subquestion is to investigate the difference in patterns when
considering subtype. To accomplish this, the two experiments
described in sections 4.1 and 5.1 are executed twice. Once
with the main train type as the label for each unit and again
with the subtype as the label. Sections 4.2 and 5.2 present
the experiments’ results for the main train type. This chapter
presents the same results for train subtype and analyses the
difference between the results.

Firstly, the results of the track-subtype experiment show

some interesting patterns. The main observation is that the
same biases between track and type are also present for the
same track and the specific subtypes. That is, if a type is bi-
ased towards one track, so are its subtypes. However, some
subtype biases are not significant because there are fewer
units of the individual subtypes compared to the type total.

Track SLT SNG
SLT SLT-IV SLT-VI SNG SNG-III SNG-IV

379L 0.44 0.56 0.36 1.85 1.60 2.15
381R 0.66 0.78 0.57 1.82 1.96 1.66
383L 2.46 1.56 3.10 1.23 1.10 1.40

Table 2: Excerpt of the biases between train subtype and parking
track at Amersfoort Bokkeduinen shunting yard. The subtypes of
SNG are each biased more for different tracks, while the main type
is equally biased for both.

The most interesting observation is for some specific type-
track combinations, the bias is much stronger for one subtype
than for the other. To illustrate this, table 2 shows an excerpt
from the results for Amersfoort. These results show that train
type SLT is biased for track 383L with an estimated factor
of 2.46. However, when looking at the subtypes, the bias
is much stronger for subtype SLT-VI (3.10) than for subtype
SLT-IV (1.56). Thus, where the initial experiment showed
that this track is biased for type SLT, these results show that
the bias is even more severe for one of its subtypes.

Furthermore, a different phenomenon can be observed.
When looking at tracks 379L and 381R, it is clear that type
SNG is biased for both with an almost equal factor (1.85 and
1.82). Again, it can be seen that the bias is stronger for one
subtype and weaker for the other. However, which subtype
has the stronger bias is different for the two tracks: SNG-III
is more biased towards 381R and SNG-IV is more biased to-
wards 379L. To summarise: both tracks are biased for SNG,
but each is individually biased for a specific SNG subtype.

Figure 4: Box plot of parking durations per subtype in Utrecht
Carthesiusweg shunting yard, without DDZ. Comparing subtype in-
stead of type does not introduce any large differences in parking
time.



Figure 5: Class conditional probability density functions parking
durations of the ICMm subtypes in Utrecht Carthesiusweg shunting
yard. The spike between 12 and 17 hours is more prevalent for the
ICMm-IV.

Secondly, repeating the duration-type experiment with sub-
types shows similar results. The box plot of the durations and
the subtypes is pictured in figure 4. Again, the general trend is
that there are no large differences in the average parking time
between the subtypes. It does show, however, a notable dif-
ference between the two ICMm subtypes. To further analyse
this, figure 5 shows the class conditional probability density
functions for the subtypes of ICMm.

The PDFs show again the small peak of the ICMm main
type as discussed in section’s 5.2 figure 3. However, the fig-
ure makes it clear that this higher probability for a duration
between 12 and 17 hours is almost twice as high for ICMm-
IV than for ICMm-III. It can also be observed that the peak
for ICMm-III lies slightly later. Therefore, there are notable
differences when looking at subtype, but no significant differ-
ences in pattern.

7 Responsible research
This chapter discusses two important aspects of doing re-
search responsibly. Firstly, section 7.1 explains the conse-
quences of the confidentiality of the dataset. Secondly, sec-
tion 7.2 goes into how care has been taken to avoid confirma-
tion bias.

7.1 Dataset confidentiality
The dataset that is used in this research consists of train move-
ment data of NS train units on the railway network operated
by ProRail. While for finding the patterns no aspects of the
data are used that are unique to NS trains or the Dutch shunt-
ing yards, data for different shunting yards around the world
managed by other train operators can still yield different pat-
terns. Therefore, it is important that the methods can be re-
produced on other datasets. Also, in general, it is important
that this research can be reproduced on the same dataset.

This reproducibility is limited by the confidentiality of the
dataset. The data is owned by ProRail and NS, and can only
be accessed by authorised individuals. This limits the repro-
ducibility of the exact research on the same data to only those
within or working with NS or ProRail. Furthermore, the char-
acteristics, such as exact fields and possible values, are also
confidential. This makes recreating an identical dataset for
another train network difficult. However, it is believed that
the general description of the dataset given in section 2.1 is
sufficient to collect and structure similar data on which the
experiments described in this research can be conducted.

7.2 Avoiding confirmation bias
Humans tend to see patterns in information, even when these
are not there. When actively looking for train type patterns,
the mistake can easily be made to interpret the results in such
a way that a desired pattern is there or not. To avoid confir-
mation bias influencing the conclusions of this research, great
care has been taken in formulating the experiments and inter-
preting the results.

In designing the experiments, emphasis has been put on the
significance of the results. For the first subquestion (chapter
4) this significance is made a central part of the experiment
by statistically evaluating it. By setting a significance level
α before the results were explored, it has been ensured that
counting a bias as significant is not influenced by subjective
actions. For the second subquestion (chapter 5) a pattern is
specifically defined as a large difference in the distribution
of durations between the types. When no clear distinction in
these distributions can be made, no pattern is reported. In-
stead, the term ’notable difference’ is used.

8 Discussion
The results show strong biases between train type and parking
track, but no clear differences between the types for parking
times. Also, looking at subtype makes the differences be-
tween the types more specific.

Because the used data does not contain optimal solutions
but realised solutions made by human planners, the results do
not necessarily indicate that the patterns are characteristic of
perfect solutions. Rather, it is hypothesised that the patterns
are the results of strategies used by the planners to make the
problem more feasible. Nonetheless, the found patterns could
be used to construct intelligent algorithms that can efficiently
solve the TUSP with similar strategies as humans.

It is suspected that the absence of a pattern in parking
duration is the result of the effect of the passenger service
timetable for the trains. It is hypothesised that for the area of
the investigated shunting yards, no one type used in passenger
service is significantly less frequent.

The research is somewhat limited by the dataset. It con-
tains only seven shunting yards of which only five were use-
ful. This means that formally the results only apply to the
investigated yards. However, it is strongly suspected that sim-
ilar results would have been found for other shunting yards in
the Netherlands. Different results could be found for yards in
other countries because the planners might employ different
planning strategies.



Furthermore, the research is also limited by a set time-
frame. In defining the experiments often multiple approaches
are possible. For example, for parking track, one could in-
clude parking track reassignment after servicing. Exploring
and comparing all approaches would lead to more individual
experiments, which would not have been possible to all com-
plete within the set timeframe.

9 Conclusions and recommendations
The main objective of this research is to find train type pat-
terns in solutions to the train unit shunting problem (TUSP).
Specifically, subquestions include looking for patterns in
parking track and parking duration. Also, the difference in
patterns between train type and subtype is investigated.

Patterns between train type and parking track have been
found. This confirms the hypothesis. The results show sig-
nificant biases in how the train types are distributed over the
available parking tracks. Almost every investigated parking
track shows a bias for or against at least one train type. It
can be concluded that specific tracks in shunting yards are
repeatedly used to park one or more particular train types.
Furthermore, the results for the shunting yard in Amersfoort
indicate a geographic split in the shunting yards, where one
part of the tracks is mainly used to park intercity trains and
another part is mainly used to park sprinter trains.

In contrast, no clear pattern has been found between train
type and parking duration. This contradicts the hypothesis.
The results show that all train types are mostly likely to stay
parked in the shunting yard for roughly the same amount
of time. No train type clearly deviates from this. How-
ever, differences in variance have been observed. Analysis of
the probability distributions shows that some types are more
likely to be parked for longer durations than other types.

Analysis of the same results for train subtypes shows simi-
lar patterns and differences. It is observed that the patterns are
more specific for subtypes, but that no subtype greatly devi-
ates from its main type pattern. The results for parking track
patterns show that within some pairs of tracks, one track is
more biased for one subtype and the other track for the other
subtype, while both tracks are equally biased for the main
type. The parking duration experiment shows that some ob-
served small differences in probabilities for longer durations
are mostly the cause of one subtype staying longer.

It is recommended that future research further investigates
the patterns that have been found. For example, one could
look into the effect of parking track reassignment for units
that return from servicing. Furthermore, train type patterns
regarding the servicing itself could be investigated.
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