
Breaking Weighted Model Counting Solvers Using EXTREMEgen
Generating WMC instances for fuzzing

Bram Snelten1

Supervisor: Anna L.D. Latour

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
January 26, 2025

Name of the student: Bram Snelten, TU Delft Final project course:
CSE3000 Research Project
Thesis committee: Anna L.D. Latour, Examiner

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
Weighted model counting (WMC) solvers play a
key role in Bayesian inference applications, used
for medical diagnosis [17] [16] and risk assess-
ment [14]. Ongoing efforts to improve WMC
solver developers aim to develop a fuzzer to iden-
tify bugs. This research is aimed at enhancing
the quality of this fuzzer by developing an addi-
tional method to generate WMC instances, EX-
TREMEgen [21]. The functionality of this new
approach relies on generating practical instances
from Bayesian networks and breaking the solvers
using extreme weights. Our empirical experiments
show that EXTREMEgen exposes bugs in state-of-
the-art WMC solvers. The generated instances are
solved fast enough to be usable in fuzzing. How-
ever, generation speed needs to be optimized to be-
come practical for fuzzing. When optimized, EX-
TREMEgen could become the first generator of
WMC instances specifically designed for fuzzing.

1 Introduction
In domains like medical diagnosis systems and risk mod-
eling, a subtle bug in a Weighted Model Counting (WMC)
solver could lead to catastrophic miscalculations, jeopardiz-
ing health or safety! On top of that, tools to systematically ex-
pose bugs in WMC solvers do not exist yet. Critical systems
depend on reliable WMC solvers, which tackle an extension
of the SAT problem: determining whether a Boolean formula
has at least one solution. Model counting (MC), the count-
ing variant of SAT, goes further by asking how many unique
solutions (models) exist for the formula. WMC then maps
numerical weights to solutions, requiring solvers to compute
the weighted sum of all solutions.

WMC solving is a state-of-the-art technology used in
probabilistic reasoning [12], [13], [5], [18]. Which in turn
is used in various practical fields such as medical diagno-
sis [17], [16], [20] and risk modeling [14].

Recently the yearly model counting competition [10]
started streamlining the development of solvers. This initia-
tive encouraged the development of a fuzzer to assist solver
development, SharpVelvet [2]. A fuzzer [25] automatically
generates problem instances, trying to find instances that trig-
ger bugs in a model counter. The more diverse the prob-
lem instances are, the more likely it is that one of them will
trigger a bug. SharpVelvet already contains two generators
that can generate MC instances, CNFuzz and FuzzSAT [4].
SharpVelvet has limited functionality to convert these MC
into WMC instances.

This research aims to enhance the quality of SharpVel-
vet by developing a WMC instance generator named EX-
TREMEgen that exposes bugs in state-of-the-art WMC
solvers. These generated instances need to be solved very
fast to enable high-throughput fuzzing. Lastly, generating in-
stances should be much faster than solving them. Slow gen-
eration also limits the fuzzing throughput. Therefore this re-
search answers the following questions:

RQ1: Does EXTREMEgen expose bugs in state-of-the-art
WMC solvers?

RQ2: Does EXTREMEgen generate instances that can be
solved fast enough to be usable in fuzzing?

RQ3: Does EXTREMEgen generate instances fast enough to
be usable in fuzzing?

EXTREMEgen is designed to expose bugs related to pre-
cision, rounding, and handling of extreme numerical values.
The generation process starts with generating Bayesian net-
works. After which extreme numerical weights are added to
the variables of the WMC instance. EXTREMEgen success-
fully exposes bugs related to handling of extreme weights
and determining satisfiability. The generated instances are
solved fast enough for a high throughput. Fuzzing with EX-
TREMEgen is bottlenecked by generation speed. Generation
speed needs to be optimized to achieve a high throughput.

The remainder of this paper is organized as follows. We
briefly discuss notation and provide relevant definitions in
Section 2. Related work is highlighted in Section 3. Section
4 outlines our approach for generating WMC instances. Sec-
tion 5 describes the experimental evaluation of the generation
method using SharpVelvet and state-of-the-art WMC solvers.
We conclude and discuss future research in Section 6, after
which the paper ends with a reflection on the responsibility
of this research in Section 7.

2 Preliminaries
We briefly present the concepts of CNF formulas, model
counting, and weighted model counting. We also introduce
the Model Counting Competition data format and highlight
the underlying floating-point format.

2.1 CNF and Model Counting
Consider Boolean formula 1 where a and b are Boolean vari-
ables.

f = (a ∨ ¬b) ∧ (¬a ∨ b) (1)
Boolean formulas are composed of literals and clauses. A
literal is a Boolean variable or its negation (e.g., a, ¬b), a
clause is a disjunction of one or more literals (e.g., a ∨ ¬b).

A formula is said to be in Conjunctive Normal Form (CNF)
if it is a conjunction of one or more clauses. For example, Eq.
1 is in CNF because it is a conjunction of two clauses. Since
f has 2 variables, there are a total of 4 possible assignments
to a and b:

a = false, b = false (2)
a = false, b = true (3)
a = true, b = false (4)
a = true, b = true (5)

Of these, assignments 2 and 5 are solutions, i.e., assign-
ments such that f is true.

2.2 Weighted Model Counting
We next illustrate the Weighted Model Counting (WMC)
problem, which extends the model counting problem by map-
ping numerical weights to solutions. The task is to compute
the sum of the weights of all solutions of the formula.

Consider again the CNF formula 1. We convert it into a
WCNF instance by assigning the following weights to the
variables:

w(a = true) = 0.7, w(a = false) = 0.3,

w(b = true) = 0.6, w(b = false) = 0.4.

The weighted model count is computed by first calculating
the weight of each solution, 2 and 5, and then summing them:

w(a = false) · w(b = false) = 0.3 · 0.4 = 0.12.

w(a = true) · w(b = true) = 0.7 · 0.6 = 0.42.

WMC(f) = 0.42 + 0.12 = 0.54.

2.3 Input Format
The WMC solver SharpVelvet aims to improve upon the per-
formance of existing solvers that follow the Model Counting
Competition Data Format [11]. The format specifies the fol-
lowing about weights: “The weight will be given as float-
ing point (e.g., 0.0003) with at most 9 significant digits af-
ter the decimal point, or in 32-bit scientific floating point
notation (e.g., 1.23e+4), or as fraction (e.g., 3/10) consist-
ing of two integers separated by the symbol / [11].” In this
paper we make the assumption that the competition format
enforces Single-Precision floating-point format by IEEE 754
standards [1], because this format usually occupies 32 bits in
computer memory. This is the same amount of bits mentioned
in the competition format. Applying the same reasoning, we
assume integers used in the fractional weight notation are en-
forced to be 32-bit integers. Solvers need to be able to handle
negative weights. Therefore we assume the 32-bit integers
are signed.

Single-precision floating-point format
The IEEE 754 standard specifies a single-precision floating
point as having: 1 sign bit, 8 exponent bits, and 23 fraction
bits. The value is calculated using the formula:

(−1)sign × 2exponent−127 × (1.fraction)

where:

• sign is the sign bit (0 for positive, 1 for negative).

• exponent is the unsigned integer value of the 8-bit ex-
ponent field.

• fraction is the binary value represented by the 23 frac-
tion bits, interpreted as the fractional part of a binary
number (e.g., 101 would mean 0.101 in binary).

Special cases include the exponent being all ones, repre-
senting ±∞ if the fraction is zero or NaN if the fraction is
nonzero.

3 Related Work
EXTREMEgen is the first WMC fuzzing instance generator
designed specifically to expose bugs related to the handling of
weights. Unlike previous generators, which focus on gener-
ating instances for benchmarking or different model counting
variants.

Initial testing of model counters using fuzzing was started
by Robert Brummayer, Florian Lonsing, and Armin Biere [4].
They developed three methods of generating instances.
Firstly, 3SATGen generates traditionally hard instances
based on the SAT phase transition [24]. Secondly, CNFuzz
was the first attempt to generate structured instances. Lastly,
FuzzSAT improved upon CNFuzz by generating instances
with an explicit structure: directed acyclic graphs. SharpVel-
vet implemented CNFuzz and FuzzSAT, while extending
their functionality by making it possible to transform CN-
Fuzz and FuzzSAT instances into WMC instances by adding
weights to their variables. These weighted CNFuzz and Fuz-
zSAT instances serve as baseline generators when evaluating
EXTREMEgen.

Usman et al. built upon the generators from Biere and
Brummayer to create their own test suite, TestMC [23]. Their
method of classifying bug types is also used in this paper.
TestMC introduces the Bounded Exhaustive generation tech-
nique on the projected model counting variant. Although
their generator works well, it is not applicable to the weighted
model counting variant.

Dilkas recently developed a generator for benchmarking
WMC instances [7]. However, benchmark instances are un-
usable for fuzzing because their solve time is very long. Es-
chamocher et al. developed another generator for benchmark-
ing instances [8], with the requirement that the difficulty of
the instances should arise from model counting rather than
satisfiability. This is interesting for our generator because
this requirement would ensure that each instance targets the
intended model counting functionality rather than the satisfia-
bility functionality. But their approach is not compatible with
our generator because they inject solutions which would de-
stroy the network structure EXTREMEgen depends upon.

4 Approach
In this section, we present the approach EXTREMEgen uses
to generate WMC instances for fuzzing state-of-the-art WMC
solvers. As stated in the introduction, EXTREMEgen is de-
signed with the following requirements in mind:

1 Generated instances should expose bugs in state-of-the-
art WMC solvers.

2 Generated instances should not take long to solve.

3 Generating instances should not take long.

Our method follows three steps when generating instances.
First, generating a Bayesian network. The second step is
encoding the generated Bayesian network into a CNF in-
stance [3]. The last step is converting the CNF to a WCNF
instance by adding extreme weights to variables. Each gener-
ated instance is expected to be diverse due to the combination
of random network structures, variable node counts, and the
random assignment of extreme weights.

4.1 Generating Bayesian Networks
WMC is commonly performed on Bayesian networks to solve
probabilistic inference tasks [12], [13], [5], [18]. A concrete
example of a probabilistic inference task using a Bayesian
network is medical diagnosis. [17], [16], [20]. We use

Bayesian networks to mimic these realistic instances. If an
instance would expose a bug, the bug would be likely to oc-
cur in a realistic scenario. This makes it extra valuable to
expose bugs. Additionally, having a structure at all should
introduce a base difficulty for solvers, therefore preventing
trivial instances from being generated.

Bayesian networks are directed acyclic graphs. We briefly
explain 3 different Bayesian network types that are com-
monly used in practice:

DQMR [18] These instances are CNF encodings of
Bayesian networks that simulate diagnostic networks [20].
They are two-layer bipartite networks, where the nodes in
the first layer represent diseases and the nodes in the second
layer represent symptoms. Each symptom is randomly linked
to 4 diseases. The number of diseases and symptoms vary
between 50 and 100.

GRID [18] These networks are a square grid of size N×N ,
where each node Xi,j for 1 ≤ i, j ≤ N has an incoming edge
from Xi−1,j and Xi,j−1, as long as the indices are greater
than zero.

TREE To complement the previous existing Bayesian net-
work implementation by Sang et al., we implemented tree-
structured Bayesian networks. Bayesian networks are com-
mon in risk assessment strategies, such as Fault Tree Anal-
ysis [26]. Expanding the range of structures generated by
EXTREMEgen with trees enhances diversity, which should
improve exposing bugs, while maintaining relevance to prac-
tical applications. Additionally, due to their simplicity, tree
structures are expected to be easy to solve.

When generating TREE instances the user specifies the
number of nodes and the maximum number of children per
node. The resulting Bayesian network forms a random tree
structure according to previous parameters.

For each of the network types, the amount of nodes can
be varied, which should impact generation time and solving
time. This should make it possible for us to tune the generator
to fulfill requirements 2 and 3.

4.2 Extreme Weights
After encoding the generated network into CNF [3], we con-
vert the instance to WCNF by adding weights to each vari-
able. This subsection describes how the extreme weights for
EXTREMEgen were chosen. And how the weights are as-
signed.

In this context, ”extreme weights” refer to the largest al-
lowed finite positive and negative weights, as well as the
smallest weights. These extreme values are intended to trig-
ger overflow or precision-related errors during weight multi-
plication or summation. Overflow errors are expected to oc-
cur when very large values exceed the representable range,
resulting in the value being rounded to infinity. Precision loss
bugs should arise when large numbers approach the limits of
floating-point precision, leading to discrepancies in the re-
sults. Furthermore, multiplying small weights can also in-
duce precision loss, as values close to zero could be unjustly
rounded to zero. This produces unexpected outcomes when
multiplying or dividing.

Recall the 3 weight notations in Subsection 2.3. EX-
TREMEgen operates with 2 sets of extreme weights. Set 1
contains weights that are in the domain [0,1], mimicking re-
alistic probabilities, attempting to cause precision errors. Set
2 contains weights confined to the competition data format.

Set 1 contains extreme weights ∈ [0,1], testing realistic
probabilities. For the floating point formats, these extremes
are:

1.000000000, 0.000000000, 0.999999999, 0.000000001

And their scientific notation counterparts. The maximum
signed 32-bit integer is 2147483647. Making the fractional
notation extremes:

2147483647/2147483647, 0/2147483647

2147483646/2147483647, 1/2147483647

Set 2 additionally contains the largest allowed finite pos-
itive and negative weights, attempting to cause overflow er-
rors. In floating point representation, these maximum weights
are achieved with exponents of 254. In scientific notation this
is noted as ±3.402823466e+38. The boundary weights for
the fractional weight notation are ±2147483647/1.

Lastly, each set is complemented by fractional weights
made up of negative integers. The weights in this group were
created by creating every combination of positive/negative
numerator and denominator for the fractional weight already
introduced. The created weight is added to Set 2 only if the
weight ∈ [0,1]. The full list of weights can be found in the
implementation [21].

When generating with Set 1, for each literal l, both wl

and w¬l get assigned a random weight uniformly from Set
1. When generating using Set 2, each literal also gets as-
signed a random weight uniformly from Set 2 while follow-
ing wl + w¬l = 1. The strategy in assigning weights, in
this case randomly, should impact the amount of bugs found
positively. The primary goal of this strategy is to explore the
full range of extreme values. By generating many different
networks with numerous nodes, this strategy covers a wide
spectrum of possible weight configurations. This should lead
to a higher amount of exposed bugs. The simplicity of the
random weight assignment strategy also contributes to the ef-
ficiency of instance generation.

5 Experiments
This section is aimed at answering the following research
questions:

RQ1: Does EXTREMEgen expose bugs in state-of-the-art
WMC solvers?

RQ2: Does EXTREMEgen generate instances that can be
solved fast enough to be usable in fuzzing?

RQ3: Does EXTREMEgen generate instances fast enough to
be usable in fuzzing?

5.1 Experimental Setup
To address RQ1, we compare the EXTREMEgen genera-
tor with its three network types (DQMR, GRID, and TREE)
against the baseline WCNF generators CNFuzz and FuzzSAT

implemented using support in SharpVelvet. For each of the
5 generation techniques, we generate 100 instances using
SharpVelvet. We additionally generated both set 1 and set
2 instances from EXTREMEgen. Then we solved all gener-
ated instances using SharpVelvet with the solvers described
in Subsubsection 5.1.

To evaluate how fast generated instances are solved, we
record the time required to solve the instances for each gen-
erator and solver combination. This allows us to quantify
the performance impact of different generation techniques on
solver runtime. By comparing these times to the baseline gen-
erators, we determine whether a generation technique pro-
duces instances that are fast or slow to solve.

To investigate the efficiency of the instance generation
techniques themselves, we measured the time taken to gen-
erate 1,000 instances for each of the 5 generation techniques.
We measured CPU time using the time function from Bash.
Again, by comparing these times to the baseline generators,
we decide if a generation technique performs well.

All experiments were conducted on an AMD Ryzen 5
5500U, 2100 Mhz, 6 Core(s), 12 Logical Processor(s), 16 GB
ram.

WMC Solvers
We tested EXTREMEgen with the solvers from the offi-
cial model counting competition [10]. The solvers submit-
ted to the 2024 competition are publicly available to down-
load [9]. In the competition, WMC has 2 tracks: normal
WMC and the bonus WMC track with negative weights. We
tested the solvers submitted to the bonus WMC track. This
choice should result in fewer bugs being exposed, because
the bonus track solvers should be able to handle more di-
verse weight types. 9 different solvers were submitted to the
bonus WMC track; however only 4 solvers were able to run
in the SharpVelvet environment. These were GPMC [22],
Ganak [19], SharpSAT-TD [15], and SharpSATTD-CH [6].
The fact that only 4 out of 9 solvers were successfully exe-
cuted should not influence the results, because we include the
top 3 scoring solvers: Ganak, SharpSAT-TD, and SharpSAT-
TD-CH, ensuring sufficient coverage of state-of-the-art solver
implementations.

Generation parameters
The baseline generators were run using standard parameters
found in the example configuration from SharpVelvet. EX-
TREMEgen parameters were chosen to mimic the literals
amount generated by the baseline generators. The Ganak
solver was submitted to the competition with 2 different con-
figurations; we tested both. The other solvers had only 1 con-
figuration that worked. Specific parameters configurations
used to run the experiments are described in the provided
GitHub repository [21]. The specific instances used for re-
search question 1 can also be found there.

5.2 Experimental Results
RQ1: We exposed 3 different bug types. The first bug type,
“Timeout” is the case where a solver takes longer than the
standard timeout (10 seconds) to return an answer. A timeout
bug could indicate the solver is unable to solve the instance
in a reasonable time or at all. The second bug type, called

“Wsat,” indicates that a solver states a wrong satisfiability.
For each instance, if the solvers disagree on whether the in-
stance is satisfiable, the result from the solver with minority
results is considered incorrect. This approach is inspired by
differential testing also used by Usman et al. in TestMC [23].
Lastly, if the final weighted sum of all satisfying assignments
is wrong, we call it a “Wsum” bug. A Wsum bug occurs when
a solver outputs an infinite value for a satisfiable instance, as
solvers should produce a real, albeit extreme, value for satis-
fiable cases.

Tables 1, 2, and 3 show the number of bug-exposing in-
stances for each generator.

Algorithm Timeout Wsat Wsum
gpmc 0 0 0
ganak-conf-1 0 0 0
ganak-conf-2 0 0 0

Table 1: Bugs exposed through SharpVelvet-CNFuzz and
SharpVelvet-FuzzSAT instances. 200 total instances.

Algorithm Timeout Wsat Wsum
gpmc 91 183 183
ganak-conf-1 0 0 183
ganak-conf-2 0 0 183
SharpSAT-TD-weighted 0 0 183
SharpSATTD-CH-weighted 0 0 183

Table 2: Bugs exposed through EXTREMEgen DQMR, GRID, and
TREE instances using weights from set 1. 300 total instances.

Algorithm Timeout Wsat Wsum
gpmc 101 174 174
ganak-conf-1 0 0 174
ganak-conf-2 0 0 174
SharpSAT-TD-weighted 0 0 174
SharpSATTD-CH-weighted 0 0 174

Table 3: Bugs exposed through EXTREMEgen DQMR, GRID, and
TREE instances using weights from set 1. 300 total instances.

In response to RQ1, EXTREMEgen successfully exposed
bugs in all tested solvers, whereas the baseline generators did
not produce any bugs, as shown in Table 11. Conversely, EX-
TREMEgen instances exposed bugs in all tested solvers, as
detailed in Tables 2 and 3. GPMC encountered timeouts and
produced incorrect satisfiability and weighted sum results in
over half of the instances. Furthermore, the consistency of
Wsum bugs across all solvers for EXTREMEgen instances
highlights the effectiveness of the extreme weights to expose
this bug type.

Comparing the results from Tables 2 and 3, we notice no
meaningful difference in the number of bugs exposed be-
tween Set 1 and Set 2 instances. Set 2’s inclusion of ex-

1Running instances from the baseline generators on each of the
SharpSATTD variations was not possible. Therefore, Table 1 shows
only 3 rows.

treme positive and negative values did not result in additional
exposed bugs, suggesting that solvers handle numerical ex-
tremes more reliably than precision challenges. This suggests
that solvers are more susceptible to precision issues within
the [0, 1] range from set 1, making this an area solvers could
improve on.
RQ2: Figure 1 shows the average time taken by various
solvers to solve instances generated by EXTREMEgen and
the baseline generators. GRID instances tend to take as
long or longer to solve compared to the baseline genera-
tors. DQMR instances are solved fast unless you solve with
GPMC. TREE instances are the fastest to solve, generally be-
ing solved faster than the baseline instances. Overall, solving
times for EXTREMEgen instances are sufficiently small to
not hinder the fuzzing process, when compared to the base-
line instances.

Figure 1: Average time taken by various solvers to solve instances
generated by EXTREMEgen and the baseline generators.

RQ3: Figure 1 also illustrates the significant difference in
generation times between EXTREMEgen and the baseline
generators. Generating 1000 instances with EXTREMEgen
takes about 67 times longer compared to the baseline gener-
ators. Although thought has been put into making the gen-
eration process faster, EXTREMEgen has not been opti-
mized. From these results we conclude that for practical use
in fuzzing, the generation process needs to be faster.

6 Conclusion
In this paper, we developed a generator that creates WMC
instances for fuzzing state-of-the-art WMC solvers. These
instances are aimed at exposing bugs related to handling
extreme numbers. EXTREMEgen starts by generating a
Bayesian network of type DQMR, GRID, or TREE. These
types were chosen to imitate real-life WMC instances, ensur-
ing practical relevance. After converting the Bayesian net-
work to CNF, EXTREMEgen adds extreme weights to these
networks. Weights were chosen to expose faulty multiplica-
tion and summation of extremely small and extremely large
numbers while staying in the allowed WMC format. Our em-
pirical evaluation demonstrates that EXTREMEgen achieves
its main goal of exposing bugs in state-of-the-art WMC
solvers. The generated instances are solved fast enough to

Figure 2: Time taken to generate 1000 instances for each generation
technique.

be usable in fuzzing. However, generation speed needs to be
optimized to be able to be a practical fuzzing generator. It
currently takes longer to generate instances than it takes to
solve them. When optimized, EXTREMEgen could become
a practical addition to the WMC solver fuzzing toolkit.

6.1 Future Work
Optimization of Instance Generation One of the key lim-
itations of EXTREMEgen is the long time required to gen-
erate instances. Future work should primarily focus on opti-
mizing the generation process, particularly the network gen-
eration. This would make EXTREMEgen more suitable for
real-world fuzzing applications.

Collaboration with fuzzing researchers Currently, re-
search is being done on developing a delta-debugger, software
that simplifies bug-triggering instances while still triggering
the bug. Future work could integrate this delta-debugger with
textsfEXTREMEgen instances. This could make it very clear
which weights expose bugs. Additionally, a new tool for an-
alyzing the similarity of generators is being developed. This
tool allows researchers to identify differences between gener-
ators that may have an impact on triggering bugs. It would be
interesting to test the similarity between the different network
types from EXTREMEgen. This could help us understand
how the structure of the networks impacts bug discovery.

7 Responsible Research
This section discusses our efforts to uphold the principles of
responsible research.

All software tools and libraries used in this research are
compliant with their respective licenses. The following mea-
sures have been taken to improve the reproducibility of this
research. Although part of the code in EXTREMEgen can-
not be publicized yet, the author of relevant code is currently
in the process of making the code open source. The pub-
lic part of the code, the analysis scripts, and the data used
in the experiments have been published in a public GitHub
repository [21]. In addition to this, the software parameters
used in the experiments are described completely in section
5.1. The writing of this report has been assisted by the large

language model ChatGPT; queries and answers used are pro-
vided in the same repository. Lastly, while this research is
intended to advance the field of model counting. We recog-
nize that EXTREMEgen can be misused to develop harmful
software. We urge anyone who uses this research to act re-
sponsibly with /textsfEXTREMEgen.

References
[1] IEEE Standard for Floating-Point Arithmetic. IEEE

Std 754-2019 (Revision of IEEE 754-2008), pages 1–
84, July 2019. Conference Name: IEEE Std 754-2019
(Revision of IEEE 754-2008).

[2] Mate Soos Anna L.D. Latour. SharpVelvet, 2024.
[3] Anicet Bart, Fré Koriche, dé, ric, Jean-

Marie Lagniez, and Pierre Marquis. An Improved CNF
Encoding Scheme for Probabilistic Inference. In ECAI
2016, pages 613–621. IOS Press, 2016.

[4] Robert Brummayer, Florian Lonsing, and Armin Biere.
Automated Testing and Debugging of SAT and QBF
Solvers. In Ofer Strichman and Stefan Szeider, editors,
Theory and Applications of Satisfiability Testing – SAT
2010, pages 44–57, Berlin, Heidelberg, 2010. Springer.

[5] Mark Chavira and Adnan Darwiche. Compiling
Bayesian networks with local structure. In Proceedings
of the 19th international joint conference on Artificial
intelligence, IJCAI’05, pages 1306–1312, San Fran-
cisco, CA, USA, July 2005. Morgan Kaufmann Publish-
ers Inc.

[6] Yipei Deng, Junping Zhou, Jiaxin Liang, and Le Xin.
SharpSAT-TD-CH, 2024.

[7] Paulius Dilkas. Generating Random Instances
of Weighted Model Counting. In Andre A. Cire, ed-
itor, Integration of Constraint Programming, Artificial
Intelligence, and Operations Research, pages 395–416,
Cham, 2023. Springer Nature Switzerland.

[8] Guillaume Escamocher and Barry O’Sullivan. Gener-
ation and Prediction of Difficult Model Counting In-
stances, December 2022. arXiv:2212.02893.

[9] Johannes Fichte, Markus Hecher, and Arijit Shaw.
Model Counting Competition 2024: Submitted Solvers,
November 2024.

[10] Johannes K. Fichte, Markus Hecher, and Florim Hamiti.
The Model Counting Competition 2020. ACM J. Exp.
Algorithmics, 26, October 2021. Place: New York, NY,
USA Publisher: Association for Computing Machinery.

[11] Johannes K Fichte, Markus Hecher, and Arijit Shaw.
Model Counting Competition Data Format (version
1.1). June 2024.

[12] Daan Fierens, Guy Van Den Broeck, Joris Renkens,
Dimitar Shterionov, Bernd Gutmann, Ingo Thon, Gerda
Janssens, and Luc De Raedt. Inference and learning
in probabilistic logic programs using weighted Boolean
formulas. Theory and Practice of Logic Programming,
15(3):358–401, May 2015.

[13] Steven Holtzen, Guy Van den Broeck, and Todd Mill-
stein. Scaling exact inference for discrete proba-
bilistic programs. Software Artifact for: Scaling
Exact Inference for Discrete Probabilistic Programs,
4(OOPSLA):140:1–140:31, November 2020.

[14] Laura Kaikkonen, Tuuli Parviainen, Mika Rahikainen,
Laura Uusitalo, and Annukka Lehikoinen. Bayesian
Networks in Environmental Risk Assessment: A
Review. Integrated Environmental Assessment
and Management, 17(1):62–78, 2021. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/ieam.4332.

[15] Tuukka Korhonen and Matti Järvisalo. SharpSAT-
TD in Model Counting Competitions 2021-2023, 2023.
eprint: 2308.15819.

[16] Mostafa Langarizadeh and Fateme Moghbeli. Applying
Naive Bayesian Networks to Disease Prediction: a Sys-
tematic Review. Acta Informatica Medica, 24(5):364–
369, October 2016.

[17] Carlos Segundo Muñoz-Valencia, José Antonio Que-
sada, Domingo Orozco, and Xavier Barber. Employ-
ing Bayesian Networks for the Diagnosis and Prognosis
of Diseases: A Comprehensive Review, October 2023.
arXiv:2304.06400 [stat].

[18] T. Sang, P. Beame, and Henry A. Kautz. Performing
Bayesian Inference by Weighted Model Counting. July
2005.

[19] Shubham Sharma, Subhajit Roy, Mate Soos, and
Kuldeep S. Meel. GANAK: A Scalable Probabilistic
Exact Model Counter. In Proceedings of the Twenty-
Eighth International Joint Conference on Artificial In-
telligence, pages 1169–1176, Macao, China, August
2019. International Joint Conferences on Artificial In-
telligence Organization.

[20] M. A. Shwe, B. Middleton, D. E. Heckerman, M. Hen-
rion, E. J. Horvitz, H. P. Lehmann, and G. F. Cooper.
Probabilistic diagnosis using a reformulation of the
INTERNIST-1/QMR knowledge base. I. The proba-
bilistic model and inference algorithms. Methods of In-
formation in Medicine, 30(4):241–255, October 1991.

[21] Bram Snelten. RP-Breaking-Solver-Bram,
2025. Publication Title: GitHub repository,
https://github.com/BramyBoyGG/RP-Breaking-Solver-
Bram.

[22] Ryosuke Suzuki, Kenji Hashimoto, and Masahiko
Sakai. Improvement of projected model-counting solver
with component decomposition using SAT solving in
components. Technical report, JSAI Technical Report,
SIG-FPAI-506-07, 2017.

[23] Muhammad Usman, Wenxi Wang, and Sarfraz Khur-
shid. TestMC: Testing Model Counters using Differen-
tial and Metamorphic Testing. In 2020 35th IEEE/ACM
International Conference on Automated Software Engi-
neering (ASE), pages 709–721, September 2020. ISSN:
2643-1572.

[24] Ke Xu and Wei Li. The SAT phase transition. Science
in China Series E: Technological Sciences, 42:494–501,
1999.

[25] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gor-
don Fraser, and Christian Holler. The Fuzzing Book.
CISPA Helmholtz Center for Information Security,
2024.

[26] Hamza Zerrouki, Hector Estrada-Lugo, Hacene Smadi,
and Edoardo Patelli. Applications of Bayesian Net-
works in Chemical and Process Industries: A Review.
September 2019.

	Introduction
	Preliminaries
	CNF and Model Counting
	Weighted Model Counting
	Input Format
	Single-precision floating-point format

	Related Work
	Approach
	Generating Bayesian Networks
	Extreme Weights

	Experiments
	Experimental Setup
	WMC Solvers
	Generation parameters

	Experimental Results

	Conclusion
	Future Work

	Responsible Research

