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A nonlinear Harmonic Navier-Stokes (HNS) framework is introduced for simulating instabilities in laminar 
spanwise-invariant shear layers, featuring sharp and smooth wall surface protuberances. While such cases 
play a critical role in the process of laminar-to-turbulent transition, classical stability theory analyses such as 
parabolized or local stability methods fail to provide (accurate) results, due to their underlying assumptions. The 
generalized incompressible Navier-Stokes (NS) equations are expanded in perturbed form, using a spanwise and 
temporal Fourier ansatz for flow perturbations. The resulting equations are discretized using spectral collocation 
in the wall-normal direction and finite-difference methods in the streamwise direction. The equations are then 
solved using a direct sparse-matrix solver. The nonlinear mode interaction terms are converged iteratively. The 
solution implementation makes use of a generalized domain transformation to account for geometrical smooth 
surface features, such as humps. No-slip conditions can be embedded in the interior domain to account for 
the presence of sharp surface features such as forward- or backward-facing steps. Common difficulties with 
Navier-Stokes solvers, such as the treatment of the outflow boundary and convergence of nonlinear terms, are 
considered in detail. The performance of the developed solver is evaluated against several cases of representative 
boundary layer instability growth, including linear and nonlinear growth of Tollmien-Schlichting waves in a 
Blasius boundary layer and stationary crossflow instabilities in a swept flat-plate boundary layer. The latter 
problem is also treated in the presence of a geometrical smooth hump and a sharp forward-facing step at the 
wall. HNS simulation results, such as perturbation amplitudes, growth rates, and shape functions, are compared 
to benchmark flow stability analysis methods such as Parabolized Stability Equations (PSE), Adaptive Harmonic 
Linearized Navier-Stokes (AHLNS), or Direct Numerical Simulations (DNS). Good agreement is observed in all 
cases. The HNS solver is subjected to a grid convergence study and a simple performance benchmark, namely 
memory usage and computational cost. The computational cost is found to be considerably lower than high-
fidelity DNS at comparable grid resolutions.

Program summary

Program Title: DeHNSSo
CPC Library link to program files: https://doi .org /10 .17632 /9bnms99kk2 .1
Developer’s repository link: https://github .com /SvenWesterbeek /DeHNSSo
Licensing provisions: GPLv3
Programming language: Matlab
Supplementary material: The supplementary material contains the code as well as a user manual.
Nature of problem: Fluid flows are subject to laminar-to-turbulent transition following the growth of instabilities. 
To avoid computationally demanding Direct Numerical Simulations (DNS), perturbation theory is often applied 
to their analysis. However, classical stability methods based on the Orr-Sommerfeld equation or the Parabolized 
Stability Equations neglect the influence of streamwise gradients in varying degrees. The validity of these 
assumptions is difficult to estimate a priori.
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Solution method: The Delft Harmonic Navier-Stokes Solver (DeHNSSo) solves the harmonic Navier-Stokes 
equations nonlinearly on domains featuring sharp and smooth spanwise invariant surface features using a 
generalized grid approach in combination with an embedded boundary method. This allows the user to include 
the effects of streamwise gradients on flow at a fraction of the cost of DNS.
Additional comments including restrictions and unusual features: In DeHNSSo, the equations are solved using direct 
matrix solvers. As such, memory is treated as a scarce resource. The problem is formulated in a mode-independent 
manner such that left-hand side matrices need only be computed and stored once despite incorporating nonlinear 
terms. Additionally, DeHNSSo offers the user the possibility to prescribe inhomogeneous boundary conditions to 
introduce and solve the receptivity problem or manipulate instabilities. Due to the double Fourier expansion, the 
solver is restricted to spanwise and temporally periodic problems.
Nomenclature

𝑥, 𝜉 Streamwise coordinate (global and computational)
𝑦, 𝜂 Wall-normal coordinate (global and computational)
𝑧 Spanwise coordinate (global and computational)
𝑈,𝑢′ Streamwise velocity (base and perturbation)
𝑉 , 𝑣′ Wall-normal velocity (base and perturbation)
𝑊 ,𝑤′ Spanwise velocity (base and perturbation)
𝑃 , 𝑝′ Static pressure (base and perturbation)
𝐐,𝐪′ Velocity vectors [𝑈, 𝑉 , 𝑊 ]𝑇 and [𝑢′, 𝑣′, 𝑤′]𝑇
𝝓′ State vector of velocities and pressure [𝑢′, 𝑣′, 𝑤′, 𝑝′]𝑇
𝑖 Imaginary unit
𝛼 Streamwise wavenumber
𝛽 Spanwise wavenumber
𝜔 Angular frequency
𝐴 Maximum streamwise perturbation velocity
ℎ Protuberance height
𝐻 Domain height
𝐿 Domain length
Γ𝑥∕𝑦∕𝜂∕𝜉 Discretization parameter, subscript defines the 

discretization axis
𝑥𝑐 Protuberance location
𝑏 Hump width

0 Inflow value
′ Perturbation value
̂ Shape function
̄ Dimensional quantity
∗ Integration quantity
𝛿0 𝛿99 at the inflow
𝛿99 Boundary layer height based on 𝑈
𝜈 Kinematic viscosity

𝑅𝑒
�̄�0𝛿0
�̄�

Reynolds number

1. Introduction

In a wide range of physical and engineering flows, the laminar-to-
turbulent transition is governed by the inception, growth, and break-
down of flow instabilities. For example, flows over aircraft wings nor-
mally experience transition due to the growth of instabilities such as 
viscous Tollmien-Schlichting (TS) waves and inviscid stationary Cross-
flow Instabilities (CFI) [1–3]. The location and conditions under which 
transition occurs are significant as they strongly influence skin friction 
drag. The field of flow stability analysis is concerned with predicting 
the onset of transition to turbulence, resulting from the exponential 
growth of instabilities. These are typically considered as perturbations 
to a time-invariant base flow solution, which facilitates varying sim-
plifications of the analysis, most notably linearization [4–6]. Although 
such simplifications can lead to considerable reductions in computa-
tional time, they must be balanced by the need to represent the essential 
underlying physics with sufficient fidelity.

The classical and most widely used approach to stability analy-
sis is the linear quasi-empirical approach. This is based on the Orr-
2

Sommerfeld (OS) equations (e.g. [5,7]), which are derived from the 
Navier-Stokes equations after introducing a wave-like perturbation so-
lution. A fully local solution is then obtained by assuming that the 
laminar base flow is parallel, and ignoring the streamwise develop-
ment (i.e., the history) of the perturbations. Lastly, the amplitudes of 
perturbations are assumed to be infinitesimal, thus allowing nonlinear 
interactions to be neglected. The final set of equations can be cast into 
a homogeneous eigenvalue problem, which can be efficiently solved us-
ing either a spatial or temporal formulation [8]. The accumulated linear 
growth of instabilities can then be correlated with empirical transition 
location measurements (typically requiring experimental calibration) to 
find the so-called critical 𝑁 -factor [9]. The N-factor was initially intro-
duced in a simpler form (𝑁 ≈ 9) by Van Ingen [10] and later by Smith 
and Gamberoni [11].

While the widespread and continuous use of OS-based LST and 𝑒𝑁
methods is a testament to their success, their inherent assumptions limit 
their applicability to more complex transitional flows. Recognizing this, 
Bertolotti et al. [12] and Herbert [13] introduced the Parabolized Sta-
bility Equations (PSE). In contrast to the derivation of the OS equations, 
the PSE employ a non-local analysis of the flow, where the shear layer 
is assumed to be varying, albeit slowly, in the streamwise direction. The 
slowly-varying flow assumption allows the second-order streamwise 
derivatives to be neglected, effectively parabolizing the NS equations, 
and reducing the computational cost of their solution. Furthermore, the 
nonlinear terms can be maintained as the PSE framework fully accounts 
for the streamwise development of the perturbation amplitudes neces-
sary for predicting nonlinear interactions.

However, owing to their formulation and set of assumptions, the 
accuracy and validity of OS and PSE approximations, which neglect 
higher-order streamwise derivatives, are questioned for a wide range 
of critically important flows. This is particularly true for the analy-
sis of transitional boundary layers developing over complex surface 
features such as steps, gaps, humps, and waviness which arise during 
the fabrication of wings and other geometries. Extensive experimen-
tal and numerical studies, such as by Holmes et al. [14], Wang and 
Gaster [15] and Tufts et al. [16] among others, have attempted to 
define universal roughness-based Reynolds number thresholds, above 
which these features become critical, i.e. promote transition. For exam-
ple, Crouch et al. [17] attempted to find the effect of backward and 
forward-facing steps on the critical N-factor experimentally. Edelmann 
and Rist [18] performed a similar study numerically and found that 
the N-factor reduction is a function of streamwise position, step lo-
cation, step height, and Mach number. As linear methods were used 
in the aforementioned studies, perturbation amplitude effects were not 
considered. For steps in swept-wing boundary layers, Tufts et al. [16]
proposed to use the instability’s vortex core height and the step height 
to find the effect on incoming disturbances. However, Eppink [19] and 
Rius-Vidales and Kotsonis [20] noted that this single-parameter model 
neglects key aspects of the underlying physics such as the incoming 
perturbation amplitude. Predicting the effects of geometrical surface 
features on boundary layer stability requires a deeper understanding 
and modeling of the underlying flow mechanics. However, the parame-
ter space to be considered is extensive (e.g., Reynolds number, surface 
geometry, and wave specifications) and demands an efficient modeling 

approach.
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In cases with moderate macro-scale curvature, PSE stability results 
were found to match experimental results [21]. In other studies, more 
rapid changes such as localized humps [22–24] and waviness [25–27]
were found to significantly affect the stability of the flow so that PSE so-
lutions were not always accurate. Similarly, sharp protuberances such 
as steps and gaps were shown to strongly affect the dynamics and on-
set of transition [28–32]. The PSE framework was unable to capture the 
perturbation behavior in these cases [31]. Moreover, recent experimen-
tal and DNS work revealed the possible existence of spatially non-modal 
effects in the vicinity of such abrupt streamwise changes [19,33,34], 
which further highlights the limits of the classical modal PSE frame-
work when analyzing these flows. Lastly, Dobrinsky [35] showed that 
PSE could not provide accurate solutions close to disturbance sources 
commonly used to introduce or manipulate instabilities. In such cases, 
a linearized Navier-Stokes approach proved much more effective. It is 
evident from the aforementioned studies that accurate and efficient 
modeling of flow stability in complex geometrical domains cannot be 
reliably performed using a parabolized or local stability framework. In 
this context, a framework based on the Harmonic Navier-Stokes (HNS) 
equations is more appropriate when the effects of sharp geometrical fea-
tures, strong gradients, strong reversed-flow regions, and disturbance 
sources must be considered [35]. The first implementation of weakly 
nonlinear (or bilinear) HNS can be found in [36] where the framework 
was successfully used to predict receptivity of both streamwise and 
crossflow instabilities in boundary layers over nonuniform surfaces. An-
other early implementation of linear HNS can be found in Streett [37], 
who aimed at using fast direct linear solvers while maintaining the al-
gorithmic elements of DNS by describing the disturbance field as a set 
of selected frequencies. The PSE and OS methodologies were shown 
to underestimate the stabilizing effect of curvature compared to HNS. 
The HNS methodology was able to capture the effects of curvature and 
predict the receptivity of crossflow disturbances resulting from wall suc-
tion and two-dimensional TS waves resulting from a roughness strip 
respectively. Guo et al. [38] arrived at a similar conclusion when com-
paring results for various flows (Blasius boundary layer, swept wing, 
and swept Hiemenz flow) with PSE solutions. They introduced a stream-
wise wavenumber in the HNS ansatz, leading to the so-called adaptive 
approach. A complex streamwise wavenumber was calculated to cap-
ture growth and streamwise oscillations in the wave function using an 
iterative procedure borrowed from the PSE methodology. This reduced 
the grid requirement significantly at the cost of an additional conver-
gence loop.

In recent years, several studies have demonstrated the capabilities of 
the HNS framework in various stability problems where classical stabil-
ity methods fail to provide accurate results. Carpenter et al. [39] formu-
lated and developed a discrete adjoint linear HNS solver to tackle the 
problem of distributed receptivity on wavy walls in a swept Hiemenz 
flow. Additionally, the adjoint formulation was used to confirm that the 
placement of discrete roughness elements is the most sensitive near the 
neutral point as found in the SWIFT experiments of [40]). Moreover, the 
importance of surface quality was found through an exhaustive para-
metric study using the same framework.. Later, Franco et al. [23,29]
demonstrated the first compressible adaptive implementation of the 
Harmonic Linearized Navier-Stokes (HLNS) able to incorporate smooth 
wall humps. Additionally, sharp geometries were considered using a 
multi-block approach. As in Guo et al. [38], a streamwise wavenum-
ber was introduced to reduce the grid requirements at the cost of an 
additional convergence loop. However, the benefit of this approach is 
likely to be negligible for wall features where the HNS framework is 
potentially most useful, due to the appearance of non-modal effects 
not accurately described by a single streamwise wavenumber in the 
vicinity of the step, as seen in Casacuberta et al. [33]. Zhao et al. [41]
used an HLNS approach to study the effect of smooth roughness in the 
form of humps and dimples on hypersonic boundary layers. The effect 
of backward-facing steps (corresponding to the experiments of Wang 
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and Gaster [15]) was analyzed with an HLNS approach by Hildebrand 
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et al. [42] where the sharp step geometry was approximated with a co-
sine function to facilitate the use of a curvilinear grid transformation. 
The HNS methodology was thus proven capable of incorporating both 
smooth and sharp surface features.

A further challenge in the HNS approach is to account for nonlinear 
effects. Although the HNS equations are theoretically capable of ac-
counting for the nonlinear interaction between instability modes, most 
existing approaches consider the linearized equations. A key issue asso-
ciated with maintaining the nonlinear terms stems from their iterative 
convergence, which is typically initiated using a linear solution. In par-
ticular, in cases such as simulating CFI, the absence of nonlinear forcing 
in the first few iterations means that disturbances can grow indefinitely 
within the considered domain. The subsequent nonlinear forcing from 
this linear initial estimate can lead to an introduction of higher har-
monics that far exceed any physically possible disturbance amplitude, 
which can lead eventually to solution divergence. Often, damping must 
be introduced to converge to a nonlinear solution.

To the authors’ knowledge, few recent works have been success-
ful in accounting for nonlinear effects within the HNS framework. The 
doctoral thesis of Appel [43] tackles the fully nonlinear HNS equations 
in depth using the Harmonic Balance Method (HBM). The interaction 
of TS waves with a single circular cylinder protruding from the sur-
face was considered nonlinearly, similar to the experiments of de Paula 
et al. [44]. The development of stationary CFI in a swept-wing boundary 
layer was also assessed. The nonlinear problem was iteratively solved 
akin to a nonlinear PSE approach by introducing a source term that 
contains the nonlinear terms on the right-hand side of the system of 
equations. The perturbation amplitude was slowly increased in com-
bination with an under-relaxation of the nonlinear terms. A further 
challenge in the work of Appel [43] was the extensive use of Random-
Access Memory (RAM). To reduce memory usage, the sparsity pattern 
of the left-hand side matrix was used to perform a symbolic LU factor-
ization. This method reduced the RAM requirements, albeit at the cost 
of computational efficiency.

The work of Rigas et al. [45] used an HNS framework to perform 
a nonlinear input/output analysis of flat plate boundary layer transi-
tion via both K-type and H-type transition. Nonlinear interactions were 
treated using an implicit formulation akin to the harmonic balance 
procedures found in Hall et al. [46] and Fabre et al. [47]. A Newton 
iteration was used to converge the method from a linear initial guess 
to a nonlinear solution, truncated at four modes in the temporal and 
spanwise dimensions. The problem was solved using a pre-conditioned 
Generalized Minimal RESidual (GMRES) method algorithm. Although 
effective, the method was found to be computationally expensive due 
to the required calculation of the Jacobian, i.e. finite-dimensional block 
Hill matrix [48].

Most recently, Scholten et al. [49] employed the fully nonlinear 
HNS equations to predict the amplification of nonmodal disturbances 
in a hypersonic boundary layer over a blunt cone. An approach sim-
ilar to Rigas et al. [45] is employed where the equations are solved 
with a fully implicit formulation and the Newton-Raphson method re-
quiring the calculation of the Jacobian. The authors also noted the 
computational constraints and used a GMRES scheme to solve the prob-
lem. Excellent agreement with NPSE solutions is found for the planar 
Tollmien-Schlichting wave in the Blasius flow as well as the develop-
ment of a planar second Mack mode in hypersonic flow over a cone. 
The scheme proved robust for high inflow amplitude simulations where 
convergence issues occurred with the NPSE framework in contrast to 
findings by Appel [43]. However, the tested cases are not comparable 
between these two works which could affect the convergence charac-
teristic of the specific method implementations.

Another challenge in the implementation of (harmonic) Navier-
Stokes solvers is the handling of the outflow boundary. Unsteady flow 
disturbances that reach and interact with the outflow boundary can 
lead to spurious reflections that travel upstream at infinite speeds in in-

compressible formulations. This has a detrimental effect on the solution 
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Fig. 1. Example problems showing the Cartesian (𝑥, 𝑦, 𝑧) and generalized coordinate (𝜉, 𝜂, 𝑧) systems for a smooth hump (a) and step (b) as well as flow direction, 
feature dimensions, and the virtual leading edge. The outflow buffer is indicated by the shaded region where the attenuation function goes from 1 (white) at the 
dotted vertical line to 0 (dark grey) at the outflow. For an explanation of the other symbols, see the text.
within the interior domain. This problem has led some researchers to 
introduce a streamwise wavenumber in the solution ansatz [29,38,50]. 
By absorbing the wave-like character of disturbances in the wave func-
tion, reflections from the interaction at the outflow boundary can be 
mitigated. Although effective, this method introduces an additional 
equation to find the wavenumber as done in PSE, e.g. by Bertolotti 
et al. [12]. Kloker et al. [51] compared various techniques to treat the 
outflow boundary, ranging from no particular treatment to altering the 
domain length and flow control options to attenuate disturbances near 
the outflow, adjusting the Reynolds number, or suppressing disturbance 
vorticity directly. They concluded that the suppression of disturbance 
vorticity was most effective. It must be noted that the problem formula-
tion made use of vorticity transport equations, allowing for convenient 
access to this perturbation property. Appel [43] introduced a sponge 
layer based on a spatially-dependent penalty term similar to that of Is-
raeli and Orszag [52] and Bodony [53]. This sponge layer was applied at 
the inflow and outflow and appeared effective in preventing reflections 
from the boundaries. However, even though the sponge layer strength 
and extent were optimized for each case, there were still amplitude 
jumps upstream of the sponge layer interface in some cases. An alter-
native to sponge layers is the Perfectly Matched Layer (PML) as shown 
in Berenger [54] for electromagnetic problems. The PML surrounds the 
domain of interest (excluding the wall for BL stability problems, see 
Hagstrom et al. [55]) with an absorbing layer. The impedance of the 
absorption layer is perfectly matched to that of the interior domain at 
the interface to prevent reflections and then increases rapidly to ab-
sorb the perturbations entering the PML. Aside from using a PML, one 
can introduce a buffer domain that gradually parabolizes the govern-
ing equations over a short region upstream of the outflow as performed 
by Liu and Liu [56]. Ultimately, the most effective, efficient, and robust 
method for use in HNS remains uncertain and requires further investi-
gation.

In summary, problems involving local geometric changes require 
stability analysis methods with increased physical modeling that still 
avoid the high costs of DNS. The present work introduces such a method 
in the form of a nonlinear harmonic Navier-Stokes solver, developed 
to tackle this challenge for incompressible temporally periodic and 
spanwise-invariant flows. The solution framework is designed to han-
4

dle computer memory efficiently and independently from the mode 
ensemble size. The HNS equations are discretized using a generalized 
coordinate transform, allowing for a wide range of smooth problem ge-
ometries, while sharp wall features such as steps are modeled via an 
embedded boundary technique. Finally, wall-blowing and suction op-
tions are included for the introduction of arbitrary perturbations.

The structure of this report is as follows. A general form of the phys-
ical and computational domain is introduced in Sect. 2. The equations 
are derived and discretized in generalized coordinates in Sect. 3. Sect. 4
describes the numerical implementation tackling both the outflow treat-
ment and the efficient treatment of memory. Grid convergence and code 
verification are performed in Sect. 5. Four key representative flow sta-
bility cases are used to validate the implementation against benchmark 
methods in Sect. 6. A conclusion on the application of the HNS frame-
work to stability problems is given in Sect. 7.

2. Description of example problem domains

The proposed HNS framework, named DeHNSSo, is envisioned as 
a generalized and flexible simulation tool for a wide range of transi-
tional flows. Wall-bounded laminar boundary layers form the key type 
of flows typically explored in such analyses. Due to their dominance 
in relevant aerodynamic applications such as unswept or swept wings, 
two respective transition problems are used as target cases, namely 
Tollmien-Schlichting waves developing in boundary layers with mild 
or no sweep (typically under zero or adverse pressure gradients) and 
stationary crossflow instabilities developing in swept boundary layers 
(typically under favorable pressure gradients). In this section, the phys-
ical and numerical domains are outlined wherein the HNS framework is 
employed. This includes the particularities of geometrical wall features.

A schematic of the four-sided numerical domain is presented in 
Fig. 1. It features an inflow plane, a (possibly curved) bottom wall, a 
top boundary, and an outflow plane. The physical semi-infinite phys-
ical domain has to be truncated to allow for a numerical assessment 
of the problem. This results in an imposed outflow and top boundary. 
To mitigate the unphysical effect of the domain truncation, an outflow 
buffer is implemented that prevents upstream reflections. This buffer is 
indicated by the shaded region in Fig. 1 and its implementation is con-
sidered in detail in Sect. 4.3. The effect of the top boundary is mitigated 

by ensuring a sufficiently tall domain.
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Capitalizing on the ability of the HNS approach to incorporate sur-
face wall features, DeHNSSo will be subjected to two types of wall 
geometry features commonly found on lifting surfaces: smooth humps 
and sharp forward-facing steps. These two geometric features are of 
scientific interest as both humps and steps naturally occur on wing sur-
faces due to manufacturing limitations [19,33,34,57]. Their presence 
has been noted to significantly modify the spatial development of dis-
turbances responsible for boundary layer transition [23]. Nevertheless, 
the details of the interaction of incoming boundary layer disturbances 
with surface features remain largely unknown. DeHNSSo will enable 
future research into the vast parameter space of the effect of these fea-
tures on the transition process necessary for a complete understanding 
of the transition process.

Sharp and smooth geometric features are dealt with in different 
ways within DeHNSSo. Namely, smooth features are accounted for via 
a domain coordinate transformation while sharp features are imple-
mented using an Embedded Boundary Method (EBM) even though both 
features can be accounted for using either method. Specifically, ac-
counting for smooth features using an embedded boundary technique 
means a loss of accuracy at the wall or a large increase in the number 
of grid points required. On the other hand, accounting for sharp features 
using curvilinear coordinate transformations introduces singularities in 
the transformations. In principle, this can be avoided by rounding sharp 
corners as done in Hildebrand et al. [42], but this introduces potentially 
large model errors. The two methods (i.e., coordinate transformations 
and embedded boundary method) are fundamentally different and thus 
introduced separately.

A smooth hump at the wall is used as a nominal example of strong 
local wall curvature and can be treated using a generalized domain 
coordinate transformation relating the Cartesian system (𝑥, 𝑦, 𝑧) to a 
generalized curvilinear coordinate system (𝜉, 𝜂, 𝑧). In the current imple-
mentation, the 𝜉-axis is fitted to the curved wall as indicated in Fig. 1
(a). The hump center location is indicated by 𝑥𝑚. The Virtual Leading 
Edge (VLE) can be seen in Fig. 1 upstream of the stability domain’s 
inflow location present at 𝑥0 with the flow coming from the left.

Sharp steps are treated using an embedded boundary technique as 
shown in Fig. 1 (b), where the no-slip condition is imposed on interior 
grid nodes that match the step wall coordinates. The value for 𝑥𝑚 now 
corresponds to the step location. The 𝜉-axis is thus not conformed to the 
step and follows the wing surface as if no step is present. The numerical 
grid is arranged such that the wall and the step corner can be described 
exactly by the grid points. Note that the coordinate transformation and 
embedded boundary techniques can be combined for geometries more 
complex than those considered here.

3. The harmonic Navier-Stokes equations

For the present work, the Harmonic Navier-Stokes equations are de-
rived from the generalized incompressible Navier-Stokes equations in 
primitive variables (i.e., in velocity-pressure formulation). Assumptions 
are then made on the basic flow state’s spanwise dependency in con-
junction with a spatial and temporal harmonic perturbation ansatz to 
arrive at the HNS equations.

3.1. Non-dimensionalization

All quantities in the general framework are shown in non-dimensi-
onal form. Dimensional quantities are denoted with an overbar. Similar 
to the PSE and DNS methodologies, the disturbance evolution is con-
sidered non-locally in HNS, and as such, global characteristic scales 
are used. Length quantities are normalized by the reference length 
𝑙ref =

√
�̄�0�̄�ref∕�̄�ref, defined as the Blasius length scale at the inflow 

(i.e., �̄�0) of the computational domain as shown in Fig. 1. The ref-
erence kinematic viscosity is defined by �̄�ref, and velocity quantities 
5

are normalized by the reference velocity �̄�ref, taken as the external 
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(i.e., inviscid freestream) base flow streamwise (i.e., along 𝑥) veloc-
ity at the inflow. A global Reynolds number can then be defined as 
𝑅𝑒 = 𝑙ref�̄�ref∕�̄�ref. The nondimensional wave characteristics are then 
calculated as 𝛽 = 2𝜋𝑙ref∕�̄�𝑧 and 𝜔 = 2𝜋𝑓 𝑙ref∕�̄�ref.

3.2. The perturbed Navier-Stokes equations

The dimensionless incompressible Navier-Stokes equations read

𝜕𝐪
𝜕𝑡

+ (𝐪 ⋅∇)𝐪 = −∇𝑝+ 1
𝑅𝑒

∇2𝐪, (1a)

∇ ⋅ 𝐪 = 0, (1b)

where 𝐪 = [𝑢, 𝑣, 𝑤]𝑇 is the vector of instantaneous velocities and 𝑝 is 
the instantaneous static pressure.

The HNS framework makes use of harmonic decomposition for di-
rections of periodicity, namely the spanwise (i.e., 𝑧) and temporal (i.e., 
𝑡) dimensions specifically. It is assumed that the instantaneous flow 
state can be decomposed into a time- and spanwise-invariant base flow 
and a disturbance component as

𝐪 =𝐐+ 𝐪′, (2)

and

𝑝 = 𝑃 + 𝑝′, (3)

where 𝐪′ and 𝑝′ are periodic in 𝑧 and 𝑡. The basic flow state [𝐐, 𝑃 ]𝑇 is 
assumed to be an exact solution to the steady Navier-Stokes equations; 
Therefore its contribution can be subtracted from Eqs. (1) (a,b), produc-
ing the perturbation equations. The basic state is additionally assumed 
uniform in the third dimension (i.e., 𝑧). The perturbation equations are 
expressed as

𝜕𝐪′
𝜕𝑡

+ (𝐐 ⋅∇)𝐪′ + (𝐪′ ⋅∇)𝐐+ (𝐪′ ⋅∇)𝐪′ = −∇𝑝′ + 1
𝑅𝑒

∇2𝐪′, (4a)

∇ ⋅ 𝐪′ = 0, (4b)

where ∇ is the three-dimensional vector differential operator

∇=
⎡⎢⎢⎢⎣
𝜕

𝜕𝑥
𝜕

𝜕𝑦
𝜕

𝜕𝑧

⎤⎥⎥⎥⎦ . (5)

Eqs. (4) (a,b) are solved for the velocity and pressure perturbations 
𝐪′ and 𝑝′.

3.3. The perturbation ansatz

A spatial coordinate transformation is adopted to bring the per-
turbation equations from the physical solution domain (𝑥, 𝑦, 𝑧) to the 
generalized curvilinear numerical domain (𝜉, 𝜂, 𝑧). It must be stressed 
that the transformation is only applied in the streamwise and wall-
normal directions (i.e., 𝑥 and 𝑦). To then facilitate the harmonic ex-
pansion of the equations, a vector of perturbation state variables (i.e., 
velocity and pressure) is introduced: 𝝓′ = [𝐪′, 𝑝′]𝑇 , where 𝐪′ and 𝑝′
are defined in the transformed numerical domain: 𝐪′ = 𝐪′(𝜉, 𝜂, 𝑧, 𝑡) and 
𝑝′ = 𝑝′(𝜉, 𝜂, 𝑧, 𝑡). The perturbations are then discretized using a finite 
sum of Fourier modes in the temporal and spanwise dimensions. The 
evolution of the perturbations is then described by the multiplication 
of an amplitude function �̂�(𝜉, 𝜂) and an exponential wave function in 
𝑧 and 𝑡. The employed solution form is reminiscent of the PSE [12] or 
AHLNS [29] approaches, albeit the wave function does not make use of 
a streamwise wavenumber. No further assumptions on the importance 
of higher-order streamwise derivatives are made to maintain the gen-
erality of the perturbation field. The perturbations are described in the 
form:

′
∞∑ ∞∑

̂ i(𝛽𝑛𝑧−𝜔𝑚𝑡)
𝝓 (𝜉, 𝜂, 𝑧, 𝑡) =
𝑚=−∞ 𝑛=−∞

𝝓𝑚,𝑛(𝜉, 𝜂)𝑒 , (6)
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where 𝛽, 𝜔 ∈ and �̂� ∈ . The imaginary unit is denoted as i =
√
−1, 𝛽

is the spanwise modal wavenumber, 𝜔 is the modal angular frequency, 
and 𝑡 is the time. The common notation (𝑚, 𝑛) is used here to describe 
the relation of the wave specifications of higher harmonic modes, i.e., 
𝜔𝑚 = 𝑚𝜔1 and 𝛽𝑛 = 𝑛𝛽1. Here 𝜔1 and 𝛽1 indicate the fundamental fre-
quency and spanwise wavenumber, respectively. In addition, the (0, 0)
mode has a spanwise wavenumber and angular frequency of zero. This 
mode specifically is referred to as the Mean Flow Distortion (MFD) and 
can be interpreted as the (nonlinear) modification of the base flow by 
the perturbations.

The ansatz of Eq. (6) is truncated to −𝑁 ≤ 𝑛 ≤𝑁 and −𝑀 ≤𝑚 ≤𝑀
to find a numerical solution. This leads to:

𝝓′(𝜉, 𝜂, 𝑧, 𝑡) =
𝑀∑

𝑚=−𝑀

𝑁∑
𝑛=−𝑁

�̂�𝑚,𝑛(𝜉, 𝜂)𝑒i(𝛽𝑛𝑧−𝜔𝑚𝑡), (7)

where the truncation limits of m and n are denoted by 𝑀 and 𝑁 , re-
spectively. These must be chosen such that most of the perturbation 
energy is captured by the solution. Consequently, higher harmonics can 
be assumed to have a marginal effect on the instability development 
and can be neglected. The Fourier ansatz employed here is nearly iden-
tical to NPSE formulations in e.g., [13,21] aside from the absence of the 
streamwise wavenumber 𝛼. Inserting the perturbation ansatz of Eq. (7)
into Eq. (4) leads to the Harmonic Navier-Stokes equations in general-
ized coordinates:

𝑀∑
𝑚=−𝑀

𝑁∑
𝑛=−𝑁

(
𝑚,𝑛�̂�𝑚,𝑛 +𝑚,𝑛

𝜕�̂�𝑚,𝑛

𝜕𝜉
+𝑚,𝑛

𝜕2�̂�𝑚,𝑛

𝜕𝜉2

)

=
𝑀∑

𝑚=−𝑀

𝑁∑
𝑛=−𝑁

𝒓𝑚,𝑛, (8)

where the mode-specific operators 𝑚,𝑛, 𝑚,𝑛, and 𝑚,𝑛 comprise the 

respective products with �̂�𝑚,𝑛, 
𝜕�̂�𝑚,𝑛

𝜕𝜉
, and 𝜕

2�̂�𝑚,𝑛
𝜕𝜉2

. The right-hand side 
contains the double sum of nonlinear interactions over all considered 
modes. The contents and treatment of 𝒓𝑚,𝑛, i.e., the forcing of mode 
(𝑚, 𝑛), are considered in more detail in Sect. 3.4.

As Herbert [13] notes, the physical field must be real and thus it 
must hold that

𝝓′
−𝑛,−𝑚 = 𝝓′†

𝑚,𝑛
, (9)

where † denotes the complex conjugate. This simple operation nearly 
halves the required number of calculations as shown in Fig. 2. The light-
shaded area indicates the modes that can be generated from symmetry 
when the base flow is purely two-dimensional (i.e. 𝑊=0). Then, an 
additional axis of symmetry is introduced in 𝑧 such that:

𝝓′
𝑚,−𝑛 = [𝑢′

𝑚,𝑛
, 𝑣′
𝑚,𝑛
,−𝑤′

𝑚,𝑛
, 𝑝′
𝑚,𝑛

]𝑇 . (10)

3.4. Harmonic balancing

The system of Eq. (8) is coupled, which complicates the development 
of an efficient solution algorithm. This can be simplified by employing 
harmonic balancing, which is based on the idea that the nonlinear in-
teraction of two modes (i.e. their product), (𝜔𝑗, 𝛽𝑘) and (𝜔𝑙, 𝛽𝑝), results 
in the forcing of a third mode (𝜔𝑔, 𝛽ℎ) as illustrated by an example in 
Fig. 2. This idea originates from the NPSE methodology as shown in 
Herbert [13], Haynes and Reed [21], and Westerbeek [58] and is easily 
visualized by observing the multiplication of the respective wave func-

tions. As an example, consider the term −𝑢′ 𝜕𝑢
′

𝜕𝜉
, where 𝑢′ contains the 

double truncated sum shown in Eq. (7). Isolating the interaction of any 
two modes (𝑗, 𝑘) and (𝑙, 𝑝), −𝑢′ 𝜕𝑢

′

𝜕𝜉
can be rewritten as:

𝑀∑ 𝑁∑ 𝑀∑ 𝑁∑
−�̂� 𝑒𝑖(𝑘𝛽1𝑧−𝑗𝜔1𝑡)

𝜕�̂�(𝑙,𝑝)
𝑒𝑖(𝑝𝛽1𝑧−𝑙𝜔1𝑡), (11a)
6

𝑗=−𝑀 𝑘=−𝑁 𝑙=−𝑀 𝑝=−𝑁
(𝑗,𝑘)

𝜕𝜉
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Fig. 2. Schematic of the Fourier mode space, adapted from Herbert [13]. An ex-
ample of a nonlinear interaction is shown between two modes via the arrows 
(from black source modes to white recipient mode). The dashed outline indi-
cates the truncated ensemble of modes (𝑀, 𝑁) and the dark-shaded area shows 
modes that can be found via symmetries. The light-shaded area shows modes 
that can be found via symmetries in 2D flows.

=
𝑀∑

𝑗=−𝑀

𝑁∑
𝑘=−𝑁

𝑀∑
𝑙=−𝑀

𝑁∑
𝑝=−𝑁

−�̂�(𝑗,𝑘)
𝜕�̂�(𝑙,𝑝)

𝜕𝜉
𝑒𝑖((𝑘+𝑝)𝛽1𝑧−(𝑗+𝑙)𝜔1𝑡), (11b)

=
𝑀∑

𝑔=−𝑀

𝑗=min(𝑀+𝑔,𝑀)∑
𝑗=max(𝑔−𝑀,−𝑀)

𝑁∑
ℎ=−𝑁

𝑙=min(𝑁+ℎ,𝑁)∑
𝑙=max(ℎ−𝑁,−𝑁)

−�̂�(𝑗,𝑘)
𝜕�̂�(𝑔−𝑗,ℎ−𝑘)

𝜕𝜉
𝑒(ℎ𝛽1𝑧−𝑔𝜔1𝑡),

(11c)

where in the last step interactions that exceed the spectral domain are 
excluded from the calculation. Thus, the mode (𝑔, ℎ) will be forced by 
every interaction of active modes (𝑗, 𝑘) and (𝑙, 𝑝) for which it holds that 
𝑗 + 𝑙 = 𝑔 and 𝑘 + 𝑝 = ℎ. In a given simulation, it is thus known a priori 
which interaction affects which mode. Consequently, only the relevant 
interactions are summed to find the source term that is presented on the 
right-hand side per mode. This results in Eq. (8) becoming at most a sys-
tem of (𝑀 + 1) × (2𝑁 + 1) inhomogeneous linear equations accounting 
for symmetries:

𝑚,𝑛�̂�𝑚,𝑛 +𝑚,𝑛

𝜕�̂�𝑚,𝑛

𝜕𝜉
+𝑚,𝑛

𝜕2�̂�𝑚,𝑛

𝜕𝜉2
= 𝒓𝑚,𝑛, (12)

coupled via the nonlinear forcing terms. The matrices , , and 
contain the information of base flow and mode characteristics. These 
matrices will be further scrutinized in the following sections. Therefore, 
the contents of , , and  are currently not described.

3.5. Boundary and inflow conditions

The derived system of HNS equations must be solved with appro-
priate boundary conditions, representing realistic physical constraints 
governing the evolution of the perturbations. In addition, boundary 
conditions can be used as convenient means for introducing forced ex-
ternal disturbances, for example, in receptivity studies or studies of 
active/passive flow control. The following gives a generalized descrip-
tion of boundary conditions for the domains described in Sect. 2, while 
details on their numerical implementation are elaborated in Sect. 4.

The harmonic Navier-Stokes equations govern the development of 
steady and unsteady perturbations in an otherwise steady shear base 
flow (e.g. a boundary layer). As such, perturbations are expected to 
decay in the freestream. In the discrete case, this is approximated by 
enforcing homogeneous Dirichlet boundary conditions for perturbation 
velocities at the artificial top boundary (𝜂 =𝐻) indicated in Fig. 1. This 
boundary condition introduces an error as perturbations asymptotically 

fade into the freestream. However, for large enough 𝐻 this error is as-
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sumed to be negligible. This is easily verified on a case-by-case basis by 
performing a sensitivity study for this parameter. While this applies con-
ceptually to all perturbation modes, particular care needs to be taken 
in the case of mode �̂�0,0, i.e., the mean flow distortion. As in nonlin-
ear PSE approaches (e.g. [13,21]), this mode is responsible for the net 
effect of perturbations on the base flow. Consequently, the boundary 
conditions should allow for this mode to have a non-zero wall-normal 
velocity at the top boundary. To facilitate this, the wall-normal compo-
nent of the MFD is left unconstrained at the top domain. In summary, 
the boundary condition at the top of the domain is expressed as

�̂�𝑚,𝑛(𝜉, 𝜂 =𝐻) = 𝟎 for either𝑚 ≠ 0, 𝑛 ≠ 0 (13a)

�̂�𝑚,𝑛(𝜉, 𝜂 =𝐻) = 0 for𝑚 = 0, 𝑛 = 0 (13b)

�̂�𝑚,𝑛(𝜉, 𝜂 =𝐻) = 0 for𝑚 = 0, 𝑛 = 0, (13c)

where 𝐻 denotes the domain height. Although no explicit boundary 
condition is presented here for the MFD wall-normal perturbation ve-
locity, a homogeneous Neumann condition is implied via continuity:

𝜕�̂�𝑚,𝑛

𝜕𝜂
(𝜉, 𝜂 =𝐻) = 0 for𝑚 = 0, 𝑛 = 0, (14)

since �̂�𝑚,𝑛 = �̂�𝑚,𝑛 = 0. Similarly, at the wall, no-slip conditions can be 
applied in the case of solid, non-permeable surfaces or inhomogeneous 
boundary conditions can be used to simulate sources of active or passive 
disturbance forcing such as vibrating ribbons [59], porous walls [60], 
sub-surface resonators [61], etc. These can be introduced as

�̂�𝑚,𝑛(𝜉, 𝜂 = 0) = 𝐪𝑤
𝑚,𝑛
, (15)

where 𝐪𝑤
𝑚,𝑛

is the wall boundary value for each individual perturbation 
mode. If 𝐪𝑤

𝑚,𝑛
= 0, no-slip conditions are enforced. It must be noted that 

pressure is only prescribed at the inflow and not at the wall or the 
freestream where it is solved implicitly instead. If a sharp geometrical 
wall feature (e.g., a step or gap) is present, the no-slip condition is 
additionally enforced at the wall feature’s face(s). The use of embedded 
domain boundaries is covered in more detail in Sect. 4.

At the domain inflow, Dirichlet boundary conditions for all pertur-
bation velocity components and pressure are applied. The inflow further 
presents a convenient means to introduce known disturbances, typical 
for classical stability analysis. For example, the local Orr-Sommerfeld 
eigenvalue problem can be solved at the inflow, to provide an inflow 
condition for one or more disturbance modes, a method commonly used 
in various stability analysis frameworks [12,13,21]. Not all modes need 
to be initiated at the inflow if their amplitudes are small, as higher har-
monics and the mean flow distortion can be self-generated within the 
domain due to nonlinear interactions [24]. The inflow can be further 
used for more general types of perturbations, for example, arbitrary ve-
locity/pressure disturbances used in non-modal stability analyses (e.g., 
[62,63]). A modified Dirichlet boundary condition is applied at the out-
flow, working in conjunction to a buffer zone implemented at the end 
of the domain to prevent unwanted reflections. Its implementation is 
considered in detail in Sect. 4.3.

4. Implementation

The implementation of the solution framework is designed with 
several requirements in mind. The intention is to offer a flexible and 
accessible method for those working in the field of stability analysis, 
ideally able to provide accurate results on desktop machine architec-
tures within a reasonable time. This is greatly enabled by the efficiency 
and speed of the harmonic expansion, which effectively removes the 
need for numerical discretization in two out of four problem dimen-
sions (i.e., 𝑧 and 𝑡), as described in Sect. 4.1. This reduction of the HNS 
system to an essentially two-dimensional numerical problem allows for 
7

relaxing the need for high-performance computing implementations.
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Fig. 3. Nonzero entries represented as a blue dot in the sparse banded matrix 
𝕄 with Γ𝜉 = Γ𝜂 = 7. For the first index, the shape functions �̂�, �̂�, �̂�, and �̂� are 
shown that will be multiplied by the entries of that column. Likewise, M𝑥, M𝑦, M𝑧
and the C indicate the 𝑥, 𝑦, 𝑧 momentum and continuity equations respectively 
solved per row. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

The HNS system is solved through the inversion of the equation

𝕄𝑚,𝑛�̂�𝑚,𝑛 = 𝐫𝑚,𝑛 (16)

sequentially for each mode (𝑚, 𝑛) comprising the discretized form of 
Eq. (12). The state vector �̂�𝑚,𝑛 contains all perturbation velocities and 
pressures in the domain organized as [�̂�1,1, ̂𝑢1,2… �̂�Γ𝜉 ,Γ𝜂 ]

𝑇 for a specific 
mode, thus making it of length 4 × Γ𝜉 × Γ𝜂 . The number of elements in 
the 𝜉-direction is described by Γ𝜉 and likewise in 𝜂. The matrix 𝕄 is a 
banded sparse square matrix of order 4 ×Γ𝜉 ×Γ𝜂 with a bandwidth, 𝑚𝑏, 
equal to 20 × Γ𝜂 . The factor 20 originates from the fourth-order finite 
difference discretization scheme employed that uses a five-point stencil 
of order 4 × Γ𝜂 to approximate first and second-order derivatives. This 
band contains many zeroes as can be seen in Fig. 3. The matrix 𝕄 is not 
symmetric and the band density is less than 0.5.

4.1. Discretization

The discretization of Eq. (12) is performed differently for the stream-
wise (i.e., along 𝜉) and wall-normal (i.e., along 𝜂) directions. The wall-
normal derivatives are discretized using a spectral collocation method 
with Chebyshev polynomial bases. Spectral collocation methods are 
characterized by rapid convergence as a function of the number of de-
grees of freedom, however, come at the cost of fuller matrices. The cur-
rent implementation uses the differentiation matrix suite by Weideman 
and Reddy [64]. Based on the theoretical collocation point distribution, 
the suite provides first and second-order differentiation matrices, 1
and 2 respectively. For increased resolution in the near-wall region, 
the distribution of collocation points is modified and clustered near the 
wall, following an algebraic mapping from the computational domain 
[0, 1] to the physical domain [0, H] as proposed by Malik [65]. The 
mapping uses a median collocation point to define the height 𝜂𝑖 under 
which half of the collocation points reside. This distribution is stretched 
when a step is considered to contain a near-constant Δ𝜂 up to a point 
slightly over the step height. From that point upward, the grid becomes 
more coarse with the distance from the wall.

The first and second-order streamwise derivatives in the HNS 

equations are discretized using a fourth-order central finite-difference 
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scheme. This scheme becomes progressively downwind at the inflow 
and upwind at the outflow, as shown in Sect. 4.3. Similarly, the scheme 
becomes progressively upwind in the vicinity of sharp features for 
𝜂 ≤ ℎ𝑠𝑡𝑒𝑝 if present. The scheme is unaltered, i.e. remains centered, for 
𝜂 > ℎ𝑠𝑡𝑒𝑝. More details on the treatment of these features are provided 
in Sect. 4.4.

4.2. Memory management and construction of the solution matrix

Matrix 𝕄𝑚,𝑛 from Eq. (16) is a highly sparse banded matrix. Direct 
sparse matrix solvers are ideal tools for this type of problem. However, 
while these methods are fast and robust, memory can become a bottle-
neck for large problems due to a phenomenon known as fill-in when 
factorizing a sparse matrix. Moreover, considering a given nonlinear 
stability problem simulation, Eq. (16) needs to be solved successively 
for each of the modes in the entire mode ensemble as well as repeatedly 
to achieve convergence of the nonlinear interaction terms (contained in 
𝐫𝑚,𝑛). As such, accounting for symmetries, the total memory allocation 

necessary can reach 

(
(𝑀 +1) ×(2𝑁 +1) −𝑁

)
×𝑆 in 3D flows (𝑊 ≠ 0) 

and (𝑀+1) ×(𝑁+1) ×𝑆 in 2D (𝑊 = 0) flows if 𝜔1 = 0 or 𝛽1 = 0, where 
𝑀 is the maximum number of frequency (𝜔) modes, 𝑁 is the maximum 
number of spanwise wavenumber (𝛽) modes and 𝑆 is the memory size 
of matrix 𝕄𝑚,𝑛. A strategy for addressing this can be devised by first 
rearranging Eq. (12) to:

[𝐴]𝐪𝑚,𝑛 + [𝐵]𝜔𝑚𝐪𝑚,𝑛 + [𝐶]𝛽𝑛𝐪+ [𝐷]𝛽2
𝑛
𝐪𝑚,𝑛 + [𝐸]

𝜕𝐪𝑚,𝑛
𝜕𝜉

+ [𝐹 ]
𝜕2𝐪𝑚,𝑛
𝜕𝜉2

= 𝐫𝑚,𝑛, (17)

where matrices A-F contain base flow values and coefficients associated 
with wall-normal derivative operators only and are mode-independent 
(see Appendix B). Matrices A-F form the building blocks for the left-
hand side matrix 𝕄𝑚,𝑛. Using Eq. (17), the left-hand side of Eq. (16)
can be created at every iteration using

𝕄𝑚,𝑛 =𝕄1 +𝕄2𝜔𝑚 +𝕄3𝛽𝑛 +𝕄4𝛽
2
𝑛
, (18)

where the streamwise derivatives are approximated via finite-difference 
operators contained in 𝕄1. This allows common and mode-invariant 
matrices 𝕄1 to 𝕄4 to be recycled during the simulation. In fact, sparse 
matrices 𝕄1 to 𝕄4 need only to be constructed once before the be-
ginning of the simulation and can be accessed in parallel by separate 
computational cores, each evaluating different modes. In summary, 
with the described procedure, the total memory used to store the left-
hand side matrices for a given simulation is significantly reduced to 𝑆 , 
(i.e., the size of 𝕄1) plus the overhead associated with storing the three 
additional highly-sparse matrices (𝕄2 − 𝕄4). In addition, due to the 
avoidance of constructing the lengthy matrix 𝕄𝑚,𝑛 repeatedly, gains in 
computational time are achieved. The generalized construction of the 
matrices 𝕄1 to 𝕄4 can be found in Appendix C. The memory required 
to solve Eq. (16) scales with the numerical grid only. Specifically, it was 
found that the memory requirements saving 𝕄 and solving the problem 
both scale linearly with Γ𝜉 and quadratically with Γ𝜂 .

4.3. Outflow treatment

A considerable challenge in incompressible NS solution frameworks 
is the treatment of spurious reflections from numerical domain bound-
aries. This is a direct result of the introduction of an outflow bound-
ary when modeling the semi-infinite domain as a finite domain [35]. 
Streett and Macaraeg [66] note that the ellipticity in the incompressible 
Navier-Stokes equations allows for the upstream travel of information 
which arises primarily from the viscous terms and the pressure field 
term. Joslin [67] notes that the interaction of local velocity perturba-
tions with the pressure boundary causes a pressure pulse that travels up-
8

stream at infinite speed for incompressible simulations. Consequently, 
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Fig. 4. Streamwise dependency of the buffer function, 𝑔(𝑥), starting at 𝑥𝑏 = 85% 
of the domain for a normalized domain length 𝑥∕𝐿 = [0, 1]. The buffer has no 
effect for a value of 1 and maximum effect at the end of the domain with a 
value of ≈ 6 × 10−6 for 𝜅 = 6.

neither Dirichlet nor Neumann boundary conditions can be imposed di-
rectly at the outflow.

To avoid this unphysical behavior in the present implementation, 
streamwise and spanwise perturbation velocities are damped within a 
buffer region located upstream of the outflow (see Fig. 1). This buffer 
significantly reduces the strength of reflections originating from the 
outflow. Damping is performed by multiplying all terms by a buffer 
function 𝐺(𝑥) and then adding its reciprocal (1 − 𝐺(𝑥)) to the diag-
onal terms of matrix 𝕄 corresponding to the streamwise and span-
wise perturbation components. This adapts the equations to ensure the 
streamwise and spanwise perturbation components become smoothly 
negligible. Mass continuity ensures that the wall-normal velocity and 
pressure perturbation components are attenuated in a similar fashion 
while not over-constraining the equations. The attenuation function is 
adapted from Joslin [67] as:

𝑔(𝑥) = 1
2

(
1 + tanh

(
𝜅

[
1 − 2

𝑥− 𝑥𝑏
𝑥𝑒 − 𝑥𝑏

]))
, (19)

where 𝑥𝑏 and 𝑥𝑒 refer to the starting and ending location of the buffer 
respectively and 𝜅 is a stretching factor, equal to 6 for the cases pre-
sented here. This function is scaled so that no discontinuity exists in the 
buffer function 𝐺(𝑥) at 𝑥 = 𝑥𝑏. The buffer formulation then reads:

𝐺(𝑥) =

{
1 𝑥 < 𝑥𝑏

1 − 𝑔(𝑥)
𝑔(𝑥𝑏)

𝑥 ≥ 𝑥𝑏 (20a)

where 𝑔(𝑥) is used to distinguish between the attenuation function 
shape and the buffer formulation 𝐺(𝑥). For cases presented here, this 
method has been effective in preventing outflow boundary interactions 
in the domain of interest.

Fig. 4 shows the streamwise dependency of the attenuation function. 
In addition to directly attenuating the disturbance velocities, the buffer 
is also applied to the nonlinear terms. This is performed via a direct 
multiplication with the local buffer function value. This ensures that 
the right-hand side of Eq. (16) is near-zero at the outflow.

4.4. Embedded boundary method

In the present implementation, sharp geometric wall features (e.g., a 
step) are introduced in a way similar to the immersed boundary method 
commonly used in DNS applications (see e.g., Meyer et al. [68] and Ör-
ley et al. [69]). As such, the grid domain is not conformed to the step, 
but the interior nodes are adjusted to the step wall to ensure that a 
collocation point coincides exactly with the step corner. The left-hand 
side matrix 𝕄 can now be manipulated such that the proper boundary 
conditions are enforced. More specifically, no-slip and impermeability 
conditions are imposed at points that coincide with the step wall while 
perturbation pressures are solved implicitly. Grid points that exist un-
derneath the step surface do not enter the finite difference stencil as the 
scheme is adjusted to become progressively upwind in the proximity of 
the step. This shift toward a more upwind stencil is only performed for 
grid points below the step corner. Above the step, the stencil is unaf-

fected, and a fourth-order central finite-difference stencil is maintained 
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Fig. 5. Three finite-difference stencils color-coded for several streamwise stations 𝑖 around the step with dots, circles, and crosses representing internal, surface, and 
sub-surface grid points respectively. The red line represents the solid wall.
as is visualized in Fig. 5. The wall-normal derivative operators are un-
affected by the presence of a step.

4.5. Iterative convergence of the nonlinear terms

One of the distinguishing features of the presented HNS framework 
is its ability to treat nonlinear stability problems efficiently. In classi-
cal NPSE approaches, the nonlinear terms can be converged at every 
streamwise station separately (see [12,13,21]). This is made possible 
by the parabolization of the equations allowing them to be solved in a 
marching fashion. In HNS, the entire flow field must be considered per 
iteration. The nonlinear terms thus have to be converged from an ini-
tial guess, which is typically the solution to the linear problem. Based 
on this approach, Rigas et al. [45] solved the coupled nonlinear sys-
tem using an iterative Newton algorithm. This requires the nonlinear 
terms to be maintained on the left-hand side of Eq. (8) and the full 
Jacobian to be calculated for the nonlinear system. Although proven 
effective for the studied cases, its high computational cost is notewor-
thy. Specifically, due to the need to solve for the entire modal ensemble 
simultaneously, the problem scales rapidly with the number of modes 
considered.

An iterative approach is adopted in this work, which is independent 
of the total number of modes considered. The nonlinear terms are main-
tained as a lagged source term on the right-hand side (see Eq. (12)) and 
can be iteratively constructed for each mode. This is analogous to the 
treatment of nonlinear terms in the NPSE, albeit considering the entire 
flow field. Generally, lagged approaches are less robust than, e.g., an it-
erative Newton algorithm. To overcome this shortcoming, an amplitude 
ramping procedure is employed.

4.5.1. Amplitude ramping

A key challenge in the iterative construction of the nonlinear terms 
in Eq. (12) is the appearance of nonphysical and diverging solutions. 
Specifically, a non-linear simulation needs to be initialized with at 
least one perturbation mode (e.g. the fundamental mode), typically ex-
tracted from a linear eigenvalue solution. However, for particular types 
of instabilities, linear stability analysis can lead to unrealistically large 
amplitudes in the domain. In crossflow-dominated flows especially, dis-
turbance amplitudes several times greater than the base flow freestream 
velocity value can be reached purely based on linear growth. Fig. 6 pro-
vides an example thereof for a stationary CFI mode in a swept-wing 
boundary layer. While the nonlinearly developing fundamental mode 
reaches amplitude saturation (i.e., 𝑢′

𝑚𝑎𝑥
≈ 0.3, see [21,70]), the linear 

solution (initialized with the same inflow amplitude) would approxi-
mate or surpass a value of 1 within the considered domain. Initializing 
a nonlinear simulation with this linear solution would force the sec-
ond, third, etc. harmonics to reach amplitudes of 𝑂(𝑢′

𝑚𝑎𝑥
)2, 𝑂(𝑢′

𝑚𝑎𝑥
)3, 

etc. This causes a divergence of the nonlinear terms and an eventual 
blow-up of the simulation. Herein lies the challenge for nonlinear con-
9

vergence of HNS, as the calculation of nonlinear terms that enforce 
Fig. 6. Initial (light) to final (dark) stationary crossflow instability amplitude 
development (based on maximum streamwise perturbation velocity) of the fun-
damental mode in a swept-wing boundary layer with 𝑁 = 5 during amplitude 
ramping. Higher harmonics are not shown. Red and blue lines represent linear 
amplitude developments corresponding to the highest and lowest inflow ampli-
tude respectively. The dashed line indicates the approximate amplitude limit 
over which non-physical solutions would occur in the current domain.

amplitude saturation relies on the presence of mode harmonics, most 
notably the mean-flow distortion [71].

In the present implementation, this problem is overcome by reduc-
ing the inflow amplitude for the linear simulation used to provide the 
initial guess for the HNS solution. This amplitude is found a posteriori 
such that the maximum amplitude does not exceed a pre-determined 
threshold (AMAX) within the considered domain. Since the simulation 
was linear, it can be scaled to the desired inflow amplitude directly. 
However, the proper amplitude threshold is difficult to predict as it 
depends on the significance of nonlinear dynamics. In practice, an ef-
fective threshold is easily found by trial and error, and setting it too low 
can at most result in slightly longer computation times. In the present 
work, the threshold is set to 20% of the reference velocity for all cases. 
The nonlinear continuation approach is then started; The inflow ampli-
tude is slowly increased until the desired inflow amplitude is reached. 
The amplitude ramping is done using two modes and the MFD such that 
nonlinear divergence is prevented. For the test cases presented here, us-
ing the second harmonic and the MFD was sufficient to achieve this. 
The expansion of the spectral ensemble by the generation of new har-
monics is performed under two conditions: If there is only one active 
mode (e.g. the fundamental mode), the second harmonic and the mean 
flow distortion are introduced. If 2 modes are already active, higher 

harmonics (e.g. 𝑛 > 2) are only introduced in sequence when the goal 
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amplitude is reached and each new harmonic is converged before a 
higher harmonic is introduced.

The convergence criterion for a mode (𝑚, 𝑛) can be calculated as:

𝜎𝑘
𝑚,𝑛

= 1
Γ𝑥

Γ𝑥∑
𝑖=1

⎛⎜⎜⎝
|||𝐴𝑘𝑖,max −𝐴

𝑘−1
𝑖,max

|||
𝐴𝑘
𝑖,max

⎞⎟⎟⎠𝑚,𝑛 (21)

where the amplitude measure, 𝐴, is the peak amplitude of the stream-
wise perturbation velocity 𝑢′ at a streamwise index 𝑖 and 𝑘 is the 
iteration counter. The convergence criterion 𝜎 is evaluated for all har-
monics in 𝑧 and 𝑡 separately and none should exceed the criterion before 
proceeding. A relative amplitude convergence criterion of 10−6(in units 
of 𝑈ref) is used for the results presented here. An exception is made for 
the higher harmonics whose maximum amplitude can be of the order 
of 10−10 such that this criterion reaches the order of machine accuracy 
(10−16). An absolute limit of 10−14 is therefore applied to the numer-
ator of Eq. (21), below which the mode is always assumed to have 
converged.

4.5.2. Continuation procedure

Considering the previously described amplitude ramping approach, 
in the first iteration the fundamental mode amplitude is computed lin-
early. This result is used to calculate a nonlinear forcing term for the 
MFD and the second harmonic. This allows for the calculation of a 
nonlinear forcing term of the fundamental mode. During this contin-
uation loop, new modes are introduced if their forcing exceeds the 
pre-determined case-dependent threshold.

The iterative scheme can be shortly summarized as

𝕄(𝑚,𝑛)(𝐴𝑘=0(𝑚,𝑛)) = 0, 𝐟𝑘=1(𝑚,𝑛) =ℕ𝕃𝕋 (�̂�𝑘=0(𝑚,𝑛)), (22a)

𝕄(𝑚,𝑛)(𝐴𝑘+1(𝑚,𝑛)) = 𝐟𝑘(𝑚,𝑛), 𝐟𝑘+1(𝑚,𝑛) =ℕ𝕃𝕋 (�̂�𝑘(𝑚,𝑛)), (22b)

where 𝕄 is the linear HNS operator, written here as a function of the 
initial amplitude given to the fundamental mode(s). The operator ℕ𝕃𝕋
comprises the nonlinear terms that define 𝐟𝑘+1 based on an intermediate 
solution, �̂�𝑘, which should be converged before proceeding to greater 
inflow amplitudes. For sufficiently small initial amplitude increment, 
𝛾 , 𝐟𝑘−1 ≈ 𝐟𝑘 and the problem does not diverge. However, a small 𝛾
is associated with large computation times. For simulations presented 
here, 𝛾 = 1.1.

The forcing term shown in Eq. (22) (b) is linearly extrapolated to 
aid in the numerical stability and speed of the iteration procedure from 
𝑘 = 3 onward. This extrapolation can be described as:

𝐟𝑘(𝑚,𝑛,𝑖) = 𝐟 ,𝑘−1(𝑚,𝑛,𝑖) +
𝐟𝑘−1(𝑚,𝑛,𝑖) − 𝐟𝑘−2(𝑚,𝑛,𝑖)

𝐴𝑘−1 −𝐴𝑘−2
(𝐴𝑘 −𝐴𝑘−1), (23)

for all active modes in both the current and previous iterations. In the 
strongly nonlinear saturated regimes within the computational domain, 
𝐟𝑘 ≈ 𝐟𝑘−1 since 𝐟𝑘−2 ≈ 𝐟𝑘−1. Consequently, the effect is largest for lower 
amplitudes where the behavior is linear in amplitude. The procedure for 
solving the HNS iteratively is presented as pseudo-code in Algorithm 1.

5. Verification

Before the developed HNS framework will be compared to bench-
mark methods such as NPSE, AHLNS, and DNS, it is desirable to estab-
lish the dependence of the outcomes on the numerical and discretization 
parameters. In this section, the HNS implementation is verified by as-
sessing the observed convergence rate and comparing it to the expected 
convergence rate based on the formal discretization schemes used in 
the current implementation.

As a verification test case, the nonlinear development of TS waves 
in the Blasius boundary layer (𝑀 = 5) was used, essentially replicat-
10

ing the conditions simulated by Herbert in his seminal PSE report [13]. 
Computer Physics Communications 302 (2024) 109250

Algorithm 1 HNS Solver Pseudo Code.

1: procedure FIND A LINEAR INFLOW AMPLITUDE

2: Inflow Eigenvalue Problem:
3: Impose inflow condition (LST, LOAD, or ZERO)
4: Present the LST solution on the right-hand side for the first stage
5: Initial Linear Estimate:
6: Solve the linear problem
7: Find 𝐴max

8: Reduce the inflow amplitude 𝐴0 to ensure 𝐴max = AMAX

9: procedure CONVERGE THE NONLINEAR PROBLEM

10: 𝐰𝐡𝐢𝐥𝐞 𝐴0 ≤𝐴goal

11: 𝐰𝐡𝐢𝐥𝐞 𝜖 > nonlinear convergence threshold
12: Calculate Nonlinear Terms:
13: Compute nonlinear terms based on the latest iteration
14: Solve Nonlinear Problem:
15: Solve HNS
16: Introduce Harmonics:
17: 𝐢𝐟 Number of active modes is less than 2 𝐨𝐫 goal initial amplitude is reached
18: Introduce new modes
19: 𝐞𝐧𝐝 𝐢𝐟
20: Perform Convergence Check:
21: Calculate the change in normalized amplitude evolution, 𝜖
22: 𝐞𝐧𝐝 𝐰𝐡𝐢𝐥𝐞
23: Increase inflow amplitude as 𝐴𝑘+10 = 𝛾 ∗𝐴𝑘0
24: Extrapolate forcing term
25: 𝐞𝐧𝐝 𝐰𝐡𝐢𝐥𝐞

26: CLOSE;

The case will be described in detail in Sect. 6.1. For details on nondi-
mensionalization, the reader is referred to Sect. 3.1. In short, the flow 
is described by a constant external velocity �̄� = 10 m/s. The Blasius 
length at the inflow (𝛿0 = 6.075 ×10−4 m) serves as the reference length. 
A global Reynolds number 𝑅𝑒 = 𝛿0�̄�𝑒

�̄�
= 400 is then defined using a 

kinematic viscosity of �̄� = 1.5188 × 10−5 m2/s. The primary mode with 
fundamental frequency is 𝜔1 = 0.0344 is introduced at the domain in-
flow as the solution to the local eigenvalue problem on which an initial 
amplitude of 𝐴0 = 0.0025

√
2 is imposed. All higher harmonics are set 

to 0 at the inflow and are generated nonlinearly in the interior do-
main. The natural forcing of the higher harmonics ensures a constant 
phase relation to the fundamental mode which is introduced with an 
arbitrary phase. Aside from this phase shift, the downstream results are 
confirmed to not be affected by the phase of the inflow condition.

The results are subjected to variations in the streamwise discretiza-
tion (for constant Γ𝜂 = 100) and the number of Chebyshev collocation 
points in the wall-normal direction (for constant Γ𝜉= 2674). The stream-
wise discretization is equidistant while the wall-normal discretization is 
clustered near the wall as described in Sect. 4.1. Other important pa-
rameters can affect the result through their influence on the grid, such 
as the median collocation point, 𝑦𝑖, and domain size parameters, 𝐻 , 𝐿, 
and 𝑥𝑏. Preliminary convergence tests were performed (not shown here 
for brevity) for these parameters. Consequently, they are not varied in 
the convergence study and their value will be constant for all simu-
lations: 𝐻 = 99, 𝑦𝑖∕𝐻 = 0.05, 𝐿 = 2.625 × 103, and 𝑥𝑏∕𝐿 = 0.85. The 
convergence threshold, 𝜎𝑘

𝑚,𝑛
, was lowered significantly here to 10−8 to 

ensure its effect on the outcomes is orders of magnitude smaller than 
the discretization error.

Two evaluation metrics are used to evaluate the grid convergence. 
Firstly, an integral measure of perturbation kinetic energy 𝐸 over the 
total physically relevant domain (𝑥0 𝑥𝑏), between the inflow and buffer 
starting location respectively, is used. This can be calculated as:

𝐸 =

𝑥𝑏 𝐻

1(|𝑢′|2 + |𝑣′|2 + |𝑤′|2)𝑑𝑦 𝑑𝑥. (24)
∫
𝑥0

∫
0

2
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Fig. 7. Perturbation kinetic energy difference (𝜖) with respect to the most refined simulation as a function of Γ𝑥 for constant Γ𝜂 = 100 (a) and Γ𝜂 for constant Γ𝜉 = 
2674 (b) based on total perturbation energy (black) and locally at 𝑥 = 1700 (red). Markers represent simulation results. The expected convergence is indicated by 

the dashed line.

This integral perturbation kinetic energy measure is calculated as 
the modal total perturbation energy, i.e. the sum of all modes, and 
shown in Fig. 7. In addition, a local measure of perturbation kinetic 
energy is evaluated locally at 𝑥 = 1700:

𝐸 =

𝐻

∫
0

1
2

(|𝑢′|2 + |𝑣′|2 + |𝑤′|2)𝑑𝑦|𝑥=1700. (25)

The results are expected to converge with the order of (Δ𝜉)4 as in-
dicated by the dashed line in Fig. 7 (a). The absolute difference 𝜖 is 
introduced to describe the difference in integrated nondimensional per-
turbation kinetic energy 𝐸 between the current case and the finest case. 
The convergence behavior is as expected. Concerning the wall-normal 
discretization, the shape functions for this case feature no singularities 
in the domain. Boyd [72] states that the Chebyshev series of functions 
without singularities can be expected to have supergeometric conver-
gence. For such functions, the exponential index of convergence should 
increase with the number of Chebyshev polynomials included as is seen 
in Fig. 7 (b). Similar convergence trends are observed for all considered 
cases in the present work and results are available upon request to the 
authors.

6. Validation

The HNS framework described above was used to analyze four clas-
sical and practically relevant boundary layer stability cases. The first 
case considers the nonlinear growth of Tollmien-Schlichting waves in 
a Blasius boundary layer, outlined in Sect. 6.1. In the second example 
(Sect. 6.2), the nonlinear development of stationary Crossflow Insta-
bilities (CFI) in a swept-wing boundary layer is considered. This case 
requires the amplitude ramping procedure described in Sect. 4.5.1. 
Lastly, two modifications of the latter swept-wing scenario were con-
sidered to demonstrate the implementations of smooth and sharp wall 
features as explained in Sect. 2. The addition of non-homogeneous wall 
boundary conditions (here blowing and suction) are used to trigger the 
CFI mode in the final case. For each case, benchmark solutions from 
well-established stability frameworks and/or DNS are used for vali-
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dation. The four presented reference cases collectively call all terms 
of the Harmonic Navier-Stokes equations (i.e. frequency and spanwise 
wavenumber terms) and make use of all features of the implementation 
(i.e., generalized coordinates, embedded boundary method, amplitude 
ramping, outflow buffer and non-homogeneous boundary conditions). 
This ensures that the current implementation is thoroughly tested. The 
individual cases are explained in more detail in their respective sections 
(i.e. Sects. 6.1 - 6.4.)

It is stressed here that the results presented in this section were 
calculated on a grid refinement that far exceeded the minimum require-
ments for sufficient accuracy. It was ensured that the chosen grid did 
not affect the results. As was shown in Fig. 7, results converge rapidly, 
and coarser grids still provide accurate solutions (𝜖 ≈ 10−5). Appendix A
additionally shows the computational requirements needed to solve the 
HNS on grids with medium refinement. The use of a coarser grid leads 
to computation times orders of magnitude lower than the refined simu-
lations with a negligible loss of accuracy of the result.

6.1. Nonlinear development of two-dimensional Tollmien-Schlichting waves

The first case considering the nonlinear growth of Tollmien-
Schlichting waves in a Blasius boundary layer has been studied in 
detail before in e.g. Bertolotti et al. [12], Chang et al. [73] and Her-
bert [74]. In short, the case is defined by a constant external velocity 
�̄�𝑟𝑒𝑓 = �̄�𝑒(𝑥) = 10 m/s (i.e., zero pressure gradient) and a flat plate ge-

ometry. The global Reynolds number 𝑅𝑒 = 𝛿0�̄�𝑒
�̄�

= 400 is defined by the 
Blasius length scale at the inflow, 𝛿0 = 6.075 × 10−4 m, and the kine-
matic viscosity �̄� = 1.5188 m2/s. The primary TS wave mode (1,0) is 
enforced at the inflow as a solution to the local eigenvalue stability 
problem. The primary mode is characterized by 𝜔1 = 0.0344 = 2𝜋𝑓𝛿0

�̄�0
where 𝑓 = 90.6 Hz.

The basic flow state used for this problem is the steady solution to 
the incompressible boundary layer equations initiated from the Falkner 
Skan Cooke (FSC) solution at the inflow. The equations were subject 
to Neumann boundary conditions for the velocity at the freestream and 
Dirichlet boundary conditions for pressure. No slip and impermeability 
conditions are imposed at the wall. For comparison and validation of 

the HNS results, the amplitude evolution of the first five harmonics 
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Fig. 8. Amplitude evolution of TS waves in a Blasius boundary layer at 𝑅𝑒0 =
400 and 𝜔1 = 0.0344 showing modes (1,0) (o), (2,0) (+), (3,0) (*), (4,0) (x) 
and (5,0) (□) and mean flow distortion (0,0) (no marker) as calculated by 
NPSE (dashed black) and the current HNS (red solid lines). The linear amplitude 
evolution of mode (1,0) is indicated by the blue dashed line.

and the mean-flow distortion are calculated using an in-house cross-
validated NPSE solver used in Westerbeek [58], Zoppini et al. [75], and 
Casacuberta et al. [33]. The primary (1,0) mode was introduced at the 
inflow with a peak streamwise perturbation velocity of 𝐴0 = 0.0025

√
2, 

corresponding to the target test case in Bertolotti et al. [12]. All other 
modes are set to zero at the inflow and they are generated in the domain 
through nonlinear interactions.

For HNS simulations, a rectangular Cartesian grid was discretized 
with 2674 equidistant grid points along 𝑥, resulting in approximately 
65 grid points per wavelength for the fundamental mode and 13 grid 
points per wavelength for the highest harmonic. In the 𝑦 direction, the 
grid features 100 Chebyshev collocation points. The median collocation 
point 𝑦𝑖 = 4.95. For the reference NPSE run, the domain was discretized 
in 200 streamwise locations with the wall-normal discretization identi-
cal to that of HNS. The streamwise extent of the domain for both NPSE 
and HNS was from 𝑥 = 400 to 𝑥 = 2487. The HNS domain was artifi-
cially extended to account for the addition of the buffer region, ranging 
from 𝑥 = 2487 to the outflow at 𝑥 = 2854. For the present case setup 
and considered domain extent, the primary TS wave mode (1,0) essen-
tially convects through both branches I and II of the neutral stability 
curve. As such, a natural decay of the primary mode can be expected 
downstream of 𝑥 ≈ 2000. Consequently, nonlinear terms did not need to 
be damped upstream of the buffer region as the amplitudes decayed sig-
nificantly between the peak value around 𝑥 = 2000 and the start of the 
buffer region. Furthermore, the linear evolution of the primary mode 
from 𝐴0 = 0.0025

√
2 does not reach unphysical amplitudes, making the 

suppression of nonlinear terms by means of amplitude ramping unnec-
essary for this case. The NPSE methodology was significantly faster for 
this problem; On a desktop machine (see system A in Appendix A) it 
took 1.5 hours (= 12 CPU core hours) to solve the nonlinear problem 
with NPSE while DeHNSSo required nearly 12 hours (= 96 CPU core 
hours).

Fig. 8 shows a good agreement between NPSE and HNS. This is ex-
pected given that the difference between the two sets of equations lies 
in the second-order streamwise derivative terms which are very small in 
this case. Only minor differences are observed in the results present in 
the higher harmonics near the inflow, possibly related to the sequential 
introduction of harmonics in the NPSE procedure. However, this does 
not affect the downstream result as the initial amplitudes are small, re-
sulting in a largely linearly governed perturbation development at the 
inflow for the primary mode (1,0). The higher harmonics rapidly con-
12

verge shortly downstream of the inflow (at around 𝑥 = 800) where a 
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good match with HNS is seen. A strong decline of the higher harmonics’ 
amplitudes can be seen around 𝑥 = 700. This behavior is not directly 
visible in earlier works due to the linear scaling present in the 𝑦 axis, 
see Bertolotti et al. [12], Herbert [13], or it is less pronounced as shown 
in Chang et al. [73]. In the latter, it is likely a result of phase differences 
between the various modes. The evolution of the mean-flow distortion 
matches closely between the two simulations as can be seen from the 
kink in the amplitude curve at 𝑥 ≈ 1700. This kink is the result of trac-
ing the maximum amplitude of the mode, which for the MFD switches 
abruptly between two local maxima at 𝑥 = 1700 [12,13,73].

6.2. Nonlinear development of stationary crossflow instabilities

Next, the nonlinear growth of stationary CFI is simulated for the 
flow case examined in Casacuberta et al. [31], specifically their case A. 
The steady-state DNS results are used as the base flow to the stability 
problem. The case considers a flat plate geometry with an externally 
imposed favorable pressure gradient, obtained from wind tunnel ex-
periments by Rius-Vidales and Kotsonis [34]. The resulting external 
inviscid velocity depends on the streamwise coordinate and can be ap-
proximated by the following polynomial fit:

𝑈𝑒(𝑥) = 1.8574 + 0.5303 ln(𝑥) + 0.1752 ln2(𝑥) + 0.0377 ln3(𝑥)

+ 0.0023 ln4(𝑥), (26)

normal to the leading edge, while the external spanwise velocity 𝑊𝑒 =
−1.24 is constant over the domain. The simulation domain starts at 
5% of the wing chord length (corresponding to 𝑥 = 220𝛿0), where 𝛿0 =
2.14 ×10−4 m. This results in a global Reynolds number 𝑅𝑒 = 𝛿0𝑈0∕�̄� =
220 for �̄� = 1.47 × 10−5 m2/s and �̄�0 = 15.1 m/s.

The domain ranges from 𝑥 = 220 to 𝑥 = 1560 and has a domain 
height 𝐻 = 89. It is discretized by 1272 equidistant grid points in 
𝑥, resulting in approximately 35 grid points per wavelength for the 
fundamental mode and 8 grid points per wavelength for the highest 
harmonic. The grid is defined on 100 collocation points in 𝑦 clustered 
near the wall with the median collocation point present at 𝑦𝑖 = 4.5. 
The outflow buffer starts 15% upstream of the outflow boundary from 
𝑥 = 1360. The nonlinear forcing terms are instead suppressed from 20% 
upstream of the outflow.

The primary stationary CFI mode (0,1) is characterized by a span-
wise wavenumber 𝛽1 = 0.18 corresponding to a spanwise wavelength of 
7.5 mm and 𝜔1 = 0. The enforced perturbation shape at the inflow, �̂�, 
is found by solving the local linear stability eigenvalue problem. A peak 
streamwise perturbation amplitude of 𝐴0 = 3.5 × 10−3 is then imposed 
on the solution. All higher harmonic modes are set to zero at the inflow 
and rise naturally from nonlinear interactions downstream.

A linear calculation of the development of the primary mode (0,1) 
results in large amplitudes for this case as explained in Sect. 4.5. The 
nonlinear iteration procedure diverges rapidly if this initial linear guess 
is used directly. Hence, amplitude ramping was required for this case. 
The initial amplitude was reduced to 𝐴0 = 2.6 × 10−4, a factor 13.3 
lower than the goal amplitude. The inflow amplitude was then grad-
ually increased by 𝛾 = 10% per iteration. Consequently, 27 iterations 
were required to converge the nonlinear terms.

The results are compared to two benchmark simulation methods: 
DNS and NPSE. Both methods were found to be in good agreement 
in earlier work (Casacuberta et al. [33]). DNS simulations were per-
formed using the conservative finite volume solver INCA (see Hickel 
and Adams [76] and Hickel et al. [77]). Herein, the domain was dis-
cretized in 6760 cells in the streamwise direction. In the wall-normal 
direction, the domain is discretized in 576 cells. Lastly, 72 cells were 
present in the spanwise direction. INCA features a fifth-order upwind 
scheme for the convective terms while viscous terms are discretized us-
ing a second-order central difference scheme. It took a total of 8.8 days 
to find the solution using 2000 CPUs in parallel for a total of approxi-

mately 500.000 CPU core hours. The NPSE simulations were performed 
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Fig. 9. Amplitude development (a) of the first (o), second(+), third(*), fourth(x) and fifth (□) crossflow instability modes and the mean-flow distortion (no marker) 
as calculated by HNS (black dashed), DNS (magenta dotted) and NPSE (red solid lines). The linear solution is indicated by the dashed blue line. The streamwise 
perturbation shape is shown for 𝑥 = (b) 651, (c) 829, (d) 1009, (e) 1189, and (f) 1359.
using the same basic state calculated in INCA. The flow was interpo-
lated on the numerical domain discretized in 80 Chebyshev polynomials 
in the wall-normal direction and 500 streamwise stations. NPSE found 
the solution in approximately 3 hours (24 CPU core hours), whereas 
DeHNSSo took nearly 4 days (768 CPU core hours) on a desktop ma-
chine (see system A in Appendix A).

Using both the HNS and NPSE, five stationary CFI modes (𝑀 =
0, 𝑁 = 5) and the mean flow distortion mode (0,0) were computed and 
are shown alongside DNS results in Fig. 9. Furthermore, the absolute 
perturbation shapes shown in Fig. 9 (b-f) demonstrate a close match be-
tween all methods throughout the domain. The secondary lobe present 
in the shape functions displayed in 9 (f) has a nonlinear origin and is 
captured by all three methods that accounted for nonlinear interactions.

6.3. Linear development of stationary crossflow instability over a hump

Smooth surface protuberances (i.e., humps) are unavoidable on wing 
surfaces [28]. The presence of such humps is known to lead to a local ac-
celeration of the base flow [78], which in turn affects the stability of the 
boundary layer. Moreover, classical stability methods have repeatedly 
been shown to be unreliable in such cases, see Franco et al. [29], Cooke 
et al. [30], and Westerbeek et al. [24]. Here, the stability of a three-
dimensional boundary layer featuring a hump is considered to validate 
the implementation of the generalized transformation approach in the 
present HNS framework. The examined case was previously studied in 
Westerbeek et al. [24], there denoted case B1, to which the reader is 
referred for a more detailed (nonlinear) analysis.

The flow setup is defined by the reference Blasius length at the in-
flow, 𝛿0 = 2.14 × 10−4 m, and reference velocity �̄�0 = 15.1 m/s. This 
results in 𝑅𝑒 = 220. The domain ranges from 𝑥 = 220 to 𝑥 = 2165 and 
has a height 𝐻 = 89. The external flow is equal to the previous valida-
tion case of Sect. 6.2. The external velocity normal to the leading edge 
thus follows Eq. (26) and the spanwise velocity is constant over the do-
main, namely 𝑊𝑒 = −1.24. The hump is described as a smooth surface 
protuberance with a width 𝑏 of 39.9 𝛿0 and a height ℎ of 2.5 𝛿0. The 
wall is described by[ (𝑥𝑚 − 𝑥)2

]
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𝑦wall(𝑥) = ℎ exp −
𝑏

, (27)
with the hump center located at 𝑥𝑚 = 859. The buffer starts from 𝑥 =
1873.

Due to the presence of the hump, the boundary layer equations can-
not reliably predict the evolution of the base flow. As such, the base 
flow solution was found using the finite-element solver COMSOL [79]. 
The setup featured second-order elements for velocities and first-order 
elements for pressure. The grid was clustered near the wall using 115 el-
ements in the wall-normal direction and additionally refined around the 
hump in the streamwise direction, in which 945 elements are present. 
Two elements are present in the spanwise direction in which periodic 
boundary conditions were imposed. A top pressure condition was im-
posed as was done for the swept flat plate case in Sect. 6.2 (see Casacu-
berta et al. [31]). At the top boundary, velocities were subjected to 
a homogeneous boundary condition for the second-order derivatives. 
At the inflow, a Falkner Skan Cooke boundary layer profile was used, 
corresponding to the local pressure gradient. No-slip conditions were 
imposed on the (curved) wall and a static pressure equal to the local top 
boundary pressure was imposed at the outflow. The static pressure at 
the top boundary follows directly from the external velocity presented 
earlier in Eq. (26). As the purpose of this case was merely to validate the 
implementation of the generalized transformation approach, the hump 
was made shallow to avoid flow separation. The base flow solution was 
interpolated onto the numerical grid via COMSOL for Matlab which 
uses COMSOL’s built-in interpolation algorithm. This interpolation has 
the accuracy of the used elements (i.e., second-order for velocities and 
first-order for pressures).

The HNS domain is discretized with 2000 grid points in the stream-
wise direction. The wall-normal direction is represented by 100 collo-
cation points with the median collocation point at a constant distance 
of 4.45𝛿0 from the wall. This discretization results in approximately 48 
grid points per wavelength. The grid was conformed to the hump as 
shown in Sect. 2, while the 𝜂 coordinate remains parallel to the global 
𝑦-axis for HNS computations. The grid can be seen in Fig. 11.

A limited selection of modeling tools that can solve this problem 
nonlinearly are available. Hence, the specific validation is performed 
linearly. Even in a linear formulation, the PSE framework could suffer 
from limitations in the vicinity of the hump, resulting from the slowly-
varying flow assumption. To avoid such modeling errors, the Adaptive 

Harmonic Linearized Navier-Stokes (AHLNS) framework was used as a 
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Fig. 10. Linear CFI amplitude development over the full domain (a), around the 
smooth hump (b), and growth rate (c) as calculated by the current HNS frame-
work (solid, black), and the AHLNS (green, dashed). The flat-plate reference 
(i.e., no hump present) CFI amplitude development is shown in red.

Fig. 11. Grid lines up to 𝑦 = 30 indicated by the black lines. One in every fifteen 
𝜉 and one in every three 𝜂 lines are shown.

reference. For linear computations, this tool is equivalent to the current 
HNS. The adaptivity of the AHLNS comes from the (re-)introduction 
of the streamwise wavenumber in the perturbation ansatz, to reduce 
the grid requirements when modal perturbation behavior is found. In 
contrast to PSE, however, no assumptions on the importance of higher-
order streamwise gradients are made. For details on AHLNS, the reader 
is referred to Franco Sumariva et al. [23], Franco et al. [29].

The AHLNS calculations were provided by J.A. Franco and S. Hein of 
the German Aerospace Center (DLR) using the same base flow. Fig. 10
(a) shows the primary mode’s linear amplitude evolution. A zoomed-
in view of the amplitude development around the hump can be seen 
in Fig. 10 (b). A slight stabilization can be seen downstream of the 
hump. Nevertheless, the total effect on the amplitude is minimal. The 
growth rate as seen in Fig. 10 (c) shows the effect of the hump on 
the disturbance evolution and the good agreement between the two 
simulation frameworks. The small oscillations in all growth rate curves 
are an artifact of the calculation of growth rates from amplitude data.

6.4. Linear development of stationary crossflow instability over a 
forward-facing step

The difficulty of maintaining a laminar boundary layer in opera-
tional environments is partially caused by manufacturing limitations 
resulting in (critical) steps on the wing surface. The experiments of Per-
raud and Seraudie [80] and later Wang and Gaster [15] showed that 
the forward-facing step is less critical, i.e. less likely to advance tran-
sition than the backward-facing step for the same step height. When a 
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step cannot be prevented at a junction, a forward-facing step becomes 
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Fig. 12. Grid lines indicated in black. One in every forty 𝜉 and one in every 
eight 𝜂 lines are shown. The step surface is indicated in red.

the preferred solution as a result. The final validation case will therefore 
study the application of HNS to solve the stability problem of stationary 
CFI, interacting with a forward-facing step.

The flow around a step is complex and solving solely for either the 
base flow or its stability can be challenging. Specifically, separation 
bubbles can form both upstream and downstream of the step as shown 
by Wilhelm et al. [81] in two-dimensional flows. For the purpose of 
the present validation, the base flow, as well as the developed flow 
used here for comparison purposes, are produced using the conservative 
finite-volume solver INCA, described in Sect. 6.2. The case is based on 
the experiments of Rius-Vidales and Kotsonis [34] who performed a 
detailed experiment of the topological changes of the transitional flow 
field with a step compared to a reference case (i.e., no step).

One of the desired features of DeHNSSo is the ability to simulate 
non-homogeneous boundary conditions, which can be efficiently used 
in studies of receptivity or flow control. To demonstrate this functional-
ity, a region of wall blowing and suction is employed slightly upstream 
of the step to force the dominant CFI mode. This steady blowing and 
suction has a sinusoidal spanwise dependence with a wavelength equal 
to that of the primary mode. The suction and blowing strength depends 
on the streamwise coordinate described by:

𝑣wall(𝑥) =
⎧⎪⎨⎪⎩
𝐴bs

(
4 (𝑥−𝑥1)−(𝑥2−𝑥)

(𝑥2−𝑥1)2

)3

if 𝑥 > 𝑥1 ∨ 𝑥 < 𝑥2

0 if 𝑥 ≤ 𝑥1 ∨ 𝑥 ≥ 𝑥2,
(28)

where the blowing and suction is active from 𝑥1 = 709 to 𝑥2 = 738 with 
a strength of 𝐴bs = 5 × 10−5 defined as the imposed wall-normal peak 
velocity.

The simulation domain is defined by the intervals 𝑥 ∈ [685 993] and 
𝑦 ∈ [0 89] with the Blasius length 𝛿0 = 2.14 × 10−4 m. The reference ve-
locity is 15.1 m/s. This leads to a global 𝑅𝑒 = 220. The external velocity 
normal to the leading edge follows Eq. (26) with a constant spanwise 
velocity of 𝑊𝑒 = −1.24. The buffer was initiated at 85% of the domain 
(𝑥 = 947).

The interaction of an incoming stationary CFI with a sharp forward-
facing step results in strong local gradients that demand a finer grid 
than the previously described three cases. For the present case, a to-
tal of 4000 grid points were used in the streamwise direction, refined 
around the forward-facing step using a Gaussian function resulting in a 
minimum discretization step size Δ𝑥min = 2.1 × 10−2 at the step and 
a Δ𝑥max = 8.5 × 10−2 at 20 𝛿0 away from the step. For reference, 
the streamwise wavelength upstream of the step is 40 𝛿0. Therefore, 
there exist 469 grid points per wavelength in the coarse region. This 
is increased to approximately 2000 at the step. In the wall-normal 
direction, 350 collocation points were used. The collocation points 
were clustered around the step height throughout the domain with a 
Δ𝑦min = 3.37 × 10−3 increasing to Δ𝑦min = 0.9 at 𝑦 = 70. This resulted 
in a grid of 1.4 million points. The grid is visualized in Fig. 12. It took 
DeHNSSo nearly 6 hours on 48 CPU cores (288 CPU core hours) to find 
the linear solution to the problem. INCA took 8.8 days on 2000 CPU 

cores (422400 CPU core hours) to find the solution. Moreover, INCA 
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Fig. 13. Linear interaction of a stationary CFI initiated by blowing and suction around 𝑥 = 709 and a forward-facing step present at 𝑥 = 738, indicated by the dashed 
vertical line. Results are shown from DNS (magenta, dotted), HNS (black, solid), and AHLNS (green, dashed). Maximum perturbation amplitude development is 
shown in (a) and absolute streamwise perturbation shape is shown for 𝑥 = (b) 849, (c) 858, (d) 860, (e) 864, and (f) 867.

Fig. 14. Real streamwise perturbation velocity around the step with the dashed line indicating the 𝛿99 of the base flow and the gray box represents the step.
solved the Navier-Stokes equations nonlinearly resolving an additional 
five higher harmonics, although they were found to be negligible due 
to their low amplitude.

Due to the large number of grid points required to converge this 
case, the choice was made to consider the linear development of the 
stationary crossflow instability governed by 𝛽1 = 0.18 only. No ampli-
tude ramping was thus necessary.

A comparison with DNS in terms of amplitude and shape functions 
can be seen in Fig. 13. It is noted that although the DNS did not ne-
glect nonlinear terms, it was ensured that linear dynamics dominate 
the behavior of the perturbations by imposing a sufficiently small blow-
ing and suction amplitude. Good agreement with DNS is seen in which 
a near-wall structure is accurately captured in the downstream vicin-
ity of the step. This near-wall structure is important for both the local 
and downstream development of the incoming perturbation as was also 
found in similar cases experimentally in Eppink [19] and Rius-Vidales 
and Kotsonis [34] as well as numerically in Casacuberta et al. [33]. 
Fig. 14 shows the streamwise perturbation velocity contours of the pri-
mary mode around the step. Here, too, the near-wall structure is clearly 
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observed slightly downstream of the step corner.
7. Concluding remarks

The present work outlines the development and implementation of 
an efficient non-linear Harmonic Navier-Stokes solver for the simulation 
of boundary layer and flow stability problems in complex geometrical 
domains. Smooth wall protuberances as well as local grid refinements 
are accounted for using a generalized domain transformation. Sharp ge-
ometries are accounted for through the use of embedded boundaries. 
The developed HNS solver proved accurate, fast, and robust in predict-
ing the (non)linear stability of TS waves and stationary CFI developing 
on flat plate geometries or interacting with a localized hump or forward-
facing step.

The developed HNS is envisioned to be a valuable tool for para-
metric studies of stability calculations in flows around steep humps, 
steps, and cases involving receptivity to inflow or wall forcing and non-
modal growth. For these cases, PSE frameworks could fail to produce 
reliable and accurate results due to inherent assumptions of a slowly 
varying modal perturbation evolution. While DNS could be used to per-
form similar work, the high computational cost makes it impractical 
for many applications. The current implementation allows for rapid 

nonlinear stability analysis in flows featuring inhomogeneous bound-
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Table A.1

Performance and system information for all considered cases.

Case # Modes Γ𝜉 × Γ𝜂 DOF/Mode System Cores System Memory Time

Nonlinear TS 5 800 × 40 128000 C 8 32 Gb 0.45 hours
Nonlinear TS Refined 5 2672 × 100 1155168 A 8 128 Gb 11.70 hours
Nonlinear CFI 5 1200 × 40 192000 C 8 32 Gb 1.29 hours
Nonlinear CFI Refined 5 2544 × 100 1017600 A 8 128 Gb 92.97 hours
Linear CFI Hump 1 2000 × 100 800000 C 4 32 Gb 0.59 hours
Linear CFI Step 1 4000 × 350 5600000 B 48 1.5 Tb 5.86 hours
ary conditions (e.g. blowing and suction), humps, and steps, enabling 
parametric studies of detailed wing geometries. The results can provide 
valuable insight into the interaction of incoming perturbations with sur-
face features to further assist engineers and scientists in the pursuit of 
laminar wall-bounded flows.

CRediT authorship contribution statement

S. Westerbeek: Conceptualization, Data curation, Formal analysis, 
Investigation, Methodology, Software, Validation, Visualization, Writ-
ing – original draft, Writing – review & editing. S. Hulshoff: Supervi-
sion, Writing – original draft. H. Schuttelaars: Supervision, Writing – 
original draft. M. Kotsonis: Conceptualization, Software, Supervision, 
Writing – original draft, Funding acquisition, Writing – review & edit-
ing.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Data availability

A link to both the data and code will be provided in the “attach file” 
step.

Acknowledgements

The authors would like to thank colleague J. Casacuberta for provid-
ing DNS results as a reference for various cases in this work. Similarly, 
we thank J.A. Franco and S. Hein of DLR Goetingen for providing the 
data required to validate the generalized domain in the validation case 
that featured a hump. Additionally, we are indebted to the technical 
staff of the DelftBlue supercomputer facility for providing the required 
computing power and systems. Lastly, the discussions and helpful com-
ments of G. Rigas, Imperial College London are greatly appreciated. This 
research was funded by the European Research Council (ERC) under the 
GloWing project, grant number 803082.

Appendix A. Performance

This solver is meant to run simply and fast on regular desktop ma-
chines. As such, performance is evaluated here on similar architectures. 
The performance of the HNS is shown via Table A.1 containing the com-
putational cost associated with solving the problems of Sect. 6. Both the 
requirements for the highly refined simulations necessary for validation 
and medium refinement are shown for the nonlinear simulations. The 
number of degrees of freedom per mode relates to the grid parameters 
as DOF/Mode = Γ𝜉 × Γ𝜂 × 4, where the constant is derived from the 4 
state variables of velocity in 𝑥, 𝑦, and 𝑧 and pressure.

A server workstation, here referred to as system A, features 2 Intel 
Xeon Gold 5222 CPUs operating at a clock speed of 3.8 GHz and 128 Gb 
of DDR4 Memory. However, note that for the cases in this work, only 
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around 26 Gb was needed to solve the system of equations directly.
The interaction of a CFI with a step was assessed using the Delft 
High-Performance Computing Centre (DHPC) [82] 1.5 Tb memory node 
due to the high grid refinement required around the step. This node 
features 2 Intel XEON E5-6248R 24C for a total of 48 cores operating at 
a clock speed of 3.0GHz equipped with a total of 1.5 Tb of RAM. This 
system is referred to in Table A.1 as system B.

Lastly, the linear calculation of a crossflow instability over a hump 
was performed on a regular desktop computer. This system, referred to 
as system C, features an Intel(R) Xeon(R) W-2123 CPU @ 3.60GHz with 
4 cores. The system is outfitted with a total of 32 Gb of DDR4 RAM.

Appendix B. Matrix contents

The nonlinear HNS equations, excluding the buffer matrix, can be 
written as:

[𝐴]𝐪+ [𝐵]𝜔𝐪+ [𝐶]𝛽𝐪+ [𝐷]𝛽2𝐪+ [𝐸]
𝜕𝐪
𝜕𝜉

+ [𝐹 ]
𝜕2𝐪
𝜕𝜉2

= 𝐫,

with

𝐴 =

⎡⎢⎢⎢⎢⎣
𝐴1 +

𝜕𝑈

𝜕𝜉
𝜉𝑥 +

𝜕𝑈

𝜕𝜂
𝜂𝑥

𝜕𝑈

𝜕𝜉
𝜉𝑦 +

𝜕𝑈

𝜕𝜂
𝜂𝑦 0 𝜂𝑥1

𝜕𝑉

𝜕𝜉
𝜉𝑥 +

𝜕𝑉

𝜕𝜂
𝜂𝑥 𝐴1 +

𝜕𝑉

𝜕𝜉
𝜉𝑦 +

𝜕𝑉

𝜕𝜂
𝜂𝑦 0 𝜂𝑦1

𝜕𝑊

𝜕𝜉
𝜉𝑥 +

𝜕𝑊

𝜕𝜂
𝜂𝑥

𝜕𝑊

𝜕𝜉
𝜉𝑦 +

𝜕𝑊

𝜕𝜂
𝜂𝑦 𝐴1 0

𝜂𝑥1 𝜂𝑦1 0 0

⎤⎥⎥⎥⎥⎦
,

𝐵 =
⎡⎢⎢⎢⎣
−𝑖 0 0 0
0 −𝑖 0 0
0 0 −𝑖 0
0 0 0 0

⎤⎥⎥⎥⎦ ,

𝐶 =
⎡⎢⎢⎢⎣
𝑖𝑊 0 0 0
0 𝑖𝑊 0 0
0 0 𝑖𝑊 𝑖

0 0 𝑖 0

⎤⎥⎥⎥⎦ ,

𝐷 =

⎡⎢⎢⎢⎢⎣
1
𝑅𝑒

0 0 0
0 1

𝑅𝑒
0 0

0 0 1
𝑅𝑒

0
0 0 0 0

⎤⎥⎥⎥⎥⎦
,

𝐸 =
⎡⎢⎢⎢⎣
𝐸1 0 0 𝜉𝑥
0 𝐸1 0 𝜉𝑦
0 0 𝐸1 0
𝜉𝑥 𝜉𝑦 0 0

⎤⎥⎥⎥⎦
𝐹 =

⎡⎢⎢⎢⎢⎣
− 1
𝑅𝑒
𝜉2
𝑥
− 1
𝑅𝑒
𝜉2
𝑦

0 0 0
0 − 1

𝑅𝑒
𝜉2
𝑥
− 1
𝑅𝑒
𝜉2
𝑦

0 0
0 0 − 1

𝑅𝑒
𝜉2
𝑥
− 1
𝑅𝑒
𝜉2
𝑦

0
0 0 0 0

⎤⎥⎥⎥⎥⎦
𝐫 =

⎡⎢⎢⎢⎢⎢⎢⎣

−𝑢 𝜕𝑢
𝜕𝜉
𝜉𝑥 − 𝑢

𝜕𝑢

𝜕𝜂
𝜂𝑥 − 𝑣

𝜕𝑢

𝜕𝜉
𝜉𝑦 − 𝑣

𝜕𝑢

𝜕𝜂
𝜂𝑦 − 𝑖𝛽𝑢𝑤

−𝑢 𝜕𝑣
𝜕𝜉
𝜉𝑥 − 𝑢

𝜕𝑣

𝜕𝜂
𝜂𝑥 − 𝑣

𝜕𝑣

𝜕𝜉
𝜉𝑦 − 𝑣

𝜕𝑣

𝜕𝜂
𝜂𝑦 − 𝑖𝛽𝑣𝑤

−𝑢 𝜕𝑤
𝜕𝜉
𝜉𝑥 − 𝑢

𝜕𝑤

𝜕𝜂
𝜂𝑥 − 𝑣

𝜕𝑤

𝜕𝜉
𝜉𝑦 − 𝑣

𝜕𝑤

𝜕𝜂
𝜂𝑦 − 𝑖𝛽𝑤2

0

⎤⎥⎥⎥⎥⎥⎥⎦
,

and
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𝐴1 =𝑈𝜂𝑥1 + 𝑉 𝜂𝑦1 −
1
𝑅𝑒

(
𝜂2
𝑥
2 + 𝜂𝑥𝑥1 + 𝜂2𝑦2 + 𝜂𝑦𝑦1

)
,

𝐸1 =𝑈𝜉𝑥 + 𝑉 𝜉𝑦 −
1
𝑅𝑒
𝜉𝑥𝑥 −

1
𝑅𝑒

2𝜂𝑥𝜉𝑥
𝜕

𝜕𝜂
− 1
𝑅𝑒

2𝜂𝑦𝜉𝑦
𝜕

𝜕𝜂
− 1
𝑅𝑒
𝜉𝑦𝑦.

Here the coordinate transformation derivatives are indicated using 
a subscript, for example 𝜕𝜉

𝜕𝑥
= 𝜉𝑥 and 𝜕

2𝜂
𝜕𝑦2

= 𝜂𝑦𝑦.

Appendix C. Left-hand side matrix

𝕄1 =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐼 0 … 0

− 2𝐸
6Δ𝑥

+ 𝐹

(Δ𝑥)2
𝐴− 3𝐸

6Δ𝑥
− 2𝐹

6(Δ𝑥(2
6𝐸
6Δ𝑥

+ 𝐹

(Δ𝑥)2
− 𝐸

6Δ𝑥
⋱

𝐸

12Δ𝑥
− 𝐹

12(Δ𝑥)2
− 8𝐸

12Δ𝑥
+ 16𝐹

12(Δ𝑥)2
𝐴− 30𝐹

12(Δ𝑥)2
8𝐸
12Δ𝑥

+ 16𝐹
12(Δ𝑥)2

− 𝐸

12Δ𝑥
− 𝐹

12(Δ𝑥)2

⋱ ⋱ ⋱ ⋱ ⋱

𝐸

12Δ𝑥
− 𝐹

12(Δ𝑥)2
− 8𝐸

12Δ𝑥
+ 16𝐹

12(Δ𝑥)2
𝐴− 30𝐹

12(Δ𝑥)2
8𝐸
12Δ𝑥

+ 16𝐹
12(Δ𝑥)2

− 𝐸

12Δ𝑥
− 𝐹

12(Δ𝑥)2

𝐸

6Δ𝑥
− 6𝐸

6Δ𝑥
+ 𝐹

(Δ𝑥)2
𝐴− 3𝐸

6Δ𝑥
− 2𝐹

(Δ𝑥)2
2𝐸
6Δ𝑥

+ 𝐹

(Δ𝑥)2

… 0 𝐸

2Δ𝑥
+ 𝐹

(Δ𝑥)2
− 4𝐸

2Δ𝑥
− 2𝐹

(Δ𝑥)2
𝐴+ 3𝐸

2Δ𝑥
+ 𝐹

(Δ𝑥)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝕄2 =
⎡⎢⎢⎢⎣
0 … 0
𝐵 ⋮

⋮ ⋱ 0
0 … 0 𝐵

⎤⎥⎥⎥⎦ , 𝕄3 =
⎡⎢⎢⎢⎣
0 … 0
𝐶 ⋮

⋮ ⋱ 0
0 … 0 𝐶

⎤⎥⎥⎥⎦ ,

𝕄4 =
⎡⎢⎢⎢⎣
0 … 0
𝐷 ⋮

⋮ ⋱ 0
0 … 0 𝐷

⎤⎥⎥⎥⎦
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