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A B S T R A C T

Accurate short-term predictions of phase-resolved water wave conditions are crucial for decision-making in
ocean engineering. However, the initialization of remote-sensing-based wave prediction models first requires
a reconstruction of wave surfaces from sparse measurements like radar. Existing reconstruction methods
either rely on computationally intensive optimization procedures or simplistic modelling assumptions that
compromise the real-time capability or accuracy of the subsequent prediction process. We therefore address
these issues by proposing a novel approach for phase-resolved wave surface reconstruction using neural
networks based on the U-Net and Fourier neural operator (FNO) architectures. Our approach utilizes synthetic
yet highly realistic training data on uniform one-dimensional grids, that is generated by the high-order spectral
method for wave simulation and a geometric radar modelling approach. The investigation reveals that both
models deliver accurate wave reconstruction results and show good generalization for different sea states when
trained with spatio-temporal radar data containing multiple historic radar snapshots in each input. Notably,
the FNO demonstrates superior performance in handling the data structure imposed by wave physics due to
its global approach to learn the mapping between input and output in Fourier space.
1. Introduction

Offshore installations and vessels are strongly impacted by the
dynamics of the surrounding ocean waves. Thus, accurate predictions
of future wave conditions are desirable for enhancing their safe and
efficient operation. For this purpose, several numerical methods have
been developed, involving two fundamental steps: the assimilation
and reconstruction of initial wave conditions from wave measurement
data, followed by the prediction of the future wave evolution. While
one line of research focuses on predicting simplified phase-averaged
wave quantities based on statistical parameters, marine applications
such as wind turbine installations, helicopter landings, or control of
wave energy converters require phase-resolved spatio-temporal wave
information 𝜂(𝑥, 𝑡) to identify periods of low wave conditions or enable
extreme event warnings. The X-band radar is a remote sensing device
that can obtain such phase-resolved wave information. However, the
radar backscatter is affected by the geometrical mechanism of tilt and
shadowing modulation, creating a nonlinear and sparse relationship be-
tween radar measurement intensities 𝜉(𝑥, 𝑡) and the actual ocean wave

∗ Corresponding author.
E-mail address: svenja.ehlers@tuhh.de (S. Ehlers).

surface elevation 𝜂(𝑥, 𝑡). This makes a reconstruction of wave informa-
tion from radar information necessary in the assimilation step, which
is also referred to as radar inversion and is graphically exemplified in
Fig. 1.

Contemporary phase-resolved wave reconstruction and prediction
methods face a trade-off between accuracy and real-time capability. To
achieve computationally efficient methods, linear wave theory (LWT) is
commonly employed during the prediction step (cf. Morris et al., 1998;
Naaijen and Wijaya, 2014; Hilmer and Thornhill, 2015), along with
prior spectral- or texture-analysis-based reconstruction of initial wave
conditions from radar data (Borge et al., 2004; Dankert and Rosenthal,
2004). However, these reconstruction methods necessitate additional
calibration by wave buoys or rely on simplified assumptions concerning
the radar backscatter. Furthermore, the accuracy of the linear approach
decreases remarkably for larger temporal horizons of prediction and
increasing wave steepness (Lünser et al., 2022), necessitating a wave
vailable online 17 October 2023
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Fig. 1. Graphical illustration of the phase-resolved reconstruction task of ocean wave surfaces 𝜂 from sparse radar intensity surfaces 𝜉 for the case of waves travelling in one
spatial dimension. The radar measurement (left panel) is a snapshot acquired at time instant 𝑡s and is considered as sparse due to reoccurring areas with zero intensity caused by
the geometrical shadowing modulation. This radar snapshot is used for reconstructing the wave surface elevation at the same time instant 𝑡s (right panel).
prediction using nonlinear wave models, especially for capturing safety-
critical events such as rogue waves (Ducrozet et al., 2007; Kharif
et al., 2009). Comparative studies on phase-resolved nonlinear ocean
wave prediction have demonstrated that the high-order spectral (HOS)
method, introduced by West et al. (1987) and Dommermuth and Yue
(1987), provides the best prediction accuracy over a wide spatio-
temporal domain as well as characteristic wave steepness (Klein et al.,
2020; Wu, 2004; Lünser et al., 2022; Blondel-Couprie, 2009). While
the HOS prediction step itself is also numerically efficient, the re-
construction step currently represents the weakest part in the entire
process (Köllisch et al., 2018): the inversion of initial conditions re-
lies on an optimization procedure of the wave model parameters for
the subsequent prediction (Wu, 2004; Blondel-Couprie, 2009), which
decreases the possible horizon of prediction and hinders the real-time
capability so far (Desmars, 2020). Even though the alternative for the
HOS inversion proposed by Köllisch et al. (2018) is able to improve
the real-time capability, this method instead assumes an unrealistic
radar snapshots data rate 𝛥𝑡r , making it not suitable for real-world
applications (Desmars, 2020).

The aforementioned shortcomings of conventional ocean wave re-
construction and prediction methods have motivated the exploration of
alternatives based on machine learning (ML) techniques. For instance,
ML methods are able to predict simple phase-averaged wave quantities
such as significant wave height 𝐻s, peak period 𝑇p or mean wave
direction (cf. Deo et al., 2001; Asma et al., 2012; James et al., 2018;
Wu et al., 2020; Yevnin and Toledo, 2022). Recent advancements
have also allowed for the more complex task of predicting the spatio-
temporal evolution of phase-resolved wave fields, achieved by training
multilayer perceptrons (MLPs) (Desouky and Abdelkhalik, 2019; Law
et al., 2020; Duan et al., 2020a; Zhang et al., 2022), recurrent neural
networks (RNNs) (Kagemoto, 2020; Mohaghegh et al., 2021; Liu et al.,
2022), or convolutional neural networks (CNNs) (Klein et al., 2022;
Wedler et al., 2023) on synthetic or experimental one-dimensional
elevation data. However, these studies presuppose that either temporal
sequences of wave elevations can be solely measured at a single point in
space by buoys 𝜂(𝑥 = 𝑥p, 𝑡) or snapshots of initial wave conditions are
available throughout the entire space domain 𝜂(𝑥, 𝑡 = 𝑡s). In practice,
neither of these assumptions is feasible due to the lack of directional
wave information of single-point measurements and the fact that the
acquisition of spatial snapshots using remote sensing systems such as
radars leads to sparse and unscaled observations 𝜉(𝑥, 𝑡 = 𝑡s), requiring
a reconstruction of wave surface elevations first.

Consequently, it would be advantageous to employ ML methods
also for the phase-resolved reconstruction of wave elevations 𝜂(𝑥, 𝑡)
from X-band radar data 𝜉(𝑥, 𝑡). However, as far as the authors are
aware, this topic has not yet been addressed. Prior studies have solely
focused on reconstructing phase-averaged statistical parameters of the
prevailing sea state from radar data. For instance, Vicen-Bueno et al.
(2012) and Salcedo-Sanz et al. (2015) improved the estimation of 𝐻s
by extracting scalar features from sequences of radar images 𝜉(𝑥, 𝑡) in a
preprocessing step, which in turn were employed to train MLPs and sup-
2

port vector regression models. In contrast, Yang et al. (2021) extracted
features from each of the consecutive radar images itself for improved
𝐻𝑠 estimation at the current time instant. While these methods rely
on handcrafted features acquired during a preprocessing step, end-
to-end approaches that automatically extract important features from
their input have also been proposed. For instance, Duan et al. (2020b)
and Chen and Huang (2022) used CNN-based methods to estimate 𝐻s
and 𝑇p from radar images.

Although there seems to be no relevant research on ML-based
reconstruction of phase-resolved wave surfaces from sparse X-Band
radar data, we hypothesize that ML offers a valuable alternative for the
radar inversion task (Hypothesis 1). This hypothesis is derived from the
observation that the reconstruction of zero-valued areas in the radar
input, exemplified in Fig. 1, shares similarities with typical inverse
problems encountered in imaging (Bertero et al., 2022; Ongie et al.,
2020) such as inpainting and restoration, where ML-methods have
demonstrated successful applications (Pathak et al., 2016; Zhang et al.,
2017). Two neural network architectures, with network components
involving either a local or global approach of data processing, are
investigated in detail for their performance in our task. Specifically,
we will adapt the U-Net proposed by Ronneberger et al. (2015), a
fully convolutional neural network that employs a mapping approach
in Euclidean space, and the Fourier neural operator (FNO) proposed
by Li et al. (2020), which is designed to learn a more global mapping
in Fourier space. Despite the success of CNN-based approaches in
imaging problems, we hypothesize that FNO models may be better
suited for handling the complex and dynamic nature of ocean waves
(Hypothesis 2), since we can assume that the wave features are already
explicitly encoded in the network structure, as it learns data patterns
in Fourier space. In contrast, the U-Net needs to learn these wave
features by aggregating information from multiple layers. Lastly, we
expect that incorporating historical context via spatio-temporal radar
data will enhance the reconstruction quality of both ML architectures
(Hypothesis 3), which we infer from classical radar inversion methods
that also rely on temporal sequences of multiple radar snapshots (cf.
Dankert and Rosenthal, 2004; Borge et al., 2004).

In general, the fast inference capabilities of trained ML models,
make them ideal for maintaining the real-time capability of the entire
process composed of wave reconstruction and prediction (Criterion 1)
due to the rapid surface reconstruction without particular data prepro-
cessing. Besides the real-time capability, ensuring high reconstruction
accuracy is crucial to prevent initial reconstruction errors that will
accumulate and deteriorate the subsequent wave prediction. Hence,
we strive for an empirical reference value for the surface similarity
parameter (SSP) error metric (Perlin and Bustamante, 2014) of less
than SSP ≤ 0.10 between ground truth and reconstructed wave surfaces
(Criterion 2), which is a commonly used error threshold in ocean
wave research (Klein et al., 2020; Lünser et al., 2022). In addition,
the proposed ML methods must be capable of handling real-world
measurement conditions of radar snapshots taken at intervals of 𝛥𝑡r =
[1, 2] s (Criterion 3), a common X-band radar revolution period (Neill

and Hashemi, 2018).
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To summarize, the objective of this work is to develop an ML-based
approach for phase-resolved radar inversion. This involves training ML
models to learn mapping functions  that are able to reconstruct
spatial wave elevation snapshots 𝜂(𝑥, 𝑡 = 𝑡s) from one or 𝑛s consecutive
historical radar snapshots 𝜉(𝑥, 𝑡𝑗 ), where 𝑡𝑗 = {𝑡s − 𝑗𝛥𝑡r}𝑗=0,…,𝑛s−1. As
obtaining ground truth wave surface elevation data for large spatial
domains in real ocean conditions is almost impractical, we first gen-
erate synthetic yet highly realistic one-dimensional spatio-temporal
wave surfaces 𝜂(𝑥, 𝑡) using the HOS method for different sea states in
Section 2. The corresponding X-band radar surfaces 𝜉(𝑥, 𝑡) are gener-
ated using a geometric approach and incorporate tilt- and shadowing
modulations. In Section 3, two neural network architectures are intro-
duced, a U-Net-based and FNO-based network, which are investigated
for their suitability for radar inversion. In Section 4, we discuss the
computational results. In particular, we first compare the wave recon-
struction performance of the U-Net-based and the FNO-based models,
each trained using either 𝑛s = 1 radar snapshot in each input or spatio-
temporal input data, meaning that multiple consecutive radar snapshots
𝑛s are provided. Afterwards, the observations are generalized for the
entire data set and discussed. Finally, in Section 5, we draw conclusions
based on these results and suggest future research directions.

2. Data generation and preparation

This section briefly introduces the generation of long-crested nonlin-
ear synthetic wave data 𝜂(𝑥, 𝑡) using the HOS method, followed by the
generation of synthetic radar data 𝜉(𝑥, 𝑡) that accounts for the tilt- and
shadowing modulation mechanisms. The final step involves extracting
a number of 𝑁 input–output (𝐱𝑖, 𝐲𝑖), 𝑖 = 1,… , 𝑁 data samples from
the synthetic radar and wave data, which we employ to train the
supervised ML models. This first study on ML-based phase-resolved
wave reconstruction focuses on the scenario of one-dimensional wave
and radar data, driven by the advantages of easier data generation,
simplified implementation, and faster neural network training with
fewer computational resources.

2.1. Nonlinear synthetic wave data

To generate synthetic one-dimensional wave data, the water-wave
problem can be expressed by potential flow theory. Assuming a Newto-
nian fluid that is incompressible, inviscid, and irrotational, the underly-
ing wave model is described by a velocity potential 𝛷(𝑥, 𝑧, 𝑡) satisfying
the Laplace equation

∇2𝛷 = 𝜕2𝛷
𝜕𝑥2

+ 𝜕2𝛷
𝜕𝑧2

= 0 (1)

ithin the fluid domain, where 𝑧 = 0m is the mean free surface with 𝑧
ointing in upward direction. The domain is bounded by the kinematic
nd dynamic boundary conditions at the free surface 𝜂(𝑥, 𝑡) and the bottom
oundary condition at the seabed at depth 𝑑

𝜂𝑡 + 𝜂𝑥𝛷𝑥 −𝛷𝑧 = 0 on 𝑧 = 𝜂(𝑥, 𝑡)

𝛷𝑡 + 𝑔𝜂 + 1
2
(

𝛷2
𝑥𝑥 +𝛷2

𝑧𝑧
)

= 0 on 𝑧 = 𝜂(𝑥, 𝑡) (2)

𝛷𝑧 = 0 on 𝑧 = −𝑑.

olving this system of equations is challenging due to the nonlinear
erms in the boundary conditions, which must be satisfied addition-
lly at the unknown free surface 𝜂(𝑥, 𝑡). Even though linear wave

theory (Airy, 1849) provides adequate approximations for certain en-
gineering applications, capturing realistic ocean wave effects requires
modelling the nonlinear behaviour of surface gravity waves. Thus, we
employ the HOS method, as formulated by West et al. (1987), which
transforms the boundary conditions to the free surface and expresses
them as a perturbation series of nonlinear order 𝑀 around 𝑧 = 0. In
practice, an order of 𝑀 ≤ 4 is sufficient for capturing the nonlinear

ave effects of interest (Desmars, 2020; Lünser et al., 2022). The
3

HOS simulation is linearly initialized by spatial wave surface eleva-
tion snapshots 𝜂(𝑥, 𝑡s = 0) sampled from the JONSWAP spectrum for
inite water depth (Hasselmann et al., 1973; Bouws et al., 1985). The
orresponding initial potential is linearly approximated. Subsequently,
he initial elevation and potential are propagated nonlinearly in time
ith the chosen HOS order 𝑀 . The referred JONSWAP spectrum attains

ts maximum at a peak frequency 𝜔p, whereas the peak enhancement
actor 𝛾 determines the energy distribution around 𝜔p. The wave fre-

quencies 𝜔 are linked to the wavenumbers 𝑘 by the linear dispersion
relation 𝜔 =

√

𝑔𝑘 ⋅ tanh (𝑘𝑑). The relations 𝜔 = 2𝜋∕𝑇 and 𝑘 = 2𝜋∕𝐿
allow for substituting the peak frequency with a peak period 𝑇p, peak
wavelength 𝐿p, or peak wavenumber 𝑘p. Moreover, a dimensionless
wave steepness parameter 𝜖 = 𝑘p⋅𝐻s∕2 is defined based on the significant
wave height 𝐻s. For more details on the HOS simulation, consider the
work of Wedler et al. (2023) or Lünser et al. (2022), for example.

In this study, we select a wave domain length of 4000m, discretized
by 𝑛𝑥 = 1024 grid points, resulting in 𝛥𝑥 = 3.906m. A peak enhancement
factor of 𝛾 = 3 is employed to emulate North Sea conditions. The water
depth is 𝑑 = 500m and the sea state parameters peak wavelength 𝐿p and
steepness 𝜖 are varied systematically over 𝐿p ∈ {80, 90,… , 190, 200}m
and 𝜖 ∈ {0.01, 0.02,… , 0.09, 0.10}, resulting in 130 possible 𝐿p − 𝜖-
combinations. For each 𝐿p − 𝜖-combination, we generate four different
initial surfaces 𝜂(𝑥, 𝑡s = 0) by superimposing the wave components
of the JONSWAP spectrum with random phase shifts. The subsequent
wave evolution 𝜂(𝑥, 𝑡 > 0) for 𝑡 = 0,… , 50 s with 𝛥𝑡save = 0.1 s is
performed considering the nonlinearities imposed by HOS order 𝑀 = 4.
As a result, we generate a total of 520 unique spatio-temporal HOS
wave data arrays, each of shape 𝐸HOS ∈ R1024×500, where (𝐸HOS)𝑘𝑗 =
𝜂(𝑥𝑘, 𝑡𝑗 ) with 𝑥𝑘 = ⋅𝛥𝑥 and 𝑡𝑗 = 𝑗 ⋅ 𝛥𝑡save.

2.2. Corresponding synthetic radar data

As X-band radar systems are often pre-installed on marine struc-
tures for navigation and object detection purposes, they also gained
attention for observing ocean surface elevations (Borge et al., 1999).
The system antenna rotates with a device-specific revolution time 𝛥𝑡r
of between 1−2 s (Neill and Hashemi, 2018) while emitting radar beams
along a range 𝑟. These radar beams interact with short-scale capillary
waves distributed on large-scale ocean surface waves by the Bragg
resonance phenomenon, resulting in backscatter to the antenna (Valen-
zuela, 1978). This procedure provides measurement data 𝜉(𝑟, 𝑡) as a
proxy of wave surface elevations 𝜂(𝑟, 𝑡), which are not directly relatable
to each other due to the influence of different modulation mechanisms.
Most influential are assumed to be tilt modulation (Dankert and Rosen-
thal, 2004), shadowing modulation (Borge et al., 2004; Wijaya et al.,
2015) or a combination of both (Salcedo-Sanz et al., 2015). In order
to generate synthetic radar snapshots for this work, the modulation
mechanisms are simulated according to Salcedo-Sanz et al. (2015)
and Borge et al. (2004), as illustrated in Fig. 2.

Tilt modulation refers to the variation in radar backscatter intensity
depending on the local incidence angle 𝛩̃(𝑟, 𝑡) between the unit normal
vector 𝐧(𝑟, 𝑡) perpendicular to the illuminated wave facet 𝜂(𝑟, 𝑡) and
the unit normal vector 𝐮(𝑟, 𝑡) pointing towards the antenna. As the
backscatter cannot reach the antenna if the dot product 𝐧⋅𝐮 approaches
negative values for |𝛩̃| > 𝜋

2 , the tilt modulation  is simulated by

 (𝑟, 𝑡) = 𝐧(𝑟, 𝑡) ⋅ 𝐮(𝑟, 𝑡) = cos 𝛩̃(𝑟, 𝑡) if |𝛩̃(𝑟, 𝑡)| ≤ 𝜋
2

(3)

The shadowing modulation instead occurs when high waves located
closer to the antenna obstruct waves at greater distances. Shadowing
depends on the nominal incidence angle 𝛩(𝑟, 𝑡) of a wave facet 𝜂(𝑟, 𝑡)
with horizontal distance 𝑅(𝑟) from the antenna at height 𝑧a above the
mean sea level, geometrically expressed as

𝛩(𝑟, 𝑡) = tan−1
[

𝑅(𝑟)
]

. (4)

𝑧a − 𝜂(𝑟, 𝑡)
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Fig. 2. Geometric display of tilt- and shadowing modulation. Tilt modulation  (𝑟, 𝑡)
is characterized by the local incidence angle 𝛩̃ between surface normal vector 𝐧 and
antenna vector 𝐮, while shadowing modulation (𝑟, 𝑡) of a wave facet occurs if another

ave closer to the radar systems obstructs the radar beams.

t a specific time instance 𝑡, a wave facet 𝜂(𝑟, 𝑡) at point 𝑟 is shadowed
in case there is another facet 𝜂′ = 𝜂(𝑟′, 𝑡) closer to the radar 𝑅′ = 𝑅(𝑟′) <
𝑅(𝑟) that satisfies the condition 𝛩′ = 𝛩(𝑟′, 𝑡) ≥ 𝛩(𝑟, 𝑡). The shadowing-
illumination mask  can be constructed from this condition as follows

(𝑟, 𝑡) =

{

0 if 𝑅(𝑟′) < 𝑅(𝑟) and 𝛩(𝑟′, 𝑡) ≥ 𝛩(𝑟, 𝑡),
1 otherwise.

(5)

Assuming that tilt-and shadowing modulation contribute to the radar
imaging process, the image intensity is proportional to the local radar
cross-section, that is 𝜉(𝑟, 𝑡) ∼  (𝑟, 𝑡) ⋅ (𝑟, 𝑡). As marine radars are
not calibrated, the received backscatter 𝜉(𝑟, 𝑡) may be normalized to
a user-depended range of intensity values.

This work aims to develop a robust ML reconstruction method ca-
pable of handling even suboptimal antenna installation conditions. For
this reason, we consider a X-band radar system with a comparatively
low antenna installation height of 𝑧a = 18m. This choice causes an
increased amount of shadowing-affected areas in radar images, which
can be inferred from Eqs. (4) and (5). Around this antenna exists a
system’s dead range 𝑟min where the radar beams cannot reach the water
surface. In this study, we estimate 𝑟min = 100m, which is again a
comparatively small value and results in the increased magnitude of
the tilt modulation influence close to the radar. Moreover, the radar
scans the wave surface with a spatial range resolution of 𝛥𝑟 = 3.5m at
𝑛𝑟 = 512 grid points. Thus, the maximum observation range is computed
as 𝑟max = 1892m. The radar revolution period is chosen according to
Criterion 3 to be a snapshot each 𝛥𝑡r = 1.3 s, i.e., 𝑛𝑡 = 38 radar snapshots
for 50 s of simulation time. Using these definitions, we first transform
the 520 wave data arrays 𝐸HOS ∈ R1024×500 from their HOS grid to the
radar system’s grid, yielding 𝐸sys ∈ R512×38, where (𝐸sys)𝑘𝑗 = 𝜂(𝑟𝑘, 𝑡𝑗 )
with 𝑟𝑘 = 𝑖 ⋅ 𝛥𝑟 and 𝑡𝑗 = 𝑗 ⋅ 𝛥𝑡r . To obtain highly realistic corresponding
radar observations, we model tilt modulation  (𝑟, 𝑡) and shadowing
modulation (𝑟, 𝑡), resulting in 520 radar data arrays, each denoted as
𝑍sys ∈ R512×38 with (𝑍sys)𝑘𝑗 = 𝜉(𝑟𝑘, 𝑡𝑗 ).

2.3. Preparation of data for machine learning

To train a supervised learning algorithm, labelled input–output data
pairs are required. As visualized in Fig. 3, from each of the 520 gen-
erated radar-wave arrays-pairs we extract six radar input snapshots 𝐱𝑖
from the radar surface array 𝑍sys and wave output snapshots 𝐲𝑖 from the
wave surface array 𝐸sys at six distinct time instances 𝑡s with the largest
possible temporal distance. Each output sample 𝐲𝑖 ∈ R512×1 contains
a single snapshot at time 𝑡s, while each input sample 𝐱𝑖 ∈ R512×𝑛s can
incorporate a number of 𝑛s historical radar snapshots at discrete, earlier
times {𝑡s − 𝑗 ⋅ 𝛥𝑡r}𝑗=0,…,𝑛s−1. A single snapshot (𝑛s = 1) at a time 𝑡s can
be used as input, however, as we assumed in Hypothesis 3, that larger
4

temporal context may enhance the quality of a network’s reconstruction
𝐲̂𝑖. Therefore, the optimal value of 𝑛s is also a subject of investigation
as discussed in Sections 4.1.2 and 4.2.2. In total, 𝑁 = 6 ⋅ 520 = 3120
input–output data pair samples are generated, each corresponding to a
descriptive 𝐿p − 𝜖-combination. The data set takes the of shape 𝐗 =
[𝐱1,… , 𝐱𝑁 ]T ∈ R3120×512×𝑛s and 𝐘 = [𝐲1,… , 𝐲𝑁 ]T ∈ R3120×512×1 and
is split into 60% training, 20% validation, and 20% test data using a
stratified data split w.r.t. the sea state parameters (𝐿p, 𝜖). This ensures
an equal representation of each wave characteristic in the resulting
subsets, as described in detail in A.

3. Machine learning methodology

The U-Net (Ronneberger et al., 2015) and the Fourier neural oper-
ator (FNO) (Li et al., 2020) are neural network architectures for data
with grid-like structures such as our radar and wave surface elevation
snapshots. Their fundamental difference is the inductive bias encoded
by each architecture, which refers to prior assumptions about either
the solution space or the underlying data-generating process (Mitchell,
1980; Battaglia et al., 2018). The U-Net is a special type of CNN (LeCun
et al., 1989) and imposes an inductive bias by assuming that adjacent
data points in Euclidean space are semantically related and learns
local mappings between input patches and output features in each
layer. This local information is aggregated into more global features
due to the utilization of multiple downsampling and convolutional
layers. In contrast, the FNO operates under the assumption that the
data information can be meaningfully represented in Fourier space. It
employs multiple Fourier transformations to learn a mapping between
the spectral representation of the input and desired output, directly
providing a global understanding of the underlying patterns in the data.
This section presents the U-Net- and FNO-based architectures used in
our study for radar inversion. In addition, suitable loss and metric
functions are introduced for assessing the model’s performance.

3.1. U-Net-based network architecture

We first adopt the U-Net concept, originally developed for medical
image segmentation by Ronneberger et al. (2015), which has since
been applied to a variety of image-to-image translation and surrogate
modelling problems, for instance by Isola et al. (2016), Liu et al.
(2018), Stoian et al. (2019), Wang et al. (2020), Eichinger et al. (2022),
Niekamp et al. (2023) and Stender et al. (2023). The mirrored image
dimensions in a fully convolution autoencoder network allow for the U-
Net’s key property, that is the use of skip-connections for concatenating
the output features from the encoding path with the inputs in the
decoding path. This enables the reuse of data information of different
spatial scales that would otherwise be lost during downsampling and
assists the optimizer to find the minimum more efficiently (Li et al.,
2018).

Our proposed encoder–decoder architecture is the result of a four-
fold cross-validated hyperparameter study, documented in Table A.2
in the appendix. As depicted in Fig. 4, the adapted U-Net architecture,
has a depth of 𝑛d = 5 consecutive encoder blocks followed by the same
number of consecutive decoder blocks with skip-connections between
them.

In more detail, each encoder block in our U-Net-based architecture
is composed of a 1D convolutional layer with 𝑛k = 32 kernels of size
𝑠k = 5, that are responsible for identifying specific features in the input
by shifting the smaller-sized kernels, containing the networks trainable
weights, across the larger input feature maps in a step-wise manner.
Each convolutional layer is followed by a GeLU activation function
𝜎 (Hendrycks and Gimpel, 2016) and an average pooling downsampling
layer of size 2. To summarize, in the encoding path each radar input
sample 𝐱𝑖 ∈ R𝑛𝑟×𝑛s is transformed by the first convolutional layer
resulting in 𝑣c1 ∈ R𝑛𝑟×𝑛k , with 𝑛𝑟 = 512 being the number of spatial
grid-points and 𝑛s being the historic snapshots in the radar input.

Subsequently, this intermediate output is send through 𝜎, before the
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Fig. 3. Schematic representation of the ML training sample extraction process. The left-hand side illustrates one of the raw radar and wave surface simulations (𝑍sys , 𝐸sys ∈ R512×38),
hich are utilized to extract input–output samples shown on the right-hand side. Each input 𝐱𝑖 consists 𝑛s radar snapshots acquired at intervals of 𝛥𝑡r = 1.3 s, while each output
𝑖 represents a single-snapshot wave surface elevation at time instant 𝑡s. In total 𝑁 = 6 ⋅ 520 = 3120 data samples are generated.
Fig. 4. Fully convolutional encoder–decoder architecture based on the U-Net (Ronneberger et al., 2015). Each input 𝐱𝑖 is processed by 𝑛d = 5 alternating convolutional-, activation-
nd average pooling layers in the encoding path. The decoding path contains convolutional-, activation- and transpose convolutional layers for a gradual upsampling to calculate
he output 𝐲̂𝑖. Moreover, the outputs of the encoding stages are transferred to the decoding path via skip-connections.
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ooling layer reduces the spatial dimension to 𝑣p1 ∈ R
1
2 𝑛𝑟×𝑛k . This

rocess is repeated until the final encoding block’s output is 𝑣p5 ∈
1
32 𝑛𝑟×𝑛k . Next, the decoding blocks are applied, each consisting of
convolutional layer with again 𝑛k = 32 kernels of size 𝑠k = 5,

followed by GeLU activation. Afterwards, the feature maps’ spatial
dimensions are upsampled using transpose convolutional layers with
linear activation. The resulting feature maps then are concatenated
with the output of the corresponding stage in the encoding path via
skip-connections, before the next convolution is applied. This process
is repeated until the final wave output 𝐲̂𝑖 ∈ R𝑛𝑟×1 is calculated using a
convolutional layer with a single kernel and linear activation.

As indicated above, the U-Net architecture assumes local connec-
tions between neighbouring data points, which is accomplished through
two mechanisms. Firstly, the convolutional layers use kernels with a
receptive field of 𝑠k = 5 pixels to process different local parts of
the larger input feature maps in the same manner. This is referred to
as weight sharing, causing a property called translational equivariance:
each patch of the input is processed by the same kernels. Secondly, the
pooling layers induce locality by assuming that meaningful summations
of information from small local regions in the intermediate feature
maps can be made and creates a property referred to as translational
invariance (Goodfellow et al., 2016).

3.2. FNO-based network architecture

In the second step, we explore a neural network based on the
FNO (Li et al., 2020). While a CNN is limited to map between finite-
dimensional spaces, neural operators are in addition capable to learn
nonlinear mappings between a more general class of function spaces.
This makes the FNO well-suited for capturing the spatio-temporal
patterns that govern the dynamics of various physical problems that
5

obey partial differential equations if the solutions are well represented
in Fourier space. FNO variants have been applied to e.g., fluid dy-
namics (Peng et al., 2022; Li et al., 2022), simulation of multiphase
flow (Yan et al., 2022; Wen et al., 2022), weather forecasting (Pathak
et al., 2022), material modelling (Rashid et al., 2022; You et al., 2022),
and image classification (Williamson et al., 2022).

The FNO-based iterative architecture (𝐱𝑖 → 𝑣0 → 𝑣1 → … → 𝐲̂𝑖)
pplied in this work is illustrated in Fig. 5, while Table A.3 in the
ppendix summarizes the determination of model hyperparameters by
our-fold cross-validation.

The proposed FNO transforms radar input data 𝐱𝑖 ∈ R𝑛𝑟×𝑛s into
a higher-dimensional latent representation 𝑣0 ∈ R𝑛𝑟×𝑛w of channel
width 𝑛w = 32, using a linear neural network layer 𝑃 with 𝑛w nodes.
Subsequently, the latent representation passes through 𝑛f = 3 Fourier
layers, each consisting of two paths. In the upper path, a global con-
volution operator defined in Fourier space is applied to each channel
of 𝑣0 separately utilizing discrete Fourier transforms 𝐹 . A linear trans-
formation 𝑅0 is then applied to the lower-order Fourier modes after
truncating the Fourier series at a maximum number of 𝑛m = 64 modes.
Subsequently, this scaled and filtered content is back-transformed to
the spatial domain using inverse discrete Fourier transforms 𝐹−1. In
the lower path, a linear transformation 𝑊0 in the spatial domain is
applied to the input 𝑣0 to account for non-periodic boundary conditions
nd higher-order modes that are neglected in the upper path of the
ourier layer. The outputs of the upper and lower paths are added, and
he sum is passed through a nonlinear GeLU activation 𝜎 resulting in
𝑣1 ∈ R𝑛𝑟×𝑛w , before entering the next Fourier layer. In summary, the
output of the (𝑗 + 1)-th Fourier layer is defined as

𝑗+1 = 𝜎
(

𝐹−1 (𝑅𝑗 ⋅ 𝐹 (𝑣𝑗 )
)

+𝑊𝑗 ⋅ 𝑣𝑗
)

. (6)

Finally, the output 𝑣3 of the last Fourier layer is transferred to the target
̂ 𝑛𝑟×1
wave output dimension 𝐲𝑖 ∈ R using another linear layer 𝑄. In
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Fig. 5. Network architecture based on the Fourier neural operator (Li et al., 2020). Each input 𝐱𝑖 is lifted to a higher dimensional representation 𝑣0 of channel width 𝑑w by a
neural network 𝑃 . Afterwards, 𝑛f = 3 Fourier layers are applied to each channel. Finally, 𝑣3 is transferred back to the target dimension of the output 𝐲̂𝑖 by another neural network
𝑄. More specifically, each Fourier layer is composed of two paths. The upper one learns a mapping in Fourier space by adapting 𝑅𝑗 for scaling and truncating the Fourier Series
after 𝑛m modes, while the lower one learns a local linear transform 𝑊𝑗 .
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summary, the FNOs weights correspond to 𝑃 ∈ R𝑛s×𝑑w , 𝑄 ∈ R𝑛s×𝑑w

and all 𝑅𝑗 ∈ C𝑑w×𝑑w×𝑑m and 𝑊𝑗 ∈ R𝑑w×𝑑w . As the 𝑅𝑗 -matrices contain
he main portion of the total number of weights, most parameters are
earned in the Fourier space rather than the original data space.

As previously noted, the FNO architecture incorporates a global
nductive bias that assumes the input data exhibits approximately
eriodic properties and can be effectively represented in Fourier space.
urthermore, the FNO’s design presupposes that the Fourier spectrum
f the input data is smooth, enabling its frequency components to
e represented by a limited number of low-wavenumber Fourier co-
fficients, as the 𝑅𝑗 matrices, which are responsible for the global
apping, truncate higher-frequency modes.

.3. Training and evaluation

Both the U-Net- and FNO-based architecture are implemented using
he PyTorch library (Paszke et al., 2019). To enable a fair comparison
nd account for wave training data of varying spatial scales, the mean
f the relative L2-norm of the error is employed as loss function 
or both architectures. The relative L2-norm error for one sample 𝑖 is
efined as follows, where 𝐲𝑖 and 𝐲̂𝑖 ∈ R512×1 represent the true and
econstructed wave surface

L2(𝐲𝑖, 𝐲̂𝑖) = nL2𝑖 =
‖𝐲̂𝑖 − 𝐲𝑖‖2
‖𝐲𝑖‖2

. (7)

While we use the subscript 𝑖 to represents a sample-specific error nL2𝑖,
the value nL2 without a subscript denotes the mean value across a
number of samples 𝑁 , for example the mean error across the training
set  ∶= nL2 = 1

𝑁train

∑𝑁train
𝑖=1 nL2(𝐲𝑖, 𝐲̂𝑖). To minimize the loss, we use the

Adam optimizer (Kingma and Ba, 2014) with a learning rate of 0.001.
The training is executed for 800 epochs on an NVIDIA GeForce RTX
3050 Ti Laptop GPU. For both, the U-Net-based models U,𝑛s and FNO-
ased models F,𝑛s , only the models with the lowest test loss within
he 800 epochs is stored for performance evaluation and visualization.

Established machine learning metrics based on Euclidean distances
reat the deviation of two surfaces in frequency or phase as amplitude
rrors (Wedler et al., 2022). Therefore, we introduce the surface sim-
larity parameter (SSP) proposed by Perlin and Bustamante (2014) as
n additional performance metric

SP(𝐲𝑖, 𝐲𝑖) = SSP𝑖 =

√

∫ |𝐹𝐲𝑖 (𝑘) − 𝐹𝐲̂𝑖 (𝑘)|
2𝑑𝑘

√

∫ |𝐹𝐲𝑖 (𝑘)|
2𝑑𝑘 +

√

∫ |𝐹𝐲̂𝑖 (𝑘)|
2𝑑𝑘

∈ [0, 1], (8)

where 𝑘 denotes the wavenumber vector and 𝐹y𝑖 denotes the discrete
Fourier transform of a surface 𝐲𝑖. The SSP is a normalized error metric,
with SSP𝑖 = 0 indicating perfect agreement and SSP𝑖 = 1 a comparison
against zero or of phase-inverted surfaces. As the SSP combines phase-,
amplitude-, and frequency errors in a single quantity, it is used in
recent ocean wave prediction and reconstruction studies by Klein et al.
(2020, 2022), Wedler et al. (2022, 2023), Desmars et al. (2021, 2022)
and Lünser et al. (2022).

While metrics such as the nL2𝑖 or SSP𝑖 evaluate the average recon-
̂ 𝑛𝑟×1
6

struction quality of each 𝐲𝑖 ∈ R across the entire spatial domain s
Table 1
Reconstruction results averaged across the entire test set evaluated with different
metrics for the U-Net-based models U,𝑛s and FNO-based models F,𝑛s trained with
either one or multiple radar snapshots 𝑛s in each sample’s input.

Model Mean errors across
𝑁test = 624 test set samples

Name Architecture 𝑛s Epochs Investigated in nL2 nL2shad
nL2vis

SSP

U,1 U-Net-based 1 150 Section 4.1.1 0.329 2.679 0.171
U,10 U-Net-based 10 592 Section 4.1.2 0.123 1.755 0.061
F,1 FNO-based 1 721 Section 4.2.1 0.242 1.886 0.123
F,9 FNO-based 9 776 Section 4.2.2 0.153 1.381 0.077

𝑟 with 𝑛𝑟 = 512 grid points, it is important to consider the potential
imbalance in reconstruction error between those areas where the radar
input 𝐱𝑖 was either shadowed or visible. This imbalance ratio can be
quantified by nL2shad𝑖

nL2vis𝑖
. Here, nL2shad𝑖 = nL2(𝐲shad𝑖 , 𝐲̂shad𝑖 ) and nL2vis𝑖 =

nL2(𝐲vis𝑖 , 𝐲̂vis𝑖 ) are the errors of the output wave elevations in the
shadowed or visible areas, respectively. We separate the visible and
shadowed parts using the shadowing mask  introduced in Eq. (5),
where 𝐲vis𝑖 =  ⋅ 𝐲𝑖 and 𝐲shad𝑖 = (1 − ) ⋅ 𝐲𝑖. Afterwards, all cells with
zero entries are removed from the output arrays, such that the number
of visible or invisible data points is 𝑛vis𝑖 or 𝑛shad𝑖 , respectively, and
𝐲vis𝑖 , 𝐲̂vis𝑖 ∈ R𝑛vis𝑖×1 and 𝐲shad𝑖 , 𝐲̂shad𝑖 ∈ R𝑛shad𝑖×1 satisfy 𝑛vis𝑖 + 𝑛shad𝑖 =
𝑛𝑟 = 512. To conclude, a high value of the ratio indicates that the
reconstruction in areas that were shadowed in the input is much worse
than in the visible areas. We thus not only strive for low nL2𝑖 values,
but also for low nL2shad𝑖

nL2vis𝑖
ratios to achieve uniform reconstructions. We

use a ratio metric only based on the Euclidean distance based nL2𝑖 and
not for the SSP𝑖, as small sections of 𝐲𝑖 and 𝐲̂𝑖 cannot be meaningfully
considered in Fourier space.

4. Results

This work explores the potential of utilizing machine learning for
the reconstruction of one-dimensional ocean wave surfaces 𝜂 from radar
measurement surfaces 𝜉 at a time instance 𝑡s. Therefore, each radar
input sample 𝐱𝑖 ∈ R𝑛𝑟×𝑛s , with 𝑛𝑟 = 512 being the number of spatial grid
points in range direction and 𝑛s being the number of radar snapshots,
is acquired according to Section 2. Each input 𝐱𝑖 is to be mapped to
he desired wave surface output 𝐲𝑖 ∈ R𝑛𝑟×1 via a ML model . We
xamine the impact of the inductive bias of the U-Net-based models
U,𝑛s and the FNO-based models F,𝑛s proposed in Section 3, as well

s the impact of the number of historical radar snapshots 𝑛s included
n each input 𝐱𝑖. We train the models using a total data set of 𝑁train =
496 samples and thus to learn the mapping  ∶ 𝐗 → 𝐘 with 𝐗 ∈
2496×𝑛𝑟×𝑛s ,𝐘 ∈ R2496×𝑛𝑟×1. Afterwards, we evaluate their performance
sing the previously excluded test set of 𝑁test = 624 samples. The results
re summarized in Table 1, and are discussed regarding the pre-stated
ypothesis 1–Hypothesis 3 and Criterion 1–Criterion 3 in detail in the
ubsequent subsections.
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Fig. 6. Two samples from the test set described by the same wavelength 𝐿p = 180m, but different steepness 𝜖, reconstructed by the U-Net-based architecture U,1. (a) Small 𝜖
ause minor impact of the shadowing modulation and allow accurate reconstructions. (b) Larger 𝜖 create more extensive shadowed areas and cause higher reconstruction errors.
b

𝜖

.1. Performance of the U-Net-based model

In the first step of our investigation, we examine the ability of U-
et-based models U,𝑛s to reconstruct wave surfaces along the full

patial dimension, which covers 𝑟max − 𝑟min = 1792m on 𝑛𝑟 = 512
grid points. We use the 𝑁train = 2496 samples of single snapshot
(𝑛s = 1) radar input data for training. Afterwards, we utilize the
same architecture to determine the best number of historical snapshots
𝑛s > 1 required in the radar inputs to achieve the best reconstruction
performance. We also visually compare reconstructed wave elevations
𝐲̂𝑖 of two test set samples with their corresponding true elevations 𝐲𝑖.

.1.1. U-Net using single-snapshot radar data
Mapping of single snapshot radar data (𝑛s = 1) refers to mapping

radar snapshot 𝐱𝑖 ∈ R𝑛𝑟×1 to a wave snapshot 𝐲𝑖 ∈ R𝑛𝑟×1, with
𝑟 = 512 spatial grid points, that are recorded at the same time instant
s. According to Table 1 the U-Net-based model U,1 trained with the
vailable 𝑁train = 2496 samples achieves a reconstruction performance
iven by a mean loss value of nL2 = 0.329 across all 𝑁test = 624 test set
amples after 150 epochs of training. Afterwards, the model tends to
verfit the training data, as shown in the loss curve in Fig. B.15(a). The
bserved error corresponds to a mean value of SSP = 0.171 across all
est set samples, which fails to satisfy the Criterion 2 of reconstruction
rrors below SSP ≤ 0.1.

To identify the origin of reconstruction errors, we employed model
U,1 to generate reconstructions 𝐲̂𝑖 for two exemplary radar input

amples 𝐱𝑖 from the test set. Despite the stratified data split ensuring
n equal distribution of sea state parameter combinations (𝐿p, 𝜖) in
he training and test set, the errors are unevenly distributed across
ndividual samples 𝑖, as exemplarily illustrated in Fig. 6: The sample
n Fig. 6(a) corresponds to a peak wavelength 𝐿p = 180m and small
mplitudes caused by a small steepness of 𝜖 = 0.01. It exhibits a minor
mpact from the shadowing modulation mechanism only affecting 9.4%
f the total radar-illuminated surface 𝐱𝑖 in the top panel. The corre-
ponding surface reconstruction 𝐲̂𝑖 generated by U,1 in the bottom
anel closely approximates the true wave elevation 𝐲𝑖, as evidenced by
he sample-specific error of nL2𝑖 = 0.152 or SSP𝑖 = 0.076. In contrast,
7

he second sample in Fig. 6(b) with the same 𝐿p = 180m but increased
Fig. 7. Boxplot depicting the error distribution on test set, depending on the number
of historical radar snapshots 𝑛s provided to train U-Net-based architectures U,𝑛s . The
est model performance is achieved for 𝑛s = 10.

= 0.10 shows 71.5% of the spatial 𝑟-domain being affected from
shadowing modulation causing zero-valued intensities. This results in
a high reconstruction error of nL2𝑖 = 0.541 or SSP𝑖 = 0.311. Particularly
the shadowed areas seem to contribute to the poor reconstruction, as
their error is nL2shad𝑖

nL2vis𝑖
= 2.69 times higher than in the visible areas.

4.1.2. U-Net using spatio-temporal radar data
To improve the reconstruction quality of the U-Net-based archi-

tecture, especially for high wave steepness, we took inspiration from
classical spectral-analysis- and optimization-based reconstruction ap-
proaches (cf. Borge et al., 2004; Wu, 2004). These approaches use
spatio-temporal radar data by considering temporal sequences of 𝑛s
historical radar snapshots for reconstruction. Thus, we use multiple
historical radar snapshots 𝑛s that satisfy Criterion 3 with 𝛥𝑡r = 1.3 s
for each input sample 𝐱𝑖 ∈ R512×𝑛s , while the outputs remain single
snapshots 𝐲𝑖 ∈ R𝑛𝑟×1 at the respective last time instant 𝑡s. We conducted
14 additional training runs of the same architecture using all 𝑁train =
2496 samples of the training set with increasing 𝑛s in the inputs 𝐱𝑖, to

determine the best number of snapshots 𝑛s in the boxplot in Fig. 7.
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Fig. 8. Two samples from the test set described by the same wavelength 𝐿p = 180m, but different wave steepness 𝜖, reconstructed by the U-Net-based architecture trained with
𝑛s = 10 historical snapshots in the radar input U,10. Compared to U,1, a strong reconstruction improvement is observed, especially for the sample with high 𝜖 = 0.10 in (b).
p

The boxplot shows that the model’s mean performance across the
entire test set significantly improves up to a value of 𝑛s = 10, confirming
Hypothesis 3 as the reconstruction quality improves by incorporating
multiple radar snapshots in the input. Moreover, the sample-specific
error values nL2𝑖 become less scattered around the mean value. The
model U,10, determined by the boxplot analysis, achieves a final mean
reconstruction performance of nL2 = 0.123 or SSP = 0.061 across
the 𝑁test = 624 test set samples, as shown in Table 1, now satisfying
Criterion 2 of SSP ≤ 0.10 and thus confirms Hypothesis 1. In addition,
it yields a lower ratio of nL2shad

nL2vis
= 1.755 compared to 2.679 for model

U,1, indicating a more balanced reconstruction between shadowed
and visible areas on average. Moreover, the model does not exhibit
early overfitting anymore, achieving the best performance after 592
epochs, shown in Fig. B.15(b).

Fig. 8 further confirms the improvement of the reconstruction, using
𝑛s = 10 radar snapshots in each input to train U,10, by depicting
the same two exemplary test set samples reconstructed by U,1 in
ig. 6 before. The top panels display the most recent (𝑡s) radar snapshot

present in 𝐱𝑖 ∈ R𝑛𝑟×𝑛s in the darkest shading and preceding snapshots
at 𝑡𝑗 = {𝑡s − 𝑗𝛥𝑡r}𝑗=0,…,𝑛s−1 in increasingly lighter shades. Compared to
Fig. 6, the sample with small 𝜖 = 0.01 in Fig. 8(a) experiences only a
slight reduction in reconstruction error, while the sample with 𝜖 = 0.10
in Fig. 8(b) exhibits a substantial reduction around one-third of the
previous sample-specific nL2𝑖 or SSP𝑖 value. The improved performance
seems mainly attributable to the enhanced reconstruction of shadowed
8

areas.
4.2. Performance of the FNO-based model

The U-Net-based model U,10 already supported Hypothesis 1 and
Hypothesis 3 by demonstrating the potential to reconstruct wave sur-
face elevations from radar data in general and improving the recon-
struction quality by including additional historical radar data in the
input. However, we also hypothesized that the FNO-based architecture
may outperform CNN-based methods, such as the U-Net, due to its
global inductive bias (Hypothesis 2), which may be beneficial for the
wave data structure. To investigate this, we again use the entire set of
𝑁train = 2496 samples to train FNO-based models F,𝑛s with 𝑛s = 1
radar snapshot in each of the inputs 𝐱𝑖 ∈ R𝑛𝑟×𝑛s first. Subsequently,
we determine the number 𝑛s > 1 to achieve the best reconstruction
performance. Both investigations again are conducted on the entire
domain of 1792m (𝑛𝑟 = 512) and we compare true and reconstructed
elevations 𝐲𝑖 and 𝐲̂𝑖 ∈ R𝑛𝑟×1 of two exemplary samples.

4.2.1. FNO using single-snapshot radar data
The FNO-based model F,1 trained with 𝑛s = 1 snapshot in each in-

ut, attains its best performance nL2 = 0.240 after 721 training epochs,
as shown Table 1 and demonstrated in the loss curve in Fig. B.16(a).
Although the corresponding mean SSP = 0.123 across all 𝑁test = 624
samples in the test set does not attain the Criterion 2, the error still
presents a notable improvement compared to the SSP value of 0.171
previously obtained by the U-Net-based model U,1. Moreover, F,1
not only reduces the mean nL2 or SSP error but also reconstructs the
waves more uniformly between shadowed and visible areas compared
to U,1. This is evident by the decrease in the mean nL2shad

nL2vis -ratio from
2.679 to 1.886.
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Fig. 9. Two samples from the test set described by the same wavelength 𝐿p = 180m, but different wave steepness 𝜖 reconstructed by the FNO-based architecture F,1. The F,1
outperforms the U,1 in reconstructing the shadowed areas, especially noticeable for the sample with large 𝜖 = 0.10 in (b).
This improved wave reconstruction can be illustrated by comparing
the reconstructions of the same two exemplary test set samples gener-
ated by F,1 in Fig. 9 to U,1 in Fig. 6. As depicted in Fig. 9(a), the
sample-specific nL2𝑖 or SSP𝑖 metrics are only slightly improved, but the
ratio nL2shad𝑖

nL2vis𝑖
is substantially smaller than observed using U,1 before.

hese observations are even more pronounced for the sample with high
in Fig. 9(b). The F,1 reduces the error in terms of nL2𝑖 or SSP𝑖 by

lmost half and also produces a more uniform reconstruction between
hadowed and visible areas.

.2.2. FNO using spatio-temporal radar data
Although the FNO-based model F,1 outperforms the U-Net-based

odel U,1, it does not achieve the desired reconstruction quality of
SP ≤ 0.10 (Criterion 2). To enhance the model performance we analyse
he effect of including multiple historical snapshots in each input
𝑖 ∈ R512×𝑛s for the training of this architecture. Again, 14 additional
raining runs were conducted, each with an increasing number of 𝑛s.
he results, depicted in Fig. 10, demonstrate an initial improvement in
erformance for the models F,𝑛s with increasing 𝑛s which is slightly
ess notable than that observed for the U-Net-based models U,𝑛s in
ig. 7 before. The FNO-based models achieve the best performance for
s = 9 input snapshots, beyond which the mean error slightly increases.

According to Table 1, the model F,9 attains a mean performance
f nL2 = 0.153 on the test set, after 776 training epochs, as depicted by
he loss curve in Fig. B.16(b). This error value corresponds to a mean
SP = 0.076, fulfilling the Criterion 2 of a SSP ≤ 0.10. However, in
omparison to the U-Net-based model U,10, which achieved a final
ean value of SSP = 0.061, the performance of F,9 measured in

erms of nL2 or SSP is slightly inferior, even though in the single-
napshot case F,1 outperformed U,1. Nevertheless, compared to all
nvestigated models, F,9 on average achieves the best reconstruction
niformity between shadowed and visible areas indicated by a mean

nL2shad = 1.381 on test
9

nL2vis
Fig. 10. Boxplot depicting the error distribution on the test set, depending on the
number of historical radar snapshots 𝑛s provided to train FNO-based architectures F,𝑛s .
The best model performance is achieved for 𝑛s = 9. Afterwards, the errors slightly
increase again.

Fig. 11 shows the reconstructions 𝐲𝑖 for the same two exemplary
radar inputs 𝐱𝑖 from the test set used before, now generated by the
trained FNO-based model F,9. Compared to F,1 in Fig. 9 both
samples experience an almost similar increase in reconstruction quality
measured in terms of the sample-specific SSP𝑖 and nL2𝑖 errors. In
addition, these values are comparable to that achieved by U,10 in
Fig. 8. However, for the sample with small 𝜖 = 0.01 in Fig. 11(a),
F,9 generates a more balanced reconstruction than U,10, as reflected
by the reduction of nL2shad𝑖

nL2vis𝑖
from 2.201 to 1.665 for this individual

sample. For the higher-steepness sample in Fig. 11(b), the increase of
reconstruction uniformity given by nL2shad𝑖

nL2vis𝑖
is less significant but still

present.
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Fig. 11. Two samples from the test set described by the same wavelength 𝐿p = 180m, but different wave steepness 𝜖, reconstructed by the FNO-based architecture trained with
s = 9 historical snapshots in the radar input F,9. Compared to F,1 a reconstruction improvement is visible for both samples. Moreover, the reconstruction quality on the entire
-domain is almost equivalent to the results of U,10, but especially for the small steepness sample in (a) the error ratio between shadowed and visible areas is remarkably smaller
sing F,9 which indicates the potential of a more uniform reconstruction.
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.3. Comparative discussion

The aforementioned visual observations described for Figs. 6, 8, 9
nd 11 have been limited to the examination of only two exemplary
amples from the test set, both described by peak wavelength 𝐿p =
80m and either steepness 𝜖 = 0.01 or 𝜖 = 0.10. To avoid any possible
ncidental observations, the generalization of the error values needs to
e examined. This can be achieved by plotting sample-specific error
alues such as nL2𝑖 against each sample’s describing combination of
eak wavelength 𝐿p and steepness 𝜖 for all 𝑁test = 624 test set samples
econstructed using the U-Net-based models U,1 and U,10 or the
NO-based models F,1 and F,9.

.3.1. Discussion of overall reconstruction quality
Fig. 12 illustrates the reconstruction error as the mean nL2𝑖 value

cross 4–5 samples available for each specific 𝐿p − 𝜖-combination
ncluded in the test set. Additionally, red dots in the cell centres
ndicate the combinations that achieved a mean SSP𝑖 ≤ 0.10 (Criterion
). Fig. 12(a) confirms the findings presented in Section 4.1.1 for the
-Net-based model U,1 trained with one radar snapshot (𝑛s = 1) in
ach input 𝐱𝑖. The errors between the true 𝐲𝑖 and reconstructed wave
utput 𝐲̂𝑖 increase with increasing steepness 𝜖 and thus with increasing
ave height. Moreover, we now observe that this effect occurs almost

ndependent of the peak wavelength 𝐿p of each sample. For samples
escribed by 𝜖 > 0.02, U,1 fails to meet the Criterion 2 as the
orresponding errors exceed SSP𝑖 values of 0.10. This is attributable to
he geometrical radar imaging problem demonstrated in Fig. 2, showing
hat the increase in wave height caused by increased 𝜖 results in more
nd larger shadowed areas. Fig. 13 demonstrates that the occurrence
f shadowing mainly increases with increasing 𝜖 and is less influenced
y 𝐿p. While 𝜖 = 0.01 on average only causes around 10%, 𝜖 = 0.10
nstead causes approximately 70–75 % of each input 𝐱𝑖 being affected
y shadowing modulation. This results in areas along the spatial range
containing zero-valued intensities that complicate the radar inversion

ask.
Understanding the challenges faced by model U,1 in reconstruct-

ng shadowed areas, requires revisiting the U-Net’s local mode of
10
peration, outlined in Section 3.1, and the exemplary radar input
epicted in the upper panel of Fig. 6(b). Due to shadowing, numerous
ocal areas exhibit zero-intensities covering up to approximately 200m,
specially for greater distances from the radar system. However, the
ernels in the first convolutional layer with a kernel size of 𝑠k = 5
nly cover a domain of 𝑠k ⋅ 𝛥𝑟 = 17.5m while being shifted across the
nput feature map in a step-wise manner. While the U-Net’s transla-
ional equivariance property is useful for translating radar intensities
o wave surface elevation regardless of their spatial location, it thus
lso causes kernels to be shifted across large areas with zero input
nly, which cannot be processed in a meaningful way. Although the
ooling layers subsequently reduce the dimension of feature maps,
esulting in an increased ratio of kernel size to feature size, the problem
f radar inversion can be assumed to be based on the mapping of
ndividual pixel values, known as low-level features. These features are
earned in the early layers of a CNN-based network (Zeiler and Fergus,
014). Accordingly, the initial stages of the U-Net-based architecture
re more important for our task than for its original purpose of image
egmentation (Ronneberger et al., 2015) that is based on mid- to
igh-level features extracted in the later layers. For this reason, we
ace problems applying U,1 for reconstruction, as important kernels
n the early layers receive a significant amount of sparse, not valu-
ble content. Although increasing the kernel size 𝑠k is a theoretically
ossible solution, doing so would compromise the U-Net’s local key
roperty. Moreover, when processing two-dimensional surfaces with 2D
onvolutional kernels in future research, it would result in a quadratic
ncrease in the number of weights, leading to computational issues.

For this reason, the approach of providing 𝑛s = 10 consecutive radar
napshots governed according to Criterion 3 for the training of U-Net-
ased model U,10 in Section 4.1.2 more effectively accounts for the
parsity in the input data. The upper panel of Fig. 8(b) demonstrated
he presence of input information across the majority of the 𝑟-domain.
he wave surfaces undergo shape variations while travelling towards
he radar due to differing phase velocities of their components caused
y dispersion. This results in a different part of the radar surface being
hadowed or visible at each time step and seem to allow to capture
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Fig. 12. Error surfaces generalizing the previous observations for sample-specific errors nL2𝑖 of the four investigated models  depending on the 𝐿p − 𝜖-combination of the
samples from the test set. Red dots indicate parameter combinations that meet the Criterion 2 of reconstruction errors SSP𝑖 ≤ 0.10. The upper subplots illustrate the result of (a) the
U-Net-based model and (b) the FNO-based model, both trained with only one radar snapshot (𝑛s = 1) in each input 𝐱𝑖 ∈ R𝑛𝑟×1. The same architectures were trained with multiple
historic radar snapshots in each input 𝐱𝑖 ∈ R𝑛𝑟×𝑛s , as demonstrated in the lower subplots, where (c) shows the U-Net-based model trained with 𝑛s = 10 and (d) the FNO-based
model trained with 𝑛s = 9.
Fig. 13. Graphs visualizing the average proportion of each input 𝐱𝑖 being affected
by shadowing modulation in dependency of the samples wave steepness values 𝜖 =
0.01−0.10 for the shortest, one medium and the longest peak wavelength 𝐿p occurring
in the test set.

more information about the wave on average, as the reconstruction
quality significantly improves compared to U,1. Therefore we infer
that the spatial and temporal shifts of the additional radar intensities
acquired at 𝑡𝑗 =

∑𝑛s−1
𝑗=0 𝑡s − 𝑗𝛥𝑡r can be compensated successfully. This

may be attributed to the fact that each kernel applied to the input has
its own channel for each snapshot, allowing for separate processing
11
to counterbalance the shift first, followed by the addition of results
to one feature map utilized as part of the input for the next layer.
The improved reconstruction observed for U,10 is further supported
by its performance generalization shown in Fig. 12(c). Compared to
Fig. 12(a), the mean nL2 error is substantially smaller and sample-
specific reconstruction errors nL2𝑖 are more evenly distributed across
the 𝐿p − 𝜖-space, resulting in a satisfactory SSP𝑖 value Criterion 2
for almost all samples. Although there is still a slight increase in the
error for samples with higher 𝐿p and 𝜖, the proposed model U,10 can
accurately reconstruct samples with varying wave characteristics and
degrees of shadowing, thus supporting .

Motivated by the inherent patterns in wave data and the successful
application of the Fourier neural operator (FNO) to systems exhibiting
certain periodic properties, we conducted a comparative analysis of
the global inductive bias of this network architecture with the local
inductive bias of the CNN-based U-Net. As discussed in Section 4.2.1,
our observations indicate that the FNO-based model F,1 trained with
only one snapshot (𝑛s = 1) outperforms the U-Net-based U,1 in
reconstructing shadowed areas in the input, as evidenced for example
by comparing the reconstruction in Figs. 6(b) to 9(b). This observation
is generalizable to the entire test data set, as shown in Fig. 12(b).
Although errors in the FNO error surface still increase with higher
steepness 𝜖 and consequently with an increase in the percentage of
shadowing according to Fig. 13, the increase is much less severe than
that obtained by  shown in Fig. 12(a).
U,1
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The improved ability of the FNO-based model F,1 in reconstruct-
ing shadowed areas from a single-snapshot input can be attributed
to its mode of operation outlined in Section 3.2. Although the latent
representation 𝑣0 in Fig. 5 is usually not explicitly known, we can
infer that the layer 𝑃 with 𝑛s = 1 input nodes and 𝑛w output nodes
only performs linear transformations to each radar input 𝐱𝑖. As the
radar inputs exhibit kinks at the transitions from visible to shadowed
areas, 𝑣0 will have similar characteristics along the range direction.
These transitions result in peaks for specific wavenumbers 𝑘 in the
spectrum 𝐹 (𝑘). However, the desired wave outputs 𝐲𝑖 of the training
data samples possess smooth periodic properties, without peaks at the
kink-related wavenumbers in 𝐹𝐲(𝑘). Since the 𝑅𝑗 matrices in the Fourier
layers scale the radar input spectrum to the wave output spectrum,
they learn small coefficients for the corresponding entries to reduce the
peaks. Therefore, the FNO’s global inductive bias, combined with the
data structure of wave surfaces, can efficiently correct sparse, shadowed
regions in spectral space, resolving the issue of insufficient local infor-
mation for reconstruction that arises with the U-Net-based model U,1
in Euclidean space. Thus it can be also stated that the FNO explicitly
hard-encodes prior knowledge about physical wave properties through
its network structure and thus can be assumed to be a physics-guided
design of architecture (cf. Willard et al., 2022; Wang and Yu, 2023) for
our problem.

Despite the better performance of the FNO-based model F,1 com-
pared to U,1 in reconstructing shadowed radar inputs that already
supports Hypothesis 2, the red dots in Fig. 12(b) still reveal that most of
the test set samples fail to meet the Criterion 2 of SSP𝑖 ≤ 0.10. However,
this issue was resolved by training a FNO-based model F,9 with 𝑛s = 9
historical radar snapshots in each input 𝐱𝑖. This was demonstrated for
he two test set examples in Fig. 11 and is generalized in Fig. 12(d).

e observe from that Figure, that the slightly higher mean error across
he entire test set of F,9 compared to U,10, is primarily caused by
he individual errors nL2𝑖 of samples with low steepness 𝜖 or short
avelengths 𝐿p. It is worth noting, that the observed minimal increase

n errors for short wavelengths cannot be attributed to a truncation
t an insufficient number of Fourier series modes 𝑛m in the Fourier

layers. In this work, 𝑛m is determined as 64 and the spectral repre-
entation is discretized by 𝛥𝑘 = 2𝜋

𝑛𝑟⋅𝛥𝑟
= 0.00351m−1. The highest peak

wavenumber of 𝑘p = 0.0785m−1 in our data set is reached for samples
ith 𝐿p = 80m. The spectral density around 𝑘p has decayed almost

ompletely at 𝑘f ilt = 𝑛m ⋅ 𝛥𝑘 = 0.2264m−1, such that no important wave
omponents are filtered out, as is visualized in Fig. C.17. Therefore,
he small unequal tendency in error distribution achieved by F,9 in
ig. 12(d) for samples described by different 𝐿p − 𝜖, is likely caused
y other factors than by an unsuitable network hyperparameter 𝑛m.
oreover, we observed in the loss curve shown in Fig. B.16(b) that

urther training for more than 800 epochs could potentially improve
he model’s performance, whereas the best performance on the test set
or U,10 seems to be already reached, as the model begins to overfit
he training data, as depicted in Fig. B.15(a).

.3.2. Discussion of reconstruction uniformity
So far the generalization of the reconstruction quality has been

valuated based on samples-specific nL2𝑖 or SSP𝑖 values across the
ntire spatial 𝑟-domain. However, Table 1 indicates that the FNO-based
odel F,9 achieves a more uniform reconstruction between shadowed

nd visible areas. This is demonstrated by the mean ratio of nL2shad
nL2vis

=
1.381 across all samples in the test set, while the U-Net-based model
U,10 still struggles with reconstructing shadowed areas as inferred
by its nL2shad

nL2vis
= 1.755. Therefore, the nL2shad𝑖

nL2vis𝑖
-ratio error distribution is

displayed in Fig. 14 for each test set sample based on their 𝐿p − 𝜖-
combination. The model U,10 generates an error surface shown in
ig. 14(a) that exhibits broadly varying levels of uniformity in the
econstruction even for samples with neighbouring 𝐿p−𝜖-combinations.

In some cases, the reconstruction errors in shadowed areas exceed those
in visible areas by more than 2.5 times. This undesired effect is much
less pronounced for the FNO-based model F,9, as a comparison with
12

Fig. 14(b) reveals.
4.3.3. Final comparison
For a final evaluation, either the general reconstruction quality

nL2 can be chosen as the main performance criterion, which in our
case would argue for the selection of the U-Net-based model U,10,
or instead the uniformity of the reconstruction indicated by nL2shad

nL2vis
,

which would argue for the FNO-based model F,9. This decision should
be made based on the application case. If the ML-reconstructed wave
surface is intended to be used as an initial condition for subsequent
prediction with the HOS method, we would expect a more uniform
reconstruction to represent a more physical result, and consequently,
the FNO-based reconstruction to be less likely to affect the subsequent
wave prediction in a negative way. Moreover, we observed that the
global approach of the FNO-based models would allow for a reasonably
more meaningful reconstruction of shadowed areas even with fewer
historical radar snapshots 𝑛s contained in each input 𝐱𝑖. This is not
necessarily the case using the U-Net-based models.

Besides, the FNO-based model F,9 in this work allows for much
faster inference speed than the U-Net-based U,10, even though F,9
is constructed as a custom implementation and contains more weights
compared to U,10, which uses standard layers from the PyTorch
library that are in addition probably optimized. More specifically, using
the hardware specifications outlined in Section 3.3, our F,9 is able to
generate reconstructions 𝐲̂𝑖 for an input sample 𝐱𝑖 in an average time
of 1.9 ⋅ 10−3 s which is approximately 20 times faster than the average
time of 3.7 ⋅ 10−2 s required by U,10 for the same task.

5. Conclusion

This work introduces a novel machine learning-based approach for
the phase-resolved reconstruction of ocean wave surface elevations
from sparse radar measurements. To evaluate the performance of our
approach, we generate synthetic nonlinear wave surface data for a wide
range of sea states and corresponding radar surface data by incorpo-
rating both tilt- and shadowing modulation mechanisms. Two neural
network architectures based on the U-Net or the Fourier neural operator
are trained, both provided with varying amounts of spatio-temporal
radar surface measurement input.

Our results and discussion indicate that both models are capable
of producing high-quality wave surface reconstructions with average
errors below SSP ≤ 0.10 when trained with a sufficient amount of
𝑛s = 10 or 9 consecutive radar snapshots. Furthermore, both models
generalize well across different sea states. On average, the U-Net-
based model achieves slightly smaller errors across the entire spatial
domain of each reconstructed wave sample, while the FNO-based model
produces a more uniform wave reconstruction between areas that were
shadowed and visible in the corresponding radar input. This observa-
tion is further confirmed by the edge case of instantaneous inversion,
i.e. if the networks are trained with only a single radar snapshot in each
input. The weakness in the reconstruction of shadowing-affected areas
of the U-Net-based model can be attributed to the local operation of
the network architecture, where its small convolutional kernels do not
receive processable information when shifted across shadowed input
areas with zero intensities only. The problem can be circumvented
using the FNO-based network that learns a global mapping between
radar input and wave output in the Fourier space. This network struc-
ture already encodes prior physical knowledge about the periodic data
structure apparent in ocean waves and is therefore possibly better
suited for our use case.

Our findings suggest that the FNO-based network may offer ad-
ditional advantages, especially concerning smaller training datasets
and noisy input radar data. Furthermore, future research could delve
into the reconstruction of two-dimensional ocean wave surfaces, as
the FNO network can also be implemented using 2D-FFTs. However,
due to the different propagation directions of the component waves
in short-crested, two-dimensional sea states, we anticipate a poten-

tial degradation in the reconstruction performance compared to the
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Fig. 14. Error surfaces depicting the ratio nL2shad𝑖
nL2vis𝑖

between the reconstruction quality achieved on shadowed and visible areas depending on the specific 𝐿p − 𝜖-combination of
the samples from the test set. The individual cell entries display the mean ratio across the 4–5 samples available for each specific parameter combination. The uniformity of the
reconstructions achieved by the U-Net-based model U,10 in (a) thus is compared to the one achieved by the FNO-based model F,9 in (b).
one-dimensional scenario explored in this study. This performance
degradation could be mitigated through appropriate countermeasures,
such as employing FNOs with increased capacity, conducting longer
training runs, or applying suitable regularization techniques.

Moreover, the current methodology solely relies on synthetic radar
input and the corresponding wave output data. Although it can be
presumed that the HOS method generates wave surfaces that exhibit
a reasonable degree of realism, radar imaging mechanisms for marine
X-Band radar are not yet fully understood, such that state-of-the-art
radar models are associated with higher uncertainties. Consequently,
on the one hand, a model trained solely on synthetic radar-wave data
pairs cannot be applied for inference using real-world radar data. On
the other hand, the acquisition of real-world radar-wave pair samples
to train the neural networks is associated with high operational costs
due to the necessity of deploying a dense grid of buoys for captur-
ing wave snapshots. These data issues currently limit the application
of the developed machine-learning-based reconstruction approach for
real-world applications. In future research, we endeavour to tackle
this issue through two opportunities: Firstly, we aim to enhance the
realism of synthetic radar data models to improve their accuracy. Al-
ternatively, we intend to investigate the feasibility of physics-informed
learning approaches as a tool to overcome the challenges associated
with measuring real-world high-resolution wave output data.
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Appendix A. Influence of neural network hyperparameters

To mitigate the high cost of obtaining a larger data set, a four-fold
cross-validation approach with an independent test set was utilized for
finding the network hyperparameters, as recommended for example
by Raschka (2018). The data set of 𝑁 = 3120 samples was divided
into a fixed and independent test set comprising 20% or 𝑁test =
624 samples, with the remaining 2496 samples partitioned into four
equal-sized parts based on the governing sea state parameters (𝐿p, 𝜖)
using a stratified data split technique to ensure equal representation of
each wave characteristic in the resulting subsets. During each cross-
validation step, one part with 𝑁 = 624 samples was used as the
val
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Table A.2
Results of the hyperparameter study for the U-Net-based architecture. Each investigated architecture is characterized by a depth 𝑛d, a
kernel size 𝑠k and an approach for the number of convolutional kernels 𝑛k in each layer. The approaches for 𝑛k explored doubling the
number of kernels per layer with increasing encoder depth (and in reverse halving in the decoder) and another keeping 𝑛k the same
in all convolutional layers. The performance, measured by the mean nL2 value on validation set displays only slight variations among
architectures, indicating that the U-Net is not highly sensitive to these changes. Nevertheless, we select the best model according to the
validation nL2, that highlighted in blue, as our U,1.

U-Net hyperparameters #weights Epochs nL2 nL2shad
nL2vis

SSP

Depth 𝑛d Kernels each layer 𝑛k k. size 𝑠k Train Val Train Val Train Val

3 [8, 16, 32]
3 12,401 785 0.392 0.395 2.124 2.119 0.208 0.210
5 18,305 791 0.360 0.367 2.512 2.526 0.189 0.193

4 [8, 16, 32, 64]
3 48,433 645 0.352 0.371 2.475 2.527 0.185 0.195
5 72,769 189 0.347 0.361 2.536 2.575 0.182 0.189

5 [8, 16, 32, 64, 128]
3 192,177 278 0.342 0.360 2.601 2.644 0.179 0.189
5 290,241 154 0.303 0.344 2.276 2.438 0.158 0.179

6 [8, 16, 32, 64, 128, 256]
3 766,385 223 0.336 0.356 2.557 2.601 0.176 0.186
5 1,159,361 78 0.326 0.356 2.365 2.452 0.170 0.186

3 [16, 32, 64]
3 49,121 779 0.388 0.392 2.149 2.144 0.206 0.208
5 72,705 675 0.353 0.366 2.543 2.582 0.185 0.193

4 [16, 32, 64, 128]
3 192,865 310 0.356 0.371 2.439 2.479 0.187 0.195
5 290,177 99 0.349 0.364 2.520 2.551 0.183 0.191

5 [16, 32, 64, 128, 256]
3 767,073 140 0.343 0.365 2.490 2.532 0.181 0.192
5 1,159,297 76 0.298 0.342 2.364 2.476 0.155 0.178

6 [16, 32, 64, 128, 256, 512]
3 3,062,369 225 0.338 0.358 2.568 2.611 0.177 0.188
5 4,634,241 124 0.346 0.366 2.419 2.487 0.183 0.194

3 [32, 32, 32]
3 38465 778 0.388 0.392 2.135 2.137 0.206 0.208
5 52865 724 0.351 0.363 2.581 2.611 0.185 0.191

4 [32, 32, 32, 32]
3 49,825 569 0.350 0.364 2.555 2.583 0.184 0.192
5 70,369 199 0.345 0.358 2.631 2.663 0.181 0.188

5 [32, 32, 32, 32, 32]
3 61,185 224 0.344 0.357 2.654 2.663 0.180 0.187
5 87,873 183 0.310 0.341 2.536 2.659 0.161 0.177

6 [32, 32, 32, 32, 32, 32]
3 72,545 395 0.350 0.362 2.548 2.562 0.184 0.191
5 105,377 217 0.333 0.350 2.693 2.741 0.174 0.183

3 [64, 64, 64]
3 152,705 739 0.383 0.389 2.186 2.189 0.203 0.206
5 210,177 394 0.351 0.365 2.539 2.568 0.185 0.192

4 [64, 64, 64, 64]
3 197,953 333 0.351 0.367 2.482 2.524 0.184 0.193
5 280,001 120 0.343 0.359 2.611 2.646 0.179 0.187

5 [64, 64, 64, 64, 64]
3 243,201 191 0.342 0.356 2.687 2.694 0.179 0.186
5 349,825 182 0.316 0.348 2.482 2.603 0.165 0.182

6 [64, 64, 64, 64, 64, 64]
3 288,449 255 0.345 0.362 2.532 2.568 0.181 0.190
5 419,649 138 0.323 0.349 2.598 2.684 0.168 0.182
validation set, and the remaining three parts with 𝑁train = 1872 samples
constituted the training set.

Tables A.2 and A.3 present the results of the four-fold cross-valida-
tion hyperparameter studies for the U-Net- and FNO-based architec-
tures. For both network types, the same fixed test set was excluded
from this investigation. The metrics (nL2, nL2shad

nL2vis
, SSP) and the number

of epochs necessary to attain the best performance represent average
values across all four folds.

Appendix B. Loss curves

After determining appropriate hyperparameters for the models in
Appendix A, the train and validation data from the four-fold cross-
validation were merged. This combined data set was then used to train
the models U,𝑛s and F,𝑛s , with one radar snapshot in each samples
input (𝑛s = 1) or either 𝑛s = 9 or 𝑛s = 10 historical radar snapshots.
The performance evaluation of these models was conducted on the
previously excluded test set of 𝑁test = 624 samples. The loss curves
depicted in Figs. B.15(a)–B.16(b) illustrate the model performance and
the impact of different values for 𝑛 throughout the training epochs.
14

s

Deviation between the train and test loss curves indicates overfitting,
caused by excessive adaptation to the training data, resulting in poor
generalization to new samples. Consequently, the best models were
selected based on the lowest test loss within the 800 training epochs.

Appendix C. Visualization of spectral representation

During the investigations on the FNO models (see Fig. 5), a concern
arose regarding the chosen number of Fourier series modes 𝑛m = 64
in the 𝑅𝑖-matrices, which might lead to the omission of significant
frequency components in the wave data. To address this concern, we
visualized the JONSWAP spectra employed to initialize the HOS wave
simulation for a specific steepness value 𝜖 (since different 𝜖 = 0.08
just scale the amplitude of spectral density) and all peak wavelengths
𝐿p ∈ {80, 90,… , 190, 200}m, each corresponding to a specific 𝜔p and 𝑘p.
Based on the findings depicted and explained in Fig. C.17, we conclude
that this assumption is invalid.
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Fig. B.15. Loss curves for training of the U-Net-based model. Subfigure (a) depicts the loss of model U,1 trained with one one snapshot 𝑛s = 1 in the radar input, where the
best performance nL2 = 0.329 on test set for model evaluation is reached after 150 epochs. Afterwards the model would tend to overfit the training data. Subfigure (b) depicts
model U,10 trained with 𝑛s = 10 instead, which strongly increases performance, resulting in nL2 = 0.123 after 592 epochs of training.

Fig. B.16. Loss curves for training of the FNO-based model. Subfigure (a) depicts the loss of model F,1 trained with one one snapshot 𝑛s = 1 in the radar input, where the
best performance nL2 = 0.242 on test set for model evaluation is reached after 721 epochs. Compared to the U-Net based model U,1, F,1 does not seem to be susceptible to
overfitting . Subfigure (b) depicts model F,9 trained with 𝑛s = 9 instead, which increases performance, resulting in nL2 = 0.153 after 776 epochs of training. It can be expected
that training beyond 800 epochs would further slightly increase the best performance on test set.

Fig. C.17. JONSWAP spectra used in the data generation for one exemplary steepness value 𝜖, but varying peak wavelengths 𝐿p = 80 − 200m. The shortest peak wavelength of
𝐿p = 80m corresponds to the highest peak wavenumber of 𝑘p = 0.079m−1. The filtering wavenumber of 𝑘f ilt = 𝑛m ⋅ 𝛥𝑘 = 64 ⋅ 0.00351m−1 = 0.2246m−1, which is indicated by the
dotted red line and defined by the Fourier layers in this work, consequently does not truncate important wave components in our data set-up.
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Table A.3
Results of the hyperparameter study for the FNO-based architecture. Each investigated architecture is characterized by a number
of Fourier layers 𝑛f , a width of the latent representation 𝑛w and a number of modes 𝑛m for truncation of the layers’ Fourier series.
Our observations reveal that the performance on the validation set does not show relevant improvement for 𝑛w > 32, and that
𝑛f = 3 lead to slightly better performance than the larger number of layers. The performance, measured by the mean nL2 value
on validation set, displays a little more distinct variation among architectures than the U-Net before. Nevertheless, neighbouring
parameter combination of the FNO result in almost the same performance, suggesting that the FNO, is also not overly sensitive
to hyperparameter changes. We select the best model according to the smallest mean validation sets nL2 highlighted in blue as
our F,1.

FNO hyperparameters #weights Epochs nL2 nL2shad
nL2vis

SSP

Layers 𝑛f Modes 𝑛m Width 𝑛w Train Val Train Val Train Val

3 32

16 52,321 793 0.316 0.334 1.380 1.437 0.163 0.173
32 204,225 790 0.262 0.313 1.338 1.520 0.134 0.160
48 455,969 540 0.216 0.296 1.371 1.685 0.110 0.150
64 807,553 500 0.214 0.296 1.362 1.681 0.109 0.151

3 40

16 64,609 791 0.284 0.306 1.469 1.547 0.145 0.157
32 253,377 703 0.229 0.290 1.402 1.654 0.116 0.148
48 566,561 480 0.212 0.291 1.380 1.701 0.108 0.148
64 1,004,161 395 0.207 0.288 1.390 1.719 0.105 0.146

3 48

16 76,897 788 0.272 0.296 1.481 1.573 0.139 0.152
32 302,529 605 0.219 0.279 1.419 1.675 0.111 0.142
48 677,153 342 0.216 0.285 1.373 1.661 0.110 0.145
64 1,200,769 258 0.214 0.286 1.360 1.642 0.109 0.146

3 56

16 89,185 787 0.243 0.270 1.602 1.704 0.124 0.137
32 351,681 714 0.202 0.265 1.499 1.817 0.102 0.135
48 787,745 397 0.208 0.265 1.511 1.767 0.105 0.134
64 1,397,377 307 0.204 0.267 1.475 1.753 0.104 0.136

3 64

16 101,473 798 0.237 0.265 1.644 1.767 0.102 0.135
32 400,833 534 0.199 0.256 1.561 1.837 0.101 0.130
48 898,337 349 0.199 0.257 1.560 1.844 0.101 0.130
64 1,593,985 276 0.190 0.261 1.501 1.822 0.096 0.133

3 72

16 113,761 742 0.234 0.267 1.588 1.750 0.119 0.136
32 449,985 600 0.197 0.257 1.575 1.887 0.100 0.131
48 1,008,929 367 0.189 0.258 1.568 1.889 0.096 0.132
64 1,790,593 244 0.187 0.258 1.523 1.851 0.095 0.131

4 32

16 68,977 789 0.281 0.316 1.386 1.520 0.144 0.162
32 270,817 520 0.220 0.296 1.355 1.668 0.112 0.151
48 605,777 394 0.190 0.289 1.358 1.760 0.097 0.147
64 1,073,857 233 0.185 0.292 1.303 1.711 0.094 0.148

4 40

16 85,361 787 0.250 0.291 1.469 1.658 0.128 0.148
32 336,353 608 0.193 0.281 1.397 1.817 0.098 0.143
48 753,233 331 0.188 0.283 1.360 1.771 0.095 0.144
64 1,336,001 167 0.206 0.293 1.314 1.638 0.105 0.149

4 48

16 101,745 720 0.245 0.289 1.408 1.612 0.125 0.148
32 401,889 327 0.212 0.282 1.365 1.662 0.103 0.143
48 900,689 185 0.205 0.282 1.355 1.676 0.104 0.144
64 1,598,145 431 0.144 0.282 1.324 1.785 0.073 0.142

4 56

16 118,129 703 0.216 0.265 1.533 1.767 0.110 0.135
32 467,425 518 0.172 0.269 1.420 1.873 0.087 0.136
48 1,048,145 285 0.171 0.269 1.406 1.834 0.087 0.137
64 1,860,289 156 0.177 0.269 1.385 1.778 0.089 0.136

4 64

16 134,513 784 0.204 0.258 1.555 1.843 0.103 0.131
32 532,961 270 0.186 0.258 1.497 1.846 0.095 0.131
48 1,195,601 149 0.187 0.260 1.476 1.831 0.094 0.132
64 2,122,433 114 0.176 0.259 1.450 1.826 0.089 0.131

4 72

16 150,897 740 0.189 0.256 1.528 1.903 0.095 0.130
32 598,497 262 0.180 0.257 1.496 1.903 0.091 0.130
48 1,343,057 181 0.168 0.257 1.454 1.879 0.085 0.130
64 2,384,577 121 0.169 0.259 1.406 1.817 0.086 0.132
16
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