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SUMMARY

Dynamics modeling, simulation, and control have been studied extensively for many ap-

plications in robotics, aeronautics, underwater vehicles, and aerospace vehicles (space-

craft, launchers, re-entry vehicles). In that context, this thesis is motivated from two re-

search directions; namely, space launchers guidance and control (G&C) for preliminary

design studies and spacecraft nonlinear and agile attitude control systems.

The research performed in this thesis focuses on two aspects: 1) attitude motion and

control, which is considered to be one of the classical problems in nonlinear and multi-

variable control systems; 2) incremental nonlinear control, which is a combined model–

and sensor–based control approach and has shown promising results in the aerospace

community. The high–performance and robustness of incremental nonlinear control

comes from the partial dependency removal of an accurate plant model by just requir-

ing a control effectiveness model to estimate the so–called incremental dynamics, while

relying on angular acceleration and actuator output measurements. This approach, in-

tegrated with nonlinear control methods, are robust to modeling and parametric uncer-

tainties and allows for aggressive motion control.

The objective of this thesis is to develop concepts and methods for nonlinear flight

and attitude control design aspects within a multi-disciplinary modeling and simulation

approach. With this approach, attitude dynamics and control can play a more important

role in the outcomes of aerospace vehicle design and therefore should be considered

more within the preliminary design studies of these vehicles. The research performed in

this thesis can be summarized in the following three main parts.

The first part of the thesis is concerned with aerospace vehicle dynamics modeling

efforts. The main objective of this part is to investigate how an integrated, acausal, and

multidisciplinary approach for modeling and simulation can support preliminary design

studies of space launch vehicles. Such an alternative acausal and multidisciplinary mod-

eling approach, as compared with the methodologies already found in the literature, is

implemented with the object–oriented and equation–based modeling language MODEL-

ICA which allows to develop subsystems and component models in a declarative fashion.

To demonstrate benefits of this approach, a multibody dynamics model was imple-

mented in the context of stage separation dynamics analysis, a critical capability for

launch vehicle design studies. Such development of stage separation dynamics in declar-

ative fashion allows performing end–to–end launch vehicle trajectory simulations, by

profiting from the mentioned object–oriented and equation–based acausal modeling

properties of MODELICA. It is shown that these acausal and declarative modeling fea-

tures allow for an easy implementation of the Constraint Force Equation (CFE) metho-

dology, where the internal joint loads of a multi–stage space launcher can be obtained

automatically while complying with a set of multi–body constraints: for composite or

‘joint’ flight dynamics or during stage separation, respectively.

xv
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As example applications, the work developed in this part contributed to studies re-

garding stage and fairing separation dynamics modeling for generic launchers, and hel-

ped to analyse the separation processes and determine possible collision scenarios with

the elements involved. The potential of the framework not only spans preliminary de-

sign phases, but also relates to activities concerning more detailed system design, soft-

ware and component verification and validation, and other use cases across a launcher

development. However, these efforts outlined had some limitations in their scope and

capabilities; for instance, they had not considered in detail the aerodynamics and envi-

ronment modeling and they were not easily integrable with optimization tools. Those

aspects were left to be treated in a separate research aside from the one in this thesis.

The second part of the thesis then focuses on preliminary G&C aspects consider-

ing nonlinear design techniques such as nonlinear dynamic inversion (NDI) and con-

strained nonlinear optimization. These techniques are shown to be beneficial for con-

trollability assessments and also for the design of fast slew maneuvers of small satellites.

The main objective was to investigate how model–based nonlinear control design and

multi–objective optimization could be combined and considered usefully for the study

at early design stages of G&C activities in aerospace vehicle dynamics.

A preliminary G&C architecture is presented which combines optimal guidance com-

mands obtained with trajectory optimization together with inner–loop NDI attitude con-

trol. This showed that NDI, in combination with trajectory optimization, can be consid-

ered for controllability assessments and as a design driver during preliminary launch

vehicle design studies. To demonstrate the integrated approach, this G&C architecture

was tested on the DLR AURORA reusable launch vehicle concept, where nonlinear flight

simulations for the descent phase (including the re–entry) were considered. The results

demonstrate the controllability of the launch vehicle as well as the potential to reduce

more than half the impact on the angular impulse budget for the reaction control sys-

tem (RCS) by combining it with aerodynamic surface controls during the re–entry phase.

This could in turn translate to less propellant mass needed for the RCS, and therefore,

better performance of the launcher.

Regarding the extensive topic of optimal reorientation in spacecraft attitude guid-

ance and control, the focus was when discrete–time sampled inputs are required for

slewing the continuous–time spacecraft dynamics in agile fashion. This problem was

motivated in order to design a high–agility attitude control system for the DLR small

satellite BIROS which is actuated in sampled–time by a redundant array of ‘High-Torque-

Wheels’. Fast slew maneuvers can be designed for this spacecraft by formulating the

problem as a constrained nonlinear optimal control problem. Numerical solutions to

this nonlinear optimal control problem can be readily obtained by solving multi–criteria

optimization problems using a direct approach and trajectory optimization.

From this second part, it can be concluded that multi–objective optimization techniques,

combined with model–based nonlinear control, facilitates early and preliminary G&C

studies very efficiently. The limitations regarding the absence of model and paramet-

ric uncertainties for improving robustness in the nonlinear attitude control design, and

the development of an agile attitude control system that is real–time capable and imple-

mentable on board, motivated the next research question.

The third and final part of this thesis brings some contributions to the incremental
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nonlinear control body of work. These contributions were motivated on how to inte-

grate the incremental nonlinear control approach with backstepping, time-delay con-

trol (TDC), and nonlinear PID–control. This part also considers three applications of

incremental nonlinear dynamic inversion to robust attitude control of spacecraft, which

has not been widely studied in the literature. Incremental nonlinear control requires

information of the actuator states and the vehicle’s rotational acceleration in order to

reduce feedback sensitivities to an inaccurate baseline or airframe model. With such

an approach, feedback control dependency on the modeled vehicle dynamics is greatly

reduced, overcoming one of the major robustness flaws of conventional model–based

flight control systems.

Incremental backstepping was first motivated by combining the design of increments

of control action with the recursive step-by-step procedure of the backstepping control

design methodology. In this thesis, incremental backstepping is further considered as

a methodology for robust nonlinear flight control by tracking outer–loop control vari-

ables of such multi–loop nonlinear system incrementally, and by accounting for model

and parametric uncertainties that may rise during such aggressive maneuvers. This

promising methodology for robust nonlinear flight control systems, and its potential,

were demonstrated with a longitudinal nonlinear flight control example where good

tracking performance was obtained while being subjected to relatively large variations

in the vehicle’s aerodynamic model parameters.

We present an equivalence of incremental nonlinear dynamic inversion (INDI) and

time–delay control (TDC) when a reformulation of the plant control effectiveness is con-

sidered. TDC, more commonly known in the robotics community, is a nonlinear con-

trol technique that estimates and compensates for effects of disturbances and system

uncertainties by utilizing time–delayed signals of some of the system variables. More-

over, a known relationship and equivalence between discrete formulations of TDC and

proportional-integral-derivative (PID) for nonlinear plants of second–order controller

canonical form, and in the context of a robot motion control application, allowed to find

an equivalence between INDI and TDC by considering sufficiently small time–delayed

signals explicitly, together with a reformulation of the plant control effectiveness and

fixed–value gains in the (nonlinear) PID control structure. This brings a new interpreta-

tion of INDI that leads to a meaningful and systematic method for tuning of nonlinear

PID flight control systems via INDI, as it was previously done for robotics. It is also found

that, since incremental nonlinear PIDs are PIDs with state-dependent gains that are im-

plemented in a discrete or sampled–time form, their state-dependent gains might not

necessarily be gain–scheduled but rather model–based.

The INDI control approach is shown to be promising for spacecraft attitude con-

trol, in particular for agile reorientation maneuvers, since it is robust against model and

parametric uncertainty as well as capable to reject external disturbances very effectively.

One of the applications considered the attitude tracking and disturbance rejection prob-

lem of rigid spacecraft subjected to model and parametric uncertainties, and was ini-

tially achieved with a cascaded two–loop control system using as outer-loop control the

kinematic inversion of the attitude parameters known as Modified Rodrigues Parameters

(MRPs). Assuming a time scale separation of the attitude and rate dynamics, the rate

control for the inner loop was done using INDI of the plant dynamics. As an improve-
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ment versus model–based nonlinear dynamic inversion control, the INDI approach en-

hances robustness capabilities by reducing feedback control dependency on accurate

knowledge of the system dynamics. Simulation results demonstrate the efficient track-

ing and external disturbances rejection capabilities of the proposed controller under the

combined effect of external disturbances, time-delay, and parametric uncertainty.

A recent reformulation of INDI is considered to design a nonlinear and agile space-

craft attitude control system. The improvement over the INDI controller of the previous

one is made by designing a full three–axis attitude control for a spacecraft actuated by

three reaction wheels, but without the cascaded inner–loop that was based on the as-

sumption of time–scale separation. It is shown that scheduling of the control effective-

ness can be done with the Jacobian of the MRP kinematics and is only subject to paramet-

ric uncertainty of the spacecraft augmented inertia and its wheelset alignment matrix. A

relationship between INDI and nonlinear PID control was found, which demonstrates

that (for the class of input–affine nonlinear systems considered) INDI control can be re-

casted as incremental nonlinear PID control, and vice–versa. The relationship can be

useful for closed–loop gain tuning, and for stability and robustness analysis as shown

in the literature. Simulation experiments for this particular problem demonstrate that

INDI has similar nominal performance as TDC/PID control, but superior robust per-

formance and stability. INDI control for agile spacecraft was again reformulated but

in the context of nonlinear sampled–data systems; this was motivated from an explicit

consideration of the sampling time via an approximate sampled–data model in normal

form that is widely known in the literature. The objective of this reformulation was to

bridge the gap between continuous–time and highly sampled INDI formulations (100 –

1000 Hz) and their discrete and lowly sampled counterparts (1 – 10 Hz) in the context of

spacecraft attitude control where low sampling rates are common.

Finally, to summarize, in this final part of the thesis we showed that incremental non-

linear control can be integrated with backstepping, time–delay control, and nonlinear

PID control; incremental nonlinear control laws can be regarded as both model– and

sensor–based, where ‘model’ refers to the scheduling of the instantaneous control ef-

fectiveness; and several applications and scenarios of robust nonlinear attitude control

which aim to close the gap in terms of agility, robustness, and performance of future

attitude control systems are considered.

The research performed in this thesis is recommended to be continued in three main

directions: i) consideration of control input constraints and actuator limits; these as-

pects are very important in particular for agile attitude control systems where exploiting

the full capacity of the actuators might be necessary. This raises the question– what hap-

pens during saturation of incremental (nonlinear) control systems?, ii) studying in detail

the limits of stability vs. performance, since incremental (nonlinear) control action at

high-sampling rates implies or induces a high–gain control loop which can compromise

stability at high frequencies, and iii) doing more efforts in finding relationships between

incremental nonlinear control, the early works on TDC pioneered by Hsia and Youcef–

Toumi, and the large mathematical body of literature behind nonlinear sampled–data

systems established by Monaco and Normand–Cyrot. Most of the literature published

on these subjects is found in the fields of robotics, nonlinear control, and applied math-

ematics; but not so much in the field of aerospace vehicles dynamics and control.
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INTRODUCTION

This chapter begins with a brief background and motivation and then introduces the ap-

proach and the main research questions treated in this thesis. The motivation is driven

from preliminary design studies of space launchers and preliminary studies in guidance

and control (G&C) for novel aerospace vehicles (space launchers, spacecraft, re-entry ve-

hicles). Further focus is towards dynamics modeling, simulation, and control systems, in

particular studying incremental nonlinear control methods for robust and agile attitude

control systems design.

1.1. BACKGROUND AND MOTIVATION

T
HE background and motivation of this thesis comes from two research directions in

the context of dynamics modeling, simulation, and control of aerospace vehicles;

namely, space launchers guidance and control (G&C) for preliminary design studies and

spacecraft nonlinear and agile attitude control systems.

1.1.1. SPACE LAUNCHERS G&C FOR PRELIMINARY DESIGN STUDIES

Reusability of launch vehicles strongly affects the launch servicing market whenever suf-

ficient reliability and low refurbishment costs can be achieved [7]. Keeping up with the

rapidly–evolving international launch market is essential for Europe, and with that the

need to explore various methods and technologies for reusability [7–10].

Several studies on future launch vehicle configurations and technologies for expend-

able and reusable launch vehicles have been conducted in the past at the German Aero-

space Center (DLR) [8, 10–16]. Currently, partly or fully reusable launch vehicles us-

ing different return methods are investigated at DLR within research projects AKIRA, X-

TRAS [10, 16–18], and ReFEx (Reusability Flight Experiment) [19–23]. An example is the

winged Liquid Fly-back Booster concept LFBB, studied extensively during the early 2000’s

[24] and more recently based on an LOX/LH2 propellant combination for vertical take-

off and vertical landing (VTVL) [17]. A more recent study concerns the delta-winged

1
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horizontal takeoff and horizontal landing (HTHL) concept AURORA [18], based on an

LOX/Kerosene propellant combination.

Figure 1.1: DLR SART – SpaceLiner 7. Left: SpaceLiner concept at stage separation with passenger stage in

upper position. Right: Artist’s impression of satellite payload release from SpaceLiner 7 Orbiter’s open payload

bay in low-Earth orbit (LEO). Credits: DLR, CC-BY 3.0. 1

In this context, the field of work and research in space launchers focuses on eval-

uations of conventional and reusable launch vehicle concepts, in a multidisciplinary

collaboration with other DLR institutes. In particular, focus lies on the system dynam-

ics, guidance, and control level (G&C) where contributions in simulation, trajectory op-

timization, and control design of such space systems have been made.

For instance, after computation of optimal flight trajectories, detailed studies and

assessments of the launcher performance during all relevant flight phases can be per-

formed. These can include controllability and stability studies, stage separation studies,

and preliminary design of the control systems of the space launcher. Furthermore, these

aspects can have effects on the general design of the considered space launcher concept.

The need for improvement of early systems analysis capability, which comes with the

increased complexity and cost of space launch vehicles [8, 16], is the first motivation

of this thesis; that is why the analysis and methods proposed here are aimed only at

conceptual and preliminary design phases. These early efforts are important since the

vehicle’s design and technology decisions have a major impact on its final configuration,

feasibility, and on several costs across its development and operations.

In that sense, for the launcher concepts and configurations to consider and optimize

at the stages of preliminary design, this thesis focuses on stability and controllability

estimates of these designs as early as possible.

1.1.2. SPACECRAFT G&C FOR AGILITY AND ROBUSTNESS

Developing technological foundations for new space missions, and especially in the field

of agile Earth Observation [25–33] for crisis warning and management systems, future

small satellite systems have to be more performant: this implies not only fine–pointing

capabilities for data acquisition, but also high agility for maneuverability, e. g., high dy-

namic slewing capability to command the platform for fast and flexible data acquisition.

Advancing the capability for agility as well as for robustness in terms of spacecraft

attitude control systems is the second motivating aspect of this thesis. Again, we focus

on proposing methods at the conceptual and preliminary design phases, which will nat-

urally call for further development when it comes to validation and verification. In that

1Source: https://www.dlr.de/irs/en/
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sense, this thesis will consider technological (software) experiments in terms of space-

craft fast-slewing capability as well as robust nonlinear attitude control, which could

demonstrate the feasibility of new approaches for the next generation of optical remote

sensing space missions.

One of the applications of this method is oriented towards the recently launched Ger-

man satellite platform BIROS (Bispectral InfraRed Optical System) [27], which is the sec-

ond technology demonstrator along with the TET-1 (Technologie Erprobungs Träger or

Technology Experiment Carrier) satellite of the DLR ‘FireBIRD’ (Fire Bispectral InfraRed

Detector) [28] constellation aiming to provide infrared (IR) remote sensing for early fire

detection. Monitoring fires from space involves the detection and measurement of so-

called high-temperature events in forests, volcanic activity, gas flares and industrial hot-

spots. These small satellites are largely based on the flight-proven Bi-spectral Infra-Red

Detection (BIRD) [34, 35] satellite bus launched in 2001. With the provision of such re-

mote sensing data from FireBIRD, DLR not only supports crisis management activities

in the frame of the International Charter “Space and Major Disasters” 2, but also con-

tributes towards scientific goals, being an R&D project of DLR’s Aerospace Research and

Technology program division.

Figure 1.2: FireBIRD – a satellite duo for fire detection. Left: Mission logo. Right: artist impression of BIROS

(front) and TET-1 (back). Credits: DLR, CC-BY 3.0. 3

BIROS was launched on 22 June 2016 at 05:55 CEST into a Sun-synchronous orbit,

while TET-1 has been orbiting Earth in a polar orbit since July 2012 and has successfully

concluded the first part of its mission as a technology demonstrator. The BIROS satellite

bus segment is based on the one developed for TET-1, but is additionally equipped with

a propulsion system for active attitude and orbit control. Both satellites are equipped

with a multi–spectral camera system as the main payload.

Among several mission goals and scientific experiments, the BIROS platform is also

equipped with a redundant set of three ‘High-Torque-Wheels’ (HTW) [25, 26] in orthogo-

nal configuration in order to demonstrate a high-agility attitude control system.

One of the main requirements for the HTW experiment is being able to rotate the

satellite 30 degrees in 10 seconds around an axis with inertia of about 10 Kg.m 2. For

3-axis agile maneuvers, however, the attitude control system design is more challenging

given the current on-board-computer (OBC) requirement of commanding the plant at a

sampling rate of only 2 Hz and because of the many nonlinearities involved.

2Source: https://activations.zki.dlr.de/en/activations/items/ACT139.html
3Source: https://www.dlr.de/dlr/en/
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1.2. APPROACH

Addressing these motivating problems requires pursuing the following activities:

1.2.1. SYSTEMS MODELING AND SIMULATION

The emphasis of this activity is the creation of dynamic models and simulations with dif-

ferent levels of detail and fidelity for the task at hand; often in cooperation with other

research partners and disciplines. Broadly speaking, modeling of a dynamical system or

a dynamical model often refers to a simplified reflection of a reality described by its time

evolution. In this thesis, a model is generally understood to mean the description of a

physical system defined by its fundamental mathematical equations or modeled from

first principles (physics, mechanics, etc.), together with the changes arising from the in-

teractions with its environment or with its subsystems. Simulations of a model refer to

the numerical solution of such mathematical equations, depending on the given initial

conditions and boundary conditions; these are usually solved with numerical methods

or integration routines.

Physical models can be categorized according to their level of detail in the following

categories as delineated in the “Core Process: Systems Modeling” since 2012 at the DLR

Institute of System Dynamics and Control:

Level 1 – Architectural

Stationary models in which the transient processes are neglected.

These are often described by algebraic equations and used for high-

level system design, considering power balances for instance.

Level 2 – Functional

Models in which transient processes are approximated with some

physical quantities and described by ordinary differential equations

(ODEs) and/or differential algebraic equations (DAEs). Usage exam-

ples include stability studies or for control systems design.

Level 3 – Behavioral

Models in which transient processes are described in detail and are

usually described by hybrid differential algebraic equations (HDAEs).

Example applications include electric network quality investigations

and modeling of ‘more electric’ aircraft.

Level 4 – Distributed

Models which are spatially distributed and their transient processes

are described in detail by partial differential equations (PDEs) with

FEM (Finite Element Method), CFD (Computational Fluid Dynam-

ics), or DEM (Discrete Element Method). Example applications in-

clude detailed vibration investigations.
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In this thesis, only system and control models from Level 1 and Level 2 are con-

sidered, whereas more complex behavioral system models (Level 3), three-dimensional

mechanical models (Level 3), and FEM Models (Level 4) are not. The multi-disciplinary

models and control systems are modeled either with MATLAB&SIMULINK[36], with MOD-

ELICA [37–41], or with a combination of both, depending on the task or problem at hand.

MATLAB&SIMULINK is known for its ‘block–based’ modeling capabilities, meaning

that models are usually implemented within a hierarchical structure and according to a

signal flow approach where a predefined input/output (I/O) causality is fixed and their

relationship is explicit. This is commonly known as a causal or imperative modeling ap-

proach. In contrast to such classical block–based approach for modeling, MODELICA of-

fers the possibility to think of models from a ‘component–based’ approach where these

are rather implemented without a predefined I/O causality, and interact with their en-

vironment by means of physical ports, called connectors, that represent some kind of

information or energy exchange. For this reason, this paradigm is commonly known as

an acausal or declarative modeling approach [41]. Declarative models are described by

their fundamental mathematical equations or first principles. This also means that dec-

larations are given without an explicit order or how to compute them, and that is why

these models are often called physics– or equation–based [41].

Models in MODELICA are described using differential, algebraic, and discrete equa-

tions which are then mapped into hybrid differential algebraic equations (DAEs). DAE

systems are generally expressed on their implicit form [40, 41] as

F
(

ẋ(t ), x(t ),u(t ), y(t ),ρ, t
)

= 0, (1.1)

where ẋ are the state derivatives, x the state variables, u the inputs, y the algebraic

variables, ρ the parameters and constants, and t the time variable. Systems are then

solved and simulated by a MODELICA simulation environment such as DYMOLA. More-

over, when these systems are represented in this DAE implicit form, they can be solved

directly by a DAE solver such as DASSL [42, 43]. Alternatively, by means of specialized al-

gorithms, the system can be sorted according to specific inputs and outputs and mapped

into an explicit ordinary differential equation (ODE) form by solving for the derivatives

and the algebraic variables, and then subsequently solved numerically by typical ODE

solvers. The translation process of such declarative models into efficient computer ex-

ecutable code and details of this compilation is, however, beyond the scope of this the-

sis [44–47].

Another advantage of using MODELICA is that it is domain neutral; it has a multido-

main modeling capability which means that model components corresponding to phys-

ical objects from several different domains can be described and connected efficiently.

An example of this domain neutral feature is shown in [48] where an inverse modeling ap-

proach for ‘more electric’ aircraft equipment systems is considered, allowing to analyse

power behaviour as a result of given load profiles for electrical, mechanical, hydraulic,

and pneumatic equipment systems in a single model. For all those reasons, this thesis

considers such modeling approaches in the context of dynamics modeling, simulation,

and control of aerospace vehicles.
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1.2.2. GUIDANCE AND CONTROL (G&C)
To address the motivation concerning early stability and controllability aspects, the em-

phasis of this process lies on model–based nonlinear methods for guidance and control.

Guidance broadly speaking refers to the generation of maneuver commands or a

trajectory to achieve a particular vehicle motion. This can be achieved offline or online,

depending on the nature of the problem, and uses state information (estimation) from

a navigation system. Planning a motion or obtaining a trajectory is usually done in an

optimal sense and to achieve a particular set of goals. The optimal trajectory or path

reference and their corresponding commands are commonly used in aerospace G&C as

references for an inner-loop attitude control subsystem [49–51].

In that sense, in terms of guidance, this thesis focuses on an off-line approach where

guidance commands or reference trajectories are generated or obtained by the following

sequential methodology or procedure:

1. Developing comprehensive analytical and/or multi-disciplinary models either with

MATLAB&SIMULINK, with MODELICA, or with a combination of both, depending

on the task or problem at hand;

2. Formulating of the optimization problem (trajectory optimization, guidance com-

mands, time-optimal control, etc.) for the given set of goals;

3. Transcribing the optimization problem formulation into a constrained and multi-

criteria or multi-objective optimization problem considering inequality and equal-

ity constraints;

4. Solving the above with a direct approach using a trajectory optimization pack-

age, in this case the package ‘trajOpt’ [2] of DLR’s optimization tool MOPS (Multi-

Objective Parameter Synthesis) [52–54], implemented in MATLAB[36], which solves

multi-objective design problems that are mapped to weighted min-max optimiza-

tion problems.

MOPS is an optimization–based tool that allows thorough assessment of control law

designs which has been useful in many aeronautics applications [52–59]. This can be

done at several layers, for example by finding optimal parameter tuning, performing

Monte–Carlo simulations, but also by evaluating robustness via worst–case search.

The MOPS synthesis formula [53, 54, 56] starts by the definition of k design objec-

tives to be minimized together with their desired or demanded values, denoted mathe-

matically as ck and dk , respectively. The original constrained minimization problem is

then transcribed into a direct approach resulting in the following min-max multi-criteria

optimization problem:

min
T

{

max
k ∈Sm

{
ck (T )

dk

}}

, (1.2a)

subject to ck (T ) = dk , k ∈ Seq,

ck (T ) ≤ dk , k ∈ Sineq,

with

Tmin,l ≤Tl ≤Tmax,l over [0, t f ] (1.2b)
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Here [53], Sm is the index set of criteria to be minimised, Seq is the index set of equal-

ity constraints and Sineq is the index set of inequality constraints. Moreover, T is the

tuning parameters vector Tl to be optimized and that are bounded by Tmin,l and Tmax,l ,

respectively; ck (k ∈Sm) is the k−th normalized criterion and dk (k ∈Sm) its correspond-

ing demand value which serves as a criterion weight; lastly, ck (k ∈ Seq,Sineq) are nor-

malised criteria which are used as equality or inequality constraints, respectively, and

dk (k ∈Seq,Sineq) their corresponding demand values.

Finally, the multi-criteria optimization problem in Eq. (1.2) containing the objective

function together with equality and inequality constraints can be solved using standard

nonlinear programming (NLP) methods.

With model–based design optimization, various G&C aspects of the overall system

dynamics can be considered at early design stages. The optimization then delivers the

best possible compromise between existing conflicting goals and provides a reference

for subsequent inner–loop attitude control. This combination is inspired by the one al-

ready introduced for aeronautical applications in [60], where combining multi–objective

optimization, physical models, and nonlinear control showed enormous potential com-

pared to a more integrated model–based approach. Once optimal guidance commands

and reference trajectories are obtained, the next step is tracking or approaching the tra-

jectory via nonlinear control.

Nonlinear control does not only address nonlinear plants directly, but is in fact de-

signed to cope with the shortcomings of conventional linearization. For example, lin-

earization does not provide an account about the nonlinearities that might occur during

operation since a local approximation of the nonlinear system over a small domain of

interest around an equilibrium is performed.

Many nonlinear control methodologies have been developed in the past decades to

overcome these shortcomings on top of the disadvantages from having model or para-

metric uncertainties that can compromise the closed-loop stability and convergence

of the system. Among the most popular ones are feedback linearization (FBL) [61–63],

adaptive control [64], and backstepping [65, 66].

Nonlinear dynamic inversion (NDI), which is how feedback linearization is more com-

monly known in the aerospace literature [60, 67–70], requires an accurate model of the

system to cancel its nonlinearities (entirely or partly) by means of state feedback and

exact transformations; although meant for a wide class of systems, NDI may only be

applied in combination with physical insight [60]. This brings the nonlinear system dy-

namics into a decoupled linear form for a particular region of interest around an equi-

librium. Once feedback–linearized, some conventional linear control methods can be

sought to the obtained system in order to achieve desired closed–loop dynamics. This

is advantageous since it helps to reduce the complex task of linearizing and synthesiz-

ing different (linear, robust) controllers for the several operating points obtained as it is

done with gain–scheduling. This drawback of gain–scheduling on top of the difficulties

of guaranteeing stability and performance in–between operating points was a motivat-

ing aspect for the original applications of NDI for flight control systems. NDI have been

widely improved and investigated for flight control applications over the years, specially

for improvements regarding robustness and performance [69–75], but has also been con-

sidered in space applications such as spacecraft control and re-entry vehicles [49–51].
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Backstepping (BKS) [65, 66, 76] is aimed to design stabilizing controllers for nonlinear

systems thanks to a systematic Lyapunov–based procedure. The origins of the backstep-

ping method are traced to the survey paper by Kokotović and Arcak [66]. In this thesis

we focus on strict-feedback and cascaded nonlinear systems but backstepping can be

also applied to a broader class of systems. The method starts by considering the scalar

equation that is further separated from the control input by the largest number of in-

tegrations and ‘steps back’ recursively towards the input in order to find a stabilizing

controller, hence the name ‘backstepping’ [6]. For each step there is an intermediate sta-

bilizing function that is based on a recursive virtual control law that must be calculated

until the end where the final control law is found. An important feature of backstepping

is the flexibility of the method. For instance, and in contrast with NDI, if a nonlinearity

is helpful for stabilizing (or in some other sense), it can be kept in the formulation of the

final control law and in the closed-loop system even when the size of such stabilizing

nonlinearity is not known a priori, which makes the controller less reliable on a pre-

cise model. This means that dealing with nonlinearities actually becomes a designer’s

choice [6].

These nonlinear control laws have the disadvantage of requiring an accurate knowl-

edge of the nonlinear system dynamics in order to perform the explicit cancellation (in

the case of NDI) and that finding Control Lyapunov functions (CLFs) for higher-order

dynamic plants is generally not easy (in the case of backstepping). Moreover, the design

and optimization of transient responses is difficult when applying nonlinear control. In

that sense, designing for stabilization might not be sufficient. Regarding aerospace appli-

cations, in order to apply such model-based nonlinear control methods successfully, this

means that both the model of the system must match the onboard model and practically

all nonlinearities must be known accurately. These assumptions are hardly met in real-

ity and in practice and are the main reasons behind the motivation of further developing

this methodology in terms of robustness. This robustness aspect is highly important

since there is a dependency of the inner–loop of the control system on the model that

is critical, i. e., the stability and performance of the system can be compromised when

performing under model and sensor uncertainties. Moreover, reaching the actuator lim-

its can also be problematic in terms of dynamic inversion and nonlinear control. The

saturation of the actuators and constraints of the control input variables can potentially

degrade the closed–loop system and even compromise the overall system stability.

Several improvements have been made regarding these aforementioned flaws of NDI-

based control laws, specially with regards to robustness. Some of these improvements

were focused on the robustness of the overall control architecture by applying robust

control in the outer loop of the system. A combination of NDI with the structured singu-

lar value (µ-analysis) and H∞ synthesis for reentry flight clearance was done in [51, 69]

where noticeable benefits were obtained in comparison with conventional NDI. How-

ever, these improvements came with the introduction of some conservatism since the

uncertainties were not considered fully or they were covered by lumped uncertainties.

These aspects could be further improved considering an incremental nonlinear control

approach, presented next.
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1.2.3. THE INCREMENTAL NONLINEAR CONTROL APPROACH

Theoretical development of increments of nonlinear control action dates back to the late

nineties and started with activities concerning ‘implicit dynamic inversion’ for DI-based

flight control in the works of Smith, Bacon et al. [70, 73]. Other designations for these

developments found in the literature are ‘modified NDI’ and ‘simplified NDI’, but the

designation ‘incremental’ is considered to describe the methodology and nature of these

type of control laws better [71, 77–80].

INDI has been elaborated theoretically and applied in the past decade to advanced

flight control applications [70, 71, 73–75, 80] as well as in space applications for space-

craft attitude control [4]. More recently, this technique has been applied also to fault–

tolerant control of aircraft subjected to sensor and actuator faults [81–83], in practice for

quadrotors using adaptive control [84–86], and in real flight tests of small (FASER) un-

manned aircraft [87, 88] and a business jet (Cessna Citation II, PH-LAB) aircraft [89, 90];

verifying INDI’s performance and robustness properties against aerodynamic model un-

certainties and disturbance rejection as studied in detail in [71, 86, 91, 92]. Moreover, the

incremental nonlinear control approach has also been considered for motion control in

mechanical systems and robotics [93].

To motivate the use of increments of nonlinear control, consider as a starting point

and without loss of generality aerospace vehicle dynamics that can be described as n-

dimensional multivariable nonlinear systems affine in the m inputs ui and with m out-

puts yi :

ẋ = f (x)+g (x)u, (1.3a)

y = h(x), (1.3b)

where x ∈R
n , u ∈R

m , and y ∈R
m . The functions f (x) and h(x) are assumed to be con-

tinuously differentiable on R
n and the functions g (x) = [ g 1(x) . . . g m(x) ]⊤ ∈ R

n×m

are assumed to be continuous functions of the state vector x . Typical control law designs

depart with a Jacobian linearization about a particular equilibrium or operational point

of interest [61, 65, 76, 94] (u0, x0, y 0) where ẋ0 = 0 as:

ẋ =
∂

∂x

[

f (x0)+g (x0)u0

]

(x −x0)+g (x0)(u −u0), (1.4a)

y − y 0 =
∂h(x0)

∂x
(x −x0), (1.4b)

where, considering deviations from the equilibrium point of interest of the state vari-

ables, output variables, and control inputs as:

ũ := u −u0, x̃ := x −x0, ỹ := y − y 0, ˙̃x := ẋ − ẋ0,

a linear system in state-space form can be obtained as:

˙̃x = A x̃ +B ũ, (1.5a)

ỹ =C x̃ , (1.5b)
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where the definitions for the matrices A,B , and C are:

A =
∂

∂x

[

f (x)+g (x)u
]
∣
∣
∣x=x0

u=u0

, B =
∂

∂u

[

g (x)u
]
∣
∣
∣x=x0

u=u0

, C =
∂

∂x
h(x)

∣
∣
∣

x=x0

.

Since such Jacobian linearization is only valid locally at the equilibrium point of in-

terest (u0, x0, y 0), a control law must be then designed for operation only around such a

point. Otherwise, performance, and even stability may be compromised. The concept

of incremental control action amounts to finding a control law u for systems described

in Eqs. (1.3) when they are expressed in the so–called incremental form [4, 70, 71, 73–

75, 95], which is also an approximation of the nonlinear system by Jacobian linearization

or Taylor-series expansions, but now considering deviation variables from operational

points that may not necessarily represent a particular equilibrium, i. e., such as:

∆u(t ) := u(t )−u0(t ), ∆x(t ) := x(t )−x0(t ), ∆ẋ(t ) := ẋ(t )− ẋ0(t ),

where the current control and state, u0 and x0, respectively, represent –for each time

instance– the reference an incremental instance in time before u and x for the construc-

tion of the first–order approximation of the system. Notice that as a result, ẋ0(t ) is not

necessarily zero as in the case of equilibrium points. The time–dependency notation of

these deviation variables will be omitted in the remainder of this thesis to simplify nota-

tion. Furthermore, in contrast to this incremental nature of the approximation where the

partial derivatives are interpreted in a geometric sense [70, 71, 73–75], i. e., with respect

to a point (u0, x0), in this thesis we also consider explicitly a sufficiently small time–delay

λ that brings an interpretation of the linearization about the λ−delayed signals [96]:

u0(t ) := u(t −λ), x0(t ) := x(t −λ), ẋ0(t ) := ẋ(t −λ),

of the current control input, state, and state derivative, respectively. This means an ap-

proximate linearization about the λ−delayed signals is performed incrementally, and

not with respect to a particular equilibrium or operational point of interest. Finding a

suitable control law for the newly introduced incremental control input ∆u leads to a

control design for the system:

ẋ = ẋ0 +
∂

∂x

[

f (x)+g (x)u
]
∣
∣
∣x=x0

u=u0

(x −x0)+
∂g (x)u

∂u

∣
∣
∣x=x0

u=u0

(u −u0)+O (∆x2) (1.6)

∼= ẋ0 +F 0∆x +G0∆u, (1.7)

where F 0 := F (x0(t ),u0(t )) and G0 :=G(x0(t )) represent online Jacobian linearizations of

the on-board model f (x) and the control derivatives g (x), respectively. From this point

forward, the nature of the control law designs follows from some kind of assumption.

The most common assumption in incremental nonlinear control is one that involves

high-sampling rates of the closed-loop control system, together with fast control action.

Such assumption can be summarized as follows:

Time-scale separation assumption: For a sufficiently small time-delay λ and for any in-

cremental control input, it is assumed that ∆x does not vary significantly during λ. In
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other words, the input rate of change is much faster than the state rate of change so it can

be ignored:

ǫT SS (t ) ≡∆x(t ) = x(t )−x0(t ) ∼= 0, ∀ ∆u, (1.8)

which leads to:

ẋ ∼= ẋ0 + A0 (x −x0)
︸ ︷︷ ︸

∼=0

+G0 (u −u0) , (1.9)

in other words:

∆ẋ ∼=G0 ·∆u (1.10)

For small time increments and high sampling rates, the nonlinear system dynamics in

its incremental form are approximated by the gain matrix G0 := G(x0(t )), which we will

refer to as the instantaneous control effectiveness (ICE), i. e., the control effectiveness eval-

uated at the current state. Meaning that this model-based term is sampled or scheduled

at each incremental instant.

Since this results in a change of state variables, referring back to the original or abso-

lute state space variables, the control input u, to be yet designed, can be represented in

generic form as:

u =α(u0, x , ẋ0) = u0 +∆u(x , ẋ0,G0) (1.11)

It can be concluded that such incremental–linearization, and its respective incremen-

tal nonlinear control, has a clear dependency not only on the incremental state x0 and

inputs u0, but also on the incremental state derivatives ẋ0. This approach for control

design results in an improvement of the robustness of the closed-loop system compared

to conventional nonlinear control (NDI, backstepping) since dependency on the accu-

rate knowledge of the plant dynamics is reduced. The approach is inherently implicit in

the sense that desired closed-loop dynamics do not reside in some explicit model to be

followed, but result when the feedback loops are closed [73, 74].

However, previous theoretical stability and robustness proofs for INDI controllers

have many drawbacks and were not mathematically consistent as pointed out in [97, 98]

since they were mostly based on simplifying assumptions, approximated transfer func-

tions, and block diagrams [71, 84, 85]. Recently, the INDI control in the literature has

been reformulated [97, 98] for systems with arbitrary relative degree and without recur-

ring to cascaded-control structures, i. e., without using a time–scale separation assump-

tion. The reformulation was also considered to extend further the incremental nonlinear

control approach to Sliding Mode Control [99] showing potential in robust fault-tolerant

flight control since it can reject a wider range of uncertainties and disturbances. For

these new reformulations and extensions, the conditions for stability and robustness

analyses have been finally established, and were obtained and analyzed using Lyapunov-

based methods [97–99]. This important step in regards to conditions for stability and

robustness makes the method more tractable and suitable for future real applications.

In the context of this thesis, we deal with the nonlinearities and uncertainties arising

in aerospace attitude control considering this incremental nonlinear control approach,

which reduces model dependency while making use of actuator output and angular ac-

celeration feedback. This thesis investigates incremental nonlinear dynamic inversion
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(INDI) and incremental backstepping (IBKS) approaches for aerospace applications, as

presented in the bold boxes of Figure 1.3.

Nonlinear Dynamic Inversion (NDI) Backstepping (BKS)

Feedback Linearization (FBL) Lyapunov-based recursive designs

Nonlinear controlNonlinear control

Aerospace Applications

RobustRobust AdaptiveAdaptive IncrementalIncremental

etc.etc.

etc.etc.

etc.etc.

Figure 1.3: The considered nonlinear control framework.

1.2.4. LIMITATIONS AND ASSUMPTIONS

In this thesis the following limitations and assumptions must be kept in mind:

• This thesis only considers rigid bodies and their feedback motion control.

• The scope is limited to aerospace system dynamics that are affine in the control

inputs and described in the generic nonlinear form ẋ = f (x)+ g (x)u. Other ap-

proaches for the robustness of nonlinear control systems in aerospace have been

studied in the literature: systems in the forms ẋ = f (x)+ g (x ,u) were treated in

Falkena et al. [100, 101] and Sun et al. [102–104] with a sensor–based backstep-

ping and singular perturbations approach whereas systems in the form ẋ = f (x)+
g (x ,u, u̇) were considered by Smeur et al. [84–86].

• It is assumed that complete and accurate knowledge about the state of the system

is available, which implies that the availability of ẋ0 may be measured directly or

derived from inertial measurement unit (IMU) gyro measurements and filtered ac-

cordingly, while the availability of u0 may be computed directly in the algorithm

(using continuous or sampled–time delays), provided as a direct measure from the

actuator output, or obtained with an accurate model of the actuator dynamics;

• For practical implementations, we may consider first–order and second–order dy-

namics for each actuator and furthermore, we do not consider these actuator dy-

namics in the control design process. For that reason, we also assume that these

actuators are sufficiently fast in the control-bandwidth sense, meaning that the

actuator bandwidth is higher than the control system closed–loop bandwidth.
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• This thesis expects the incremental approximation ẋ ∼= ẋ0 +G0 (u −u0) to hold

in the domain of operation. A limitation arises since control design departing

from this approximation does not have a mathematically consistent stability proof

when applied back to the original system. In fact, the recent reformulated INDI

and incremental SMC [97–99] provided sufficient conditions for stability and ro-

bustness for the actual system ẋ = ẋ0+G0 (u −u0)+δ(x , t ), where the correspond-

ing approximation, i.e., δ(x , t ) ∼= 0, should be made after control design.

1.3. RESEARCH QUESTION AND OBJECTIVES

1.3.1. RESEARCH QUESTION

Advancing the capabilities to address the aspects just presented gives rise to the follow-

ing overarching research question for this thesis:

How can the incremental nonlinear control approach be applied to

improve agility and robustness of aerospace vehicles’ attitude control

systems?

This research question focuses on two aspects: 1) attitude motion and control, which

is considered to be one of the classical problems in nonlinear and multi-variable con-

trol systems; 2) incremental nonlinear control, which is a combined model– and sensor-

based control approach which has shown promising results in the aerospace community.

The high-performance and robustness of incremental nonlinear control comes from the

partial dependency removal of an accurate plant model by just requiring a control effec-

tiveness model to estimate the so-called incremental dynamics, while relying on angular

acceleration and actuator output measurements. In that sense, relying on angular ac-

celerations and not explicitly on aerodynamic or ‘on-board’ models makes the method

robust to modeling and parametric uncertainties and allows for aggressive motion con-

trol. For that reason, in order to answer the main research question, we consider the full

nonlinear motion behind the attitude of aerospace vehicles and focus on the mentioned

incremental nonlinear control methodology as line of research.

1.3.2. OBJECTIVES

Having presented the motivation and approach for the current problem considered in

this thesis, namely the nonlinear attitude motion and control of aerospace vehicles, the

objective of this thesis is to develop concepts and methods for nonlinear flight and at-

titude control design aspects within a multi-disciplinary modeling and simulation ap-

proach. With this approach, attitude dynamics and control can play a more important

role in the outcomes of aerospace vehicle design and therefore should be considered

more and more within the preliminary design studies of aerospace vehicles. The objec-

tives of this thesis can be encompassed briefly in the following research questions.
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Research Question 1

How can an integrated, acausal, and multidisciplinary approach for modeling

and simulation support preliminary design studies of space launch vehicles?

This first question relates to dynamics modeling and simulation efforts that might be

considered in support of preliminary design studies of aerospace vehicles. Launch vehi-

cle dynamics modeling is quite challenging, mainly because of the highly interconnected

disciplines involved: propulsion, aerodynamics, structures, avionics, mechanisms, and

GNC among others. Discipline experts perform their respective design often indepen-

dently and with separate dedicated tools. Consequently, during launcher preliminary

design studies, numerous iterations are required in order to keep mission objectives

synchronized. In that sense, the development of an integrated and multidisciplinary

approach for modeling, analysis, and simulation of space launchers could potentially

support their preliminary design efforts. This could allow to reduce the number of it-

erations and the associated costs, and therefore is a key technology to aim for. Such

modeling frameworks were already introduced for aeronautics applications [60, 105],

robotics [106, 107], flexible bodies [108], visualization and virtual reality [109], optimiza-

tion [110], and most recently for satellites [111]. In this thesis the first building blocks

are presented towards a framework that could enable physical modeling of conventio-

nal and non-conventional launch vehicles and facilitate early developments regarding

preliminary vehicle designs.

Early efforts on the subject of launch vehicle dynamics modeling were carried out by

NASA during the 60’s and 70’s to study stage launch vehicle separation dynamics [112–

114]. This led to the development of their generalized trajectory simulation, guidance de-

sign, and optimization software Program to Optimize Simulated Trajectories POST [115] ,

and its more recent follow-up, POST2 which contains the capability to study separation

dynamics in the development of next generation space launchers [1, 116, 117]. However,

some of those tools [116, 118–120] have the disadvantage of not being easily integrable

in a generic simulation software which eludes the capability of performing end-to-end

launch vehicle trajectory simulations. On the European side, early efforts on multibody

dynamics for space applications were also carried out by the European Space Agency

(ESA) with their Dynamic and Control Analysis Package DCAP [121–123]. More recent

efforts for developing and consolidating knowledge in launcher dynamics [124, 125],

led ESA to develop a launcher multibody dynamics simulator using DCAP as a back-

bone [126].

Noticing that multidisciplinary dynamics modeling is becoming increasingly impor-

tant for launch vehicle design and simulation, and that none of these previous dedicated

developments fully profits from an object–oriented, equation–based, and acausal mod-

eling language like MODELICA, the objective of this research question is to investigate an

alternative approach employing this modeling methodology and to study how such an

approach can support early activities in space launcher design, as it is the case for stage

separation analyses.
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Research Question 2

How can model–based nonlinear control and multi–objective optimization be

combined for the study of preliminary guidance and control (G&C) aspects of

reusable launch vehicles and spacecraft slew maneuvers?

This second question is related to preliminary considerations in G&C for controllabil-

ity assessment and agility design from a combined trajectory optimization and nonlinear

control perspective.

Preliminary considerations of G&C in aerospace are important since they can iden-

tify early on some of the potential impacts on the overall design of the considered aero-

space vehicle. For instance, to keep up with the rapidly evolving international launch

market, continuous investigation of different G&C methods and technologies (for verti-

cal takeoff and vertical landing (VTVL) or for horizontal takeoff and horizontal landing

(HTHL)) to achieve reusability are necessary. After the typical computation of optimal

flight trajectories, detailed studies and assessments of the launcher performance during

all relevant flight phases should be performed. These include controllability and stability

studies, stage separation analyses, and preliminary design of the control systems among

many others.

Considering some of the studies on future expendable and reusable launch vehicle

configurations conducted at DLR [8–16, 24], the main challenge arises from the fact that

these studies most often do not consider controllability aspects in detail. This is because

they are usually based on 3–DOF models where attitude dynamics are not considered.

For 6–DOF models, general purpose flight control architectures can be designed to track

the reference trajectory using attitude control while based on a time–scale separation

assumption [49–51]. Some applications for nonlinear flight control and more advanced

methods involving robustness were already discussed in Section 1.2. These general pur-

pose G&C architectures are quite effective, however the approach in this thesis is mostly

based on [60] where model–based nonlinear control is combined with optimization and

therefore leads to a more integrated approach.

Another important G&C subject of consideration is the extensive topic of optimal

spacecraft reorientation [127–135]. More specifically, the challenge of designing time-

optimal slew maneuvers which are, in general, not of the Euler-axis rotation type [131,

136, 137]. Some results from the literature for imaging satellites have even been experi-

mentally validated in–orbit [138]. However, most of the work reported in literature does

not consider the challenge of designing time–optimal control solutions for a spacecraft

equipped with reaction wheels that are commanded by sampled-time control inputs, as

is the case for the BIROS satellite introduced in Section 1.1. Such time–optimal man-

euvers can be mathematically formulated as an optimization problem and therefore be

solved numerically with direct methods.

This motivates the objective to find a methodology to combine model–based non-

linear control and multi–objective optimization for the study of preliminary guidance

and control (G&C) aspects in aerospace. To realize this objective, the two main applica-

tions (space launchers and spacecraft) treated in this thesis are considered to design a
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general–purpose G&C architecture. The architecture should allow to study the controlla-

bility of space launch vehicles during their preliminary design studies and to design fast

slew maneuvers for agile satellites. This can be achieved by considering the sequential

methodology or procedure proposed in Section 1.2.

Research Question 3

How can incremental nonlinear controls be integrated with, e. g., backstepping,

time–delay control (TDC), or nonlinear PID–control? And how can these in-

cremental nonlinear control methods be applied for agile and robust nonlinear

spacecraft attitude control?

The focus of this last question is towards improvements and applications of the incre-

mental nonlinear control approach, introduced in Section 1.2 for agile and robust non-

linear attitude control of aerospace vehicles. For future missions, agility (e. g., for Earth

observation) and tight (robust) maneuverability (e. g., for hypersonic to subsonic aero-

dynamic flight control) are desired and expected.

Incremental Backstepping (IBKS) was introduced in [139] with the motivation to com-

bine the design of increments of control action with the recursive procedure of the back-

stepping control design methodology. This helped to stabilize or track outer-loop con-

trol variables of cascaded nonlinear system incrementally, accounting for model and

parametric uncertainties besides undesired factors such as external perturbations and

time delays. However, the first application of incremental backstepping was for robust

nonlinear attitude control of rigid spacecraft; this means that the only parametric uncer-

tainty considered was in terms of the moments of inertia. This motivates to deal with

large model and parametric uncertainties that arise in flight control systems, mainly be-

cause of unmodeled dynamics and aerodynamic uncertainties. In that sense, this the-

sis proposes the incremental backstepping methodology also as an approach for robust

nonlinear flight control.

Time–delay–control (TDC) [140–142], more commonly known in the motion control

and robotics community, is a nonlinear control technique that estimates and compen-

sates disturbances and system uncertainties (model and parametric) by utilizing time–

delayed signals of some of the system variables. In [142] it has been shown that TDC can

be rendered equivalent to a discrete PID–control under some assumptions and some dis-

crete sampling considerations. Since TDC relies on what is called a time-delay estimation

(TDE), which in turn also depends on some time–delayed signals (as those discussed

briefly in Section 1.2), this motivates the study of how incremental nonlinear controls

are also related to TDC and (nonlinear) PID–control.

Lastly, and as mentioned in Section 1.2, incremental nonlinear dynamic inversion

(INDI) has been elaborated and applied theoretically in the past decade for advanced

flight control applications [70, 71, 73–75, 80, 97, 98], for fault-tolerant control of aircraft

subjected to sensor and actuator faults [81–83], and more recently for adaptive control

of quadrotors [84–86, 143] and real flight campaigns [87–90]. However, very few applica-
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tions for space applications have been considered. The application of incremental non-

linear control to the attitude tracking and disturbance rejection problem of rigid space-

craft in the presence of model and parametric uncertainties therefore can close this gap.

Furthermore, the reformulated INDI [97, 98] can be considered to this attitude control

problem since it does not rely on a time–scale separation assumption of the closed–loop

system.

1.4. CONTRIBUTIONS

The contributions performed during this thesis have resulted in a number of publica-

tions in international conference proceedings and journal submissions. In this section

the contributions are listed by their appearance order in the thesis.

• P. Acquatella B., Launch Vehicle Multibody Dynamics Modeling Framework for

Preliminary Design Studies. In: Proceedings of ICATT 2016, 6th ESA International
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Nonlinear Dynamic Inversion for Spacecraft Attitude Control, to be submitted.

1.5. THESIS OUTLINE

Following the objectives just presented, the structure of this thesis is illustrated in Fig-

ure 1.4. The first noticeable aspect of the thesis structure is the two main applications

considered: space launchers and satellites. The chapters at the left-hand side of Fig-

ure 1.4 are related to modeling, simulation, and control of space launchers, while chap-

ters at the right-hand side are similar in scope but related to spacecraft (satellites) in-

stead. In addition, the thesis is divided into three parts, each related to the three research

questions, and labeled from I to III:

PART I of the thesis, consisting of Chapters 2 – 3, describes aerospace vehicle dynam-

ics modeling efforts in support of preliminary design studies of space launchers. The

contribution of this part is mainly providing building blocks towards a multibody dynam-

ics and equation–based object–oriented modeling approach for these kind of systems. In

that sense, this part is related to Research Question 1.

PART II, consisting of Chapters 4 – 5, then focuses on preliminary guidance and con-

trol (G&C) aspects considering nonlinear design techniques such as nonlinear dynamic

inversion and constrained nonlinear optimization. These techniques are shown bene-

ficial for controllability assessments and also for the design of fast slew maneuvers of

small satellites. This part is related to Research Question 2.

PART III of the thesis, consisting in the final Chapters 6 – 10, brings some contribu-

tions to the incremental nonlinear control body of work. These include the assessment

of incremental backstepping for robust nonlinear flight control and the relation between

incremental nonlinear dynamic inversion, time-delay control (TDC), and PID–control.

This part also applies incremental nonlinear dynamic inversion to robust attitude con-

trol of satellites, which has not been widely studied in the literature. Finally, this part is

related to Research Question 3.

Conclusions and recommendations are presented in Chapter 11.

Each chapter, excluding the introduction and conclusions, begins with a one page

‘header’ that includes an abstract, a short list of the key contributions, and a citation

referencing where the chapter has been published 4. Since most of the chapters have

been presented at international conferences, or have been published (or submitted for

publication) in scientific journals, these chapters can be read separately.

The outline of the thesis, including a brief description of the scope of each chapter is

as follows:

Part I – Dynamics Modeling for Preliminary Design Studies

Chapter 2 presents an object-oriented, equation-based, and acausal modeling me-

thodology for launch vehicles using the MODELICA modeling language. This frame-

work enables physics-based modeling of subsystems and components related to most

4Some minor modifications have been considered with respect to the presented or published versions; mostly

aesthetical and/or typographic.
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key analyses of a launcher system. This chapter contributes the first building blocks

leading to a multidisciplinary tool for launcher preliminary design studies.

Chapter 3 demonstrates the benefits of the approach presented in the previous chap-

ter in the context of simulation of launch vehicles’ stage separation dynamics. Since

stage separation dynamics modeling is a critical capability of future launchers pre-

paratory studies, this chapter contributes with a multibody and acausal modeling

approach to simulate the physics behind launcher separation events.

Part II – Aerospace Guidance and Control (G&C)

Chapter 4 investigates a general purpose guidance and control (G&C) architecture

for preliminary studies of space launchers. The architecture combines physical mod-

els with trajectory optimization for guidance command generation and nonlinear dy-

namic inversion control for the subsequent trajectory tracking. This architecture has

benefits for analyzing early stability and controllability aspects since these in turn

can have a gross impact to the overall design of the vehicle.

Chapter 5 investigates a high–agility attitude control system for spacecraft actuated

by reaction–wheels. Formulating the problem as a constrained nonlinear optimal

control problem allows to design time–optimal slew maneuvers in open–loop.

Part III – Robust Nonlinear Attitude Control

Chapter 6 proposes the incremental backstepping approach for robust nonlinear

flight control. The advantage of the combination of incremental nonlinear control

with the backstepping design methodology is showcased by the tracking capability

under aerodynamic uncertainty for a simple longitudinal nonlinear flight control

example, overcoming some difficulties of conventional adaptive and model–based

flight control strategies.

Chapter 7 follows the flight control context of the previous chapter and shows the

relationship between incremental nonlinear dynamic inversion, discrete time–delay

control (TDC), and discrete proportional–integral–derivative control (PID). The orig-

inal result, relating PID with TDC comes from the robotics and TDC literature; while

here, the relation with INDI is established bringing a new interpretation of the method.

Chapter 8 presents a robust nonlinear spacecraft attitude control system for track-

ing and disturbance rejection of a rigid spacecraft subjected to model and paramet-

ric uncertainties. This is achieved with a cascaded two-loop control system using

an outer-loop control in terms of the Modified Rodrigues Parameters (MRP) attitude

parameterization and using INDI in the inner-loop.

Chapter 9 presents an agile and robust spacecraft attitude tracking controller using

the recently reformulated incremental nonlinear dynamic inversion control. The re-

formulated INDI allows a non-cascaded dynamic inversion control in terms of Mod-

ified Rodrigues Parameters (MRPs) where scheduling of the time-varying control ef-

fectiveness is done analytically. This way, the controller is only sensitive to paramet-

ric uncertainty of the augmented spacecraft inertia and its wheelset alignment. More-

over, we draw some parallels to time-delay control (TDC) which have been shown
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to be equivalent to the incremental formulation of proportional-integral-derivative

(PID) control for second order nonlinear systems in controller canonical form.

Chapter 10 presents a sampled–data form of the recently reformulated incremental

nonlinear dynamic inversion (INDI) applied for robust spacecraft attitude control.

The contribution is aimed to bridge the gap between continuous–time and highly

sampled INDI formulations and their discrete and lowly sampled counterparts in

the context of spacecraft attitude control where low sampling rates are common. Ne-

glecting the sampling time and its effect in the controller derivations can lead to sta-

bility and performance issues of the resulting closed–loop nonlinear system. The

sampled–data reformulation allows explicit consideration of the sampling time via

an approximate sampled–data model in normal form widely known in the literature.

Chapter 11 provides the conclusions of this thesis and some recommendations for fur-

ther research.
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Part I – Dynamics Modeling for Preliminary Design Studies

Part II – Aerospace Guidance & Control (G&C)

Part III – Robust Nonlinear Attitude Control

Chapter 1: Introduction

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11: Conclusions and Recommendations

Research Question 1

Research Question 2

Research Question 3

LV Multibody Dynamics Modeling Framework for Preliminary Design Studies

Modelica Stage Separation Dynamics Modeling for End-to-End Simulations

Guidance Command Generation and NDI Control for Reusable LVs

Fast Slew Maneuvers for the High-Torque-Wheels BIROS Satellite

Incremental Backstepping for Robust Nonlinear Flight Control

PI(D) Tuning for Flight Control Systems via Incremental NDI

Robust Nonlinear Spacecraft Attitude Control using Incremental NDI

Agile Spacecraft Attitude Control: an Incremental NDI approach

A Sampled-Data Form of Incremental NDI for Spacecraft Attitude Control

Figure 1.4: Thesis outline. Image credits: Aurora (left) DLR/A. Kopp., ATV (right) ESA/I. Baroncini.
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DESIGN STUDIES

Abstract

Launch vehicle dynamics modeling is quite challenging mainly because of the highly in-

terconnected disciplines involved. Discipline experts perform their respective design often

independently and with separate dedicated tools. Dedicated developments of multidisci-

plinary modeling tools for launch vehicle multibody dynamics have been presented in the

relevant literature. However, none fully profits from an object-oriented, equation-based,

and acausal modeling language like MODELICA. As yet, such an approach is still miss-

ing. It is therefore the objective of this paper to introduce such an alternative approach

employing this modeling framework enabling object-oriented and physics-based model-

ing of subsystems and components related to most key analyses of a launcher system. The

paper gives an overview on the first building blocks leading to an integrated and mul-

tidisciplinary tool for launcher preliminary design studies. Particularly, its easiness of

implementation is demonstrated along with the benefits of this approach.

Publication

Paul Acquatella B.: Launch Vehicle Multibody Dynamics Modeling Framework for Pre-

liminary Design Studies. In: Proceedings of the 6th International Conference on Astrody-

namics Tools and Techniques (ICATT 2016), March 14-17, 2016. Darmstadt, Germany.
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2.1. INTRODUCTION

F
OR the several architectures and configurations to consider and optimize at prelimi-

nary design studies, several launch vehicle models with varying levels of scope and

complexity are necessary.

In that sense, launch vehicle dynamics modeling is quite challenging mainly because

of the highly interconnected disciplines involved: propulsion, aerodynamics, structures,

mechanisms, and GNC among others. Discipline experts perform their respective design

often independently and with separate dedicated tools. Consequently, during launcher

preliminary design studies, numerous iterations are required in order to keep mission

objectives synchronized.

Preliminary design efforts could potentially be reduced by using a multidisciplinary

launch vehicle model integrated in one single tool. Because this allows to reduce the

number of iterations and the associated costs, a launch vehicle multibody dynamics

modeling framework is a key technology to aim for.

Early efforts on the subject of launch vehicle dynamics modeling were carried out by

NASA during the 60’s and 70’s given the importance to study stage launch vehicle sepa-

ration [112–114]. This led to the development of their generalized trajectory simulation,

guidance design, and optimization software Program to Optimize Simulated Trajecto-

ries POST [115], and its more recent follow-up, POST2. For multibody dynamics, TREE-

TOPS [144, 145] was conceived based on Kane’s equations, and followed by the more re-

cent CLVTOPS, both featuring capabilities for multiple flexible body dynamic simulation,

separation analysis, and liftoff clearance analysis [146].

On the European side, early efforts on multibody dynamics for space applications

were also carried out for over 30 years by the European Space Agency (ESA) with their Dy-

namic and Control Analysis Package DCAP [121–123]. It provides capabilities to model,

simulate, and analyze the dynamics and control performances of coupled rigid and flexi-

ble structural systems subject to structural and space environmental loads. More recent

efforts for developing and consolidating knowledge in launcher dynamics [124, 125],

led ESA to develop a launcher multibody dynamics simulator using DCAP as a back-

bone [126]. This tool has been adapted to meet typical requirements of the ESA Concur-

rent Design Facility (CDF) environment.

Many other proprietary and commercial tools, like ASTOS developed by Astos Solu-

tions GmbH, are relevant to the launcher modeling and simulation literature, but the

extensive list of tools and solutions is not covered here. Noticing that multidisciplinary

modeling is becoming increasingly important for launch vehicle design and simulation,

and that none of these previous dedicated developments fully profits from an object-

oriented, equation-based, and acausal modeling language like MODELICA; the objective

of this chapter is to introduce an alternative approach employing this modeling metho-

dology. This approach comes with the first building blocks leading to an integrated and

multidisciplinary launcher vehicle dynamics modeling tool.

A brief description of MODELICA as a modeling methodology is given; then an object-

oriented and physics-based modeling framework is introduced; followed by a basic math-

ematical description of a launcher multibody dynamics model; and finally an applica-

tion example is presented, outlining the key benefits of this approach.
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2.2. MODELING METHODOLOGY

MODELICA [37–41] is a modern object-oriented, equation based modeling language well

suited to model complex physical systems containing, e.g., mechanical, electrical, power,

hydraulic, thermal, control, or process-oriented subsystems and components.

Models in MODELICA are described using differential, algebraic, and discrete equa-

tions which are then mapped into a mathematical description form called hybrid DAE

(Differential Algebraic Equations). A DAE system on its implicit form is generally ex-

pressed as

F
(

ẋ(t ),x(t ),u(t ),y(t ),ρ, t
)

= 0 (2.1)

where ẋ are the state derivatives, x the state variables, u the inputs, y the algebraic vari-

ables, ρ the parameters and constants, t the time variable, and the dimension di m(F) =
di m(x)+di m(y). Systems are then solved and simulated by MODELICA simulation en-

vironments. When these systems are represented in the DAE implicit form, they can

be solved directly by a DAE solver such as DASSL. Alternatively, the system can be sorted

out according to specific inputs and outputs and mapped into an explicit ODE (Ordinary

Differential Equation) form by solving for the derivatives and the algebraic variables, and

then subsequently solved numerically by an ODE solver. The process and details of MOD-

ELICA’s code compilation is out of the scope of this chapter.

MODELICA MAIN FEATURES

In contrast to imperative languages, in which statements and algorithms are assigned

in explicit steps, MODELICA is declarative , meaning that declarations are given through

equations [41]. These declarations most often describe model’s first-principles at their

lowest levels without explicit orders or how to compute them, hence why MODELICA is

said to be equation based . By means of specialized algorithms, these declarative models

are translated into efficient computer executable code. This allows acausal modeling

capabilities that give better reuse of classes since equations do not specify a certain data

flow direction. This is therefore one of the most important features of the language.

MODELICA is domain neutral. In other words, it has multidomain modeling capa-

bility, meaning that model components corresponding to physical objects from several

different domains can be described and connected. This interaction between compo-

nents is defined by means of physical ports, called connectors, and the interconnection

is given accordingly to their physical meaning. This meaning is typically represented by

flow variables, which describe quantities whose values add up to zero in a node connec-

tion (Kirchhoff’s first rule); and by non-flow (or potential) variables, which in contrast

remain equal (Kirchhoff’s second rule).

MODELICA is an object-oriented language. This helps to model systems and their

physical meaning within an object-oriented structure, facilitating the reuse of compo-

nent models and the evolution of the structure itself. Thus, object-orientation is primar-

ily used as a structuring concept which exploits the declarative feature of the language,

as well as the re-usability of models.

MODELICA has a strong software component model with constructs for creating and

connecting components in a modular fashion. Systems’ individual components are de-

fined separately as objects, and their interconnection is given accordingly to their phys-
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ical meaning. Thus the language is ideally suited as an architectural description lan-

guage for complex physical systems.

2.3. MODELING FRAMEWORK

environment

aerodynamics

thruster model

avionics model

GNC model

dynamics model

model

model

(a) Classical input-output representation.

environment model

aerodynamics model avionics model

GNC model

dynamics model

thruster model

(b) Acausal approach, or energy exchange representation.

Figure 2.1: Classic approach vs. acausal approach.

A framework for the physical modeling of conventional and non-conventional launch

vehicles is presented here. In contrast to the classical signal-based approach, where sys-

tems are mainly considered and modeled as signal processors with a fixed causality, this

approach employs an acausal approach where systems exchange energy, see Figure 2.1.

In there, the connectors in the acausal approach represent a physical interaction where
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an energy balance is applied.

Mission reqs.

Conceptual design

Preliminary design

Detailed design

Etc.

Study definition

Data + reqs.

Model generation

Model validation

Results

Subsystems Disciplines

Integrated launch vehicle model

Modelica models

Framework

Figure 2.2: Overall picture of the framework.

MAIN FEATURES

The framework consists of a structured and object-oriented architecture which enable

combinations of several sets of system and subsystem models, themselves built and com-

posed into components and interfaces corresponding to different physical domains (me-

chanical, electrical, structural, control, etc.) and therefore described from their first prin-

ciples with the MODELICA language.

Referring to Figure 2.2, given a particular study definition (3-DOF/6-DOF perfor-

mance, stability and controllability, optimization, etc.) of a preliminary design phase,

the first step of the framework is to obtain all necessary data and specific requirements

of the study in order to properly generate a particular launch vehicle model. Once the

key subsystems and disciplines interacting are properly identified, a multidisciplinary

launch vehicle model integrated in one single tool is used to generate study results. For

this reason, this tool is quite versatile.

In this sense, subsystems of a launch vehicle, as well as the launch vehicle system

itself can be modeled within a single simulation environment, and without necessarily

implementing coupling interfaces to other specialized tools. This allows the capability

of performing end-to-end launch vehicle trajectory simulations as it will be shown in the

application example.

To provide application-specific capabilities, the generic functionality of the frame-

work can be tailored and extended by additional user-specific code. For instance, the

framework may include databases, pre-processing and post-processing scripts, several

MODELICA libraries, interfaces to commercial software like MATLAB&SIMULINK (avail-

able for instance in DYMOLA), combination of multibody and FEM [108], and application

programming interfaces (APIs) to other tools.

The framework implementation is based upon the extension of the DLR Space Sys-
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tems Library, introduced in [111], in order to enable object-oriented and physics-based

modeling of subsystems and components related to launch vehicle system dynamics.

The main feature of the library is the World component. It defines basis coordinate

systems such as the Earth Centered Inertial (ECI) and the Earth Centered Earth Fixed

(ECEF) coordinate systems, and manages calendar and Julian times. Most notably, it pro-

vides capabilities to instantiate multiple gravity models of different kinds of complexity,

up to the most precise EGM96 gravity model [147]. Moon and sun perturbation terms

to the gravity models are also available. The library also contains state-of-the-art space

environment models like the NRLMSISE-00 atmospheric density model [148].

This library builds upon the Modelica Standard Library [149, 150], the Modelica Multi-

Body Library [107], the DLR Flight Dynamics Library [105], the DLR Flexible Bodies Li-

brary [108], the DLR Visualization Library [109] and the DLR Optimization Library [110].

2.4. MULTIBODY DYNAMICS MODEL

Typically, a multibody system is described by a collection of bodies and their interac-

tions.

The interactions, representing physical coupling of the bodies, can be described as

rigid connections between frames (Section 2.4.1); joints representing motion constraints

(Section 2.4.2), useful for meaningful physical joint models (prismatic joints featuring,

e.g., spring-damper actuators); or even special elements describing more complex dy-

namic behavior like joint motion and separation dynamics (Section 2.4.3).

Bodies are represented by their physical properties (mass, moments of inertia, etc.)

and a collection of frames located at special points of interest (center of mass, joint loca-

tions, reference points, etc.). Their translational and rotational dynamics are described

depending on the physical nature of the system and their components, for instance,

Newton-Euler equations of motion in the case for rigid body models. Here, variable mass

systems are described by Kane’s equation as obtained by Eke [151] (Section 2.4.4).

2.4.1. FRAMES

Recalling the concept of acausal connectors of Figure 2.1-(b), a frame connector from

MODELICA’s Multibody Standard Library [107] is a coordinate system fixed to a model

component with a cut-force and a cut-torque as flow variables, and with a position and

an orientation object as non-flow variables. Subsequently, mechanical components can

be interconnected together rigidly at this frame.

The dynamics of a frame A is completely described by its generalized position r̂A ,

velocity v̂A , acceleration âA , and force f̂A , respectively

r̂A =
[

rA

RA

]

, v̂A =
[

vA

ωωωA

]

,

âA =
[

aA

αA

]

, f̂A =
[

fA

τA

]

,

where rA , vA , and aA are the absolute position, velocity, and acceleration of the frame
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A with respect to an inertial frame; RA , ωωωA , and αA the attitude direction cosine matrix,

absolute angular velocity, and angular acceleration of the frame A with respect to an

inertial frame; and fA , τA the resulting forces and torques at frame A [106].

For rigidly interconnected frame connectors, say frames A and B , and as mentioned

in the modeling methodology section, the kinematic quantities related to the non-flow

variables v̂A and v̂B are equal to each other, whereas the flow variables, cut-forces and

cut-torques f̂A and f̂B in this case, sum up to zero [106, 107]. This is due to a power P

balance constraint considering that no energy is stored:

∑

P = 0 = f̂⊤A v̂A + f̂⊤B v̂B (2.2)

2.4.2. JOINTS

Specific joint interconnections in multibody dynamics are very useful to interconnect

mechanical systems featuring a non-rigid and physically-meaningful joint motion.

For that, consider a generalized joint coordinate q allowing certain motions between

two frames A and B , and its associated generalized joint force λ. Because of the newly

allowed motion, additional relationships between the connected frames are necessary.

These are given as functions of q (and possibly q̇) and in terms of the relative quantities

between the frames [106].

The corresponding description between the connected frames A and B can be deter-

mined similarly as before from a power balance constraint because no energy is stored

in such an ideal joint

∑

Pi = 0 = f̂⊤A v̂A + f̂⊤B v̂B +λ⊤
A q̇ (2.3)

In that sense, the dynamics of a the joint is also completely described by its related gen-

eralized quantities. Since the elements of q̇ are independent from each other, the last

expression leads to a constraint equivalent to d’Alembert’s principle, see [106].

2.4.3. AUTOMATIC JOINT LOADS COMPUTATION

For launch vehicle staging and separation dynamics, joint models for both physical con-

nection and separation between bodies are required.

This can be done with MODELICA by automatic joint loads computation [152], which

is applied to each of the connected bodies prior to their physical separation and released

for their subsequent and independent motion. This is the principle behind the Con-

straint Force Equation (CFE) methodology, developed by NASA for similar kinds of stud-

ies [1, 117, 153].

The CFE methodology is a highly intuitive method consisting in the computation of

joint loads, namely internal forces and torques, caused by joint constraints; along with

their application as external forces and torques on each body independently. In conse-

quence, the CFE joint model simply augments the external loads of the system [117] as

shown in Figure 3.1. The constrained equations of motion of two rigid bodies (A and B)

connected by a single joint (point A in body A and point B in body B) [1, 117] are

mA r̈A = fext
A + fcon

A , (2.4a)

I A ω̇ωωA +ωωωA × I A ωωωA =τext
A +ρAfcon

A +τcon
A , (2.4b)
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where ρA is the position vector from the mass center of A to point A, the point at which

the constraint force is applied. The similar equation applies for body B , giving so far 12

equations out the 24 unknowns. Another set of six equations can be obtained as

fcon
A + fcon

B = 0 (2.5a)

τ(con)
A

+τ(con)
B

+ (rB̄ − rĀ)× fcon
B = 0 (2.5b)

where rĀ = rA+ρA and rB̄ = rB +ρB . For relative translation and rotation constraints and

e being unit-vectors of the corresponding (A or B) body-frame, it is required that:

(rĀ − rB̄ ) ·eA = 0 (2.6a)

eA ·eB = 0 (2.6b)

To couple Eqs. (3.7) with the equations of motion, these must be differentiated twice

with respect to time so that the resulting relationships involve the unknown linear and

angular accelerations. In other words, the six missing equations are given by the fol-

lowing generalized constraint equations of the joint, g̈ = 0, where g represents the non-

differentiated constraints in Eqs. (3.7).

To improve the accuracy of the joint loads solution, which is sensitive to computa-

tional error and initial joint misalignment, the generalized constraint equations are aug-

mented with the Baumgarte stabilization [1, 117, 154, 155] as:

g̈+2ηġ+η2g = 0, η> 0 (2.7)

As demonstrated in [152], the manual differentiation of Eqs. (3.7) and their coupling

with the equations of motion can be avoided altogether in MODELICA since this is done

automatically by the declarative feature of the language.

2.4.4. DYNAMICS OF VARIABLE MASS SYSTEMS

Launch vehicles are systems involving considerable changes in motion as well as in mass

(and therefore inertia). The extra loads due to the variable mass effects must be included

in the formulation of the dynamic equations of motion.

Figure 2.3: CFE diagram. Illustration credits: [1].
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Consider for instance a solid rocket motor, a system that loses mass while subject to

dynamical motion, and which at any given instant of time is a mixture of both a solid

rigid part (R) and a fluid part (F ) due to products of combustion. These are delimited by

the boundary B.

The dynamic equations of motion for these kind of systems as obtained by Eke [151],

and established with Kanes’s formalism, are summarized here. In [151], it is claimed that

these are identical to those obtained by other authors using a Newton-Euler formulation.

The translational equations of motion are given by

ma = fC + fL + fthr + fext (2.8)

with

fC =−2

∫

B

ρ(ωωω×vr )dV ,

fL =−
(R)d

dt

∫

B

ρvr dV ,

fthr =−
∫

S

ρvr (vr ·n)dS,

where fC is the Coriolis force, fL the system’s linear momentum decrease rate relative to

the closed surface B, fthr the thrust vector force, and fext the sum of all external forces

about the current center of mass of the system, respectively. The left superscript on time

derivatives indicates that the derivative is to be taken while the reference frame is kept

fixed.

Concerning the thrust vector force, whenever vr ·n can be approximated relatively

well at the nozzle exit plane, the surface integral can be evaluated in closed form [151].

Using the effective exhaust velocity ve = ISP g0, a model of the thrust force considering

atmospheric losses is given by

fthr = ṁISP g0 −Sx Pz (h) (2.9)

The attitude equations of motion are given by

I α+ωωω× I ωωω+
( R dI

dt

)

ωωω=τC1 +τC2 +τH +τthr +τext (2.10)

where

τC1 =−
∫

B
ρ[rp × (ωωω× rp )](vr ·n)dS

τC2 =−
∫

B
ρ
[

ωωω× (rp ×vr )
]

dV

τH =−
R d

dt

∫

B
ρ(rp ×vr )dV

τthr =
∫

S
ρ(rp ×vr )(vr ·n)dS
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τC1 is the so-called jet damping, τC2 is due to the Coriolis effect and can be neglected

for axisymmetric motion as well as for negligible internal flow, τH represents the rate

of decrease of the system’s angular momentum inside B, τthr the moment of the thrust

vector about the mass center, andτext the sum of all external moments about the current

center of mass of the system.

Notice that if vr is zero everywhere, then the Newton-Euler equations of motion for a

rigid body are recovered. In general, depending on the nature of the propulsion system

and its corresponding shape or assumed burn profiles, these terms can be further sim-

plified and further evaluated in closed form, see [151]. In this way, these loads can be

included explicitly in the formulation of the dynamic equations of motion of the corre-

sponding element of the vehicle so that their effect can be included in dynamic analyses.

To conclude the main mathematical formulations, aerodynamic forces and moments

can be generally expressed in the body-axis frame as

faer o =−q Sr Ci (h,v,α,β, ...), (2.11)

τaer o = q Sr lC j (h,v,α,β, ...), (2.12)

where Ci (for i =C ,Y , and L) and C j (for j = l ,m, and n) are the aerodynamic drag, side

force, and lift coefficients, respectively. Finally, the expressions for the dynamic pressure,

Mach number, and relative speed are given:

q = 1
2ρ v2 = 1

2γPz (h)M 2,

M = |vr el |/vs (h),

vr el = v−ωωωe × r

2.5. APPLICATION EXAMPLE

An application example for a 3-DOF open-loop point-mass launcher model featuring

stage separation dynamics is presented here.

Separation dynamics is simulated with the automatically obtained joint loads satis-

fying the CFE constraints. The release device is simulated with a linear cutting charge

model, and the separation mechanism with the use of retro-thrusters. Properties for this

launcher model are taken from the VEGA launcher users’ manual as shown in Table 2.1.

Parameters not available were assumed with best guesses.

At t = 106.8 s, the first burn is completed and the first stage is separated at t = 108 s.

Then after a few seconds, at t = 112 s, giving enough time for clearance aspects, retro-

thrusters are actuated to further separate the first stage from the remaining composite.

The sequence is similar for the second stage, where the retro-thrusters are commanded

at t = 190 s, a few seconds after the second stage separation.

Figure 2.4 presents the stages’ altitude (normalized), relative velocity (normalized),

and acceleration during their connected motion as well as during their subsequent sep-

arate flight motion.

Results shows that the automatically obtained joint loads satisfying the CFE metho-

dology constraints successfully models the launcher system during its connected flight

motion. This demonstrate the capabilities as well as the ease of use and implementation

under the proposed framework by taking advantage of MODELICA’s modeling methodo-

logy.
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Table 2.1: VEGA User’s Manual Data (2006)

Property Stage 1 Stage 2 Stage 3

Length [m] 11.2 8.39 4.12

Diameter [m] 3 1.9 1.9

Gross mass [kg] 95 796 25 751 10 948

Propellant mass [kg] 88 365 23 906 10 115

Thrust (S/L) [kN] 2261 1196 225

Isp (Vac) [s] 280 289 295

Burn time [s] 106.8 71.7 109.6

Ignition time [s] 0 115 195

Separation command [s] 108 188 -

2.6. SUMMARY AND OUTLOOK

The objective of this chapter was to present an object-oriented and equation-based acausal

modeling approach as the first building blocks leading to an integrated and multidisci-

plinary tool for launcher vehicle dynamics modeling with MODELICA.

Based on MODELICA language as the modeling methodology, we provide a frame-

work which enable object-oriented and physics-based modeling of subsystems and com-

ponents related to most key analyses of launch vehicle system dynamics. To demon-

strate its benefits, a launch vehicle multibody dynamics model is described and imple-

mented within this framework as described with introductory mathematical formula-

tions. Its easiness of implementation is done with an application example.

Future work will be dedicated upon extension of this framework by adding more ca-

pabilities, featuring for instance the interconnection of flexible bodies, dedicated algo-

rithms for GNC sizing and design, and most importantly, for optimization studies con-

cerning trajectory, stage sizing, and performance among others.

Moreover, this launch vehicle modeling and simulation framework could in fact sup-

port a vast number of use cases across a launcher program life cycle. These may include

not only preliminary design phases, but also activities concerning detailed system de-

sign, software and component verification and validation, etc.
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Figure 2.4: Application example results.
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Abstract

Stage separation dynamics modeling is a critical capability of future launchers prepara-

tory studies. The development of stage separation frameworks integrable in end-to-end

launch vehicle trajectory simulations have been presented in the relevant literature but

none profiting from the object-oriented and equation-based acausal modeling properties

of MODELICA. The objective of this paper is therefore to present such an approach to this

problematic. Based on the Constraint Force Equation (CFE) methodology, two case studies

to evaluate the proposed approach are considered. Results demonstrate that the approach

corresponds very well with the physics behind separation. In addition, we found easiness

of implementation of the method within a single environment such as DYMOLA, demon-

strating the benefits of an integrated approach.

Publication

Paul Acquatella B., Matthias J. Reiner: Modelica Stage Separation Dynamics Modeling

for End-to-End Launch Vehicle Trajectory Simulations. In: Proceedings of the 10th Inter-

national Modelica Conference, March 10-12, 2014. Lund, Sweden.
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3.1. INTRODUCTION

S
TAGE separation dynamics modeling is a very challenging task and a critical capability

that must be considered in the preparatory studies and development of next gener-

ation launchers [1, 116, 117]. The integration of such stage separation modeling into a

single environment capable of end-to-end launch vehicle trajectory simulation is also a

key technology to aim for.

The importance of such capability arises from the fact that after separation, the in-

tegrity of each stage must be kept in order to guarantee overall success of the space mis-

sion pursued. In this sense, the development of an integrated framework for analysis

and simulation of stage separation is desired.

Early efforts on the subject of multi stage launch vehicle separation from the 60’s

and 70’s are mainly from NASA studies [112–114] and their Program to Optimize Simu-

lated Trajectories (POST) as a generalized trajectory simulation and optimization soft-

ware [115], developed in partnership with the (then) Martin Marietta Corporation. Re-

newed interest in the subject in the 2000’s led NASA’s development of a stage separation

conceptual separation tool, ConSep [116, 118–120]; which is a MATLAB-based wrapper

to the commercially available ADAMS solver, as its predecessor SepSim. However, being

SepSim and ConSep dependent on the commercial software ADAMS, they have the disad-

vantage of not being easily integrable in a generic trajectory simulation software. This in

turn eludes the capability of performing efficient end-to-end launch vehicle trajectory

simulations. As a result, a generalized approach to stage separation problems of launch

vehicles was developed [1]. The approach, coined as the Constraint Force Equation (CFE)

methodology, was implemented into the Program to Optimize Simulated Trajectories II

(POST2), the POST follow-up. Separation studies applied to real platforms such as the

Hyper-X or the Space Shuttle can be found in [153, 156]. The thesis [157] studies laun-

cher separation analysis with OPENMODELICA but results in a tool (OMSep) which is only

capable of input-output analyses at separation time, and not for generic launch vehicle

trajectories.

As yet, an object-oriented and equation-based acausal modeling approach to stage

separation dynamics integrable in end-to-end launch vehicle trajectory simulations is

still missing. Such approach could potentially facilitate the integration of this and other

capabilities within a single multi-physics environment such as DYMOLA.

The objective of this chapter is therefore to present such an alternate approach to

stage separation dynamics based on the CFE methodology using MODELICA [37, 38]. We

do this by means of the following sub-objectives: We study first the modeling challenges

of multi-stage launcher separation dynamics; then we present an approach based on

CFE implemented in MODELICA; following, we provide two case studies for which we

apply the method; and finally we present some results and discussion, outlining benefits

and disadvantages.

3.2. MODELING

For the simulation of launch vehicle stage separation dynamics, it is necessary being

able to model two bodies connected together according to properly-selected constraints

prior to their physical separation; and at the release command of such constraints, their
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subsequent and independent flight motion must continue. This section presents the

separation dynamics and the separation mechanisms modeling aspects.

3.2.1. SEPARATION DYNAMICS

We refer to separation dynamics in this chapter the study of the effects of forces and

torques of a two-body system during their physical separation.

Such separation dynamics modeling clearly exhibits discontinuities similar to those

described by other phenomena such as switching, limiting, friction, etc. Modeling must

deal with these problems in special ways since this kind of behavior is sensitive to numer-

ical solution errors, initial condition calculation/propagation, and integration in gen-

eral.

MODELICA offers the possibility to implement a.o. several methods for such phenom-

ena:

• Stop and restart: The complete system is simulated as a single body until separa-

tion time. Then the system is splitted into two bodies with independent states, and

initial conditions are propagated accordingly. This solution however requires the

split of two (or more) events.

• Regularization: This methodology consists on applying the constraint between

the two bodies during their connected motion with a smooth but very stiff spring-

damper system. This avoids the use of strict discrete or event behaviors. Such me-

thodology is commonly used for simulation of friction, stiction, and other similar

nonlinear behavior.

• Hybrid: This methodology consists on treating the simulation as a hybrid state ma-

chine where continuous and discontinuous behaviors are conditioned with data

flows and proper transitions. This hybrid state machine framework is however

complex to integrate in generic form for launch vehicle trajectory simulations.

• Constraint Force Equation (CFE) Methodology: The CFE methodology [1, 117, 153]

consists on computing internal constraint forces and moments on two bodies dur-

ing their connected motion and their application as external forces and torques to

each of them separately. On separation command, these internal forces are set to

zero, and then each body carries their own flight motion separately.

Of these methods, particular interest due to its applicability and easiness of imple-

mentation is given to the CFE methodology, which is selected as the primary method for

the follow up of this study.

CONSTRAINT FORCE EQUATION METHODOLOGY

The Constraint Force Equation (CFE) methodology [1, 117, 153] is a highly intuitive method

consisting in the computation of joint loads, namely internal forces and torques, caused

by joint constraints; along with their application as external forces and torques on each

body independently, see Figure 3.1.

The joint loads which constrain one body’s motion relative to the other are depen-

dent upon the external forces acting on each body as well as the type of joint. The
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net forces and torques on each body are therefore the sum of the usual external forces

and torques plus the joint loads applied to each body as additional external forces and

torques. In consequence, the CFE joint model simply augments the external loads of the

system [117]. Quoting step by step [1, 117], the equations of constrained motion of two

Figure 3.1: CFE diagram. Illustration credits: [1].

rigid bodies (A and B) connected by a single joint (point A in body A and point B in body

B) are as follows:

F(ext )
A

+F(con)
A

= mA ẍA , (3.1)

T(ext )
A

+ρAF(con)
A

+T(con)
A

= I Aω̇ωωA +ωωωA × I AωωωA (3.2)

where ρA is the position vector from the mass center of A to point A of A at which the

constraint force is applied. Similarly for B :

F(ext )
B

+F(con)
B

= mB ẍB , (3.3)

T(ext )
B

+ρB F(con)
B

+T(con)
B

= I Bω̇ωωB +ωωωB × I BωωωB . (3.4)

There are so far 24 unknowns and 12 equations. Another set of six equations can be

obtained from the law of action and reaction:

F(con)
A

+F(con)
B

= 0 (3.5)

T(con)
A

+T(con)
B

+ (rB − rA)×F(con)
B

= 0 (3.6)

where rA = xA +ρA and rB = xB +ρB .

Six equations are missing. Worth noticing at this point, we only consider a single

joint which constrain all six remaining degrees of freedom between the two bodies. This

is because our focus is towards trajectory simulations and having multiple connections

is not necessary unless when considering actuator sizing, sensitivity analyses, etc. In

general, the CFE methodology allows to consider any type of joint which allows or not

any specific relative motion between bodies; and redundancy of joints when necessary.
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In this sense, for relative translation constraints and e being unit-vectors of the cor-

responding (A or B) body-frame, it is required that:

(rB − rA) ·eA = 0 (3.7)

meaning that the distance between the two points of a particular direction remain fixed.

And finally, for relative rotations constraints, it is required that:

eA ·eB = 0 (3.8)

meaning that three properly selected two-unit-vector sets must remain perpendicular.

Eqs. (3.7)-(3.8) would have to be differentiated twice with respect to time so that

the resulting relationships involve the unknown accelerations and angular accelerations,

thus finally being able to couple them with the equations of motion. In other words, the

six missing equations are given by the following generalized constraint equations of the

joint:

g̈ = 0 (3.9)

where g represents either of the nondifferentiated constraints in Eqs. (3.7) and (3.8). As

it will be demonstrated in the next section, the manual differentiation of Eqs. (3.7)-(3.8)

and their coupling with the equations of motion can be avoided altogether by the MOD-

ELICA implementation since this is done automatically.

The last important aspect of the CFE methodology relevant to this work is the accu-

racy of the joint loads solution, which is sensitive to computational error and initial joint

missalignment [117]. To handle such concern, the CFE algorithm could feature a.o. a

stabilization technique known as Baumgarte stabilization [1, 154, 155]. This particular

stabilization technique consists on replacing the ODE given by Eq. (3.9) which allows per-

turbations to grow linearly with time, by the following asymptotically stable ODE (η> 0)

involving terms of the once differentiated and nondifferentiated forms of g :

g̈ +2ηġ +η2g = 0 (3.10)

however at the expense of more computational effort. Many other stabilization tech-

niques [155] could be implemented; these other methods, and a guidance for selecting

η are however out of the scope of this chapter.

3.2.2. PHYSICAL MODELING OF MULTI-STAGE SEPARATION MECHANISMS

Separation mechanism refers in this proposal to a mechanical model (or device) that

makes separation possible in simulation (or reality). Physical modeling refers in this

context on the capability to model separation behaviour by considering first principles

(kinematics, dynamics, mechanics, physics, etc.); and being able to get realistic insight

from such models for other purposes such as actuator sizing, sensitivity analyses, con-

trol, optimization, etc.

Based on our internal DLR Space Systems Library, separation mechanism physical

models of different complexity levels can be studied. Simplified models for prelimi-

nary and conceptual studies; and more detailed ones for engineering validation aspects.

These varying degrees of complexity would be helpful in order to perform separation

mechanics analyses and to assess the performance of the overall separation.
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Configuration details of the separation mechanisms as well as their physical specifi-

cations must be provided to achieve more detailed and realistic models. Concerning the

simple models, four variants have been studied:

• Linear charge (release device): The linear charge model performs ideal or bench-

mark separation between two bodies. This mechanism “cuts” the two-body sys-

tem on command. It simulates (ideal) explosive release devices, clamps, diaphragms,

or point-release devices such as explosive bolts.

• Bushing (separation impulse device): This model performs an impulsive reaction

due to the release of a smooth but very stiff spring-damper system which keeps

the two body system connected until separation command.

• Kick-off spring (separation impulse device): Same as before, the impulsive reaction

due to the release of a spring-damper system simulates the proper transmission of

forces and moments of the two-body system during separation. This model is im-

plemented with the Constraint Force Equation (CFE) methodology. This element is

combined with a release device to simulate a realistic kick-off spring mechanism.

• Generic (auxiliary devices): Other generic devices can be modeled in combination

with the previous models, or with any other physical model from the library.

3.3. MODELICA IMPLEMENTATION

In this section, the MODELICA implementation of separation mechanism models is pre-

sented. The challenges of this implementation strongly depends on the method selected

as outlined in Section 2. Since the separation models in this work relies on a proper

combination of the CFE methodology with physically-relevant elements, the implemen-

tation is not a straightforward application of existing MODELICA libraries; other aspects

such as proper setup of initial conditions, state selection, modularity, and extendability

are also challenging.

The baseline for the development of separation dynamics and separation mecha-

nisms is the following partial mechanism model:

p a r t i a l model PartialMechanism

" P a r t i a l separation mechanism model"

Interfaces.Frame_a frame_a

" J o i n t frame a" ;

Interfaces.Frame_b frame_b

" J o i n t frame b" ;

Interfaces.BooleanInput u ;

end PartialMechanism ;

As shown in the code, the partial mechanism interface model consists of two frames

to connect a two-body system, and a boolean input for the ignition or separation com-

mand. Such interface allows the use of several separation models depending on the de-

sired level of complexity by using repleaceable instances. The approach here is bottom-

up design, where the basis of separation dynamics simulation comes first from a single

instance of a ‘release device’ mechanism.
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Figure 3.2: DYMOLA simulation layout consisting on a world model, two instances of rigid bodies, the separa-

tion mechanism model, and a boolean input for the separation command.

model SeparationMechanism

" Separation mechanism model"

Interfaces.Frame_a frame_a

"Mechanism frame a" ;

Interfaces.Frame_b frame_b

"Mechanism frame b" ;

Interfaces.BooleanInput u ;

replaceable Interfaces.PartialMechanism

end SeparationMechanism ;

In this work, a release mechanism model is implemented to simulate both a linear

charge device commonly used in launcher stage separation, where the forces and mo-

ments at separation are zero; and as a base model for the next level of complexity. In

other words, for the implementation of a separation impulsive device, an instance of

a release device providing the capabilities of joint motion until separation is required

on top of another physical model providing the corresponding impulsive forces or mo-

ments at the time of separation. Therefore, increasing the functionality to the separation

model will consist on adding impulsive devices or simply improving the physics behind

the device in question.

The implementation of the CFE procedure in MODELICA is as follows. The general-

ized constraint equations of the joint (3.9) have to be differentiated twice as explained

before. Translational and rotational constraints at the joint are hence implemented as:
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equation

// generalized constraints

g_con = frame_a.r_0 − frame_b.r_0 ;

G_con = Frames.relativeRotation ( frame_a.R , frame_b.R ) ;

// generalized v e l o c i t y constraints

g_con_dot = der ( g_con ) ;

G_con_dot = Frames.angularVelocity2 (G_con) ;

// generalized acceleration constraints

g_con_ddot = der ( g_con_dot ) ;

G_con_ddot = der ( G_con_dot ) ;

// CFE generalized j o i n t constraints

g_con_ddot = { 0 ,0 ,0 } ;

G_con_ddot = { 0 ,0 ,0 } ;

equation

. . .

// CFE generalized j o i n t constraints with Baumgarte s t a b i l i z a t i o n

g_con_ddot + 2* eta * g_con_dot + eta * eta *g_con = { 0 ,0 ,0 } ;

G_con_ddot + 2* eta *G_con_dot + Frames.Orientation.equalityConstraint ( frame_a.R ,

frame_b.R ) = { 0 ,0 ,0 } ;

In short, we present briefly two of the main models developed in this work:

• Linear charge (separation release device): A release device is modeled by an in-

stance of the SeparationMechanism model, called for instance linearCharge, which

contains the partial interface outlined before, plus a switching mechanism be-

tween the CFE methodology and free body motion.

• Kick-off spring (separation impulse device): An impulsive device is modeled by

an instance of the SeparationMechanism model, called for instance kickOffSpring,

which contains a linearCharge instance, plus a replaceable separationMechanism

instance simulating the physics behind the impulsive device, such as a spring-

damper system.

For a practical scenario to study, consider the trajectory phase of a generic launcher

where the payload (Body B - the satellite to be placed in orbit) is to be separated from the

remaining launcher upper stage (Body A - assuming a multi stage launcher). In this case,

the problem consists of two bodies flying together under the effect of gravity in joint

motion (the composite) up until separation is commanded. The separation command

is usually given immediately after the shut down of the upper stage main engine. In this

study however, we provide the separation command at any specified time. Figure 3.2

shows the DYMOLA simulation layout while Figure 3.3 shows a simulation of the physical

setup of the case studies.

Initial conditions with respect to Earth-Centered-Inertial (ECI) frame of the compos-
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ite are given to Body A as follows:

xA(t = 0) =





1.1378×107

0

0



m,

vA(t = 0) =





0

5.9188×103

0



m/s

and their translational and rotational dynamics are obtained from the rigid body model

of the Modelica Multibody Library [107]. In the following section, we will study the sep-

aration dynamics implementation in MODELICA by means of two case studies: the first

one considers the upper stage and payload (the composite) joint motion, while the sec-

ond study considers the separation phase. For both cases, the forces due to gravity ac-

celeration are obtained from the EGM96 model implemented in our internal DLR Space

Systems Library.

Figure 3.3: Simulation of the physical setup of the case studies.

Table 3.1: Mechanical properties of the two-body system.

Property Body A Body B Units

Mass 6000 1000 Kg

I11 23000 800 Kg·m2

I22 23000 800 Kg·m2

I33 18000 600 Kg·m2

I21 = I31 = I32 0 0 Kg·m2

Both case studies are implemented in DYMOLA and the solution is computed using

the DASSL solver with a tolerance of 1e −7. A smaller tolerance of this solver would in-

crease significantly the resulting chattering when Baumgarte stabilization is used.
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3.3.1. CASE STUDY I: UPPER STAGE AND PAYLOAD (COMPOSITE) JOINT MO-

TION

The joint motion of the composite (Bodies A and B , the upper stage and the payload

respectively) is simulated for a total time of 2000 s. During such motion, the MODELICA

implementation of the CFE methodology is expected to derive automatically the joint

constraint forces and torques such that the two-body system stays properly connected,

with relative zero displacement. This case study therefore accounts for the validity of

such implementation.

3.3.2. CASE STUDY II: UPPER STAGE PAYLOAD SEPARATION DYNAMICS

The upper stage payload separation is simulated in a practical scenario setup. It consists

of a simulation of 20 s, half of which is in connected or joint motion, and then at t = 10 s,

the ignition command for separation is given. At this point, a kick-off spring separation

mechanism model is in charge of the dynamical separation between the bodies. The sub-

sequent independent motion of each body is then expected. This case study therefore

accounts for the applicability of the physical models of separation mechanisms imple-

mented.

3.4. RESULTS AND DISCUSSION

As outlined in the last section, Case Study I accounts for the study of internal forces and

torques of the composite joint motion during a given portion of its trajectory by means of

the Constraint Force Methodology implemented in MODELICA. During such joint motion,

an important metric to assess the proposed method is the relative joint displacement

between the two bodies when they are supposed to stay connected, as proposed and

suggested by [117].

In this respect, Figure 3.4 presents the resulting constraint forces f[i ] and torques

tau[i ] at the joint during the connected motion, in all ECI directions i = x, y, z, respec-

tively; while Figure 3.5 presents the resulting relative joint position rrel[i ] and the relative

joint velocity vrel[i ], in all ECI directions i = x, y, z, respectively.

Results shows that the corresponding joint constraint forces and torques, obtained

automatically by MODELICA in order to satisfy the CFE methodology constraints suc-

cessfully keeps the bodies properly connected (hence, the composite) during their con-

nected flight motion. Such result is evidenced looking at the relative joint position and

relative joint velocity between the two bodies, which are supposed to be zero during the

connected flight. A clear disadvantage for long simulation periods of joint composite

motion is the necessity to keep the drift within physical boundaries, hence requiring a

stabilization method. Stability and accuracy of the solution, especially for large simula-

tion times, are improved with the addition of the Baumgarte stabilization. Nevertheless

at the expense of chattering as shown in Figures 3.4-(b), 3.4-(d), 3.5-(b), 3.5-(d), meaning

more computational time and effort.

Case Study II, as outlined in the last section, accounts for the study of absolute− and

relative− position, velocity, and acceleration, respectively, between the two bodies from

a multi-stage separation dynamics practical scenario. In here, the ‘release device’ simu-

lated by a linear charge model has been augmented with an ‘impulsive device’ in parallel
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(a) Constraint forces at joint during connected mo-

tion with CFE methodology, in all ECI directions i =
x, y, z.
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(b) Constraint forces at joint during connected mo-

tion with CFE methodology plus Baumgarte stabiliza-

tion with η= 2, in all ECI directions i = x, y, z.
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(c) Constraint torques at joint during connected mo-

tion with CFE methodology, in all ECI directions i =
x, y, z.
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(d) Constraint torques at joint during connected mo-

tion with CFE methodology plus Baumgarte stabiliza-

tion with η= 2, in all ECI directions i = x, y, z.

Figure 3.4: Case Study A results: constraint forces and torques at joint during connected motion.

simulated by a kick-off spring model in order to simulate such a separation mechanism

between the two bodies at their time of release from each other.

In this respect, Figure 3.6 presents the bodies’ relative position rrel[i ], velocity vrel[i ],

and acceleration arel[i ] along the ECI orbital flight direction i = y (which is valid only

for such a very small time frame) during the connected motion (first 10 seconds), and

during their subsequent separation (last 10 seconds). Figure 3.6 also presents a zoom of
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(b) Relative joint position during connected motion

with CFE methodology plus Baumgarte stabilization

with η= 2, in all ECI directions i = x, y, z.
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(c) Relative joint velocity during connected motion

with CFE methodology, in all ECI directions i = x, y, z.
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(d) Relative joint velocity during connected motion

with CFE methodology plus Baumgarte stabilization

with η= 2, in all ECI directions i = x, y, z.

Figure 3.5: Case Study A results: relative joint position and velocity during connected motion, in all ECI direc-

tions i = x, y, z.

the small time window just around the separation command.

Results of this separation scenario shows the corresponding relative states of the

composite up until separation command and then their subsequent independent flight.

Once again, the benefit and ease of use of the MODELICA implementation of the CFE me-

thodology is evidenced during the connected flight of the composite, since constraint

forces and torques are automatically computed and applied to the system. At separation,
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the relative states suggest an impulsive behaviour due to the kick-off spring separation

mechanism model. This model releases a pre-compressed force stored in a replaceable

spring-damper model, evidencing good correspondence with the physics behind sepa-

ration. Such devices result in impulsive forces applied to the two-body system. This in

turn causes a change in relative velocity and therefore, a successful physical separation

of the system.

3.5. CONCLUSIONS

The objective of this chapter was to present an object-oriented and equation-based acausal

modeling approach to launch vehicle stage separation dynamics with MODELICA. The

aim is to develop an integrated approach for end-to-end launch vehicle trajectory simu-

lation within a single environment.

Based on the Constraint Force Equation (CFE) methodology, two case studies to eval-

uate the proposed approach were considered. The scenario under study consisted of

two bodies –representing a generic launcher stage and its payload– prior, during, and

after their separation in orbital flight motion.

Results demonstrated that the approach, mainly thanks to the acausal and equation-

based modeling features of the MODELICA language, corresponds very well with the

physics behind separation while providing easiness of implementation within a single

environment such as DYMOLA. The method computes and applies constraint loads au-

tomatically during joint motion and removes them accordingly at separation time, all in

consistency with the CFE methodology.

A disadvantage for long simulation periods of joint body motion is the necessity to

keep the drift within physical boundaries, hence requiring a stabilization method. This

in turn increases chattering and computational time and effort, thus resulting in a trade-

off to consider for the task at hand. Validation studies are left to future work.
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Figure 3.6: Case Study B results: Relative position, velocity, and acceleration from a kick-off separation scenario

along orbital flight direction i = 2. Ignition / separation command at t = 10 s.
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Abstract

Future launch vehicle concepts and technologies for expendable and reusable launch ve-

hicles are currently investigated by the DLR research projects AKIRA and X-TRAS. In par-

ticular, the winged Liquid Fly-back Booster concept LFBB based on an LOX/LH2 propel-

lant combination for vertical takeoff and vertical landing (VTVL), as well as the delta-

winged horizontal takeoff and horizontal landing (HTHL) concept AURORA based on an

LOX/Kerosene propellant combination are considered in these projects. Because of the

complexity and risks involved in on-line trajectory optimization, off-line reference trajec-

tories are still considered important for tracking purposes. In that sense, the goal of this

paper is to investigate an off-line and general-purpose guidance and control (G&C) archi-

tecture for preliminary studies of reusable launch vehicles. This is done by using trajectory

optimization combined with MODELICA models for the generation of optimal guidance

commands, and then trajectory tracking is performed by means of inner-loop feedback

controls in terms of nonlinear dynamic inversion with prescribed desired dynamics. We

showcase the advantages of this baseline G&C architecture in terms of early stability and

controllability aspects during the preliminary design studies of an example configuration

of a reusable launch vehicle investigated in the context of the research projects above men-

tioned.

Publication

Paul Acquatella B., Lâle E. Briese, and Klaus Schnepper: Guidance Command Genera-

tion and Nonlinear Dynamic Inversion Control for Reusable Launch Vehicles. In: Acta

Astronautica, Vol. 174, pp. 334–346 (2020); presented at IAC 2018, 69th International

Astronautical Congress, October 1-5, 2018. Bremen, Germany.
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4.1. INTRODUCTION

S
EVERAL studies on future launch vehicle configurations and technologies for expend-

able and reusable launch vehicles have been extensively conducted in the past at

DLR [8, 10–16]. Currently, partly or fully reusable launch vehicles using different return

methods are investigated at DLR in the context of the research projects AKIRA and X-

TRAS [5, 17, 158].

Reusability of launch vehicles strongly impacts the launch servicing market when-

ever sufficient reliability and low refurbishment costs can be achieved. Thus, keeping

up with such rapidly evolving international launcher market is essential for Europe, and

therefore the need for continuous investigation of different methods and technologies

for reusability [8–10].

In particular, the winged Liquid Fly-back Booster concept LFBB, studied extensively

during the early 2000’s [24] and more recently in [17], based on an LOX/LH2 propellant

combination for vertical takeoff and vertical landing (VTVL), as well as the more recent

study of the delta-winged horizontal takeoff and horizontal landing (HTHL) concept AU-

RORA [5, 158] based on an LOX/Kerosene propellant combination have been considered.

For the launcher concepts and configurations to consider and optimize at prelimi-

nary design studies, early stability and controllability aspects are necessary. This leads

to the following motivation for this chapter.

4.1.1. MOTIVATION

This chapter focuses on early stability and controllability aspects during the preliminary

design studies of launcher conceptual designs. Identifying the impact of such aspects

on performance, reaction control system (RCS) design, and actuator sizing (RCS, aero-

dynamic control surfaces, thrust vector control), among many others, is of great impor-

tance. In particular, for each reusable launcher design study we ask ourselves these ques-

tions:

• What is the optimal reference trajectory according to the mission constraints and

requirements?

• Is this configuration controllable?

• What is the impact of the controllability on the design (impulse budget, reaction

control system sizing, aerodynamic control surfaces, etc.)?

Because of the complexity and risks involved in on-line trajectory optimization, off-

line reference trajectories are still considered important for tracking purposes. In that

sense, to answer these questions, we focus on a guidance and control (G&C) architec-

ture by using an optimal trajectory generator to find an off-line reference trajectory, and

then trajectory tracking is performed by means of inner-loop feedback controls using

Nonlinear Dynamic Inversion (NDI) and linear control (LC).

4.1.2. PREVIOUS WORK

Nonlinear Dynamic Inversion, based on feedback linearization [61–63], is very common

in the aerospace field; some applications of flight control include [60, 67–70]. More ad-
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vanced methods involving robustness and improvements of the method in NDI-based

flight control applications are considered, among many others, in [69–75].

NDI methods also found their application for the control of spacecraft and re-entry

vehicles, see for example [4, 49–51] and the references therein. Early works on NDI for

space applications include [49], where a nonlinear flight control system for a winged re-

entry vehicle was designed that accurately tracks attitude commands while being subject

to significant aerodynamic uncertainties, and [50], where a general purpose two-loop

flight control architecture for attitude control was designed based on time-scale separa-

tion for a lifting body re-entry vehicle using nonlinear dynamic inversion.

The work here presented is largely based on these last references [4, 49–51], however

more oriented towards an integrated approach as in [60] combining trajectory optimiza-

tion, nonlinear models implemented in the acausal modeling language MODELICA, and

NDI control; which leads to the following objectives.

4.1.3. OBJECTIVES

The goal of this chapter is therefore to investigate a baseline and general-purpose G&C

architecture for reusable launch vehicles involving the combination of trajectory opti-

mization and MODELICA models for nonlinear control. We do this by combining the

following three separate methods:

1. Trajectory Optimization. An off-line reference trajectory can be generated by

transcribing the trajectory optimization problem into a multi-criteria optimiza-

tion problem. Solutions are found with a direct approach using the trajectory op-

timization package ‘trajOpt’ of DLR-SR’s optimization tool MOPS (Multi-Objective

Parameter Synthesis).

2. Guidance Command Generation. Guidance commands are generated via com-

bination of trajOpt with nonlinear models implemented with the object-oriented,

equation-based, multi-physical, and acausal modeling language MODELICA. These

consists on the optimal flight path reference and its corresponding commands

(aerodynamic angles) for the inner-loop attitude control.

3. Nonlinear Dynamic Inversion Control. Lastly, inner-loop attitude control is based

on nonlinear dynamic inversion (NDI). NDI cancels out nonlinearities in the sys-

tem via state feedback, and then desired dynamics can be prescribed to track the

optimal reference trajectory accordingly. The nominal performance is therefore

considered as a benchmark for the controllability analysis of the launch vehicle

along the reference trajectory.

To demonstrate the feasibility of using this integrated approach, we showcase the

advantages of this baseline G&C architecture in terms of early stability and controllability

aspects during the preliminary design studies of an example configuration of a reusable

launch vehicle.

The remainder of the chapter is organized as follows. Section 4.2 presents trajectory

optimization problem formulation and its solution. In Sections 4.3 the optimal guid-

ance commands that are obtained with the trajectory optimization in combination with

MODELICA models is explained. Section 4.4 briefly explains the control design method
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Figure 4.1: Workflow of the proposed G&C design architecture.

behind the nominal trajectory tracking, and Section 4.5 presents the simulations of these

controllers in a particular reusable launcher configuration. Conclusions are discussed in

Section 4.6.

4.2. OPTIMAL TRAJECTORY GENERATION

In this section, the general trajectory optimization problem that can be treated with

the Trajectory Optimization Package ‘trajOpt’ [2] is specified. Following that, the tran-

scription to a problem handled by MOPS (Multi-Objective Parameter Synthesis) [54] is

shown. MOPS solves the transcribed multi-objective design problems by mapping them

to weighted min-max optimization problems. The trajOpt structure and its classes sup-

ports this transcription process by its implementation as an object-oriented MATLAB [36]

package within MOPS.

4.2.1. OPTIMAL TRAJECTORY OPTIMIZATION PROBLEM FORMULATION

The description of trajectory optimization problems follows the notation used in MOPS.

In particular constraints and optimization criteria are defined by just one category of

functions: MOPS criteria. Mathematically the trajectory optimization problems covered

can be described as:

Given m phases with possibly optimizable phase times

t j ∈
{

t 0 < t 1 < . . . < t m
}

(4.1)

the states x j (t ) for each phase j obey initial value problems of the form:

ẋ j = f j (t , x j ,u j , p j ), x j (t j−1) = s j , j ∈ 1. . .m. (4.2)

Here u j (t ) are (optimizable) control functions in phase j and p j are constant scalar

modeling parameters (design parameters). The differential equations for each of the

multiple phases can differ completely. A well known example is the ascent optimization

for multistage rockets, where each stage configuration defines a phase of the problem.
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For each phase there can be criteria specified at the phase’s final time (right side)

min rΨ
j

k j
(t j , x j (t j ),u j (t j ), p j ) j ,k j ∈ Sm

rΨ
j

k j
(t j , x j (t j ),u j (t j ), p j ) ≤ 1 j ,k j ∈ Si

rΨ
j

k j
(t j , x j (t j ),u j (t j ), p j ) = 1 j ,k j ∈ Se

for all

{
j ∈ 1. . .m

k j ∈ 1. . .nr
j

(4.3)

and the phase’s initial time (left side)

min lΨ
j

k j
(t j , x j (t j ),u j (t j ), p j ) j ,k j ∈ Sm

lΨ
j

k j
(t j , x j (t j ),u j (t j ), p j ) ≤ 1 j ,k j ∈ Si

lΨ
j

k j
(t j , x j (t j ),u j (t j ), p j ) = 1 j ,k j ∈ Se

for all

{

j ∈ 1. . .m

k j ∈ 1. . .nl
j

(4.4)

In this notation, for phase j , we have nr
j

final and/or nl
j

initial criteria. The initial val-

ues for state differential equations in phase j are x j (t j−1) = s j . Optionally there can be

additional path criteria evaluated at specified discrete times in the phase

min g
j
o j

(tk j
, x j (tk j

),u j (tk j
), p j ) j ,k j ∈ Sm

g
j
o j

(tk j
, x j (tk j

),u j (tk j
), p j ) ≤ 1 j ,k j ∈ Si

g
j
o j

(tk j
, x j (tk j

),u j (tk j
), p j ) = 1 j ,k j ∈ Se

for all







j ∈ 1. . .m

o j ∈ 1. . .n j

tk j
∈ [t j−1, t j ]

(4.5)

and phase connect constraints of the form





x j+1(t j )

u j+1(t j )

p j+1



= h j+1(t j , x j (t j ),u j (t j ), p j )

for all j ∈ 1, . . . ,m −1.

(4.6)

Here, Sm denotes the set of criteria to be minimized, and Se and Si are the sets of equality

and inequality criteria from Equations (4.3), (4.4), and (4.5), and the equality criteria

defined by Equation (4.6).

A graphical representation of this general problem is shown in Figure 4.2 including

the control approximation and path criteria formulation.

4.2.2. TRANSCRIPTION INTO A DIRECT APPROACH

The trajectory optimization problem as posed in the previous section is an optimal con-

trol problem in function space for the control functions u j . In order to solve trajectory
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Figure 4.2: Multi-phase trajectory optimization problem with control discretization.
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Figure 4.3: trajOpt optimization progress example for a classical expendable launch vehicle [2].

optimization problems from Equations (4.1) to (4.6) the control functions are discretized

by approximation functions u j (t ) = u j (U j , t ), like piecewise polynomial functions with

discretization parameters U j , j ∈ 1, . . . ,m. These discretization parameters are added

to the initial values s j for the state equations, modeling parameters p j , and the phase

times t j to form the optimization parameters (and tuners) of the rewritten optimization

problem.

This transcription of the original trajectory optimization problem results in defining

k design objectives as positive criteria ck to be minimized against demanded values dk

by considering the following min-max constrained multi-criteria optimization problem

(see MOPS [54])

min
T

{

max
k∈Sm

{
ck (T )

dk

}}

, (4.7a)
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subject to ck (T ) = dk , k ∈ Se,

ck (T ) ≤ dk , k ∈ Si,

with:

Tmin ≤T ≤Tmax. (4.7b)

Here, T is a vector containing the tuning parameters to be optimized, which is con-

strained by upper and lower bounds Tmin and Tmax. ck ∈ Sm is the k−th normalized cri-

terion and dk its corresponding demand value which serves as a criterion weight; lastly,

ck ∈ Se,Si are normalized criteria which are used as equality and inequality constraints.

This multi-criteria optimization problem can then be solved using standard nonlinear

programming (NLP) methods contained in MOPS [54].

As already mentioned, to support this transcription process, MOPS was augmented

by the object-oriented MATLAB package trajOpt [2]. trajOpt defines base classes for spec-

ifying the ODE right-hand sides from Equation (4.2) and the criteria functions from Equa-

tions (4.3) to (4.6). These base classes handle much of the detail of criteria definition and

evaluation handling within MOPS. A user needs to derive classes from these base classes

for specifying only the actual criteria functions. This can be particularly easy when using

Funtional Mockup Units (FMUs) as models for the ODE and criteria functions where this

can reduce to a purely declarative process.

In addition trajOpt defines classes for handling the simulation of the actual model

within the different phases and the correct evaluation of criteria functions. In particu-

lar, classes exist that hide the intricacies of using FMUs as models within the trajectory

optimization framework. Additionally, using different FMU units in different phases is

supported along with the ability to use MOPS and trajOpt in MATLAB parallel computa-

tion environments.

For a classical expendable launch vehicle Figure 4.3 shows the optimization progress

when solving such a trajectory optimization problem.

4.3. GUIDANCE COMMAND GENERATION

In this section we focus on a nominal off-line guidance method to generate an optimal

reference trajectory which keeps the launch vehicle’s mission and physical constraints

within its optimal values. These guidance reference commands are generated via com-

bination of the trajectory optimization package trajOpt with nonlinear models imple-

mented with the object-oriented, equation-based, multi-physical, and acausal modeling

language MODELICA, which is briefly introduced in the next subsection. The MODEL-

ICA models used in this study regarding trajectory optimization (3-DOF) and trajectory

tracking with nonlinear control (6-DOF), together with their implementation using an

advanced launch vehicle modeling framework are presented in more detail in [3, 159].

4.3.1. MODELICA

MODELICA [37–41] is a modern object-oriented, equation-based modeling language well

suited to model complex physical systems containing, e.g., mechanical, electrical, elec-

tronic, hydraulic, thermal, control, power or process–oriented subsystems and compo-

nents.
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Models in MODELICA are described using differential, algebraic, and discrete equa-

tions which are then mapped into a mathematical description form called hybrid Dif-

ferential Algebraic Equations (DAEs). A DAE system on its implicit form is generally ex-

pressed as

F
(

ẋ(t ), x(t ),u(t ), y(t ),ρ, t
)

= 0, (4.8)

where ẋ are the state derivatives, x the state variables, u the inputs, y the algebraic vari-

ables, ρ the parameters and constants, t the time variable, and the dimension dim(F) =
dim(x)+dim(y). Systems are then solved and simulated by MODELICA simulation en-

vironments. When these systems are represented in the DAE implicit form, they can

be solved directly by a DAE solver such as DASSL. Alternatively, the system can be sorted

out according to specific inputs and outputs and mapped into an explicit ODE (Ordinary

Differential Equation) form by solving for the derivatives and the algebraic variables, and

then subsequently solved numerically by an ODE solver. The process and details of MOD-

ELICA’s code compilation is out of the scope of this chapter.

MAIN FEATURES [41]

In contrast to imperative languages, in which statements and algorithms are assigned

in explicit steps, MODELICA is declarative , meaning that declarations are given through

equations. These declarations most often describe model’s first-principles at their low-

est levels without explicit orders or how to compute them, hence why MODELICA is said

to be equation based . By means of specialized algorithms, these declarative models are

translated into efficient computer executable code. This allows acausal modeling capa-

bilities that give better reuse of classes since equations do not specify a certain data flow

direction. This is therefore one of the most important features of the language.

MODELICA is domain neutral. In other words, it has multi-domain modeling capa-

bility, meaning that model components corresponding to physical objects from several

different domains can be described and connected. This interaction between compo-

nents is defined by means of physical ports, called connectors, and the interconnection

is given accordingly to their physical meaning. This meaning is typically represented by

flow variables, which describe quantities whose values add up to zero in a node connec-

tion (Kirchhoff’s first rule); and by non-flow (or potential) variables, which in contrast

remain equal (Kirchhoff’s second rule).

MODELICA is an object-oriented language. This helps to model systems and their

physical meaning within an object-oriented structure, facilitating the reuse of compo-

nent models and the evolution of the structure itself. Thus, object-orientation is primar-

ily used as a structuring concept which exploits the declarative feature of the language,

as well as the re-usability of models.

MODELICA has a strong software component model with constructs for creating and

connecting components in a modular fashion. Systems’ individual components are de-

fined separately as objects, and their interconnection is given accordingly to their physi-

cal meaning. Thus the language is ideally suited as an architectural description language

for complex physical systems.
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4.3.2. FLIGHT PATH GUIDANCE

Position and flight path control loops are readily obtained from the trajectory optimiza-

tion package trajOpt depending on problem-specific optimization goals, requirements,

and constraints. These can be such as maximizing the payload to a desired orbit and

maximizing downrange for the descent vehicle while minimizing accelerations and dy-

namic pressure, and thus mechanical and thermal loads, for instance.

In this sense, the reference trajectory in terms of position and flight path provides the

guidance commands that have to be tracked by the attitude control subsystem, which in

turn commands the launch vehicle in terms of moments that are actuated by the aero-

dynamic surface deflections, the thrust vector control (TVC), or by the reaction control

system (RCS) thrusters, depending on the configuration and the phase considered.

To that end, MODELICA-based 3-DOF launch vehicle models with phase-dependent

configuration parameters are exported as Functional Mock-up Units benefiting from

MODELICA’s object-oriented structure. Subsequently, these FMUs are imported sepa-

rately for each phase into trajOpt. Depending on the chosen configuration and flight

phase of the launch vehicle, multiple control input variables like the aerodynamic angle

of attack α, the aerodynamic sideslip angle β, the aerodynamic bank angle µ, as well as a

throttle factor cs can be active during the trajectory optimization. As a result, the optimal

reference trajectory can be obtained for several quantities such as positions, velocities,

transformation matrices, forces, or even some corresponding atmospheric parameters.

This approach, as well as the launch vehicle modeling framework as shown in Figure 4.4,

are explained in more detail in [3].

P

userPar

x

y
world

REF

geosphere

3-DOF

u

cs

µ

β

α

R

Figure 4.4: Input-Output Structure of an FMU containing the Launch Vehicle Modeling Framework [3].

The guidance command generation for this loop in this sense consists on the result-

ing flight path reference commands that are given in terms of the reference flight path

parameters





V

γ

χ





ref
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and its corresponding control commands for the aerodynamic angles





µ

α

β





cmd

respectively. The additional throttle factor cs is taken from the reference trajectory and

used as a feedforward command in the attitude control.

One major advantage of the trajectory optimization and guidance command gener-

ation approach as discussed in detail in [3] is, that by considering multi-phase trajec-

tory optimization, the computation of each trajectory phase with their respective objec-

tives and constraints can be parallelized. This is useful when the ascent and upper stage

phases have different objectives in contrast to the descent phase, although the overall

trajectory must fulfill the overall mission objectives. This allows the rapid prototyping

and analyses of different concepts and mission profiles.

Having found the off-line reference trajectory providing the nominal guidance com-

mands, the final step for the baseline G&C architecture of this work is the attitude con-

trol subsystem (ACS). The ACS is designed to track this reference trajectory within pre-

scribed desired dynamics together with nonlinear dynamic inversion control, which are

presented next.

4.4. NONLINEAR DYNAMIC INVERSION CONTROL

Without loss of generality, consider a general multiple-input and multiple-output (MIMO)

system whose number of inputs are equal to the number of outputs in order to avoid con-

trol allocation problems. Let’s also assume momentarily that the nonlinear system can

be described affine in the inputs as

ẋ = f (x)+g (x)u (4.9a)

y = h(x) (4.9b)

where x ∈ R
n is the state vector, u ∈ R

m is the control input vector, and y ∈ R
m is the

system output vector, the functions f (x) and h(x) are assumed to be smooth vector fields

on R
n , and g (x) ∈R

n×m is a matrix whose columns are also assumed as smooth vector

fields g j . Moreover, we consider y = x so that the relative degree of each of the outputs

yi , i = {1, . . . ,m} is one.

The idea of Nonlinear Dynamic Inversion (NDI) consists on canceling the nonlin-

earities in such nonlinear system so that the closed-loop dynamics is in a linear form.

In other words, the nonlinear system is inverted by means of state feedback into a lin-

ear structure, and hence conventional linear controllers can be applied. A fundamen-

tal assumption is that the model of the system is exactly known, which gives NDI a

great disadvantage from the point of view of uncertainties. Moreover, we also assume

to have complete and accurate knowledge about the state of the system, which is hard to

achieve in practice. NDI consists on the application of the following input transforma-

tion [61, 76, 78, 79]

ucmd = g−1(x)
(

ν− f (x)
)

(4.10)
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Figure 4.5: Nonlinear dynamic inversion tracking control for a nonlinear MIMO system (here, ref = cmd) [4].

which cancels all nonlinearities in closed-loop, and a simple linear input-output rela-

tionship between the new virtual control input ν and the output y is obtained

ẏ =ν (4.11)

Apart from being linear, an interesting result from this relationship is that it is also de-

coupled since the input νi only affects the output yi . From this fact, the input transfor-

mation (4.10) is called a decoupling control law, and the resulting linear system (4.11)

is called the single-integrator form. This single-integrator form (4.11) can be rendered

exponentially stable with

ν= ẏ des = ẏ cmd +K P e (4.12)

where ẏ des defines the desired dynamics for the output vector or control variables, ẏ cmd

is the feedforward term for tracking, e = y cmd − y is the error vector, y cmd denotes the

smooth desired output vector (at least one time differentiable), and K P ∈ R
m×m is a

diagonal matrix, whose i−th diagonal elements KPi
are chosen so that the polynomials

s +KPi
, i = {1, . . . ,m} (4.13)

may become Hurwitz. This results in the exponentially stable and decoupled desired

error dynamics

ė +K P e = 0, (4.14)

which implies that ei (t ) → 0, i = {1, . . . ,m}. From this typical tracking problem, and as

illustrated in Figure 4.5, it can be seen that the entire control system will have two control

loops [4, 78, 79]: the inner linearization loop based on Equation (4.10), and the outer

control loop in Equation (10.46) based on linear control.

4.4.1. MULTI-LOOP NDI CONTROL

For preliminary controllability studies, we will be interested in multi-loop cascaded con-

trol architectures. Regarding the attitude control concept, designed to track the refer-

ence trajectory and its guidance commands, it is composed of two control loops assum-

ing a sufficient time-scale separation between the attitude kinematics (aerodynamic an-

gles outer-loop) and the rotational dynamics (angular rates inner-loop). In other words,
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the inner-loop dynamics is assumed to be so fast, that from the outer loop perspective

the angular rate commands are achieved instantaneously. With this assumption, the at-

titude controller is therefore performed in terms of nonlinear dynamic inversion NDI for

each loop.

The outer-loop inversion of the attitude kinematics is very commonly done in atti-

tude control to obtain reference commands for the inner-loop dynamics. In terms of the

equations of angular motion, depending on the launcher or re-entry vehicle in consid-

eration, the rotational dynamics can take different forms, especially when considering

multi-body and variable mass dynamics. In this chapter, we assume that we have an

accurate model to invert, and for the preliminary design studies considering stability as-

pects, we don’t consider the effects of uncertainties and disturbances but we rather focus

on the nominal behaviour and performance of the plant. In what follows, we denote the

states

x1 =





p

q

r



 , x2 =





µ

α

β



 , x3 =





V

γ

χ





with p,q,r being the body roll, pitch, and yaw rates, respectively; µ,α,β, the aerodynamic

bank, angle of attack, and aerodynamic sideslip angles, respectively; and V ,γ,χ, the rel-

ative velocity of the launch vehicle, the flight path angle, and the flight path azimuth,

respectively.

The following two-loop NDI attitude control architecture is largely based on [4, 49,

50, 160].

4.4.2. BODY ANGULAR RATE CONTROL LOOP

Regarding the body angular rate control loop, we are interested in the variable-mass at-

titude equations of motion as obtained by Eke [151]

I ω̇ωω+ωωω× I ωωω+
( R dI

dt

)

ωωω= M B +MV (4.15)

where M B ∈R
3 is the external moment vector in body axes, MV ∈R

3 is the internal mo-

ment vector due to variable mass dynamics in body axes, ωωω ∈ R
3 is the angular velocity

vector, I ∈ R
3×3 the inertia matrix of the rigid body, and the left superscript indicates

that the time derivative is taken in a frame ‘R’ on the solid portion of the variable mass

system.

The external moments in M B are considered as the sum of moments partially gener-

ated by the aerodynamics of the airframe M a and moments generated by control surface

deflections M c , and we describe M B linearly in the deflection angles δ assuming the con-

trol derivatives to be linear as in [71] with (M c )δ = ∂
∂δ M c ; therefore

M B = M a +M c = M a + (M c )δδ (4.16a)

where

M B =





L

M

N



 , M a =





La

Ma

Na



 , M c =





Lc

Mc

Nc



 (4.16b)
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with L,M ,N , the roll, pitch, and yaw moments, respectively; and

δ=





δa

δe

δr



 (4.16c)

corresponding to the control inputs: aileron, elevator, and rudder deflection angles, re-

spectively. Furthermore, let MV be the sum of internal moments generated by the vari-

able mass dynamics as described in [151], where MV1 is the so-called jet damping, MV2

is due to the Coriolis effect (which can be neglected for axisymmetric motion as well as

for negligible internal flow), M H represents the rate of decrease of the system’s angular

momentum inside its boundary, and M thr the moment of the thrust vector about the

mass center; therefore

MV = MV1 +MV2 +M H +M thr . (4.17)

The details of these terms are left to the reader and can be found in [151].

Since we will be interested in the body angular rate inversion, which is a state-input

inversion problem [76, 78, 79], after a differentiation of the output variable

y 1 = x1 =ωωω, (4.18)

we obtain the dynamics of the rotational motion rewritten as the following set of differ-

ential equations

ω̇ωω= I−1M B + I−1
[

MV −ωωω× I ωωω−
( R dI

dt

)

ωωω
]

(4.19)

which inverted analytically yields

M̄ B = I ω̇ωω+
[

ωωω× I ωωω+
( R dI

dt

)

ωωω−MV

]

(4.20)

where we have used the notation M̄ B to denote that these moments are still commanded

to the launch vehicle and that are to be produced by the aerodynamic surface deflections,

the TVC, or by the RCS thrusters, depending on the configuration or the phase consid-

ered. Introducing the virtual control input

νω = ω̇ωωdes =





ṗdes

q̇des

ṙdes



 (4.21)

and denoting the internal variable-mass terms as

M i =
( R dI

dt

)

ωωω−MV (4.22)

then the NDI control consists in the following transformation [61, 76, 79]

M̄ Bcmd
= I νω+ωωω× I ωωω+M i . (4.23)
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In other words





L̄cmd

M̄cmd

N̄cmd



=






M̄ x
Bcmd

M̄
y

Bcmd

M̄ z
Bcmd




= I





ṗdes

q̇des

ṙdes



+





p

q

r



× I





p

q

r



+M i . (4.24)

Notice that whenever the variable-mass dynamics in M i are not considered, then

the Newton-Euler equations of motion for a rigid body are recovered and the NDI con-

trol design is further simplified. In general, depending on the nature of the propul-

sion system and its corresponding shape or assumed burn profiles, these terms can be

further simplified and implemented in closed form for simulation and control aspects,

see [111, 151, 161]. In this way, these loads can be included explicitly in the formula-

tion of the dynamic equations of motion of the corresponding element of the vehicle so

that their effect can be included in attitude control system as model-based feedforward

terms.

The desired dynamics in Equations (4.21) and (4.23) are specified by prescribing the

exponentially stable and decoupled desired error dynamics

ėω+K ωeω = 0, (4.25a)

where

eω =ωωωcmd −ωωω, (4.25b)

and

K ω(s) =





Kωp (s) 0 0

0 Kωq (s) 0

0 0 Kωr (s)



 . (4.25c)

Here,ωωωcmd is obtained from the aerodynamic angles outer loop, and we have introduced

K ω(s) as a diagonal matrix while assuming that the control law in Equation (4.23) is fully

decoupling each input-output channel, which is not generally the case. These diagonal

terms can be selected, for instance as a classical proportional-integral (PI) control [4, 50]

with gains

Kωi
(s) = KPi

+
1

s
KIi

, i = {p, q,r }, (4.26)

resulting in the closed loop system

ω̇ωωdes = ω̇ωωcmd +K Pω (ωωωcmd −ωωω)+K Iω

∫

(ωωωcmd −ωωω)dt (4.27)

with the gains

K Pω =





KPp 0 0

0 KPq 0

0 0 KPr



 , K Iω =





KIp 0 0

0 KIq 0

0 0 KIr



 . (4.28)

Whenever aerodynamic control surfaces are used, the aerodynamics of the airframe

and the moments generated by the control surface deflections plays an important role in

the dynamic inversion since these terms are hardly known exactly for model inversion.
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Since we assumed in (4.16a) that the control derivatives are linear, the dynamics can be

rewritten as the following

ω̇ωω= I−1(M c )δδ+ I−1
[

M a −M i −ωωω× I ωωω
]

(4.29)

and then the NDI control consists in the following expression

δcmd = (M c )−1
δ

[

I νω+ωωω× I ωωω+M i −M a

]

. (4.30)

Here, we have also assumed that the control derivatives are invertible in the whole do-

main of operation, and that dim(δ) = dim(y), meaning that the number of control vari-

ables and control effectors are equal. In the usual case where dim(δ) ≥ dim(y), meaning

that there are more aerodynamic control surfaces than variables to be controlled, con-

trol allocation is required. The opposite case, meaning dim(δ) ≤ dim(y), leads to internal

dynamics that must be studied in terms of stability, and the system is said to be underac-

tuated. These aspects are however out of the scope of this chapter.

4.4.3. AERODYNAMIC ANGLES OUTER-LOOP

The aerodynamic angles outer-loop inversion procedure is the same as shown before.

Since we will be interested in the attitude kinematics inversion, which is also a state-

input inversion considering the body angular rate as intermediate control inputs, denot-

ing the output vector

y 2 = x2, (4.31)

the differentiation of this output variable yields the attitude kinematics in terms of the

aerodynamic angles as expressed in [51, 160, 162] by

ẋ2 =





µ̇

α̇

β̇



= f 2 +G2





p

q

r



 (4.32)

where the angular velocity terms in f 2 = f 2(x2, x3), omitted here, are nonlinear func-

tions of the translational terms x2, x3 and their derivatives [51, 160, 162, 163] and

G2 =
1

cosβ





cosα 0 sinα

−cosαsinβ cosβ −sinαsinβ

sinα 0 −cosα



 . (4.33)

Since this kinematic equation is nonlinear but affine in the angular rates, and in the

case that the angular velocity terms contained in f 2 are assumed or regarded as very

small and neglectable for the attitude control subsystem, as it is commonly done in the

literature [51, 160], this inner-loop can be readily found by applying the following simple

inversion

ωωωcmd =G−1
2 νatt (4.34)

where we have introduced the virtual control input for this loop as

νatt = ẋ2des
=





µ̇des

α̇des

β̇des



 . (4.35)
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Otherwise, the angular velocity quantities f 2 can be added as model-based feedforward

terms to the guidance command generation. In other words, we have obtained the outer-

loop rate commands as





pcmd

qcmd

rcmd



=G−1
2





µ̇des

α̇des

β̇des



=





cosαcosβ 0 sinα

sinβ 1 0

sinαcosβ 0 −cosα









µ̇des

α̇des

β̇des



 . (4.36)

To finish the attitude control design, the desired aerodynamic angles are specified by

prescribing the exponentially stable and decoupled desired error dynamics

ėatt +K atteatt = 0, (4.37a)

where

eatt = x2cmd −x2, (4.37b)

and

K att(s) =





Kattµ 0 0

0 Kattα 0

0 0 Kattβ



 , (4.37c)

with

Katti
= KPi

+
1

s
KIi

, i = {µ,α,β}, (4.37d)

resulting in the closed loop system

ẋ2des
= ẋ2cmd

+K Patt (x2cmd −x2)+K Iatt

∫

(x2cmd −x2)dt , (4.38)

with the gains

K Patt =





KPµ 0 0

0 KPα 0

0 0 KPβ



 , K Iatt =





KIµ 0 0

0 KIα 0

0 0 KIβ



 , (4.39)

and which concludes the attitude control design.

4.5. NONLINEAR FLIGHT CONTROL SIMULATION

A nonlinear flight control simulation for the position and attitude control of the hori-

zontal takeoff and horizontal landing launch vehicle concept AURORA [5, 158] is here

presented.

4.5.1. MISSION PROFILE

The AURORA two-stage-to-orbit (TSTO) concept has been studied at the Space Launcher

System Analysis (SART) department of the DLR Institute of Space Systems (DLR-RY). This

concept considered iterative studies regarding mass budget, propulsion, aerodynamics,

and structural optimization amongst many others.
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Figure 4.6: AURORA-RLV concept [5].

The concept, shown in Figure 4.6, aims to reduce operational costs while increasing

launch frequency [5]. This is done by considering a more ‘aircraft-like’ operation pro-

viding a high lift-to-drag ratio and a propellant combination of LOX/Kerosene allowing

placement of the kerosene tanks in the wing structure.

The trajectory optimization of this concept has been performed and shown in [3],

where the following goals, requirements, and constraints were considered:

• The ascent of the launch vehicle starts at a launch site located at -52.77◦ latitude,

5.24◦ longitude, and zero altitude.

• The descent of the launch vehicle to the landing site (-64.68◦ latitude, 32.36◦ longi-

tude, zero altitude) has to be guaranteed within a radius of approximately 25 km.

• The payload mass shall be maximized while the upper stage propellant mass is

traded for the payload mass.

• The polar orbit with an apogee altitude of 1200 km has to be reached at an inclina-

tion of 90◦ and maximum perigee.

• The following constraints have to be considered to reduce mechanical or thermal

loads on the structure:

– Maximum acceleration nx lower than 4.5 g.

– Maximum acceleration nz lower than 1.75 g (ascent).

– Maximum acceleration nz lower than 4.25 g (descent).

– Maximum dynamic pressure lower than 50 kPa (ascent).

– Maximum dynamic pressure lower than 60 kPa for the re-entry and the flight

to the landing site.

– Maximum heat flux lower than 900 kW/m2 for a theoretic reference nose ra-

dius of 0.15 m.
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Table 4.1: Trajectory optimization phases considered for AURORA [3].

Phase Stages Description

P1 US+MS Horizontal liftoff

P2 US+MS Ascent phase (rocket engines)

P3 US+MS Ballistic phase & separation

P4 US Ascent of the upper stage

P5 MS Descent maneuver & return

Table 4.2: Sub-phases for AURORA descent maneuver.

Phase Actuators Description

P5-a RCS (+ Fins & Flaps) Re-entry

P5-b Fins & Flaps Skipping

P5-c Fins & Flaps Final approach

The trajectory phases considered with trajOpt are listed in Table 4.1. Phase P1 con-

siders the horizontal liftoff powered by rocket and air-breathing engines up to Ma ≈ 1

followed by an ascent Phase P2 powered only by the rocket engines. Phase P3 represents

a ballistic phase up until the separation of the upper stage stored in the payload bay,

initiated at a separation velocity of approximately 5 km/s. Consequently, the Phase P4

represents the ascent of the upper stage. Phase P5 represents the unpowered re-entry

maneuver and the return flight of the launch vehicle to the chosen landing site by using

the air-breathing engines. The ferry flight from the landing site back to the launch site

is not considered. Furthermore, Phase P5 is divided in three sub-phases for trajectory

optimization as shown in Table 4.2.

4.5.2. NONLINEAR DESCENT FLIGHT CONTROL

Flight simulations on the full 6-DOF nonlinear system are performed for the Phase P5

since it covers interesting scenarios, such as the re-entry flight and the potential to study

the combination of RCS with aerodynamic surface controls during descent. Moreover,

there are no variable mass dynamics since this is an unpowered descent maneuver, mak-

ing the control study much simpler. The simulations are done with the double-loop NDI-

based attitude control system to track the generated optimal trajectory of the launch

vehicle. We do this preliminarily without being subject to any disturbances or uncer-

tainties, and under the nominal conditions to verify if the plant is controllable during

the descent, and within which range in terms of RCS budget and aerodynamic surface

controls.

Figure 4.7 shows the descent guidance and control results for the re-entry maneu-

ver of Phase P5-a using only RCS control. This is the baseline scenario considering the

attitude control entirely actuated by the RCS thrusters. Since only attitude control is per-

formed, Fig. 4.7-a shows the resulting ‘open loop’ kinematic position trajectory which
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is entirely done by means of the nominal attitude tracking control (the relative velocity

is shown normalized according to the whole Phase P5). Fig. 4.7-b shows the resulting

tracking performance of the attitude control system in terms of the commanded aerody-

namic angles. In Fig. 4.7-c the resulting and commanded rates from the dynamic inver-

sion can be seen; here, the pitch rate q and its commanded values differ because of the

highly cross products involved, which are solved for automatically in the inner loop to

obtain the required moments and which are not accounted for in the outer-loop com-

mands. The re-entry maneuver demands quite high pitching moments as demonstrated

by Fig. 4.7-d, where the required commanded moments are shown normalized with re-

spect to the complete Phase P5. These results show that the system is controllable under

the nominal conditions if the obtained bounds of commanded moments are achievable

in practice.

As a test-case scenario, we investigate what happens whenever this Phase P5-a can

be performed in combination with aerodynamic surface controls. This can be done only

after t = 500 s when the launch vehicle has already entered in the atmosphere below an

altitude of h = 120 km and therefore commandable in terms of aerodynamic forces and

moments. Since the aileron and the elevator commands the flaps simultaneously, we

have to restrict these commands such that the combined maximum deflection limit for

each flap does not exceed ±30 deg. The same limits apply for the fins which are actu-

ated with the same limits of ±30 deg. In that sense, we limit the elevator commands to

±20 deg and the aileron commands to ±10 deg (as an initial guideline, not optimized).

Figure 4.10 shows the descent guidance and control results for the re-entry maneuver

of Phase P5-a of the combined aerodynamic surface control and RCS. Besides the open-

loop flight path and the nominal attitude tracking performance results, this figure shows

the resulting impact of the demanded pitching moments of Fig. 4.10-c as compared to

the ones with RCS thrusters only in Fig. 4.7-c (normalized). These results show that,

while the system is still controllable under the nominal conditions considered, the im-

pact on the RCS budget can be significant while maintaining certain bounds on the aero-

dynamic actuator efforts. This also showcase the potential benefit in launch vehicle’s de-

sign that improvements in terms of impulse budgeting (and therefore propellant mass)

can already be obtained at preliminary design levels.

In that sense, Fig. 4.8 shows the resulting aerodynamic control surfaces for Phase P5-

a in combination with RCS control. The allocation of control surfaces vs. RCS thrust

could be further optimized to avoid actuator saturations or to minimize fuel consump-

tion within some actuation limits; however, this subject is not further investigated here.

This scenario considering the combined RCS thrusters and aerodynamic control sur-

faces showcase the potential to reduce by more than half the angular impulse budget

for the RCS as shown in Fig. 4.9. This impact on the RCS budget can lead to further im-

provements in terms of the launch vehicle preliminary design, since the dimensioning

and location of the RCS thrusters can also have a considerable impact on the vehicle

configuration.

To conclude the study, Fig. 4.11 shows the descent guidance and control results for

the Phase P5-c which is the final approach of the descent. The attitude control of this

phase is entirely performed by aerodynamic surfaces since they can produce the aerody-

namic moments required. Once again, these results show that the system is controllable
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under the nominal conditions and within the bounds of the aerodynamic control sur-

faces.

4.6. CONCLUSIONS

This chapter presented a baseline and general-purpose off-line G&C architecture for

reusable launch vehicles for the early stability and controllability studies during prelimi-

nary design phases of generic launcher conceptual designs.

Optimal reference trajectories and guidance commands were obtained with a direct

approach using the trajectory optimization package ‘trajOpt’ in combination with MOD-

ELICA models, while inner-loop attitude control was designed in terms of nonlinear dy-

namic inversion together with prescribed desired error dynamics. Such optimal refer-

ence trajectory tracking helps to answer the motivating questions presented in the intro-

duction.

To demonstrate our integrated approach, the AURORA reusable launch vehicle con-

cept was investigated in the context of the methods presented here. The nonlinear con-

trol system, simulated for the descent phase including the re-entry flight and covering

a wide flying envelope ranging from Mach 18 to Mach 5 and angles of attack between

50 and 9 deg, demonstrate the controllability of the launch vehicle as well as the poten-

tial to reduce more than half the impact on the angular impulse budget for the RCS by

combining it with aerodynamic surface controls during the re-entry phase.

Flight simulations show that the control system accurately tracks commands in aero-

dynamic angles but preliminarily without being subject to significant aerodynamic un-

certainties. This will be part of future work, which will consider and include more de-

tailed analysis of the effect of parametric and aerodynamic uncertainties, as well as ex-

ternal perturbations such as wind and turbulence on the overall G&C and control perfor-

mance.
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Figure 4.7: Phase P5-a – Descent guidance and control results for the re-entry maneuver using RCS control.
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Figure 4.10: Phase P5-a – Descent guidance and control results for the re-entry maneuver using RCS and aero-

dynamic surface control.
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Abstract

The satellite platform BIROS is the second technology demonstrator of DLR’s ‘FireBIRD’

space mission aiming to provide infrared remote sensing for early fire detection. Among

several mission goals and scientific experiments, to demonstrate a high-agility attitude

control system, the platform is actuated with an extra array of three orthogonal ‘High-

Torque-Wheels’. However, to enable agile reorientation, a challenge arises from the fact

that time-optimal slew maneuvers are, in general, not of the Euler-axis rotation type; espe-

cially whenever the actuators are constrained independently. Moreover, BIROS’ on-board

computer can only accommodate rotational acceleration commands twice per second.

The objective is therefore to find a methodology to design fast slew maneuvers while con-

sidering a highly dynamic plant commanded by piecewise-constant sampled-time control

inputs. This is achieved by considering a comprehensive analytical nonlinear model for

spacecraft equipped with reaction wheels and transcribing a time-optimal control prob-

lem formulation into a multi-criteria optimization problem. Solutions are found with

a direct approach using the trajectory optimization package ‘trajOpt’ of DLR-SR’s opti-

mization tool, Multi-Objective Parameter Synthesis (MOPS). Results based on numerical

simulations are presented to illustrate this method.

Publication

Paul Acquatella B.: Fast Slew Maneuvers for the High-Torque-Wheels BIROS Satellite. In:

Transactions of the Japan Society of Aeronautical and Space Sciences, Vol. 61, No. 2,

pp. 79–86, 2018; presented at ISSFD 2017, 26th International Symposium on Space Flight

Dynamics, June 3-9, 2017, Matsuyama-Ehime, Japan.
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5.1. INTRODUCTION

T
HE SATELLITE platform Bi-spectral InfraRed Optical System (BIROS) [27], successfully

launched into space on 22 June 2016 at 05:55 CEST, is the second technology demon-

strator along with the TET-1 satellite of the DLR R&D ‘FireBIRD’ [28] space mission aim-

ing to provide infrared (IR) remote sensing for early fire detection (forest fires, volcanic

activity, gas flares and industrial hotspots). These small satellites are extensions and

largely based on the flight-proven Bi-spectral Infra-Red Detection (BIRD) [34, 35] satel-

lite bus launched in 2001.

Figure 5.1: FireBIRD – a satellite duo for fire detection. BIROS (front), TET-1 (back). Credit: DLR, CC-BY 3.0.

Among several mission goals and scientific experiments, the platform is actuated

with an extra array of three orthogonal ‘High-Torque-Wheels’ (HTW) [25, 26] to demon-

strate a high-agility attitude control system. Since the fast slew maneuvers are meant to

be performed mainly by the HTW array, the satellite platform’s main torque actuators,

as with TET-1, are four precise ‘RW-90’ reaction wheels [164] in a redundant tetrahedron

configuration. Wheel characteristics for both the HTW and the RW-90 are presented in

Table 1, while BIROS’ reaction wheel array alignment parameters, as described in the

kinematics section, are presented in Table 2.

One of the main requirements for the HTW experiment is being able to perform

30deg 1-axis rotations in 10s around a principal axis with an inertia of 10Kg ·m2. For

three-axis rotations, rotation paths are, in general, not prescribed in the requirements

and these rotations are desired to be performed in minimal time. The experiment is

originally designed to be implemented in the ‘Fast Slew’ mode of BIROS’ Attitude Con-

trol System (ACS). See Löw et al. [165] for a detailed description of other (main) modes,

which are similar to the ones implemented for the TET-1 satellite [166, 167] of the Fire-

BIRD constellation.

However, for agile reorientation, a challenge arises from the fact that time-optimal

slew maneuvers are, in general, not of the Euler-axis rotation [136, 137] type; especially

whenever the actuators are constrained independently [131], as it will be in this case.

Moreover, the BIROS on-board computer (OBC) can only accommodate rotational ac-

celeration commands twice per second, which means that these must be piecewise-

constant sampled-time control inputs.

The topic of optimal spacecraft rotational maneuvers is quite extensive [127] and

has been studied for many decades. Earlier works [128, 129] considered numerical ap-

proaches and quasi-closed-form solutions to reorientation problems, while only recently

new results have been found for minimum-time and time-optimal reorientation maneu-
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Table 5.1: Wheel characteristics [26, 164, 166, 167]

Performance RW-90 HTW

Nominal speed [rpm] 6000 1825

Max. speed [rpm] 7800 3000

Nominal torque [Nm] 0.015 0.21

Max. torque [Nm] 0.021 0.23

Nominal ang. momentum [Nms] 0.2639 0.9556

Max. ang. momentum [Nms] 0.3431 1.5708

Mechanics

Number of wheel units 4 3

Moment of inertia [Kg ·m2] 4.2×10−4 5×10−3

vers [130–133] for more generic configurations. Some of these results have been experi-

mentally validated for imaging satellites in-orbit [138]. Time-optimal reorientation solu-

tions for rigid bodies have also been found using a geometric mechanics approach [134,

135] together with indirect optimization. However, most of the work reported in liter-

ature does not consider time-optimal control solutions of spacecraft equipped with re-

action wheels driven by independently constrained piecewise-constant sampled-time

control inputs.

This motivates the objective of this chapter, which is to find a methodology to design

fast slew maneuvers for the BIROS HTW experiment while considering a highly dynamic

plant commanded by piecewise-constant sampled-time control inputs. The offline solu-

tions considered in this chapter are mainly oriented to rest-to-rest maneuvers and will

be implemented as sampled-input feedforward commands in combination with error

feedback control in a two-degrees-of-freedom control system architecture.

This is achieved by 1) considering a comprehensive analytical nonlinear model for

spacecraft equipped with reaction wheels; 2) considering the outer-loop control as the

feedforward commands designed here; 3) transcribing a time-optimal control problem

formulation into a direct approach involving a multi-criteria optimization problem con-

sidering inequality and equality constraints; and 4) solving the transcribed problem di-

rectly using the trajectory optimization package ‘trajOpt’ of DLR-SR’s optimization tool,

Multi-Objective Parameter Synthesis (MOPS). To obtain the desired piecewise-constant

sampled-time inputs, the methodology proposed follows a sequential three-step proce-

dure. Finally, numerical simulations of the procedure steps proposed are presented.

5.2. MODELING OF SPACECRAFT WITH REACTION WHEELS

In this section a comprehensive nonlinear rotational dynamics model for spacecraft is

described. The model includes a generic set of reaction wheels in arbitrary configuration

which are driven by exogenous inputs provided by each wheel’s powertrain.
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Table 5.2: BIROS’ reaction wheel array alignment parameters

Alignment vector Value

a1 (HTW )
(

1 0 0
)⊤

a2 (HTW )
(

0 1 0
)⊤

a3 (HTW )
(

0 0 1
)⊤

a4 (RW-90)
(

0 −1 0
)⊤

a5 (RW-90)
(

1
2

p
3 sinθ cosθ − 1

2 sinθ
)⊤

a6 (RW-90)
(

− 1
2

p
3 sinθ cosθ − 1

2 sinθ
)⊤

a7 (RW-90)
(

0 cosθ sinθ
)⊤

Alignment angle

θ [rad] arccos(−1/3)

5.2.1. KINEMATICS

Consider, first, an array consisting of n reaction wheels. Introducing unit vectors ai ,

which give the orientation of the spin-axis of each reaction wheel with respect to the

spacecraft coordinate system collected in the configuration or alignment matrix

A =
[

a1 a2 · · · an

]

, (5.1)

then each ai can define the i−th reaction wheel or ‘actuator’ frame by taking ai as the

first axis and making the remaining axes constitute an orthogonal frame. The kinematics

of the i−th reaction wheel with respect to its corresponding actuator frame in terms of

its spin-axis angle Φw,i and angular velocity Ωw,i is simply given by

Φ̇w,i =Ωw,i i = 1, . . . ,n. (5.2)

Next, consider the spacecraft equipped with the n reaction wheels just introduced. Rota-

tion matrices R ∈S O (3), representing a linear transformation of vectors in body-fixed or

‘hub’ frame into the inertial frame, are preferred as the attitude parameterization since

they are both global and unique [168], where the configuration space or manifold of ro-

tation matrices [134] is given by the special orthogonal group S O (3) with the conditions

S O (3) = {R ∈R
3×3 | R⊤R =I3×3, det[R] = 1}.

In that sense, the kinematics of the full spacecraft with respect to the inertial frame, and

in terms of its rotation matrix R and angular velocity ωωω ∈R
3, is given by

Ṙ = R ·S(ωωω). (5.3)

The skew map S(·) : R3 7→ so(3) is a linear isomorphism between R
3 and the Lie algebra

so(3), which represents 3×3 skew-symmetric matrices, and is defined by the condition
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that S(x) y = x × y for any x, y ∈R
3, or algebraically as

S(x) =





0 −x3 x2

x3 0 −x1

−x2 x1 0



 .

The inverse of the skew map is denoted by the vee map ∨ : so(3) 7→R
3.

5.2.2. DYNAMICS

Following the derivations in Karpenko et al. [138], a rotational dynamics model is ob-

tained as follows. First, consider the angular momentum of the spacecraft equipped

with the reaction wheel array in question

H = I ωωω+h (5.4)

where, expressed in a body-fixed frame, H ∈ R
3 is the total angular momentum of the

system, I ∈ R
3×3 is the constant inertia matrix of the spacecraft including the reaction

wheels,ωωω ∈R
3 is the spacecraft angular velocity, and h ∈R

3 is the total angular momen-

tum vector associated with the reaction wheel array. The angular momentum h can be

expressed from individual actuator frames to the body-fixed frame as

h =
n∑

i=1

ai hw,i = A I w ΩΩΩ, (5.5)

where I w is a diagonal matrix of reaction wheel spin-axis inertia values

I w =






I w,1 · · · 0
...

. . .
...

0 · · · I w,n




 ,

and ΩΩΩ is the inertial angular rate of the reaction wheel array

ΩΩΩ=Ωw + A⊤ωωω.

The term A⊤ωωω is the extra angular motion relative to the spacecraft. Considering the

angular momentum associated with the i−th reaction wheel in the actuator frame

hw,i = I w,i

(

Ωw,i +a⊤
i ωωω

)

, i = 1, . . . ,n, (5.6)

after which the differential equation describing the reaction wheel dynamics in terms of

reaction wheel torques τw,i can be obtained

Ω̇w,i = I−1
w,i τw,i −a⊤

i ω̇ωω, i = 1, . . . ,n. (5.7)

Here, the reaction wheel torques are considered as the exogenous inputs to the system

and are provided by the wheel’s powertrain.
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Because the angular momentum must be conserved in the absence of external per-

turbations, applying the transport theorem [127, 138] to Eq. (10.7), the following relation

is obtained
d

dt
H +ωωω×H = 0, (5.8)

which can be further expanded as

I ω̇ωω+ A I w Ω̇ΩΩ+ωωω×
(

I ωωω+ A I w ΩΩΩ

)

= 0. (5.9)

Combining Eqs. (5.5), (5.7), and (5.9), the comprehensive nonlinear model for spacecraft

dynamics equipped with reaction wheels [138] is given by

Γ









ω̇ωω

Ω̇w,1

...

Ω̇w,n









=









−ωωω×
(

I ωωω+ A I w Ωw + A I w A⊤ωωω
)

τw,1

...

τw,n









(5.10)

where

Γ=









I + AI w A⊤ a1I w,1 · · · an I w,n

I w,1a⊤
1 I w,1 · · · 0

...
...

. . .
...

I w,na⊤
n 0 · · · I w,n









is an augmented inertia coupling matrix for the full system.

5.3. ATTITUDE CONTROL

5.3.1. REACTION WHEEL INNER-LOOP CONTROL

Each wheel torque τw,i consists of a motor-provided torque τm,i and an undesired fric-

tion torque τ f ,i

τw,i = τm,i +τ f ,i , i = 1, . . . ,n, (5.11)

where the friction torque results from static, viscous, Coulomb, an other nonlinear fric-

tion torques related to stiction and to extreme conditions of the space environment. The

friction torque is estimated with a simple model as

τ̂ f ,i = MvisΩw,i +MCoul sign(Ωw,i ), i = 1, . . . ,n, (5.12)

where Mvis and MCoul are viscous and Coulomb friction parameters, respectively. When

no gearboxes are present, and neglecting the dynamics of the DC-motor’s electrical cur-

rent ic , the relationship between motor current and motor output can be assumed as

τm,i = ηmKm ic , (5.13)

where ηm and Km are the motor efficiency and motor constant, respectively. However,

to compensate for undesired friction torques τ f ,i , a reaction-wheel inner-loop controller
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embedded in the actuator and operating at a sampling rate of 100Hz is designed to com-

pensate the effect of undesired and estimated wheel friction torques as a nonlinear func-

tion

τm,i = fw

(

τw,icmd
, τ̂ f ,i ,Ω̂w,i ,Φ̂w,i

)

(5.14)

which tracks the wheel-torque reference command τw,icmd
with the estimated quantities

for friction, wheel velocity, and wheel angle. The torque reference command can be

related to a desired wheel acceleration whenever wheel-rate control is required by

τw,icmd
= Î w,i Ω̇w,ides

(5.15)

where Î w,i is an estimate of the i−th wheel inertia. Finally, the i−terms τw,icmd
are col-

lected on a single vector as

uw =






τw,1

...

τw,n






cmd

. (5.16)

As mentioned in the introduction, BIROS’ OBC can only accommodate commands at a

sampling rate of 2Hz; therefore, to perform fast slew maneuvers, an outer-loop controller

is designed such that it commands the wheel torques in k−sampled times as uw = uw (k)

for k ∈ {0, . . . , N }, where N represents the maneuver’s final time sample.

5.3.2. ATTITUDE AND RATE OUTER-LOOP CONTROL

Analogous to Eq. (5.3), a smooth attitude command Rd ∈S O (3) satisfying

Ṙd = Rd ·S(ωωωd ) (5.17)

is considered, whereωωωd is the desired angular velocity assumed to be uniformly bounded.

Lee [135] showed that careful selection of an attitude error function can guarantee good

tracking performance of nontrivial slew maneuvers involving large initial attitude errors.

This is because the magnitude of an attitude error vector should be proportional to the

rotation about the Euler-axis between the current and desired attitude. In this sense, an

attitude error function Ψ : S O (3)×S O (3) 7→R, as in Goodarzi et al., [169] is selected

such that

Ψ(R,Rd ) =
1

2
tr

(

I −R⊤
d R

)

, (5.18)

where tr(·) denotes the trace of a square matrix. With this choice, an attitude error vector

eR ∈R
3 and angular velocity error vector eω ∈R

3 can be defined as

eR =
1

2
(R⊤

d R−R⊤Rd )∨, (5.19)

eω =ωωω−R⊤Rd ωωωd , (5.20)

recalling that ∨ denotes the vee map as defined in Section 5.2. Note that the magnitude

of the dimensionless attitude error vector is bounded [135] as 0 ≤ |eR | ≤ 1. The sampled-

time tracking error state xe (k) ∈R
6 is defined as

xe (k) =
[ eR (k)

eω(k)

]

(5.21)
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and the objective is therefore to design an attitude control law having xe → 0 as k → N .

This means that xe = 0 if and only if R = Rd and therefore ωωω= R⊤Rd ωωωd =ωωωd . Sampled-

time nonlinear attitude control is given by a combination of feedback and feedforward

control laws

uw (k) = uF B (k)+uF F (k), (5.22)

where uF B can be the discrete version of the geometric PID attitude controller proposed

in Goodarzi et al. [169] without the feedforward terms. In the next section, the feed-

forward commands uF F (k) obtained as solutions of time-optimal control problems are

described.

5.4. OPTIMAL GUIDANCE

In this section, a methodology is presented for the generation of offline fast slew maneu-

vers as solutions of time-optimal control problems. The solutions serve as the basis for

the attitude control system where they will be implemented as the feedforward control

commands uF F (k) in sampled-time.

5.4.1. TIME-OPTIMAL SLEW MANEUVER PROBLEM FORMULATION

The objective of time-optimal slew maneuver problems[134, 138] consists on finding op-

timal wheel-motor torque commands τw,i (i = 1, . . . ,n) that transfer any given initial atti-

tude R(t0), angular velocity ωωω(t0), and wheel speed Ωw (t0) of the rigid body to a desired

final attitude R(t f ), angular velocity ωωω(t f ), and wheel speed Ωw (t f ) within a minimal

time t f . Such time-optimal maneuvers can be mathematically formulated as the follow-

ing optimization problem

minimize
τw,i , (i=1,...,n)

{

J =
∫t f

t0

1dt

}

, (5.23a)

subject to the dynamic Eqs. (5.3) and (10.15), ∀t ∈ [t0, t f ],

such that R(t0) = R0,

R(t f ) = R f ,

ωωω(t0) =ωωω0,

ωωω(t f ) =ωωω f ,

Ωw (t0) =Ωw 0,

Ωw (t f ) =Ωw f ,

with

∥
∥τw,i (t )

∥
∥≤ τw,imax , (i = 1, . . . ,n), ∀t ∈ [t0, t f ]. (5.23b)

Without loss of generality, only rest-to-rest maneuvers are considered in this work, where

initial and final angular velocities are directly imposed to be zero:

ωωω(t0) =ωωω(t f ) =
(

0 0 0
)⊤

rad/s. (5.24)
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Moreover, in the remainder of this chapter, initial HTW speeds are also considered to be

zero Ωw,i (t0) = 0, i = 1,2,3, and their final wheel speed is set to be free. The remaining

RW-90 wheels, i = 4, . . . ,7, are set-point regulated according to their initial values with a

simple proportional control law as

Ω̇w,i =−kp

[

Ωw,i −Ωw,i (t0)
]

, kp = 1×10−4 (5.25)

giving rise to non-cooperating angular momentum for the slew maneuvers. Although it

has already been mentioned that time-optimal maneuvers are, in general, not Euler-axis

rotations whenever the actuators can be saturated independently, it is not straightfor-

ward to conclude whether or not a local solution of this problem corresponds to a global

solution.

5.4.2. TRANSCRIPTION OF THE TIME-OPTIMAL SLEW MANEUVER PROBLEM

FORMULATION INTO A DIRECT APPROACH

Because the problem formulation of time-optimal slew maneuvers does not involve a

prescribed path to be followed a-priori, it can be considered a trajectory optimization

problem that minimizes the total maneuver time according to the set of constraints pre-

sented.

In this sense, the trajectory optimization problem consists of transcribing the time-

optimal control problem into a constrained parameter optimization problem and solv-

ing it with a direct approach using DLR’s Trajectory Optimization Package [2] ‘trajOpt’,

that is included in the MOPS software environment[52–54] and implemented in MAT-

LAB[170], which solves multi-objective design problems that are mapped to weighted

min-max optimization problems. MOPS is a versatile tool widely used in the aeronau-

tical community[52–59] to support many aspects of general control design processes,

such as multi-model and multi-case design problems, robust tuning via Monte-Carlo

simulations, control law robustness assessment, worst-case analysis, and parameter es-

timation. A key advantage of using the trajectory optimization package trajOpt/MOPS,

originally designed to solve hybrid multi-phase trajectory optimization problems for

launch vehicles, is that boundary conditions at the beginning and end of each phase

of the desired maneuvers are considered in an efficient way.

Transcription of the original constrained minimization problem into a direct approach

consists on defining the original k design objectives mathematically as positive criteria

ck to be minimized against demanded values dk , and considering the following min-max

multi-criteria optimization problem, which is the MOPS synthesis[53, 54, 56] formula

min
T

{

max
k ∈Sm

{
ck (T )

dk

}}

, (5.26a)

subject to ck (T ) = dk , k ∈ Seq,

ck (T ) ≤ dk , k ∈ Sineq,

with

Tmin,l ≤Tl ≤Tmax,l , over [0, t f ]. (5.26b)
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Here, Sm is the index set of criteria to be minimized, Seq is the index set of equality con-

straints and Sineq is the index set of inequality constraints; T is the vector containing the

tuning parameters Tl to be optimized, which lies in between upper and lower bounds

Tmin,l and Tmax,l , respectively; ck (k ∈Sm) is the k−th normalized criterion; dk (k ∈Sm)

is the corresponding demand value which serves as a criterion weight; ck (k ∈Seq,Sineq)

is normalized criteria used as equality or inequality constraints, respectively; and lastly,

dk (k ∈ Seq,Sineq) is the corresponding demand value. Finally, the newly formulated

multi-criteria optimization problem in Eq. (5.26) can be solved using standard nonlin-

ear programming (NLP) methods for the objective function with equality and inequality

constraints.

5.4.3. METHODOLOGY TO OBTAIN PIECEWISE-CONSTANT SAMPLED-TIME

OPTIMAL MANEUVERS

For the main objective of this chapter, which is to design fast slew rest-to-rest maneuvers

for BIROS’ HTW experiments with piecewise-constant sampled-time inputs as feedfor-

ward control commands, a methodology is presented. It consists of an iterative proce-

dure that finds solutions to three consecutive problems that are solved using the direct

approach previously outlined. Table 5.3 presents the criteria ck , demands dk , and tuners

T used for designing the maneuvers considered in this iterative procedure. Note that

criteria scaling[59] can be performed by dividing each criterion by the value demanded

ĉk (T ) = ck (T )/dk , and therefore, the value demanded for minimizing the slew time is

set to d1 = 1s. The three consecutive problems to be solved are described in detail as

follows.

Problem I First, the criteria c1−c3 are used together with their demands d1−d3 and

tuners T1 and T2 to obtain a candidate minimum maneuver time t f . Here, the in-

put control commands are interpolated with piecewise cubic Hermite interpolating

polynomials (‘pchip’) available in the trajOpt package in order to obtain a smooth so-

lution for these inputs. The optimal slew time t f is approximated towards a new de-

manded fixed-time t∗
f

, which must be a multiple of the desired frequency of 2Hz. Ad-

ditionally, the optimal control inputs are re-sampled at this frequency since they are

meant to be used as initial guesses for the subsequent optimization problem. With

the solution of this problem, an insight can be obtained not only on the minimum

time required to complete the maneuver, but also on the maneuver itself since these

can be compared, for instance, to Euler-axis rotations which are generally not time-

optimal.

Problem II Here, the interest is towards fixed-time solutions for the same problem

setup as before, but considering sampled-time control inputs at the sampling rate

of 2Hz. The new demanded fixed-time t∗
f

and the initial guess for the solution are

obtained as described in the previous problem. This problem is solved considering

criteria c2−c3 together with demands d2−d3 and tuner T2. In this case, the inputs are

obtained as piecewise-linear control commands in order to obtain a sampled-time

solution close to the previous one. Once finished, these piecewise-linear solutions
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are interpolated with a mid-point rule in order to be considered as initial guesses for

the next and final optimization problem.

Problem III Here, the criteria c2 − c3 are again considered together with demands

d2 −d3 and tuner T2. The goal is to find piecewise-constant control inputs for the

original problem within the minimum fixed-time t∗
f

approximation obtained before,

which represents the final goal of this procedure. The initial guesses obtained from

the piecewise-linear inputs of the previous problem are of great help for final opti-

mization since the resulting sampled-time piecewise-constant control inputs are, in

general, already sufficiently close to the optimal desired solution.

Table 5.3: Design criteria ck , demands dk , and tuners Tk used for the design of fast slew maneuvers with

trajOpt/MOPS.

Criteria ck

no Criteria specification Description

c1 Minimum slew time t f t f

c2 Final attitude error eR (t f ) | eR (t f ) |
c3 Final angular velocity error eω(t f ) | eω(t f ) |

Demands dk

no Demands Value

d1 Slew time t f 1 [s]

d2 Final attitude error eR (t f ) ≤ 1×10−7 [−]

d3 Final angular velocity error eω(t f ) ≤ 1×10−5 [rad/s]

Tuners Tk

no Tuner Description

T1 Slew time t f t f

T2 HTW torque commands τw,i (i = 1,2,3)

Figure 2 presents a diagram of the steps involved in these three consecutive prob-

lems. Whenever one of these problems fail to give a feasible solution, a new iteration

process is required where the criteria and their demands are re-evaluated. For instance,

if no feasible solution for Problem II is found, a good starting point is reconsidering the

fixed-time for this problem to be one sample higher, giving an extra control command

for the potential new solution. This process is repeated until a satisfactory outcome is

achieved.

5.5. SIMULATION

For numerical simulations using the comprehensive analytical nonlinear model of Sec-

tion 2, the High-Torque-Wheels BIROS satellite is considered with an approximated iner-
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tia matrix of

I = diag
[

9 6 9
]

Kg ·m2.

The time-optimal rest-to-rest maneuver is designed to achieve the desired final attitude

described by the (3− 2− 1) Euler angles ψ, θ, and φ, i.e. R(t f ) = R(φ(t f ), θ(t f ), ψ(t f )),

where φ(t f ) = 0deg, θ(t f ) = 5deg, and ψ(t f ) = 30deg, respectively. This translates into

the following initial and final (objective) attitudes in terms of rotation matrices

R(t0) =I3×3, R(t f ) =





0.8627 0.4981 −0.0872

−0.5000 0.8660 0

0.0755 0.0436 0.9962



 .

It is important to mention that time-dependent attitude paths like Euler-axis rotations

or Euler angles are not specified a-priori, giving the optimization solver the possibility to

find a time optimal path dynamically. The initial HTW wheel speeds are zero since the

experiments consider these wheels only for agile reorientation; while the initial RW-90

wheel speeds are set to Ωw,i (t0) =−200rad/s (i = 4, . . . ,7) to simulate a realistic scenario

of initial angular momentum stored in the platform. The final HTW and RW-90 wheel

speeds are set to be free; but actually, the final state of the latter set of wheels depends

on the performance of the wheel-controller in Eq. (5.25) during the maneuver. Lastly,

the nominal values presented in Table 10.1 are considered as the actuator limits to allow

some margin in case the wheels must be saturated by their inner-loop controls.

The simulation results are as follows. Figure 10.1 presents the torque command so-

lutions using the methodology described in Section 4.3, where the three consecutive op-

timal control solutions are denoted as τw,I ,τw,I I , and τw,I I I for each problem I , I I , and

I I I , respectively. The solution of problem I gives t f = 9.43s, so the new demanded fixed-

time for problems I I and I I I is set to t∗
f
= 9.5s (first multiple of 2Hz after t f ). For the

optimal control inputs obtained, Fig. 5.4 presents the simulation results for attitude er-

rors, angular velocities, and reaction wheel speeds, respectively. These results show that

the maneuvers are almost identical for the three consecutive solutions and only differ

in the input solutions due to the parameterization of the torque commands. Finding

time-optimal maneuvers departing with piecewise-constant control inputs is, in gen-

eral, a very challenging and time consuming task. Using the three-step methodology

presented in this study, the final goal of obtaining fast slew maneuver solutions with

piecewise-constant control commands is achieved much more efficiently.

5.6. CONCLUSIONS AND OUTLOOK

The objective of this chapter was to investigate a high-agility attitude control system by

finding a methodology to design time-optimal slew maneuvers for BIROS’ High-Torque-

Wheels experiments. This is achieved by considering a comprehensive analytical nonlin-

ear model for spacecraft equipped with reaction wheels and formulating the problem as

a constrained nonlinear optimal control problem including both satellite’s continuous-

time dynamics and piecewise-constant sampled-time control inputs.

A methodology that utilizes three consecutive multi-criteria optimization problems

is proposed to obtain solutions via a direct approach that applies the ‘trajOpt’ trajectory



5

96 5. FAST SLEW MANEUVERS FOR THE HIGH-TORQUE-WHEELS BIROS SATELLITE

Problem I

Problem II

Problem III

Step 1

Solve time-optimal slew

maneuvers with piecewise

cubic Hermite polynomials

Step 2

Approximate t f as multiple of 2Hz

and re-sample the optimal commands

as initial guesses for the next problem

Step 3

Solve fixed-time optimal slew maneu-

vers with piecewise-linear commands

Step 4

Approximate the optimal com-

mands with the mid-point rule as

initial guesses for the next problem

Step 5

Solve fixed-time opti-

mal slew maneuvers with

piecewise-constant commands

Figure 5.2: Diagram of the sequential three-step procedure to obtain fast slew maneuvers with piecewise-

constant control commands.
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optimization package of the DLR-SR optimization tool, Multi-Objective Parameter Syn-

thesis (MOPS). Results based on numerical simulations performed with the nonlinear

spacecraft dynamics model were presented.

Hardware-in-the-loop simulations will be used to validate the attitude control sys-

tem with a three-axis air-bearing testbed featuring the BIROS engineering model. Once

tested, the experiment can be implemented in the ‘Fast Slew’ mode of the BIROS attitude

control system for in-orbit tests.
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Abstract

This paper presents a robust nonlinear flight control strategy based on results combin-

ing incremental control action and the backstepping design methodology for vehicles de-

scribed by strict-feedback (cascaded) nonlinear systems. The approach, referred to as incre-

mental backstepping, uses feedback of actuator states and acceleration estimates to allow

the design of increments of control action. In combination with backstepping, the pro-

posed approach stabilizes or tracks outer-loop control variables of the nonlinear system

incrementally, accounting for large model and parametric uncertainties, besides unde-

sired factors such as external perturbations and aerodynamic modeling errors. With this

result, dependency on the modeled aircraft system is greatly reduced, overcoming the ma-

jor robustness flaw of conventional model-based flight control strategies. This suggested

methodology implies a trade-off between accurate knowledge of the dynamic model and

accurate knowledge of the vehicle sensors and actuators, which makes it more suitable for

practical application than identification or model based adaptive control architectures.

Simulation results verify the tracking capability and superior robustness of the proposed

controller under aerodynamic uncertainty with respect to standard backstepping method-

ologies for a simple flight control example.

Publication

Paul Acquatella B., Erik-Jan van Kampen, Qi Ping Chu: Incremental Backstepping for Ro-

bust Nonlinear Flight Control. In: Proceedings of EuroGNC 2013, 2nd CEAS Specialist

Conference on Guidance, Navigation & Control, April 10-12, 2013. Delft, The Nether-

lands.



6.1. INTRODUCTION

6

103

6.1. INTRODUCTION

T
HE DESIGN of a generic robust nonlinear flight control strategy is considered in this

chapter. The strategy is based on recent results combining incremental control ac-

tion and the backstepping design methodology for strict-feedback (cascaded) nonlinear

systems, called incremental backstepping. The main design issue is dealing with large

model and parametric uncertainties present in flight control systems, mainly because of

aerodynamic and unmodeled dynamics.

Incremental backstepping is presented by means of a modification to the standard

backstepping design methodology that reduces its dependency on the baseline aircraft

model, through the use of actuator states and acceleration estimates. These considera-

tions allow the design of increments of control action which, in combination with back-

stepping, helps to stabilize or track outer-loop control variables of the nonlinear system

incrementally. In contrast to regular backstepping, this method is inherently implicit in

the sense that desired closed-loop dynamics do not reside in some explicit model to be

canceled, but which results when the feedback loops are closed.

Theoretical development of increments of nonlinear control action date back from

the late nineties and started with activities concerning ‘Implicit Dynamic Inversion’ for

DI-based flight control [70, 73], where the architectures considered in this chapter were

firstly described. Other designations for these developments found in the literature are

‘Modified NDI’ and ‘Simplified NDI’, but the designation ‘Incremental NDI’ is considered

to describe the methodology and nature of these type of control laws better [71, 77–79].

INDI has been elaborated and applied theoretically in the past decade for flight control

and space applications [4, 71–75].

The main motivation of this approach is to bring the implicitness of such sensor-

based architectures with Lyapunov-based controller design such as backstepping for

aerospace applications. This topic has been introduced in the literature recently, but

from a singular perturbations approach, in [100]. The recursive step-by-step procedure

of the backstepping methodology can be exploited for the design of a single and generic

control law for cascaded systems, retaining by definition its stability and convergence

properties, and with the possibility to retain stabilizing nonlinearities in the closed-loop

system description.

The remainder of the chapter is organized as follows. Section 6.2 presents the main

results of this chapter, namely the incremental backstepping approach. In Section 6.3

we present the generic flight control law design with this method and for the particular

case of attitude control. Section 6.5 illustrates the design of incremental backstepping

control for an exemplary longitudinal missile tracking control, including simulations of

such control strategy. Conclusions are provided in Section 6.6.

6.2. INCREMENTAL BACKSTEPPING

This section presents the proposed incremental backstepping approach. Its design de-

parture is from a stability and convergence viewpoint due to control Lyapunov function

augmentations rather than forcing linear behaviour through conventional feedback lin-

earization. Because of its advantage of stabilizing or tracking one or more loops within

a single control command maintaining desired properties, the motivation for this ap-
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proach also stems to the combined flexibility of this method over conventional approaches

such as robust nonlinear dynamic inversion (NDI) [171–180], and its adaptive [68, 181,

182] and incremental counterparts [4, 70–75, 77].

For the discussion, we will consider physical systems or vehicle dynamics which are

represented by the following strict-feedback second order cascaded form:

ξ̇= h(ξ)+k(ξ)x (6.1a)

ẋ = f(ξ,x)+G(ξ,x)u (6.1b)

We assume that Eq. (6.1a) may represent a kinematic equation, i.e., a relation between

(angular) velocities and positions (orientations), while Eq. (6.1b) may represent a dy-

namic equation relating forces and torques to the former (angular) velocities, see Fig-

ure 6.1. In flight control, Eq. (6.1a) may also have a control input dependency, if not

always, but this term is ignored during the control design of the kinematic loop since the

backstepping method can only handle nonlinear systems of lower-triangular form (e.g.,

for attitude control the assumption is made that the fin surface is a pure moment gen-

erator). Although this method is presented for second-order strict feedback (cascaded)

nonlinear systems, its extension to higher-order systems by continuation of the back-

stepping design methodology is straightforward. This is of particular interest, if for in-

stance, several control loops are to be considered for the control law design (e.g., posi-

tion control, etc.). The closed-loop stability of the complete system for this cascaded in-

u
ẋ = f(ξ,x)+G(ξ,x)u

x
ξ̇= h(ξ)+k(ξ)x

ξẋ ξ̇ ∫∫

Figure 6.1: Cascade structure of the system in Eqs. (6.1).

terconnection will rely on the efficient design of a control law u. We start the discussion

with a brief review of the backstepping (denoted ‘BKS’) procedure [65, 76] for stabiliza-

tion, in this case as follows:

STEP 1

1. Promoting x as the virtual control in Eq. (6.1a), introduce the error state as:

z = x−xdes = x−α(ξ)

where α(ξ) is a stabilizing feedback that will be designed in the following sub-

steps. Such intermediate control law is referred as a stabilizing function. Rewriting

Eq. (6.1a) in terms of this error state results in:

ξ̇= h(ξ)+k(ξ) (z+α)

2. Construct any positive definite, radially unbounded function V1(ξ) : R3 7→R
+ as a

control Lyapunov function (CLF) for the system, treating it as a final stage, e.g.,

V1(ξ) =
1

2
ξ⊤ξ
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This choice of a CLF may depend on the kinematic equation considered and may

trade-off its complexity with the resulting control law.

3. To find a stabilizing function α(ξ) for the virtual control in this step (x), we need to

make the derivative of V1(ξ) nonpositive when x = α. Such continuously differen-

tiable feedback control law α(ξ) hence need to satisfy:

V̇1 =
∂V1(ξ)

∂ξ

[

h(ξ)+k(ξ)α(ξ)
]

≤−W (ξ) ≤ 0, ∀ξ ∈R
n

where W : R
n 7→ R is positive semi-definite. Moreover, for the subsequent steps,

the following notation for the derivative of the current stabilizing function α(ξ) is

introduced:

α̇(ξ,x) =
∂α(ξ)

∂ξ
ξ̇=

∂α(ξ)

∂ξ

[

h(ξ)+k(ξ)
(

z+α(ξ)
)]

STEP 2

This step consists of calculating the final control law u as follows.

1. With α(ξ) determined, the next step is to consider the subsequent state equation,

the dynamics in Eq. (6.1b), in terms of the error state:

ż = ẋ− α̇(ξ,x) = f(ξ,x)+G(ξ,x)u− α̇(ξ,x)

2. Construct an augmented CLF for the system, treating it as a final stage:

V2(ξ,x) =V1 +
1

2
z⊤z

3. To find the final control law u in this step, we need to make the derivative of V2(ξ,x)

nonpositive when ξ 6=α

V̇2 = V̇1 +z⊤ż

≤−W (ξ)+z⊤
[

f(ξ,x)+G(ξ,x)u− α̇(ξ,x)+
∂V1(ξ)

∂ξ
k(ξ)

]

If G(ξ,x) 6= 0 and invertible for all x and ξ, one possible choice for u is:

u = G−1(ξ,x)
[

− c1z− f(x)+ α̇(ξ,x)−
∂V1(ξ)

∂ξ
k(ξ)

]

(6.2)

with c1 > 0, which yields V̇2 ≤ −W (ξ)− c1z⊤z ≤ 0. However, as we pointed out be-

fore, many other, possibly better, choices forα could be available, even if G(ξ,x) = 0

at some points.

It should be clear that this result of backstepping for cascaded second order systems

is not the specific form of the control law (6.2), but rather the construction of a stabilizing

function for the kinematic equation that depends on the choice of a Lyapunov function
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whose derivative can be made negative by a wide variety of family of control laws. Also,

the augmentation of this selected Lyapunov function in the second step may have other

structure, which could result in a different family of controllers. This flexibility in back-

stepping gives a great advantage to the control engineer, in which the complexity of the

CLFs can be traded with the complexity of the resulting controller structure. This back-

stepping procedure can be illustrated as in Figure 6.2.

u
ẋ = f(x)+G(x)u

x
ξ̇= h(ξ)+k(ξ)x

ξẋ ξ̇ ∫∫

xdes
α(ξ)

stabilizing function

-

z

Backstepping control

Nonlinear system

final

control law

α̇

f,G +

Figure 6.2: Backstepping control block diagram for second order cascaded systems. Dashed arrows represent

information required for control design. Notice that the final control law requires knowledge of both f and G.

The incremental backstepping (denoted ‘IBKS’) is derived from expressing or approx-

imating the dynamics into an incremental form. This incremental form of the dynamic

equation is obtained as follows [73]. Consider a generic form of an affine nonlinear dy-

namical system:

ẋ = f(x)+G(x)u (6.3)

where x ∈ R
n is the state vector, u ∈ R

m is the control input vector, f and h are smooth

vector fields on R
n , and G ∈ R

n×m is a matrix whose columns are smooth vector fields

g j . A standard Taylor series expansion provides the following first-order approximation

of ẋ for x and δ in the neighborhood of [x0,u0]:

ẋ ∼= f(x0)+G(x0)u0 +
∂

∂x
[f(x)+G(x)u]

∣
∣
∣x=x0

u=u0

(x−x0)+G(x0) (u−u0)+H .O.T. (6.4)

where the current state and control, x0 and u0 respectively, represent for each time in-

stance the reference an incremental instance in time before x and u for the construction

of the first-order approximation of ẋ, and H .O.T. the higher order terms that can be ne-

glected. By definition, the corresponding state derivative ẋ0 satisfies:

ẋ0 ≡ f(x0)+G(x0)u0 (6.5)
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Using this expression and the standard linear definition,

A0 =
∂

∂x
[f(x)+G(x)u]

∣
∣
∣x=x0

u=u0

(6.6a)

B0 =
∂

∂u
[G(x)u]

∣
∣
∣x=x0

u=u0

= G(x0) (6.6b)

with A0 and B0 being the partials evaluated at the current reference point [x0,u0] on the

state/control trajectory; Equation (6.4), i.e., the approximation of ẋ for x and u in the

neighborhood of [x0,u0] can be written as:

ẋ ∼= ẋ0 +A0 (x−x0)+B0∆u (6.7)

where ∆u = (u−u0) represents the incremental control command. This suggests that

in a small neighborhood of the reference state we can approximate the nonlinear sys-

tem (6.3) by its linearization about that reference state.

Considering this linear approximation in the second step of the backstepping pro-

cedure presented, we obtain the following control law for the increments of nonlinear

control:

∆u = G−1(x0)

[

−c1z− ẋ0 −A0 (x−x0)+ α̇−
∂V1(ξ)

∂ξ
k(ξ)

]

(6.8)

Moreover, considering small time increments and a sufficiently high control update rate,

x approaches x0 much faster than an incremental change of the dynamics due to an

incremental input, hence the incremental backstepping control law becomes:

∆u = G−1(x0)

[

−c1z− ẋ0 + α̇−
∂V1(ξ)

∂ξ
k(ξ)

]

(6.9)

This control ensures z to be uniformly ultimately bounded. Note that this control law

results in increments of control commands; these changes must be added to the current

reference command to obtain the full new control command input. Hence, the total

control command is obtained as:

u = u0 +∆u (6.10)

The incremental backstepping control law (6.10), as the application of backstepping to a

system expressed in an incremental form, results in a control law that is not depending

on the plant dynamics f(x) explicitly. This results in a implicit-control approach where

the dependency of f(x) of the closed-loop system under feedback control is largely de-

creased, improving the system robustness against model mismatch and model uncer-

tainties. Remaining dependency is due to changes in f(x) that are reflected in ẋ0, and

since the control approach does require estimates of ẋ0 and u0, the control strategy is

more sensor/actuator dependent. Moreover, apart from the aspects considered, the con-

trol needs as well the vehicle control derivatives G(x0). To make a clear difference with

respect to standard (Jacobian) linearization over operating points, a graphical interpre-

tation of the implicit nature of increments of control is depicted in Figure 6.3-(c). The

incremental backstepping block diagram is illustrated in Figure 6.4.

The implementation of incremental-based controllers considers the following assump-

tions:
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Figure 6.3: Graphical interpretation of three control strategies: (a) some linear controllers designed over some

operating points by standard (Jacobian) linearization of the system; (b) the concept of gain-scheduling be-

tween these operating points, where stability and convergence are not guaranteed overall; (c) the implicit na-

ture of increments of control action, the current state represents a new reference and the control strategy acts

stabilizing or tracking incrementally, and without the need of scheduling or the design of multiple controllers.

(i) It is assumed to have complete and accurate knowledge about the state of the sys-

tem. State derivatives (acceleration) sensors are considered to be available for this

study as well. In the case of angular acceleration measurements, they may be mea-

sured directly or derived by differentiation from inertial measurement unit (IMU)

gyro measurements and filtered accordingly;

(ii) For small time increments, state derivatives evolve faster than the state upon fast

control action, which directly influences the dynamics of the rigid body. In other

words, the state only change by integrating state derivatives, hence making the

difference (x−x0) negligible for small time increments as compared to ẋ;

(iii) Fast control action is assumed. This assumption complements the previous one in

the sense that the dynamics of the actuators are considered to evolve much faster

than the states. For this study a linear second order dynamics for the actuators

is assumed, and considering an actuator undamped natural frequency ωnc suffi-

ciently high guarantees the fast actuator requirement of incremental control ac-

tion.

Regarding the actuator state requirement, Fig.6.5-(a) illustrates a sensor-dependency

configuration, where the actuator state measurements are readily available (e.g. known

current surface deflection), and Fig.6.5-(b) illustrates the model-dependent approach,

where actuator state measurements are not readily available and a high-fidelity model

of actuator dynamics are to be included in the control architecture as to supply the re-

quired control input reference u0. The mismatch of such measurements with respect to

reality must be studied in order to avoid wind-up effects. Moreover, actuator state mea-

surements may contain noise, biases, and delays. Of course, physical limitations exists

and the attitude control system will depend on appropriate choice of sensors and actua-

tors. In some particular cases, a combination of these two approaches may be necessary.
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u
ẋ = f(x)+G(x)u

x
ξ̇= h(ξ)+k(ξ)x

ξẋ ξ̇ ∫∫

xdes
α(ξ)

stabilizing function

-

z

Incremental backstepping control

Nonlinear system

final

control law

α̇

G +

actuator sensor/model

Figure 6.4: Incremental backstepping control block diagram for second order cascaded systems. Dashed ar-

rows represent information required for control design. Notice that the final control law in this case requires

knowledge of G, but also of ẋ and u0.

actuator

actuator

IBKS

IBKS

x0, ẋ0

x0, ẋ0

ucmd

ucmd

u

u

u0

u0

δu

δu

(a)

(b)

+

+

+

+

model

actuator

sensor

Figure 6.5: Actuator state measurement/estimation architectures for incremental backstepping: (a) sensor-

dependent. (b) model-dependent.

6.3. FLIGHT CONTROL LAW DESIGN

The incremental backstepping methodology has remained quite general up to this point.

In the following, for flight control law design, we will demonstrate this concept consider-
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Reference

Trajectory

Position

Control

Flight Path Angle
and Airspeed
Control

Attitude

Control
Rate Control

X ,Y , Z V ,ψ,γ µ,α,β p, q,r

Figure 6.6: Four loop feedback design for flight control. Grey boxes represent the attitude and rate control

systems considered for flight control law design in the following. Image credits: [6].

ing attitude and rate control, outer and inner loop, respectively, by applying the metho-

dology as a single-loop control for both systems simultaneously. Extra outer loops, see

Fig. 6.6, could be also considered in such control law design with backstepping, but not

shown here. Notice that in general, structures for flight control have at their core several

blocks of dynamic inversion [173]. Such architectures are difficult to study from the sta-

bility point of view due to the multi-loop interconnection and time-scale separation, in

contrast with backstepping-based design which starts from the subsystem farthest from

the control input and steps back through the integrators by considering augmented con-

trol Lyapunov functions (and hence from a stability view point) in a step-by-step fashion

to obtain control laws for some desired motion with known stability and convergence

properties.

In this sense, we demonstrate the incremental backstepping by considering Euler’s

equation of motion for the angular velocities of a vehicle in vector form:

M B = Iω̇ωω+ωωω× Iωωω (6.11)

whereωωω ∈R
3 is the angular velocity vector, M B ∈R

3 is the external (unknown) moment

vector in body axes, and I the inertia matrix of the rigid body (with x − z a plane of

symmetry). We will be interested in the time history of the angular velocity vector, hence

the dynamics of the rotational motion of a vehicle in Eq. (6.11) can be rewritten as the

following set of differential equations:

ω̇ωω= I−1
(

M B −ωωω× Iωωω
)

(6.12)

where:

ωωω=





p

q

r



 I =





Ixx 0 Ixz

0 Iy y 0

Ixz 0 Izz



 M B =





L

M

N



= SQ





bCl

cCm

bCn





with p,q,r, the body roll, pitch, and yaw rates, respectively; L,M ,N , the roll, pitch, and

yaw moments, respectively; and S the wing surface area, Q the dynamic pressure, b the

wing span, c the mean aerodynamic chord, and Cl,Cm,Cn the moment coefficients for

roll, pitch, and yaw, respectively. Furthermore, let M B be the sum of moments partially

generated by the aerodynamics of the airframe (subscript a), moments generated by the

control derivatives (subscript c) times the deflection of control surfaces (δ), and external

disturbance moments (subscript d):

M B = M a +M cδ+M d (6.13)
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where:

M a =





L

M

N





a

M c =





L

M

N





c

δ=





δa

δe

δr



 M d =





L

M

N





d

and δ corresponds to the control inputs: aileron, elevator, and rudder deflection angles,

respectively. Hence, the dynamic equation in consideration can be rewritten as:

ω̇ωω= f(ωωω,ς)+g(ς)δ+d (6.14)

with:

f(ωωω,ς) = I−1
(

M a −ωωω× Iωωω
)

g(ς) = I−1M c d = I−1M d

and ς ∈R
p a parameter vector. For the rotational motion, this equation becomes:

ω̇ωω= I−1
(

M a −ωωω× Iωωω
)

+ I−1M cδ+ I−1M d (6.15)

Without knowledge of the disturbances, and introducing the virtual control input ν =
ω̇ωωdes, applying nonlinear dynamic inversion (NDI) to Eq. (6.15) results in an expression

for the control input of the vehicle as:

δ= M−1
c

(

Iν−M a +ωωω× Iωωω
)

(6.16)

This resulting NDI control law depends on accurate (full) knowledge of the aerodynamic

model contained in both M a and M c , and hence depends on the model uncertainties

contained therein. Furthermore it also depends on parametric uncertainties regarding

inertia parameters, center of gravity, misalignment, etc. Such a dynamic inversion con-

trol law is intended to linearize and decouple the (inner loop) rotational dynamics in

order to obtain an explicit desired closed loop dynamics to be followed. Notice that this

result does not consider the effect of the external disturbance d, and hence does not re-

ject it properly. In the following, we are interested to go further using the result from

backstepping for a more flexible and augmented design.

For the sake of simplicity, we will depart the study from Step 2 of the backstepping

design procedure explained before, assuming that outer-subsystem’s stabilizing control

laws are already obtained and stepped back up to the dynamic equation in consideration.

In this sense, we depart from the final error-dynamics equation:

ż = ω̇ωω− α̇(σ,ωωω) = f(ωωω,ς)+g(ς)δ− α̇(σ,ωωω) (6.17)

where σ may represent a kinematic variable or a state stepped back from the outer-

subsystems. For flight control law design, the goal is to stabilize the complete system

described by the following augmented equation:

ż = I−1
(

M a −ωωω× Iωωω
)

+ I−1M cδ+ I−1M d − α̇(σ,ωωω) (6.18)

and with partial knowledge of the disturbance (full knowledge is practically impossible),

and applying backstepping to Eq. (6.18) in combination with a nonlinear damping term
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Γd [65, 76, 183] to handle the disturbance effect and control input uncertainty, a plaussi-

ble expression for the control input of the vehicle results in:

δ= M−1
c I

[

−Kωωωz− I−1
(

M a −ωωω× Iωωω
)

+ α̇(σ,ωωω)+Γd

]

(6.19)

with Kωωω > 03×3. This control ensures z to be uniformly ultimately bounded, meaning that

the complete system is stabilized, and the flexibility of the method allows to consider sev-

eral families of control laws apart from a pure linearizing one. Moreover, the flexibility

due to CLF augmentation and redesign allowes the inclusion of a nonlinear damping

term Γd to reject external disturbance effect and possible input uncertainty. Again, the

resulting control law depends on accurate (full) knowledge of the aerodynamic model

contained in both M a and M c , and hence also depends on the model uncertainties con-

tained therein. For this reason, we complete the study by improving the robustness of

such backstepping design by introducing its incremental counterpart, using the implicit

approach with the recursive control law:

δ=δ0 +M−1
c I

[

−Kωωωz−ω̇ωω0 + α̇(σ,ωωω)+Γd

]

(6.20)

Which results in a stabilizing control law for outer-loop variables that is not depending

on the aerodynamic model M a , hence it will not be affected by its uncertainties. In this

case, the aerodynamic (control input) uncertainty present in M c , the parametric uncer-

tainty, and the effect of external disturbance, are captured by the vehicle’s accelerations

and by the implicit architecture of the closed-loop system. Moreover, the extra nonlinear

damping term may be suitable to alleviate this problem even further, but its contribution

to the closed-loop robustness is not studied here.

6.4. ROBUSTNESS

Apart from the robustness properties already discussed before, the present section shows

briefly closed-loop forms of the systems in consideration under feedback control for par-

ticular uncertainty structures. Ignoring the external disturbance for this analysis (and

hence the nonlinear damping term), the application of the backstepping control law in

Eq. (6.19) on the nominal system (6.18) results in the following stable closed-loop error-

dynamics:

ż =−Kωωωz (6.21)

Instead, if we consider the uncertain system with the fact that the error-dynamics (6.17)

may contain uncertainties from the original dynamics as, for instance:

ż = f(ωωω,ς)+∆f(ωωω,ς)+
[

g(ς)+∆g(ς)
]

δ− α̇(σ,ωωω) (6.22)

the application of the backstepping control law in Eq. (6.19) does not robustify the closed-

loop dynamics against model and parametric uncertainty present in both ∆f(ωωω,ς) and

∆g(ς), besides from the aerodynamic uncertainty contained therein,

ż =−
[

I +
∆g(ς)

g(ς)

]

Kωωωz+∆f(ωωω,ς)−
∆g(ς)

g(ς)

[

f(ωωω,ς)+ α̇(σ,ωωω)
]

(6.23)
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unless considering the robustification with a better nonlinear damping design or via ro-

bust backstepping, which will make the control law more conservative, see [65, 183].

As a matter of fact, we are interested on robustness properties from incremental back-

stepping. For the partly-linearized nonlinear system, recall we assume in this case angu-

lar accelerations to be known accurately, hence f(ωωω,ς) represents ω̇ωω0 and not I−1
(

M a −
ωωω× Iωωω

)

. Such difference is important since it not only represents a measurement versus

an explicit model containing aerodynamic terms and parameters, but also because the

term ∆f(ωωω,ς) is no longer present in such case since such measurement uncertainty is

considered negligible. For this reason, the uncertain system is rewritten as:

ż = ω̇ωω0 +
[

g(ς)+∆g(ς)
]

∆δ− α̇(σ,ωωω) (6.24)

and applying the incremental backstepping control law to such uncertain system results

in:

ż =−
[

I +
∆g(ς)

g(ς)

]

Kωωωz−
∆g(ς)

g(ς)

[

ω̇ωω0 + α̇(σ,ωωω)
]

(6.25)

which only contains uncertainties in the control derivatives and moments of inertia.

6.5. EXAMPLE: LONGITUDINAL MISSILE CONTROL

In this section the advantage of incremental backstepping is demonstrated with an ex-

ample consisting on the tracking control design for a longitudinal missile model. This

example is adapted from [6]. A second order nonlinear model of a generic surface-to-

air missile as obtained from [184] is considered. The model consists of the longitudinal

force and moment equations representative of a missile traveling at an altitude of ap-

proximately 6000 meters, with aerodynamic coefficients represented as third order poly-

nomials in angle of attack α and Mach number M .

The nonlinear equations of motion in the pitch plane are given by

α̇= q +
q̄S

mVT

[

Cz (α, M)+bz (M)δ
]

(6.26a)

q̇ =
q̄Sd

Iy y

[

Cm(α, M)+bm(M)δ
]

(6.26b)

where:

Cz (α, M) =ϕz1(α)+ϕz2(α)M bz (M) = 1.6238M −6.7240

Cm(α, M) =ϕm1(α)+ϕm2(α)M bm(M) = 12.0393M −48.2246

and:

ϕz1(α) =−288.7α3 +50.32α |α|−23.89α ϕz2(α) =−13.53α |α|+4.185α

ϕm1(α) = 303.1α3 −246.3α |α|−37.56α ϕm2(α) = 71.51α |α|+10.01α

These approximations are valid for the flight envelope −10◦ ≤ α ≤ 10◦ and 1.8 ≤ M ≤
2.6. To facilitate the control design, the nonlinear missile model is rewritten in the more
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general state-space form as:

ẋ1 = x2 + f1(x1)+ g1u (6.27a)

ẋ2 = f2(x1)+ g2u (6.27b)

where:

x1 =α x2 = q

f1(x1) =C1

[

ϕz1(x1)+ϕz2(x1)M
]

f2(x1) =C2

[

ϕm1(x1)+ϕm2(x1)M
]

g1 =C1bz g2 =C2bm

C1 =
q̄S

mVT
C2 =

q̄Sd

Iy y

The control objective considered here is to design an autopilot with the incremental

backstepping method that tracks a command reference yr (all derivatives known and

bounded) with the angle of attack x1. It is assumed that the aerodynamic force and mo-

ment functions are not exactly known and the Mach number M is treated as a parameter

available for measurement. Furthermore, the contribution of the fin deflection on the

right-hand side of the force equation (6.27a) is ignored during the control design, since

the backstepping method can only handle nonlinear systems of lower-triangular form,

i.e. the assumption is made that the fin surface is a pure moment generator. This is

a valid assumption for most types of aircraft and aerodynamically controlled missiles,

often made in flight control systems design [6].

We begin the control design procedure with standard backstepping for illustration

purposes and further comparisons.

Step 1: First, introduce the tracking errors as:

z1 = x1 − yr (6.28a)

z2 = x2 −α1 (6.28b)

where α1 is the stabilizing function to be designed as a first design step (and not to be

confused with α, the angle of attack). The z1−dynamics satisfy:

ż1 = x2 + f1 − ẏr = z2 +α1 + f1 − ẏr (6.29)

Consider a candidate CLF V1 for the z1−subsystem defined as:

V1(z1) =
1

2

(

z2
1 +k1λ

2
1

)

(6.30)

where the gain k1 > 0 and the integrator term λ1 =
∫t

0 z1dt are introduced to robustify

the control design against the effect of the neglected control term. The derivative of V1

along the solutions of (6.29) is given by:

V̇1 = z1 ż1 +k1λz1 = z1

(

z2 +α1 + f1 − ẏr +k1λ1

)

(6.31)
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The stabilizing function α1 is selected as:

α1 =−c1z1 −k1λ1 − f1 + ẏr , c1 > 0 (6.32)

to render the derivative

V̇1 =−c1z2
1 + z1z2 (6.33)

The cross term z1z2 will be dealt with in the second design step.

Step 2: Second, the z2−dynamics are given by:

ż2 = f2 + g2u − α̇1 (6.34)

where α̇1 =−c1(x2+ f1− ẏr )−k1z1− ḟ1+ ÿr . The CLF V1 is augmented with an additional

term to penalize z2:

V2(z1, z2) =V1 +
1

2
z2

2 (6.35)

The derivative of V2 along the solutions of (6.29) and (6.34) satisfies

V̇2 =−c1z2
1 + z1z2 + z2

(

f2 + g2u − α̇1

)

=−c1z2
1 + z2

(

z1 + f2 + g2u − α̇1

)

(6.36)

Notice that the first term in the right-hand of the last expression is already negative semi-

definite. Hence, a control law for u can now be defined to cancel all indefinite terms, and

the most straightforward choice is given by:

u =
1

g2

(

− c2z2 − z1 − f2 + α̇1

)

(6.37)

According to the results previously outlined, the incremental backstepping control

law design follows from considering the approximate dynamics around the current ref-

erence state for the dynamic equation of the pitch rate:

q̇ ∼= q̇0 +
q̄Sd

Iy y
bm(M)∆δ (6.38)

assuming that pitch acceleration is available for measurement, and which is rewritten in

our formulation as:

ẋ2
∼= ẋ20 + g2∆u (6.39)

From there, the design procedure is the same as before. It suffices to consider the new

f2 = ẋ20 , noticing that we are replacing the accurate knowledge of f2 by a measurement

(or an estimate) instead, and this trade-off results in a robustified backstepping control

law which is not entirely dependent on a model.

The incremental backstepping control law is hence obtained as:

u = u0 +
1

g2

(

− c2z2 − z1 − ẋ20 + α̇1

)

(6.40)

Simulation results for the backstepping controller in Eq. (6.37) and the incremental

backstepping controller in Eq. (6.40) are now presented. The maneuver simply consists
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Figure 6.7: Backstepping (6.37) and incremental backstepping (6.40) tracking control numerical simulation of

the nominal longitudinal missile model for a gain selection of k1 = c1 = c2 = 10.

on a smooth doublet angle-of-attack trajectory for the missile. Figure 6.7 shows the track-

ing control numerical simulation at Mach 2.0 of the nominal (idealized) longitudinal mis-

sile model for the two control laws derived at the same gain selections of k1 = c1 = c2 = 10,

showing relatively the same performance and closed-loop response as expected with no

uncertainty and model mismatch.

Now we introduce aerodynamic uncertainties modeled as real parametric uncertainty

of the coefficients present in Cz ,bz ,Cm ,bm . The coefficients are perturbed from their

nominal value within a ±20% range. Figure 6.8 shows tracking control numerical sim-

ulation of the uncertain longitudinal missile model for the backstepping controller in

Eq. (6.37) and with the same gain selection. As expected, this conventional backstep-

ping alone is robust but not quite much over large dynamic uncertainties, and hence the

nominal performance is lost and/or degraded.

For this particular example, the tracking capability and superior robustness at Mach

2.0 of the uncertain longitudinal missile model are verified as shown in Fig. 6.9, showing

a great benefit of the incremental version over conventional backstepping designs since

the new structure is able to cope very well with relatively large aerodynamic uncertainty,

and hence the nominal performance is not lost and/or degraded significantly.
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Figure 6.8: Backstepping (6.37) tracking control numerical simulation of the uncertain longitudinal missile

model for a gain selection of k1 = c1 = c2 = 10. Aerodynamic uncertainties are modeled as real parametric

uncertainty of the coefficients present in Cz ,bz ,Cm ,bm . The coefficients are perturbed from their nominal

value within a ±20% range.

6.6. CONCLUSIONS

This chapter presented an application of the Incremental Nonlinear Dynamic Inversion

(INDI) control methodology to the attitude tracking and disturbance rejection problem

of rigid spacecraft in presence of model and parametric uncertainties. As a modifica-

tion of the NDI methodology, the INDI approach enhances its robustness capabilities by

reducing feedback control dependency on accurate knowledge of the system dynamics.

The use of incremental control action, which requires information of actuator output

and angular accelerations, make these sensor-based type of controllers efficient for ex-

ternal disturbance rejection and robust in terms of handling uncertainties. Unlike NDI,

this control design technique is implicit in the sense that desired closed-loop dynamics

do not reside in some explicit model to be followed but result when the feedback loops

are closed. Under the influence of external disturbances, time-delay, and parametric

uncertainty, it was shown that incremental nonlinear dynamic inversion performs bet-

ter than regular NDI and PI-control without compromising nominal performance and

stability. However, in practice, INDI-based control rely on accurate actuator output and

angular acceleration measurements which may not be readily available or which may

contain noise, biases and delays, hence their effect need to be further studied.
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Figure 6.9: Incremental backstepping (6.40) tracking control numerical simulation of the uncertain longitu-

dinal missile model for a gain selection of k1 = c1 = c2 = 10. Aerodynamic uncertainties are modeled as real

parametric uncertainty of the coefficients present in Cz ,bz ,Cm ,bm . The coefficients are perturbed from their

nominal value within a ±20% range.
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Abstract

Previous results reported in the robotics literature show the relationship between time-

delay control (TDC) and proportional-integral-derivative control (PID). In this paper, we

show that incremental nonlinear dynamic inversion (INDI) — more familiar in the aero-

space community — are in fact equivalent to TDC. This leads to a meaningful and system-

atic method for PI(D)-control tuning of robust nonlinear flight control systems via INDI.

We considered a reformulation of the plant dynamics inversion which removes effector

blending models from the resulting control law, resulting in robust model-free control laws

like PI(D)-control.

Publication

Paul Acquatella B., Wim van Ekeren, Qi Ping Chu: PI(D) tuning for Flight Control Sys-

tems via Incremental Nonlinear Dynamic Inversion. In: IFAC-PapersOnLine, Vol. 50, No.

1, pp. 8175–8180, July 2017; presented at IFAC-WC 2017, 20th World Congress of the Inter-

national Federation of Automatic Control, July 9-14, 2017. Toulouse, France.
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7.1. INTRODUCTION

E
NSURING stability and performance in between operational points of widely-used

gain-scheduled linear PID controllers motivates the use of nonlinear dynamic in-

version (NDI) for flight control systems. NDI cancels out nonlinearities in the model

via state feedback, and then linear control can be subsequently designed to close the

systems’ outer-loop, hence eliminating the need of linearizing and designing different

controllers for several operational points as in gain-scheduling.

In this chapter we consider nonlinear flight control strategies based on incremental

nonlinear dynamic inversion (INDI). Using sensor and actuator measurements for feed-

back allows the design of an incremental control action which, in combination with non-

linear dynamic inversion, stabilizes the partly-linearized nonlinear system incremen-

tally. With this result, dependency on exact knowledge of the system dynamics is greatly

reduced, overcoming this major robustness issue from conventional nonlinear dynamic

inversion. INDI has been considered a sensor-based approach because sensor measure-

ments were meant to replace a large part of the vehicle model.

Theoretical development of increments of nonlinear control action date back from

the late nineties and started with activities concerning ‘implicit dynamic inversion’ for

inversion-based flight control [70, 73], where the architectures considered in this chap-

ter were firstly described. Other designations for these developments found in the lit-

erature are ‘modified NDI’ and ‘simplified NDI’, but the designation ‘incremental NDI’,

introduced in [77], is considered to describe the methodology and nature of these type

of control laws better [71, 77, 79]. INDI has been elaborated and applied theoretically in

the past decade for advanced flight control and space applications [4, 70, 71, 73–75, 80].

More recently, this technique has been applied also in practice for quadrotors and adap-

tive control [84, 85].

In this chapter, we present three main contributions in the context of nonlinear flight

control system design.

1) We revisit the NDI/INDI control laws and we establish the equivalence between

INDI and time-delay control (TDC).

2) Based on previous results reported in the robotics literature showing the relation-

ship between discrete formulations of TDC and proportional-integral-derivative control

(PID), we show that an equivalent PI(D) controller with gains < K , Ti , (Td ) > tuned via

INDI/TDC is more meaningful and systematic than heuristic methods, since one con-

siders desired error dynamics given by Hurwitz gains < kP , (kD ) >. Subsequently, tuning

the remaining effector blending gain is much less cumbersome than designing a whole

set of gains iteratively.

3) We also consider a reformulation of the plant dynamics inversion as it is done in

TDC which removes the effector blending model (control derivatives) from the resulting

control law. This has not been the case so far in the reported INDI controllers, causing

robustness problems because of their uncertainties. Moreover, this allows to consider

the introduced term as a scheduling variable which is only directly related to the propor-

tional gain K .
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7.2. FLIGHT VEHICLE MODELING

We are interested in Euler’s equation of motion representing flight vehicles’ angular ve-

locity dynamics

I ω̇ωω+ωωω× I ωωω= M B (7.1)

where M B ∈R
3 is the external moment vector in body axes, ωωω ∈R

3 is the angular veloc-

ity vector, and I ∈ R
3×3 the inertia matrix of the rigid body assuming symmetry about

the plane x − z of the body.

Furthermore, we will be interested in the time history of the angular velocity vector,

hence the dynamics of the rotational motion of a vehicle (7.1) can be rewritten as the

following set of differential equations

ω̇ωω= I−1
(

M B −ωωω× I ωωω
)

(7.2)

where

ωωω=





p

q

r



 , M B =





L

M

N



= SQ





bCl

cCm

bCn



 ,

I =





Ixx 0 Ixz

0 Iy y 0

Ixz 0 Izz



 ,

with p,q,r, the body roll, pitch, and yaw rates, respectively; L,M ,N , the roll, pitch, and

yaw moments, respectively; S the wing surface area, Q the dynamic pressure, b the wing

span, c the mean aerodynamic chord, and Cl,Cm,Cn the moment coefficients for roll,

pitch, and yaw, respectively. Furthermore, let M B be the sum of moments partially gen-

erated by the aerodynamics of the airframe M a and moments generated by control sur-

face deflections M c , and we describe M B linearly in the deflection angles δ assuming the

control derivatives to be linear as in [71] with (M c )δ = ∂
∂δ M c ; therefore

M B = M a +M c = M a + (M c )δδ (7.3)

where

M a =





La

Ma

Na



 , M c =





Lc

Mc

Nc



 , δ=





δa

δe

δr





and δ corresponding to the control inputs: aileron, elevator, and rudder deflection an-

gles, respectively. Hence the dynamics (7.2) can be rewritten as

ω̇ωω= f (ωωω)+G(ωωω)δ (7.4)

with

f (ωωω) = I−1
(

M a −ωωω× I ωωω
)

, G(ωωω) = I−1(M c )δ.
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Flight Path
Angle and
Airspeed Control

Attitude

Control
Rate Control

X ,Y , Z V ,ψ,γ µ,α,β p, q,r

Figure 7.1: Four loop nonlinear flight control design. We are focused on nonlinear dynamic inversion of the

rate control loop (grey box) in the following. Image credits: [6].

For practical implementations, we consider first-order actuator dynamics represented

by the following transfer function

δi

δci

=Gai
(s) =

Kai

τai
s +1

, (i = a,e,r ), (7.5)

and furthermore, we do not consider these actuator dynamics in the control design pro-

cess as it is usually the case for dynamic inversion-based control. For that reason, we

assume that these actuators are sufficiently fast in the control-bandwidth sense, mean-

ing that 1/τai
is higher than the control system closed-loop bandwidth.

7.3. FLIGHT CONTROL LAW DESIGN

7.3.1. NONLINEAR DYNAMIC INVERSION

Let us define the control parameter to be the angular velocities, hence the output is sim-

ply y =ωωω. We then consider an error vector defined as e = y d − y where y d denotes the

smooth desired output vector (at least one time differentiable). Nonlinear dynamic in-

version (NDI) is designed to linearize and decouple the rotational dynamics in order to

obtain an explicit desired closed loop dynamics to be followed. Introducing the virtual

control input ν= ω̇ωωdes, if the matrix G(ωωω) is non-singular (i.e., invertible) in the domain

of interest for all ωωω, the nonlinear dynamic inversion control consists in the following

input transformation [61, 79]

δ=G(ω)−1
[

ν− f (ωωω)
]

(7.6)

which cancels all the nonlinearities, and a simple input-output linear relationship be-

tween the output y and the new input ν is obtained as

ẏ =ν (7.7)

Apart from being linear, an interesting result from this relationship is that it is also de-

coupled since the input νi only affects the output yi . From this fact, the input transfor-

mation (7.6) is called a decoupling control law, and the resulting linear system (7.7) is

called the single-integrator form. This single-integrator form (7.7) can be rendered expo-

nentially stable with

ν= ẏ d +K P e (7.8)

where ẏ d is the feedforward term for tracking tasks, and K P ∈R
3×3 a constant diagonal

matrix, whose i−th diagonal elements kPi
are chosen so that the polynomials

s +kPi
, (i = p, q,r ) (7.9)
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may become Hurwitz. This results in the exponentially stable and decoupled desired

error dynamics

ė +K P e = 0 (7.10)

which implies that e(t ) → 0. From this typical tracking problem it can be seen that the en-

tire control system will have two control loops [71, 79]: the inner linearization loop (7.6),

and the outer control loop (7.8). This resulting NDI control law depends on accurate

knowledge of the aerodynamic moments, hence it is susceptible to model uncertainties

contained in both M a and M c .

In NDI control design, we consider outputs with relative degrees of one (rates), mean-

ing a first-order system to be controlled, see Fig. 7.1. Extensions of input-output lin-

earization for systems involving higher relative degrees are done via feedback lineariza-

tion [61, 79].

7.3.2. INCREMENTAL NONLINEAR DYNAMIC INVERSION

The concept of incremental nonlinear dynamic inversion (INDI) amounts to the applica-

tion of NDI to a system expressed in an incremental form. This improves the robustness

of the closed-loop system as compared with conventional NDI since dependency on the

accurate knowledge of the plant dynamics is reduced. Unlike NDI, this control design

technique is implicit in the sense that desired closed-loop dynamics do not reside in

some explicit model to be followed but result when the feedback loops are closed [73, 74].

To obtain an incremental form of system dynamics, we consider a first-order Taylor

series expansion of ω̇ [4, 70, 71, 73–75, 95], not in the geometric sense, but with respect

to a sufficiently small time-delay λ as

ω̇ωω= ω̇ωω0 +
∂

∂ωωω

[

f (ωωω)+G(ωωω)δ
]
∣
∣
∣ω=ω0
δ=δ0

(ωωω−ωωω0)

+
∂

∂δ

[

G(ωωω)δ
]
∣
∣
∣ω=ω0
δ=δ0

(δ−δ0)+O (∆ωωω2,∆δ2)

∼= ω̇ωω0 + f 0 (ωωω−ωωω0)+G0 (δ−δ0)

with

ω̇ωω0 ≡ f (ωωω0)+G(ωωω0)δ0 = ω̇ωω(t −λ) (7.11a)

where ωωω0 =ωωω(t −λ) and δ0 = δ(t −λ) are the time-delayed signals of the current state ω

and controlδ, respectively. This means an approximate linearization about theλ−delayed

signals is performed incrementally.

For such sufficiently small time-delay λ so that f (ωωω) does not vary significantly dur-

ing λ, we assume the following approximation to hold

ǫI N D I (t ) ≡ f (ωωω(t −λ))− f (ωωω(t )) ∼= 0 (7.12)

which leads to

∆ω̇ωω∼=G0 ·∆δ (7.13)
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Here, ∆ω̇ωω= ω̇ωω−ω̇ωω0 = ω̇ωω−ω̇ωω(t−λ) represents the incremental acceleration, and ∆δ=δ−δ0

represents the so-called incremental control input. For the obtained approximation ω̇ωω∼=
ω̇ωω0+G0(δ−δ0), NDI is applied to obtain a relation between the incremental control input

and the output of the system

δ=δ0 +G−1
0

[

ν−ω̇ωω0

]

(7.14)

Note that the deflection angle δ0 that corresponds to ω̇ωω0 is taken from the output

of the actuators, and it has been assumed that a commanded control is achieved suf-

ficiently fast according to the assumptions of the actuator dynamics in (7.5). The total

control command along with the obtained linearizing control ∆δ can be rewritten as

δ(t ) =δ(t −λ)+G−1
0

[

ν−ω̇ωω(t −λ)
]

. (7.15)

The dependency of the closed-loop system on accurate knowledge of the airframe

model in f (ω) is largely decreased, improving robustness against model uncertainties

contained therein. Therefore, this implicit control law design is more dependent on ac-

curate measurements or accurate estimates of ω̇0, the angular acceleration, and δ0, the

deflection angles, respectively.

Remark 1 : By using the measured ω̇ωω(t −λ) and δ(t −λ) incrementally we practically

obtain a robust, model-free controller with the self-scheduling properties of NDI.

Notice, however, that typical INDI control laws are nevertheless also depending on

effector blending models reflected in G0, which makes this implicit controller suscep-

tible to uncertainties in these terms. Instead, consider the following transformation as

in [142]

ω̇ωω= H + ḡ ·δ (7.16)

with

H(t ) = f (ωωω)+ (G(ωωω)− ḡ )δ,

and with the following (but not limited) options for ḡ [142], where n = 3 in our case

ḡ 1 = kG ·In = kG









1 0 · · · 0

0 1
...

. . .

0 1









, ḡ 2 =









kG1 0 · · · 0

0 kG2

...
. . .

0 kGn









Applying nonlinear dynamic inversion (NDI) to (7.16) results in an expression for the

control input of the vehicle as

δ(t ) = ḡ−1
[

ν(t )−H(t )
]

. (7.17)

Considering H 0 = ω̇ωω0−ḡ ·δ0, the incremental counterpart of (7.17) results in a control

law that is neither depending on the airframe model nor the effector blending moments

δ(t ) =δ(t −λ)+ ḡ−1
[

ν−ω̇ωω(t −λ)
]

. (7.18)

Remark 2 : The self-scheduling properties of INDI in (7.15) due to the term G0 are

now lost, suggesting that ḡ should be an scheduling variable.
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7.3.3. TIME–DELAY CONTROL AND PROPORTIONAL INTEGRAL CONTROL

Time–delay control (TDC) [142] departs from the usual dynamic inversion input trans-

formation of (7.16)

δ(t ) = ḡ−1
[

ν(t )− H̄ (t )
]

(7.19)

where H̄ denotes an estimation of H , being the nominal case when H̄ = H which results

in perfect inversion. Instead of having an estimate, the TDC takes the following assump-

tion [142] analogous to (7.12)

ǫT DC (t ) ≡ H(t −λ)−H(t ) ∼= 0. (7.20)

This relationship is used together with (7.16) to obtain what is called time-delay esti-

mation (TDE) as the following

H̄ = H(t −λ) = ω̇ωω(t −λ)− ḡ ·δ(t −λ) (7.21)

In addition, ǫ(t ) is called TDE error at time t . Combining the equations we obtain the

following TDC law

δ(t ) =δ(t −λ)+ ḡ−1
[

ν−ω̇ωω(t −λ)
]

(7.22)

which is in fact equivalent to the INDI control law obtained in (7.18). Appropriate selec-

tion of ḡ must ensure stability according to [142], and ideally, this term should be tuned

according to the best estimate of the true effector blending moment ĝ (ω̃ωω) for measured

angular velocities ω̃ωω.

So far we have considered derivations in continuous-time. For practical implemen-

tations of these controllers and for the matters of upcoming discussions, sampled-time

formulations involving continuous and discrete quantities as in [142] are more conve-

nient and restated here. For that, considering that the smallest λ one can consider is the

equivalent of the sampling period ts of the on-board computer. The sampled formula-

tion of (7.22) may be expressed as

δ(k) =δ(k −1)+ ḡ−1
[

ν(k −1)−ω̇ωω(k −1)
]

(7.23)

where it has been necessary to consider ν at sample k−1 for causality reasons. Replacing

the sampled virtual control ν according to (7.8) we have

δ(k) =δ(k −1)+ ḡ−1
[

ė(k −1)+kP e(k −1)
]

(7.24)

and we can consider the following finite difference approximation of the error deriva-

tives as angular accelerations are not directly measured

ė(k) = [e(k)−e(k −1)]/ts . (7.25)

Consider now the standard proportional-integral (PI) control

δ(t ) = K
(

e(t )+T −1
I

∫t

0
e(σ)dσ

)

+δDC , (7.26)

where K ∈R
3×3 denotes a diagonal proportional gain matrix, T I ∈R

3×3 a constant diag-

onal matrix representing a reset or integral time, and δDC ∈R
3 denotes a constant vector
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representing a trim-bias, which acts as a trim setting and is computed by evaluating the

initial conditions. The discrete form of the PI is given by

δ(k) = K
(

e(k −1)+T −1
I

k−1∑

i=0

ts e(i )
)

+δDC (7.27)

When subtracting two consecutive terms of this discrete formulation, we can remove

the integral sum and achieve the so-called PI controller in incremental form

δ(k) =δ(k −1)+K · ts

(

ė(k −1)+T −1
I ·e(k −1)

)

(7.28)

Following the same steps, and for completeness, we also present the PID extension

by simply considering the extra derivative term ë

δ(k) =δ(k −1)+K · ts

(

T D ë(k −1)+ ė(k −1)+T −1
I ·e(k −1)

)

,

where T D ∈R
3×3 denotes a constant diagonal matrix representing derivative time.

7.3.4. EQUIVALENCE OF INDI/TDC/PI(D)
Having in mind the found the equivalence between INDI and TDC, and comparing terms

from (7.24) with (7.28), we have the following relationships as originally found in [142]

which are the relationship between the discrete formulations of TDC and PI in incremen-

tal form

K = (ḡ · ts )−1, T I = k−1
P (7.29)

Whenever the system under consideration is of second-order controller canonical

form, we will have error dynamics of the form ë +kD ė +kP e = 0, and considering the

newly introduced derivative gain kD related to ë we have

K = kD · (ḡ · ts )−1, T I = kD ·k−1
P , T D = k−1

D (7.30)

This suggests not only that an equivalent discrete PI(D) controller with gains < K , T i ,

(T D ) > can be obtained via INDI/TDC, but doing so is more meaningful and systematic

than heuristic methods. This is because we begin the design from desired error dynam-

ics given by Hurwitz gains < kP , (kD ) > and what follows is finding the remaining effector

blending gain ḡ either analytically whenever G is well known, with a proper estimate Ĝ ,

or by tuning according to closed-loop requirements. As already mentioned, details on a

sufficient condition for closed-loop stability under discrete TDC, and therefore applica-

ble to its equivalent INDI, can be found in [142] and the references therein.

In essence, this procedure is more efficient and much less cumbersome than de-

signing a whole set of gains iteratively. Moreover, for flight control systems, the self-

scheduling properties of inversion-based controllers have suggested superior advantages

with respect to PID controls since these must be gain-scheduled according to the flight

envelope variations. The relationships here outlined suggests that PID-scheduling shall

be done at the proportional gain K via the effector blending gain ḡ , and not over the

whole set of gains < K , Ti , (Td ) >.
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7.4. LONGITUDINAL FLIGHT CONTROL SIMULATION

In this section, robust PI tuning via INDI is demonstrated with a simple yet significant ex-

ample consisting of the tracking control design for a longitudinal launcher vehicle model.

The second-order nonlinear model is obtained from [6, 184], and it consists of longitu-

dinal dynamic equations representative of a vehicle traveling at an altitude of approxi-

mately 6000 meters, with aerodynamic coefficients represented as third order polynomi-

als in angle of attack α and Mach number M .

The nonlinear equations of motion in the pitch plane are given by

α̇= q +
q̄S

mVT

[

Cz (α, M)+bz (M)δ
]

, (7.31a)

q̇ =
q̄Sd

Iy y

[

Cm(α, M)+bm(M)δ
]

, (7.31b)

where

Cz (α, M) =ϕz1(α)+ϕz2(α)M ,

Cm(α, M) =ϕm1(α)+ϕm2(α)M ,

bz (M) = 1.6238M −6.7240,

bm(M) = 12.0393M −48.2246,

and

ϕz1(α) =−288.7α3 +50.32α |α|−23.89α,

ϕz2(α) =−13.53α |α|+4.185α,

ϕm1(α) = 303.1α3 −246.3α |α|−37.56α,

ϕm2(α) = 71.51α |α|+10.01α.

These approximations are valid for the flight envelope of −10◦ ≤ α ≤ 10◦ and 1.8 ≤
M ≤ 2.6. To facilitate the control design, the nonlinear longitudinal model is rewritten in

the more general state-space form as

ẋ1 = x2 + f1(x1)+ g1u (7.32a)

ẋ2 = f2(x1)+ g2u (7.32b)

where:

x1 =α, x2 = q

g1 =C1bz , g2 =C2bm

and

f1(x1) =C1

[

ϕz1(x1)+ϕz2(x1)M
]

, C1 =
q̄S

mVT
,

f2(x1) =C2

[

ϕm1(x1)+ϕm2(x1)M
]

, C2 =
q̄Sd

Iy y
.
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The control objective considered here is to design a PI autopilot via INDI that tracks a

smooth command reference yr with the pitch rate x2. It is assumed that the aerodynamic

force and moment functions are accurately known and the Mach number M is treated as

a parameter available for measurement. Moreover, for this second-order system in non-

lower triangular form due to g1u and f2(x1), pitch rate control using INDI is possible

due to the time-scale separation principle [71, 79]. With respect to actuator dynamics

modeled as in (7.5), we consider Ka = 1, and τa = 1e−2.

7.4.1. PITCH RATE CONTROL DESIGN

First, introduce the rate-tracking error

z2 = x2 −x2r e f
(7.33)

the z2−dynamics satisfy the following error

ż2 = ẋ2 − ẋ2r e f
(7.34)

for which we design the following exponentially stable desired error dynamics

ż2 +kP2 z2 = 0, kP2 = 50 rad/s. (7.35)

According to the results previously outlined, the incremental nonlinear dynamic inver-

sion control law design follows from considering the approximate dynamics around the

current reference state for the dynamic equation of the pitch rate as in (7.13)

q̇ ∼= q̇0 + ḡ ·∆δ (7.36)

assuming that pitch acceleration is available for measurement and the scalar ḡ to be a

factor of the accurately known estimate of g2

ḡ = kG · ĝ2, kG = 1.

This is rewritten in our formulation as

ẋ2
∼= ẋ20 + ḡ ·∆u (7.37)

where recalling that ẋ20 is an incremental instance before ẋ2, and therefore the incre-

mental nonlinear dynamic inversion law is hence obtained as

u = u0 + ḡ−1
(

ν− ẋ20

)

, (7.38)

with

ν=−kP2 z2 + ẋ2r e f
, (7.39)

or more compactly

u = u0 + ḡ−1
(

−kP2 z2 − ẋ20 + ẋ2r e f

)

(7.40)

This results as desired, in the following z2−dynamics

ż2 = ẋ20 + ḡ ·∆u − ẋ2r e f
. (7.41)
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Notice that we are replacing the accurate knowledge of f2 by a measurement (or an

estimate) as f2
∼= ẋ20 , which will result in a control law which is not entirely dependent

on a model, hence more robust.

We now consider these continuous-time formulations in sampled-time. To that end,

we replace the small λ with the sampling period ts so that tk = k · ts is the k−th sampling

instant at time k, and therefore

u(k) = u(k −1)+

ḡ−1
[

−kP2 z2(k −1)− ẋ2(k −1)+ ẋ2r e f
(k −1)

]

,
(7.42)

where due to causality relationships we need to consider the independent variables at

the same sampling time k −1.

Referring back to the derived relationship between INDI and PI control, the equiva-

lent PI control in incremental form is

u(k) = u(k −1)+K · ts

[

ż2(k −1)+T −1
I z2(k −1)

]

, (7.43)

with

K = (ḡ · ts )−1, TI = k−1
P2

(7.44)

The nature of the desired error dynamics (proportional) gain kP2 is therefore of an

integral control action, whereas the effector blending gain ḡ act as proportional control.

Having designed for desired error dynamics, and for a given sampling time ts , tuning a

pitch rate controller is only a matter of selecting a proper effector blending gain ḡ ac-

cording to performance requirements.

Remark 3 : Notice at this point that having the PI control in incremental form intro-

duces a finite difference of the error state, which is the equivalent counterpart of what

has been considered the acceleration or state derivative ẋ20 in INDI controllers.

Remark 4 : Notice also that designing the PI control gains via INDI is highly benefi-

cial, since only the effector blending gain is the tuning variable. This strongly suggests

that robust adaptive control can be achieved by scheduling this variable online during

flight and not over the whole set of gains.

Simulation results for the INDI/PI control are presented in Figure 7.2, considering

smooth rate doublets for a nominal longitudinal dynamics model at Mach 2. For both

controllers, the same zero-mean Gaussian white-noise with standard deviation sdq
=

1e−3 rad/s is added to the rates to simulate noisy measurements. The designed INDI

gains of kP2 = 50 rad/s and kG = 1 are mapped to PI gains resulting in K = 100 ĝ−1
2 and

TI = 0.02 s, both controllers showing identical closed-loop response as expected.

With this example, it is demonstrated how a self-scheduled PI can be tuned via INDI

by departing from desired error dynamics with the gain kP2 , and considering an accurate

effector blending model estimate ḡ = ĝ2.

7.5. CONCLUSIONS

This chapter presented a meaningful and systematic method for PI(D) tuning of robust

nonlinear flight control systems based on results previously reported in the robotics lit-
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Figure 7.2: INDI/PI nominal tracking control simulation of the flight model (7.31) for kP2
= 50 rad/s and kG = 1

erature regarding the relationship between time-delay control (TDC) and proportional-

integral-derivative control (PID). The method was demonstrated in the context of an ex-

ample for the pitch rate tracking of a conventional longitudinal nonlinear flight model,

showing the same tracking performance under nominal conditions.

Being incremental nonlinear dynamic inversion (INDI) equivalent to TDC clearly

suggests that imposing desired error dynamics, as usual for INDI control laws, and then

mapping these into an equivalent incremental PI(D)-controller together with control

derivatives leads to a meaningful and systematic PI(D) gain tuning method, which is

very difficult to do heuristically.

We considered a reformulation of the plant dynamics inversion which reduces knowl-

edge of the effector blending model (control derivatives) from the resulting control law,

reducing feedback control dependency on accurate knowledge of both the aircraft and

effector blending models, hence resulting in robust and model-free control laws like the

PI(D) control. Since usual flight control systems involves gain scheduling over the flight

envelope, another key benefit of this result is that scheduling only the effector blending

gain seems promising for adaptive control systems.
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Abstract

This paper presents the attitude tracking and disturbance rejection problem of rigid space-

craft in presence of model and parametric uncertainty using nonlinear dynamic inver-

sion. The feedback of actuator output and angular acceleration measurements allows the

design of incremental control action which, in combination with nonlinear dynamic in-

version, stabilizes the partly-linearized nonlinear system incrementally, accounting for

undesired factors such as external perturbations, time-delays, and uncertainties. With

this result, the so-called incremental nonlinear dynamic inversion, dependency on exact

knowledge of the system dynamics is greatly reduced, overcoming this major robustness

flaw from conventional nonlinear dynamic inversion. Moreover, this methodology im-

plies a trade-off between accurate knowledge of the spacecraft dynamic model and ac-

curate knowledge of the spacecraft sensors and actuators, and hence more suitable than

identification or model-based adaptive control architectures. Simulation results demon-

strate the tracking and external disturbances rejection capabilities of the proposed con-

troller in front of current existing methods. Under the combined effect of external dis-

turbances, time-delay, and parametric uncertainty, incremental nonlinear dynamic in-

version performs better than regular NDI and PI-control without compromising nominal

performance and stability.

Publication

Paul Acquatella B., Wouter Falken, Erik-Jan van Kampen, Qi Ping Chu: Robust Nonlin-

ear Spacecraft Attitude Control using Incremental Nonlinear Dynamic Inversion. In: Pro-

ceedings of the 2012 AIAA Guidance, Navigation, and Control Conference, August 13-16,

2012. Minneapolis, Minnesota, United States.
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8.1. INTRODUCTION

S
EVERAL nonlinear control methodologies have arisen in the past decades to overcome

shortcomings of conventional linearization approaches that approximates a nonlin-

ear system dynamics only over a small domain of interest around equilibria, i.e., Jaco-

bian linearization. One of the most popular of these control methodologies is known

as Feedback Linearization (FBL), treated extensively in [61–63] and initially based on

early papers of Krener and Brockett in the seventies [185, 186]. Feedback linearization

uses an accurate model of the system to entirely or partly cancel its nonlinearities by

means of feedback and exact state transformations. This transforms the nonlinear sys-

tem dynamics into a linear one over a desired region of interest. For the obtained system,

conventional linear control techniques can be applied successfully for achieving desired

closed-loop dynamics.

The application of FBL in the aerospace field is commonly referred to as Nonlinear

Dynamic Inversion (NDI). Although initially intended for flight control, NDI for aero-

space applications have also found its way for spacecraft control and re-entry vehicles,

see [50, 51, 67] and the references therein. The motivations behind the application of

NDI for flight control originate from difficulties with ensuring stability and performance

in between operational points of widely-used gain-scheduled controllers. With gain-

scheduling, the flight envelope is divided into many smaller operating regimes and con-

ventional controllers can be designed over each of them. Hence, scheduling the con-

troller gains allows to obtain satisfactory performance and desired handling qualities

over the entire flight envelope. In contrast, the NDI approach intends to eliminate the

nonlinearities in the model by canceling them out with state feedback. In this case, a sin-

gle classical linear controller can be used to close the outer loop of the system under NDI

control, hence eliminating the need of linearizing and designing different controllers for

several operational points as in gain-scheduling. This all is done under the assumption

of a correct onboard dynamic model. NDI can be seen as a special case of FBL, where

only one differentiation of each control variable is required to enable inversion (hence a

relative degree of one). Moreover, NDI may be only applied in combination with physical

insight [60].

A disadvantage for the construction of NDI-based control laws is that accurate knowl-

edge of the nonlinear system dynamics is required for such an explicit cancellation. For

space applications, this means that in order to apply NDI successfully, both the model of

the system must match the onboard model of the spacecraft, and all system nonlineari-

ties must be accurately known. Such assumption is hardly met in reality and in practice,

which is the rationale behind further development on the robustness of this methodo-

logy.

For this reason, NDI is considered an explicit control method where the desired dy-

namics of the closed-loop system reside in some explicit model to be followed. Therefore,

this explicit aspect of NDI-based control laws is considered to be a disadvantage upfront

its abilities to linearize and decouple certain classes of nonlinear MIMO systems when

full knowledge of the nonlinearities is available. Moreover, this model-based aspect is

also strongly influenced by modeling uncertainties. In reality, the model mismatch in

the implementation of NDI control laws, together with all sensor aspects, delays and bi-

ases, can compromise tremendously the performance of the controlled system. The high
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dependency of the inner loop of the control system on the onboard model is critical, i.e.,

it can compromise the stability and performance of the system when performing under

actuator failures or with model uncertainties.

Many successful attempts have been carried to identify and reduce these aforemen-

tioned flaws of NDI-based control laws with regards to robustness. These attempts are

focused in improving the robustness of the overall control architecture by means of ap-

plying linear robust control in the outer loop of the system. The works [51, 69] com-

bine NDI with the structured singular value (µ-analysis) and H∞ synthesis for reentry

flight clearance, and significant benefits were found over conventional NDI. However,

not all uncertainties were taken into account or they were covered by lumped uncertain-

ties hence introducing conservatism.

In this chapter, the issue of dealing with uncertainties with the NDI approach is pre-

sented by means a modification to the NDI framework that reduces its dependency on

the onboard model or baseline spacecraft while making use of actuator output and angu-

lar acceleration measurement feedback, the so-called Incremental Nonlinear Dynamic

Inversion (INDI) method. In contrast to regular NDI, this method is inherently implicit

in the sense that desired closed-loop dynamics do not reside in some explicit model to

be followed but result when the feedback loops are closed.

The theoretical development of INDI date back from the late nineties and started

with the work from Smith [70] for NDI-based flight control. The INDI control methodo-

logy is also referred in the literature as Modified NDI and Simplified NDI (especially dur-

ing its origins), but the designation ‘Incremental NDI’ is considered to describe the me-

thodology and nature of these type of control laws better [71, 78, 79]. INDI has been elab-

orated and applied theoretically in the past decade for flight control applications [71–75].

The remainder of the chapter is organized as follows. Section 8.2 presents a brief

recapitulation of attitude kinematics and dynamics, and the modeling of external distur-

bances considered. In Sections 8.3 and 8.4 we present the theory behind NDI and INDI,

respectively. Section 8.5 illustrates the design of the spacecraft attitude controllers con-

sidered in this chapter, and Section 8.6 presents the simulations of these controllers in a

rest-to-rest benchmark maneuver. Conclusions are discussed in Section 8.7.

8.2. MODELING

8.2.1. ATTITUDE KINEMATICS

Typically, the Euler angles and quaternions are used to parametrize the attitude kinemat-

ics of rigid bodies, and most attitude controllers are based on these parameterization. In

general, the best parameterization is problem dependent [187].

In this chapter we will be interested in the Modified Rodrigues Parameters (MRPs),

despite of their unpopularity for attitude control, as they represent a suitable kinematic

parameterization for the particular application of spacecraft attitude control. They ad-

dress the problem of singular orientations while using a minimal set of three rigid body

attitude coordinates [188, 189]. Being derived from the quaternion through stereographic

projection, they result in a well-defined parameterization for all Eigen-axis rotations in

the range of 0 ≤ θ < 360◦ and hence their potential advantages in attitude stabilization

and control problems [188].
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With ωωω ∈ R
3 representing the angular velocity vector, and defining the vector σ =

[
σ1 σ2 σ3

]⊤ ∈R
3, the kinematics equations take the form:

σ̇= N(σ)ωωω, σ(0) =σ0 (8.1)

where:

N(σ) =
1

2

[

I3×3 −S(σ)+σσ⊤−
1

2

(

1+σ⊤σ
)

I3×3

]

(8.2)

and S(σ) denotes the 3×3 antisymmetric matrix:

S(σ) =





0 σ3 −σ2

−σ3 0 σ1

σ2 −σ1 0



 (8.3)

The vector σ of the Modified Rodrigues Parameters is related to the Euler-axis and the

principal angle through:

σ=λ tan
θ

4
(8.4)

8.2.2. ATTITUDE DYNAMICS

Along with the rotational kinematics which describes the orientation of a rigid body that

is in rotational motion without involving any associated forces, the full description of

the orientation of a rigid body is described with the dynamics of this rotational motion

involving the influence of external forces. Consider Euler’s rotational equation of motion

in vector form [190]:

M = Jω̇ωω+ωωω× Jωωω (8.5)

where ωωω ∈ R
3 is the angular velocity vector, M ∈ R

3 is the external moment vector, and

J the inertia matrix of the rigid body. We will be interested in the time history of the

angular velocity vector, hence the dynamics of the rotational motion of a rigid body in

Eq. (8.5) can be rewritten as the following set of differential equations:

ω̇ωω= J−1S(ωωω)Jωωω+ J−1M, ωωω(0) =ωωω0 (8.6)

where:

ωωω=





ω1

ω2

ω3



 J =





J11 J12 J13

J21 J22 J23

J31 J32 J33



 M =





M1

M2

M3





and S(ωωω) denotes the 3×3 antisymmetric matrix:

S(ωωω) =





0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0



 (8.7)
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8.2.3. EXTERNAL DISTURBANCES

A spacecraft in orbit will experience external disturbance torques. The total moment act-

ing on the rigid body can be decomposed in several terms depending on their nature or

on the modeling of the problem considered. Here we will decompose the total moment,

M ≡ u, in two terms: the control torque uc , and the disturbance torque ud :

M ≡ u = uc +ud (8.8)

The idea is to model ud as an external disturbance and test the disturbance rejection

capabilities of the controllers proposed in this chapter. Such case is known in the litera-

ture as the disturbance rejection problem.

The magnitudes from these external disturbance torques differ greatly, but compared

with the attitude control torques from the spacecraft they result to be very small. The

most important disturbances for a satellite in orbit are the gravity field of the Earth due

to its non radial symmetric mass distribution, atmospheric drag, third body perturba-

tions, solar radiation pressure, and electromagnetic forces. In general, these space en-

vironmental external disturbance torques can be modeled as a bias plus cyclic terms in

the body-fixed control axes [190], and in this chapter a sinusoidal disturbance torque is

assumed as [191]:

udi
=





4+0.2sin0.01πt

5+0.5sin0.01πt

4+0.2sin0.01πt



×10−3 N ·m (8.9)

In this sense, the problem in consideration can be formulated as Eq. (8.6) finally ex-

pressed as:

ω̇ωω= f(ωωω)+Gu, ωωω(0) =ωωω0 (8.10)

with:

f(ωωω) = J−1S(ωωω)Jωωω, G = J−1

8.3. NONLINEAR DYNAMIC INVERSION

The idea of Nonlinear Dynamic Inversion (NDI) consists on canceling the nonlinearities

in a nonlinear system so that the closed-loop dynamics is in a linear form. In other words,

a nonlinear system is inverted by means of state feedback into a linear structure, and

hence conventional linear controllers can be applied. A fundamental assumption is that

the model of the system is exactly known, which gives NDI a great disadvantage from the

point of view of uncertainties. Formally:

1. It is assumed that the model of the system is accurately known. This is known as

the nominal model for which the NDI control laws are derived. Furthermore, this

assumption implies that the original system will behave according to this nominal

model.

2. It is assumed to have complete and accurate knowledge about the state of the sys-

tem.
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This will be referred as to the full knowledge assumption.

Without loss of generality, consider a general MIMO system whose number of inputs

are equal to the number of outputs in order to avoid control allocation problems. The

dynamics of this system can be expressed as:

ẋ = f(x)+G(x)u (8.11a)

y = h(x) (8.11b)

where x ∈ R
n is the state vector, u ∈ R

m is the control input vector (of components u j ),

y ∈R
m is the system output vector (of components y j ), f and h are smooth vector fields

on R
n , and G ∈ R

n×m is a matrix whose columns are smooth vector fields g j . Note

that this general dynamic model of a MIMO nonlinear system is considered affine in the

control input u. As a result there is no need of nonlinear solvers for u when applying

NDI.

The elements of the output vector y are often selected as the parameters to be con-

trolled, which are commonly directly related to the physical states of the system. For all

the outputs yi , i = {1, . . . ,m} the number of differentiation needed for the input to appear,

i.e., {r1, . . . ,rm} is called the relative degree of the system [61]. In this sense, consider the

output of the system to be the state:

y = x (8.12)

Furthermore, if the matrix G(x) is non-singular (i.e., invertible) in the domain of interest

for all x, the NDI control consists in the following input transformation:

u = G−1(x)
[

ν− f (x)
]

(8.13)

which cancels all the nonlinearities, and a simple input-output linear relationship is ob-

tained between the output y and the new input ν:

ẏ =ν (8.14)

Apart from being linear, an interesting result from this relationship is that it is also de-

coupled since the input νi only affects the output yi . From this fact, the input transfor-

mation (8.13) is called a decoupling control law, and the resulting linear system (8.14) is

called the single-integrator form.

This single-integrator form (8.14) can be rendered exponentially stable by means

of linear feedback control. In general, the introduced virtual input ν can be designed

to solve the problem of stabilization or output tracking, depending on control require-

ments. For both cases, given the obtained linear and decoupled relationship, linear con-

trollers can be synthesized to guarantee time- or frequency-domain requirements. For

example, the control law for the tracking of a smooth desired output yref(t ) can be based

upon the tracking error e = yref(t )−y(t ) as follows:

ν= ẏref +K (e, ė, . . .) (8.15)
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where ẏref is the feedforward term for tracking tasks, and K (e, ė, . . .) represents a linear

controller to exponentially stabilize the tracking dynamics with proper gain tuning, so

that e(t ) → 0. From this typical tracking problem, and as illustrated in Figure 8.1, it can

be seen that the entire control system will have two control loops: the inner linearization

loop based on Equation (8.13), and the outer control loop based on Equation (10.46).

ẋ = f(x)+G(x)u

y = h(x) = x

f(x)

G−1(x)
[

ν− f(x)
]K (e, ė, . . .)

ν
ẋ,x,y

yref e

ẏref

desired-dynamics dependent part plant dependent part

outer control loop

inner linearization loop

u

y

+

++ +

− −

Figure 8.1: Tracking of a MIMO system with Nonlinear Dynamic Inversion. The inner linearization loop is

based on Equation (8.13), whereas each channel yi −νi of the outer control loop is based on linear control.

8.4. INCREMENTAL NONLINEAR DYNAMIC INVERSION

The concept of Incremental Nonlinear Dynamic Inversion (INDI) amounts to the appli-

cation of NDI to a system expressed in an incremental form in order to improve the ro-

bustness of the closed-loop system as compared with conventional NDI-based control

by reducing its dependency on the model and exact knowledge on the plant dynamics.

Unlike NDI, this control design technique is implicit in the sense that desired closed-

loop dynamics do not reside in some explicit model to be followed but result when the

feedback loops are closed [73]. The incremental form considers the influence of incre-

ments of control commands in the dynamics. INDI provides these increments of control

commands as a function of the error of control variables, in contrast to NDI which pro-

vides a complete command control input instead.

For INDI-based control laws, and without loosing generality, we will consider a gen-

eral MIMO system as in Eq. (8.11) which represent the dynamics to be inverted, and

whose number of inputs are equal to the number of outputs, otherwise a control alloca-

tion problem would arise. Moreover, the output of the system, or the control variables

vector, is considered to be the state, hence:

y = x (8.16)

where y ∈ R
m (of components y j = x j , here m = n) and x ∈ R

n is the state vector of the

system. The dynamics of this system can be expressed as:

ẏ = ẋ = f(x)+G(x)u (8.17a)

where u ∈ R
m is the control command vector (of components u j ), f is a smooth vector

field on R
n , and G ∈R

n×m is a matrix whose columns are smooth vector fields g j . This
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system represents the dynamics to be inverted with INDI-based control. Notice that this

system has a relative degree of m since each of the controlled variables yi has a rela-

tive degree ri = 1, i = {1, . . . ,m}, and possesses no internal dynamics. Also note that this

general dynamic model of a MIMO nonlinear system is considered affine in the control

command u, as a result there is no need of nonlinear solvers for u when applying INDI

to such system.

The approximated rotational dynamics of a rigid body in its incremental form [71, 73–

75] is presented as follows. A standard Taylor series expansion provides the following

first-order approximation of ẋ, for x and u in the neighborhood of [x0,u0]:

f(x)+G(x)u ∼= f(x0)+G(x0)u0 +
∂

∂x

[

f(x)+G(x)u
]∣
∣
∣x=x0

u=u0

(x−x0)

+
∂

∂u

[

G(x)u
]∣
∣
∣x=x0

u=u0

(u−u0)+H.O.T

∼= f(x0)+G(x0)u0 +
∂

∂x

[

f(x)+G(x) u
]∣
∣
∣x=x0

u=u0

(x−x0)+G(x0) (u−u0)

(8.18)

where the current state and control, x0 and u0 respectively, represent for each time in-

stance the reference an incremental instance in time before x and u for the construction

of the first-order approximation of ẋ, and H.O.T the higher order terms that can be ne-

glected further on. By definition, the corresponding state rate ẋ0 satisfies:

ẋ0 ≡ f(x0)+G(x0)u0 (8.19)

Using this expression and the standard linear definition,

A0 =
∂

∂x
[f(x)+G(x)u]

∣
∣
∣x=x0

u=u0

(8.20a)

B0 =
∂

∂u
[G(x)u]

∣
∣
∣x=x0

u=u0

= G(x0) (8.20b)

with A0 and B0 the partials evaluated at the current (reference) point [x0,u0] on the state/-

control trajectory; Equation (10.49a), i.e., the approximation of ẋ for x and u in the neigh-

borhood of [x0,u0], can be expressed as:

ẋ ∼= ẋ0 +A0 (x−x0)+B0δu (8.21)

where δu = (u−u0) represents the incremental control command. This suggests that

in a small neighborhood of the reference state we can approximate the nonlinear sys-

tem (8.17) by its linearization about that reference state.

For the obtained approximation, input-output linearization is applied to obtain a

relation between the incremental control command and the output of the system. Since

each of the controlled variables yi has a relative degree ri = 1, i = {1, . . . ,m}, the first order

derivative of the output function represents an explicit relation between the output y and

the input δu:

ẏ = ẋ ∼= ẋ0 +A0 (x−x0)+B0δu (8.22)
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Inversion of this equation results in the linearizing input transformation:

δu = B−1
0

[

ν−
(

ẋ0 +A0 (x−x0)
)]

(8.23)

that can be applied to obtain the decoupled single-integrator linear relation ẏ = ν. For

small time increments and a sufficiently high control update rate, x approaches x0 which

means that A0 (x−x0) << B0δu and hence negligible. As a result, the linearizing control

becomes:

δu = B−1
o

[

ν− ẋ0

]

= G(x0)−1
[

ν− ẋ0

]

(8.24)

and the linearized system:

ẏ =ν (8.25)

Note that this control law results in increments of control commands; these changes

must be added to the current (reference) command to obtain the full new control com-

mand input. Also, note that ẋ0 is based on the reference command u0 and that δu is

the commanded change that reference in order to generate ν, i.e., the desired first order

derivatives of the controlled variables. Hence, the total control command is obtained as:

u = u0 +δu (8.26)

Note that the existing u0 that corresponds to ẋ0 is taken from the output of the actua-

tors, and it has been assumed that a commanded control is achieved instantaneously.

The total control command (8.26) along with the obtained linearizing control δu can be

rewritten as:

u = u0 +G(x0)−1
[

ν− ẋ0

]

(8.27)

INDI, as the application of NDI to a system expressed in an incremental form, results in

a control law that is not depending on the exact knowledge of the plant dynamics f(x).

The dependency of the closed-loop system on the model is largely decreased, improv-

ing the system robustness against model mismatch and model uncertainties. Moreover,

changes in f(x) are reflected in ẋ0, and the control does require measurements of ẋ0 and

u0, making this control strategy more dependent on the sensor measurements (the an-

gular acceleration measurements in the case of attitude control). It is important to no-

tice that this implicit control law design is not entirely independent on the model since

changes in f(x) are reflected in measurements of ẋ0. However, this control law design

is expected to be more dependent of sensor aspects (such as noise, bias, misalignment,

etc.) than regular NDI.

The implementation of INDI-based control considers the following assumptions:

1. It is assumed to have complete and accurate knowledge about the state of the sys-

tem. In practice however, state measurements may contain noise, biases, and de-

lays. Moreover, angular acceleration sensors may exist but they are expensive and

not common. As an alternative, angular acceleration may be derived from inertial

measurement unit (IMU) gyro measurements;



8.4. INCREMENTAL NONLINEAR DYNAMIC INVERSION

8

143

ẋ = f(x)+G(x)u

y = x
G(x0)−1

[

ν− ẋ0

]K (e, ė, . . .)
ν

ẋ,x,y
yref e

ẏref

desired-dynamics dependent part plant dependent part

outer control loop

inner linearization loop

u

u0

δu

ẋ0

x0

y
+

+
++

+ −

sensor

measurements

Figure 8.2: Tracking of a MIMO system with Incremental Nonlinear Dynamic Inversion. The inner linearization

loop is based on Equation (10.55), whereas each channel yi −νi of the outer control loop is based on linear

control.

2. For small time increments, angular accelerations evolve faster than angular veloc-

ities upon control action, which directly influences the moment of the rigid body.

In other words, the angular velocities only change by integrating angular acceler-

ations, hence making the difference (ωωω−ωωω0) negligible for small time increments

as compared to ω̇ωω;

3. Fast control action is assumed. This assumption complements the previous one in

the sense that the dynamics of the actuators are considered to evolve much faster

than the angular velocities. This assumption can be explained with singular per-

turbation theory or with time-scale separation, in which introducing the following

slow and fast dynamics,

ω̇ωω= f1(ωωω)+g1(ωωω)u (8.28)

ǫü = f2(ωωω)+g2(ωωω,u)+g3(ωωω,u, u̇) (8.29)

making the constant ǫ> 0 sufficiently small will make the controller state u evolve

much faster than the slower state of the slow system, the angular velocitiesωωω. With-

out loss of generality, a linear second order dynamics for the actuators can be as-

sumed [192], and making ǫ sufficiently small in this context means making the

actuator undamped natural frequency ωnc sufficiently high to guarantee the fast

actuator requirement of incremental control.

In the case where actuator output measurements are not readily available, i.e. Fig.8.3-

(a), a high-fidelity model of actuator dynamics can be included in the controller side as

to supply the required control input reference u0, Fig.8.3-(b). Its mismatch with regards

to reality must be studied in order to avoid a wind-up effect. Moreover, actuator output

measurements may contain noise, biases, and delays. Of course, physical limitations ex-

ists and the attitude control system will depend on appropriate choice of sensors and

actuators. Fig.8.3-(a) denotes a sensor-dependency configuration, where the actuator

output measurements are readily available (e.g. reaction wheels, with a proper current-

to-torque relation), and Fig.8.3-(b) denotes the model-dependent approach, where a
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high-fidelity model of the actuator dynamics accompanies the control architecture (e.g.

a high-fidelity model of reaction thrusters). In some cases, a combination of these two

approaches may be necessary.

actuatorsactuators INDIINDI
x0, ẋ0x0, ẋ0 ucmd

ucmd uu

u0u0

δuδu

(a) (b)

+

+
+

+

model

actuatorsensor
measurements

Figure 8.3: Actuator output block diagrams for Incremental Nonlinear Dynamic Inversion: (a) sensor-

dependent. (b) model-dependent.

8.5. ATTITUDE CONTROL DESIGN

The interest is to find NDI-based feedback controllers to track an attitude motion refer-

ence of a rigid body. In this sense, we apply the results shown in the past sections to the

attitude tracking problem. First, we demonstrate the Modified Rodrigues Parameters at-

titude tracking with NDI-control, followed by the proposed method using INDI-control.

8.5.1. RATE (INNER) CONTROL LOOP

The design objective of the rate (inner) control loop consists in the tracking of a desired

angular velocity signal ωωωdes, obtained by the attitude (outer) control loop, with ωωω(t ), or

similarly, the regulation of ωωωe (t ): ωωωe (t ) → 0 as t →∞ for all ωωωe (0) with ωωωe (t ) = (ωωωdes −ωωω),

which must remain bounded. It should be clear that this loop involves the rotational

dynamics of the rigid body, hence the controlled variables consist on the angular velocity

vector:

yin =ωωω (8.30)

Differentiation of this equation for NDI-control design results in the dynamics as in

Eq. (8.6), system that can be expressed as:

ẏin = ω̇ωω= f(ωωω)+Gu, ωωω(0) =ωωω0 (8.31)

with:

f(ωωω) = J−1S(ωωω)Jωωω G = J−1

Recall f(ωωω) to be the onboard model of the spacecraft which is necessary for dynamic

inversion. Also yin represents the control variables which hold a physical interpretation

required for dynamic inversion. We can achieve this objective with NDI as follows. Re-

call the single integrator relation between the control torque and the angular velocities.

Hence, the NDI control command is obtained as:

u = G−1
[

νin − f(ωωω)
]

= Jn

[

νin − J−1
n S(ωωω)Jnωωω

]

(8.32)
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From this controller the following is expected:

ẏin = ω̇ωω= f(ωωω)+Gu (8.33)

= f(ωωω)+G

(

G−1
[

νin − f(ωωω)
])

(8.34)

=νin (8.35)

However, since in reality uncertainties are present, the system in Eq. (8.31) can be mod-

eled as:

ω̇ωω= f(ωωω)+∆f(ωωω)+
[

G+∆G
]

u (8.36)

where ∆G may also capture control input uncertainty besides parametric uncertainty,

and application of the linearizing control results in:

ẏin = ω̇ωω= f(ωωω)+∆f(ωωω)+
[

G+∆G
][

G−1 [νin − f(ωωω)]
]

(8.37)

=∆f(ωωω)+νin +∆GG−1νin −∆GG−1f(ωωω) (8.38)

=
[

∆f(ωωω)−∆GG−1f(ωωω)
]

+
[

I +∆GG−1
]

νin (8.39)

Clearly the new system is not necessarily a linear system anymore because of the pres-

ence of uncertainties.

To overcome this situation INDI-control is now proposed. This method involves the

use of (direct or estimated) angular acceleration and actuator output measurements to

reduce the dependency on the onboard model of the spacecraft. The INDI control com-

mand is obtained as:

u = u0 +δu (8.40)

Note that the existing u0 that corresponds to ω̇ωω0 is considered in this case to be obtained

from the actuator output measurements. The total control command (8.40) is hence

obtained incrementally with the linearizing incremental δu which can be obtained by

dynamic inversion as:

δu = G−1
(

νin −ω̇ωω0

)

= Jn

(

νin −ω̇ωω0

)

(8.41)

In this case, since the on-board model is replaced by angular acceleration measurements,

the are only parametric uncertainties and the system in Eq. (8.31) can be modeled as:

ω̇ωω= ω̇ωω0 +
[

G+∆G
]

δu (8.42)

The internal unknown dynamics and model uncertainties are captured by the angular

acceleration measurements, then the application of the linearizing control results in:

ẏin = ω̇ωω= ω̇ωω0 +
[

G+∆G
][

G−1 (νin −ω̇ωω0)
]

(8.43)

=νin +∆GG−1νin −∆GG−1ω̇ωω0 (8.44)

=−∆GG−1ω̇ωω0 +
[

I +∆GG−1
]

νin (8.45)
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and using the notation C =∆GG−1:

ω̇ωω=−Cω̇ωω0 +
[

I +C
]

νin (8.46)

which is a relation affine in the virtual control.

Using INDI for spacecraft attitude control only requires knowledge on inertia pa-

rameters since model and parametric uncertainty are captured by angular acceleration

measurements or estimations. The resulting performance of these type of controllers is

hence expected to be strongly dependent on the accuracy of these measurements.

Finally, in the nominal sense and for tuning and gain design purposes, the system:

ẏin = ω̇ωω=νin (8.47)

can be designed to behave accordingly as desired. Without loss of generality, we use a

simple P(I)-control structure for the virtual control law for the NDI as follows:

νin = Kpin
ωωωe +Kiin

∫

ωωωe dt = Kpin
(ωωωdes −ωωω)+Kiin

∫

(ωωωdes −ωωω)dt (8.48)

whereωωωdes is obtained from the outer loop, and denoted NDI/P(I) control. For INDI, only

the proportional gain is required as integral control action is implicit, hence denoted as

INDI/P control.

To demonstrate the advantage of using INDI/P for rate control versus regular NDI/P(I)

(or even linear P(I)-control), consider now the angular velocity tracking of a rigid space-

craft with inertia matrix

Jn =





10 0 0

0 6.3 0

0 0 8.5



 Kg ·m (8.49)

in presence of external disturbances (8.9), time-delay of 100 ms, and parametric uncer-

tainties considered as follows: ∆1 represent a 10% decrease (20% increase) in the (off-)

diagonal terms, ∆2 represent a 10% decrease (10% increase) in the (off-) diagonal terms,

∆3 represent a 10% (10%) increase in the (off-) diagonal terms, and ∆4 represent a 20%

(20%) increase in the (off-) diagonal terms. For fair comparisons, the controller gains

were obtained by minimizing the following quadratic performance index,

Jπ =
k=t f∑

k=0

(
3∑

i=1

∥
∥ωωωei

(k)
∥
∥2 +‖ui (k)‖2

)

(8.50)

which penalizes the angular velocity error and the control effort.

The results of the simulations for PI-control, NDI/P, NDI/PI, and INDI/P, for the rate

loop tracking of a ramp smooth-command are presented in Figures 8.4, 8.5, 8.6, and 8.7,

respectively. The results indicates that PI-control is not suitable for the combined effects

considered (and leads to higher costs), NDI/P-control leads to steady state error, NDI/PI-

control leads to higher costs and overshoot, and INDI/P rejects disturbances well and is

insensitive to parametric uncertainty (without increasing too much the cost, however

leading to chattering).
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Figure 8.4: PI-control for rate (inner) control loop. Kp = 5.9, Ki = 0.26.
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Figure 8.5: NDI P-control for rate (inner) loop. Kp = 0.6.
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Figure 8.7: INDI P-control for rate (inner loop). Kp = 0.59.
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8.5.2. ATTITUDE (OUTER) LOOP

The design objective of the attitude (outer) control loop is twofold. It generates the de-

sired angular velocity reference ωωωdes for the inner loop, and tracks a desired attitude ref-

erence σdes with σ(t ). It should be clear that this loop involves the rotational kinematics

of the rigid body, for this, consider the control variables:

yout =σ (8.51)

and the derivation of this equation for NDI design results in the kinematics:

ẏout = σ̇= N(σ)ωωω, σ(0) =σ0 (8.52)

where:

N(σ) =
1

2

[

I −S(σ)+σσ⊤−
1

2

(

1+σ⊤σ
)

I

]

(8.53)

and the S(·) denotes the 3×3 antisymmetric matrix as in (8.3).

Since this kinematic equation is a given geometrical representation, it does not in-

volves the presence of any uncertainty. Hence, NDI-control is sufficient and this com-

mand is obtained as:

ωωωdes = N(σ)−1
[

νout

]

(8.54)

and

νout = Kpout (σe )+Kiout

∫

σe dt (8.55)

where σe is the Modified Rodrigues Parameter error. The complete attitude control dia-

gram is presented in Figure 8.8.
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8.6. SIMULATION

The theoretical results presented and the controllers derived are now demonstrated by

a numerical simulation performed in MATLAB&SIMULINK. The simulation compares a

complete attitude control using NDI/P and INDI/P, Eqs. (8.32) and (8.40), for the rate

control loop (using NDI/PI for the rate loop in combination with the outer loop leads to

instabilities), together with NDI/P(I) control for the outer loop. In this sense, the con-

trollers will be referred as NDI/P-P, NDI/PI-P (NDI/P for the inner loop plus NDI/PI for

the outer loop), and INDI/P-P respectively. The dynamic inversion controllers will be

applied for the attitude tracking of the Modified Rodrigues Parameters of a rigid space-

craft with inertia matrix (8.49). The effect of noise, external disturbances, measurement

time-delays, and model and parametric uncertainties will be considered together for the

controllers proposed as to an idea of the performance under these situations.

For this particular application, the reference attitude will be given by σc as a doublet

rest-to-rest two-axis re-orientation maneuver. The maneuver consist of an Eigen-axis

rotation of θ = π/12 rad at t = 50 s. Zero-mean Gaussian white-noise is added to the

closed-loop system and considered with standard deviations sdσ
= 1× 10−3 for σ, and

sdω
= 1× 10−6 rad/s for ωωω. The attitude measurements are sampled at 1 Hz, and the

angular velocities at 100 Hz. The angular accelerations are estimated as:

ω̇ωω[k] =
ωωω[k]−ωωω[k −1]

dt
(8.56)

and filtered appropriately. Moreover, in practical applications model uncertainties and

discrepancies exist; the mass properties of the spacecraft may be uncertain or may change

due to motion of onboard payload, rotation of solar arrays, liquid sloshing, etc. In this

chapter however, the focus is given to constant but uncertain inertia matrix. To this end,

consider the inertia matrix represented by:

J = Jn +∆J (8.57)

where Jn and ∆J are the nominal part and the uncertain part of J , respectively.

The uncertain part of the inertia matrix will be modeled as:

∆J =





∆1 ∆4 ∆5

∆4 ∆2 ∆6

∆5 ∆6 ∆3



=





0.2J11 0.2J11 0.2J22

0.2J11 0.2J22 0.2J33

0.2J22 0.2J33 0.2J33



 (8.58)

The results of the simulation are shown in Figures 8.9, 8.10, 8.11, 8.12, and 8.13. The solid

green lines represent the trajectories with NDI/P-P control, the dashed red lines repre-

sent the trajectories with NDI/PI-P control, the dashed blue lines represent the trajecto-

ries with INDI/P-P control, and the dashed black lines represent the reference for this

particular maneuver. Figure 8.9 depicts the nominal behavior of the Modified Rodrigues

Parameter vector, the angular velocities, and the associated control effort. Figure 8.10

depicts the behavior in the presence of external disturbance modeled as in Eq. (8.9). Fig-

ure 8.11 depicts the behavior in the presence of a measurement time-delay of 100 ms.
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Figure 8.12 depicts the behavior in the presence of parametric uncertainty modeled as

in Eq. (8.58). Finally, Figure 8.12 combines all these situations together. Namely, the pres-

ence of external disturbance, measurement time-delays, and parametric uncertainty.

Notice that:

1. In the nominal sense, NDI/P-P and INDI/P-P performs identically as expected;

2. The presence of external disturbance is not fully rejected with NDI/P-P but with

NDI/PI-P, at the expense of a higher overshoot. However, INDI/P-P performs bet-

ter at thistask fully rejecting the disturbance without compromising severely nom-

inal performance;

3. Parametric uncertainty degrades nominal performance in general, but less so for

the INDI/P-P control. This is due to the feedback of angular accelerations which

captures the mismatch with the model;

4. Combining the effect of external disturbance, measurement time-delays, and para-

metric uncertainty demonstrates the full capabilities of INDI control. It is shown

that INDI/P-P performs well under these considerations, and the performance

and trajectories are not so degraded as for the other controllers. This demonstrates

the robustness capabilities of such controllers.

8.7. CONCLUSIONS

This chapter presented an application of the Incremental Nonlinear Dynamic Inversion

(INDI) control methodology to the attitude tracking and disturbance rejection problem

of rigid spacecraft in presence of model and parametric uncertainties. As a modifica-

tion of the NDI methodology, the INDI approach enhances its robustness capabilities by

reducing feedback control dependency on accurate knowledge of the system dynamics.

The use of incremental control action, which requires information of actuator output

and angular accelerations, make these sensor-based type of controllers efficient for ex-

ternal disturbance rejection and robust in terms of handling uncertainties. Unlike NDI,

this control design technique is implicit in the sense that desired closed-loop dynamics

do not reside in some explicit model to be followed but result when the feedback loops

are closed. Under the influence of external disturbances, time-delay, and parametric

uncertainty, it was shown that incremental nonlinear dynamic inversion performs bet-

ter than regular NDI and PI-control without compromising nominal performance and

stability. However, in practice, INDI-based control rely on accurate actuator output and

angular acceleration measurements which may not be readily available or which may

contain noise, biases and delays, hence their effect need to be further studied.
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Figure 8.9: Comparison of the nominal attitude tracking of the Modified Rodrigues Parameters (σ), the angular

velocities (ωωω), and the control effort (u), respectively, for three different controllers: the NDI/P-P control, the

NDI/PI-P control, and the INDI/P-P control.
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Figure 8.10: Comparison of the attitude tracking of the Modified Rodrigues Parameters (σ), the angular ve-

locities (ωωω), and the control effort (u), respectively, in the presence of external disturbance for three different

controllers: the NDI/P-P control, the NDI/PI-P control, and the INDI/P-P control.
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Figure 8.11: Comparison of the attitude tracking of the Modified Rodrigues Parameters (σ), the angular veloci-

ties (ωωω), and the control effort (u), respectively, in the presence of measurement time-delay of 100 ms for three

different controllers: the NDI/P-P control, the NDI/PI-P control, and the INDI/P-P control.
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Figure 8.12: Comparison of the attitude tracking of the Modified Rodrigues Parameters (σ), the angular veloc-

ities (ωωω), and the control effort (u), respectively, in the presence of parametric uncertainty for three different

controllers: the NDI/P-P control, the NDI/PI-P control, and the INDI/P-P control.



8.7. CONCLUSIONS

8

157

 

 

INDI/P-PNDI/PI-PNDI/P-Preference

u
3

[N
·m

]

time [s]

ω
3

[r
a

d
/s

]
σ

3

u
2

[N
·m

]

time [s]

ω
2

[r
a

d
/s

]
σ

2

u
1

[N
·m

]

time [s]

ω
1

[r
a

d
/s

]
σ

1

0 100 200

0 100 200

0 100 200

0 100 200

0 100 200

0 100 200

0 100 200

0 100 200

0 100 200

−0.1

0

0.1

−0.04

0

0.04

−0.05

0

0.05

0.1

−0.1

0

0.1

−0.04

0

0.04

−0.05

0

0.05

0.1

−0.1

0

0.1

−0.04

0

0.04

−0.05

0

0.05

0.1

Figure 8.13: Comparison of the attitude tracking of the Modified Rodrigues Parameters (σ), the angular veloc-

ities (ωωω), and the control effort (u), respectively, in the presence of external disturbance, measurement time-

delay of 100 ms, and parametric uncertainty for three different controllers: the NDI/P-P control, the NDI/PI-P

control, and the INDI/P-P control.
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INVERSION APPROACH

Abstract

This chapter presents an agile and robust spacecraft attitude tracking controller using the

recently reformulated incremental nonlinear dynamic inversion (INDI). INDI is a com-

bined model– and sensor–based control approach that only requires a control effective-

ness model and measurements of the state and some of its derivatives, making a reduced

dependency on exact system dynamics knowledge. The reformulated INDI allows a non-

cascaded dynamic inversion control in terms of Modified Rodrigues Parameters (MRPs)

where scheduling of the time-varying control effectiveness is done analytically. This way,

the controller is only sensitive to parametric uncertainty of the augmented spacecraft in-

ertia and its wheelset alignment. Moreover, we draw some parallels to time-delay control

(TDC) —more familiar in the robotics community— which have been shown to be equiv-

alent to the incremental formulation of proportional-integral-derivative (PID) control for

second order nonlinear systems in controller canonical form. Simulation experiments

for this particular problem demonstrate that INDI has similar nominal performance as

TDC/PID control, but superior robust performance and stability.

Publication

Paul Acquatella B., Qi Ping Chu: Agile Spacecraft Attitude Control: an Incremental Non-

linear Dynamic Inversion Approach. In: IFAC-PapersOnLine, Vol. 53, No. 2, 2020; pre-

sented at IFAC-WC 2020, 21st World Congress of the International Federation of Auto-

matic Control, July 12-17, 2020.
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9.1. INTRODUCTION

F
UTURE satellite systems are expected to be more performant not only for fine point-

ing capabilities in data acquisition but also in terms of high agility for maneuver-

ability [33]. This emerging field of agile Earth Observation motivated the development

of a high-agility attitude control system for the the satellite platform BIROS (Bispectral

InfraRed Optical System) while actuated with a redundant array of High-Torque-Wheels

(HTW) [193].

The topic of optimal and agile spacecraft rotational maneuvers is quite extensive

and has been studied for many decades [127, 130, 132]. However, most of the work

reported in literature relies on optimization and some form of trajectory optimization,

which might be difficult to implement on-board. In this chapter, we are motivated to

find an agile attitude control solution in closed-loop feedback form. This is challenging

because of the many nonlinearities involved.

Incremental nonlinear dynamic inversion (INDI) has been proposed as a promis-

ing sensor-based approach providing high performance and robust nonlinear control

for aerospace vehicles without requiring a detailed model of the controlled plant. The

INDI approach reduces its dependency on onboard or baseline models while making

use of actuator output and angular acceleration measurement feedback. Theoretical de-

velopment of increments of nonlinear control action date back from the late nineties

by [70, 73] which were further developed as ‘incremental NDI’ [71, 77, 79, 80] for flight

control as well as for spacecraft attitude control [4]. More recently, this technique has

been applied also in practice for quadrotors using adaptive control by [85], and in real

flight tests by [88, 89], verifying its performance and robustness properties against aero-

dynamic model uncertainties and disturbance rejection.

INDI relies on the assumption that for small time increments and high sampling

rates, the nonlinear system dynamics in its incremental form is simply approximated by

the (linearized) control effectiveness evaluated at the current state. Recently, the INDI

control in the literature has been reformulated for systems with arbitrary relative degree

and without recurring to cascaded-control structures, i. e., without using a time–scale

separation assumption [97]. This reformulation allowed to extended further the incre-

mental nonlinear control approach for Sliding Mode Control by [99]. For these new re-

formulations and extensions, conditions for stability and robustness analyses have been

established and analyzed using Lyapunov-based methods. Another nonlinear control

method is time–delay–control (TDC) [140–142], more commonly known in the motion

control and robotics community and pioneered in the 90’s by the works of Hsia, Youcef-

Toumi, et al. [140]. TDC works by estimating and compensating disturbances and sys-

tem uncertainties (model and parametric) by utilizing time–delayed signals of some of

the system variables.

In this chapter, we present three main contributions in the context of nonlinear space-

craft attitude control system design. 1) We consider the reformulated INDI control for

the spacecraft attitude control problem where input-output linearization is done with-

out the usual time scale separation principle. 2) We revisit the reformulated INDI for

the attitude control problem and introduce a time–delay explicitly in this reformulation.

3) We revisit TDC and establish the relationship and condition for equivalence between

INDI and TDC. Based on previous results reported in the robotics literature showing the
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relationship between discrete formulations of TDC and the incremental formulation of

proportional-integral-derivative control (PID) control, we also establish a clear relation-

ship between INDI and nonlinear-PID control.

9.2. MODELING OF SPACECRAFT WITH REACTION WHEELS

First we describe the comprehensive nonlinear rotational dynamics model for space-

craft including a generic set of reaction wheels as shown in [138, 193]. In this chapter,

we consider the Modified Rodrigues Parameters (MRPs) [188, 194] as they represent a

well defined attitude parameterization for all Eigen-axis rotations in the large domain

of 0◦ ≤ θ < 360◦ where θ is the principal angle rotation around the Euler-axis λ. The

MRP attitude is a suitable kinematic parameterization given their potential advantages

for spacecraft attitude control [188, 194].

9.2.1. KINEMATICS

Consider first an array consisting of n reaction wheels. Introducing unit vectors ai which

give the orientation of the spin-axis of each reaction wheel with respect to the space-

craft coordinate system, these are collected in the configuration or alignment matrix

A = [a1 . . . an ]. In that sense, the kinematics of the i−th reaction wheel in terms of its

spin-axis angle Φw and angular velocity Ωw , is simply given by Φ̇w,i =Ωw,i , i = 1, . . . ,n.

The MRP vector σ is defined in relation to the Euler-axis λ and principal angle rotation

θ as σ = λ tan(θ/4) [194], and the kinematic differential equation relating σ with the

spacecraft angular velocity ωωω ∈R
3 (with respect to the body fixed frame) in vector form

is given by [194] as

σ̇=
1

4

[

(1−σ⊤σ)I 3×3 +2S(σ)+2σσ⊤]

ωωω=
1

4
B (σ) ωωω (9.1)

where S(·) is defined such that S(x) y = x × y for any x, y ∈R
3. Moreover, in this chapter

we will also interested on the exact relation [194]

σ̈=
1

4

[

Ḃ (σ) ·ωωω+B (σ) ·ω̇ωω
]

=
1

4
C (σ,ωωω,ω̇ωω) (9.2)

where

Ḃ (σ) ·ωωω=
1

2

[

2σ⊤ωωω(1−σ⊤σ)ωωω− (1+σ⊤σ)ωωω⊤ωωωσ−4σ⊤ωωωS(ωωω)σ+4(σ⊤ωωω)2σ
]

which relates the MRP “acceleration” σ̈ to the rigid body’s angular velocityωωω and angular

acceleration ω̇ωω. This relationship will be key for the attitude control design as it will be

clear later on.

9.2.2. DYNAMICS

Following the derivations in [138], we obtain the rotational dynamics model as follows.

First, consider the angular momentum of the spacecraft equipped with the reaction

wheel array in question

H = I ωωω+h (9.3)
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where, expressed in body-fixed frame, H ∈ R
3 is the total angular momentum of the

system; I ∈ R
3×3 is the constant inertia matrix of the spacecraft including the reaction

wheels;ωωω ∈R
3 is the spacecraft angular velocity; and h ∈R

3 is the total angular momen-

tum vector associated with the reaction wheel array. The angular momentum h can be

expressed from individual actuator frames to body-fixed frame as

h =
n∑

i=1

ai hw,i = A I w ΩΩΩ, (9.4)

where I w = diag[ I w,1 . . . I w,n ] is a diagonal matrix of reaction wheel spin-axis inertia

values andΩΩΩ=Ωw + A⊤ωωω the inertial angular rate of the reaction wheel array, where the

term A⊤ωωω is the extra angular motion relative to the spacecraft. Considering the angular

momentum associated with the i−th reaction wheel in actuator frame

hw,i = I w,i

(

Ωw,i +a⊤
i ωωω

)

, i = 1, . . . ,n, (9.5)

we can already obtain the differential equation describing the reaction wheel dynamics

in terms of reaction wheel torques τw,i , which are considered as the exogenous inputs to

the system provided by the wheel’s powertrain

Ω̇w,i = I−1
w,i τw,i −a⊤

i ω̇ωω, i = 1, . . . ,n. (9.6)

Because the angular momentum must be conserved in the absence of external perturba-

tions, applying the transport theorem [127, 138]) to Eq. (10.7), the following relation is

obtained
d

dt
H +ωωω×H = 0. (9.7)

Combining Eqs. (10.8), (10.12), and (9.7), the comprehensive nonlinear model for space-

craft dynamics equipped with reaction wheels [138] is given by

Γ









ω̇ωω

Ω̇w,1

...

Ω̇w,n









=









−ωωω×
(

Iωωω+ AI wΩw + AI w A⊤ωωω
)

τw,1

...

τw,n









(9.8)

where

Γ=









I + AI w A⊤ a1I w,1 · · · an I w,n

I w,1a⊤
1 I w,1 · · · 0

...
...

. . .
...

I w,na⊤
n 0 · · · I w,n









is an augmented inertia coupling matrix for the full system.

9.2.3. FULL NONLINEAR SPACECRAFT MODEL

The augmentation of the nonlinear spacecraft dynamics model together with the MRP

kinematics can be rewritten as a full model in the generic form of affine n-dimensional

multivariable nonlinear system with m inputs ui and m outputs yi

ẋ = f (x)+g (x)u (9.9a)
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y = h(x) (9.9b)

where x ∈ R
n , u ∈ R

m , and y ∈ R
p . The functions f , g , and h are assumed to be

smooth vector fields continuously differentiable on R
n . Moreover, the system has a

vector of relative degree of [ρ1 . . . ρp ]⊤ which represents the number of differenti-

ation of each output yi (i = 1, . . . , p) needed for the input to appear [61], and the total

relative degree is obtained as ρ = ρ1 + ·· · + ρp . In this chapter we consider the out-

put MRP as control variables y = h(x) = σ, and assume to have three reaction wheels

(nw = 3) as actuators, hence u = [τw,1 τw,2 τw,3 ]⊤ and p = m = 3. Whenever p <
m, the input-output linearization is not straightforward and some form of control al-

location is required. Else, when p > m, the control problem is underactuated and the

input-output linearization is underdetermined. These aspects are however out of the

scope of this chapter. Considering the vector x = [σ ωωω ΩΩΩw ]⊤ with, respectively, σ =
[σ1 σ2 σ3 ]⊤,ωωω= [ωx ωy ωz ]⊤, andΩΩΩw = [Ωw,1 Ωw,2 Ωw,3 ]⊤, the full nonlinear

system dynamics in (10.16) is obtained with the functions given as

f (x) =





1
4

B (σ) ωωω

Γ
−1

[
−ωωω×

(

Iωωω+ AI wΩΩΩw + AI w A⊤ωωω
)

03×1

]



 , (9.10a)

g (x) =





03×3

Γ
−1

[
03×3

13×3

]



=G . (9.10b)

9.3. INCREMENTAL NONLINEAR DYNAMIC INVERSION

9.3.1. NONLINEAR DYNAMIC INVERSION CONTROL

Finding an explicit relationship between the input and the output of the system is gener-

ally not straightforward because they are not directly related. First, recall

l (x) =







L
ρ1

f
h1(x)

...

L
ρm

f
hm(x)







(9.11a)

M(x) =








Lg1 L
ρ1−1

f
h1(x) · · · Lgm L

ρ1−1

f
h1(x)

...
. . .

...

Lg1 L
ρm−1

f
hm(x) Lgm L

ρm−1

f
hm(x)








, (9.11b)

where L
ρ j

f
h j (x) and Lgi

L
ρ j −1

f
h j (x) are Lie derivatives of the scalar functions h j (x) with

respect to the vectors f (x) and g i (x), with j , i = 1 to m. Denoting the differentiated

outputs ζ= [ y
ρ1−1
1 . . . y

ρm−1
m ]⊤, the following relation is obtained

ζ̇= l (x)+M(x)u. (9.12)

Denoting ν as a virtual control input, the vector ϕ(x) = −M−1(x)l (x), and the matrix

ϑ(x) = M−1(x), then the state feedback control law u defined as

u =ϕ(x)+ϑ(x)ν (9.13)
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cancels all nonlinearities in closed-loop, and a simple linear input-output relationship

between the new input ν and the new output ζ is obtained

ζ̇=ν (9.14)

as long as ϑ is not singular. Apart from being linear, an interesting result is that the input

νi only affects the differentiated output ζi (decoupled). From this fact, the input trans-

formation (10.70) is called a decoupling control law, and the resulting linear system (9.14)

is called the single-integrator form. The single-integrator form (9.14) is sought to be ren-

dered exponentially stable with the proper design of of ν. From this typical tracking

problem it can be seen that the entire control system will have two control loops [71, 79]:

the inner linearization loop (10.70), and the outer control loop (9.14). This resulting NDI

control law depends on accurate knowledge of the model (l (x) and M(x)) and its param-

eters, hence it is susceptible to model and parametric uncertainties. For that reason we

are now interested in the concept of incremental nonlinear dynamic inversion.

9.3.2. INCREMENTAL NONLINEAR DYNAMIC INVERSION CONTROL

The concept of incremental nonlinear dynamic inversion (INDI) amounts to the appli-

cation of NDI to a system expressed in an incremental form. This improves the robust-

ness of the closed-loop system as compared with conventional NDI since dependency

on the accurate knowledge of the plant dynamics is reduced. First, we introduce a suf-

ficiently small time–delay λ and define the following deviation variables ẋ0 := ẋ(t −λ),

x0 := x(t −λ), and u0 := u(t −λ), which are the λ–time–delayed signals of the current

state derivative ẋ(t ), state x(t ), and control u(t ), respectively. Moreover, we will denote

∆ẋ := ẋ − ẋ0, ∆x := x − x0, and ∆u := u −u0 as the incremental state derivative, the in-

cremental state, and the so–called incremental control input, respectively. To obtain an

incremental form of system dynamics, we consider a first-order Taylor series expansion

of ẋ(t ) [71, 80], not in the geometric sense, but with respect to the newly introduced

time–delay λ as

ζ̇= ζ̇0 +
∂

∂x

[

l (x)+M(x)u
]
∣
∣
∣x=x0

u=u0

∆x

+M(x0)∆u +O (∆x2)

∼= ζ̇0 +L0(x0)∆x +M(x0)∆u

with

ζ̇0 := ζ̇(t −λ) = l (x0)+M(x0)u0 (9.15a)

and

L0(x0) =
∂

∂x

[

l (x)+M(x)u
]∣
∣
∣x=x0

u=u0

(9.16a)

which represents the Jacobian linearization of the on-board model. We will refer to

M(x0) as the instantaneous control effectiveness (ICE) matrix; meaning that this model–

based term is sampled at each incremental instant. This means an approximate lin-

earization about the λ−delayed signals is performed incrementally, and not with respect

to a particular equilibrium or operational point of interest.
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Time-scale separation (TSS) assumption: For a sufficiently small time-delay λ and for

any incremental control input, it is assumed that ∆x does not vary significantly during λ.

In other words, the input rate of change is much faster than the state rate of change:

ǫI N D ITSS
(t ) ≡∆x := x −x0

∼= 0, ∀ ∆u (9.17)

which leads to

ζ̇∼= ζ̇0 +L0 (x −x0)
︸ ︷︷ ︸

∼=0

+M(x0) · (u −u0)

or simply

∆ζ̇∼= M(x0) ·∆u (9.18)

This assumption shows that for high sampling rates the nonlinear system dynamics in its

incremental form is simply approximated by its ICE matrix M(x0). Since this results in a

change of coordinates, the development of control laws in the original set of (absolute)

coordinates implies or requires the availability of ζ̇0 and u0 in (9.18). For the obtained

approximation ∆ζ̇ ∼= M(x0) ·∆u, NDI is applied to obtain a relation between the incre-

mental control input and the output of the system

u = u0 +M(x0)−1(ν− ζ̇0). (9.19)

Note that the incremental input u0 that corresponds to ζ̇0 is obtained from the output

of the actuators, and it has been assumed that a commanded control is achieved suffi-

ciently fast in regards to the actuator dynamics. The total control command along with

the obtained linearizing control ∆u = u(t −λ) can be rewritten as

u(t ) = u(t −λ)+M(x0)−1[ν− ζ̇(t −λ)]. (9.20)

The dependency of the closed-loop system on accurate knowledge of the dynamic model

in l (x) is largely decreased, improving robustness against model uncertainties contained

therein. Therefore, this implicit control law design is more dependent on accurate mea-

surements or accurate estimates of ζ̇0, the state derivatives, and u0, the incremental

control input, respectively.

9.3.3. NDI ATTITUDE CONTROL

Since the output of the system has been selected to be the MRP vector y =σ the system

has a vector of relative degree [ρ1 ρ2 ρ3 ]⊤ = [2 2 2]⊤ and total relative degreeρ = 6.

Since ρ < n, there are internal states η which can be easily proven to lead to marginally

stable zero dynamics. Denoting the differentiated outputsζ= [σ
ρ1−1
1 σ

ρ2−1
2 σ

ρ3−1
3 ]⊤ =

[ σ̇1 σ̇2 σ̇3 ]⊤, the relation (9.12) is obtained, where l (x) = L2
f
σ and M(x) = Lg L1

f
σ.

The NDI control law (10.70) cancels all nonlinearities in closed-loop and the nominal

closed-loop system (external states) is obtained as

ξ̇
(6) = A(6×6)ξ(6) +B (6×3)ν(3) (9.21)

y (3) =C (3×6)ξ(6) (9.22)
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where the upper indices indicate the dimensions of the vectors and matrices and the new

state vector ξ is defined in terms of the original state x as ξ= [σ1 σ̇1 σ2 σ̇2 σ3 σ̇3 ]⊤

and A, B , and C are in Brunovsky block canonical form [97].

Denoting e =σ−σr e f (valid for small deviations), this single-integrator form can be

rendered exponentially stable with

ν= ÿ d +kD ė +kP e (9.23)

where ÿ d is the feedforward term for tracking tasks, and kD and kP being 3×3 constant

diagonal matrices whose i−th diagonal elements kDi
and kPi

, respectively, are chosen

so that the polynomials s2 +kDi
s +kPi

i = 1, . . . ,n = 3 may become Hurtwiz. This results

in the exponentially stable and decoupled error dynamics

ë +kD ė +kP e = 0 (9.24)

which implies that σ(t ) →σr e f (t ) exponentially.

9.3.4. INDI ATTITUDE CONTROL

Since we will consider the dynamics in its incremental form for the control design

ζ̇(t )− ζ̇(t −λ) ∼= M(x0) [u(t )−u(t −λ)] , (9.25)

the incremental nonlinear dynamic inversion results in a control law that is only depend-

ing on the uncertainties contained within the ICE matrix

u(t ) = u(t −λ)+M(x0)−1
[

ν− ζ̇(t −λ)
]

, (9.26)

however, notice that

M(x0) =
∂
[

L1
f

h(x0)
]

∂x
︸ ︷︷ ︸

purely kinematic

· G
︸︷︷︸

purely parametric

. (9.27)

This means that in the particular case of this plant, namely a rigid body spacecraft ac-

tuated with a non-redundant set of orthogonal reaction wheels and parameterized by

MRPs, the incremental nonlinear dynamic inversion is robust since the control law is

only exposed to uncertainty in the parametric matrix G which contains information

about inertia values (of the rigid body and of the reaction wheels). The term which is

purely kinematic in this control law is fully known and contains no uncertainties other

than the ones contained within the measured state x0. To conclude the INDI attitude

control design, we have made use of the fact that

ζ̇(t −λ) = ζ̇0 = σ̈0 =
1

4

[

Ḃ (σ0) ·ωωω0 +B (σ0) ·ω̇ωω0

]

(9.28)

where the relationship

Ḃ (σ) ·ωωω=
1

2

[

2σ⊤ωωω(1−σ⊤σ)ωωω− (1+σ⊤σ)ωωω⊤ωωωσ (9.29)

−4σ⊤ωωωS(ωωω)σ+4(σ⊤ωωω)2σ
]

(9.30)
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is highly beneficial to compute σ̈0 which is otherwise very hard to estimate because of

the noise contained in the measurements. By using the measured ζ̇(t −λ) and com-

manded u(t −λ) incrementally, we practically obtain a nonlinear ‘self-scheduling’ NDI

control law that is robust to model and parametric uncertainties. The use of M(x0) in

INDI is one of the key differences with respect to time-delay control, where the control

effectiveness is substituted with a constant gain matrix instead. This method is briefly

presented next.

9.3.5. TIME–DELAY CONTROL AND RELATIONSHIP TO INDI
Consider the following transformation as in [142]

ζ̇= H(x ,u)+ M̄u (9.31)

with

H(x ,u) = l (x)+
[

M(x)− M̄
]

u, (9.32)

and with M̄ , an scalar-valued and invertible gain matrix referred to as the incremental

gain effectiveness (IGE) matrix from now on. Defining the vector α(x) and matrix β as

α(x) =−M̄
−1

H(x ,u) (9.33a)

β= M̄
−1

(9.33b)

then, the state feedback control law u defined as

u =α(x)+β ·ν= M̄
−1[

ν−H(x ,u)
]

(9.34)

cancels all nonlinearities in the nominal closed-loop case, as shown before, where we

have used the virtual control input as ν = ζ̇des. Notice however, that still a full model

of H(x ,u) is needed. Because this reformulated NDI control law is nevertheless still

depending on the model represented by H(x ,u), this controller is again susceptible to

uncertainties in this term.

To cope with the uncertainty issue, we will consider an estimation of H denoted by

H̄ along the lines of time delay control (TDC) [142], and therefore we will consider the

usual dynamic inversion input transformation of (9.31) but with the H̄ estimate instead

u = M̄
−1 [

ν− H̄(x ,u)
]

(9.35)

being the nominal case when H̄ = H which results in perfect inversion. Our remain-

ing task is therefore to find a suitable H̄ estimate such that, in combination with ν, the

closed-loop system converges exponentially fast to Eq. (9.14) while avoiding the uncer-

tain terms to grow unbounded. This means that, ultimately, the control law given by

Eq. (9.35) is able to obtain the desired closed-loop dynamics defined by the nominal sin-

gle integrator form while rejecting the perturbation due to the uncertainties in ∆H . For

the sufficiently small time-delay λ already introduced, we consider the following approx-

imation to hold [142] such that H does not vary significantly during λ

ǫTDEer r or (t ) ≡ H(x ,u, t )−H(x ,u, t −λ) ∼= 0 (9.36)
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which is called time-delay estimation error at time t . If we write the following current,

and delayed dynamics, respectively

ζ̇= H(x ,u)+ M̄ ·u, ζ̇0 = H(x0,u0)+ M̄ ·u0

it is clear that

H(x ,u)−H(x0,u0) = (ζ̇− ζ̇0)− M̄ (u −u0) ∼= 0.

or simply

∆ζ̇∼= M̄ ·∆u. (9.37)

This relationship is used together with Eq. (9.31) to obtain what is called time-delay esti-

mation (TDE) as the following

H̄ = H(t −λ) = ζ̇(t −λ)− M̄ ·u(t −λ) (9.38)

therefore we can rewrite in our usual notation as

H̄ = H 0 = ζ̇0 − M̄ ·u0 (9.39)

9.3.6. PARALLELS BETWEEN INDI AND TDC
With the TDE, the incremental counterpart of Eq. (10.55) results in a control law that is

not depending on the dynamics model in H which contains l (x) and the control effec-

tiveness M(x), but instead on the IGE matrix M̄ as

u = u0 + M̄
−1 [

ν− ζ̇0

]

. (9.40)

in other words

u(t ) = u(t −λ)+ M̄
−1 [

ν− ζ̇(t −λ)
]

. (9.41)

This TDC law can be interpreted as an INDI control whenever

M̄ = M(x0), (9.42)

however, we had taken from the literature of TDC as the IGE being a time-invariant gain

matrix, which is the main distinction with regards to INDI control laws. In that regard,

we can conclude that the INDI control laws are combined model– and sensor–based

control laws which are promising for high-performance nonlinear and robust attitude

control because of this self–scheduling property of the ICE matrix M(x0). Note that the

self-scheduling properties of INDI in Eq. (10.55) due to the ICE term M(x0) were lost in

the TDC law of Eq. (9.40), suggesting that M̄ should be an scheduling variable as in INDI

by imposing the equivalence M̄ = M(x0).

9.3.7. DISCRETE FORMULATIONS OF INDI, TDC, AND PID CONTROL AND

THEIR RELATIONSHIPS

For practical implementations, sampled-time formulations involving continuous and

discrete quantities as in [142] are more convenient and restated here. For that, the small-

estλ one can consider is the equivalent of the sampling period of the on-board computer.

The sampled formulation of (9.40) may be expressed as

u(k) = u(k −1)+ M̄
−1 [

ν(k −1)− ζ̇(k −1)
]

(9.43)
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where it has been necessary to consider ν at sample k−1 for causality reasons. Replacing

the sampled virtual control ν accordingly, we have

u(k) = u(k −1)+ M̄
−1 [

ζ̇d (k −1)+kD ė(k −1)+kP e(k −1)− ζ̇(k −1)
]

(9.44)

which results in

u(k) = u(k −1)+ M̄
−1

[ë(k −1)+kD ė(k −1)+kP e(k −1)] (9.45)

Previous results reported in the robotics literature by [142] show the relationship

between this discrete formulation of TDC and proportional-integral-derivative control

(PID). [96] showed that INDI is equivalent to TDC but only under the consideration

when the ICE matrix was constant. This in turn suggested a meaningful and system-

atic method for PI(D)-control tuning of robust nonlinear flight control systems via INDI

as originally suggested in the systematic method for gain selection of robust PID con-

trollers for nonlinear plants by [142]. [142] showed this relationship first by considering

the discrete implementation of a PID control

u(k) = K

[

e(k −1)+T −1
I

k−1∑

i=0

ts e(i )+T D ė(k −1)

]

+uB . (9.46)

where K denotes a diagonal proportional gain matrix, T I a constant diagonal matrix rep-

resenting a reset or integral time, T D denotes a constant diagonal matrix representing

derivative time, and uB denotes a constant vector representing a trim-bias, from initial

conditions. When subtracting two consecutive terms of a discrete formulation, the inte-

gral sum can be removed and thus the so-called PID controller in incremental form can

be obtained

u(k) = u(k −1)+K · ts ·
[

T D ë(k −1)+ ė(k −1)+T −1
I ·e(k −1)

]

(9.47)

If we consider a nonlinear-PID control in the form

u(k) = K (x)

[

e(k −1)+T −1
I

k−1∑

i=0

ts e(i )+T D ė(k −1)

]

, (9.48)

comparing terms from Eqs. (9.45)-(9.47)-(9.48), we have the following relationships as

originally found by [142] which are the relationship between the discrete formulations

of TDC and PID in incremental form

K (x) = K̄ = kD · (M̄ · ts )−1, (9.49a)

T I = kD ·k−1
P , (9.49b)

T D = k−1
D , (9.49c)

Referring back to the Eqs. (9.42)-(9.48) which shows the relationship between INDI

and TDC, considering the state-dependent (and therefore scheduled) nonlinear–PID pro-

portional gain matrix K (x), it is related to the ICE matrix M(x0) via the relationship

K (x) = K (x0) = kD · [M(x0) · ts ]−1 , (9.50)
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which then clearly suggests not only that an equivalent discrete and incremental PID

controller with gains < K , T i , T d > can be obtained in relationship to TDC but also in re-

lationship to INDI when considering an incremental and self-scheduled nonlinear-PID

controller with gains < K (x0), T i , T d >. Moreover, the tuning of these (nonlinear-)PIDs

proves to be more meaningful and systematic than heuristic methods as already pointed

out in [96, 142]. This is because the design starts from prescribing desired error dynam-

ics ë +kD ė +kP e = 0 by tuning the Hurwitz gains < kP , kD ,> and what follows is finding

the remaining IGE matrix M̄ by the TDC approach, or with the ICE matrix M(x0) with

the INDI approach. In essence, this procedure is more efficient and much less cumber-

some than designing a whole set of PID gains iteratively. Moreover, for attitude control

systems, the self-scheduling properties of inversion-based controllers have suggested

superior advantages with respect to PID controls since these are, in general, not gain-

scheduled according to the nonlinear motion of the plant [85]. The relationships here

outlined suggests that scheduling of incremental PID control shall be done at the level

of the proportional gain K (x) via the IGE matrix M̄ or ICE matrix M(x0, and not over the

whole set of gains < K (x), T i , T d >.

9.3.8. STABILITY AND ROBUSTNESS ANALYSIS

INDI relies on the assumption that for small time increments and high sampling rates,

the nonlinear system dynamics in its incremental form is simply approximated by the

(linearized) control effectiveness evaluated at the current state. However, and owing to

the finite time delay one can achieve in digital devices, there exists an error ǫ(t ) [97],

called the TDE error in the TDC literature [142], for which the error dynamics can be

regarded as

ë +kD ė +kP e = ǫ(t ). (9.51)

Previous theoretical stability and robustness proofs for INDI controllers had the prob-

lem of not having considered this important residual error as pointed out by [97]. Re-

cently, the INDI control in the literature has been reformulated for systems with arbi-

trary relative degree and without recurring to cascaded-control structures, i. e., without

using a time–scale separation assumption [97]. This reformulation allowed to extended

further the incremental nonlinear control approach for Sliding Mode Control [99]. For

these new reformulations and extensions, conditions for stability and robustness anal-

yses of incremental nonlinear control have been finally established and analyzed using

Lyapunov-based methods. Details on the sufficient conditions for closed–loop stability

under INDI and discrete TDC, and therefore applicable to this problem can be found

in [97, 99, 141, 142].

The existing sufficient condition for closed-loop stability of INDI [99] for input–output

linearizable plants have been proposed as follows, which is similar to the one proposed

for TDC [140–142], and under the condition that zero dynamics of the plant is exponen-

tially stable and the desired trajectory and its derivatives are bounded
∥
∥
∥I n −M(x) · M̄

−1
∥
∥
∥≤ b̄ < 1 (9.52)

However, this condition does not have the sampling time explicitly considered and it

has been found that even with a very small sampling time this condition might be vio-
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lated [141]. A sufficient condition for closed-loop stability for discrete TDC systems is

presented by [141, 142] as the following (taking λ as the sampling):

∥
∥
∥I n −M(x) · M̄

−1
∥
∥
∥<

1

1+
[

(1+β1γP )γD +β2γPD

]

λ
(9.53)

where β1, β2, γD , γP , and γPD are tunable gains. To conclude, the influence model un-

certainties to the reformulated system can be regarded as

ζ̇= H(x ,u)+∆H(x ,λ)+ M̄ ·u (9.54a)

and therefore, application of the control law u = M̄
−1[

ν−H(x ,u)
]

to this uncertain dy-

namics actually gives ζ̇ = ν+∆H(x ,λ) which is not linearizing as expected because of

the extra uncertain term. This major flaw of NDI-based control systems is well known

and also previously demonstrated by [71] among others. [97, 99] proved that

lim
λ→0

‖∆H(x ,λ)‖ = 0, ∀x ∈R
n (9.55)

which implies that the term ∆H becomes negligible for sufficiently high sampling rates,

which has been the common assumption behind INDI control laws, and furthermore,

asymptotic stability of the nominal system is proven as the closed-loop system can be

ultimately bounded by a class K function of the perturbation bounds.

9.4. ATTITUDE CONTROL SIMULATIONS

For numerical simulations to demonstrate the high-agility attitude control system, we

use the comprehensive analytical nonlinear model of Section I for a small satellite with

an inertia matrix of

I =





10 1 0.5

1 7 0.2

0.5 0.2 9



 Kg ·m2,

and as main torque actuators, an array of three ‘High-Torque-Wheels’ (HTW ) in orthogo-

nal configuration (and aligned with the principal axes). Wheel characteristics for these

HTW s are presented in ([193]), where the most important ones are their max. torque of

0.23 [Nm] and moment of inertia of 5×10−3 [Kg ·m2].

The initial HTW wheel speeds are zero; normally during operation, initial wheel

speeds represent the angular momentum stored in the satellite. The MRP tracking ref-

erence commands are designed smooth up to a second order with a simple reference

trajectory generator. The second derivative of these reference commands will act as feed-

forward acceleration commands. We restrict these maneuvers according to the actuator

limits in order to avoid the case of actuator saturation. For all simulations we consider

the virtual controller ν= ÿ d +kD ė+kP e so that the error dynamics are equivalent across

different scenarios. This is a classical second order dynamics where considering a natu-

ral frequency ωn = 3 rad/s and damping coefficient of ζ= 0.707 we can obtain the gains

kDi
= 2 ·ζ ·ωn = 4.242 and kPi

=ω2
n = 9, i = 1,2,3.
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Simulation results in nominal condition verifies that INDI and TDC/PID control per-

form quite similarly. To study the performance under realistic conditions, we apply un-

certainty in the inertia matrix of the satellite platform and perform Monte-Carlo simula-

tions. Figure 1 presents the performance of the INDI attitude control under the uncer-

tainty considered by showcasing the attitude tracking for the MRP reference maneuver

commanded and the respective tracking error. Further simulations showcase a similar

performance of the TDC/PID attitude control under the same uncertainty in the inertia

parameters.
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Figure 9.1: INDI control: MRP attitude tracking and tracking error during a fast slew maneuver under uncer-

tainty.

However, the nonlinear control laws perform differently in terms of robust perfor-

mance and stability according to the metric in Eq. (9.52). This result is shown in Figure 2

for both INDI and TDC/PID. At this stage it becomes evident that the self–scheduling

property of the INDI controller as compared to the TDC/PID controllers makes the atti-

tude control system to guarantee a better stability margin as compared to TDC/PID; in

the latter case, their static control effectiveness hinders the stability margin as it is pro-

portional to both the maneuver and the size of the uncertainty. In summary, simulation

results verified similar nonlinear performance of agile attitude control using both INDI

and TDC/PID control. The robustness and stability properties have been shown to be

superior for INDI in comparison to TDC/PID control for this particular case.

9.5. CONCLUSIONS

In this chapter an agile and robust nonlinear spacecraft attitude controller is developed

based on the recent incremental nonlinear dynamic inversion (INDI) reformulation. This

controller is an improvement over the previously INDI approach for spacecraft attitude

control in that it considers a non-cascaded dynamic inversion control where scheduling
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Figure 9.2: INDI and TDC/PID criterion for closed-loop stability under uncertainty.

of the time-varying control effectiveness is done analytically. This results in a nonlinear

controller scheduled only by kinematic (fully known) and parametric terms, making it

robust to model uncertainties. Finally, a relationship between INDI, time-delay control,

and nonlinear-PID control is established. The systematic gain tuning and self scheduling

property of our INDI controller can be scaled and readily applied to attitude control of

rigid spacecraft for agile maneuvers that do not saturate the actuators; this issue will be

addressed in future research. Simulations results shows the effectiveness of our method.
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Abstract

This paper presents a sampled–data form of the recently reformulated incremental non-

linear dynamic inversion (INDI) applied for robust spacecraft attitude control. INDI is

a combined model– and sensor–based approach mostly applied for attitude control that

only requires an accurate control effectiveness model and measurements of the state and

some of its derivatives. This results in a reduced dependency on exact knowledge of system

dynamics which is known as a major disadvantage of model–based nonlinear dynamic

inversion controllers. However, most of the INDI derivations proposed in the literature

assume a very high sampling rate of the system and its controller while also not explic-

itly considering the available sampling time of the digital control computer. Neglecting

the sampling time and its effect in the controller derivations can lead to stability and per-

formance issues of the resulting closed–loop nonlinear system. Therefore, our objective is

to bridge this gap between continuous–time and highly sampled INDI formulations and

their discrete and lowly sampled counterparts in the context of spacecraft attitude control

where low sampling rates are common. Our sampled–data reformulation allows explicit

consideration of the sampling time via an approximate sampled–data model in normal

form widely known in the literature. The resulting sampled–data INDI control is still ro-

bust up to a certain sampling time since it remains only sensitive to parametric uncertain-

ties. Simulation experiments for this particular problem demonstrate this bridge between

INDI formulations in continuous and discrete (sampled) time which allows for low sam-

pling control rates.

Publication

Paul Acquatella B., Erik-Jan van Kampen, Qi Ping Chu: A Sampled-Data Form of Incre-

mental Nonlinear Dynamic Inversion for Spacecraft Attitude Control, to be submitted.
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10.1. INTRODUCTION

F
UTURE small satellite systems are expected to be more performant not only for fine

pointing capabilities in data acquisition but also in terms of high agility for maneu-

verability, e. g., for high dynamic slewing capability to command the platform for fast and

flexible data acquisition [25–33]. This emerging field of ‘agile Earth Observation’ moti-

vated the development of a high-agility attitude control system [193] for the the satellite

platform BIROS (Bispectral InfraRed Optical System) [27] while actuated with a redun-

dant array of three orthogonal ‘High-Torque-Wheels’ (HTW) [25, 26]. However, for agile

reorientation, a challenge arises from the fact that time-optimal slew maneuvers are, in

general, not of the Euler-axis rotation [136, 137] type; especially whenever the actuators

are constrained independently [131]. The topic of optimal spacecraft rotational maneu-

vers is quite extensive and has been studied for many decades [127–133]. Some of the

agile attitude control solutions have been experimentally validated for imaging satellites

in-orbit [138]. However, most of the work reported in literature relies on optimization

and some form of path planning and trajectory optimization, which might be difficult to

implement on-board and in practice. In this chapter, we are motivated to find an agile at-

titude control solution in closed-loop feedback form. This is challenging because of the

many nonlinearities involved in reorientation of small satellites as shown in [138, 193]

which calls for a robust nonlinear control approach.

Several nonlinear control methodologies have arisen in the past decades; in part to

overcome shortcomings of conventional linear techniques, but also to overcome model

or parametric uncertainties that can damage the closed-loop stability and convergence

of the system. Among the most popular of these control methodologies are feedback

linearization (FBL), treated extensively in [61–63] and initially based on early papers

of Krener and Brockett in the seventies [185, 186], adaptive control [64], and backstep-

ping [65, 66]. Nonlinear dynamic inversion (NDI), which is how feedback linearization is

more commonly known in the aerospace literature [60, 67–70], uses an accurate model

of the system to entirely or partly cancel its nonlinearities by means of feedback and ex-

act state transformations. This transforms the nonlinear system dynamics into a linear

form over a desired region of interest. For the obtained system, conventional linear con-

trol techniques can be applied successfully for achieving desired closed-loop dynamics,

hence eliminating the need of linearizing and designing different (linear, robust) con-

trollers for several operational points as in gain-scheduling. The motivations behind the

application of NDI for flight control systems originate from difficulties with ensuring

stability and performance in between operational points of widely-used gain-scheduled

controllers. More advanced methods involving robustness and improvements of the

method in NDI-based flight control applications have been considered, among many

others, in [58, 59, 67, 69–75]. Although initially intended for flight control, NDI for aero-

space applications have also found its way for spacecraft control and re-entry vehicles [49–

51]. The main disadvantage for the construction of these nonlinear control laws is that

accurate knowledge of the nonlinear system dynamics is required for an explicit cancel-

lation (NDI). For this reason, NDI is considered an explicit control method where the

desired dynamics of the closed-loop system reside in some explicit model to be followed.

Therefore, this explicit aspect of NDI-based control laws is considered to be a disadvan-

tage despite its abilities to linearize and decouple certain classes of nonlinear MIMO
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systems when full knowledge of the nonlinearities is available. Moreover, this model-

based aspect is also strongly influenced by modeling uncertainties. In reality, the model

mismatch in the implementation of NDI control laws, together with all sensor aspects,

delays and biases, can compromise the performance and stability of the controlled sys-

tem. Many successful attempts have been carried to identify and reduce these afore-

mentioned flaws of NDI-based control laws with regards to robustness. These attempts

are focused in improving the robustness of the overall control architecture by means of

applying linear robust control in the outer loop of the system. The works [51, 69] com-

bine NDI with the structured singular value (µ-analysis) and H∞ synthesis for reentry

flight clearance, and significant benefits were found over conventional NDI. However,

not all uncertainties were taken into account or they were covered by lumped uncertain-

ties hence introducing conservatism.

Incremental nonlinear dynamic inversion (INDI) has been proposed as a promising

sensor-based approach providing high performance and robust nonlinear control for

aerospace vehicles without requiring a detailed model of the controlled plant. The INDI

approach reduces its dependency on on-board or baseline models while making use of

actuator output and angular acceleration measurement feedback. In contrast to regular

NDI, this method is inherently implicit in the sense that desired closed-loop dynamics

do not reside in some explicit model to be followed but result when the feedback loops

are closed [73, 74]. Theoretical development of increments of nonlinear control action

date back from the late nineties and started with activities concerning ‘implicit dynamic

inversion’ for inversion-based flight control in the works of P. R. Smith, B. J. Bacon et

al. [70, 73], where the architectures considered in this chapter were firstly described.

Other designations for these developments found in the literature are ‘modified NDI’

and ‘simplified NDI’, but the designation ‘incremental NDI’ is considered to describe

the methodology and nature of these type of control laws better [71, 77–80]. INDI has

been elaborated and applied theoretically in the past decade for advanced flight control

applications [70, 71, 73–75, 80] as well as in space applications for spacecraft attitude

control [4]. More recently, this technique has been applied also in practice for quadro-

tors using adaptive control [84, 85], and in real flight tests [88–90], verifying its perfor-

mance and robustness properties against aerodynamic model uncertainties [71, 91, 92]

and disturbance rejection [84, 85, 91, 92].

INDI relies on the assumption that for small time increments and high sampling

rates, the nonlinear system dynamics in its incremental form is simply approximated

by the (linearized) control effectiveness evaluated at the current state. However, pre-

vious theoretical stability and robustness proofs for INDI controllers have many draw-

backs and were not mathematically consistent as pointed out in [97, 98]. Most of the

previous attempts to prove stability were only based on simplifying assumptions and

approximated transfer functions and block diagrams [71, 84, 85]. Recently, the INDI con-

trol in the literature has been reformulated for systems with arbitrary relative degree and

without recurring to cascaded-control structures, i. e., without using a time–scale sep-

aration assumption [97, 98]. This reformulation allowed to extended further the incre-

mental nonlinear control approach for Sliding Mode Control [99]. For these new refor-

mulations and extensions, conditions for stability and robustness analyses have been

established and analyzed using Lyapunov-based methods. Another nonlinear control
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method is time–delay–control (TDC) [140–142], more commonly known in the motion

control and robotics community and pioneered in the 90’s by the works of Hsia, and

Youcef-Toumi, et al. [140]. TDC works by estimating and compensating disturbances and

system uncertainties (model and parametric) by utilizing time–delayed signals of some

of the system variables. In [142] it has been shown that TDC can be rendered equivalent

to a PID–control under some assumptions and some discrete sampling considerations.

This motivates the question to study how neglecting the sampling time and its effect in

the controller derivations can lead to stability and performance issues of the resulting

closed–loop nonlinear system [195, 196].

In this chapter, we present three main contributions in the context of nonlinear space-

craft attitude control system design. 1) We revisit the NDI and the reformulated INDI for

the spacecraft attitude control problem and introduce a time–delay explicitly in this in-

cremental reformulation of INDI. 2) We consider the reformulated INDI control for the

spacecraft attitude control problem and introduce its sampled–data form based on the

model from [196, 197] where the nonlinear dynamics are approximated by a discrete

model with piece–wise constant inputs. 3) We bridge the gap between continuous–time

and highly sampled (100 – 1000 Hz) INDI formulations and their discrete and lowly sam-

pled counterparts in the context of spacecraft attitude control where low sampling rates

are common (1 – 10 Hz). In that sense, our sampled–data reformulation allows explicit

consideration of the sampling time via an approximate sampled–data model in normal

form widely known in the literature.

The outline of this chapter is as follows. A nonlinear model of rigid spacecraft equipped

with reaction wheels is presented in Sec. II. Section III presents incremental nonlin-

ear dynamic inversion in continuous–time form while Section IV presents incremental

nonlinear dynamic inversion in sampled–data form, both for the particular problem of

spacecraft attitude control. Attitude control numerical simulations are presented in Sec.

V. Conclusions are finally presented in Sec. VI.

10.2. SPACECRAFT MODEL

In this section we describe the nonlinear rotational dynamics model for spacecraft in-

cluding a generic set of reaction wheels in arbitrary configuration which are driven by

exogenous inputs provided by each wheel’s powertrain [138, 193]. In this chapter we

make use of the Modified Rodrigues Parameters (MRPs) [188, 189, 194] as they represent

a well defined attitude parameterization for all Eigen-axis rotations in the large domain

of 0◦ ≤ θ < 360◦, where θ is the principle angle rotation around the Euler-axis λ. Typically,

Euler angles and quaternions are used to parameterize the attitude kinematics of rigid

bodies and most attitude controllers are based on these parameterizations. The pref-

erence of using MRPs is motivated to address the problem of agile reorientation while

using a minimal set of three rigid body attitude coordinates, thus avoiding redundancy

of parameters (quaternions) or singularities (Euler angles). The MRP attitude kinemat-

ics parameterization and their potential advantages have been shown to be suitable for

attitude stabilization and control applications [188, 189, 194].
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10.2.1. KINEMATICS

Consider first an array consisting of n reaction wheels. Introducing unit vectors ai which

give the orientation of the spin-axis of each reaction wheel with respect to the spacecraft

coordinate system collected in the configuration or alignment matrix:

A =
[

a1 a2 · · · an

]

, (10.1)

then each ai can define the i−th reaction wheel or ‘actuator’ frame by taking ai as the

first axis and making the remaining axes constitute an orthogonal frame. In that sense,

the kinematics of the i−th reaction wheel with respect to its corresponding actuator

frame, in terms of its spin-axis angle Φw and angular velocity Ωw , is simply given by:

Φ̇w,i =Ωw,i i = 1, . . . ,n. (10.2)

Consider now the spacecraft equipped with the n reaction wheels just introduced. The

MRP vectorσ, derived from the quaternion through stereo-graphic projection, is defined

in relation to the Euler-axis λ and to the principle angle rotation θ through [189, 194]:

σ=λ tan
θ

4
(10.3)

The MRP kinematic differential equation relating the spacecraft MRP vector σ (with re-

spect to the inertial frame) with the spacecraft angular velocity ωωω ∈ R
3 (with respect to

to the body fixed frame) in vector form is given by [189, 194] as:

σ̇=
1

4

[

(1−σ⊤σ)I 3×3 +2S(σ)+2σσ⊤]

ωωω=
1

4
B (σ) ωωω (10.4)

The skew map S(·) : R3 7→ so(3) is a linear isomorphism between R
3 and the Lie algebra

so(3) of 3× 3 skew-symmetric matrices and is defined such that S(x) y = x × y for any

x , y ∈R
3, or simply as:

S(x) =





0 −x3 x2

x3 0 −x1

−x2 x1 0



 , x ∈R
3. (10.5)

Moreover, in this chapter we will also be interested in the fact that the time derivative of

the MRP kinematic differential equation produces the exact relation [194]:

σ̈=
1

4

[

Ḃ (σ) ·ωωω+B (σ) ·ω̇ωω
]

=
1

4
C (σ,ωωω,ω̇ωω) (10.6)

where:

Ḃ (σ) ·ωωω=
1

2

[

2σ⊤ωωω(1−σ⊤σ)ωωω− (1+σ⊤σ)ωωω⊤ωωωσ−4σ⊤ωωωS(ωωω)σ+4(σ⊤ωωω)2σ
]

which relates the MRP “acceleration” σ̈ to the rigid body’s angular velocityωωω and angular

acceleration ω̇ωω. This relationship will be key for the attitude control design as it will be

shown later on.
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10.2.2. DYNAMICS

Following the derivations in Karpenko et al. [138], we obtain the rotational dynamics

model as follows. First, consider the angular momentum of the spacecraft equipped

with the reaction wheel array in question:

H = I ωωω+h (10.7)

where, expressed in body-fixed frame, H ∈R
3 is the total angular momentum of the sys-

tem, I ∈ R
3×3 is the constant inertia matrix of the spacecraft when the reaction wheels

are rotating freely,ωωω ∈R
3 is the spacecraft angular velocity, and h ∈R

3 is the total angu-

lar momentum vector associated with the reaction wheel array. The angular momentum

h can be expressed from individual actuator frames to body-fixed frame as:

h =
n∑

i=1

ai hw,i = A I w ΩΩΩ, (10.8)

where I w is a diagonal matrix of reaction wheel spin-axis inertia values:

I w =






Iw,1 · · · 0
...

. . .
...

0 · · · Iw,n




 , (10.9)

and ΩΩΩ the inertial angular rate of the reaction wheel array. Defining ΩΩΩw as the angular

rate of the reaction wheel relative to the actuator frame [138], we have:

ΩΩΩ=ΩΩΩw + A⊤ωωω. (10.10)

where the term A⊤ωωω is the extra angular velocity of the reaction wheels due to rotation

of the spacecraft. Considering the angular momentum associated with the i−th reaction

wheel in actuator frame:

hw,i = Iw,i (Ωw,i +a⊤
i ωωω), i = 1, . . . ,n, (10.11)

we can already obtain the differential equation describing the reaction wheel dynamics

in terms of reaction wheel torques τw,i , which are considered as the exogenous inputs to

the system provided by the wheel’s powertrain:

Ω̇w,i = I−1
w,i τw,i −a⊤

i ω̇ωω, i = 1, . . . ,n. (10.12)

Because the angular momentum must be conserved in the absence of external pertur-

bations, applying the transport theorem [127, 138] to Eq. (10.7), the following relation is

obtained:
dH

dt

∣
∣
∣
I

=
d

dt
H +ωωωB/I ×H = 0, (10.13)

where I and B denotes the inertial and body frame, respectively, and we had denoted

ωωω ≡ ωωωB/I overall in the chapter for notation convenience. Eq. (10.13) can be further

expanded as:

I ω̇ωω+ A I w Ω̇ΩΩ+ωωω× (I ωωω+ A I w ΩΩΩ) = 0. (10.14)
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Combining Eqs. (10.8), (10.12), and (10.14), the comprehensive nonlinear model for space-

craft dynamics equipped with reaction wheels [138] is given by:

Γ









ω̇ωω

Ω̇w,1

...

Ω̇w,n









=









−ωωω×
(

I ωωω+ A I w ΩΩΩw + A I w A⊤ωωω
)

τw,1

...

τw,n









(10.15)

where:

Γ=









I + AI w A⊤ a1Iw,1 · · · an Iw,n

Iw,1a⊤
1 Iw,1 · · · 0

...
...

. . .
...

Iw,n a⊤
n 0 · · · Iw,n









is an augmented inertia coupling matrix for the full system.

10.2.3. FULL NONLINEAR SPACECRAFT MODEL

The augmentation of the nonlinear spacecraft dynamics model together with the MRP

kinematics can be rewritten as a full model in the generic form of affine n-dimensional

multivariable nonlinear system with m inputs ui and p outputs yi as:

ẋ = f (x)+g (x)u (10.16a)

y = h(x) (10.16b)

where x ∈ R
n , u ∈ R

m , and y ∈ R
p . The functions f (x) = [ f1(x) · · · fn(x) ]⊤, g (x) =

[ g 1(x) . . . g m(x) ]⊤ ∈R
n×m , and h(x) = [h1(x) · · · hp (x) ]⊤ are assumed as smooth

vector fields continuously differentiable on R
n . In this chapter we consider the out-

put MRP as control variables y = h(x) = σ and assume to have three reaction wheels

(nw = 3) as actuators, hence u = τw = [τw,1 τw,2 τw,3 ]⊤, and p = m = 3. In the usual

where p < m, meaning that there are more control inputs than control variables, the

inversion required for input–output linearization is not direct and some form of con-

trol allocation is required. Else, when p > m, the system is said to be underactuated

and therefore the input–output linearization is underdetermined and possibly not fea-

sible. These two cases are however out of the scope of this chapter since p = m. Con-

sidering the vector x = [σ⊤ ωωω⊤
ΩΩΩ

⊤ ]⊤ with σ = [σ1 σ2 σ3 ]⊤, ωωω = [ωx ωy ωz ]⊤,

and ΩΩΩw = [Ωw,1 Ωw,2 Ωw,3 ]⊤, the full nonlinear system dynamics in Eqs. (10.16a)–

(10.16b) results in n = 9 and is given by:

f (x) =





1
4

B (σ) ωωω

Γ
−1

[
−ωωω×

(

I ωωω+ A I w ΩΩΩw + A I w A⊤ωωω
)

03×1

]



 , (10.17a)

g (x) =





03×3

Γ
−1

[
03×3

13×3

]



=G . (10.17b)
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10.3. INCREMENTAL NONLINEAR DYNAMIC INVERSION IN CON-

TINUOUS–TIME FORM

In this section we revisit incremental nonlinear dynamic inversion in the context of input–

output feedback linearization described in (companion) normal form, and we apply this

transformation to the attitude control problem. Moreover, we consider the continuous–

time descriptions already widely described in the literature [4, 71, 80, 97, 98].

10.3.1. NONLINEAR DYNAMIC INVERSION PRELIMINARIES

Finding an explicit relationship between the input u and the output y is generally not

straightforward because they are not directly related. Consider again the generic model

of affine n-dimensional multivariable nonlinear systems described in Eqs. (10.16a)–(10.16b).

Collecting all differentiated outputs yi results in m equations in the form of:

y (ρ) = l (x)+M(x)u, (10.18)

where:

y (ρ) =









y
(ρ1)
1

y
(ρ2)
2
...

y
(ρm )
m









, l (x) =










L
ρ1

f
h1(x)

L
ρ2

f
h2(x)

...

L
ρm

f
hm(x)










, (10.19a)

M(x) =










Lg1L
ρ1−1

f
h1(x) Lg2L

ρ1−1

f
h1(x) · · · Lgm L

ρ1−1

f
h1(x)

Lg1L
ρ2−1

f
h2(x) Lg2L

ρ2−1

f
h2(x) · · · Lgm L

ρ2−1

f
h2(x)

...
...

...

Lg1L
ρm−1

f
hm(x) Lg2L

ρm−1

f
hm(x) · · · Lgm L

ρm−1

f
hm(x)










, (10.19b)

and L
ρ j

f
h j , Lgi

L
ρ j −1

f
h j are the Lie derivatives [61, 76] of the scalar functions h j with

respect to the vector fields f and g i , where j , i = 1,2, . . . ,m, respectively. Moreover, the

system is said to have a vector of relative degreeρ = [ρ1 . . . ρp ]⊤ at some point x̄ ∈R
n

of the state–space when there exists a region of interest D0 ⊂R
n around x̄ such that for

all x ∈D0, M(x) is nonsingular (i.e., invertible) and:

Lgi
L

k
f h j (x) = 0, 0 ≤ k ≤ ρ j −1, 1 ≤ i , j ≤ m.

In other words, the vector of relative degree represents, for each output yi , i = 1, . . . , p,

the number of output differentiations needed for the input to appear [61, 76]. Moreover,

the vector of relative degree of the continuous–time nonlinear system satisfies:

ρ =
∥
∥ρ

∥
∥

1 =
m∑

i=1

ρi ≤ n (10.20)

where ρ is henceforth called the total relative degree of the system. Furthermore, the

system is said to have uniform relative degree when ρ1 = ρ2 = ·· · = ρm . Denoting the m
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outputs y j and their derivatives up to the (ρ j −1) order as new states ξ= [ξ1 . . . ξm ]⊤,

where ξi = [ξi
1 . . . ξi

ρi
]⊤, i = 1, . . . ,m, and defined as:

ξ1
1 := h1(x), ξ1

2 :=L f h1(x), · · · , ξ1
ρ1

:=L
ρ1−1

f
h1(x),

ξ2
1 := h2(x), ξ2

2 :=L f h2(x), · · · , ξ2
ρ2

:=L
ρ2−1

f
h2(x),

...
...

...

ξm
1 := hm(x), ξm

2 :=L f hm(x), · · · , ξm
ρm

:=L
ρm−1

f
hm(x),

(10.21)

if the total relative degree is equal to the order of the system (ρ = n), the ρ–coordinates

ξ
j

i
, j = 1,2, . . . ,m; i = 1,2, . . . ,ρ j , describe fully the nonlinear behavior of the original sys-

tem, and moreover, the system is said to be full–state feedback linearizable. Otherwise,

whenever the total relative degree is strictly less than the order of the system (ρ < n),

a part of the system dynamics would become unobservable via input–output lineariza-

tion using the new set of the ρ–coordinates ξ
j

i
, and therefore, these coordinates do not

fully describe the original system. In such case, the input–output linearization decom-

poses the dynamics of the nonlinear system into an external part (input–output), de-

scribed by the ρ–coordinates, and an internal part (unobservable), described by a new

set of (n −ρ)–coordinates and therefore called the internal dynamics of the system. The

unobservable states, usually denoted as η = [η1 . . . ηn−ρ ]⊤, are defined via smooth

functions φ(x) = [φ1 . . . φn−ρ ]⊤ in the neighborhood D0 of x as:

η=φ(x) (10.22)

such that:

∂φi

∂x
g j (x) = 0, for 1 ≤ i ≤ n −ρ, for 1 ≤ j ≤ m, ∀x ∈D0. (10.23)

Considering a new coordinate–system z defined as:

z = T (x) =
[

ψ(x)

φ(x)

]

=
[

ξ

η

]

, (10.24)

where T represents a diffeomorphism on the domain D0, then the original nonlinear

system can be transformed into the normal form [61, 62, 76, 97] as:

ξ̇= Acξ+B c [l (x)+M(x)u]
∣
∣
∣

x=T −1(z)
(10.25a)

η̇= f c (ξ,η) =L f φ(x)
∣
∣
∣

x=T −1(z)
=

∂φ(x)

∂x
f (x)

∣
∣
∣

x=T −1(z)
(10.25b)

y =C cξ (10.25c)

where the triplet (Ac ,B c ,C c ) is in Brunovsky block canonical form, i. e., Ac = diag{Ai
o},

B c = diag{B i
o}, C c = diag{C i

o}, i = 1, . . . ,m, where (Ai
o ,B i

o ,C i
o) is a canonical form repre-
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sentation of a chain of ρi integrators:

Ai
o :=











0 1 0 · · · 0

0 0 1 · · · 0
...

. . .
. . .

...

0 · · · 0 1

0 0 · · · 0











, B i
o :=











0

0
...

0

1











, C i
o :=

[
1 0 · · · 0

]

, i = 1, . . . ,m.

(10.26)

The transformation T is required to be a diffeomorphism by the necessity of T being

invertible (at least locally in D0), i.e., T −1(T (x)) = x , ∀x ∈ D0, in order to recover the

original state vector from the new coordinate z , together with the necessity of T and its

inverse T −1 to be smooth mappings in R
n guaranteeing that the description of the non-

linear system in the new coordinates is still a smooth one. Since it is generally difficult

to find a diffeomorphism defined for all x ∈ R
n , the requirement of having a diffeomor-

phism well defined for all x ∈D0 ⊂R
n makes it a local one. Defining the vector ϕ(x) and

matrix ϑ(x) as:

ϕ(x) =−M−1(x)l (x) (10.27a)

ϑ(x) = M−1(x) (10.27b)

and denoting ν as a virtual control input, the state feedback control law u defined as:

u =ϕ(x)+ϑ(x)ν= M−1(x) [ν− l (x)] (10.28)

cancels all nonlinearities in closed-loop in absence of external disturbances and model

uncertainties, resulting in the system:

ξ̇= Acξ+B cν (10.29a)

η̇= f c (ξ,η) (10.29b)

y =C cξ (10.29c)

which is still described in normal form and decomposed into an external (input–output)

part and an internal (unobservable) part. This resulting system is now driven by the vir-

tual control input and entirely described in the newly defined z–coordinates (η,ξ). The

equation η̇= f c (0,η) defines the zero–dynamics of the system which is defined as the in-

ternal dynamics that appear in the system when the input and the initial conditions are

chosen such that the output is made or kept identically to zero for all t ≥ 0. Furthermore,

the system is said to be minimum phase if the zero–dynamics have an asymptotically

stable equilibrium point in the domain of interest [76]. Referring back to the yi differ-

entiated outputs in Eq. (10.18), application of the control input in (10.28) results in m

equations in the form of y
(ρi )

i
= νi , i = {1, . . . ,m}, or, with a slight abuse of notation, more

compactly as:

y (ρ) = l (x)+M(x)u =ν (10.30)

and the sought linear input–output relationship between the new input ν and the output

y is obtained as long as ϑ= M−1(x) is nonsingular. Apart from being linear, an interest-

ing result from this relationship is that it is also decoupled since the input νi only affects
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the differentiated output y
(ρi )

i
. From this fact, the input transformation (10.28) is called a

decoupling control law, and the linear system (10.30) results in an integrator–chain. The

integrator–chain (10.30) is sought to be rendered exponentially stable with the proper

design of ν, for instance such as:

ν=−k0x −k1
dx

dt
−k2

d2x

dt 2
−·· ·−kρ−1

d(ρ−1)x

dt (ρ−1)
(10.31)

From this typical control problem it can be seen that the entire system will have two

control loops [71, 78, 79]: the inner linearization loop (10.28), and the outer control

loop (10.31). This resulting NDI control law depends on accurate knowledge of the model

and its parameters, hence it is susceptible to model and parametric uncertainties con-

tained in both l (x) and M(x).

Now we bring back the discussion into spacecraft attitude control for rigid spacecraft

models as described in Eqs. (10.17a)–(10.17b), where in this case n = 9. Recall the output

of the system to be the MRP vector y = h(x) = σ = [σ1 σ2 σ3 ]⊤, meaning that p = 3,

and therefore the system has a vector of relative degree ρ = [ρ1 ρ2 ρ3 ]⊤ = [2 2 2]⊤

and total relative degree ρ = 6. Since ρ < n, the input–output linearization will consist

of both an external and an internal part, where the internal part is comprised of n −ρ

unobservable states. For the design of an attitude controller as in Eq. (10.28), first we

obtain l (x) and M(x) as follows. First consider:

L
1
f h(x) =

∂σ

∂x
f (x) =

1

4
B (σ)ωωω, (10.32)

then, l (x), which represents the Jacobian of the MRP kinematics, is given by:

l (x) =L
2
f h(x) =

∂
[

L
1
f

h(x)
]

∂x
=

1

4

∂
[

B (σ)ωωω
]

∂x
(10.33)

=
1

4

[
∂
[

B (σ)ωωω
]

∂σ

∂
[

B (σ)ωωω
]

∂ωωω

∂
[

B (σ)ωωω
]

∂ΩΩΩ

]

(10.34)

=
[

1
4

∂
[

B (σ)ωωω
]

∂σ
1
4

B (σ) 03×3

]

︸ ︷︷ ︸

purely kinematic and fully known

(10.35)

where:

1

4

∂
[

B (σ)ωωω
]

∂σ
=

1

2





ωxσ1 +ωyσ2 +ωzσ3 ωz −ωxσ2 +ωyσ1 ωzσ1 −ωxσ3 −ωy

ωxσ2 −ωz −ωyσ1 ωxσ1 +ωyσ2 +ωzσ3 ωx −ωyσ3 +ωzσ2

ωy +ωxσ3 −ωzσ1 ωyσ3 −ωx −ωzσ2 ωxσ1 +ωyσ2 +ωzσ3





(10.36)

and therefore:

M(x) =Lg L
1
f h(x) =

∂
[

L
1
f

h(x)
]

∂x
g (x) = l (x) ·G . (10.37)

The attitude control design begins by first considering the new coordinate–system given

by the local diffeomorphism (10.24) where the external states ξ = [ξ1 ξ2 ξ3 ]⊤ are
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given by ξi = [ξ1
i

ξ2
i

]⊤ = [σi σ̇i ]⊤, i = 1,2,3, and the choice for the remaining internal

states η =φ(x) = [φ1 φ2 φ3 ]⊤ are written in compact form as φ(x) = HGG · [ωωω ΩΩΩ ]⊤

where:

HGG =
[

G−1
12 G−1

13

]

, (10.38a)

G12 =−AI−1, (10.38b)

G13 =−(I · I w )−1(I + AI w A⊤), (10.38c)

and furthermore, the choice of HGG has been found such that the following condition:

φ(0) = 0,
∂φ

∂x
g (x) =

∂φ

∂x
G = 0, (10.39)

is fulfilled according to the definition of φ(x). Then the original nonlinear system can

be transformed into the normal form (10.25) and the state feedback nonlinear dynamic

inversion (NDI) control law u is obtained as in (10.28):

u = [l (x) ·G]−1 [ν− l (x)] (10.40)

while denoting ν as a virtual control input to be considered later. With this NDI control

law, and in absence of external perturbations and model uncertainties, the nonlinearity

is canceled resulting in the nominal closed-loop system as:

ξ̇[6] = Ac[6×6]ξ[6] +B c[6×3]ν[3] (10.41a)

η̇[3] = f c (ξ[6],η[3]) (10.41b)

y [3] =C c[3×6]ξ[6] (10.41c)

where the subscript indexes indicate the dimensions of the vectors and matrices, and

Ac , B c , C c are in Brunovsky block canonical form as in Eqs. (10.26). Furthermore, the

internal dynamics characterized in the x-coordinates are given by:

f c (ξ,η)
∣
∣
∣

x=T −1(z)
=G−1

12 ω̇ωω−G−1
13 Ω̇ΩΩw

where the zero–dynamics are be given by:

f c (0,η) = 0 (10.42)

which makes the system marginally stable at the origin and around the small neighbor-

hood D0 in consideration, and therefore the spacecraft attitude control system is non-

minimum phase. Zero–dynamics defines the internal dynamics of the system when the

input and the initial conditions are chosen such that the output is maintained identi-

cally to zero at all times. Therefore, whenever ξ= 0 (which impliesωωω= 0) we obtain from

definition that ω̇ωω = 0 and Ω̇ΩΩw = 0. Note that nothing is said about the corresponding

ΩΩΩw which shall remain constant and therefore responsible to keep the angular momen-

tum fixed inertially. Furthermore, since [l (x) ·G] is not singular, the linear input–output

relationship between σ̈ and ν is obtained as a double–integrator:

σ̈=





σ̈1

σ̈2

σ̈3



=





νx

νy

νz



=ν (10.43)
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We denote e = σe = σd −σ, which is a valid representation of the MRP error for small

rotations [198], and therefore ė = σ̇e = σ̇d − σ̇. The double-integrator (10.43) can be

therefore rendered exponentially stable with:

ν= σ̈d +kD ė +kP e (10.44)

where σ̈d is the feedforward reference term for tracking tasks, and kD and kP being 3×3

constant diagonal matrices whose i−th diagonal elements kDi
and kPi

, respectively, are

chosen so that the polynomials:

s2 +kDi
s +kPi

i = 1, . . . ,n = 3 (10.45)

may become Hurtwiz. This results in the exponentially stable and decoupled error dy-

namics:

ë +kD ė +kP e = 0 (10.46)

which implies that e(t ) → 0 as t →∞.

10.3.2. INCREMENTAL NONLINEAR DYNAMIC INVERSION

The concept of incremental nonlinear dynamic inversion (INDI) amounts to the applica-

tion of NDI to a system expressed in an incremental form. This improves the robustness

of the closed-loop system as compared with conventional NDI since dependency on the

accurate knowledge of the plant dynamics is reduced. Unlike NDI, this control design

technique is implicit in the sense that desired closed-loop dynamics do not reside in

some explicit model to be followed but result when the feedback loops are closed [73, 74].

To begin the discussion, we introduce a sufficiently small time–delay λ and define the

following deviation variables:

ẋ0 := ẋ(t −λ) (10.47a)

x0 := x(t −λ) (10.47b)

u0 := u(t −λ) (10.47c)

which are λ–time–delayed signals of the current state derivative ẋ(t ), state x(t ), and con-

trol u(t ), respectively. The explicit consideration of the time–delay λ in these deviation

variables has not been widely considered in the literature; in reality, an infinitesimal time

increment is not practically feasible and because of digital implementation of control

systems, the lowest possible delay admissible by these assumptions is given by the ac-

tual sampling rate of the on-board digital computer. For highly sampled applications

of INDI (100 – 1000 Hz), an associated (approximate) discrete–time model of the plant

provides implicit consideration of the sampling time but most often this is done for the

angular rate dynamics with a Taylor series approximation and not for the entire plant

(with relative degree > 1).

Moreover, we will denote:

∆ẋ := ẋ − ẋ0 (10.48a)

∆x := x −x0 (10.48b)

∆u := u −u0 (10.48c)
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as the incremental state derivative, the incremental state, and the so–called incremental

control input, respectively. To obtain an incremental form of system dynamics [4, 70, 71,

73–75, 80, 95], we consider the first–order Taylor series expansion of y (ρ) as in [97, 98], not

in the geometric sense, but with respect to the newly introduced ∆x and ∆u (functions

of the time–delay λ) as:

y (ρ) = y
(ρ)
0 +

∂

∂x

[

l (x)+M(x)u
]
∣
∣
∣x=x0

u=u0

∆x +M(x0)∆u +O (∆x2)

= y
(ρ)
0 +M(x0)∆u +N (∆x ,λ)

with:

y
(ρ)
0 = y (ρ)(t −λ) = l (x0)+M(x0)u0 (10.49a)

N (x ,u,λ) =
[
∂

∂x

[

l (x)+M(x)u
]∣
∣
∣x=x0

u=u0

∆x +O (∆x2)

]∣
∣
∣

x=T −1(z)
(10.49b)

where N (x ,u,λ) has the property [97, 98] of:

lim
λ→0

‖N (x ,u,λ)‖→ 0, ∀x ∈R
n ,∀u ∈R

m (10.50)

This assumption of having high sampling rates such that (10.68) holds has been widely

considered as valid in the incremental nonlinear dynamic inversion and incremental

backstepping control literature. From now on, we shall refer to M(x0) as the instanta-

neous control effectiveness (ICE) matrix, meaning that this model–based term is sampled

at each incremental instant. This leaves us with an approximate linearization about the

λ−delayed signals that is performed incrementally, and not with respect to a particular

equilibrium or operational point of interest. We now introduce a formal assumption to

continue with the incremental nonlinear control design.

Time-scale separation (TSS) assumption: For a sufficiently small time-delay λ and for

any incremental control input, it is assumed that ∆x does not vary significantly during λ.

In other words, the input rate of change is much faster than the state rate of change, so this

is seen as a time-scale separation assumption:

ǫT SS (t ) ≡∆x := x −x0
∼= 0, ∀ ∆u (10.51)

which leads to:

N (x ,u,λ) ∼= O (∆x2)

and therefore:

∆y (ρ) ∼= M(x0)∆u +O (∆x2) (10.52)

in other words:

y (ρ) ∼= y
(ρ)
0 +M(x0) (u −u0)+O (∆x2). (10.53)
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This assumption shows that for small time increments (high sampling rates) the nonlin-

ear system dynamics in its incremental form (in relative coordinates) are simply approx-

imated by its instantaneous control effectiveness (ICE) matrix M(x0), i.e., the control

effectiveness evaluated at the current state. Since this results in a change of coordinates

(absolute to relative), the development of control laws in the original set of (absolute) co-

ordinates implies or requires the availability of y
(ρ)
0 and u0 in (10.53). For the obtained

approximation, ignoring the remainder, y (ρ) ∼= y
(ρ)
0 + M(x0) (u −u0), NDI is applied to

obtain a relation between the incremental control input and the output of the system:

u = u0 +M(x0)−1(ν− y
(ρ)
0 ). (10.54)

Note that the incremental input u0 that corresponds to y
(ρ)
0 is measured or estimated

from the output of the actuators, and it has been assumed that a commanded control is

achieved sufficiently fast as to being able to neglect the effect of the actuator dynamics.

The total control command along with the obtained linearizing control u0 = u(t −λ) can

be rewritten as:

u(t ) = u(t −λ)+M(x(t −λ))−1
[

ν− y (ρ)(t −λ)
]

(10.55)

and it is referred to as the incremental nonlinear dynamic inversion (INDI) control law.

The dependency of the closed–loop system on accurate knowledge of the dynamic model

in l (x) is largely decreased, improving robustness against model uncertainties contained

therein. Therefore, this implicit control law design is more dependent on accurate mea-

surements or accurate estimates of y
(ρ)
0 , the state derivatives, and u0, the incremental

control input, respectively. The canceling of all nonlinearities in closed–loop, in absence

of external disturbances and model uncertainties, results in the system:

ξ̇= Acξ+B c [ν+N (x ,u,λ)] (10.56a)

η̇= f c (ξ,η) (10.56b)

y =C cξ (10.56c)

which is still described in normal form. The stability and robustness properties of this

system has been thoroughly studied in [97, 98] and the reader is referred to these ref-

erences for more details. Referring back to the attitude control problem, since we will

consider the dynamics in its incremental form as in (10.49a) for the control design, the

application of INDI results in a control law that is only subject to sensor uncertainties

and model uncertainties contained within the ICE matrix:

u(t ) = u(t −λ)+ M̄(x(t −λ))−1
[

ν− y (ρ)(t −λ)
]

. (10.57)

However, notice that:

M(x(t −λ)) =Lg L
1
f h(x(t −λ)) =

∂
[

L
1
f

h(x(t −λ))
]

∂x
·g (x(t −λ)) (10.58)

= l (x(t −λ))
︸ ︷︷ ︸

purely kinematic

· G
︸︷︷︸

purely parametric

. (10.59)
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This means that in the particular case of this plant, namely a rigid body spacecraft ac-

tuated with a non-redundant set of orthogonal reaction wheels and parameterized by

MRPs, the incremental nonlinear dynamic inversion is robust against uncertainties. This

is because the term l (x(t −λ)), contained in M(x(t −λ)) is given by a kinematic and

known relationship (therefore void of uncertainty) which contains information only about

the spacecraft inertia matrix and the inertias of the wheel–set in G . Moreover, this purely

kinematic term in the resulting control law is only subjected to the measured errors con-

tained in x(t−λ). To conclude the INDI attitude control design, we have made use of the

fact that:

y
(ρ)
0 = σ̈0 =

1

4

[

Ḃ (σ0) ·ωωω0 +B (σ0) ·ω̇ωω0

]

, (10.60)

where the relationship:

Ḃ (σ0) ·ωωω0 =
1

2

[

2σ⊤
0 ωωω0(1−σ⊤

0 σ0)ωωω0

−(1+σ⊤
0 σ0)ωωω⊤

0 ωωω0σ0 −4σ⊤
0 ωωω0S (ωωω0)σ0 +4(σ⊤

0 ωωω0)2σ0

]

(10.61)

is given and therefore highly beneficial to compute σ̈0 analytically which is otherwise

very hard to estimate with finite differences or by approximation since this would am-

plify the noise contained in measurements.

Remark 1 : By using the measured y
(ρ)
0 and commanded u0 incrementally, we prac-

tically obtain a nonlinear ‘self-scheduling’ NDI control law that is robust to model and

parametric uncertainties.

Remark 2 : Notice, however, that this INDI control law is depending on the instan-

taneous control effectiveness (ICE) matrix reflected in M(x0), which in turn is only sus-

ceptible to parametric uncertainties in G that are related to inertia values of the rigid

body and its reaction wheels. This remark gives a hint to one of the key differences with

respect to time-delay control (TDC), where the control effectiveness is considered as a

fixed–gain matrix instead.

10.4. INCREMENTAL NONLINEAR DYNAMIC INVERSION IN SAM-

PLED–DATA FORM

In this section we are interested in bridging the continuous–time derivation of INDI

with respect to a discrete or sampled–time counterpart. In contrast to linear systems

where exact sampled-data models can be obtained, for nonlinear systems a sampled–

data model can only approximate the real dynamics up to a certain degree [195–197].

However, the accuracy of such models can be characterised in a precise way. Consid-

ering an analogous system to (10.16) but described as a sampled–data model, we will

derive parallels in terms of incremental control design but recalling that these models

are obtained as an approximation of the input–output mapping of the nonlinear forms

already presented.

10.4.1. PRELIMINARIES

Since a sampled–data model is sought such that it closely approximates the nonlinear

input–output mapping given in the previous section, we may obtain these approxima-
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tions by considering that the control inputs u(t ) are provided in sampled–time by a zero–

order hold (ZOH). When assuming the input comes from a digital–to–analog converter

as such zero–order hold signals, the input is hence generated as piecewise constant sig-

nals. Such piecewise constant input are provided in between sampling time intervals of

amplitude λ are given by:

u(t ) := uk = u(kλ), for t ∈ [kλ, (k +1)λ) , k ≥ 0 (10.62)

where k ∈ Z
+ is the sampled or discrete–time index [196]. Furthermore, recalling the

shift–operator q (qxk = xk+1), we will be interested in using the δ–operator [196, 197]:

δ=
q −1

λ
(10.63)

which corresponds to a reparameterization of sampled–data models that allows to ex-

plicitly include the sampling period in a discrete–time description [199]. Denoting xk =
[ xk1

· · · xkn
]⊤ ∈R

n as the sampled–time state sequence, y k = [ yk1
· · · ykm

]⊤ ∈R
p

as the sampled–time output sequence, and uk = [uk1
· · · ukm

]⊤ ∈ R
m as the piece-

wise continuous and sampled–time input sequence, the sampled–data (discrete–time)

dynamics will result in a model of the form:

δxk = f k (xk )+g k (xk )uk (10.64a)

y k = hk (xk ) (10.64b)

where the functions f k (xk ) = [ fk1
(xk ) · · · fkn

(xk ) ]⊤, g k (xk ) = [ g k1
(xk ) . . . g km

(x) ]⊤

∈R
n×m , and hk (xk ) = [hk1

(xk ) · · · hkp
(x) ]⊤ are assumed to be analytical approxima-

tions of the original nonlinear model, and therefore smooth vector fields continuously

differentiable on R
n .

10.4.2. A SAMPLED–DATA MODEL FOR DETERMINISTIC NONLINEAR SYSTEMS

Yuz and Goodwin [196, 197] presented a sampled–data model as in Eqs. (10.64a)-(10.64b)

for deterministic nonlinear systems. The model results in a truncation error of order

[λρ1+1 . . . λρp+1 ]⊤ between the sampled–data model output y k and the continuous–

time output y(t ) of the original system (10.16a)–(10.16b) at sampling instants t = kλ

when the inputs u(t ) are generated from uk as sampled–time and piece–wise constant

(ZOH) control inputs. The fact that this model is close in a well defined sense to the

continuous–time output helps to bridge the connection between continuous–time in-

cremental nonlinear control methods and their discrete or sampled–time counterparts

in appropriate fashion. Moreover, the key fact of using models described as in (10.64) is

that these are models already given in incremental form, but in the discrete sense, i.e., as

state transitions represented as

xk+1 = xk +λ ·δxk (10.65)

where also the sampling time λ is considered explicitly. Denoting ξk = [ zk1
· · · zkρ

]⊤

and ηk = [ zkρ+1
· · · zkn

]⊤, we can consider the new coordinate–system defined as:

z k = T s (xk ) =
[

ψs (xk )

φs (xk )

]

=
[

ξk

ηk

]

(10.66)
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where clearly zk = [ zk1
· · · zkn

]⊤ and T s defines the diffeomorphism on the domain

D0, and then the original continuous-time nonlinear system (10.16a)–(10.16b) system

can be approximated as the following discrete normal form [196, 197]:

δξk = Asξk +B s

[

l (ξk ,ηk )+M(ξk ,ηk )uk

]

(10.67a)

δηk = f s (ξk ,ηk ) (10.67b)

y k =C sξk (10.67c)

where the triplet (As ,B s ,C s ) is in Brunovsky block canonical form, i. e., As = diag{Ai
k

},

B s = diag{B i
k

}, C s = diag{C i
k

}, i = 1, . . . ,m, and (Ai
k

,B i
k

,C i
k

) are given as the following

matrices [196, 197]:

Ai
k :=












0 1 λ/2 · · · λr−2

(r−1)!

0 0 1 · · · λr−3

(r−2)!
...

. . .
. . .

...

0 · · · 0 1

0 0 · · · 0












, B i
k :=












λr−2

(r−1)!
λr−3

(r−2)!
...

λ/2

1












C i
k :=

[
1 0 · · · 0

]

, i = 1, . . . ,m.

and therefore, the model is explicitly defined in terms of the approximated analytical

functions l (ξk ,ηk ), M(ξk ,ηk ), f s (ξk ,ηk ), and the system sampling time λ, which are

based on the original continuous–time nonlinear model. Note that:

lim
λ→0

Ai
k → Ai

o , lim
λ→0

B i
k → B i

o , (10.68)

which recovers the original continuous time normal form for small sampling times [199].

Furthermore, the local truncation error between the output y k = C cξk of the discrete-

time nonlinear model and the true system output y(t ) is of order λr+1. This results in

a well approximated sampled–data system for sufficiently small sampling times and low

relative degrees (1 or 2). Considering the sampled vector ϕ(ξk ,ηk ) and sampled matrix

ϑ(ξk ,ηk ) as:

ϕ(ξk ,ηk ) =
[

−M−1(ξk ,ηk )l (ξk ,ηk )
]

(10.69a)

ϑ(ξk ,ηk ) = M−1(ξk ,ηk ) (10.69b)

and denoting νk as the sampled–time virtual control input, the state feedback control

law uk defined as:

uk =ϕ(ξk ,ηk )+ϑ(ξk ,ηk )νk = M−1(ξk ,ηk )
[

νk − l (ξk ,ηk )
]

(10.70)

cancels all nonlinearities in closed-loop in absence of external disturbances and model

uncertainties, resulting in the system represented in the following approximated discrete

normal form:

δξk = Asξk +B sνk (10.71a)

δηk = f s (ξk ,ηk ) (10.71b)

y k =C cξk (10.71c)
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which is still described in normal form and decomposed into an external (input–output)

part and an internal (unobservable) part. In this case, this sampled–data model is driven

by the sampled–time virtual control input and approximated by the corresponding sam-

pled zk –coordinates (ηk ,ξk ). The sampled–data model (10.67) results in having a vector

of relative degree ρk = [ρk1
. . . ρkp

]⊤ = [1 . . . 1]⊤ with respect to the output y k =
z k1

[196, 197] and furthermore, the discrete-time zero dynamics are given by two sub-

systems, namely the sampled counterpart of the continuous–time zero dynamics δηk =
f s (0,ηk ) and a linear subsystem of dimension denoted as ρ̄ = [ρ1 − 1 . . . ρp − 1]⊤.

From the approximated model (10.67) it is clear that we can collect the ρ shifted outputs

with a slight abuse of notation as:

δz (ρ)(k) = l (ηk ,ξk )+M(ηk ,ξk )uk =νk (10.72a)

and note that the relationship between the continuous–time ρ differentiated outputs

and the shifted state variables is given by the forward Euler method also obtained by a

truncated Taylor series expansion, i.e., as:

y (ρ) ∼= δz (ρ)(k) =
z (ρ)(k+1) − z (ρ)(k)

λ
(10.73)

where again, a linear input–output relationship between the νk and the output y k is

precluded by the condition of M−1(ηk ,ξk ) being nonsingular.

10.4.3. INCREMENTAL NONLINEAR DYNAMIC INVERSION IN SAMPLED–DA-

TA FORM

Notice that the control law uses the approximated models:

uk = M̄(ηk ,ξk )−1
[

νk − l̄ (ηk ,ξk )
]

(10.74)

which causes a problem in terms of uncertainties since:

δξk = Asξk +B s

{

l (ηk ,ξk )+M(ηk ,ξk )M̄(ηk ,ξk )−1
[

νk − l̄ (ηk ,ξk )
]}

(10.75)

resulting in:

δξk = (As −K B s )ξk +ǫN D I (10.76)

which is not linearizing because of the extra term ǫN D I containing uncertain nonlinear

terms [97, 98]. Because of such uncertainties, the NDI control law presented is actually

not linearizing anymore. This major flaw of NDI–based control systems is well known,

and also previously demonstrated by [71, 160, 162] for instance. In order to partially

tackle this flaw of NDI, we are now interested in obtaining an INDI control but in a

sampled–data framework. To design a sampled–data form incremental nonlinear dy-

namic inversion, first we introduce the following assumption.

Small time delay (STD) assumption: For a sufficiently small time-delay λ so that l (ηS ,ξS )

and M(ηS ,ξS ) does not vary significantly during λ, we assume the following approxima-

tions to hold:

ǫST Dl
(t ) ≡ l (ηk ,ξk )− l (ηk−1,ξk−1) ∼= 0, (10.77)

ǫST DM (t ) ≡ M(ηk ,ξk )−M(ηk−1,ξk−1) ∼= 0, (10.78)
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this implies that:

l (ηk ,ξk ) ∼= l (ηk−1,ξk−1) := δz (ρ)(k−1) −M(ηk−1,ξk−1)uk−1 (10.79)

which, by defining the following deviation variables:

∆δz (ρ)(k) := δz (ρ)(k) −δz (ρ)(k−1), (10.80a)

∆uk := uk −uk−1, (10.80b)

and in virtue of (10.78) (as in the TSS assumption), (10.79) leads to:

∆δz (ρ)(k)
∼= M(ηk−1,ξk−1)∆uk (10.81)

in other words:

δz (ρ)(k)
∼= δz (ρ)(k−1) +M(ηk−1,ξk−1) (uk −uk−1)+O (λρ+1). (10.82)

Recalling the control law in Eq. (10.74), and considering our given STD assumption,

we may now use:

l̄ (ηk ,ξk ) = l (ηS
k−1,ξS

k−1) (10.83)

which is given by Eq. (10.79) and by applying nonlinear dynamic inversion results into

the following sampled–time INDI controller:

uk = uk−1 + M̄
−1

(ηk ,ξk )
[

νk −δz (ρ)(k−1)

]

(10.84)

where:

M̄(ηk ,ξk ) := M(ηk−1,ξk−1) (10.85)

and:

δz (ρ)(k−1) =
z (ρ)(k−1) − z (ρ)(k−2)

λ
(10.86)

Referring back to the attitude control problem, since we will depart from the (approxi-

mated) discrete normal form in (10.71) for the control design, the application of INDI

results in a control law that is also depending only on the uncertainties contained within

the ICE matrix:

uk = uk−1 +M(ηk−1,ξk−1)
[

νk −δz (ρ)(k−1)

]

(10.87)

However, notice that:

M(ηk−1,ξk−1) = l (xk−1)
︸ ︷︷ ︸

purely kinematic

· G
︸︷︷︸

purely parametric

. (10.88)

The purely kinematic term in the resulting control law is only subjected to the measured

errors contained in xS . For the sampled–time attitude control, we have the following

sampled quantities:

ξS =ψs (xS ) =












zS
1

zS
2

zS
3

zS
4

zS
5

zS
6












=












σS
1

σ̇S
1

σS
2

σ̇S
2

σS
3

σ̇S
3












, (10.89)
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and recall the system has a vector of relative degree ρ = [ρ1 ρ2 ρ3 ]⊤ = [2 2 2]⊤. To

conclude the INDI attitude control design, we have made use of the fact that, because

of (10.86), we can rewrite:

δσ̇k =
σ̇k − σ̇k−1

λ
∼= σ̈k (10.90)

and therefore:

δz (ρ)(k−1) = σ̈k−1 =
1

4

[

Ḃ (σk−1) ·ωωωk−1 +B (σk−1) ·ω̇ωωk−1

]

, (10.91)

where the relationship:

Ḃ (σk−1) ·ωωωk−1 =
1

2

[

2σT
k−1ωωωk−1(1−σT

k−1σk−1)ωωωk−1

−(1+σT
k−1σk−1)ωωωT

k−1ωωωk−1σk−1 −4σT
k−1ωωωk−1S (ωωωk−1)σk−1 +4(σT

k−1ωωωk−1)2σk−1

]

(10.92)

is given analytically. By virtue of eigenvalue assignment, we may find νk such that:

νk =−Kψ(xk ) =−Kξk (10.93)

obtaining therefore the following closed-loop system in absence of model uncertainties

and perturbations:

δξk = (As −B s K )ξk (10.94a)

δηk = f s (ηk ,ξk ) (10.94b)

y k,C L =C sξk (10.94c)

where again, the local truncation error between the sampled output y k,C L and y(t ) is of

order [λρ1+1 . . . λρp+1 ]⊤.

10.5. ATTITUDE CONTROL SIMULATIONS

For numerical simulations using the comprehensive analytical nonlinear model of Sec.

I, a satellite is considered with an inertia matrix of

I =





10 1 0.5

1 7 0.2

0.5 0.2 9



 Kg ·m2.

and as main torque actuators an array of three ‘High-Torque-Wheels’ (HTW) [25, 26] are

considered in orthogonal configuration to demonstrate the high-agility attitude control

capability of the system. Wheel characteristics for these HTW s are presented in Table 1,

while the satellite’s reaction wheel array alignment matrix in (10.1) is A = diag([1 1 1]).

The initial HTW wheel speeds are set to zero since we will consider these wheels only for

agile reorientation; normally during operation, wheel speeds have some initial condi-

tions that represents the angular momentum stored in the satellite platform. The nomi-

nal values presented in Table 10.1 are considered as the actuator limits in order to restrict
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the demands of the atittude maneuver as to avoid the case when wheels must be satu-

rated by their respective control commands.

Because the focus of this chapter was to introduce a sampled–data formulation for

INDI controllers, we shall focus first on the numerical analysis without actuator and sen-

sor dynamics in order to test this formulation in practice. It is well known from the lit-

erature [84, 85, 97, 200] that the actuator dynamics have to be "sufficiently" fast and

also synchronized with the sensor and the filters in order to avoid undesired interaction

between the controller and the plant due to the time–delayed sensor measurements, es-

timates, and incremental control actions. Not having synchronized signals between the

time–delayed sensor signal and the time–delayed actuator signal might cause instability

issues in INDI [84, 87]. In that sense, and actually corroborated in practice, the reaction–

wheel "inner–loop" which is commanded by a desired torque provides the output at

much higher rates from the ones to be simulated (100 Hz) and therefore, we neglect these

actuator dynamics.

The MRP tracking reference commands are first illustrated in Fig. 1, which are smooth-

ly up to a second order an obtained with a simple reference trajectory generator. The sec-

ond derivative of these reference commands will result in piece–wise continuous func-

tions that will act as feedforward acceleration commands. This is important because

the resulting feedforward acceleration command will produce a moment for the maneu-

vers that corresponds closely to the path specified, hence why we shall also approximate

the attitude error by the algebraic expression presented. This rest-to-rest maneuver is

designed to achieve a desired final attitude by performing full three–axis control without

an optimizer to design the resulting profile. It is important to mention that this trajectory

is a time–dependent attitude path for the MRP specified a-priori, giving the satellite’s on

board computer the capability to perform agile maneuvers on demand with having to

request an optimization routine to find a time optimal path dynamically. For all simula-

tions we consider the virtual controller ν= ÿ d +kD ė+kP e so that the error dynamics are

equivalent across the different scenarios considered

ë +kD ė +kP e = 0 (10.95)

Table 10.1: Wheel characteristics

Performance HTW

Nominal speed [rpm] 1825

Max. speed [rpm] 3000

Nominal torque [Nm] 0.21

Max. torque [Nm] 0.23

Nominal ang. momentum [Nms] 0.9556

Max. ang. momentum [Nms] 1.5708

Mechanics

Number of wheel units 3

Moment of inertia [Kg ·m2] 5×10−3
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Figure 10.1: MRP reference tracking commands

This is a classical second order dynamics where considering a natural frequency ωn = 3

rad/s and damping coefficient of ζ= 0.707 we can obtain the gains

kDi
= 2 ·ζ ·ωn = 4.242, i = 1,2,3 (10.96a)

kPi
=ω2

n = 9, i = 1,2,3 (10.96b)

The simulation results are as follows. Figure 2 presents the nominal performance

of the INDI attitude control by illustrating the attitude tracking for the MRP reference

maneuver commanded and its respective attitude tracking error. This first simulation is

done at a sampling of 100 Hz which is the highest considered and it demonstrates the

maneuver in this ideal case. For the attitude control motion obtained, Fig. 3 presents

the resulting spacecraft angular velocity and its corresponding HTW input control com-

mands using INDI control, showcasing that the limits have been avoided and that the

platform is commanded with high-agility. A second simulation is performed where the

sampling time has been set to 10 Hz. Figures 4 and 5 shows the resulting attitude con-

trol performance and the corresponding angular velocity and commanded control com-

mands. From these figures it can be seen that the attitude control tracking error has been

degraded but nevertheless remain quite small. By only changing the sampling time but

leaving the rest of the controller structure as it was, it is seen that a down-scaling of the

sampling time is feasible in this case. Of course, there will be a limit on how low can the

sampling time be. For this case, we have also demonstrated that the platform can again

be commanded with high-agility.

A third simulation is carried out, this time the sampling time has been set to 5 Hz. The

simulation results, shown in Figures 6 and 7, demonstrates that still the attitude control

is performing well at the expense of higher attitude tracking errors during the transient
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phases. This nominal condition verifies that INDI control in sampled time still performs

as expected. The fourth and final simulation presented in this chapter is performed by

considering a sampling time of 2 Hz. The simulation results, shown in Figures 8 and
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Figure 10.2: INDI control at 100 Hz: nominal MRP tracking errors during the fast slew maneuver.
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Figure 10.3: INDI control at 100 Hz: angular velocity (left) and commanded control input (wheel torques, right)

during the fast slew maneuver.
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9, again demonstrates that still the attitude control is still possible at the same expense

of higher attitude tracking errors during the transient phase of the maneuver. One im-

portant aspect is to also study the performance under uncertainty. For that, we apply
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Figure 10.4: INDI control at 10 Hz: nominal MRP tracking errors during the fast slew maneuver.
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Figure 10.5: INDI control at 10 Hz: angular velocity (left) and commanded control input (wheel torques, right)

during the fast slew maneuver.
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uncertainty in the inertia matrix of the satellite platform and perform Monte-Carlo sim-

ulations with such parametric uncertainties. For the sampling rate set at 10 Hz it was

found that indeed the controller remains robust against these uncertainties as the atti-

tude tracking error was not severely degraded. This is also of course since the uncertain-

ties of the inertia matrix are bounded and not overall damaging the stability properties

of the closed loop system. The resulting tracking errors for one of the tests performed is

shown in Fig. 10.
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Figure 10.6: INDI control at 5 Hz: nominal MRP tracking errors during the fast slew maneuver.

In summary, simulation results shows that an agile attitude control system using

INDI is promising because of the robustness properties as well for the capability to track

agile maneuvers effectively. Having used a sampled–data approach also allows to con-

sider the sampling–time explicitly in the formulations and also to study what happens

while decreasing the achievable sampling time of the control computer. In [96, 201] it

was shown a relationship between INDI and TDC/PID control where the influences of

the parametric uncertainty on the robust performance and stability have been shown to

be superior for INDI in comparison to TDC/PID control. This clearly suggests, that al-

though they may have similar performance, the INDI control laws possess better robust-

ness and stability properties. The systematic gain tuning and self scheduling property of

our INDI controller have been shown to be scaled and readily applied to attitude control

of rigid spacecraft for agile maneuvers that do not saturate the actuators; this issue will

be addressed in future research.

10.6. CONCLUSIONS

In this chapter a sampled–data form of the recently reformulated incremental nonlinear

dynamic inversion (INDI) is proposed and applied in the context of spacecraft attitude
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Figure 10.7: INDI control at 5 Hz: angular velocity (left) and commanded control input (wheel torques, right)

during the fast slew maneuver.
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Figure 10.8: INDI control at 2 Hz: nominal MRP tracking errors during the fast slew maneuver.

control. The objective was to bridge the gap between highly sampled INDI formulations

(100 – 1000 Hz) and their lowly sampled counterparts in the context of spacecraft attitude

control where low sampling rates are common (1 – 10 Hz) . This was done by introducing



10.6. CONCLUSIONS

10

203

ωx

ωy

ωz

u1

u2

u3

time (s)

u
I

N
D

I

time (s)

ωω ω
(r

a
d

/s
)

0 5 10 15 200 5 10 15 20
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

−0.1

−0.05

0

0.05

0.1

0.15

Figure 10.9: INDI control at 2 Hz: angular velocity (left) and commanded control input (wheel torques, right)

during the fast slew maneuver.
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Figure 10.10: INDI control at 10 Hz: nominal MRP tracking errors during the fast slew maneuver.

a sampled–data reformulation of INDI that allows explicit consideration of the sampling

time via an approximate sampled–data model in normal form available in the literature.

Having an explicit consideration of the sampling time in the plant and in the controller
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is important because there is a limit where the stability and performance of the result-

ing closed–loop nonlinear system can be compromised. Moreover, this sampled–data

model is better suited for the INDI controller since it can be applied for plants with

higher relative degree than one.

Regarding the attitude control, it was done in terms of Modified Rodrigues Parame-

ters (MRPs) where the scheduling of the time–varying control effectiveness is achieved

with the Jacobian of the MRP kinematics. This is an improvement over similar control

strategies previously developed for rigid body spacecraft since it results in an architec-

ture without a cascaded inner–loop based on a time–scale separation assumption for the

rate loop which is commonly done. This results in the control effectiveness of the control

loop composed entirely of kinematic (fully known) and parametric terms, making it use-

ful as a scheduling term for the robust nonlinear controller. This resulting non–cascaded

inversion–based architecture only requires an accurate control effectiveness model and

measurements of the state and some of its derivatives resulting in a combined model–

and sensor–based control approach. The resulting sampled–data INDI control is still

robust up to a certain sampling time and it remains only sensitive to parametric uncer-

tainties.

The systematic gain tuning and self scheduling property of this INDI controller can

be scaled and readily applied to the robust and nonlinear attitude control of rigid space-

craft for any agile maneuvers that does not saturate the actuators. The effect of actuator

dynamics and the synchronization of discrete signals at low sampling times for this type

of controllers is to be considered in future studies. Simulations experiments for several

sampling times shows the effectiveness of this method.
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CONCLUSIONS AND

RECOMMENDATIONS

This thesis considered methods for dynamics modeling, simulation, and control of aero-

space vehicles. The methods proposed are geared towards preliminary design studies of

space launchers and preliminary aspects in guidance and control (G&C) design. Further

focus was given to studying incremental nonlinear control methods in the context of ro-

bust attitude control systems design. This chapter presents the main conclusions of the

research conducted, where new challenges are identified and are formulated as recom-

mendations for future research.

11.1. CONCLUSIONS

T
HIS THESIS was motivated on designing robust nonlinear attitude control laws for

aerospace applications and departed from the fundamental question:

How can the incremental nonlinear control approach be applied to

improve agility and robustness of aerospace vehicles’ attitude control

systems?

In order to investigate potential applications of incremental nonlinear control, the

focus was given first on the dynamics modeling for preliminary design studies, and then

shifted to guidance and control aspects; first on a broad level, then on a more specific

level. To answer the above question in detail, the thesis was divided in three parts. Each

part is discussed below in terms of their individual research question where an overview

of the contributions and main findings is therein presented.

205
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PART I: DYNAMICS MODELING FOR PRELIMINARY DESIGN STUDIES

The first part of the thesis considered the question:

Research Question 1

How can an integrated, acausal, and multidisciplinary approach for modeling

and simulation support preliminary design studies of space launch vehicles?

This question was answered in a broad sense by Chapters 2 and 3, where the main objec-

tive was to investigate an alternative approach to the methodologies found in recent liter-

ature [1, 116–120, 124–126] by considering an acausal or declarative modeling approach

with the MODELICA language as introduced in Section 1.2. In fact, the starting point of

this modeling approach was upon extension of the DLR Space Systems Library [111] by

considering physics–based modeling of subsystems and components related to launch

vehicle system dynamics. As mentioned in Section 1.2, such modeling frameworks were

already introduced in many other fields [105, 107–110, 149, 150].

Chapter 2 showed that such an acausal and multidisciplinary modeling framework

implemented with the MODELICA modeling language [37, 38] can enable engineers and

scientists to assist preliminary design efforts in launch vehicle design [161]. This is thanks

to the object–oriented, equation–based, and acausal modeling features of the MODEL-

ICA. To demonstrate benefits of this approach, a launch vehicle multibody dynamics

model was described and implemented for a simplified application example. The po-

tential of this modeling and simulation framework not only spans preliminary design

phases, but could also support activities concerning more detailed system design, soft-

ware and component verification and validation, i. e., to support several use cases across

the whole launch vehicle program life cycle. As an example of the contribution of this

modeling framework, a preliminary design study for a reaction control system (RCS), in

the context of critical analyses performed at DLR concerning the next generation of Ari-

ane 6 configurations, was carried out using the methods presented here [202].

Chapter 3 considered the study of stage separation dynamics modeling as a critical

capability for launch vehicle design studies [152]. In fact, the development of stage sep-

aration dynamics allows performing end–to–end launch vehicle trajectory simulations

by profiting from the object–oriented and equation–based acausal modeling properties

of the MODELICA modeling language. It is shown that the acausal modeling features of

MODELICA allow an easy implementation of the Constraint Force Equation (CFE) metho-

dology [1, 117, 153], where the internal joint loads of a multi–stage space launcher can be

obtained automatically while complying with constraints related to composite flight dy-

namics or during stage separation. This is a complex problem since such automatic joint

load computation can be seen as a redundant set of multi–body constraints that are, in

general, not easily solvable. This capability to study separation dynamics in the develop-

ment of next generation space launchers was, moreover, easily integrable in the overall

framework introduced in Chapter 2. As an example application, part of the work devel-

oped in this chapter contributed to the ESA study Upper Stage Attitude Control Design
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Framework (USACDF), led by Astrium GmbH as part of Europe’s Future Launchers Pre-

paratory Program (FLPP). Moreover, a fairing separation dynamics modeling and anal-

ysis of the VLM–1 launch vehicle fairing separation process was performed at DLR in

order to determine possible collision scenarios with its payload [203]. Clearance regions

were obtained for given sets of initial angular velocities that the launch vehicle should

maintain during the fairing separation phase in order to avoid a collision between the

fairing and its payload.

Main findings of Chapters 2 and 3

• The object–oriented, equation–based, acausal modeling features of MOD-

ELICA strongly support preliminary studies in launch vehicle design with

an integrated and multidisciplinary modeling framework.

• MODELICA allows for an easy implementation of the Constraint Force Equa-

tion (CFE) methodology, where the internal joint loads of a multi–stage

space launcher are obtained automatically while complying with different

constraints (composite flight or separation dynamics).

The first research question considered and presented the first building blocks to-

wards a framework that enables physical modeling of conventional and non–conventional

launch vehicles, and facilitates early developments regarding preliminary vehicle de-

sign. However, the efforts outlined here were limited in their scope and capabilities;

for instance, they had not considered in much detail the aerodynamics and environ-

ment modeling [204] and they were not easily integrable with optimization tools. It

also lacked of a consistent kinematic parameterization and many other features like

component reusability, objected–orientation and easiness of use. For those reasons, a

more advanced modeling and optimization framework has been developed in [3, 159]

where substantial improvements were made. Such improvements have allowed to con-

sider the multidisciplinary modeling capability in combination with multi–objective op-

timization, and as a result, this was considered in the next research question.

PART II: AEROSPACE GUIDANCE AND CONTROL (G&C)
The second part of the thesis considered the question:

Research Question 2

How can model–based nonlinear control and multi–objective optimization be

combined for the study of preliminary guidance and control (G&C) aspects of

reusable launch vehicles and spacecraft slew maneuvers?

This question was answered by Chapters 4 and 5, where the main objective was to in-
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vestigate how model–based nonlinear control design and multi–objective optimization

could be useful and considered at early design stages of G&C activities in aerospace.

Multi–objective optimization, broadly speaking, delivers the best possible compromise

between commonly existing conflicting goals, while providing reference trajectories or

guidance commands for subsequent inner–loop attitude control systems. This approach

is in fact widely used in the aeronautics community [52–59] and the potential of such in-

tegrated model–based approach was also shown in [58–60].

In Chapter 4, a guidance and control (G&C) architecture was presented for the early

controllability study of reusable launch vehicles (RLVs) [193]. The architecture com-

bines optimal guidance commands together with inner–loop attitude control obtained

via nonlinear dynamic inversion (NDI). The reference trajectory and the optimal guid-

ance commands were obtained with the modeling improvements in [3, 159] that are im-

plemented in combination with the trajectory optimization package ‘trajOpt’ [2] of the

optimization tool MOPS (‘Multi-Objective Parameter Synthesis’) [52–54]. In the context

of aerospace applications, NDI control is usually derived for high performant control

systems design [60, 67–70]. In this chapter, however, another benefit of NDI was pre-

sented; namely, that NDI in combination with trajectory optimization can provide an

early assessment of a vehicle’s controllability. This is possible since NDI ‘cancels the

nonlinearities’ (feedback linearization) in the nonlinear system so that the closed-loop

dynamics are rendered into a linear form; therefore, NDI provides a direct link to the

required angular impulse across the vehicle’s trajectory. With that knowledge, it can

be checked whether the plant can be controlled along the designed trajectory or drive

some requirements in terms of vehicle design. For the obtained system, linear control

techniques such as linear PID–control can be applied successfully for achieving desired

closed-loop dynamics [49–51], hence eliminating the need of linearizing and designing

different controllers for several operational points as in gain–scheduling.

To demonstrate the integrated approach, this method has been considered in the

DLR projects AKIRA and X-TRAS regarding preliminary system studies and evaluation of

key technologies for future reusable launch vehicles. In particular, this G&C architecture

was tested on the AURORA reusable launch vehicle concept [18], where nonlinear flight

simulations for the descent phase (including the re–entry) were considered. The sim-

ulations covered a wide flying envelope ranging from Mach 18 to Mach 5 and angles of

attack between 50 and 9 deg. The results demonstrate the controllability of the launch ve-

hicle as well as the potential to reduce more than half the impact on the angular impulse

budget for the reaction control system (RCS) by combining it with aerodynamic surface

controls during the re–entry phase. This could in turn translate to less propellant mass

needed for the RCS, and therefore, better performance of the launcher.

Chapter 5 addressed the extensive topic of optimal reorientation in spacecraft atti-

tude G&C [127–135], and more specifically, the main challenge that arises when discrete–

time sampled inputs are required for slewing the continuous–time spacecraft dynamics

in agile fashion [96]. This problem was motivated to design a high–agility attitude con-

trol system for the small satellite BIROS [27, 28, 96] which is actuated in sampled–time by

a redundant array of ‘High-Torque-Wheels’ [25, 26]. This is complex not only because of

the nonlinearities involved, but also because time–optimal slew maneuvers are, in gen-

eral, not of the Euler–axis rotation type [131, 136, 137]. By formulating the problem as
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a constrained nonlinear optimal control problem, solutions can be obtained by solving

multi–criteria optimization problems using a direct approach with the trajectory opti-

mization package ‘trajOpt’ [2] of the optimization tool MOPS (‘Multi-Objective Parame-

ter Synthesis’) [52–54]. Results of this method are presented considering the sequential

methodology or procedure proposed in Section 1.2, and are shown based on numerical

simulations performed with a nonlinear spacecraft dynamics model of the small satellite

BIROS.

Main findings of Chapters 4 and 5

• A preliminary G&C architecture containing NDI control can be considered

for controllability assessments and as a design driver during preliminary

launch vehicle design studies.

• Fast slew maneuvers can be designed for a spacecraft commanded with

discrete–time sampled inputs by formulating the problem as a constrained

nonlinear optimal control problem.

• Numerical solutions to this nonlinear optimal control problem can be

readily obtained by solving multi–criteria optimization problems using a

direct approach and trajectory optimization.

From this research question, it can be concluded that multi–objective optimization tech-

niques, combined with model–based nonlinear control, facilitates early and preliminary

guidance and control (G&C) studies very efficiently. However, several limitations were

found during these studies:

• Regarding NDI control design, simplifying assumptions were considered about the

plant invertibility (assuming that control derivatives are invertible in the domain

of operation) and the absence of internal dynamics (the relative degree of each

input–output channel was one).

• Simulations were shown for the G&C system without the consideration of model

and parametric uncertainties. Aspects of robustness in nonlinear attitude control

design are treated in the next research question.

• The time–optimal slew maneuvers were obtained off–line, hence, are not real–time

implementable as it would be desired for an agile spacecraft. This motivates the

development of an agile attitude control system that is real–time capable and im-

plementable on board the spacecraft. The aspect concerning agile spacecraft at-

titude control design in closed-loop feedback form is also considered in the next

research question.

PART III: ROBUST NONLINEAR ATTITUDE CONTROL

The third and final part of the thesis considered the question:
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Research Question 3

How can incremental nonlinear controls be integrated with, e. g., backstepping,

time–delay control (TDC), or nonlinear PID–control? And how can these in-

cremental nonlinear control methods be applied for agile and robust nonlinear

spacecraft attitude control?

The first part of this question was answered in Chapters 6 and 7 and was motivated

from a generalization of the incremental nonlinear control approach as introduced in

Section 1.2, since most of the research in this area stems from an NDI control approach [4,

70, 71, 73–75, 80]. Relating to other nonlinear control design methodologies was also

motivated out of curiosity.

Incremental backstepping [139] was first applied for robust nonlinear attitude con-

trol of rigid spacecraft with the motivation to combine the design of increments of con-

trol action with the recursive step-by-step procedure of the backstepping control design

methodology [6, 65, 66]. In Chapter 6, incremental backstepping is further considered

as a methodology for robust nonlinear flight control [95]. The main motivation to do

this was to investigate how to deal with aerodynamic uncertainties and unmodeled dy-

namics that arise in flight control systems with a robust, sensor–based control approach.

With such an approach, feedback control dependency on the modeled vehicle dynam-

ics is greatly reduced, overcoming one of the major robustness flaws of conventional

model–based flight control systems [60, 67–70].

Incremental nonlinear control requires information of the actuator states and the ve-

hicle’s rotational acceleration in order to reduce feedback sensitivities to an inaccurate

baseline or airframe model [71, 77–80]. In that regard, in order to consider the recursive

nature of the Lyapunov-based nonlinear design method backstepping, the information

of a control derivatives model and the deflections of the aerodynamic control surfaces

are required, together with a model structure that is in strict–feedback (cascaded) or

lower triangular form [6]. This last requirement may be problematic for some config-

urations where the control deflections also enter the kinematic equations, as is the case

in highly aggressive longitudinal dynamics control. This method allows to stabilize or

track outer–loop control variables of multi–loop nonlinear systems incrementally, while

accounting for model and parametric uncertainties that may rise during such aggres-

sive maneuvers. The potential of incremental backstepping was demonstrated with a

longitudinal nonlinear flight control example adapted from [6, 184], where good track-

ing performance was obtained while being subjected to relatively large variations in the

vehicle’s aerodynamic model parameters.

At this stage, some limitations were found. Namely, the incremental method did not

consider details arising in highly uncertain and more advanced multivariable flight con-

trol applications and did not treat stability and robustness aspects too well. As pointed

out in Section 1.2, these aspects have been recently treated and solved in [97–99], where

incremental sliding mode control was proposed and a reformulated INDI structure was

considered. However, the methodology has been further considered in the research com-

munity where many advancements of the method have been proposed. For instance, it
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has been applied to active fault-tolerant control (also from a singular perturbations ap-

proach) [81–83], to adaptive flight control [205], to quadrotors [143] and to robust flight

control [206] including real flight tests on small (FASER) aircraft [88] and large passenger

(Cessna Citation II, PH-LAB) aircraft [90]. More recently, the method has been also ex-

tended to sliding mode fault-tolerant flight control [207].

Main findings of Chapter 6

• Augmenting incremental nonlinear control with the recursive step–by–

step procedure of backstepping, incremental backstepping (IBKS), results

in a promising methodology for robust nonlinear flight control systems.

• IBKS can exploit most of the flexibility inherent in backstepping designs,

e. g., to retain stabilizing nonlinearities and to handle multiple-loops in a

single and integrated incremental control law.

Chapter 7 presented an equivalence of incremental nonlinear dynamic inversion and

time–delay control [140–142] when a reformulation of the plant control effectiveness is

considered [96, 142]. This was motivated as a follow–up from the last Research Question

2 and also with the curiosity to study whether incremental nonlinear controls are related

to other nonlinear control methods. TDC, more commonly known in the motion control

and robotics community, is a nonlinear control technique that estimates and compen-

sates disturbances and system uncertainties by utilizing time–delayed signals of some of

the system variables. Moreover, Chang and Jung [142] found the relationship and equiv-

alence between discrete formulations of TDC and proportional-integral-derivative (PID)

for nonlinear plants of second–order controller canonical form, and in the context of

a robot motion control application. This original result was then related to the found

equivalence between INDI and TDC by considering sufficiently small time–delayed sig-

nals explicitly, the reformulation of the plant control effectiveness [142], and fixed–value

gains in the PID control structure.

This brings a new interpretation of INDI that leads to a meaningful and systematic

method for tuning of nonlinear PID flight control systems via INDI as it was done for

robotics in [142]. This can be achieved by first imposing desired error dynamics, as usual

for dynamic inversion control laws, and then, a mapping into an equivalent incremental

nonlinear PID controller can be established with knowledge on the control derivatives.

Incremental nonlinear PIDs are PIDs with state-dependent gains that are implemented

in a discrete or sampled–time form, where the integral term can be replaced by consid-

ering a recursive computation of the error signals in consideration. Furthermore, their

state-dependent gains might not necessarily be gain–scheduled but rather model–based.

A simple nonlinear longitudinal dynamics example demonstrates this equivalence in

simulation.
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Main findings of Chapter 7

• For a nonlinear longitudinal flight control example, INDI control is equiv-

alent to discrete time–delay control when considering a reformulation of

the plant dynamics as originally suggested in the TDC literature [142].

• The previous finding also suggests that nonlinear PID for flight control sys-

tems can be also be obtained and tuned in a more meaningful way via

INDI [96, 142].

The second part of Research Question 3 was considered in Chapters 8, 9 and 10 and

was motivated from the fact that incremental nonlinear dynamic inversion has not been

widely treated for space applications in the literature. As mentioned in Section 1.2, INDI

has been elaborated and applied theoretically in the past decade for advanced flight con-

trol applications [70, 71, 73–75, 80] and more recently for adaptive control of quadro-

tors [84, 85].

Chapter 8 presented an application of incremental nonlinear dynamic inversion con-

trol for robust nonlinear spacecraft attitude control [4]. The application considered the

attitude tracking and disturbance rejection problem of rigid spacecraft subjected to model

and parametric uncertainties. This is initially achieved with a cascaded two–loop control

system, using as outer-loop control the kinematic inversion of the minimal set of attitude

parameters known as Modified Rodrigues Parameters (MRP). Assuming a time scale sep-

aration of the attitude and rate dynamics, the rate control for the inner loop was done

using incremental nonlinear dynamic inversion of the plant dynamics. As an improve-

ment versus model–based nonlinear dynamic inversion control [60, 67, 69, 70], the INDI

approach enhances robustness capabilities by reducing feedback control dependency

on accurate knowledge of the system dynamics.

However, these kind of sensor–based incremental nonlinear control laws have the

drawback of depending on accurate actuator output and angular acceleration measure-

ments which may not be readily available on board or which may have to be estimated

from rate measurements and state estimation. These measurements in turn may also

contain noise, biases, and delays; therefore, these effects should be properly considered

during control design. INDI therefore implies a trade–off between accurate knowledge

of the dynamic model and accurate knowledge of the sensors and actuators of the space-

craft [4], and is more suitable than identification or model–based adaptive control archi-

tectures. Simulation results demonstrate the capabilities of the proposed INDI controller

in terms of efficient tracking and external disturbances rejection capabilities by consid-

ering the combined effect of disturbances, time–delay, and parametric uncertainty.

In Chapter 9 the recent reformulation of incremental nonlinear dynamic inversion

in [97, 98] is considered to design a nonlinear and agile spacecraft attitude control sys-

tem. The improvement over the INDI controller of the previous chapter is made by

designing a full three–axis attitude control for a spacecraft actuated by three reaction

wheels, and also in terms of the Modified Rodrigues Parameters but without the cas-

caded inner–loop that was based on the assumption of time–scale separation. Moreover,

this reformulation of INDI for attitude control exploits an an analytic expression of the
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MRP acceleration [194] which allows to decouple the nonlinear plant. This in turn results

in each wheel–input MRP–output channel to be rendered as as a double integrator. It is

shown that scheduling of the instantaneous control effectiveness (ICE), as introduced in

Section 1.2, can be done with the Jacobian of the MRP kinematics and is only subject to

parametric uncertainty of the spacecraft augmented inertia and its wheelset alignment

matrix. Moreover, as in Chapter 7, relationships between INDI, TDC, and nonlinear PID

control were found. These relationships demonstrate that for the class of input–affine

nonlinear systems considered in this thesis, INDI control can be recasted as incremental

nonlinear PID control, and vice–versa. Finally, the nonlinear control law proposed can

be analyzed with the stability and robustness results already obtained in [97–99, 140–

142]. Simulation experiments for this particular problem demonstrate that INDI has

similar nominal performance as TDC/PID control, but superior robust performance and

stability.

Main findings of Chapters 8 and 9

• The INDI control approach is promising for spacecraft attitude control,

in particular for agile reorientation maneuvers since it is robust against

model and parametric uncertainty as well as capable to reject external dis-

turbances very effectively.

• With the recently reformulated INDI [97, 98], a full three–axis agile attitude

control system in terms of Modified Rodrigues Parameters can be derived

without the classical cascaded inner–loops that are based on a time-scale

separation assumption.

• Considering an analytical expression of the Modified Rodrigues Parame-

ter attitude acceleration [194], the scheduling of the instantaneous control

effectiveness can be done with the Jacobian of the MRP kinematics and is

only subject to parametric uncertainty of the spacecraft augmented inertia

and its wheelset alignment matrix.

• For the class of input–affine nonlinear systems considered, relationships

between INDI, time–delay control, and nonlinear PID control can be

found. These relationships can be useful for closed–loop gain tuning [140–

142], and for stability and robustness analysis [97–99].

Chapter 10 presents a sampled–data form of the recently reformulated incremen-

tal nonlinear dynamic inversion (INDI) applied for robust spacecraft attitude control.

Most of the INDI derivations proposed in the literature assume a very high sampling rate

of the system and its controller while also not explicitly considering the available sam-

pling time of the digital control computer. Neglecting the sampling time and its effect

in the controller derivations can lead to stability and performance issues of the resulting

closed–loop nonlinear system. In that sense, the contribution is aimed to bridge the gap

between continuous–time and highly sampled INDI formulations (100 – 1000 Hz) and
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their discrete and lowly sampled counterparts in the context of spacecraft attitude con-

trol where low sampling rates are common (1 – 10 Hz). This was done by introducing a

sampled–data reformulation of INDI that allows explicit consideration of the sampling

time via an approximate sampled–data model in normal form already known in the lit-

erature [196, 197]. The resulting sampled–data INDI control is still robust up to a certain

sampling time since it remains only sensitive to parametric uncertainties. Simulation

experiments for this particular problem demonstrate tha INDI attitude control is still

possible for low sampling control rates.

Main findings of Chapter 10

• The INDI control approach can be formulated in the context of sampled–

data nonlinear control. This is possible by considering a sampled–data

model of the nonlinear dynamics of the plant in normal form available

from the literature [196, 197].

• The sampled–data model considered is suited for the newly reformulated

INDI controller since it can be applied for plants with higher relative de-

gree than one.

• The systematic gain tuning and self scheduling property of this INDI con-

troller can be scaled and readily applied to the robust and nonlinear atti-

tude control of rigid spacecraft for any agile maneuvers that does not satu-

rate the actuators.

Finally, to conclude on this last research question:

• Incremental nonlinear control can be integrated with backstepping, time–delay

control, and nonlinear PID control;

• Incremental nonlinear control laws can be regarded as both model– and sensor–

based, where ‘model’ refers to the scheduling of the instantaneous control effec-

tiveness;

• Several applications and scenarios of robust nonlinear attitude control which aim

to close the gap in terms of agility, robustness, and performance of future attitude

control systems were considered.

11.2. RECOMMENDATIONS

The following recommendations are presented for future research.

• In terms of ‘incremental control inputs’ for real–time applications, special care

must be taken. In particular, how the increments of the control input and how the

actuator output are obtained or implemented is of high importance. Referring to

Fig. 11.1 [4, 95], there will be a difference if the actuator output is directly measured

or obtained from a model. Referring to Figs. 11.2(a), 11.2(b), and 11.2(c), these
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kind of implementations lead to infinite or high-gain control. Meaning that special

care must be taken, in particular when the closed-loop system is noisy which is

common. The excitation of high frequencies with high–gain control can lead to

system instability.

• More efforts should be done in finding the relationship of incremental nonlinear

control with early works on time–delay control, pioneered by Hsia et al. [208–212]

and Youcef–Toumi et al. [140–142]. Most of the work published in the literature

on these subjects can be found in motion control systems, robotics, and nonlinear

control.

• This thesis did not consider control input constraints and actuator limits. These

aspects are very important, in particular for agile attitude control systems where

exploiting the full capacity of the actuators might be necessary. This aspect raises

several questions, such as how to design anti–windup, filtered command refer-

ences, or pseudo–control hedging strategies for incremental (nonlinear) control

systems?

• Another question is how to generate inverse models using the acausal methods

considered in this thesis, in particular to be used in combination with model–

based optimization. This can potentially help to design off–line and on–line robust

guidance approaches for nonlinear flight control systems.

• State estimation was not considered in this thesis. This is usually done at another

layer of a ‘navigation’ module of a GNC architecture. The practical aspects of hav-

ing a combined guidance, navigation, and control simulation for real applications

together with incremental nonlinear control should be further assessed. In some

applications, the navigation module might ‘block’ or require some dedicated time–

slot for estimation and fusion of sensor measurements, this in turn can potentially

compromise the assumption of having a sufficiently fast control update rate for

control.

• In this thesis it was suggested how a nonlinear PID controller for a class of input–

affine nonlinear systems can be tuned via INDI. It would be interesting to find sim-

ilar, meaningful and systematic ways to tune incremental nonlinear controllers,

especially for the case of incremental backstepping and adaptive model–based in-

cremental nonlinear control.

• The attitude control problem using Modified Rodrigues Parameters possesses very

interesting optimality properties that were not addressed or exploited further in

this thesis [188]. It is recommended to study these further, particularly for applica-

tions involving agile attitude control.

• In the literature exists a vast body of work around incremental stability [213] con-

cepts. The relationship of the incremental nonlinear control approach considered

in this thesis with such stability concepts should be looked into.
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Design (John Wiley & Sons, 1995).
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