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Abstract
Deep Neural Networks (DNNs) have the potential to make various clinical procedures more time-efficient
by automatingmedical image segmentation; largely due to their strong, in some cases human-level, perfor-
mance. The design of the best possiblemedical image segmentationDNN, however, is task-specific. Neural
Architecture Search (NAS), i.e., the automation of neural network design, has been shown to have the capa-
bility to outperform manually designed networks. However, the existing NAS methods for medical image
segmentation have explored a quite limited range of types of DNN architectures that can be discovered,
and, more importantly, do not evaluate the accuracy of performance estimation methods.

In this thesis, various performance estimation methods for DNNs are analysed for medical image seg-
mentation tasks. Due to the use of different metrics, small datasets, and inter-physician variability, DNN
performance values are susceptible to considerable noise. Through experiments on multiple datasets, it
is shown that performance estimation needs to be more elaborate than proposed in previous literature on
NAS formedical image segmentation. Only then can the noise induced by the problembe overcome. Based
on evaluations of NAS performance with different levels of noise, a method is put forward to evaluate this
noise, such that a more informed decision on performance estimation can be made.

The second contribution of this thesis, is the proposal of a novel NAS search space for medical image
segmentation networks. This search space combines the strength of a generalised encoder-decoder struc-
ture, well known from U-Net, with network blocks that have been proven to have a strong performance in
image classification tasks. The search is performed by looking for the best topology of the network, and si-
multaneously searching the configuration of each cell. This allows for interactions between topology- and
cell-level attributes to be found. Experiments were performed on two publicly available datasets. The net-
works discovered by the proposedNASmethod performbetter thanwell-knownhandcrafted segmentation
networks, and outperform networks found with other NAS approaches that perform only topology search,
and topology-level search followed by cell-level search.

Finally, three search algorithms are compared for different performance estimation methods on a real-
istic clinical medical image segmentation task. The results show that the performance of these algorithms
is very similar in noisy environments for initial runs, and show deterioration of performance for all algo-
rithms when correlation with the validation performance values are low. This supports the findings that
not adapting performance estimation to the task at hand will lead to poor NAS performance, no matter the
chosen search algorithm.

iii





Preface
This thesis is the final work of my MSc. Computer Science. On a larger scale, it represents the end of my
career as a student at the TUDelft. It is with pride and fulfillment that I close what has been an exhilarating,
educational and formative chapter.

From starting my studies in the United States with a year of Liberal Arts and Sciences, to pursuing a BSc.
at the faculty ofMechanical Engineering inDelft, todoing aminor inBiomechanical Engineering in Sweden,
it has felt like quite the roller coaster ride to finish (if all goes well) with a MSc. in Computer Science. I am
delighted to say that I strongly feel that I have ended up in the right field. I have never felt more passionate
about Computer Science and the role it will play in solving not only medical, but also environmental and
societal problems.

This adventure has brought me countless and priceless memories. I hope my natural hard drive has
enough room to store them all, and keep all the subject matter I have absorbed over the years on there as
well. Thankfully, the matter I have read, struggled with, experimented with, and finally put on paper here,
will stay with me for a long time.

This thesis discusses Neural Architecture Search for Medical Image Segmentation. It combines the top-
ics of EvolutionaryAlgorithmsandComputerVision to takeon the challengeof interpretingmedical images.
Having started with only one deep learning project in my locker, it has taken quite some reading up, liter-
ature exploration, coding, experiment setup, and interpretation, to get here. However, I am very proud of
the result. I hope you enjoy the read!

Before proceedingwith the contents of this paper, I would like to extendmy gratitude to the people who
encouraged me, and at moments, dragged me through the process known as research. Having started my
thesis during the Covid-19 lockdown has brought along extra challenges, and I am very happy to say that
my thesis and the lockdown is drawing to an end.

First of all, to Prof. Dr. Peter Bosman, thank you for inspiringme and pushingme to pursuemy curiosity
from the first minute. Your enthusiasm and thirst for knowledge truly rub off and have helped me get the
most out of this thesis. Alongside your incredible amount of knowledge of so many different fields within
Computer Science, I have felt the supervision could have been no better.

Second, I would like to thank Dr. Tanja Alderliesten, for providing a voice of reason when research ideas
grew out of frame, and sharing her knowledge of the many medical aspects of the research. This always
managed to put the research in perspective, such that I could pursue results that are relevant and under-
standable for the community that would benefit most from automated medical image segmentation.

To Dr. Jan van Gemert, I would like to thank you for taking out the time to evaluate my research, and for
the lectures and labs that made me understand, and grow fond of the concepts of Deep Learning.

To the people I have to thank most for bearing with me: Thank you Monika Grewal, and thank you
Arkadiy Dushatskiy. To Monika, your thorough approach to research, from understanding scientific con-
cepts, to experimental setup, to writing papers, really helped to structure my work, something I need more
often than I would like to admit. Arkadiy, your programming skills, the ability to glimpse over my code and
help right away, and your knowledge of NAS and interesting papers to watch out for, made my life a whole
lot easier. Thanks to both of you for keeping me moving at all times.

In the background, my support team needs mentioning as well! I want to thank my mother Patricia
and my father Marco for always being there for me. Not only did you help lay all my foundations, but you
have always continued to applaud, sponsor and challenge me throughout my life. I could never thank you
enough. I also want to thank my brother, whose excellent performances have always inspired me to think
bigger. Without you, I would never have achieved all this. Thanks Sebastian!

To Daphne, my incredible girlfriend, you were there to ride all my lows and highs during my thesis and
the pandemic, and you managed to make them all unforgettable. Thank you for always being there and
having my back.

Martijn Bosma
Delft, December 2021

v





Contents

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Performance estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Search space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Search algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5
2.1 Medical Image Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Automated medical image segmentation . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Deep Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.4 Convolutional layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.5 Pooling layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.6 Activation and normalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.7 Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.8 U-Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Network training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Data preparation and augmentation. . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Training procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.3 Network performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.4 Loss functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.5 Optimisers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Search algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.1 Encodings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.3 Simple Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.4 P3GOMEA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.5 Local Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Neural Architecture Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.1 NAS Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.2 Performance estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.3 Search space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.4 Search algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Suggested improvements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6.1 Reduced noise performance estimation . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6.2 Simultaneous Multi-Block search space . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6.3 Robust search algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Data 25
3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Medical Segmentation Decathlon . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.2 MSD Prostate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.3 MSD Spleen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.4 AMC Prostate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

vii



viii Contents

4 Performance Estimation 29
4.1 Segmentation similarity metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Noise in performance estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1 Measuring DNN performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.2 Evaluating noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Alternate performance estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.1 Incomplete training performance predictors . . . . . . . . . . . . . . . . . . . . . 34
4.3.2 Surrogate models and One-shot models. . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Probability of finding the best network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5 NAS with noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.6 Validation runs and outperforming SOTA. . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.7 Other tasks and possible improvements. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.7.1 Other datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.7.2 Evaluating a dataset before NAS. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Search Space 41
5.1 Learning from SotA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Search spaces in literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Mixed-block NAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.4 Experimental setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.5.1 Spleen dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.5.2 Prostate dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.5.3 General results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.5.4 Comparison with SotA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Search Algorithms 49
6.1 Algorithm types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.1.1 Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 Benchmarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3 Experimental setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.3.1 Performance estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3.2 Algorithm description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7 Discussion 53
7.1 Search space experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2 Statistical significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.3 Noise and validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.4 Further research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.4.1 Noise reduction in performance estimation . . . . . . . . . . . . . . . . . . . . . . 54
7.4.2 NAS for image transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.4.3 Network scaling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

8 Conclusions 55
8.1 Performance estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.2 Search space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.3 Search algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.4 Recommendation for NAS for medical image segmentation . . . . . . . . . . . . . . . . . 57

Bibliography 65



List of Figures

2.1 Example segmentation of the prostate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Artificial Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 DNN structure for image segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Features learned per convolutional layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Convolution, activation, normalisation, and pooling . . . . . . . . . . . . . . . . . . . . . . 9
2.6 Activation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.7 VGG cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.8 U-Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.9 Data splits and cross-validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.10 Training graph for a DNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.11 Dice-Sorensen coefficient, Hausdorff distance, and Surface Dice . . . . . . . . . . . . . . . 14
2.12 Crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.13 SimpleGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.14 Linkage Trees and Gene-pool Optimal Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.15 Neural Architecture Search structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 MSD Prostate dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 MSD Spleen dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Different metrics, different priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Sources of noise in NAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Metric values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 Analysis of noise and performance differences . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5 Spearman correlations for different amounts of network evaluations . . . . . . . . . . . . . 33
4.6 Rank correlation examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.7 Incomplete training estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.8 Probabilities of finding the best network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.9 Effect of noise on NAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.10 Pearson correlation for data splits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.11 Noise in different datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.12 Correlation between aggregated data splits . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1 Macro search spaces from literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Micro search spaces from literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3 MB-NAS search space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.4 NAS performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.5 NAS elite networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.6 Segmentations for qualitative comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.1 Search algorithm performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

ix





List of Tables
1 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

4.1 Correlation per NAS run with the validation rankings . . . . . . . . . . . . . . . . . . . . . . 38

5.1 Performance comparison of MB-NAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.1 Performance of different search algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

xi





List of Abbreviations
A list of all abbreviations and acronymsused in this thesis, alongside their definition, and the page onwhich
they are first described.

Table 1: Abbreviations

Abbreviation Meaning Page found
(D)NN (Deep) Neural Network 1
SotA State-of-the-Art 1
NAS Neural Architecture Search 1
CNN Convolutional Neural Network 7
ReLU Rectified Linear activation Unit 10
(S)GD (Stochastic) Gradient Descent 12
DSC Dice-Sorensen Similarity Coefficient 13
HD Hausdorff Distance 14
SD Surface Dice Similarity Coefficient 14

ADAM Adaptive Moment Estimation 15
EA Evolutionary Algorithm 16
SGA Simple Genetic Algorithm 16

GOMEA Gene-pool Optimal Mixing Evolutionary Algorithm 17
P3GOMEA Parameterless Population Pyramid GOMEA 17

LT Linkage Tree 17
NMI Normalised Mutual Information 17
LS Local Search 18
RL Reinforcement Learning 21
RS Random Search 21

MSD Medical Segmentation Decathlon 25
AMC Amsterdam University Medical Centre 25
MAE Mean Absolute Error 32

MB-NAS Mixed-block NAS 43
DARTS Differentiable Architecture Search 50

xiii





1
Introduction

In recent years, a growing amount of clinical applications, such as computer-aided diagnostic systems for
disease, have been benefiting from advances in automated medical image interpretation, most notably by
using Deep Neural Networks (DNNs) [5, 13]. These artificial systems are inspired by human brains, and
can map multi-dimensional inputs to corresponding multi-dimensional outputs. A DNN can learn this
mapping by learning from examples, in a process known as neural network training.

In the case of medical image segmentation¹, a DNN is trained with medical scans and delineations pro-
videdbyphysicians. Aproperly constructed and trainedDNNcan thenprovidequick andaccurate segmen-
tations on cases it has not seen before, sometimes attaining human-level and clinically acceptable perfor-
mance [34], and doing so in a matter of seconds.

These high-level performances, however, cannot be achieved by every possible DNN.Designing a State-
of-the-Art (SotA) DNN, is often task-specific. Varying dataset sizes, data variability, different regions of
interest, changes in data resolution, and different configurations of scanning machinery, can all lead to
different DNN architecture² and training choices being optimal [20]. For DNNs, the amount of architec-
ture possibilities is inconceivably large, and is impossible to manually navigate through in an exhaustive
fashion, or even by means of intelligent design, while ensuring the best choices are being made.

Neural Architecture Search (NAS), i.e., the automated design of Neural Network architectures, can take
on a large part of this task of architecture design. If implemented correctly, NAS algorithms can effectively
and efficiently search through this space of possible network architecture designs, andfind anetwork that is
highly tailored to the task at hand [12]. While researchonNAS formedical image segmentationhasnot been
as elaborate as for natural image classification, it has already shown promising results by outperforming
SotA architectures [49, 51, 55]. Inmy opinion, further research onNAS formedical image segmentation can
make its contributions even more significant.

NAS involves three key components: (1) the performance estimation method, i.e., the choices made to
score the performance of a DNN, such that the evaluated networks can be ranked; (2) the search space,
which is the set of all possible networks given the specified architectural constraints; and (3) the search
algorithm, or the algorithmused to navigate the search space. This thesis looks at improving all the different
components separately, to create an improved NAS method for medical image segmentation.

1.1. Performance estimation
Estimating DNN performance within medical image segmentation starts by quantifying the similarity be-
tween the segmentations made by a NN and the segmentations made by physicians. Existing metrics rely
on different segmentation properties [6, 9, 34]. This means that decisions have to be made on what prop-
erty to optimise. Using differentmetrics will lead to different segmentations being evaluated as ”good”. The
metrics are also noisy in comparisonwithmetrics used for other tasks such as image classification. Inmed-
ical image segmentation, the performance values per segmented class³ in an image are computed using

¹Medical image segmentation is the practice of delineating organs or regions of interest (e.g., tumors) within medical scans.
²Architecture is the name given to the blueprint of theDNN. It encompasses the design choices such as size, operation types used, and
connections within the network.
³A class is a certain organ or region of interest to be segmented or classified in an image.

1
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values per pixel/voxel, whereas for image classification performance values per classified class in an image
are binary. This leads to a larger range of possible segmentation similarity scores, and makes it more likely
that small changes in the output will affect the score. This larger sensitivity in the metrics, in combination
with datasets being relatively small, and the possibility of differences between example cases, due to patient
variation, human error and difference in physician interpretation, makes this task of quantifying similar-
ity between segmentations more vulnerable to noise than that of quantifying correctly labeled classes for
classification. Research on how noisy these metrics are, however, is understudied in literature, although
possibly impacting DNN performance estimation quite significantly. It would be interesting to evaluate
this noise and analyse its effect on performance estimation of DNNs.

Next to noise in the data, estimating performance of a DNN on any task has inherent noise, as the ini-
tialisation and training of the network is stochastic [42]. The most straightforward way to assess DNN per-
formance after establishing what segmentation similaritymetric to use, is to train theDNN and average the
score of the provided segmentations on a validation set (see Section 2.3.1) of the training data. However,
these network evaluations are very costly. For this reason, a lot of NAS research has gone into creating sur-
rogate models, which try to use other Machine Learning methods [4, 29] or incomplete training predictors
[32, 39], i.e., performance estimators that use properties of a partially trained or untrained network, to pre-
dict performance. However, these methods add inherent error to the estimated performance value, which
could lead to sub-optimal networks being estimated as optimal by NAS algorithms. As there are many pos-
sible sources of noise for performance estimation of DNNs for medical image segmentation, it could be
possible that these alternate methods, as well as single training run estimations might not reflect the true
performance of a network. Literature has even shown that after validation, NAS results often do not out-
perform random search policies [52, 54], indicating performance estimation differences between the used
evaluation method and validation. In Chapter 4, different performance estimation methods are analysed
in order to gain insights on the noise in network performance estimation. The research question setup for
this task is the following:

Research Question 1. CanDNNperformance estimation formedical image segmentation tasksbeadapted
to noise such that the performance values passed to search algorithms are accurate enough for them
to outperform Random Search?

1.2. Search space
Thesearch space is the set of all possible networks that a search algorithmcanevaluate. Its design largely de-
termines the upper and lower limit performance boundof aNAS algorithm. To set this upper bound to be as
least as high as the performance of SotA networks, it is important to include the known SotA networks in the
search space. However, only including networks very similar to SotA networks introduces bias, which may
prevent the NAS algorithm from finding novel architectures outside of current network ideas. So the search
space must be flexible, but also constrained size-wise in a way that it can still be traversed effectively. These
conflicting objectives make search space design complex. Several papers have proposed search spaces for
medical image segmentation. These search spaces that can be split up into two categories: discrete and
continuous. Discrete search spaces look at every network as a separate entity, and evaluate them one at a
time. The most common approach using discrete search spaces in literature is to use a U-Net⁴-like archi-
tecture and adapt it and the operations within [3, 49, 55] to find the architecture that performs best on the
task at hand. Continuous search spaces also use U-Net-like architectures, but agglomerate all the possible
networks in the search space in a so-called Super-network [51]. The separate network performances can
then be extracted from this Super-network. These continuous search spaces are disregarded in this thesis
as some literature has shown issueswith network evaluationswhen sharing components betweennetworks
[52, 54], along with the large computational requirements needed for the training of a Super-network.

In the scope of discrete U-Net-like architecture search, the search space is generally divided into two:
a macro-level search space and a micro-level search space. The macro-level search space looks at connec-
tions within the DNN, the number of operations, as well as how these operations change the dimensions of
the input. The micro-level search space looks at the possible configurations of operations that can achieve
the desired dimensional changes from the macro search space. These concepts are further explored in Sec-
tion 2.5.3 and Chapter 5. In literature, the configuration found in the micro search space is often repeated
throughout the network [27, 28]. Instead of repeating this structure, research that allows various structures
⁴U-Net is a segmentation DNN that outperformed many of the SotA networks when it was published in 2015, and from which many
DNNs still derive their structure today.
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in a DNN, potentially resulting in a better performance, is scarce. Furthermore, existing knowledge about
configurations could be drawn from networks with a strong performance on classification tasks. Allow-
ing only configurations from a pre-selected pool (which are taken from advancedwell-known classification
networks [14, 18, 44]) instead of searching for a cell configuration from scratch every time, could allow for
a stronger performance increase when using NAS. Apart from benefiting from advanced performance of
these well known classification networks, the use of a pre-selected pool will also prevent explosive growth
of the search space caused by searching the configurations from scratch at multiple locations in the net-
work. Finally, recent research [55], does a sequential bi-level search, where macro-level search is followed
by micro-level search. Searching through these two levels simultaneously could lead to finding possible in-
teractions between the macro-level and micro-level search. This could potentially yield better performing
networks. With these possible improvements in mind, it would be interesting to see whether a new search
space could be designed and evaluated. For this, a second research question was drawn up:

Research Question 2. Canadiscrete bi-level search space be created such that theneural networks found
by a NAS algorithm are better than hand-crafted SotA networks, as well as outperform networks
found using different existing discrete search spaces, for medical image segmentation tasks?

The details of this search space design and the performance of the new search space are found in Chapter
5.

1.3. Search algorithms
In the search algorithm domain, many techniques have been studied for image classification. The per-
formance of these algorithms has mostly been compared on benchmark problems [36, 42, 53], which are
confined to a few datasets and a small number of search spaces. These benchmarks contain a cached list of
simple one-run network performances, and do not include noise, (with the exception of [42] that uses sur-
rogates to model network performances instead of evaluating all the networks in the search space), making
them quite different from realistic situations. No benchmarks exist for medical image segmentation un-
fortunately, and it is not clear how the performance of these algorithms translates to this task. It would
therefore be interesting to compare multiple algorithms and their performance given a medical image seg-
mentation dataset. In this thesis, two Evolutionary Algorithms - one Simple Genetic Algorithm and one
Model-based Evolutionary Algorithm, as well as a Local Search algorithm, are compared. These experi-
ments are done in Chapter 6. The research question for this is:

Research Question 3. How do Evolutionary Algorithms and Local Search perform for NAS in different
levels of noise and can a decision be made on which is better?

Before diving into these three components of NAS, more information on relevant concepts is given in
Chapter 2. The datasets used throughout this thesis are described in Chapter 3. Subsequently, Chapters 4
through 6 provide insights gathered on performance estimation, search spaces, and possible search algo-
rithms for NAS for medical image segmentation. Finally, this thesis is concluded in Chapters 7 and 8 where
results are discussed and conclusions drawn.





2
Background

This chapter contains information on all the relevant concepts used in this thesis. It starts by explaining
medical image segmentation, and what is necessary to automate this process. This is followed up with the
mechanics of Neural Networks, in particular the workings of Deep Convolutional Neural Networks. Next,
the Search Algorithms considered in this thesis are explained. At the end of the chapter, the concept of
Neural Architecture Search is introduced, alongside relevant research and how this thesis builds upon it.

2.1. Medical Image Segmentation
Medical imaging technologies, such as CT scanners, MRI scanners, X-ray generators, and ultrasound ma-
chines, have provided the ability to look inside the human body without invasive surgery. By using dif-
ferent tissue qualities, it is possible to make out different organs or regions of interest, e.g. tumors, from
these images. This information can be valuable for multiple reasons, such as disease diagnosis [5, 13] and
customised treatment planning [30, 48].

The information from these scans is stored spatially and is quite dense. When a scan is made with dif-
ferent scanning modalities, i.e., different measured values, the stored data contains multiple data entries
for every pixel/voxel¹. In the case of a 3D scan with multiple modalities, this results in 4D data, which is
difficult to visualise for human interpretation. This high information density, can make interpreting these
scans quite time-consuming.

Automating this process, such that amachine could interpret these scans, could lead tohigher efficiency
by increasing speed of interpretation. This is especially useful in treatment planning, where time is of the
essence [30]. This thesis looks specifically at the field of automated medical image segmentation. This is
the practice of having a machine interpret medical images such that contours are provided of an organ or a
region of interest.

2.1.1. Automatedmedical image segmentation
To automate medical image segmentation, a machine needs to be able to process the multi-dimensional
input image, and generate a multi-dimensional output mask from it. As the output is highly dependent
on multiple input variables, i.e. the surroundings of the pixel in question are important for the class it
is assigned to, segmentation methods need to be strongly connected such that many input variables can
influence the output.

In recent years, model based approaches, which look at statistical data properties, have been surpassed
by supervised machine learning methods, most notably Deep Neural Networks (DNNs) [41]. These tools
have been achieving high, in some cases human-like, performance on several image segmentation tasks
[34].

The strength of DNNs lies in their flexibility to learn non-linear mappings between a multi-dimensional
input and output, by training on examples. Given elaborate data, DNNs can see scans from many different
patients in quite a short time frame, and learn from delineations from multiple physicians. This process
is known as network training. As the network can learn from scans made by different physicians, it could

¹A voxel is the 3D equivalent of a pixel, carrying spatial information based on an 𝑥,𝑦,𝑧 co-ordinate.
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potentially also remove inter-physician variability that can occur when multiple professionals look at the
same case [7]. Once trained, a DNN can provide a high quality segmentation within a matter of seconds.
This capability of learning fromexamples to provide quick and accurate segmentations, iswhatmakes these
DNNs so adept at this task. An example segmentation of the prostate as provided by a DNN can be seen in
Figure 2.1.

AlthoughDNNs are already achieving impressive results, performance can still vary greatly per task, and
research into how to create the best possible NN for different tasks is still actively ongoing.

Figure 2.1: On the left is a single modality of a slice from an MRI of the prostate area; in the middle is a physician’s delineation of two
prostate areas, the central gland in yellow, and the peripheral area in magenta; on the right an example of a DNN prediction of the two
regions of interest. The MRI and ground truth segmentation were provided by the Medical Segmentation Decathlon [1].

2.2. Neural Networks
As mentioned, DNNs have been achieving SotA results on many public medical image segmentation tasks
[1, 26]. TheseDNNsare specifically created for the task of semantic segmentation,where every pixel/voxel is
assigned a class. TheseDNNs are a subclass of NNs, and as all otherNNs, work by stacking layers of artificial
neurons.

2.2.1. Artificial Neural Networks
Neural Networks consist of artificial neurons that connect any number of input values to any number of
output values. The output value of each neuron in a network is a weighted sum of its inputs along with a
bias term. This output is then passed through a non-linear activation function and connected to a number
of neurons in the next layer. By stacking layers, the network can generate a non-linear combination of
weighted inputs as output. The layers between the input and output are called hidden layers. An example
of a simple NN is given in Figure 2.2.

Figure 2.2: An example of a Neural Network. It shows how any multidimensional input can be transformed to another number of
dimensions. Here, two hidden layers connect the input to the output.
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The output of a neuron can be written as:

𝑓 (x,𝜽) = 𝜙(
𝑛

∑
𝑖=1

𝜃𝑖 ⋅ 𝑥𝑖 +𝑏)

where 𝑥𝑖 is an input and 𝜃𝑖 the assigned weight for 𝑖 ∈ 1, ..,𝑛, 𝜙 the activation function, and 𝑏 is the bias
term.

To make sure the NN has the correct weights, it needs to be trained. Training can be done by doing
a forward pass of an example image, i.e. calculating the output values given an example input, and then
calculating the error between the generated output and the desired output using a loss function. This error
is then used to re-calibrate the weights, in a process called back-propagation [40]. By doing this repeatedly
the network will be optimised towards the task in the examples (more details on this process are given in
Section 2.3). A trained NN is then able to generate similar outcomes from input values it has never seen
before.

2.2.2. Deep Convolutional Neural Networks
A problem occurs when scaling the NN shown in Figure 2.2. For example, when given an image of resolu-
tion 128 × 128 as input, and using a network with one fully connected (meaning neurons are connected to
all neurons in the previous layer) hidden layer with the same resolution, the number of connections, and
therefore weights to optimise, is 2 ∗ (128)4 ≈ 537 million, which is an incredibly large number. Not only
is the number of weights to optimise very large, but the network also only has a single hidden layer. This
prevents the network from combining different patterns (i.e., combination of weights with a certain cor-
relation to the output) found in previous layers, making it necessary to learn every pattern separately. An
example of this, is that a network with single hidden layer would need to optimise weights to learn how to
recognise a dog by learning entire dog features, such as ears and paws, whilemultiple hidden layers can first
recognise curves, lines, or presence of fur, and build slowly upon these low level features. It has empirically
been shown that learning these features hierarchically leads to better performance [25].

To increase the number of hidden layers, the number of weights per layer in the network needs to be
reduced. In computer vision tasks, themost commonmethod to reduce the number of weights to optimise,
while still being able to capture information from awide range of inputs, is to use convolutions (see Section
2.2.4). These operations have the capacity to highlight certain properties in an image, and allow networks
to havemanymore hidden layers due to the lownumber of weights per layer. Networks usingmany stacked
convolutional layers are known as Deep Convolutional Neural Networks, or deep CNNs.

2.2.3. Structure
The structure of a deep CNN consists of a combination of convolutional layers, that lead from the input
layer to the output. For image segmentation, the input is generally a 2D image or a 3D scan, and the output
is a mask showing where the region(s) of interest is/are. An example of a deep CNN, that is very similar to
the architecture of U-Net, is given in Figure 2.3.

Figure 2.3: An example of a DNN for medical image segmentation. The blue cubes are the feature maps, i.e., the output of the layers in
the network, and the connecting lines abstractions of the convolutional layers.

By default, every layer in a CNN is a combination of three operations: convolution, activation, and nor-
malisation. These operations are explained in 2.2.4. By stacking these operations, a CNN can learn to iden-
tify various aspects within the image by assigning the proper weights to the connections between its layers.
As more layers are applied, more elaborate features can be learned. This can be seen in Figure 2.4.
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Figure2.4: Examples of howconvolutional layers extract features from images. The features that canbe identifiedbecomemore elaborate
as more layers are added. A comparison can be seen between the features learned after 2 layers and after 4. These images are adaptations
from Zeiler and Fergus’ paper ”Visualizing and Understanding Convolutional Networks” [56].

The total operation performed by a CNN for medical image segmentation can be represented as a map-
ping of 𝐼(𝑀𝑥𝐷𝑥𝑊𝑥𝐻) → 𝑂(𝑁𝑥𝐷𝑥𝑊𝑥𝐻), where 𝐼 and 𝑂 represent input image and output segmen-
tation, respectively. The mathematical structure used to store the information in the network is called a
tensor. Here the input tensor has four dimensions consisting of 𝑀 , the number ofmodalities (e.g., 1 if grey-
scale, 3 if RGB², but can have any number of different scan parameters), 𝐷, the depth (1 if a single image,
multiple if a 3D scan), 𝑊 and 𝐻 , the width and height of the image. Where the input tensor contains dif-
ferent modalities, the output tensor contains information on what class every pixel/voxel belongs to. So
dimension 𝑁 is the number of classes. At every convolutional layer 𝑖 ∈ 0, ..., 𝑙, the tensor shape can be writ-
ten as ⟨𝐶𝑖𝑥𝐷𝑖𝑥𝑊𝑖𝑥𝐻𝑖⟩, where 𝐶𝑖 is the number of channels in the feature map. Channels are the neuron
outputs per pixel/voxel in a hidden layer.

2.2.4. Convolutional layers
To get from input to output, image properties need to be learned for the region of interest. A very common
way to do so, is by performing convolutions. A convolution is an operation that sums the input values
of a grid around a pixel, known as a receptive field, multiplied by the weights of a convolutional kernel.
This is different to the fully connected layers from the network shown in 2.2, as connections are only made
between neighbouring neurons, instead of the entire input. Weights for a convolutional kernel are also
shared throughout the image, drastically reducing the number of weights to optimise, allowing for deeper
networks. The output values of a convolution are then stored within a feature map, which is the name
given to the output tensor of a layer. By using the same kernel at every location in an image, patterns can
be identified, e.g. vertical lines or other shapes (see Figure 2.4), throughout an image. The mathematical
notation for this operation, when performed on a single channel (e.g. gray-scale image), is the following:
for every position 𝑖, 𝑗 where 𝑖 ∈ [0,𝑊),𝑗 ∈ [0,𝐻) given an image X and convolution kernel Kwith size 𝑘:

𝑓𝑖,𝑗(K,X) =
𝑘−1
∑
𝑛=0

𝑘−1
∑
𝑝=0

X𝑖−⌊𝑘/2⌋+𝑛,𝑗−⌊𝑘/2⌋+𝑝K𝑛,𝑝

Dependingon the convolutional kernel, theoutput imagemaybeof adifferentdimensionas theboundaries
of the image prevent the kernel from performing convolution for positions at the edge. For these boundary
locations, padding can be used. This padding serves as dummy values around the image such that convo-
lution can still take place and information at the borders is not lost. Different padding methods exist, such
as 0-padding, mirrored values, or replication of boundary values. An example of a convolution with a 3x3
kernel size, and 0-padding of size 1, is given in Figure 2.5a.

If the input has multiple channels, e.g. an RGB encoded image, convolution is performed with multiple
kernels, one per input channel. A convolutional filter, is the name given to the collection of kernels³. The
output of a convolution operation is the element-wise sum of the outcome of the convolution per channel.
For every desired output channel, a different filter is used. The mathematical notation for a single channel
output 𝑓 is: for every position 𝑖, 𝑗 where 𝑖 ∈ [0,𝑊),𝑗 ∈ [0,𝐻), where 𝑊,𝐻 are thewidth, height respectively,
given an image X and convolution filterHwith 𝑀 kernels of size 𝑘.

²Red, Green, Blue, oftentimes the encoding used for coloured images
³In the case of 1 channel, a filter and a kernel are identical.
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(a) Single-channel convolution with kernel size 3x3, stride length 2, and 0-padding of size 1 applied to the input image.

(b) Activation and Normalisation. (c)Max Pooling.

Figure 2.5: Different operations in a a convolutional cell. Figure 2.5a shows an example of a padded convolution with kernel size 3 and
with a stride length of 2. The output feature map and the area of input that was part of the convolution is colour-coded. In Figure 2.5b
an example of activation by ReLU is given, followed by instance normalisation. In Figure 2.5c an example of max-pooling is given.

𝑓𝑖,𝑗(H,X) =
𝑀

∑
𝑚=1

𝑘−1
∑
𝑛=0

𝑘−1
∑
𝑝=0

X𝑖−⌊𝑘/2⌋+𝑛,𝑗−⌊𝑘/2⌋+𝑝H𝑚,𝑛,𝑝

Increasing the number of convolutional filters that are applied to the input image, increases the number of
channels in the feature map. This increases the number of weights to optimise, but also allows the convo-
lutional layer to learn more features.

Changing the resolution of the feature maps can be interesting in order to learn more elaborate features
that span more of the input image. The reason for this, is that the receptive field of future operations in-
creases due to denser information. An example: a 3 × 3 convolution on an image of 128 × 128 pixels will
encapsulate a smaller distance of surrounding data than a 3×3 convolution on the same image but with a
resolution of 64×64. So decreasing the resolution can increase the receptive field. To change the resolution
of the image, two methods are common: convolutional stride, or pooling layers.

Convolutional stride is the distance betweenpositions that are evaluated in a convolution. For example,
if the stride is 1, convolutional kernel size is 3x3, and there is padding of thickness 1, every position will be
evaluated within the image and therefore the width 𝑊 and height 𝐻 of the feature map will not change. If
in the same environment, we change the stride to 2 and remove the padding, one position will be skipped
between convolutions, this leads to a new width and height, 𝑊 ′ = 𝑊

2 , 𝐻′ = 𝐻
2 . These smaller image di-

mensions lead to more compact information, meaning that future convolutional operations are connected
to a larger portion of the input. An example of stride is given in Figure 2.5a.

2.2.5. Pooling layers
Another way to decrease the resolution, is pooling. Pooling operations are fixed and therefore do not in-
crease learnable weights in the network. These pooling operations apply a function to a window of values,
trying to extract the most valuable information from the window. Two examples of pooling functions are
max pooling and average pooling. The former outputs the maximum value of the window, while the latter
outputs an average. An example of max-pooling is given in Figure 2.5c.
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2.2.6. Activation and normalisation
Two operations are often added to both convolutional and pooling layers: activation functions and normal-
isation. These two operations generally succeed convolution and pooling operations.

Activation functions, can achieve multiple desirable traits in the output. Most commonly, non-linear
activation functions are used to introducenon-linearity to anotherwise linear systemof convolution opera-
tions. The most common functions are ReLU, sigmoid and LeakyReLU. In this thesis, ReLU and LeakyReLU
areused to introducenon-linearity. TheReLUorRectifiedLinear activationUnit, is simple to calculate as it is
equal to the function 𝑓 = 𝑚𝑎𝑥{0,𝑥}. It also introduces non-linearity into the output, while the derivative is
still easy to calculate. Also, the gradient does not vanishwhen 𝑥 approaches 0. For this reason, it is themost
common activation function in DNNs. An example of ReLU activation is given in Figure 2.5b. LeakyReLU is
a variant of ReLU where, a small negative slope is added, to avoid the ReLU form dying, i.e. never activating
as all input values are in the negative domain. The function for LeakyReLU is 𝑓 = 𝑚𝑎𝑥{0,𝑥}+𝛼⋅𝑚𝑖𝑛{0,𝑥},
where 𝛼 is a negative slope coefficient. Sigmoid functions are generally only used on the final layer. This
function converts all values to a [0,1] domain. It is often used to change outputs to probability values to
see which class the output belongs to. When multiple classes are involved, a softmax function is used, an
extension of the sigmoid function that scales the probabilities such that they sumup to 1. Examples of these
activation functions are given in Figure 2.6.

(a) ReLU. (b) LeakyReLU. (c) Sigmoid.

Figure 2.6: Activation functions.

Normalisation is used to stabilise these layers. The goal of normalisation is to make sure the data is 0
centered and and to down-scale large values. Centering the values around 0 makes sure that the activation
function can be effectively used, as using activation functions in a domain away from 0 will just lead to
multiplication with a constant value. Scaling values increases the speed of convergence of the weights in
the network [19]. An efficient way to normalise the data is by using Z-normalisation. This makes sure the
output has a mean at 0 and a variance of 1, thus achieving both goals. Normalisation can be performed on
multiple levels, the most common ones in DNNs being instance normalisation, and batch normalisation.
The former will take the mean and variance per image and per channel, while the latter will fix the mean
and variance per channel within a layer, by averaging over a so-called mini-batch, which is a subset of the
data used for a training iteration (see 2.3. This has been shown to speed up the training process, and give
extra stability [19]. An example of Z-normalisation of instance-level is given in Figure 2.5. Themathematical
notation of instance normalisation, where 𝑛 is the image, 𝑐 is the channel, 𝜇 is the mean, 𝜎 is the standard
deviation and 𝜖 is a small constant added for numerical stability, is:

̂𝑥 = 𝑥−𝜇𝑛,𝑐

√𝜎2𝑛,𝑐 +𝜖
𝜇𝑛,𝑐 = 1

𝐻𝑊
𝐻

∑
𝑗=1

𝑊
∑
𝑘=1

𝑥𝑛,𝑐,𝑗,𝑘 𝜎2
𝑛,𝑐 = 1

𝐻𝑊
𝐻

∑
𝑗=1

𝑊
∑
𝑘=1

(𝑥𝑛,𝑐,𝑗,𝑘 −𝜇𝑛,𝑐)2

For batch normalisation, the equation is similar but adds 𝑁 , which is the amount of images in the mini-
batch:

̂𝑥 = 𝑥−𝜇𝑐
√𝜎2𝑐 +𝜖

𝜇𝑐 = 1
𝑁𝐻𝑊

𝑁
∑
𝑖=1

𝐻
∑
𝑗=1

𝑊
∑
𝑘=1

𝑥𝑖,𝑐,𝑗,𝑘 𝜎2
𝑐 = 1

𝑁𝐻𝑊
𝑁

∑
𝑖=1

𝐻
∑
𝑗=1

𝑊
∑
𝑘=1

(𝑥𝑖,𝑐,𝑗,𝑘 −𝜇𝑐)2
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Batch normalisation then also continues by allowing a scale and a shift parameter 𝛾 and 𝛽 to be learned,
which introduces a possibility to shift the mean away from 0 and increase or decrease the variance to a
custom level. The rhetoric for this is that it would accelerate training [19]. The output then becomes:

̂𝑥′ = 𝛾 ̂𝑥+𝛽

2.2.7. Architecture
When breaking down neural architectures, i.e., the building plans of a NN, the term cell is often used. This
is a standardised group of operations, often consisting of one or multiple convolutional layers, that can be
repeated. The configuration of a cell can be varied in multiple ways, e.g. what convolution filter sizes are
used, whether pooling is applied, what activation function is used, whether residual connections⁴ are used.
In Figure 2.7, an example of a cell fromU-Net ⁵ is given. This block is derived from the original VGGnetwork
[43].

Figure 2.7: A VGG cell, that is also used in U-Net. It performs two convolution operations followed by normalisation and activation. It
does not contain pooling or residual connections.

On a larger scale, the structure of how these cells connect, and what the dimensions of the feature maps
are, is called the topology of the network. Networks can become wider, meaning more channels /neurons
are added in a layer, or deeper, meaning the number of operations/layers is increased. The resolution dis-
cussed in Section 2.2.4 can also be changed not only for the input, but also for the feature maps. Also, the
addition of skip-connections, or concatenatingmultiple previous outputs to form the input of the following
cell can change the topology of a network.

2.2.8. U-Net
In the context of neural architectures for image segmentation, one architecture has been particularly influ-
ential: U-Net [37], and its encoder-decoder structure. U-Net achieved a significantly better performance in
comparison to other segmentation networks when it appeared on the scene in 2015, and has been a solid
baseline for all segmentation tasks since. Many upgrades have been suggested to this structure, such as the
ones suggested by the nnUNet-team [20], who try to tune the network and the training processes based on
the dataset, but these keep the same topology patterns. It is a good starting point for architectures when
looking at medical image segmentation, and a great baseline for experiments.

What typifies U-Net is the encoder-decoder structure, where the input passes multiple convolutions
and pooling operations such that the resolution is decreased and the number of channels increased, until a
certain bottleneck. In this process, the network will learn more and more complex features from the input,
a process visualised in Figure 2.4. The down-sampling of the image is done by using pooling layers, but can
alsobe achievedwith convolutional stride. After thebottleneck, the encoded featuresneed tobe localised in
the original input, meaning that the features that were learned in the encoding, and are part of the eventual
classes, need to be located such that they can be segmented. This is done by up-sampling with transposed
convolutions in a reversed process to the encoding part. Every decoding cell is not only connected to its
predecessor through a transposed convolution, but also to the output of the encoder cell where the feature
map has the same dimensions and features are less complex. This combines the information from more
elaborate features with simpler ones in order to segment the region of interest in question. In Figure 2.8 the
architecture of U-Net is shown.

2.3. Network training
The previous sections show that the structure of a DNN can be elaborate, containing many layers and
weights. All these weights need to be calibrated to achieve high accuracy segmentations. To be able to
get these parameters to extract the information from the input, it is important that the network gets to see
⁴A residual connection is a type of bypass operation where the output is summed with the input such that every convolution changes
the initial value without getting rid of it.
⁵U-Net is the architecture that is described in Section 2.2.8 and visualised in Figure 2.8.
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Figure 2.8: The example given in Ronneberger et al. [37] paper on U-Net. It shows the underlyingmechanism of U-Net to first gradually
encode to a very small resolution with a gradually increasing number of channels, followed by the reverse process that is concatenated
with the output of the encoding size.

many different training samples, and gets enough training iterations. This can be troublesome, as gathering
or generating data can be costly, but is also the strength of a NN, as it can see relatively many different cases
in a short amount of time.

2.3.1. Data preparation and augmentation
In order to measure the performance of a NN, the dataset that is used is generally split into three groups,
the training set, the validation set, and the test set. The training set consists of the images that are shown
to the network and which the network learns from, the validation set is used to check if the network also
performs well on cases it has not seen. For comparison with other methods, a separate test set is generally
excluded from the rest of the data to analyse the final performance. However, in smallmedical datasets, this
is often infeasible. The use of a validation set and test set allows for unbiased performance indication. For
completeness, 𝑘-fold cross-validation can be performed. This means the experiment is repeated 𝑘 times
with 𝑘 different splits such that every scan is in the validation set once. This process is visualised in Figure
2.9. When datasets are relatively small, i.e. different divisions of the dataset lead to very different results,
it could be beneficial to add data augmentations to the training set. This tries to prevent potential over-
fitting⁶, by increasing the amount of unique training images. Data augmentations also have the potential
to increase the performance of the network on scans that are different from the ones in the training set[20].
Many different ways of editing input images, such as translation, rotation, resizing, mirroring, brightness
adjustment, contrast adjustment, etc. can be applied stochastically in order to increase the number of dif-
ferent training images available. When applied correctly, data augmentations will lead to a more robust
network. However, they can also lead to the loss of valuable information when training cases become too
unrealistic, deteriorating performance. More data augmentation schemes will also increase training time,
so consideration is necessary when it comes to choosing what data augmentation methods to use.

2.3.2. Training procedure
The training procedure works by performing a large number of training iterations, until the network perfor-
manceon the validationdata stops improving. One iteration consists of one forwardpass andonebackward
pass. The forward pass evaluates a certain amount of samples, also known as a batch of training images.
The input images pass through the NN, returning a prediction. This is then compared with the reference
masks, or ground truth. By comparing the predicted values to the ground truth, a loss can be calculated
(see 2.3.4). The aim is then to minimise this loss. This is done with the backward pass, where an optimiser
will try to follow the loss gradient with a Stochastic Gradient Descent (SGD) algorithm (see 2.3.5) and then

⁶Over-fitting is a situation where a model becomes more and more accurate on the training set, but where the accuracy on the valida-
tion set starts to decrease
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Figure 2.9: An example of cross-validation. Here the data is split into 5 folds. In medical image segmentation, the split is done per
scan/patient.

adjust the weights in an attempt to decrease the loss given that batch. One epoch is generally the term used
for one lap of all the training samples. After each epoch, the validation loss is calculated. If this validation
loss no longer decreases, the training can stop. An example of a DNN training graph is given in Figure 2.10.

Figure 2.10: A progress graph of a DNN training for a medical image segmentation task. In blue, the training Soft Dice loss per epoch,
in red, the validation Soft Dice loss per epoch, and in green, the validation DSC per epoch.

2.3.3. Network performancemetrics
Metrics are needed to evaluate the performance of a DNN such that they can be trained. Formedical image
segmentation, this means a metric is needed to score the similarity between provided segmentations and
the the segmentations output by a DNN. To quantify segmentation similarity, many metrics exist, but the
three used in this thesis are: Dice-Sorensen Coefficient, Hausdorff distance, and Surface Dice. These are
calculated for every image in the validation set and then averaged.

The Dice-Sorensen similarity Coefficient (DSC) [9] is a metric that uses overlap between prediction and
reference mask. To calculate it, the true positives 𝑇 𝑃 , false positives 𝐹𝑃 , and false negatives 𝐹𝑁 are com-
puted per pixel/voxel. The DSC is computed using:

𝐷𝑆𝐶 = 2|𝐴∩𝐵|
|𝐴|+ |𝐵| = 2 ⋅𝑇 𝑃

2 ⋅𝑇 𝑃 +𝐹𝑃 +𝐹𝑁

Which when looking at a predicted mask and the reference mask, is equivalent to 2 times the surface of the
overlapping area, over the sum of the segmented surface area and the reference surface area. The resulting
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domain is [0,1] where 0 means the segmentations have no overlap, and 1 means identical segmentations.
The Dice-Sorensen similarity coefficient is visualised in Figure 2.11a.

(a)Dice-Sorensen coefficient. The area
|𝐴∩𝐵| is doubled and divided by |𝐴|+ |𝐵|.

(b)Hausdorff distance. (c) Surface Dice.

Figure 2.11: An abstraction of a segmentation and a referencemask. Here A is the segmentation andB is the reference. TheDice-Sorensen
similarity coefficient is calculated by taking two times the overlapping surface, seen in 2.11a, divided by the surface of the segmentation
summed with the surface of the reference. The Hausdorff distance is the largest minimal distance, or supremum of the two sets, as seen
in 2.11b. The Surface Dice similarity coefficient, does not look at the volume like DSC but at the surface area for which the segmentation
and reference are within a certain tolerance 𝜏 , as seen in 2.11c.

The Hausdorff distance (HD) [6] is a metric that calculates the maximum distance between one point in
the two surfaces and the nearest point on the other surface, or in mathematical notation:

𝐻𝐷(𝐴,𝐵) = max{sup
𝑎∈𝐴

𝑑(𝑎,𝐵),sup
𝑏∈𝐵

𝑑(𝐴,𝑏)}

The Hausdorff distance is visualised in Figure 2.11b. In order to make Hausdorff more robust, the 95𝑡ℎ per-
centile distance can be used instead of the maximum distance [21]. This removes the impact of exceptional
outliers.

The Surface Dice similarity coefficient (SD) [34] measures the part of the surface of the segmented area
where the distance between the segmented and reference surface is within a given tolerance, compared to
the total surface of the segmentation. Mathematically this can be written as:

𝑆𝐷(𝐴,𝐵) = 𝑆𝐴 −𝑆𝐴′ , 𝑆𝐴′ = {𝑆𝐴 ∣sup
𝑎∈𝐴

𝑑(𝑎,𝐵) > 𝜏 }

where 𝑆 is the surface, 𝑠𝑢𝑝 is the supremum, ormaximum smallest distance, and 𝜏 is the tolerated distance.
The Surface Dice similarity coefficient is visualised in Figure 2.11.

2.3.4. Loss functions
The metrics discussed above are useful to assess the similarity of output segmentations, which contain the
assigned classes per pixel/voxel basedonaprobability. However, they arenot very suitable as loss functions,
because they do not distinguish how far the output is from the assigned class; the error per pixel/voxel is
either 1, or 0.

For this reason, specific loss functions are needed. A commonly used loss function for medical image
segmentation is the Soft Dice loss. Soft Dice loss is based on the Dice-Sorensen similarity coefficient, but
has some fundamental differences. First, it uses the probabilities that are output by the network before
they are made binary (e.g. A network outputs a probability of 0.6 that a pixel belongs to a class in a single
class segmentation. This probability is used by the loss function to calculate the error. This is different to
using the value in the output image, where 0.6 will be assigned to the class in question and rounded to 1).
As these probabilities are not binary, true positives can not be calculated. Instead, the summed product
of the output and the reference for every pixel/voxel is taken. Also a smoothing coefficient 𝜖 is added in
both the numerator and the denominator such that if no surface needs to be segmented and there is no
segmentation, the score is 1.

L= − 2∑𝑁
𝑖=0 𝑎𝑖𝑏𝑖 +𝜖

∑𝑁
𝑖=0 𝑎𝑖 +∑𝑁

𝑖=0 𝑏𝑖 +𝜖
where 𝑎𝑖 and 𝑏𝑖 are the pixel/voxel from the output and reference, respectively. 𝑁 is the number of voxels.
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In contrary to the Dice-Sorensen coefficient, which should be maximised to obtain the best segmen-
tation, the Soft Dice loss works with negative values. This is then minimised by the optimiser, as Gradient
Descent optimisers always work with minimisation.

2.3.5. Optimisers
Optimisers are a type of algorithm that modify the weights within a network during backpropagation. By
performing some variation of gradient descent, they try to find weight values for which the loss is minimal.
Many optimisers have been designed for this purpose, two of which are briefly explained here. The first one
is Stochastic Gradient Descent (SGD). SGDupdates theweights between layers iteratively by estimating the
gradient of the loss based on a random subselection of the data. With this gradient, theweights are updated
by using the following function:

𝜃′ = 𝜃 −𝛼⋅∇𝜃L(𝑥(𝑖);𝑦(𝑖);𝜃)
Here 𝜃 represents the weights, 𝛼 is the learning rate, L is the loss, and 𝑖 is the subset of samples to cal-
culate the gradient over. The weights are updated by using the chain rule [40], computing the loss gradi-
ent in respect to the weight that is being updated. This is gradient in respect to each weight is written as
∇𝜃L(𝑥(𝑖);𝑦(𝑖);𝜃). SGD is the basis of other optimisers, as it can be extended with features such as learning
rate decay, momentum and Nesterov, which increase the speed of the gradient descent.

ADAM,orAdaptiveMomentEstimation [23], is a special typeofGradientDescent thatuses amechanism
called momentum to smooth the noise in the direction it is moving in, which it does by calculating the
exponentially weighted moving average of the average gradients, and smooths out the variance using the
same principle but on the quadratic gradients. This second mechanism is known as RMSProp. With these
two added features, ADAM has been shown to outperform SGD on numerous problems [23]. ADAM is used
as optimiser of choice in this thesis.

2.4. Search algorithms
Search algorithms in the context of Neural Architecture Search, aremethods developed to find the best pos-
sible network within a given solution space. No prior knowledge of network performance is given to these
algorithms. It is their task to learn what performs well and what does not. In this thesis, two Evolutionary
algorithms, namely a Simple Genetic Algorithm, and a Model-Based Genetic Algorithm, as well as Local
Search are used. Before diving into the mechanisms of these algorithms, a description of is given on how
networks within NAS can be represented as encodings. Also an explanation is given on why Evolutionary
Algorithms were chosen for this problem.

2.4.1. Encodings
All individuals within a search space, are encoded in a genotype. This is a string of variables of length ℓ that
can be continuous or discrete. Every variable 𝑥𝑖 where 𝑖 ∈ [0,ℓ − 1] has a given domain. This domain is the
set of values the variable can take on, e.g. {0,1,2,3} or {𝐶,𝐺,𝑇 ,𝐴}. Every encoding can be evaluated with
a fitness function, and this fitness can be used by the algorithm to rank the individuals. Search algorithms
differ in how they rank individuals and what they do with this ranking to proceed.

In this thesis, an individual represents a DNN. In the encoding, each variable represents a different de-
sign choice. The fitness function is the chosen performance metric of an encoded DNN on a certain task.

2.4.2. Evolutionary Algorithms
Evolutionary Algorithms (EAs) are population-based optimisation algorithms, inspired by the principles
of Charles Darwin’s Survival of the Fittest. These algorithms use an evolving population of individuals to
progress through a search space. By comparing the fitness of individuals, the individuals with the highest
fitness (elites) survive. This process is called selection. The elite individuals are then used to generate new
individuals (offspring) through variation. The generated offspring is merged with the elites to form the new
population. One such cycle is called a generation.

EAs are population-based, and are more robust than point-based algorithms like Local Search in fitness
landscapes with many local optima [35], as they tend to explore more of the search space. They also do
not need any assumptions to work; all they require is a fitness function, mapping from individual to fit-
ness. Their downside however, is that they tend to need more evaluations to find the optimum in simpler
convex search spaces, compared to point-based approaches. Recent model-based EAs have shown to be
competitive in discrete optimisation problems [47], and improve on classical EAs.
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NAS for medical image segmentation is a discrete stochastic black-box⁷ problem, with a fitness land-
scape dependent on many variables, such as task, architecture, optimiser, and initialisation. As assump-
tions are very difficult to make, Evolutionary Algorithms seem to fit the problem, and have already been
used in previous NAS for image classification and image segmentation research [4, 12, 36]. However, Ran-
dom Search and Local Search have been shown to perform similarly in comparison to these algorithms
[36, 54] for other image processing tasks. It is interesting to see whether this also holds for medical image
segmentation. To compare the different algorithms, a classical population-based EA, a model-based EA,
and a point-based Local Search algorithm, were chosen to compare: SGA, P3GOMEA, and LS, respectively.

2.4.3. Simple Genetic Algorithm
The Simple Genetic Algorithm [16] (SGA) is a classical form of evolutionary algorithms. It uses mechanisms
close to natural evolution to perform selection and variation. A visualisation of the algorithm is given in
Figure 2.13, and pseudocode in Algorithm 1.

Selection is most often done with tournaments, where the individuals are matched up in groups and
the ones with the highest fitness survive. Smaller tournament sizes, i.e., the groups in which individuals
are compared, have a lower selection pressure. This means that there is a larger probability of survival for
weaker individuals.

Variation, or the generation of offspring, is accomplished with crossover and mutation. Crossover is the
process of generating a new individual with the genome of two parents. Mutation is the stochastic mecha-
nism that changes a variable based on a chosen mutation probability. In Figure 2.12, examples of variation
methods and mutation are given.

SGA does require parameter choices. Population size, tournament size, crossover mechanism, and mu-
tation rate, all need to be chosen and affect performance of the algorithm. To chose the optimal values
for these parameters, they would need to be tuned. However, this process can be very computationally
expensive and therefore can quickly become infeasible for NAS.

Figure 2.12: Three different crossover methods, uniform, 1-point, and 2-point. Uniform crossover takes either the gene from parent 1
or parent two with probability 𝑝 = 0.5. 1-point crossover decides on one position to cut the encoding, taking the front from one parent
and the back from the other. 2-point crossover works similarly, but with 2 cut points, inserting a piece of the genome of one parent in
the genome of the other. Mutation also takes place, shown with the red values. Mutation means a variable is switched with a certain
probability, called the mutation rate.

Figure 2.13: The SGA algortihm visualised in a flow chart. After a random population is initialised and evaluated, selection takes place.
The elites are then used to generate offspring. The elites and offspring then form the new population. This is repeated until a termination
criterion is satisfied.

⁷A black-box optimisation problem is often interpreted as a problem for which no gradient of the fitness landscape is available and
the shape is unknown.
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Algorithm 1 SGA algorithm
1: function SGA(𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑇 𝑦𝑝𝑒, 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑅𝑎𝑡𝑒)
2: 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ← INITIALISERANDOMPOPULATION()
3: while ¬𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛𝑆𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 do
4: 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ← EVALUATEPOPULATION(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛,𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛)
5: 𝑒𝑙𝑖𝑡𝑒𝑠 ← TOURNAMENTSELECTION(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛,𝑓𝑖𝑡𝑛𝑒𝑠𝑠)
6: 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 ← GENERATEOFFSPRING(𝑒𝑙𝑖𝑡𝑒𝑠,𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑇 𝑦𝑝𝑒,𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑅𝑎𝑡𝑒)
7: 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ← 𝑒𝑙𝑖𝑡𝑒𝑠∪𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔
8: return 𝑒𝑙𝑖𝑡𝑒𝑠,𝑓𝑖𝑡𝑛𝑒𝑠𝑠

2.4.4. P3GOMEA
ParameterlessPopulationPyramid (P3)Gene-poolOptimalMixingAlgorithm(GOMEA) is amodernmodel-
based Evolutionary Algorithm [11]. It does not only rely on stochasticmechanisms to do selection and vari-
ation, but also tries to learn which dependencies between variables could be exploited. These can then be
propagated in new individuals, potentially increasing speed of improvement. The algorithm finds depen-
dencies by learning a Linkage Model. This is defined as a structured set of subsets consisting of variables
from the encoding. This structure is known as a Family of Subsets. The learned dependencies between
variables guide the algorithm in making educated decisions and making variation more efficient.

The linkage model used in P3GOMEA is a Linkage Tree (LT). A LT is defined as a type of linkage model
that is hierarchically structured. The dependencies in it are learned during the optimisation process by first
estimating pairwise dependencies from the population and gradually building higher-order dependencies
on top of these. Structure-wise, a LT is a binary tree with 2ℓ − 1 vertices where the leaves are singleton
variables from the encoding, and the root is the set of all variables. All other vertices are subsets of these
variables, and consist of unions of its children, which in turn are disjoint subsets. Subsets of variables closer
to the leaves have stronger dependencies than the ones near the root. An example of a LT can be seen in
Figure 2.14a.

(a) Linkage Tree.

(b) Gene-pool Optimal Mixing.

Figure 2.14: A Linkage Tree is shown in 2.14a. It shows the leaves at the bottom, which all consist of singleton variables. Variables with
high shared entropy are paired and the vertices grow as you get closer to the root. The root consists of all variables in the encoding. 2.14b
shows three iterations of Gene-pool Optimal Mixing on an individual.

NormalisedMutual Information (NMI) is used as ametric to createpairwise dependencies in the linkage
tree. It looks at the Shannon entropy of both variable subsets, to see if knowing one subset would allow you
to predict the other. A high NMI value between two subsets, will make the algorithm create a dependency
by connecting these subsets in the LT, such that a union is the direct parent of the subsets. The equation for
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NMI is the following:

𝑁𝑀𝐼(𝑋,𝑌 ) = 𝐻(𝑋)+𝐻(𝑌 )−𝐻(𝑋 ∪𝑌 )
𝐻(𝑋 ∪𝑌 )

𝐻(𝑋) = ∑
𝑥∈Ω𝑋

−𝑃(𝑋 = 𝑥) log(𝑃 (𝑋 = 𝑥))

where 𝐻(𝑋) is Shannon’s entropy.
Variation is done by Gene-pool Optimal Mixing (GOM). Instead of doing crossover as explained for the

SGA, GOM does multiple crossover operations per individual, accepting improvements from another in-
dividual, or donor. The linkage tree is used to decide in what order subsets of variables are donated. For
every given subset a donor is selected, and the variables of the selected subset are tentatively donated. This
is done iteratively until an improved genotype is found. When this happens, the new genotype replaces the
old one. Forced Improvement makes sure that if no subsets from the chosen donors improved the individ-
ual, this process is repeated with the best-known individual as the donor. Due to this structure, individuals
keep improving due to donated genes. An example of GOM is given in Figure 2.14b.

P3GOMEA is a parameterless algorithm, so e.g. population size does not have to be decided like for
SGA. This is beneficial as population size tuning is not a viable solution for NAS due to computational re-
quirements. P3GOMEA has been shown to be a competitive baseline for many benchmark problems [11].
In terms of number of function evaluations required to find an optimum, it is more efficient than other
Model-Based EAs. Algorithm 2 shows the pseudocode of the algorithm in this thesis.

Algorithm 2 P3GOMEA algorithm [11]
1: function EA(fitnessFunction)
2: 𝑖𝑡𝑒𝑟 ← 0
3: 𝑃𝑦𝑟𝑎𝑚𝑖𝑑 ← {∅}
4: while ¬𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛𝑆𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 do
5: 𝑒𝑙𝑖𝑡𝑖𝑠𝑡 ← 𝑁𝑜𝑛𝑒
6: 𝑝 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛()
7: 𝑃𝑦𝑟𝑎𝑚𝑖𝑑0 ← 𝑃𝑦𝑟𝑎𝑚𝑖𝑑0 ∪{𝑝}
8: 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠𝐴𝑑𝑑𝑒𝑑 ← 𝑇 𝑟𝑢𝑒
9: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇 𝑜𝑝𝐿𝑒𝑣𝑒𝑙 ← |𝑃𝑦𝑟𝑎𝑚𝑖𝑑|−1

10: ℒ ← 0
11: 𝑒𝑙𝑖𝑡𝑖𝑠𝑡𝐵𝑒𝑓𝑜𝑟𝑒 ← 𝑒𝑙𝑖𝑡𝑖𝑠𝑡
12: whileℒ ≤ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇 𝑜𝑝𝐿𝑒𝑣𝑒𝑙 & 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠𝐴𝑑𝑑𝑒𝑑 do
13: ℱ ← 𝑙𝑒𝑎𝑟𝑛𝐿𝑖𝑛𝑘𝑎𝑔𝑒𝑀𝑜𝑑𝑒𝑙(𝑃𝑦𝑟𝑎𝑚𝑖𝑑ℒ)
14: 𝑜 ← 𝐺𝑂𝑀(𝑝,𝑃𝑦𝑟𝑎𝑚𝑖𝑑ℒ,ℱ)
15: if 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠(𝑜,𝑝) then
16: if ℒ = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇 𝑜𝑝𝐿𝑒𝑣𝑒𝑙 then
17: 𝑃𝑦𝑟𝑎𝑚𝑖𝑑ℒ+1.𝑎𝑝𝑝𝑒𝑛𝑑(∅)
18: 𝑃𝑦𝑟𝑎𝑚𝑖𝑑ℒ+1 ← 𝑃𝑦𝑟𝑎𝑚𝑖𝑑ℒ+1 ∪𝑜
19: 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠𝐴𝑑𝑑𝑒𝑑 ← 𝑇 𝑟𝑢𝑒
20: 𝑝 ← 𝑜
21: ℒ ← ℒ+1
22: 𝑒𝑙𝑖𝑡𝑖𝑠𝑡𝐴𝑓𝑡𝑒𝑟 ← 𝑒𝑙𝑖𝑡𝑖𝑠𝑡
23: return 𝑒𝑙𝑖𝑡𝑖𝑠𝑡,𝑓𝑖𝑡𝑛𝑒𝑠𝑠

2.4.5. Local Search
Local Search (LS) is a very simple search algorithm that does not keep track of anything other than the best-
found individual, or elite. It works by initialising a given or random network, and then iterating over every
value of a certain variable to check whether the network improves. If it does, the new network becomes
the elite. The algorithm will continue by passing every possible variable and every possible value trying to
find improvements. As soon as it passes all variables without improving, a new architecture is chosen at
random and the algorithm starts over. Local search has been shown to perform well on NAS problems [36].
Pseudocode is shown in Algorithm 3.
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Algorithm 3 Local Search algorithm
1: function LS(𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛)
2: 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 ← 𝑇 𝑟𝑢𝑒
3: 𝑝 ← GENERATERANDOMINDIVIDUAL()
4: 𝑒𝑙𝑖𝑡𝑒 ← 𝑝
5: 𝑒𝑙𝑖𝑡𝑒𝐹 𝑖𝑡𝑛𝑒𝑠𝑠 ← EVALUATE(𝑝,𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛)
6: while ¬𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛𝑆𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 do
7: for 𝑥 ∈ GETRANDOMLYPERMUTATION(0, ..,𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔𝐿𝑒𝑛𝑔𝑡ℎ) do
8: for 𝑖 ∈ 𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡𝑥 do
9: 𝑜 ← 𝑝

10: 𝑜 ← CHANGEVARIABLE(𝑥, 𝑖)
11: 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ← EVALUATE(𝑜,𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛)
12: if 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 > 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝐸𝑙𝑖𝑡𝑒 then
13: 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝐸𝑙𝑖𝑡𝑒 ← 𝑓𝑖𝑡𝑛𝑒𝑠𝑠
14: 𝑝 ← 𝑜
15: 𝑒𝑙𝑖𝑡𝑒 ← 𝑝
16: 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 ← 𝐹𝑎𝑙𝑠𝑒
17: if 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 then
18: 𝑝 ← GENERATERANDOMINDIVIDUAL()
19: return 𝑒𝑙𝑖𝑡𝑒,𝑒𝑙𝑖𝑡𝑒𝐹 𝑖𝑡𝑛𝑒𝑠𝑠

2.5. Neural Architecture Search
Now that both the concepts of search algorithms and DNNs have been described, the concept of Neural
Architecture Search (NAS) can be further elaborated upon. NAS is the automated design of neural network
architectures. The aim of NAS methods is to effectively and efficiently search through a space of possible
network architecture designs and find a network that is highly tailored to the task at hand [12]. While re-
search on NAS for medical image segmentation has not been as elaborate as for image classification, it has
already shown promising results by outperforming the manually designed architectures[49, 51, 55].

2.5.1. NAS Structure
NAS involves three key components: (1) the performance estimation, which is the algorithm that scores
a network’s performance, such that these networks can be ranked by the search algorithm, (2) the search
space, which is the set of all possible networks given the specified architectural constraints; and (3) the
search algorithm, which is the algorithm chosen to navigate the search space. The structure of NAS and
how the components work together is visualised in Figure 2.15.

Figure 2.15: The structure of NAS. The search algorithm tries to find the best possible network, and generates networks from the search
space to do so. A network is then queried to verify its performance, returning an estimate for the search algorithm to work with.
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2.5.2. Performance estimation
Thegoal of performance estimation is to give a search algorithm an accurate estimate of howwell a network
will perform on the task at hand. Two main challenges need to be tackled for performance estimation to
work well: (1) NN training is a stochastic process, meaning that due to the large influence of stochastic
methods in initialisation, data splits, data augmentation, and optimisation, a network might have varying
performances in different runs. (2) Performance estimation is time-consuming. Training a network until
saturation can take hours or even days, and repeating this for multiple iterations will only increase the time
consumption. To circumvent this, research has looked into how to evaluate a network without having to
train it. Four existing methods of performance estimation are: network evaluation, incomplete training
[32, 38, 39], surrogate models [4, 29], and one-shot models [27, 36].

As mentioned, network evaluation is stochastic and time-consuming. A common approach is to eval-
uate for one random seed, which is a a certain value that will dictate all the random numbers generated
during a run⁸, and one fold of a data split [12]. Although this gives an estimate based on actual perfor-
mance, this estimate could still be quite noisy due to dataset properties and other causes of noise. So far,
no literature has looked into the noise of DNN performance for medical image segmentation tasks.

Incomplete training performance estimators aremethods that predict performance based on a network
that was not trained until saturation. This could be done using some secondary measurement of perfor-
mance, like loss [39] onpartially trainednetworks, or ametric based offof one forward pass on anuntrained
network [32]. However, when network evaluations are noisy, these metrics would generally have the same
issues, only amplified. Observations on this can be seen in Chapter 4.

Surrogate models are another way of predicting the performance of a DNN in NAS. They aim to train a
regression model on the performances from network evaluations, which are only done sparingly. Gaussian
processes, and Random forests, are two popular methods for this [4, 29]. These regressors are very adept at
learning functions in multidimensional spaces and will output a predicted score within seconds. This can
vastly speed up NAS and is, therefore, an interesting concept.

One-shot models, are a third way of evaluating networks in a very quick fashion. The idea is to create a
Super-network that contains all possible networks from the search space within it, and train it until satura-
tion. Thenetwork chosen by the search algorithm to be evaluated, is then extracted from the Super-network
and validated. This validation score is then used as a performance estimate. Although faster than evaluat-
ing networks separately, literature has shown that weight sharing degrades the performance of NAS. The
extracted networks seem to under-perform and rank differently to the networks when trained individually
[54].

These alternate performance estimation methods all attempt to speed up the process of performance
estimation. However this speed-up mostly comes at a cost. It would be interesting to see how accurate and
noisy some of these methods are in comparison with trained network evaluations.

2.5.3. Search space
The search space in NAS has many degrees of freedom. Every operation can be configured differently by
using different convolution sizes, activation functions, and normalisation schemes. Additionally, every op-
eration has consequences on the next. To make this search space traversable by a search algorithm, it is
necessary to constrain and define this space. Often in NAS, the search space is divided into two different
levels: a micro-level, and a macro-level [12].

The micro-level, or cell level, consists of the design choices on cell composition. This encompasses
choices on operation types, e.g. pooling or convolutions, convolution kernel sizes, activation functions,
etc. However the macro-level is usually fixed for this type of research so prior topology assumptions are
required.

The macro-level, also known as the topology level, looks at the architectural decisions on how to stack
cells, andwhatdimensions the featuremaps shouldhaveat everyposition. It also looks at skip-connections,
to see whether networks should become more dense, by allowing cells to use multiple concatenated previ-
ous outputs as input. The contents of every cell are fixed, however.

Bi-level search spaces, where macro- and micro-levels are searched consecutively, exist as well [55]. In
this type of research, the levels are mostly searched sequentially, where the macro-level is first searched
with fixed cells, and then the cell structures are optimised. However, the size of a combined search space
can grow out of hand quickly. Therefore, thoughtful restrictions are necessary.
⁸random numbers are used for a plethora of different functions in CNN training, such as weight initialisation values, what augmenta-
tions to apply, what images are part of a batch, and the calculations of the gradient for the optimiser.
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Instead of discrete search spaces, such as the ones explained above, one could also create a single net-
work that contains every possible architecture in a search space, called a Super-network. Using continuous
relaxation, the elements that contribute least to the network output can then be removed using gradient-
based approaches [51]. However, this approach uses weight sharing, i.e., overlapping sub-networks with
different architectures within the Super-network use the same weights at the overlapping location. Accord-
ing to Yu et Al. [54], this could deteriorate the quality of results. Also, this type of search is computationally
veryheavydue to the size of the Super-networks. Therefore, thedecisionwasmade to stick todiscrete search
spaces without weight sharing.

2.5.4. Search algorithms
NAS search algorithms can be categorised into Reinforcement Learning (RL), gradient-based algorithms
(GD) and Evolutionary Algorithms (EA), and other search techniques such as Random Search (RS) and Lo-
cal Search (LS). Reinforcement learning works on the basis of an agent that constructs architectures, and
is rewarded for good architectures and punished for bad ones. The eventual policy learned by the agent
should output the best possible network. Gradient-based algorithms are all methods that use an estimate
of the gradient to optimise the performance of a network. These gradient-based search algorithms only
work for continuous search spaces using Super-networks. Evolutionary algorithms are population-based
optimisation methods. SGA and P3GOMEA, as described in sections 2.4.3 and 2.4.4 respectively, are part of
this family of algorithms. TheLS algorithmmentioned in section 2.4.5 is an example of a simple point-based
improvement algorithm.

Evaluating these different approaches in real-life scenarios is quite costly. It is for this reason that bench-
marks were created. These benchmarks are logs of performances of networks, such that performance esti-
mation methods are no longer necessary. Benchmarks often used for image segmentation are NAS-Bench-
101 [53], NAS-Bench-301 [42] and other benchmarks such MacroNAS-C10 and MacroNAS-C100 that were
created for multi-objective NAS [36]. These benchmarks however do not contain any medical datasets,
mostly focusing on CIFAR-10 and CIFAR-100, two natural image classification tasks. The search spaces in-
volved are also very different, leading to very different optimisation problems.

Research on these benchmarks, has shown that random policies, i.e. Random Search, do not under-
perform compared to other algorithms [54]. A cause for this, could be that performance estimates of net-
works in a benchmark are based on a single evaluation, and these still contain much noise. The fitness
landscape seen by the search algorithm could therefore be very different than the one when evaluating the
same networks using cross-validation. This leads to the possibility of an elite network being found based
on a peak induced by noise rather than a robust improvement. Other research has shown that simple Lo-
cal Search can be a strong benchmark when doing multi-objective optimisation [36]. Due to these varying
results, it is very difficult to decide on a single search algorithm that seems to perform particularly well on
NAS problems.

Between RL, GD, and EAs, a choice was made to focus on EAs. As mentioned GD methods only work
on Super-network approaches with available gradients and not on discrete search spaces, so they were left
out. RL and EAs have both been shown to work for NAS [4, 36, 55, 57], however SotA RL methods rely on
NeuralNetworks to learnpolicies for theproblem,whichhas two issues: (1) thesemethods require relatively
many hyperparameters choices, and tuning each of these parameters is very computationally expensive for
NAS, (2) if a NN is used to learn the fitness landscape of the policy, should it not be optimised using NAS as
well? Additionally, EAs have been shown to work well with NAS, and have a robust performance in fitness
landscapes with many local optima [35]. Recent model-based EAs have also been shown to be competitive
in diverse discrete optimisation problems [47]. This led to the decision to focus on EAs in this thesis.

2.6. Suggested improvements
The research on NAS has already been quite extensive for classification tasks [12]. As less research has been
done on NAS for medical image segmentation, especially with clinical datasets, there is room for improve-
ment and new insights in this field. Potentially, strong performing search algorithms could be translated
fromother domains to themedical image segmentation domain. However,multipleNAS papers [52, 54] in-
dicate that a lot of search algorithms do not outperform random search policies after validation, and there-
fore need to be evaluated before choosing which one performs well on medical image segmentation tasks.
The search space cannot be translated as it is specific to segmentation tasks. Bi-level search spaces have
shown promising results in both classification and segmentation tasks [4, 45, 51, 55], but cell level variation
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is very small and the search space often very elaborate [52], which could lead to relatively small improve-
ments being lost in the noise of performance estimation. Below are the improvements suggested by this
thesis for the different components of NAS. They are linked to the research questions from Chapter 1.

2.6.1. Reduced noise performance estimation
Estimating DNN performance on medical image segmentation is dependent on the chosen segmentation
similarity metric, the dataset and the network evaluation method. All these aspects can cause different
amounts of noise in the value returned. Existing metrics rely on different segmentation properties [6, 9,
34], such that decisions have to be made on what property to optimise. These metrics are also noisy in
comparison with metrics used for other tasks such as image classification. In medical image segmentation,
the performance values per segmented class are computed using values per pixel/voxel, whereas for image
classification performance values per classified class in an image are binary. This leads to a larger range of
possible segmentation similarity scores, and more sensitivity.

Datasets in medical image segmentation are also relatively small, often containing less than 100 scans.
The regions of interest in these scans, such as organs and tumors, can also vary a lot between patients.
Next to patient variation, human error and difference in physician interpretation, also cause variation in
the provided delineations. This variation within and small size of datasets, make the task of quantifying
network performance more susceptible to noise, as datasplits can cause both favourable and unfavourable
situations.

Researchonhownoisymetrics are andhowmuchnoise is inducedbyadataset, is understudied in litera-
ture, although possibly impacting DNN performance estimation quite significantly. It would be interesting
to evaluate this noise and analyse its effect on performance estimation of DNNs.

Next to noise in the data, estimating performance of a DNN on any task has inherent noise, as the ini-
tialisation and training of the network is stochastic [42]. Assessing DNN performance by training the DNN
and averaging the score of the provided segmentations on a validation set is computationally expensive.
For this reason, NAS research has tried to speed up the process by creating surrogate models [4, 29], or in-
complete training predictors [32, 39], to predict performance. However, these methods add inherent error
to the estimated performance value, which could lead to sub-optimal networks being found as elite by NAS
algorithms. As there are many possible sources of noise for performance estimation of DNNs for medical
image segmentation, it could be possible that these alternatemethods, aswell as single training run estima-
tions might not reflect the true performance of a network. Literature has even shown that after validation,
NAS results often do not outperform random search policies [52, 54], indicating performance estimation
differences between the used evaluation method and validation.

In Chapter 4, different performance estimation methods are analysed in order to gain insights on the
noise in network performance estimation. With these insights, a method is proposed to evaluate whether
or not NAS will be able to robustly improve on SotA networks for a certain dataset.

2.6.2. Simultaneous Multi-Block search space
Multiple search spaces have been proposed for medical image segmentation. These include a topology
search,where the search algorithm looks for aU-Net-like encoder-decoder topology [3, 49], a bi-level search
where the topology search is followed by a cell search [55], or a combination of topology and cell search us-
ing continuous relaxation and a so-called Super-network [27, 51]. Within the scope of aU-Net-like topology
search, there is room for making the search space more flexible. Instead of having an elaborate cell search
space and repeating the same cell structure throughout the DNN, using various cell structures in a network
could improve performance. In order to make this possible without the search space growing too much,
the possible cell configurations can be limited. These configurations are selected using existing knowledge
about DNNs with a strong performance on classification tasks. Using this pre-selected pool of configura-
tions taken from advanced well-known classification networks [14, 18, 44], instead of searching for a cell
configuration from scratch, can also lead to more structural differences in the cell search space. Finally, in
contrast to recent bi-level search space research [55], where topology level search is followed by cell level
search, these levels can be searched simultaneously. This allows algorithms to take possible interaction
between the topology and cell search into account, potentially yielding better performing networks.

In Chapter 5, this new search space is evaluated and the results compared to SotA hand-crafted net-
works, as well as to networks obtained using different search spaces.
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2.6.3. Robust search algorithms
As reports of how algorithms perform on benchmarks differ, it is interesting to compare several search al-
gorithms on different levels of noise in performance estimation, which is inherent to the task of medical
image segmentation. By comparing the performance of search algorithms on an unbenchmarked dataset,
a performance comparison can be done.

In Chapter 6, a comparison is done between LS, SGA and P3GOMEA (see Section 2.4 for pseudocode)
on an unbenchmarked clinically realistic medical image segmentation dataset. In these experiments, algo-
rithm performances and robustness are compared.





3
Data

This chapter contains information on the datasets used throughout this thesis. It will cover the type of scans
involved, the region of interest to be segmented and the properties of the data.

3.1. Datasets
Datasets in medical image segmentation contain sensitive information which make them quite restrictive
in terms of privacy. However, in order to compare performance of NASmethods it is crucial that the dataset
is publicly available. To accomplish this, the organisers of the Medical Segmentation Decathlon (MSD) [1],
collected and anonymisedmedical imaging datasets and set-up an international open competition in order
to promote the search for generalisable ML for medical image segmentation.

3.1.1. Medical Segmentation Decathlon
DNNs and/or NAS strategies that generalise well should be able to perform well on varying problems with-
out human intervention. They should be able to operate well on different medical image segmentation
dataset sizes, scan settings, amounts of classes to segment, and regions of interest. The MSD collection
contains 10 datasets with varying properties and a leaderboard to see how methods compare. The different
datasets have varying difficulties to overcome, that are often encountered in medical images, such as small
datasets, unbalanced labels, multi-site data and small regions of interest. Teams from around the world are
allowed to train networks on training data, and submit segmented test data to evaluate performance. The
results of these segmentations were published in 2021, ranking teams per task [1]. A global leaderboard is
also still kept to show what networks performed well on different tasks.

From the MSD datasets, two were chosen to experiment with, such that comparison is possible with
other SotA NAS strategies and DNNs. A third dataset from Amsterdam University Medical Centre, location
AMC, University of Amsterdam, was used for experiments where comparisons are only relative to other
approaches in this thesis.

3.1.2. MSD Prostate
The first dataset that was chosen for experiments is the prostate dataset from the Medical Segmentation
Decathlon. It contains 32 multi-modal MRI scans with two classes: the central gland and the peripheral
zone of the prostate. What makes this segmentation task challenging is that there are two adjoint regions
with large inter-subject variations [1]. The dimensions of the scans are approximately 2 × 16 × 320 × 320,
with these exact values being the median. As some images contain more slices or have a slightly different
width and height, the images were resampled to be 128 × 128 and stored as 2D images. This translates to 2
modalities, 13-20 slices, and a resolution of 128 by 128 pixels per slice.

The twomodalities in theMRI scan are T2 and ADC.The former captures the time it takes for amagnetic
resonance signal to irreversibly decay to 1

𝑒 (37%) of its initial value. It creates an imagewhere fatty tissue and
fluids have high intensity values and bone, air and proteins are dark. Apparent diffusion coefficient (ADC)
images, are MRI images that show diffusion of water molecules in tissue. ADC images have high intensities
when diffusion rates are high [2]. Examples of these two modalities are given in Figure 3.1.
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The goal is to learn features from these two modalities such that the central prostate gland and the pe-
ripheral zone canbe segmented accurately. Thesedivisions seem to vary largely per patient, and anexample
of this can be seen in Figure 3.1. According to McNeal in his paper The zonal anatomy of the prostate [31],
”the peripheral zone constitutes over 70% of the glandular prostate. It forms a disc of tissue whose ducts
radiate laterally from the urethra lateral and distal to the verumontanum. [...] The central zone constitutes
25% of the glandular prostate. Its ducts arise close to the ejaculatory duct orifices and follow these ducts
proximally, branching laterally near the prostate base. Its lateral border fuses with the proximal peripheral
zone border, completing in continuity with the peripheral zone, a full disc of secretory tissue oriented in a
coronal plane”. In Figure 3.1 the different areas can be seen clearly in the masks as provided by physicians
at the Radboud University Medical Centre. This dataset will be referred to asMSDProstate throughout this
thesis.

(a) Patient 1. (b) Patient 2.

Figure 3.1: A selection of slices of prostate MRIs from two patients within the MSD dataset. The first column contains the T2 modality,
and the second is the ADC modality from the MRI scan. In the third column the T2 modality is layered with the reference mask showing
the central gland in yellow and the peripheral zone in magenta. The difference in relative zone size is quite clear between patient 1 in
Figure 3.1a and patient 2 in Figure 3.1b.

3.1.3. MSD Spleen
The second dataset that was used is the spleen dataset from the MSD. In contrast to the prostate dataset,
it has a single modality, generated using a CT scanner. It contains 41 scans with a single class, the spleen.
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The foreground size of the spleen however varies largely throughout a scan. The dimensions of the scans
are approximately 90 × 512 × 512 with these exact values being the median. These were resampled to 2D
images of with resolution 128 × 128. This translates to 30-167 slices per patient, and a resolution of 128 by
128 pixels per slice.

The CT scan uses X-ray technology to create cross-sectional slices of the human body. The CT-scanner
calculates the attenuation of the material, based on of the decrease of electromagnetic radiation due to
tissue absorption [17]. Denser tissues, such as bone, will have high intensity in a CT-scan while air, will be
very dark. In Figure 3.2 the different organs can be seen in the scans and a clear reference mask as provided
byphysicians at theMemorial SloanKetteringCancerCenter. Thisdatasetwill be referred to asMSDSpleen.

(a) Patient 1. (b) Patient 2. (c) Patient 3.

Figure 3.2: A selection of CT scan slices from three patients within the MSD Spleen dataset. The first column contains the CT scan, the
second the CT scan layered with the reference mask showing the spleen.

3.1.4. AMC Prostate
The last dataset is not publically available, but was provided by the Amsterdam University Medical Cen-
tre, location AMC, University of Amsterdam, as part of the FEDMix project under supervision of Arkadiy
Dushatskiy, of CWI. It contains single modality MRI scans. It contains 41 scans with a single class contain-
ing the entire prostate. The prostate in in these scans contain tumors and have been piercedwith catheters,
as the scanswere collected during brachytherapy, where the prostate cancer is radiated. Thismakes the task
different and potentially more difficult than general prostate segmentation. The dimensions of the scans
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are approximately 13 × 128 × 128 with these exact values being the median. This translates to 13 slices per
patient, and a resolution of 128 by 128 pixels per slice.

Thebenefit of this dataset is the easier task, due to it containing a single class, singlemodality input, with
few slices without foreground. This shortens experiment time because DNNs converge faster on this task.
It also was collected in clinical practice, mimicking a realistic situation. For these reasons, all experiments
that do not compare results with SotA performances are run with this dataset. For privacy reasons, the
dataset is not visualised in this thesis. It will be referred to as AMC Prostate. Before proceeding, a word of
thanks to the AmsterdamUniversityMedical Centre, location AMC, University of Amsterdam, for providing
the dataset, especially Bradley Pieters.
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Performance Estimation

This chapter describes the difficulties of performance estimation for medical image segmentation DNNs.
It describes how similarity between two segmentations can be scored and how different metrics optimise
different segmentation properties. It continues by elaborating on how network performance can be es-
tablished, and what factors can induce noise in network performance values. Next, insights are given on
whether network performance can be predicted in a quicker way than evaluating a trained network. It pro-
ceeds by showing how much noise network evaluations contain, and that rankings of the same group of
architectures vary when training them for different seeds and on different folds. It also shows how noise
propagates through the entire NAS procedure. Finally, it provides insights on whether or not NAS can ef-
fectively find networks that robustly improve on SotA, and what the computational cost is to do so.

4.1. Segmentation similarity metrics
In Chapter 2.3.3, an introduction is given to three different kinds of segmentation similarity metrics. These
are theDice-SorensenCoefficient (DSC), Hausdorff distance (HD), and SurfaceDice (SD).Thesemetrics re-
late to different segmentation properties. Where DSC quantifies the ratio of correctly labeled pixels/voxels,
HD finds the biggest difference between segmentation surfaces, and SD looks at the ratio of how much of
the two segmentations are inside a certain threshold apart from each other. Optimising for one of these
metrics could lead to different segmentation properties being favoured. In the example in Figure 4.1, it is
clear to see that segmentations could score very differently for these metrics and could be considered good
by one but poor by the other. Eventually it would be up to a physician to give a preference as towhichmetric
should be optimised.

Figure 4.1: The different metrics lead to optimising different properties in a segmentation. In the figure, the segmentation on the right
has a better (higher) Dice-Sorensen Similarity Coefficient, and Surface Dice Similarity Coefficient, while the segmentation in the middle
has a better (lower) Hausdorff Distance.

For all these metrics, the score per segmentation is a real positive number (ℝ+). For DSC and SD, the
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values will range from [0,1], and for HD the values range from [0,∞⟩. This is different to the categorical out-
put of a classification task, where the score of an image can only take on 𝐶 +1 different values, 𝐶 being the
number of possible classes. This means that for the metrics in image segmentation, scores are more sensi-
tive to small changes in DNN output, as these scores are altered quicker per differently labeled pixel/voxel,
where for classification scores are calculated per correctly labeled class and thus more robust.

To score the performance of a DNN,multiple segmentations need to be evaluated. Themost logical way
to accumulate these segmentation scores, is to average the score per image over the validation set images.
As datasets inmedical image segmentation are often quite small (AMCprostate andMSD spleen contain 41
scans, and MSD spleen contains 32), the validation images are part of a small set. This means that average
performancebetween splits and also between folds can vary quitemuch,which canbe seen in Section 4.2.2.

Another factor thatmakes scoringof aDNNdifficult formedical image segmentation, is the fact that seg-
mentations are often performed by different physicians, that delineate organs differently, as well as having
varying delineations on different days. These phenomena are called inter- and intra-physician variability
[7], resp., and cause noise within a dataset. Ideally the DNN would learn a perfect average of these delin-
eations.

To conclude, the metrics in medical image segmentation use different properties to score similarity be-
tween segmentations. Using different metrics as performance estimate will lead to different segmentation
propertiesbeingoptimisedbyaDNN.The larger scoring rangeand sensitivity of themetrics, in combination
with the relatively small size of the datasets, and inter- and intra-physician variability within the datasets,
make measuring performance of a DNN for medical image segmentation both more subjective, and more
sensitive to noise, than for image classification.

4.2. Noise in performance estimation
Noise, or variance in resultswhen reproducing themmultiple times, is inherent to all stochastic procedures.
As Neural Networks fall into this category, noise in the optimisation and evaluation cannot be disregarded.
However, if noise is relatively small compared to the possible performance values for a certain task, it can
be less of an issue. Through varying outcomes in NAS experimentation throughout this chapter, the impor-
tance of understanding and quantifying noise becomes increasingly clear.

For NAS, the different sources of noise can be categorised into the noise induced by performance esti-
mation and the noise caused by a stochastic search algorithm. In Figure 4.2, a breakdown is given of the
different aspects within NAS that can induce noise, in particular for performance estimation.

Figure 4.2: The different sources of noise in NAS, in particular for performance estimation of a network, are shown. While the perfor-
mance metric does not directly induce noise, it influences the accuracy, and the susceptibility to noise, of the performance estimation.
Noise sources for performance estimation are categorised in 2 groups in the figure. The first, is the noise generated by the data used. The
second, is the noise caused by the optimisation of the DNN.

The sources of noise for performance estimation can be split into two categories: (1) noise from the
data, which can be ingrained in a dataset, and results in different performance values for different folds in
a data split, and for different average performance values for different splits; and (2) noise from the DNN
optimisation, which is caused by stochastic mechanisms within the DNN, such as random weight initiali-
sation, SGD, and training batch composition (i.e. what order training data is loaded into the network). This
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noise can also be self-induced by data augmentations during training, something that is often necessary to
increase training samples when using small datasets.

The third source of noise comes from the stochastic elements in search algorithms. These algorithms of-
ten generate (an) initial solution(s) randomly, and contain stochastic elements in the search approach, e.g.
crossover, donor selection, and variable selection. However as this chapter looks at performance estimation
of networks outside the NAS procedure, this will be disregarded until Chapter 6.

4.2.1. Measuring DNN performance
Before diving deeper into how to deal with different sources of noise, it is necessary to look at performance
metrics, and how to translate from a single segmentation score to a performance estimate of a DNN. As
explained in Section 4.1, similarity can be measured between segmentations and averaged for a validation
set. But this average changes as a network is trained, and weights are optimised. This is a result of the noise
caused by DNN optimisation.

First of all, after having decided on a validation metric, a decision needs to be made on what value to
use for the performance of a network: the final validation accuracy, the maximum validation accuracy, or
an average accuracy of multiple epochs. Other decisions, such as the number of epochs for training, which
optimiser to use, and the learning rate of the optimiser, all affect the value of the outcome.

To simplify the decision of network setup, the optimiser and learning rate were fixed to ADAM and a
learning rate of 1𝑒 − 3 with polynomial decay with exponent 0.9. This was done after experimenting with
U-Net and manually searching for a high-performance optimiser. The AMC dataset was chosen for exper-
iments, as it contains a simple single class segmentation task, and networks converge relatively quickly
compared to the other datasets discussed in Chapter 3. It also contains scans collected in actual clinical
circumstances, giving more realistic insights in NAS performance for clinical purposes. Here the DSC was
used as validation metric. The networks that were evaluated were randomly chosen from a simplified ver-
sion of MB-NAS (which is a simplified version of the search space described in Chapter 5), containing the
same macro-level search space, but a micro-level search space that only includes the VGG block, and only
varies convolution kernel size in the micro-level.

To find what metric would be the most stable, and would best reflect if a network performance estimate
is robust, an experiment was done to evaluate how much noise the maximum, final, and average validation
DSC contain. To measure the noise in the metric, 20 randomly chosen networks in the search space were
evaluated. The noise was computed by looking at the difference between the average validation DSC of
every network for 5 different seeds. This is visualised in a box-plot in Figure 4.3.

(a)Noise distributions for different training values of DSC. (b) Plots of different training values of DSC per epoch.

Figure4.3: Examplenoisedistributions formaximumDSC,finalDSC, averageDSCof the last 20%of epochs, averageDSCoverall epochs,
is given in 4.3a. The box-plots show the 1st quantile (Q1), median, and 3rd quantile (Q3) values. Thewhiskers show 𝑄1–1.5×𝐼𝑄𝑅 and
𝑄3 + 1.5 × 𝐼𝑄𝑅 values, where the interquantile range (IQR) is 𝑄3 − 𝑄1. The first three box-plots are very similar. In 4.3b, example
plots are given for a network evaluation with different stored values of the DSC metric.

Theoutcomeof theexperimentwas that thenoise for themaximumDSC, thefinalDSC, and theaveraged
value of the last 20% of epochs is quite similar. This led to the decision of using the average last 20% of
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epochs as to not overestimate network performance. The number of epochs was decided by looking into
the saturation of the network. For the AMC dataset, this was set at 40 epochs.

4.2.2. Evaluating noise
As canbe seen from theboxplots in Figure 4.3, there is noise betweendifferent seeds. To reduce this noise, it
is necessary to sample outcomes multiple times. However, DNN network evaluations are expensive. Train-
ing a network until saturation can take hours, even days. So unfortunately, the amount of samples possible
per network evaluation will lead to less possible network evaluations when running NAS due to compu-
tational budget. Therefore, it is important to find out how many samples are necessary without sampling
excessively.

In the experiment visualised in Figure 4.4, 20 randomly selected networks were evaluated for 5 seeds, on
3 different 5-fold splits. The figure shows the distribution of noise per seed for different folds in box plots.
It is clear that these noise levels, if evaluations are only done once, can cause very misleading perceptions
of network performance. The figure also shows that the average and variance of performance levels for
different folds, can be vastly different. Also, statistically significant differences in performance of networks
can arise when using different dataset splits. This can be troubling when comparing results in different
papers based on cross-validation scores.

(a) 5-fold data split 1.

(b) 5-fold data split 2.

(c) 5-fold data split 3.

Figure 4.4: Noise and performance values in different data splits of the AMC Prostate dataset. On the left, box plots are shown that
visualise the noise levels of different seeds based on the average network performance of a certain fold. This noise is induced by the
stochastic optimisation of the DNN.The black box-plot is the average noise for a certain data split. It is clear to see that noise can vary per
fold, as can be seen in Fold 2 and 3 having more noise relative to the other folds in 4.4a. The average noise is also relatively large for the
data split in 4.4a vs. 4.4b and 4.4c. On the right, the distribution of network performances for different folds in a split are shown when
averaged over 5 seeds, as well as the performance of the networks when averaging over all the folds. These distributions show the noise
induced the data, when using different folds and data splits. Themean of performance values can be different between splits, with split 3
obtaining a higher performance than split 1, with a statistical significance of 𝑝 = 0.017 for an independent t-test. Also, the performance
distribution between folds can be very different, as seen by the different shapes and locations of the ’bells’.
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The results of this experiment show that noise caused by data can be observed when looking at average
performance estimates on various folds and data splits. Using multiple data splits and folds could reduce
this noise. The noise caused by DNN optimisation can be observed by looking at the difference in perfor-
mance estimates of the same network on the same fold. This could be reduced by averaging over multiple
seeds.

These insights are valuable, as the noise and the average performance value of a network, might help
predict how networks are ranked when sampled. To obtain more insights on difference in ranking, another
experiment was conducted. In it, the difference in ranking was compared by looking at the average correla-
tion between rankings using different evaluation methods. These methods look at averaging over different
amounts of seeds, folds, and epochs, and are compared to the ranking when averaging over scores after 40
epochs for 5 seeds and 1 data split of 5 folds. For example, howdoes the ranking based on a 1 seed, 1 fold, 20
epoch evaluation of a group of networks, compare to the ranking of a 5 seeds, 5 folds, 40 epoch evaluation
of the same networks. This is visualised in Figure 4.5. To compare the network rankings the Spearman rank
correlation [33] is used. This metric compares the rank of a number of random DNNs in a search space,
on one side ranked by the performance estimator, i.e., the evaluation method using a different amount of
seeds, folds and epochs, on the other side ranked based on performance score, i.e. the ranking after 40
epochs averaging over 5 seeds and 5 folds. The Spearman rank correlation is calculated using:

𝑟𝑠 = 1− 6∑𝑑2
𝑖

𝑛(𝑛2 −1)
where, 𝑑𝑖 is the difference in rank of 𝑖, and 𝑛 is the number of participants. To get a feeling of this met-
ric, example correlation levels and ranking differences are visualised in Figure 4.6. In Figure 4.5, the rank
comparison shows that the ranking based on a single seed, single fold network evaluation, has a very low
correlation with the ranking based on the performance value of the same networks when averaging over
5 seeds and 5 folds. This means that doing NAS with single seed, single fold evaluations, something very
common in NAS for classification tasks, does not work for the medical image segmentation tasks at hand,
as it leads to networks being found that might not perform well on the entire dataset or for different seeds.

Figure 4.5: Spearman correlations for the ranking per epoch when compared to the final ranking of a 5 seeds, 5 folds evaluation. These
correlations are shown for different multiple seed and fold runs. The solid lines represent the mean while the shaded area represents the
standarddeviation. The ranking is based on the averageDSC for the last 20%of epochs, which is averaged over every possible combination
ofmultiple seeds and folds that complieswith the amount of seeds and folds shown in the legend. This is done for 20 randomarchitectures.

This finding is reinforced when calculating the Mean Absolute Error (MAE) for a classification task and
a medical image segmentation task. This is done by finding the mean difference between the performance
value of a single seed vs. a validation value using multiple seeds. In classification, for networks in an ex-
ample search space, NAS-Bench-101 [53], where single seed evaluations on CIFAR-10 and CIFAR-100 are
used and evaluated on a validation set, the MAE is ≈ 4.5𝑒−3 [42], when validating with two other seeds. In
comparison, the MAE for the networks evaluated for the AMC dataset and the simplified MB-NAS search
space, is ≈ 9𝑒−2, which is 20 times larger than for CIFAR-10 with a simple search space.
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Figure 4.6: Three examples of rank comparison for correlation levels 0.5, 0.7 and 0.9 for qualitative comparison.

This has quite an implication, because it means that cheap network evaluations are not going to work
wellwithNAS formedical image segmentation. Thesearchalgorithmwouldnotbeable to rank thenetworks
such that they reflect robust performance.

4.3. Alternate performance estimators
Before abandoning cheaper evaluations, such as single network evaluations, other methods to estimate
network metrics are attempted. Because of the computational cost of network evaluation, a lot of research
has gone into finding ways to accurately predict architecture performance without having to perform full
network evaluations. Three proposed methods from image classification are incomplete training perfor-
mance predictors, surrogate-assisted performance estimators, and one-shot models. To analyse if these
estimators are useful for NAS for medical image segmentations, their performance prediction is compared
to full evaluation performance scores.

4.3.1. Incomplete training performance predictors
In several papers [32, 38], authors find high correlations in metrics from DNNs that are not trained until
saturation, and the validation accuracy of the same DNNs. In [38] the training loss, in particular the sum of
the training gradient is used to achieve Spearman rank correlations of > 0.8 for all the evaluated classifica-
tion datasets and search spaces. As no literature for such performance estimators exists for medical image
segmentation tasks, these methods first have to be translated. To evaluate if this also holds for medical im-
age segmentation tasks, differentmetrics and their correlations with the final validation score are analysed.
These experiments can be seen in Figure 4.7.

The experiments look at the AMC prostate dataset, and use a simplified version of the MB-NAS search
space, using only VGG blocks and only varying convolution kernel size per cell. In a group of 20 random
networks, the training loss, validation loss, validation accuracy, the training loss gradient, and the validation
loss gradient are shown. Thevalues are also smoothedwith differentmethods, showing a sumof all previous
values, sum of the last 50%, sum of the last 20%, and no smoothing. Unfortunately, all these metrics show
poor rank correlations at early stages and do not come close to values useful for prediction. What seems
to work for CIFAR in image classification, does not seem to translate to the medical image segmentation
domain, at least not for the AMC Prostate dataset.

4.3.2. Surrogate models and One-shot models
Another approach to creating cheaper performance estimation are surrogate models. These methods train
regression models with a set of full evaluations to guide the search to another possible high performance
network [4, 12]. Only sparingly are networks evaluated in order to improve the surrogate. In order to eval-
uate if surrogates work for medical image segmentation, it is necessary to know if NAS without surrogates
can work, to know with what type of evaluations to train the surrogate. Only after that, can a surrogate be
designed. As this task is difficult and search space specific, surrogates cannot be immediately translated
from classification tasks and require elaborate research. For this reason surrogatemodels are left out in this
thesis.

One-shot models, using weight sharing, try to bypass retraining networks by training a single so called
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(a) Spearman correlation coefficients of different metrics
during network training with the ranking after evaluation of
that same seed and fold after 40 epochs.

(b) Spearman correlation coefficients of different metrics
during network training with the ranking after evaluation
averaged over all seeds and folds after 40 epochs.

Figure 4.7: Spearman Correlation coefficients of multiple metrics during the training of a network. Other than the validation Soft Dice
loss and the validation DSC, none of the metrics have a visible correlation with the final performance of the 1 seed, 1 fold run, as shown
in 4.7a. None of the metrics have a strong correlation with the averaged final performance of 5 seeds, 5 folds evaluation, although the
correlation of the train loss and train loss gradient seems slightly higher than for the 1 seed, 1 fold case, as seen in 4.7b.

supermodel. These models unfortunately have been shown to have deteriorated performance of evaluated
networks, and the correlation with the same networks trained without weight-sharing is low [54]. This low
correlationwith eventual performance is the purpose of performance estimation. For this reason, and com-
putational restraints, supermodels are left out of this thesis as well.

4.4. Probability of finding the best network
The previous sections show that, due to the noise in medical image segmentation tasks, multiple network
evaluations are necessary in order to overcome noise and obtain an accurate performance indication of
how a network performs. To give an indication of how many are needed for the AMC dataset, an estimation
of the probability of finding the best network is given in Figure 4.8. The probability is based on the Gaussian
distributions shown in Figure 4.4. The network ranking is created by using the mean DSC from a 10 seeds,
5 folds evaluation for a 5-fold split. The difference in performance distribution is then shown based on the
scores of these networks. For example, for 1 seed, 5 folds evaluations, a distribution is created based on the
10 seeds that were evaluated for that network. This is done for both the worst and best network in order to
visualise the difference in distribution. By using the same method to create a performance distribution for
every network, a CDF of the probability of the best sampled network being in the top X percent of networks
(based on the 10 seed, 5 folds evaluation) is created. This is based on results originating from sampling 1𝑒6
times from the estimated distributions.

The probabilities in the different CDFs show the added value of multiple samples when doing network
evaluations. Using 3 seeds, 5 folds evaluations, leads to higher correlations in this situation, and therefore
higher probabilities of finding the best network, at least if the seeds and folds used in the evaluation are
also part of the seeds and folds used to validate the network. The only issue is that it is not good practice to
validate the results with the same seeds and folds when evaluating stochastic algorithms. How this changes
performance estimation is covered in Section 4.5.

4.5. NAS with noise
In the previous sections, experiments show that there is noise in performance estimation, and that it affects
the ranking of networks. The differences in rankings could influence the performance of a NAS algorithm.

To observe how noise propagates through NAS, an experiment with a Local Search algorithm was done.
LS has been shown to be a strong baseline for NAS [36]. Specifically, a first-improvement approach with a
variable neighbourhood of 1 is used. The pseudocode for this algorithm can be seen in Algorithm 3. The
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(a) 1 seed, 1 fold evaluations, average Spearman correlation coefficient: 0.43.

(b) 1 seed, 5 folds evaluations, average Spearman correlation coefficient: 0.80.

(c) 3 seeds, 5 folds evaluations, average Spearman correlation coefficient: 0.92.

Figure 4.8: On the left, distributions are shown for the evaluations that can be sampled. For 1 seed, 1 fold evaluations, the performance
values are split per fold. This is because the network evaluations to compare will all be sampled from the same fold. For the 1 seed, 5
folds and 3 seeds, 5 folds evaluations, the performance is averaged over 5 folds giving a single distribution, only differing in amounts of
seeds used for an evaluation. In the center, the distributions are shown for a 1 seed, 1 fold evaluation for different possible folds, a 1 seed,
5 folds evaluation, and a 3 seeds, 5 folds evaluation, of the best and worst network when evaluating all 10 seeds and 5 folds. Here, one
can clearly see that the probability of the worst network being sampled as better than the best network decreases as more samples are
taken. On the right, cumulative distribution functions (CDFs) are given for the probability of the best found network being in the top X
percentage of ranked networks. For example, the best network found using a 1 seed, 1 fold evaluation of 20 networks, has ≈ 78% chance
of being one of the top 40% of networks. For 3 seeds, 5 folds evaluations, the probability of finding the best network as the best network
is ≈ 99%. The Spearman correlation coefficients given in the captions are taken between the 10 seeds, 5 folds average performance rank,
and the average rank of all possible possibilities of the different evaluation methods.

AMCdatasetwith the samesimplifiedversionofMB-NAS,used throughout this chapter,wasused for the ex-
periment. The algorithmwas runwith a 1500 network evaluation sample budget. Three different evaluation
methods were used, 1 seed, 1 fold evaluations, 1 seed, 5 folds evaluations, and 3 seeds, 5 folds evaluations.
Every network evaluation for 1 seed, 1 fold, uses 1 network evaluation sample, every 1 seed, 5 folds evalu-
ation uses 5 evaluation samples, and 3 seeds, 5 folds uses 15 evaluation samples. The different amount of
noise per method will give a sense as to whether noise reduction is more important than exploration, due
to limited budget. The elite networks throughout the search were validated in four different ways: same
range of seeds and same folds, same range of seeds and different folds, different seeds and same folds, and
different seeds and different folds. This performance after validation is shown in Figure 4.9.

The performance increase over U-Net, of the elite networks after validation is shown in Table 4.1. These
values are side by side the Spearman rank correlation coefficient and the Pearson correlation coefficient cal-
culated using the networks found and evaluated during NAS, and the same networks after validation. The
Pearson correlation coefficient does not look at specific rankings as its Spearman counterpart, only evalu-
ating how much the performance values per network are correlated. To calculate the Pearson correlation
coefficient the following equation is used:

𝜌𝑋,𝑌 = 𝑐𝑜𝑣(𝑋,𝑌 )
𝜎𝑋𝜎𝑌
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(a)NAS as seen by algorithm (2 runs). (b) Performance of different evaluation methods on NAS elite
compared to simple U-Net performance, for different validation
practices.

(c) 5 seeds, 5 folds validation. (d) 5 seeds, 5 folds validation
different seeds.

(e) 5 seeds, 5 folds validation
different folds.

(f) 5 seeds, 5 folds validation
different seeds, different folds.

Figure 4.9: In 4.9a, the elite performances as seen by the algorithm are shown. Two runs of each evaluation method were done. This
unfortunately is too low for statistical significance. The runs can also not be compared as different data splits were used, something that
can change the performance score. However, indications can be seen of the deterioration of the search runs as the correlation with the
original seeds and folds used during NAS decreases. Also noteworthy is that the average performance of the 5-fold split in 4.9e and 4.9f
is lower than for 4.9c - 4.9d. This is also shown in Figure 4.4, where this lower performance is shown for the first data split. From Table
4.1, correlation values can be compared to the bar graph from 4.9b, to see that higher correlations tend to lead to better results. The
performance increase is very limited however, as the search space used is quite simple and not very different form U-Net.

where 𝜌 is the Pearson correlation coefficient, 𝑐𝑜𝑣 is the covariance, and 𝜎 is the standard deviation. It can
be observed that higher correlation coefficients indicate a higher performance increase.

The results of the experiment suggest that the 3 seeds, 5 folds evaluations seem to overcome issues with
noise slightly, having a more stable performance than NAS runs with shorter evaluation methods and more
exploration budget. Its performance however is still deteriorated after validation on a different data split,
when comparing the performance increase shown in the initial NAS results. The low rank correlation be-
tween different data splits, seems to also deteriorate the correlation such that even when increasing the
amount of seeds, the correlation does not increase as much as when using the same data split. Because
of this, increasing only the number of seeds on the same data split, will stop having the desired effect of
increasing correlation, as this will strengthen the correlation with a different data split.

4.6. Validation runs and outperforming SOTA
As validation should be donewith different seeds and a different data split, and should not be replacedwith
the alternate methods shown above¹, it is necessary to realise that very expensive performance estimation

¹Innoneof the found literature aremultiple data splits validated. Thenetworks are generally evaluated as trained for a certain seed, and
evaluated on the same folds [3, 51, 55] when doing cross-validation. This appears like optimising towards your validation problem,
something that should be avoided. The best practice seems to be using a separate test set, where in most literature, the network
performance for a certain seed and fold is ensembled with the networks trained for different folds in the data split, and then used to
measure performance on the test set [4, 55]. As shown in Figure 4.4, this test set can have vastly different performance ranges and
noise levels than the training set. Using a test set also decreases the size of the dataset even further, which is undesirable.
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Table 4.1: Average Spearman rank correlation coefficients, average Pearson correlation coefficients, and average performance in-
creases (PI) over U-Net, for different performance estimation methods.

Performance
estimation
method

Correlation with validation set and performance increase compared to U-Net
Same seeds, same folds Diff. seeds, same folds Same seeds, diff. folds Diff. seeds, diff. folds

Spearman Pearson PI Spearman Pearson PI Spearman Pearson PI Spearman Pearson PI
1 seeds, 1 fold 0.650 0.787 0.002 0.611 0.752 0.001 0.543 0.700 0.000 0.610 0.702 0.000
1 seed, 5 folds 0.733 0.880 0.005 0.610 0.878 0.003 0.713 0.773 0.003 0.605 0.720 −0.001
3 seeds, 5 folds 0.814 0.914 0.005 0.724 0.851 0.003 0.752 0.859 0.003 0.627 0.776 0.001

will be needed to reduce the noise ofNAS such that algorithms canwork as expected on theAMCdataset. As
seen from Table 4.1, the outcome of NAS with noise levels found in 3 seeds, 5 folds performance estimation
for the used search space and the AMC dataset is still not going to have a large chance at finding a top 10%
network in the search space, and increase performance robustly. The correlations between evaluated net-
work rank and validation rank are still relatively low at 0.627 for the Spearman rank correlation coefficient
and 0.776 for the Pearson correlation coefficient (see Table 4.1). Linearly interpolating the probabilities
from examples in Figures 4.8a and 4.8b indicates a probability of around 0.4. If this cannot be increased
between NAS evaluation and validation, NAS will not be able to traverse the search space effectively.

To make matters worse, when calculating the Pearson correlation coefficient between the network per-
formances found by NAS and validated on different data splits, these values are low. This indicates that
using different data splits will always cause trouble when doing validation, having to not only use multi-
ple seeds, but also multiple data splits to estimate performance robustly. The correlations of the network
performances can be seen in Figure 4.10.

(a)Data split 1 vs data split 2, 𝜌 = 0.61. (b)Data split 1 vs data split 3, 𝜌 = 0.48.

Figure 4.10: Pearson correlation of network performances on two different data splits of the AMC dataset.

4.7. Other tasks and possible improvements
The findings of the AMC dataset are not necessarily generalisable for all datasets. Therefore, the other
datasets are also evaluated for noise, to see if performance estimation can be cheaper for these other tasks.

4.7.1. Other datasets
In Figure 4.11, the noise levels and performance distribution of the AMC Prostate, MSD Prostate and MSD
Spleen dataset are shown. As can be seen, the MSD Prostate dataset, although noisier per seed, has a larger
distribution of different performances. The MSD Spleen dataset has very little noise but a smaller range
of performances. A reason for this could be the different levels in interpatient variation between datasets.
TheMSDSpleen dataset shows little difference between patients in comparison to theMSDProstate. When
looking at the modelled CDFs, the MSD Prostate dataset seems to have the lowest probability of finding a
top percentage network.

The figure shows that medical image segmentation tasks contain different levels of noise, and therefore
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(a)Noise and network performance distribution for AMC Prostate.

(b)Noise and network performance distribution for MSD Prostate.

(c)Noise and network performance distribution for MSD Spleen.

Figure 4.11: Thenoise levels and network performance distributions of the three datasets in this thesis. The datasets seem to be similar in
ranking ability. However, due to the cluster of network performances being closer together, the CDFs show that the probability of finding
a top percentile network is lower, given the 20 networks evaluated. Note that the axes in the subplots are not equal to increase visibility.

NAS requires different performance estimationmethods for different tasks, withmore or less samples based
on the noise and distribution of performances in a search space. However, it is not conclusive as to which
dataset is better suited for NAS. It actually shows that in terms of network ranking, these datasets are quite
similar. The relative noise compared to the performance spread is important when it comes to ranking,
not absolute noise levels. This means that different levels of noise can be acceptable for NAS for different
datasets. By increasing the number of seeds and folds for all these datasets, the networks can be ranked
better, as shown in Figure 4.8. However, as seen from the AMC dataset, NAS will only work if the correlation
between data splits used for training and for validation is high as well.

4.7.2. Evaluating a dataset before NAS
To finalise this chapter, a tentative solution is put forward that evaluates the correlation between possible
training and validation data splits, to make sure the correlation is high enough such that the results hold up
after validation, regardless of noise.

The suggested method for the number of data splits to use is the following. With a simple U-Net archi-
tecture, or another baseline network, the correlation between dataset splits can be measured. Here, U-Net
is trained using 10 seeds on 5 different data splits. The Pearson correlation between data splits will indicate
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how many different k-fold splits you need to evaluate and what the correlation is that can be achieved ro-
bustly. By trying to find a Pearson correlation higher than approximately 0.8 (see Table 4.1 to see why 0.8
was chosen as an initial threshold) between the training data split(s) and the evaluation data split(s), the
probability that theNAS algorithmwill find a network that performs similarly on the validation dataset, and
being one of the top networks, is high.

For the AMC dataset a Pearson correlation 0f 0.82 is found when using two data splits for training and
two for validation, in this case split 1 and 4, and 2 and 3, respectively. This can be seen in Figure 4.12.
The correlation when different networks are used, is expected to only get larger due to actual architectural
differences.

Once correlated data splits are found, the relative noise of the estimation can be decreased by increasing
the number of seeds to evaluate the network with. This will lead to more accurate network rankings.

It could be the case that correlations are never high enough for a search algorithm to rank networks
correctly, or that network evaluations become too costly for NAS to be feasible. For these datasets, NAS is
not recommendable.

Figure4.12: Theaveragenetwork scores for data split 1 and4vs. 2 and3. Thedifferentnetworks aredifferently seededU-Net architectures.
Here a Pearson correlation of 0.82 is found.

4.8. Conclusions
Performance estimation for NAS formedical image segmentation ismore complex and susceptible to noise
than for image classification. Small datasets, inter-patient variability, and intra- and inter-physician vari-
ability, can lead to different DNN performance values for different folds and data splits. In addition to this,
the noise inherent to the stochastic mechanisms in DNNs add another layer of noise. Because of this low
correlations can be seen between different evaluations of the same network. Predicting network perfor-
mance with metrics from early stopping, which seems to work on classification tasks such as CIFAR, does
not work with medical image segmentation tasks due to low correlations with actual performance, for the
AMC dataset. To find a network that robustly improves on other networks, it is important to perform NAS
such that the correlation between the evaluated network performance and the validation network perfor-
mance is high, without using the same seeds and k-fold split. For this repeated network evaluations, and
high correlations betweendataset splits are needed. By increasing the amount of samples in a network eval-
uation, and increasing the different amount of dataset splits seen by the NAS algorithm, the more robust
performance of the found networkwill be, and the higher the probability of theNAS algorithmfinding a top
ranked network in your search space.

By using the proposed dataset analysis method, which evaluates the correlation between network per-
formance on different data splits, one can increase the probability of NAS performing as expected. After
deciding on what data splits to use, a decision can be made to further reduce noise using multiple evalua-
tions to estimate network performance robustly.



5
Search Space

This chapter describes the design of a novel search space formedical image segmentation. It describeswhat
the goals are, what has already been done, and how this work improves on the research already published.
It proceeds by comparing different search spaces on two public datasets. The networks found using NAS
are also compared to SotA hand-crafted networks.

5.1. Learning from SotA
In Section 2.2.3 and 2.2.7, the endless possibilities of DNNdesign are described. ForNAS towork effectively,
it is necessary to constrain these possibilities such that the search algorithms, that usually have a low eval-
uation budget¹, can find high-performance networks efficiently. It is also important to leave enough room
for the search algorithms to find new networks, as well as include known SotA architectures in the search
space. The goal is to find the architectural choices that can influence performance (such that different tasks
need different configurations), and to include a large range of possibilities in these dimensions. As the SotA
architectures are included, the resulting architectures should not under-perform in comparison to these
SotA hand-crafted networks. In order to assess what architecture choices could influence network perfor-
mance, and to knowwhat the current performance levels are, it is important to look at SotA networks to find
trends. Luckily, multiple competitions have been held to evaluate the performance of different networks
and training approaches. [1, 15, 22, 26]. A very recent one is the Medical Segmentation Decathlon (MSD)
[1], as discussed in Chapter 3.

At the top of the leaderboard of the MSD, multiple teams use a U-Net backbone [1]. In particular, the
best performing two teams - nnU-Net, holding the first position, and K.A.V.athlon, holding second - both
use a variation ofU-Net to obtain these high level performances. This underlines the fact thatU-Net-like ar-
chitectures can achieve great results formedical image segmentation tasks. However, it is crucial to also see
that bothnnU-Net [20] andK.A.V.athlonusedmethods to vary theseU-Net-likenetwork architecturesbased
on dataset properties. nnU-Net uses ”a fully automated dynamic adaptation of the segmentation pipeline,
done independently for each task in the MSD, based on an analysis of the respective training dataset” [1].
So, not only were network topologies adapted, but the pre- and post-processing methods were also deter-
mined based on these properties. It is important to notice that the nnU-Net pipeline scales the number of
down- and up-scaling cells² in the network based on the dataset resolution. Using out-of-the-box U-Net
does not perform as well as these task-specific network architectures [20]. This makes the case for topology
level search interesting, where freedom is given such that the resolution and number of channels can be
varied.

5.2. Search spaces in literature
Other research has also concluded that adapting the amount of down- and up-scaling cells, can increase
the performance on certain tasks [3, 27, 29, 55]. In NAS research, when a search algorithm can adapt these

¹This low budget is a result of the computationally expensive evaluation of a DNN, that requires training the network until saturation.
²A down-scaling or up-scaling cell is a network cell that changes the feature map dimensions. For down-scaling the resolution of the
image is decreased and the amount of channels increased, and vice-versa for up-scaling.
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aspects of a network, this is known as topology level, or macro-level search, as described in Section 2.2.7.
This topology level looks at three main categories of network architecture: (1) the dimensions of the fea-
ture maps - networks that have more channels and contain more down-scaling operations will have the
capacity to capture more elaborate features, and are easier to train [45], however extracting and localising
the features, i.e. tracing the features back to the respective pixels/voxels, could be harder; (2) the density of
the network, i.e. the skip-connections used - these skip-connections could alleviate the vanishing-gradient
problem, strengthen featurepropagationandencourage feature reuse [18]; (3) thedepthof thenetwork, i.e.,
the amount of layers used - increasing depth couldmake it easier to capture complex features. This capacity
of learning more complex features saturates after a certain level of depth [14]. As making a network deeper
increases the search space size exponentially, this parameter is often fixed in NAS [27, 51, 55]. In Figure 5.1
a few examples are given of discrete macro-level search spaces. The elements of topology search in these
examples are all based on the structure of U-Net. Nomatter the outcome, the networkwill consist of a com-
bination of down-scaling, non-scaling and up-scaling layers. This allows the feature maps to be condensed
toa lower resolution, enabling thenetwork to learnmoreand larger features, and thenextracting the learned
features and scaling up the resolution again. The non-scaling layers, that do not change the feature map di-
mensions, do allow learningmore intricate features at a certain resolution. Possible skip-connections allow
less complex feature map weights to be concatenated with the output weights of up-scaling layers.

(a)Macro search space C2F [55]. (b)Macro search space RONAS [3].

(c)Macro search space AutoDeepLab [27].

Figure 5.1: Examples of macro search spaces used for medical image segmentation as can be found in literature. The Coarse2Fine
approach in 5.1a and the RONAS approach in 5.1b are examples of discrete search spaces. The RONAS approach also contains elements
that would be considered micro-search in this thesis, e.g. activation layers, pooling type used. The AutoDeepLab approach, seen in 5.1c
uses continuous relaxation and the finds the path from input to output with the highest weights. In examples 5.1a and 5.1c, 𝐿 is the
number of cells in the network, and 𝐷 is the sum of amount of down-scaling operations used prior to the given position.

Next to the topology search space, a common search space in NAS for all tasks, is a micro-level, or cell
level, search [27, 51, 55]. This search space looks at the possibilities within a given topology, so within the
cells, of a network. As the input and output feature maps configurations, i.e., resolution and number of
channels, are already fixed, the degrees of freedom for this search level are the operations used, their pa-
rameters, and the order of these operations. Examples of such a search space could include convolution
types and kernel sizes, pooling sizes and types, activation layers, normalisation layers, and the order in
which all these operations are used. As the options can be very extensive for just one cell, and the num-
ber of cells in a DNN that can all be optimised differently can be relatively large, this search space needs
to be constrained. This avoids it becoming too large to navigate. A common way to achieve this, in both
discrete and continuous search spaces, is by repeating a certain possible cell-structure throughout the net-
work. An example of such an optimised cell that is repeated throughout the network is given in Figure 5.2b
[27]. Alongside is an example of a simpler micro-level search space from the Coarse-to-Fine approach [55].

Oftentimes, these search spaces are combined into a bi-level search space [27, 51, 55]. These contain
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(a)Micro search space C2F [55]. (b)Micro search space AutoDeepLab [27].

Figure 5.2: Two examples of micro search spaces from literature. The Coarse-to-Fine (C2F) cell search space seen in 5.2a is a discrete
search space that includes only different convolution types at every position in the network. The AutoDeepLab search space is based on
continuous relaxation, and the cell structure repeated at every edge in 5.1c [27].

both a macro-level and a micro-level search space. These can either be searched consecutively, or simul-
taneously. Consecutive search avoids the search space increasing in size multiplicatively. Simultaneous
search increases the search size, but allows for possible interactions betweenmacro- andmicro-level search
spaces to be exploited. Simultaneous bi-level search has only been performed using continuous relaxation
during the evaluation of a super-network [51].

Continuous relaxation based methods [27, 51], use one very large super-network that combines all pos-
sible networks in a search space into one. During the training of this network, the elements that contribute
least to the output are gradually removed. This can be done by including a separate gradient descent algo-
rithm to find what elements to remove, and including it after the existing one that is used to optimise the
weights. By continuously removing components until a certain threshold, you are left with a network that
fulfills your goals, e.g. in amount of total parameters.

This approach was not chosen in this thesis as there are alleged issues with weight sharing methods not
representing actual network performance [54], as well as that training super-networks is very computation-
ally expensive.

Bi-level search, consecutive or simultaneous, has the possibility to create highly tailored networks, due
to the large amount of degrees of freedom. This is what makes it so attractive for NAS. However, knowing
that performance estimation ofDNNs is notoriously expensive computationally, it is necessary to constrain
a bi-level search space in size. Not doing somight lead to deterioration of results if algorithms cannot effec-
tively traverse the search space. In an attempt to create a search space that is more flexible than previous
literature, a bi-level search space with a different approach on the micro-level is proposed. Instead of re-
peating the same cell structure, various cell structures are allowed in a network. This gives the network
the freedom to use cells with different properties at different locations. The intuition is that this will give
more possibilities in the features that can be captured. Further, the amount of cell configurations can be re-
stricted, by using existing knowledge about networks with a strong performance on classification tasks. By
using a pre-selected pool of configurations (which are taken from advanced well-known classification net-
works [14, 18, 44]) instead of searching for a cell configuration from scratch, the number of possibilities per
location in the network is restricted. This will help avoid the explosive growth of the search space caused
by searching the configuration of each cell from scratch. On the topology level, skip-connections can be
added from the previous two cells with the same feature maps dimension, increasing flexibility compared
to other discrete macro search spaces. Finally, in contrast to recent research [51, 55], where topology level
search is followed by cell level search, both topology as well as the configuration of each cell is searched
simultaneously. This allows for possible interaction between the topology-level search and cell-level. The
combination of these improvements will further be referenced to as Mixed-Block NAS (MB-NAS).

5.3. Mixed-block NAS
The search space proposed in this thesis can be seen in Figure 5.3. It is searched in a discrete way. This
avoids weight sharing and circumvents the computational cost of training a super-network.

At topology-level (Figure 5.3a), the search space contains all possible network architectures resulting
from varying connections between cells of different types. Three possibilities for a cell are considered (Fig-
ure 5.3b): a down-scaling, an up-scaling, or a non-scaling cell; similar to [27, 51, 55]. A down-scaling cell
means that the input image resolution is halved, while the number of channels is doubled. Up-scaling is the
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(a) Topology-level search and encoding.

(b) Cell types. (c) Block types.

Figure 5.3: All possible topologies in the search space are shown in 5.3a. A possible topology consists of one arrow per layer from left to
right. This is a combination of down-scaling, non-scaling, and up-scaling cells, as indicated by the red, blue, and green arrows, respec-
tively. The non-dashed, bold line is an example of a possible topology. The number of layers for the experiments presented below is 𝑙 = 10
and the base number of features 𝑑 = 32. In 5.3b the structure of the cells is illustrated, alongside 5.3c where the possible blocks (VGG,
Residual, Dense, Inception) that can be placed in the cells are schown. The convolution sizes can be either 3×3, 5×5, or 7×7, based on
the encoding.

opposite operation, i.e., doubling the resolution and halving the number of channels, while a non-scaling
cell changes neither the resolution nor the number of channels in the feature maps. The input to a cell can
be either the feature maps from the preceding cell (no skip-connection), or the feature maps of the preced-
ing cell concatenated with the feature maps from one of two cells prior to the preceding cell, that have the
same feature maps spatial dimensions (a single skip-connection).

At cell-level, different configurations of each cell are searched. The configuration of a cell is encoded by
two variables: the type of block³ within the cell, and the convolutional kernel size within the block. Instead
of searching for the topology of the blockswithin a cell, whichwouldmake the search space incredibly large,
predefined blocks derived from previously SotA architectures for classification are used (Figure 5.3c). Here,
VGG blocks which are standard in U-Net, as well as Residual blocks, Dense blocks and Inception blocks,
are considered. In this way, the search space includes different cell configurations at every edge (instead of
repeating one throughout the network) while preventing the further growth of the search space.

The network architecture is represented by connections between a fixed number of nodes (fixed to 10
in the experiments in this thesis). Each node 𝑙 (Figure 5.3a) is represented by 4 categorical variables: 𝑎𝑙 =
number of channels, 𝑏𝑙 = the block type, 𝑐𝑙 = convolution size, and 𝑑𝑙 = skip-connection source. The cell type
is derived by the difference in number of channels between two nodes. The topology of the neural network
is encoded by variables 𝑎𝑙 and 𝑑𝑙 at each node. The cell-level search is represented by variables 𝑏𝑙 and 𝑐𝑙 at
each node. The maximum number of channels is constrained to four times the initial number of channels
in these experiments. Note that the standard U-Net shape is included in the topology-level search space.
The resulting search space contains 1.14∗1018 possible networks.

5.4. Experimental setup
In order to evaluate the potential of the created search space, a performance estimation method and a
search algorithm must be chosen to run experiments with.

Local Search (LS) is used as search algorithm for the experiments in this chapter, as it has been shown to
be a strongbaseline forNAS [36]. Specifically, a first-improvement approachwith a variable neighbourhood

³a block is an organised structure consisting of multiple convolution and normalisation layers, as well as activation functions
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of 1 is used. This means that starting from a certain solution, each possibility is iterated over for every
variable. The variables are chosen in a random order. When a solution is better than the previous best
solution, it becomes the new best solution. Once all variables are considered, the process is restarted, until
no improvements can be found. The pseudocode for this algorithm can be seen in Algorithm 3.

As some network architectures are infeasible when generating random encodings, a decision needs to
be made on whether to reject or repair these architectures. In this LS algorithm, infeasible architectures are
rejected and removed from the possibilities.

Due to limited computational resources, the NAS was run for only 150 network evaluations. Each net-
workwasevaluatedduringNASusing thevalidationDice scoreaveragedover the last 20%of trainingepochs.
Averaging over the last epochs, helps to reduce the noise in performance values, which is shown in Section
4.2. The number of epochs (100 epochs for prostate, 50 for spleen) was decided such that saturation was
ensured based on preliminary runs. An average score of 5-fold patient-level cross-validation, repeated for
3 network initialisations, was used as performance estimator. The use of multiple folds decreases noise
caused by data splits, while using multiple seeds reduces the noise caused by the network optimisation.
The decreased noise makes for more reliable information to be passed to the search algorithm. More infor-
mation on this approach is given in Chapter 4.

For network training, the ADAM optimiser [23] was used with a learning rate 10−3 and polynomial de-
cay with an exponent of 0.9. The loss function was foreground Soft Dice. The batch size was 32 and input
image size was 128x128. The data was augmented using scaling, shifting, rotating, flipping, and brightness
adjustment.

The experiments are used not only to compare the obtained networks from the MB-NAS search space
against SotA networks, but also to evaluate the search space against the following alternative approaches.
In the first considered alternative search space (Macro-NAS) only topology search is performed. All block
types are fixed to be standard U-Net blocks (VGG). The second considered search space (Micro-NAS) has
the U-Net topology, where only the block type and convolution sizes are subject to the search. In the third
alternative search space (Bilevel-NAS), a sequential bi-level approach was used which means that first the
topology-level is searched, and then the convolution size, similar to the Coarse-to-Fine approach [55].

The best networks found by the proposed search spaceswere evaluated against two hand-crafted neural
network architectures: standardU-Net, and U-Net with a ResNet-50 encoder (ResU-Net). The chosen size
of these networks, is the size advised by the nnU-Net guidelines. This is larger than the NAS topologies can
get. The implementations are taken from the Pytorch Segmentation Models library [50].

5.5. Results
The progress made by the LS algorithm in the different search spaces (MB-NAS, Macro-NAS, Micro-NAS,
Bilevel-NAS) can be seen in Figure 5.4a and 5.4b. It shows the performance value of the best network found
by the search algorithm. The architectures of the best networks from MB-NAS are visualised in Figure 5.5.
The varying performances of the best networks from different NAS approaches, U-Net, and ResU-Net is
summarised in Table 5.1. Example segmentations for qualitative comparison are given in Figure 5.6.

Table 5.1: Performance values of U-Net, ResU-Net, and the best networks from different NAS approaches. The metrics are validated
by averaging over 5 seeds on a 5-fold cross-validation. Standard deviations are calculated based on single seed scores on all 5-folds.
Best values in each column are highlighted in bold. DSC: Dice-Sorensen similarity coefficient, HD: Hausdorff distance (95% cutoff),
SD: Surface Dice (2mm threshold), MMAC: Mega Multiply–ACcumulate operations, Params: number of parameters, ×106.

Model Prostate dataset Spleen dataset
DSC HD SD MMAC Params DSC HD SD MMAC Params

U-Net 0.6702±0.004 8.833 0.6046 302 18.4 0.9578±0.002 1.412 0.9174 302 18.4
ResU-Net 0.6580±0.004 9.441 0.5705 166 32.5 0.9464±0.004 1.625 0.9047 166 32.5
Macro-NAS 0.6593±0.004 8.606 0.5977 256 3.39 0.9566±0.001 1.467 0.9167 255 3.39
Micro-NAS 0.6796±0.007 8.394 0.6203 1,295 22.7 0.9567 ±0.002 1.388 0.9177 795 2.83
Bilevel-NAS 0.6702±0.005 8.492 0.6134 414 6.77 0.9553±0.001 1.449 0.9145 415 6.78
MB-NAS 0.6760±0.010 8.419 0.6192 644 3.04 0.9592±0.002 1.385 0.9189 1,294 22.7
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(a)NAS spleen. (b)NAS prostate.

Figure 5.4: The progress of the LS for the (a) spleen and (b) prostate datasets, respectively. As can be seen from the plots,
Micro-NAS and MB-NAS perform better than Macro-NAS and Bilevel-NAS on both datasets. The performances at the
end of the plot also differ from the performances in Table 5.1 as the performance in the Table is validated over different
seeds than used by the algorithm.

5.5.1. Spleen dataset
Thebest performing network on theMSDSpleendatasetwas foundby the proposed search space,MB-NAS.
In Table 5.1, one can see that this network shows the best performance by all three considered performance
metrics. Note that the topology (Figure 5.5, left) is quite different from the standard U-Net. The network is
shallower, potentially indicating that smaller, more intricate features, are more important towards the seg-
mentation of the spleen, than larger, more elaborate ones. This could be due to the relatively fixed location
of the spleen in the data, as well as the small size of the organ in relation to the image. Furthermore, blocks
of all four types, are included in the architecture, aswell as different convolution sizes. Thismeans that both
the topology-level and cell-level search space parts were utilised to find this network, an indication towards
the performance increase from the designed search space.

5.5.2. Prostate dataset
Different than for the spleen dataset, the best network (Figure 5.5, right) for theMSDProstate dataset is very
similar to the U-Net architecture. This provides additional evidence to the argument that the architecture
of the best DNN is task-specific. This also indicates that theU-Net topology is best suited for the underlying
task, giving an added advantage toMicro-NAS, wherein different blocks and convolution sizes are searched
withinU-Net topology. Consequently,Micro-NAS yields the best performance. However, it should be noted
that MB-NAS could find the given network or another network with comparable performance, despite the
fact that the search was performed for both topology as well as cell configuration.

Figure 5.5: The elite network found by the LS algorithm in the compared search spaces. Left, the network found for the Spleen dataset.
Right, the network found for the Prostate dataset. The network for the Spleen is shallower than for the Prostate, potentially indicating
that smaller, more intricate features, are more important towards the segmentation of the Spleen, than larger, more elaborate ones. This
could be due to the quite fixed location of the spleen in the data as well as its small size. The network found for the Prostate dataset has a
similar topology than U-Net. However, the blocks used throughout the network are different than the VGG blocks used in U-Net at many
locations, as is the found convolution kernel size. This means that different feature sizes can be learned.
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5.5.3. General results
It is worth noting that no block seems to be ultimately preferable to other blocks, i.e. outperforms other
blocks at every location of the network. This indicates the advantage of searching for a mixed-block con-
figuration such that different blocks can be used throughout the network. Additionally, the differences in
magnitude for the validation Dice-Sorensen Coefficient of poorly performing networks compared to the
best networks is much larger for the MSD Prostate dataset, indicating a more difficult task. Further, Table
5.1 shows that the best networks from NAS outperform the manually hand-crafted U-Net and ResU-Net
networks, but only slightly, after validation with different seeds.

An important remark to make is that these results are not statistically significant. Only one run of the
NAS algorithm was done per dataset due to GPU-time constraints. It would be interesting to observe the
performance when repeating this search multiple times. This could lead to a clear conclusion as to how the
search spaces compare.

(a) Example segmentations on the spleen dataset.

(b) Example segmentations on the prostate dataset. red: central gland, purple: peripheral zone.

Figure 5.6: Example segmentations of both the MSD Prostate dataset and MSD Spleen dataset for qualitative comparison.

5.5.4. Comparison with SotA
It canbe argued that the results for theMSDProstate dataset in Table 5.1 are not at the same level as the SotA
results given by e.g., nnU-Net [20]. This is due to higher image resolution used by nnU-Net, additional pre-
processing, carefully chosen data augmentations, post-processing, and advanced inference method, that
are all different from the setup used in NAS in this thesis. Therefore, the network performance when us-
ing the nnU-Net training and evaluation setup, was also evaluated with the found networks from NAS. For
MSD Prostate, the 5-fold cross-validation Dice-Sorensen coefficient is 0.7325 for MB-NAS vs. 0.7315 for
nnU-Net. It should be noted that the comparison is done between the network found by NAS, trained in
the nnU-Net environment, and a U-Net architecture that is tailored to the data according to the nnU-Net
heuristics. The architectures found by NAS were found using entirely different settings. This gives an unfair
advantage tonnU-Net. Nevertheless, the architecture foundbyNAS still performs slightly better tonnU-Net
in these settings, which is remarkable. This could indicate that small levels of resolution scaling could be a
viable option for NAS, as the found network generalises well to a resolution that is approximately two and a
half times larger. For the MSD Spleen dataset, the performance level is quite similar to the results reported
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by nnU-Net. Nevertheless, the network was validated in this environment too. The 5-fold cross-validation
Dice-Sorensen coefficient is 0.9467 for MB-NAS vs. 0.9466 for nnU-Net, again being very comparable. It
does show that the more elaborate nnU-Net method does not generalise well to this task as performance
scores are lower.

5.6. Conclusions
A novel search space and simultaneous topology- and cell-level search strategy for medical image segmen-
tation NAS was proposed in this chapter. In the cell-level search, existing knowledge from networks with
high performance in image classification tasks, i.e. ResNet, DenseNet and InceptionNet, was used to create
a pool of possible block configurations. The experiments show the added value of this approach. Unfortu-
nately, due to limited computational resources, only one run of NAS was performed per search space, and
for a limited number of network evaluations. Longer experiments with multiple runs would have helped
draw more definitive conclusions. Running NAS experiments for more datasets may also provide more
insights about the specific characteristics of network architecture design required for good performance
across datasets. Overall, the results indicate that further research into search space refinement, allowing to
exploit key features of what accounts for good deep learning performance, may yet push the boundaries of
what can be achieved with deep neural networks for medical image segmentation.



6
Search Algorithms

This chapter analyses several search algorithms used for NAS. It starts off by elaborating on the existing
research introduced in Chapter 2, it then proceeds by explaining what the difficulties are when comparing
some different types of algorithms. It follows up with a comparison of 3 algorithms and their performances
with different levels of noise. Finally, the chapter ends with some possible improvements and conclusions.

6.1. Algorithm types
Search algorithms most used for NAS are often categorised into Reinforcement Learning (RL), Gradient-
based algorithms (GD), Evolutionary Algorithms (EA), and simple first-improvement based search tech-
niques such as Random Search (RS) and Local Search (LS). In this thesis, the focus was on Evolutionary
Algorithms and whether they could improve on simple search techniques like RS and LS.

As explained in Chapter 5, gradient-based algorithms are often used for NAS, especially for medical
image segmentation. However, they canonlybeused incontinuous search spaces [27, 51], asdiscrete search
spaces do not have gradients readily available. As the search spaces are all discrete in my thesis, Gradient
Descent algorithms are left out of comparisons.

6.1.1. Evolutionary Algorithms
Evolutionary algorithms, as introduced in Section 2.4, have been used often inNAS research [4, 12, 55]. This
is due to several factors: (1) networks are easily adaptable to encodings used in these algorithms, (2) they
lend themselves well to adapt them to incorporate surrogate models, and (3) evolutionary algorithms have
the capability of exploiting possible interactions between variables in an encoding, or cells in a network.
In this thesis two Evolutionary Algorithms are compared: SGA [16] and P3GOMEA [11]. The pseudocode
for these algorithms, along with a description of the working mechanisms is given in Section 6. These algo-
rithms are compared to an LS algorithm, as this was shown to be a strong benchmark [36].

In order to focus on learning interactions between network components, P3GOMEA [11], tries to evolve
networks by learning what variables can be best paired in a Family of Subsets. By learning what variables
have highMutual Information, the networks can be altered such that strongly performing combinations are
selected together. GOMEA variants have been shown to work well on various optimisation problems [46].
It is for this reason that P3GOMEA is chosen as one of the EAs in this thesis.

Simple Genetic Algorithms are the simplest group of EAs, and a good benchmark to compare P3GOMEA
with. Where P3GOMEA tries to learn linkage in the search space, SGA does not keep track of any structures
other than the population and the performance of the individuals. By combining parts of strongly perform-
ing networks, it tries to find new combinations that might work even better. By using this as a benchmark,
potential exploitation of higher-order variable interactions by P3GOMEA could be observed. SGA requires
a couple of input parameters, such as selection method, crossover type, and population size. For optimal
performance these need to be tuned. For P3GOMEA, noparameters are necessary, which is very convenient
for expensive searches where hyperparameter tuning is out of computational budget reach.

In [36], not only is it shown that GOMEA performs very well in a multi-objective NAS for classification
networks, but also that LS performs remarkably well at that same task. As the task of NAS for medical im-
age segmentation of clinical data is more complex and noisy than for classification on a benchmark, it is
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interesting to see if this strong baseline performs equally well for NAS in medical image segmentation.
Due to the large amount of noise in the tasks in medical image segmentation, particularly for the AMC

dataset, it is interesting to see how these algorithms deal with noise, and if they manage to overcome the
problem that performance estimation creates for medical image segmentation tasks.

6.2. Benchmarks
Search algorithms and approaches are being thoroughly tested on image classification benchmarks, where
network performance has been saved for a certain dataset and search space. The datasets used for this
are CIFAR-10 and CIFAR-100 [24]. Multiple search spaces have been proposed, all based on DARTS (Dif-
ferentiable Architecture Search) [28] with restrictions in order to limit the size of the search space. These
benchmarks store performances in tabular data, or byusing a surrogate trainedon apart of the search space
to predict the rest. As no benchmarks exist formedical image segmentation, it is impossible to use them for
search algorithm comparison, making performance estimation necessary to compare networks.

As also seen in Chapter 4, in the given medical image segmentation task, noise in performance estima-
tions is a lot higher when using common estimationmethods, making itmuch harder for search algorithms
to navigate. Unfortunately, that means that the results of search algorithms from other research cannot
just be adopted without consideration, and that they need to be compared in this new environment to
check whether performance is increased. For this, an experiment was devised to be able to evaluate the
performance of the algorithms with different levels of noise, and also varying levels of correlation with the
validation evaluation. The expectation is that all algorithms will have trouble learning in the given search
space due to the noise and low computational budget. However, if the noise seems to be low enough for
P3GOMEA and LS to be able to improve steadily, these algorithms should perform slightly better than SGA.

6.3. Experimental setup
In order to evaluate the search algorithms, a performance estimation method is chosen, and a search space
and dataset. For the dataset and search space the choice was made for the simple variant of MB-NAS, and
the AMC dataset was chosen, just like in Chapter 4. Network training is done in an identical fashion to the
described method in Chapter 5.

6.3.1. Performance estimation
Three performance estimation methods were chosen: 1-seed 1-fold evaluations, 1-seed-5-fold evaluations,
and 3-seed 5-fold evaluations. The algorithms were run with a 1500 network evaluation sample budget.
Every network evaluation for 1-seed 1-fold uses 1 network evaluation sample, every 1-seed 5-fold evalua-
tion uses 5 evaluation samples, and 3-seed 5-fold uses 15 evaluation samples. Every algorithm was run two
times, due to computational constraints. The outcome of these two results were averaged to be able to visu-
alise performances better. These runs were done with identical seeds per algorithm, and on 2 different data
splits. As increasing correlation between the performance estimation and validation performance to high
levels, as shown in Section 4.7.2, is too computationally expensive, the validation is done in multiple ways
to be more similar to the evaluation in the search algorithm. For this 4 approaches are used: (1) same seeds
and folds - meaning that the evaluated seeds and folds are all in the validation range, (2) different seeds,
same folds - meaning that the random seeds used are all different, but the dataset split and folds are the
same, (3) same seeds, different folds, where random seeds used in NAS are also used in validation, but with
a different data split, (4) different seeds and folds, such that both random seeds and data split are different.
All validation is done with 5-seed 5-fold evaluation of networks. As shown in Chapter 4, if performance es-
timation is too noisy and contains a correlation that is too lowwith the proper validationmethods, NASwill
not lead to expected results. By changing the validation, environments with higher correlations and less
noise are simulated. The search algorithms are compared to see if one of the search algorithms manages to
outperform the others in these different environments.

6.3.2. Algorithm description
The algorithms used in this experiment are implemented as described in Chapter 2. However, some deci-
sions have to be made on the specific parameters and repair choices for these algorithms.

For the LS algorithm, the implementation as described in Chapter 5 is used. It implements a first-
improvement approach with a variable neighbourhood site of 1. It does not repair infeasible networks at it
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evaluates the feasibility of every encoding change before iterating through them. It therefore always stays
in the feasible domain.

For P3GOMEA, the decision was made to repair networks right after a solution is generated. It is then
evaluated by the algorithm. The repair operation makes sure the network is feasible by correcting all lay-
ers that have jumps larger than doubling or less than halving of the number of input channels. Also, all
infeasible skip-connections are removed.

SGA is implementedwith a similar approach, exceptwith anadditional element of not allowing identical
networks in the population. The population size is 16 and 1-point crossover is used. Selection is done with
tournaments, with tournament size of 2.

6.4. Results
The performance of these algorithms, in the search environments with the lowest correlation to the valida-
tion space, are very similar. This means that the algorithms have just as much trouble/success in finding
local optima in the validation search space. What is surprising to see, is that SGA performs very well in the
actual search space, having the best performance in all but one run. The results are visualised in Figure 6.1,
and also summarised in Table 6.1 alongwith the validation scores. Here you can see that the performance of
every algorithm degrades equally when the correlations decrease, something that is to be expected. For the
performance estimationmethodwith 3-seed-5-fold evaluations andhigher correlations the algorithms also
only have 100 networks that can be evaluated, which is very few considering the size of the search space.
It is therefore hard for P3GOMEA to make informed decisions, which is needed to make it perform better
than the other two algorithms.

Table 6.1: Performance increase of different search algorithms when using different performance estimation methods with different
noise values

Performance
estimation
method

Performance increase of elites found by the Search Algorithms compared to U-Net performance
Same seeds, same folds Diff. seeds, same folds Same seeds, diff. folds Diff. seeds, diff. folds

LS P3GOMEA SGA LS P3GOMEA SGA LS P3GOMEA SGA LS P3GOMEA SGA
1 seed, 1 fold 0.002 0.003 0.004 0.001 0.001 0.003 0.000 0.000 0.003 0.000 0.000 0.000
1 seed, 5 folds 0.005 0.004 0.003 0.003 0.003 0.002 0.002 0.004 0.002 −0.001 0.001 0.000
3 seeds, 5 folds 0.005 0.004 0.005 0.003 0.003 0.004 0.003 0.003 0.005 0.001 0.000 0.001

6.5. Discussion
The results indicate that LS and P3GOMEA do not outperform SGA, even performing slightly worse. A pos-
sible explanation of this is that both algorithms only take into improvements of single samples of a network,
albeit sampled differently. Due to noise, this could ’fool’ the algorithm into moving away from a direction
with many more potential improvements. Other algorithm types, such as Estimation of Distribution Algo-
rithms (EDAs), could be better at such a task, where noise degrades the reliability of network comparisons.
These algorithms search for an optimum by estimating probabilistic models, e.g., Gaussian distributions,
of candidate solutions, and do not make greedy decisions. By building up a larger base of information to
decide on the best network, EDAs evade the trap caused by Greedy acceptance in high levels of noise. By
not discarding valuable information on noise, the probability of finding top networks could be increased.

Another factor that could cause the lack of difference between search algorithm performance, is the
small evaluation budget. Due to the computational cost of performance estimation, the amount of evalua-
tions that every algorithm can perform is far lower than what these algorithms usually need to converge to
an optimum [36, 46]. By increasing this budget, something that was not feasible in this thesis, more insights
could be gathered on search algorithm performance.

6.6. Conclusions
The results indicate that the algorithms perform very similarly, with a remarkable performance of SGA, out-
performing the other algorithms for all but one run. This could indicate that the other algorithms get stuck
in local optima quicker than SGA. The results however are not statistically significant due to the large com-
putational cost of experiments.
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(a) 1-seed-1-fold NAS runs. (b) Average performance increase of
1-seed-1-fold runs in different validation
settings.

(c) 1-seed-5-fold NAS runs. (d) Average performance increase of
1-seed-5-fold elites in different validation
settings.

(e) 3-seed-5-fold NAS runs. (f) Average performance increase of
3-seed-5-fold elites in different validation
settings.

Figure 6.1: The different NAS runs on the left show the performance on two data splits of the algorithms with identical estimation
methods per subfigure. As can be seen by the clear division in performance of the two runs per evaluation method, one data split has
a significantly lower average performance score than the other. The validation performance is shown on the right for the 4 different
validation types to see how the performance is affected by the different validation types.

Theresults also reiterate thatwhenperforming validation correctly, the performances of the elites found
by all the algorithms with the chosen evaluation methods deteriorate severely. For this reason, it can be
concluded thatwhenchoosing the searchalgorithmsused in this paper, if performance estimationmethods
are toonoisy, correlationswith the validation search space low, and thenumberof evaluations limited, these
algorithms will perform poorly and return an elite performing worse than the best network in the search
space, and no better than a similarly sized U-Net.
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Discussion

7.1. Search space experiments
In Chapter 5, the novel search space, MB-NAS, is shown to contain promising networks that can be found
with the use of a LS algorithm and a 3 seeds, 5 folds validation technique. However, in Chapter 4, it is shown
that, although for a different dataset, this could be deteriorated after validation. Luckily, the validation does
hold up, although the results are worse than found during the NAS and not a lot better than the baselines.
As can be seen in the experiments performed in both Chapter 4 and 6, if a higher correlation was achieved
with the validation performance landscape, performance of the networks could be higher. The networks
found as elites in the experiments in Figure 5.4, probably have a lower validation performance than other
networks in the search space. This means that the search space has more potential than the chosen search
algorithm and performance estimator can exploit. This reiterates the fact that both search space design and
search algorithm choice are only interesting when proper performance estimation methods exist. Without
proper performance estimation it is very difficult to find the best network and to knowwhat the added value
is of different search spaces and algorithms.

7.2. Statistical significance
Throughout this thesis many experiments are only performed a small number of times, such that statisti-
cal significance tests, such as t-tests, would require many assumptions to have value. The reason for the
low number of experiment repetitions is the large number of GPU-hours that is necessary for NAS. A single
NAS run of 1500 samples on the simple version of the search space, as run in Chapters 4 and 6, takes 10
days, where the longer runs, such as in Chapter 5, took 20 GPU days. Having to perform them with multi-
ple search algorithms, datasets, and estimation methods, and do enough repetitions to calculate statistical
significance was unfortunately infeasible¹. The results however did present multiple insights that can help
progress NAS for medical image segmentation in areas where research was lacking.

7.3. Noise and validation
Throughout Chapter 4, the noise in several medical image segmentation tasks, as well as the noise in DNN
optimisation is studied. Additionally, the effect of different correlation levels between the performance
landscape used in NAS, and the validation performance landscape, is analysed. What was surprising dur-
ing this research is the large effect of these phenomena and how it is largely understudied in literature.
Also, validation practices differ in literature. Many papers are fixated on higher scores, even when only
fractional. When looking at cross-validation scores, these fractional differences in medical image segmen-
tation datasets like MSD Prostate and MSD Spleen could be caused by different datasplits, not having to be
related to increased performance of themethod. Also, many networks found usingNAS are used to validate
performance without retraining. This is impractical as it largely reduces reproducibility of results, as well
as optimising the architecture towards a certain initial state. Especially when using continuous relaxation,

¹I would like to extend my gratitude to the CWI and my peers for all the GPU time I used up as it is. Everyone was quite patient with
me, so thank you for bearing with me and providing the resources.
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the same model is not likely to be achieved when retraining the network without it ever having been part of
a super-network.

The insights provided inChapter 4 could contribute to a better understanding and comparison of results
for medical image segmentation. As DNN optimisation is largely stochastic, providing context in noise and
validation methods can make comparison more statistically significant, even if computational costs makes
this difficult. It can also potentially make results obtained by SotA algorithms actually outperform Random
Search, which has been shown to sometimes not be the case [52, 54].

7.4. Further research
NAS, although young, has already delivered impressive results. As a field of research pursued by academic
institutions and powerful corporations, e.g. Google and NVIDIA, alike, it has led to some revolutionary
work, like being used in the development of EfficientNet [45]. For classification networks, many bench-
mark leaderboards contain multiple Neural Architecture Search networks among them. However, there is
still room for further research in NAS. Multiple research topics seem interesting to dive in: further noise
reduction in performance estimation, NAS for image transformers, and network scaling.

7.4.1. Noise reduction in performance estimation
Althoughquite someexperimentationwasdone toobtain lessnoisy scores inperformanceestimation, there
are still many tracks that could be explored more. Three of them seem promising to me, enough so to be
mentioned here. The first is experimenting more with metrics. Although 95th % Hausdorff only made val-
idation accuracy noisier in my initial experiments, using different metrics for validation accuracy such as
Surface Dice where a threshold value can be chosen, or experimenting with Hausdorff percentiles could
lead to less noise. It should be kept in mind that information is lost when making these thresholds too
large, however the trade-off might prove effective.

Another possibility that could be pursued is the use of deterministic weight initialisationmethods, such
that seeds have less impact on the performance. This would reduce the effect of different seeds in training
and validation.

The third path is to see if surrogate models could decrease noise for performance estimation of medical
image segmentation CNNs such that the predictions made by the regression model are better than cheap
network evaluations. This would be able to speed up the process while taking along the understanding of
noise in the taks at hand.

7.4.2. NAS for image transformers
Image transformers, aNeuralNetwork typebasedonadifferent imageprocessingoperationcalledattention
(en lieu of convolution), seem to be outperforming CNNs for many classification tasks over the last couple
of months [10], as well as medical image segmentation tasks [8]. It would be interesting to see if these
transformers could be exploited by NAS for medical image segmentation. These networks are larger than
most CNNs so computational restraints have to be taken into account in the feasibility of such a project.
However performance increase seems substantial so it could lead to very promising results.

7.4.3. Network scaling
As explained in Chapter 5, an issue with search spaces is that they quickly grow exceedingly large. This
makes performing NAS on large networks difficult. As shown for EfficientNet and ResNet, scaling networks
is a promising way to increase performance. By performing NAS with a smaller image size and a smaller
search space, and then scaling up to the original image size together with the network, NAS can be faster
andmore feasible for large scans. saving time inNASperformance estimation as smaller networks are faster
to train.



8
Conclusions

Convolutional Neural Networks perform well on medical image segmentation tasks, sometimes achieving
human-like performance. However, manually designing these networks is arduous and time-consuming.
Neural Architecture Search has been shown to have the capability of finding CNNs that outperform man-
ually designed networks for various tasks. However, for medical image segmentation, NAS research is lim-
ited. For this reason, this thesis looked at the different aspects of NAS for the purpose of medical image
segmentation.

First, performance estimation methods were analysed in terms of noise. It appeared that these meth-
ods need to be a lot more elaborate for medical image segmentation tasks than for image classification.
Through experiments, it is also shown that the correlation between the training and the validation perfor-
mance landscape needs to be high. Low correlations lead to deteriorated results such that NAS does not
longer outperform U-Net. A tentative method was put forward to analyse a dataset before NAS such that
more informed choices can be made for performance estimation.

Next, a novel search space was proposed, which makes use of existing knowledge of high-performance
classificationnetworks, and seems tooutperformU-Net, and twoalternate searchmethods, on twodatasets.

In the final chapter three search algorithms, SGA, P3GOMEA and LS, are compared and shown to per-
formvery similarly for the task at hand. This couldbedue to to relatively high levels of noise and lowcompu-
tational budget. These findings align with papers showing that elaborate search strategies do not improve
on Random Search for several classification tasks after validation if there is a low correlation between the
two performance landscapes. It is concluded that before elaborate search algorithms are implemented, it is
crucial to know what the noise levels are between evaluations and what the correlation levels are between
dataset splits.

8.1. Performance estimation
To summarise the findings for every aspect of NAS, the research questions from Chapter 1 are reiterated
here. For performance estimation the question was:

Research Question 1. CanDNNperformance estimation formedical image segmentation tasks beadapted
to noise such that the performance values passed to search algorithms are accurate enough for them
to outperform Random Search?

Although this question proved to bemore difficult to answer than expected, many insights and conclusions
were drawn during the analysis of performance estimation for medical image segmentation. First, perfor-
mance estimation for NAS for medical image segmentation was found to be more complex and susceptible
to noise than for image classification, due to the metrics used. Also, the small size of datasets, inter-patient
variation, and intra- and inter-physician variability lead to considerable noise when using different folds
and data splits for training. Next to noise from the data, network optimisation also has inherent noise. Dif-
ferent evaluations of the same network on the same task, have different performance values. Predicting
network performance with metrics from early stopping, which seems to work on classification tasks such
as CIFAR, does not work with medical image segmentation tasks, at least not for the AMC dataset. To find a
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network that robustly improves on other networks, it was found that NAS needs to be performed with per-
formance estimations such that the relative noise is low, and the correlation between the evaluated network
performance and the validation network performance is high. To do this without undermining validation,
so without using the same seeds and k-fold split, repeated network evaluations, and high correlations be-
tween dataset splits are needed. By increasing the amount of samples in a network evaluation, and tailoring
the amount of dataset splits seen by the NAS algorithm and in validation, the more robust performance of
the foundnetworkwill be, and the higher the probability of theNAS algorithmfinding a top ranked network
in your search space.

By using a proposed dataset analysis method, which evaluates the correlation between network per-
formance on different data splits, one can make a more educated decision on how many evaluations are
needed to achieve a selected correlation value and estimate network performance robustly. This doesmean
that if the dataset chosen to perform NAS on has a low correlation between dataset splits, and the search
space evaluated is large, it will be very expensive to perform NAS. Not only to allow search algorithms
enough evaluations to be able to progress through the search space, but to also estimate and validate per-
formance in a way that reflects network performance independent of chosen seeds and datasplit.

8.2. Search space
For the search space the research question was the following:

Research Question 1. Canadiscrete bi-level search space be created such that theneural networks found
by a NAS algorithm are better than hand-crafted SotA networks, as well as outperform networks
found using different existing discrete search spaces, for medical image segmentation tasks?

InChapter 5, a novelNAS search space formedical image segmentation networkswas proposed. The search
space combines a simultaneous topology- and cell-level search strategy. The cell-level search, uses existing
knowledge fromnetworkswithhighperformance in image classification tasks throughmeans of a restricted
pool of possible block configurations. This allows for unique blocks to be implemented at various locations
without making the search space exceedingly large. The experiments indicate an added value of this ap-
proach. The elite networks found by a LS algorithm in the novel search space, are slightly better than the
ones found by an only a macro-level search and a sequential macro-level search followed by a micro-level
search. They also have a slightly higher performance than U-Net and ResU-Net. It is noted that due to
limited computational resources, only one run of NAS was performed per search space, and for a limited
number of network evaluations. Longer experimentswithmultiple runs should be performed to obtain sta-
tistical significance. Also, runningNAS experiments formore datasetsmay providemore insights about the
specific characteristics of networkarchitecturedesign required for goodperformanceacrossdatasets. Over-
all, the results indicate that further research into search space refinement, allowing to exploit key features
of what accounts for good deep learning performance, may push the boundaries of what can be achieved
with DNNs for medical image processing.

8.3. Search algorithms
The last research question was on the performance of search algorithms:

Research Question 2. How do Evolutionary Algorithms and Local Search perform for NAS in different
levels of noise and can a decision be made on which is better?

As performance estimation was shown to need very elaborate methods to obtain high correlations with
the validation performance, the NAS algorithms were evaluated with different levels of noise, and different
validation methods to vary the correlation with the validation performance values.

The results indicated that the algorithms perform very similarly, with a remarkable performance of SGA,
outperforming the other algorithms for all but one run. This could indicate that the other algorithms get
stuck in local optima quicker than SGA. The results however are not statistically significant due to the large
computational cost of experiments.

The results also reiterate thatwhenperforming validation correctly, the performances of the elites found
by all the algorithms with the chosen evaluation methods deteriorate severely. If performance estimation
methods are too noisy, and correlations with the validation performance landscape are low, the algorithms
in this thesis will all performpoorly and on average return elites performing far worse than the best network
in the search space, and no better than a similarly sized U-Net. This explains why Random Search is shown
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to perform equally to other SotA algorithms after being validated, as decisions made by the algorithms do
not lead to better validation scores.

8.4. Recommendation for NAS for medical image segmentation
When looking at themultiple aspects ofNAS formedical image segmentation, there is one recommendation
that I would like to end with. I would suggest that before designing more and more complex search spaces
and analysing search algorithms, it is vital that performance estimation is further researched, such that the
noise in network performance is reduced, even if this is done by gathering larger and ”cleaner” datasets. By
being able to evaluate the noise and trying to understand how this relates to the performance of NAS and
the elite network found by the algorithm, performances of NAS on different datasets can be compared with
more context of the task at hand. In my opinion, noise analysis in performance estimation is very under-
represented in literature. The most research into performance estimation is generally done with the aim of
speed-up so that more exploration can be done by the algorithm. However, as shown in my experiments,
the low correlation in cheaper evaluations mean the elitist performance will likely be very different when
validated. By looking into reducing noise, such that the performance of the network is properly reflected,
more robust results will be achieved, hopefully leading to new insights in Deep Learning, NAS, and the use
of EAs for this task.
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Mixed-Block Neural Architecture Search for Medical Image
Segmentation

Martijn M.A. Bosma, Arkadiy Dushatskiy1, Monika Grewal1, Tanja Alderliesten, Peter A. N. Bosman

ABSTRACT

Deep Neural Networks (DNNs) have the potential for making various clinical procedures more time-efficient by au-
tomating medical image segmentation. Due to their strong, in some cases human-level, performance, they have become
the standard approach in this field. The design of the best possible medical image segmentation DNNs, however, is
task-specific. Neural Architecture Search (NAS), i.e., the automation of neural network design, has been shown to
have the capability to outperform manually designed networks for various tasks. However, the existing NAS methods
for medical image segmentation have explored a quite limited range of types of DNN architectures that can be discov-
ered. In this work, we propose a novel NAS search space for medical image segmentation networks. This search space
combines the strength of a generalised encoder-decoder structure, well known from U-Net, with network blocks that
have proven to have a strong performance in image classification tasks. The search is performed by looking for the best
topology of multiple cells simultaneously with the configuration of each cell within, allowing for interactions between
topology and cell-level attributes. From experiments on two publicly available datasets, we find that the networks dis-
covered by our proposed NAS method have better performance than well-known handcrafted segmentation networks,
and outperform networks found with other NAS approaches that perform only topology search, and topology-level
search followed by cell-level search.

1. INTRODUCTION/DESCRIPTION OF PURPOSE

A growing amount of clinical applications, such as computer-aided diagnostic systems, are benefiting from recent
advances in automated medical image segmentation, most notably from Deep Neural Networks (DNNs).2 Given a
medical scan, a DNN can provide contours of organs or regions of interest (e.g., tumors), with clinically acceptable
segmentation quality within a matter of seconds.3 Designing a State-of-the-Art (SotA) DNN, however, is often task-
specific. In order to design a DNN, choices have to be made for the topology of the network such as depth, and
connections between cells (a cell is a group of operations that transform the feature maps in a DNN), as well as the
configuration of each cell, e.g., convolutional kernel size, or activation function. This gives rise to an inconceivably large
amount of network architecture design possibilities, which is impossible to manually navigate through in an exhaustive
fashion, or even by means of intelligent design, while ensuring the best choices are made.

Neural Architecture Search (NAS), i.e., the automated design of neural network architectures, can effectively and
efficiently search through this space of possible network architecture designs and find a network that is highly tailored
to the task at hand.4 While research on NAS for medical image segmentation has not been as elaborate as for natural
image classification, it has already shown promising results by outperforming the SotA architectures.5 In our opinion,
further research on NAS for medical image segmentation can make its contributions even more significant.

NAS involves three key components: (1) The search space (the set of all possible networks given the specified architec-
tural constraints); (2) the search algorithm (the algorithm to navigate the search space); (3) performance estimation
(the choices made to score a network’s performance, such that these networks can be ranked by the search algorithm).
So far, NAS research has been more elaborate for image classification tasks.6 Potentially, strong performing search al-
gorithms, and fast and accurate performance estimation methods can be translated to the medical image segmentation
domain. The search space, however, is specific to segmentation tasks. Several papers have proposed search spaces for
medical image segmentation. These include searching for a U-Net like encoder-decoder topology i.e., by adapting only
the cells within,7 by searching for best topology followed by the best convolution size within cells,8 or a combination
of topology and cell search using continuous relaxation and a so-called Super-network.9

We believe that within the scope of a U-Net-like topology search, there is a room for making the search space more
flexible – instead of repeating the same cell structure, we propose to allow various cell structures in a network,
potentially resulting in a better performance. Further, we believe that the configuration of cells can benefit from
existing knowledge about networks with a strong performance on classification tasks. Therefore, we propose to search
through a pre-selected pool of configurations (which are taken from advanced well-known classification networks10)

1equal contribution
2Bernard et al., “Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis”; Fauw et al., “Clinically

applicable deep learning for diagnosis and referral in retinal disease”.
3Nikolov et al., “Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy”.
4Elsken, Metzen, and Hutter, “Neural architecture search: A survey”.
5Yu et al., “C2FNAS: Coarse-to-fine neural architecture search for 3D medical image segmentation”; Yan et al., “MS-NAS: Multi-scale neural

architecture search for medical image segmentation”; Weng et al., “NAS-UNet: Neural architecture search for medical image segmentation”.
6Elsken, Metzen, and Hutter, “Neural architecture search: A survey”.
7Weng et al., “NAS-UNet: Neural architecture search for medical image segmentation”.
8Yu et al., “C2FNAS: Coarse-to-fine neural architecture search for 3D medical image segmentation”.
9Yan et al., “MS-NAS: Multi-scale neural architecture search for medical image segmentation”.
10He et al., “Deep residual learning for image recognition”; Huang et al., Densely Connected Convolutional Networks; Szegedy et al., “Inception-

v4, inception-ResNet and the impact of residual connections on learning”.
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instead of searching for a cell configuration from scratch. Apart from benefiting from advanced performance of these
well known classification networks, this proposed improvement will also help avoiding the explosive growth of the search
space caused by searching the configuration of each cell from scratch. Finally, in contrast to recent research,11 where
topology level search is followed by cell level search, we search for both topology as well as the configuration of each
cell simultaneously. This allows to take into consideration the possible interaction between the topology-level search
and cell-level, potentially yielding better performing networks. The combination of these improvements results in the
proposed approach, which we will further refer to as Mixed-Block NAS (MB-NAS).

2. METHOD

2.1 Search space

(a) Topology-level search and encoding.

(b) Cell types. (c) Block types.

Figure 1: Description of MB-NAS search space.

At topology-level (Figure 1a), the search space contains all possible network architectures resulting from varying
connections between cells of different types. We consider three possibilities for a cell (Figure 1b): a downscaling, an
upscaling, or a non-scaling cell. A downscaling cell means that the input image resolution is halved, while the number
of channels is doubled. Upscaling is the opposite operation, i.e., doubling the resolution and halving the number of
channels, while a non-scaling cell changes neither the resolution nor the number of channels in the feature maps. The
input to a cell can be either just the feature maps from the preceding cell (no skip-connection), or the feature maps
of the preceding cells concatenated with the feature maps from any previous cell with the same feature maps spatial
dimensions (a single skip-connection).

At cell-level, different configurations of each cell are searched. The configuration of a cell is encoded by two variables:
the type of block (a block is an organised structure consisting of multiple convolution and normalisation layers, as
well as activation functions) within the cell, and the convolutional kernel size within the block. Instead of searching
for the topology of the blocks within a cell, which would make the search space incredibly large, we used predefined
blocks derived from previously SotA architectures for classification (Figure 1c). In this work we consider VGG blocks
which are standard in U-Net, as well as Residual blocks, Dense blocks and Inception blocks. In this way, we allow the
search space to chose a different cell configuration at every edge (instead of repeating one throughout the network)
while preventing the further growth of the search space.

The network architecture is represented by connections between a fixed number of nodes (fixed to 10 in our experiments).
Each node l (Figure 1a) is represented by 4 categorical variables: al = number of channels, bl = the block type, cl
= convolution size, and dl = skip-connection source. The cell type is derived by the difference in number of channels
between two nodes. The topology of the neural network is encoded by variables al and dl at each node. The cell-level
search is represented by variables bl and cl at each node. Note that the standard U-Net shape is included in the
topology-level search space. The resulting search space contains 1.14 ∗ 1018 possible networks.

11Yu et al., “C2FNAS: Coarse-to-fine neural architecture search for 3D medical image segmentation”; Yan et al., “MS-NAS: Multi-scale neural
architecture search for medical image segmentation”.
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2.2 Datasets

In our experiments, we used two datasets that can be found on the Medical Decathlon12 challenge website13. The first
is a collection of 3D MRI-scans of the prostate, alongside their multi-class (Central and Peripheral prostate zones)
segmentations. The second is the Spleen dataset, containing 3D-CT scans and single class segmentations of the spleen.
Both datasets are represented as a collection of 2D slices (no resampling was used as preprocessing).

2.3 Implementation details

We use Local Search (LS) as the search algorithm as it has been shown to be a strong baseline for NAS.14Due to
limited computational resources, the NAS was run for only 150 network evaluations. Each network was evaluated
using the validation Dice score averaged over the last 20% of training epochs. The number of epochs (100 epochs for
prostate, 50 for spleen) was decided such that saturation was ensured based on preliminary runs. We used the average
score of 5-fold patient-level cross-validation, repeated for 3 network initialisations, as performance estimator. Multiple
initialisations reduce the noise in scoring, providing more reliable information to the search algorithm, making it easier
to navigate the search space. The use of multiple folds decreases noise caused by data splits.

For network training, we used the Adam optimiser with a learning rate 10−3 and polynomial decay with an exponent
of 0.9. The loss function was foreground soft Dice. The batch size was 32 and input image size was 128x128. The data
was augmented using scaling, shifting, rotating, flipping, and brightness adjustment to avoid overfitting.

2.4 Experimental setup

We performed experiments to compare the proposed search space design (Mixed-Block, or MB-NAS) against the
following alternative approaches. In the first considered alternative search space (Macro-NAS) only topology search
is performed. All block types are fixed to be standard U-Net blocks (VGG). The second considered search space
(Micro-NAS) has the U-Net topology, where only the block type and convolution sizes are subject to the search. In
the third alternative search space (Bilevel-NAS), a bi-level approach was used which means that first the topology-
level is searched, and then the convolution size, similar to the Coarse-to-Fine approach.15

The best networks found by the proposed search space were evaluated against two hand-crafted neural network archi-
tectures: standard U-Net, and U-Net with a ResNet-50 encoder (ResU-Net). Implementations are taken from the
Pytorch Segmentation Models library.16

3. RESULTS AND DISCUSSION

The performance of the different search spaces (MB-NAS, Macro-NAS, Micro-NAS, Bilevel-NAS) can be seen
in Figure 2a and 2b. The the architectures of the best networks from MB-NAS are visualised in Figure 2c. The
performance of the best networks from different NAS approaches, U-Net, and ResU-Net is summarised in Table 1.

Table 1: Performance comparison of U-Net, ResU-Net, and the best networks from different NAS approaches. The metric are averaged for
5 runs of 5-fold cross-validation. Best values in each column are highlighted in bold. HD: Hausdorff distance (95% cutoff), SD: Surface Dice
(2mm threshold), MMAC: Mega Multiply–ACcumulate operations, Params: number of parameters, ×106.

Model
Prostate dataset Spleen dataset

Dice HD SD MMAC Params Dice HD SD MMAC Params

U-Net 0.6702 8.833 0.6046 302 18.4 0.9578 1.412 0.9174 302 18.4

ResU-Net 0.6580 9.441 0.5705 166 32.5 0.9464 1.625 0.9047 166 32.5

Macro-NAS 0.6593 8.606 0.5977 256 3.39 0.9566 1.467 0.9167 255 3.39

Micro-NAS 0.6796 8.394 0.6203 1, 295 22.7 0.9567 1.388 0.9177 795 2.83

Bilevel-NAS 0.6702 8.492 0.6134 414 6.77 0.9553 1.449 0.9145 415 6.78

MB-NAS 0.6760 8.419 0.6192 644 3.04 0.9592 1.385 0.9189 1, 294 22.7

Spleen dataset. The best performing network was found by the proposed search space, MB-NAS. In table 1, we see
that this network shows the best performance by all three considered performance metrics. We note that the topology
(Figure 2c, upper row) is quite different from the standard U-Net. Furthermore, we note that blocks of all four types are
included in the architecture, as well as different convolution sizes, meaning that both the topology-level and cell-level
search space parts were utilised to find this network.

Prostate dataset. Different than for the spleen dataset, the best network (Figure 2c, bottom row) is very similar to the
U-Net architecture. This provides additional evidence to the argument that the architecture of the best DNN is task-
specific. This also indicates that the U-Net topology is best suited for the underlying task, giving an added advantage
to Micro-NAS, wherein different blocks and convolution sizes are searched within U-Net topology. Consequently,
Micro-NAS yields best performance. However, it should be noted that MB-NAS could find a network with comparable
performance despite the fact that the search was performed for both topology as well as cell configuration.

12Antonelli et al., The Medical Segmentation Decathlon.
13http://medicaldecathlon.com/
14Ottelander et al., Local search is a remarkably strong baseline for neural architecture search.
15Yu et al., “C2FNAS: Coarse-to-fine neural architecture search for 3D medical image segmentation”.
16Yakubovskiy, Segmentation Models.
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(a) NAS spleen. (b) NAS prostate. (c) Best networks from MB-NAS.

(d) Example segmentations on the spleen dataset. (e) Example segmentations on the prostate dataset. red: central gland,
purple: peripheral zone.

Figure 2: The progress of the LS for the (a) spleen and (b) prostate datasets, respectively. The best networks found by LS
with MB-NAS are shown in (c). (d) and (e) show example segmentations.

It is also worth noting that no block seems to be ultimately preferable to other blocks in the best performing networks
indicating the advantage of searching for a mixed-block configuration. Further, we note that the best network from
NAS outperforms the manually hand-crafted U-Net and ResU-Net networks.

Comparison with SotA. It can be argued that the results for the Prostate dataset in Table 1 are not at the
same level as the SotA results given by e.g., nnU-Net.17 This is due to higher image resolution used by nnU-Net,
additional preprocessing, carefully chosen data augmentations, post-processing, and advanced inference method, that
are all different from the setup we use in NAS. Therefore we add results using the nnU-Net framework with the found
networks from NAS. For prostate, the 5-fold cross-validation Dice score is 0.7325 for MB-NAS vs 0.7315 for nnU-Net.
It should be noted that while all the settings discussed above were specifically chosen to work well with a tailored U-Net
in the nnU-Net framework, the architectures found by NAS were found using entirely different settings, which gives
an unfair advantage to nnU-Net. Nevertheless, the architecture found by NAS still performs comparable to nnU-Net
in these settings, which is remarkable.

4. NEW OR BREAKTHROUGH WORK TO BE PRESENTED

We consider NAS for medical image segmentation with deep learning. The main contribution is a novel search space
that combines the strengths of the encoding-decoding structure of U-Net with the strength of blocks adapted from
well-known high-performing classification networks. Additionally, we perform both the topology and cell-level search
simultaneously. The networks found with the proposed approach perform better than the manually designed SotA
networks. They also have an indicative advantage over networks found using other search approaches from related
literature, namely topology search and consecutive topology and convolution size search.

5. CONCLUSIONS

We have proposed an approach for medical image segmentation NAS, which involves a novel search space and simulta-
neous topology- and cell-level search strategy. In the cell-level search, we used existing knowledge from networks with
high performance in image classification tasks, i.e. ResNet, DenseNet and InceptionNet, to create a pool of possible
block configurations. The experiments in this paper show the added value of this approach. We note that due to limited
computational resources, only one run of NAS was performed per search space, and for a limited number of network
evaluations. Longer experiments with multiple runs would have helped draw more definitive conclusions. Next to it,
running NAS experiments for more datasets may provide more insights about the specific characteristics of network
architecture design required for good performance across datasets. Overall, the results indicate that further research
into search space refinement, allowing to exploit key features of what accounts for good deep learning performance,
may yet push the boundaries of what can be achieved with deep neural networks for medical image processing.

Note. This work has not been submitted for publication in any other conference proceedings or journal.

17Isensee et al., “nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation”.

SPIE submission 63





Bibliography
[1] Michela Antonelli et al. The medical segmentation decathlon, 2021.

[2] Yahya Baba and Mohammad Niknejad. Apparent diffusion coefficient, February 2013. URL https:
//doi.org/10.53347/rid-21759.

[3] Woong Bae, Seungho Lee, Yeha Lee, Beomhee Park, Minki Chung, and Kyu-Hwan Jung. Resource op-
timized neural architecture search for 3d medical image segmentation, 2019.

[4] Maria Baldeon Calisto and Susana K. Lai-Yuen. Emonas-net: Efficient multiobjective neural ar-
chitecture search using surrogate-assisted evolutionary algorithm for 3d medical image segmenta-
tion. Artificial Intelligence in Medicine, 119:102154, 2021. ISSN 0933-3657. doi: https://doi.org/
10.1016/j.artmed.2021.102154. URL https://www.sciencedirect.com/science/article/pii/
S0933365721001470.

[5] Olivier Bernard et al. Deep learning techniques for automatic mri cardiac multi-structures seg-
mentation and diagnosis. IEEE Transactions on Medical Imaging, 37(11):2514–2525, 2018. doi:
10.1109/TMI.2018.2837502.

[6] Henry Blumberg. Book review: Grundzüge der mengenlehre. Bull. Amer. Math. Soc. 27, 27(3):116–
130, December 1920. doi: 10.1090/s0002-9904-1920-03378-1. URL https://doi.org/10.1090/
s0002-9904-1920-03378-1.

[7] Luigi FrancoCazzaniga,MariaAntonellaMarinoni, AlbertoBossi, ErnestinaBianchi, EmanuelaCagna,
Dorian Cosentino, Luciano Scandolaro, Marica Valli, and Milena Frigerio. Interphysician variability in
defining the planning target volume in the irradiation of prostate and seminal vesicles. Radiotherapy
and oncology : journal of the European Society forTherapeutic Radiology andOncology, 47(3):293–296,
June 1998. doi: 10.1016/s0167-8140(98)00028-0. URL https://doi.org/10.1016/s0167-8140(98)
00028-0.

[8] Jieneng Chen, Yongyi Lu, Qihang Yu, Xiangde Luo, Ehsan Adeli, Yan Wang, Le Lu, Alan L. Yuille, and
Yuyin Zhou. Transunet: Transformers make strong encoders for medical image segmentation, 2021.

[9] Lee R. Dice. Measures of the amount of ecologic association between species. Ecology, 26(3):297–302,
July 1945. doi: 10.2307/1932409. URL https://doi.org/10.2307/1932409.

[10] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale, 2021.

[11] Arkadiy Dushatskiy, Tanja Alderliesten, and Peter A. N. Bosman. A novel surrogate-assisted evolution-
ary algorithm applied to partition-based ensemble learning, 2021.

[12] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. The
Journal of Machine Learning Research, 20(1):1997–2017, 2019.

[13] De Fauw et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nature
Medicine, 24(9):1342–1350, 2018.

[14] Kaiming He et al. Deep residual learning for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 770–778, 2016.

[15] T. Heimann, B. van Ginneken, M.A. Styner, Y. Arzhaeva, V. Aurich, C. Bauer, A. Beck, C. Becker, R. Be-
ichel, G. Bekes, F. Bello, G. Binnig, H. Bischof, A. Bornik, P. Cashman, Ying Chi, A. Cordova, B.M.
Dawant, M. Fidrich, J.D. Furst, D. Furukawa, L. Grenacher, J. Hornegger, D. Kainmuller, R.I. Kit-
ney, H. Kobatake, H. Lamecker, T. Lange, Jeongjin Lee, B. Lennon, Rui Li, Senhu Li, H.-P. Meinzer,

65

https://doi.org/10.53347/rid-21759
https://doi.org/10.53347/rid-21759
https://www.sciencedirect.com/science/article/pii/S0933365721001470
https://www.sciencedirect.com/science/article/pii/S0933365721001470
https://doi.org/10.1090/s0002-9904-1920-03378-1
https://doi.org/10.1090/s0002-9904-1920-03378-1
https://doi.org/10.1016/s0167-8140(98)00028-0
https://doi.org/10.1016/s0167-8140(98)00028-0
https://doi.org/10.2307/1932409


66 Bibliography

G. Nemeth, D.S. Raicu, A.-M. Rau, E.M. van Rikxoort, M. Rousson, L. Rusko, K.A. Saddi, G. Schmidt,
D. Seghers, A. Shimizu, P. Slagmolen, E. Sorantin, G. Soza, R. Susomboon, J.M. Waite, A. Wimmer,
and I. Wolf. Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE
transactions on medical imaging, 28(8):1251–1265, August 2009. doi: 10.1109/tmi.2009.2013851. URL
https://doi.org/10.1109/tmi.2009.2013851.

[16] John H. Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Appli-
cations to Biology, Control and Artificial Intelligence. MIT Press, Cambridge, MA, USA, 1992. ISBN
0262082136.

[17] Jiang Hsieh. Computed tomography : principles, design, artifacts, and recent advances. SPIE Optical
Engineering Press, Bellingham, WA, 2003. ISBN 978-0-8194-4425-7.

[18] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected con-
volutional networks, 2018.

[19] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by re-
ducing internal covariate shift, 2015.

[20] Fabian Isensee, Paul F Jaeger, Simon AA Kohl, Jens Petersen, and Klaus H Maier-Hein. nnu-net: A self-
configuring method for deep learning-based biomedical image segmentation. Naturemethods, 18(2):
203–211, 2021.

[21] Davood Karimi and Septimiu E. Salcudean. Reducing the hausdorff distance in medical image seg-
mentation with convolutional neural networks, 2019.

[22] Ali Emre Kavur, M. Alper Selver, Oğuz Dicle, Mustafa Barış, and N. Sinem Gezer. CHAOS - Combined
(CT-MR)Healthy Abdominal Organ SegmentationChallengeData. Medical Image Analysis, April 2019.
doi: 10.5281/zenodo.3362844. URL https://doi.org/10.5281/zenodo.3362844.

[23] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

[24] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images, 2009.

[25] Hugo Larochelle, Yoshua Bengio, Jérôme Louradour, and Pascal Lamblin. Exploring strategies for
training deep neural networks. Journal of machine learning research, 10(1), 2009.

[26] Geert Litjens, Robert Toth, Wendy van de Ven, Caroline Hoeks, Sjoerd Kerkstra, Bram van Ginneken,
Graham Vincent, Gwenael Guillard, Neil Birbeck, Jindang Zhang, Robin Strand, Filip Malmberg, Yang-
ming Ou, Christos Davatzikos, Matthias Kirschner, Florian Jung, Jing Yuan, Wu Qiu, Qinquan Gao,
Philip “Eddie” Edwards, Bianca Maan, Ferdinand van der Heijden, Soumya Ghose, Jhimli Mitra, Jason
Dowling, Dean Barratt, Henkjan Huisman, and Anant Madabhushi. Evaluation of prostate segmenta-
tion algorithms for MRI: The PROMISE12 challenge. Medical Image Analysis, 18(2):359–373, February
2014. doi: 10.1016/j.media.2013.12.002. URL https://doi.org/10.1016/j.media.2013.12.002.

[27] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig Adam, Wei Hua, Alan Yuille, and Li Fei-Fei.
Auto-deeplab: Hierarchical neural architecture search for semantic image segmentation, 2019.

[28] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search, 2019.

[29] Zhichao Lu, Kalyanmoy Deb, Erik Goodman, Wolfgang Banzhaf, and Vishnu Naresh Boddeti. Ns-
ganetv2: Evolutionary multi-objective surrogate-assisted neural architecture search, 2020.

[30] Ngoc Hoang Luong, Tanja Alderliesten, Arjan Bel, Yury Niatsetski, and Peter A.N. Bosman. Applica-
tion and benchmarking of multi-objective evolutionary algorithms on high-dose-rate brachytherapy
planning for prostate cancer treatment. Swarm and Evolutionary Computation, 40:37–52, 2018. ISSN
2210-6502. doi: https://doi.org/10.1016/j.swevo.2017.12.003. URL https://www.sciencedirect.
com/science/article/pii/S2210650217306685.

[31] John E. McNeal. The zonal anatomy of the prostate. The Prostate, 2(1):35–49, 1981. doi: 10.1002/pros.
2990020105. URL https://doi.org/10.1002/pros.2990020105.

https://doi.org/10.1109/tmi.2009.2013851
https://doi.org/10.5281/zenodo.3362844
https://doi.org/10.1016/j.media.2013.12.002
https://www.sciencedirect.com/science/article/pii/S2210650217306685
https://www.sciencedirect.com/science/article/pii/S2210650217306685
https://doi.org/10.1002/pros.2990020105


Bibliography 67

[32] Joseph Mellor, Jack Turner, Amos Storkey, and Elliot J. Crowley. Neural architecture search without
training, 2021.

[33] Jerome Myers. Research design and statistical analysis. Lawrence Erlbaum Associates, Mahwah, N.J,
2003. ISBN 978-0-8058-4037-7.

[34] Stanislav Nikolov et al. Deep learning to achieve clinically applicable segmentation of head and neck
anatomy for radiotherapy. arXiv preprint arXiv:1809.04430v3, 2018.

[35] V. Nissen and J. Propach. On the robustness of population-based versus point-based optimization
in the presence of noise. IEEE Transactions on Evolutionary Computation, 2(3):107–119, 1998. doi:
10.1109/4235.735433.

[36] T. Den Ottelander, A. Dushatskiy, M. Virgolin, and P. A. N. Bosman. Local search is a remarkably strong
baseline for neural architecture search, 2020.

[37] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi,
editors,Medical Image Computing andComputer-Assisted Intervention –MICCAI 2015, pages 234–241,
Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4.

[38] Binxin Ru, Clare Lyle, Lisa Schut, Miroslav Fil, Mark van der Wilk, and Yarin Gal. Speedy performance
estimation for neural architecture search, 2021.

[39] BinxinRu, Clare Lyle, Lisa Schut,Mark vanderWilk, and YarinGal. Revisiting the train loss: an efficient
performance estimator for neural architecture search, 2021. URL https://openreview.net/forum?
id=XvOH0v2hsph.

[40] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning Internal Representations by Error Propaga-
tion, page 318–362. MIT Press, Cambridge, MA, USA, 1986. ISBN 026268053X.

[41] Neeraj Sharma, AmitK Ray, KK Shukla, Shiru Sharma, Satyajit Pradhan, Arvind Srivastva, and LalitM
Aggarwal. Automated medical image segmentation techniques. Journal of Medical Physics, 35(1):3,
2010. doi: 10.4103/0971-6203.58777. URL https://doi.org/10.4103/0971-6203.58777.

[42] Julien Siems, Lucas Zimmer, Arber Zela, Jovita Lukasik,Margret Keuper, and FrankHutter. Nas-bench-
301 and the case for surrogate benchmarks for neural architecture search, 2020.

[43] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition, 2015.

[44] Christian Szegedy et al. Inception-v4, inception-resnet and the impact of residual connections on
learning. In Thirty-first AAAI Conference on Artificial Intelligence, 2017.

[45] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural net-
works, 2020.

[46] Dirk Thierens and Peter A.N. Bosman. Optimal mixing evolutionary algorithms. In Proceedings
of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO ’11, page 617–
624, New York, NY, USA, 2011. Association for Computing Machinery. ISBN 9781450305570. doi:
10.1145/2001576.2001661. URL https://doi.org/10.1145/2001576.2001661.

[47] Dirk Thierens and Peter AN Bosman. Optimal mixing evolutionary algorithms. In Proceedings of the
13th annual conference on Genetic and evolutionary computation, pages 617–624, 2011.

[48] MarjoleinC. vanderMeer, TanjaAlderliesten, BradleyR. Pieters, ArjanBel, YuryNiatsetski, andPeter A.
N. Bosman. Better and faster catheter position optimization in hdr brachytherapy for prostate cancer
using multi-objective real-valued gomea. In GECCO 2018 - Proceedings of the 2018 Genetic and Evo-
lutionary Computation Conference, GECCO 2018 - Proceedings of the 2018 Genetic and Evolutionary
Computation Conference, pages 1387–1394. Association for Computing Machinery, Inc, 2018. doi:
10.1145/3205455.3205505. 2018 Genetic and Evolutionary Computation Conference, GECCO 2018 ;
Conference date: 15-07-2018 Through 19-07-2018.

https://openreview.net/forum?id=XvOH0v2hsph
https://openreview.net/forum?id=XvOH0v2hsph
https://doi.org/10.4103/0971-6203.58777
https://doi.org/10.1145/2001576.2001661


68 Bibliography

[49] Yu Weng, Tianbao Zhou, Yujie Li, and Xiaoyu Qiu. Nas-unet: Neural architecture search for medical
image segmentation. IEEE Access, 7:44247–44257, 2019.

[50] Pavel Yakubovskiy. Segmentation models. https://github.com/qubvel/segmentation_models,
2019.

[51] Xingang Yan et al. Ms-nas: Multi-scale neural architecture search for medical image segmentation.
In International Conference on Medical Image Computing and Computer-Assisted Intervention, pages
388–397. Springer, 2020.

[52] Antoine Yang, Pedro M. Esperança, and Fabio M. Carlucci. Nas evaluation is frustratingly hard, 2020.

[53] Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter. NAS-
bench-101: Towards reproducible neural architecture search. In Kamalika Chaudhuri and Ruslan
Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine Learning, vol-
ume 97 of Proceedings of Machine Learning Research, pages 7105–7114. PMLR, 09–15 Jun 2019. URL
https://proceedings.mlr.press/v97/ying19a.html.

[54] Kaicheng Yu, Christian Sciuto, Martin Jaggi, Claudiu Musat, and Mathieu Salzmann. Evaluating the
search phase of neural architecture search, 2019.

[55] Qihang Yu et al. C2fnas: Coarse-to-fine neural architecture search for 3dmedical image segmentation.
In IEEE, pages 4126–4135, 2020.

[56] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks, 2013.

[57] Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning, 2017.

https://github.com/qubvel/segmentation_models
https://proceedings.mlr.press/v97/ying19a.html

	List of Figures
	List of Tables
	Introduction
	Performance estimation
	Search space
	Search algorithms

	Background
	Medical Image Segmentation
	Automated medical image segmentation

	Neural Networks
	Artificial Neural Networks
	Deep Convolutional Neural Networks
	Structure
	Convolutional layers
	Pooling layers
	Activation and normalisation
	Architecture
	U-Net

	Network training
	Data preparation and augmentation
	Training procedure
	Network performance metrics
	Loss functions
	Optimisers

	Search algorithms
	Encodings
	Evolutionary Algorithms
	Simple Genetic Algorithm
	P3GOMEA
	Local Search

	Neural Architecture Search
	NAS Structure
	Performance estimation
	Search space
	Search algorithms

	Suggested improvements
	Reduced noise performance estimation
	Simultaneous Multi-Block search space
	Robust search algorithms


	Data
	Datasets
	Medical Segmentation Decathlon
	MSD Prostate
	MSD Spleen
	AMC Prostate


	Performance Estimation
	Segmentation similarity metrics
	Noise in performance estimation
	Measuring DNN performance
	Evaluating noise

	Alternate performance estimators
	Incomplete training performance predictors
	Surrogate models and One-shot models

	Probability of finding the best network
	NAS with noise
	Validation runs and outperforming SOTA
	Other tasks and possible improvements
	Other datasets
	Evaluating a dataset before NAS

	Conclusions

	Search Space
	Learning from SotA
	Search spaces in literature
	Mixed-block NAS
	Experimental setup
	Results
	Spleen dataset
	Prostate dataset
	General results
	Comparison with SotA

	Conclusions

	Search Algorithms
	Algorithm types
	Evolutionary Algorithms

	Benchmarks
	Experimental setup
	Performance estimation
	Algorithm description

	Results
	Discussion
	Conclusions

	Discussion
	Search space experiments
	Statistical significance
	Noise and validation
	Further research
	Noise reduction in performance estimation
	NAS for image transformers
	Network scaling


	Conclusions
	Performance estimation
	Search space
	Search algorithms
	Recommendation for NAS for medical image segmentation

	Bibliography

