

Delft University of Technology

23.5 A Sub-1V 810nW Capacitively-Biased BJT-Based Temperature Sensor with an Inaccuracy of ±0.15°C (30) from -55°C to 125°C

Tang, Zhong; Pan, Sining; Makinwa, Kofi A.A.

DOI 10.1109/ISSCC42615.2023.10067695

Publication date 2023 **Document Version** Final published version

Published in 2023 IEEE International Solid-State Circuits Conference, ISSCC 2023

Citation (APA)

Tang, Z., Pan, S., & Makinwa, K. A. A. (2023). 23.5 A Sub-1V 810nW Capacitively-Biased BJT-Based Temperature Sensor with an Inaccuracy of ±0.15°C (3σ) from -55°C to 125°C. In *2023 IEEE International Solid-State Circuits Conference, ISSCC 2023* (pp. 354-356). (Digest of Technical Papers - IEEE International Solid-State Circuits Conference; VOI. 2023-February). IEEE. https://doi.org/10.1109/ISSCC42615.2023.10067695

Important note

To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

ISSCC 2023 / SESSION 23 / ANALOG SENSOR INTERFACES / 23.5

23.5 A Sub-1V 810nW Capacitively-Biased BJT-Based Temperature Sensor with an Inaccuracy of ±0.15°C (3σ) from -55°C to 125°C

Zhong Tang¹, Sining Pan^{1,2}, Kofi A. A. Makinwa¹

¹Delft University of Technology, Delft, The Netherlands ²Tsinghua University, Beijing, China

BJT-based temperature sensors are widely used because they can achieve excellent accuracy after 1-point calibration. However, they typically dissipate μ Ws of power and require supply voltages above 1V [1]. Although sensors based on DTMOSTs [2,3], capacitively biased (CB) diodes and BJTs [4,5] have demonstrated sub-1V operation, this comes at the expense of accuracy. This paper presents a sub-1V CB BJT-based temperature sensor that achieves a 1-point-trimmed inaccuracy of 0.15°C (3 σ) from -55°C to 125°C, which is 4× better than the CB BJT state-of-the-art [4]. It also achieves a resolution FoM of 0.34pJ·K², which is 6.8× better than that of state-of-the-art BJT-based sensors with a similar accuracy [1,6], (Fig. 23.5.6).

Figure 23.5.1 (left) shows the operating principle of a CB diode. A sampling capacitor C_S is first charged to the supply voltage and then discharged across the diode. After a short settling time (tens of ns), the residual voltage V_D on C_S will be solely determined by the G diode's I/V characteristic and will be a supply-independent logarithmic function of time [4,5]. If the discharging time t_1 is fixed, the resulting voltage V_{D1} will be complementary to absolute temperature (CTAT). A proportional-to-absolute-temperature (PTAT) voltage ΔV_D can then be generated by subtracting the output of two CB diodes (V_{D1} - V_{D2}) with a fixed discharging-time ratio (t_2/t_1). Compared to the current-source biasing used in conventional PTAT generators, capacitive biasing requires very little headroom and genables sub-1V operation even at low temperatures [5].

As shown in Fig. 23.5.1, opening switch S_1 stops the discharge and simultaneously samples V_D on the capacitor C_s [4,5]. However, the on-resistance (R_{on}) of S_1 increases the settling time required for V_D to become supply-independent, while the voltage drop across R_{on} adds a PVT-dependent error to V_D . Although both effects can be mitigated by using a large switch, its charge injection and leakage will then become significant error sources.

 $\[mm]$ In this work, the discharging time is set by switching the base of a CB PNP (Fig. 23.5.1 $\[mm]$ bottom right). Compared to switching its emitter [4], this reduces switch current by a $\[mm]$ factor (1+ β), where β is the BJT's current gain. Furthermore, since the switch is now $\[mm]$ connected to ground rather than to V_{BE}, low R_{on} can be achieved with a small switch, $\[mm]$ thus mitigating errors due to charge injection and leakage. At the end of the sampling $\[mm]$ phase, the PNP can be turned off by switching its base to a higher cut-off voltage V_B.

As in [4], the sampled voltages V_{BE} and ΔV_{BE} generated by CB PNP pairs are applied to a 331 charge-balancing $\Delta\Sigma$ modulator to obtain a digital representation of temperature. To facilitate sub-1V operation, the modulator's 1st integrator is built around an inverterbased pseudo-differential amplifier. The single-ended operation of the integrator is \Im illustrated in Fig. 23.5.2. Initially, C_s (4pF) is charged to V_{DD} by turning on SW_{1,2} (Fig. $\frac{1}{3}$ 23.5.2, top left), while the inverter-based amplifier is auto-zeroeu to initigate its onset G and 1/*f* noise. Next, SW₁ is turned off and SW₃ is turned on, causing C_S to discharge via 23.5.2, top left), while the inverter-based amplifier is auto-zeroed to mitigate its offset the PNP and SW_{2.3} (Fig. 23.5.2, top right). Then SW_{2.3} are opened to stop the discharge $_{
m S}^{
m w}$ and sample V_{
m BE} on C_{
m S} (Fig. 23.5.2, bottom left). At the sampling moment, the voltage drop across SW₃ due to the PNP's base current is negligibly small, while the PVT- $\frac{9}{2}$ dependent voltage drop across SW₂ does not affect the sampled V_{BE}. In contrast to [4], $\frac{9}{2}$ an additional switch SW₄ is used to ensure that the voltage drop across SW₂ does not corrupt the sampled offset on the auto-zeroing capacitor C_{A7}. Finally, SW_{4.6} are closed to transfer the sampled V_{BE} on C_S to the integration capacitor C_{INT} , and the base of the PNP غِّ is connected to V_B (~ V_{BE}) to ensure that it is turned off in a supply-independent manner (Fig. 23.5.2, bottom right). V_{B} is generated by an auxiliary CB PNP (not shown), which \sum_{Ω} is shared by all CB PNP pairs.

To maximize the sensor's energy efficiency, ΔV_{BE} should be maximized, subject to accuracy considerations, by biasing the PNPs at the largest possible current-density ratio (CDR). This is usually done by combining several unit current sources and/or PNPs, which then need complex dynamic-element-matching schemes to mitigate mismatch [1]. In the case of capacitive biasing, however, the PNP current is set by the discharging time, and so the CDR can be accurately defined by using a clock divider to set the discharge-time ratio (t_2/t_1) of two CB PNPs [4]. To mitigate charge redistribution errors, the sampling capacitors C_S (4pF, MIM) are made much larger than the parasitic capacitors of the PNPs and switches (tens of fF). This choice also ensures good matching, low kT/C noise and mitigates the effect of switch charge injection. A time ratio U = 0 of 32 ($t_1=1\mu_S$, $t_2=32\mu_S$) is chosen to achieve a good balance between energy-efficiency and accuracy.

 \widetilde{B}_{N}^{S} The block diagram of the sensor is shown in Fig. 23.5.3. It consists of 3 pairs of CB PNPs, which are connected to a 1-bit 2nd-order $\Delta\Sigma$ modulator. By controlling the timing of each CB pair (Fig. 23.5.3 bottom left), differential charges proportional to either V_{BE} or ΔV_{BE} can be transferred to the 1st integrator. When the output bitstream (BS) is 0, all

the CB pairs are configured to transfer a charge proportional to $3\Delta V_{BE}$, while when the BS is 1, one of them is configured to generate $-V_{BE2}$, thus transferring a charge proportional to $2\Delta V_{BE}$ - V_{BE2} . CB-pair mismatch is mitigated by rotating the pair used to generate $-V_{BE2}$. The resulting BS average μ is then $3\Delta V_{BE}/V_{BE1}$, which varies from about 0.2 to 0.9 over the military temperature range (-55°C to 125°C). Compared to [4], where $\Delta V_{BE}/V_{BE1}$ is digitized, the proposed charge-balancing scheme makes better use of the ADC's dynamic range, reducing the input-referred quantization error and offset by 3×. Although μ is a non-linear function of temperature, it can be linearized by computing $\mu_{Iin=\alpha \cdot \mu/((\alpha + \alpha_{trim}) \cdot \mu + 3)}$, where α is a digital constant and α_{trim} implements a PTAT trim that corrects the spread of V_{BE1} .

One half of the auto-zeroed inverter-based amplifier used in the 1st integrator is shown in (Fig. 23.5.3 bottom right). During the auto-zero phase, its bias current (160nA) is set by a constant-gm bias generator via an NMOS current mirror, and the gate voltages of M_{N1} and M_{P1} are stored on capacitors $C_{AZM,P}$ (~17pF), respectively. These capacitors are sized such that the integrator's input noise is dominated by the kT/C noise of the CB pairs. During the integration phase, the cascode transistors M_{P2} and M_{N2} ensure high DC gain (~80dB). Compared to the inverter-based amplifier in [4], this simplified biasing scheme reduces the amplifier's minimum supply voltage from 2Vgs+Vdsat to Vgs+2Vdsat, thus enabling sub-1V operation with normal VT transistors. The 2nd integrator uses a scaled version of this amplifier and draws only 40nA.

To prevent CDR errors, and hence ΔV_{BE} errors, the leakage current of the associated switches at high temperatures should be minimized. To achieve both low leakage and low R_{on} with a sub-1V supply, SW_{3,6} are implemented with HVT NMOS transistors driven by clock boosters [4]. To mitigate PNP mismatch and the residual offset of the modulator, system-level low-frequency chopping (CHL) is applied. Since the output voltage of the CB pairs is set by clock timing, the input chopper is implemented by simply swapping the appropriate timing signals in the digital domain, thereby avoiding the need for extra analog switches.

The sensor was fabricated in a standard 0.18µm CMOS process and occupies 0.25mm² (Fig. 23.5.7). It consumes 810nW (620nW analog, 190nW digital) from a 0.95V supply at room temperature, which increases to 2µW at 125°C due to the PTAT bias current and leakage (Fig. 23.5.4 top left). All the required timing signals are generated on-chip from a 1MHz external clock. The sinc² decimation filter and the linearization of µ were implemented off-chip. Circuit-level simulations show that their on-chip implementation would only dissipate an additional 80nW.

As shown in Fig. 23.5.5 (left), the output of 20 chips in ceramic DIL packages was characterized from -55°C to 125°C. As expected, their BS average μ is a non-linear function of temperature. After linearization with a fixed α (=7.3), the sensor achieves a batch-calibrated inaccuracy of ±0.45°C (3\sigma). This improves to ±0.15°C (3\sigma) after a 1-point PTAT trim, corresponding to a relative inaccuracy (RIA) of 0.17% (Fig. 23.5.5, right). Over a 0.95V to 1.4V supply range, the sensor achieves a maximum power-supply sensitivity (PSS) of 0.2°C/V from -55°C to 125°C (Fig. 23.5.4 top right).

Figure 23.5.4 (bottom left) shows the FFTs of the sensor's bitstream at different temperatures, with the modulator operating in free-running mode. In a conversion time of 128ms, it achieves a kT/C-limited resolution of $1.8 m K_{rms}$ at room temperature, and less than $2.1 m K_{rms}$ over temperature (bottom right). This corresponds to a resolution FoM of $0.34 \mu J \cdot K^2$ at room temperature, and less than $0.53 \mu J \cdot K^2$ over temperature, making it one of the most energy-efficient BJT-based sensors reported to date.

The sensor's performance is summarized in Fig. 23.5.6 and compared to state-of-theart BJT-based temperature sensors with similar accuracy and/or power consumption. This is the only sub-1V precision temperature sensor (RIA <0.2%) among the sensors listed in the table. Compared to other CB sensors [3,4,5], it achieves the best accuracy (×4) and PSS (×1.3). Compared to conventional designs with fixed-current biasing [1,2,6], this work achieves sub-1V operation, similar accuracy, and state-of-the-art energy efficiency (×6.8).

Acknowledgement:

We would like to thank Pieter Harpe for technical discussions and Zu-yao Chang, Lukasz Pakula for measurement support.

References:

[1] B. Yousefzadeh et al., "A BJT-Based Temperature-to-Digital Converter With ±60 mK (3 σ) Inaccuracy From -55 °C to +125 °C in 0.16- μ m CMOS," *IEEE JSSC*, April 2017. [2] K. Souri et al., "A 0.85V 600nW All-CMOS Temperature Sensor with an Inaccuracy of ±0.4°C (3 σ) from -40 to 125°C," *ISSCC*, pp. 222-223, Feb. 2014.

[3] S. Park et al., "A DTMOST-based Temperature Sensor with 3σ Inaccuracy of ±0.9°C for Self-Refresh Control in 28nm Mobile DRAM," *IEEE CICC*, 2020.

[4] Z. Tang et al., "An Energy-Efficient Capacitively Biased Diode-Based Temperature Sensor in 55-nm CMOS," *IEEE SSCL*, vol. 4, pp. 210-213, 2021.

[5] M. Eberlein et al., "A No-Trim, Scaling-Friendly Thermal Sensor in 16nm FinFET using Bulk-Diodes as Sensing Elements," *IEEE SSCL*, vol. 2, no. 9, pp. 63-66, Sept. 2019.

[6] T. Someya et al., "A 210nW BJT-based Temperature Sensor with an Inaccuracy of $\pm 0.15^{\circ}$ C (3 σ) from -15° C to 85°C," *IEEE VLSIC*, June 2022.

ISSCC 2023 / February 22, 2023 / 10:45 AM

Figure 23.5.3: Simplified diagram of the proposed CB-PNP-based temperature sensor (top) and its timing diagram (bottom left); proposed AZ inverter-based amplifier right). FFTs of the bitstream in free-running mode (bottom left); resolution vs. (bottom right).

right).

			C	apacitive b	iasing	Current-source biasing	
	This work	SSCL'21 [4]	SSCL'19 [5]	CICC'20 [3]	JSSC'17 [1]	ISSCC'14 [2]	VLSI'22 [6]
Technology	180nm	55nm	16nm	28nm	160nm	160nm	180nm BCD
Туре	ΡΝΡ DT ΣΔ	ΡΝΡ DT ΣΔ	Bulk Diode SAR	DTMOST OSC	ΡΝΡ DT ΣΔ	DTMOST DT ΣΔ	ΝΡΝ DT ΣΔ
Area [mm²]	0.25	0.021	0.0025	0.017	0.16	0.085	0.058
Supply [V]	0.95-1.4	1-1.3	0.85-1	0.85-1.15	1.5-2	0.85-1.2	1.25
T. Range [°C]	-55 to 125	-55 to 125	-15 to 105	-10 to 90	-55 to 125	-40 to 125	-15 to 85
3σ error [°C] (Trim point)	±0.45 (0) ±0.15 (1)	±1.4 (0) ±0.6* (1)	+1.5/-2.0 (0)	±2.0 (0) ±0.9 (1)	±0.4 (0) ±0.06* (1)	±1 (0) ±0.4 (1)	±0.4 (0) ±0.15 (1)
R.IA[%] (Trim point)	0.5 (0) 0.17 (1)	1.6 (0) 0.67 (1)	2.9 (0)	4 (0) 1.8 (1)	0.44 (0) 0.07 (1)	1.3 (0) 0.5 (1)	0.8 (0) 0.3 (1)
Power [µW]	0.81	2.2	18	33.75	6.9	0.6	0.21
Tconv [ms]	128	6.4	0.013	0.1	5	6	50
Res. [mK]	1.8	15	300	10.2	15	63	15
PSS[°C/V]	0.2	3.7	1.5	0.27	0.01	0.45	0.07
Res. FoM** [pJ•K²]	0.34	3.1	21	0.36***	7.8	14.1	2.3

"With systematic error correction. ** Res. FoM=(Energy/conversion)+(Resolution)². *** Needs an additional frequency to digital converter

Figure 23.5.6: Performance summary and comparison with the state-of-the-art.

23

