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Abstract

Data-driven control approaches have been proved highly effective in applications where the
dynamics of the system are unknown. The reason is that the use of data in control overcomes
the challenge of parametric modeling which requires effort and often leads to an insufficient
description of the system’s behavior. By contrast, the behavior of the system can be captured
more accurately when input-output data is used.

In this project a frequency-domain approach is proposed for robust controller design for con-
trollers of pre-specified structure. Specifically, an existing technique is extended so that it
guarantees not only nominal, but also robust performance. This is achieved by ensuring
performance for multiple frequency-domain models acquired from data. The related compu-
tational efficiency in the overall approach is also a fundamental criterion and thus we propose
a series of techniques by which it can be improved. Additionally, a major contribution of this
work is an iterative algorithm that minimizes a linear approximation of the H∞ norm of the
closed-loop system. Last but not least, a method to optimize the linear constraints of the
optimization scheme is proposed.
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Chapter 1

Introduction

A mathematical representation of the physical world, not matter how reliable, can only be
an approximation of a complex underlying behavior. Similarly, a system can be modeled
precisely with a parametric model, yet it will always deviate from the real-world physical
system due to manufacturing defects or unmodeled dynamics. Therefore, a controller that is
designed based on a parametric model is likely to result in suboptimal control performance
compared to controllers based on data and system identification.

Data-driven control refers to a wide range of approaches that make use of input-output data
with the purpose of controller design. The several approaches can initially be separated in
two classes: model-free methods and model-based methods. Model-free methods make direct
use of data, bypassing the representation of the system by any model. Such methods usually
develop a control strategy relying on an iterative learning procedure. On the other hand, in
model-based methods the key idea is the identification of the system. That is, a persistently
exciting input and the corresponding output can be used to build a representation, that is a
model, of the system that best fits to the data acquired. The controller synthesis then follows
by using traditional controller design tools.

The techniques that are proposed in this project, lie on the field of model-free data-driven
control, since the system that is to be controlled is not described by an analytical identified
model. Instead, its behavior is represented by frequency-domain data, which can be used
to facilitate robust controller synthesis. Frequency-domain data can be acquired from time-
domain data by using Fourier analysis or spectral analysis. Specifically, we are going to make
use of data in the form of Frequency Response Function (FRF) measurements [9], acquired
in a closed-loop system configuration. Then, the frequency response of the plant, denoted as
G(jω), can be extracted from the closed-loop FRF measurements. Finally, the response of the
plant can be exploited to build controllers that satisfy stability and performance conditions.

A simple schematic criterion which can be employed in combination with frequency-domain
data, in order to satisfy stability and nominal performance specifications is the generalized
Nyquist criterion. That is, one can impose a number of linear constraints to the Nyquist
diagram of a certain function, so as to ensure a specific number of encirclements of the origin,
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2 Introduction

which will result to a well performing controller. A commonly used method to extend simply
nominal to robust performance is to guarantee that a controller satisfies performance for a
set of system’s representations.

The work at hand is based on a technique for frequency-domain, convex optimization of
fixed-structure controllers presented in [12]. This initial approach employs the generalized
Nyquist criterion and makes use of user-defined linear constraints to facilitate data-driven
controller design that satisfies H∞ nominal performance for a stable plant. Given this default
technique, we propose multi-model controller design, which leads to the satisfaction of robust
performance. Additionally, we propose an updated optimization scheme and an algorithm that
automatically constructs optimal, in the sense of minimum conservatism, linear constraints.
As a result the designer is relieved from the burden of constructing user-defined constraints,
which can often be a cumbersome procedure. Moreover, we explore different methods of
reducing the size of the problem by reducing the number of the resulting linear inequalities.
Finally, we extend the entire technique so that unstable plants with right-half plane (RHP)
poles can also be considered, retaining the convexity of the proposed optimization algorithm.

Namely, in chapter 2 we develop the existing technique presented in [12], that provides an
algorithm for optimization of fixed-structure controllers that satisfy H∞ nominal performance
based on frequency-domain data, for a stable plant. Next, in chapter 3 the extension of
the algorithm so that it satisfies H∞ robust performance is proposed and additionally, a
series of techniques by which the resulting computational complexity can be reduced are
suggested. Moreover, in chapter 3 we propose an iterative, computational algorithm that
seeks to minimize a certain convex approximation of the infinity norm of the actual plant,
with the minimum amount of information. By minimum information it is meant that a
single stabilizing controller parameters’ combination suffices so as to perform the proposed
iterative, convex optimization. Next to that, an iterative algorithm for optimization of the
linear constraints that are imposed is proposed. In chapter 4, we employ a stable plant to
evaluate the suggested algorithms and we present some extended comparisons between the
different approaches. In chapter 5, we extend the proposed techniques for unstable systems,
where the Nyquist criterion requires a more complex condition for stability and performance,
and then we employ the dynamics of a magnetically levitated train in order to evaluate the
performance of our algorithms. Finally, in chapter 6, we comment on the conclusions of this
project, presenting its advantages and drawbacks, while we also consider the potential for
future research and applications of the proposed technique.
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Chapter 2

Frequency-Domain Optimization of
Fixed-Structure Controllers

In this chapter we develop a frequency-domain technique for optimization of controllers with
pre-specified structure, as presented in [12]. It is noted that a significant part of the notation
and the theoretical description remains the same. Specifically, the goal of the method is to
tune the parameters of a linearly parametrized controller in order to satisfy H∞ performance,
using a measured Frequency Response Function (FRF) obtained from the plant. We note
that the corresponding unstructured robust control problem is convex, yet it typically results
to controllers with high order [14], which is not convenient in practice.

The key idea behind this algorithm lies on exploiting the generalized Nyquist criterion. Specif-
ically, a set of linear constraints are employed to impose stability and performance specifica-
tions. The initial approach in [12] considers Multiple-Input Multiple-Output (MIMO) stable
systems, which result to a multi-linear problem. Next, it is proved that for Single-Input
Single-Output (SISO) and Single-Input Multiple-Output (SIMO) systems the configuration
of the system can suitably be modified so that the resulting algorithm is convex. In the
following sections we develop the main principles and the structure of the algorithm.

2-1 Problem formulation

In this section the H∞ control synthesis problem is defined, the class of admissible controllers
is described and finally the stability and performance conditions are specified.

2-1-1 Problem statement

Consider the generalized plant expressed as:[
z
y

]
=
[
P11(s) P12(s)
P21(s) P22(s)

] [
w
u

]
, (2-1)
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4 Frequency-Domain Optimization of Fixed-Structure Controllers

where z ∈ Rnz denotes the error signal, w ∈ Rnw denotes the external inputs, whereas u ∈ Rnm

and y ∈ Rnm denote the input and output of the generalized plant. The transfer functions
P11(s), P12(s), P21(s) and P22(s) have corresponding dimensions and are all assumed to be
stable. Part of the controller is considered to be absorbed in the transfer functions of the
generalized plant. On the other hand, the tunable parameters of the controller are extracted
and finally the control law takes a form of static output feedback for which it holds:

u =

φ1 0
. . .

0 φm


︸ ︷︷ ︸

K

y, (2-2)

where φ1, · · · , φm denote the tunable parameters of the controller K. The closed-loop transfer
function of the generalized plant, from w to z, is expressed as

Twz = Fl(P, K) = P11(s) + P12(s)K(I − P22(s)K)−1P21(s), (2-3)

where Fl denotes the lower linear fractional transformation (LFT). The objective is to find
values for the parameters φi, for i = 1, · · · , m, such that ||Twz(s)||∞ < 1.

2-1-2 Linearly parametrized controllers

The class of controllers that are available for feedback is a set of linearly parametrized con-
trollers. Such controllers take the form

C(s, φ) = φT l(s), where φT = [φ1, φ2, · · · , φn], lT (s) = [l0(s), l1(s), · · · , ln−1(s)],

n is the number of controller parameters and li(s) are stable transfer functions. In the
general case, any stable rational finite order transfer function F (s) can be approximated by
some orthonormal basis functions. An example is Laguerre basis functions [7], where:

l0(s) = 1, li(s) =
√

2ξ(s− ξ)i−1

(s + ξ)i
for i ≥ 1, ξ > 0 (2-4)

Then, it holds that for arbitrarily small ε > 0 there exists a sufficiently large n for which

||F (s)− φT l(s)||p < ε for 0 < p <∞ (2-5)

Thus, with Laguerre basis functions parametrization any finite order stable transfer function
can be approximated with higher accuracy as the number of controller parameters n increases.
A practical guideline about how to select the tuning parameter ξ and the number of controller
parameters n is given in [4]. In the context of this approach, the Laguerre basis functions are
absorbed into the generalized plant and the tunable parameters are extracted in a diagonal
form as shown in equation 2-2.
Naturally, the most commonly used linearly parametrized controller is the PID type. Consider
the PID controller

KP ID(s) = kp + ki

s
+ kds

Tf s + 1 , (2-6)

with kp, ki and kd denoting the proportional, integral and derivative gain, respectively. Then,
it can be easily integrated with the generalized plant with the tunable parameters in a diagonal
form and this is shown in figure 2-1
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2-1 Problem formulation 5

Figure 2-1: Configuration of the generalized plant for a PID controller

2-1-3 Condition for stability and performance

As mentioned before, the objective of this algorithm is to find the values of the tunable
parameters of a pre-specified structure controller that satisfy ||Twz(s)||∞ < 1. Consider the
stable generalized plant P (s) and its frequency response that is denoted as P (jω) and can be
obtained using FRF data of the plant. The generalized Nyquist criterion for stability [6] is
employed to formulate the condition for stability and performance.

Definition for stability The closed-loop system Twz illustrated in figure 2-2, is asymptotically
stable if for a stable generalized plant P (s), the Nyquist plot of

det

I −

φ1 0
. . .

0 φm

P22(jω)

 , ∀ω, (2-7)

does not encircle the origin. This is the generalized Nyquist theorem for a positive feedback
system with stable loop transfer function KP22(jω).

Figure 2-2: Generalized plant with linearly parametrized controller
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6 Frequency-Domain Optimization of Fixed-Structure Controllers

Definition for performance The closed-loop system Twz satisfies the performance specifica-
tion ||Twz||∞ < 1 if for a stable generalized plant P (s), the Nyquist plot of

det

I −


∆p(jω) 0

φ1 0

0 . . .
0 φm

P (jω)

 , ∀ω, ∀∆p(jω) (2-8)

does not encircle the origin for any stable rational transfer function ∆P ∈ RHnw×nz
∞ and

||∆P (s)||∞ ≤ 1.

Figure 2-3: Closed-loop system including ∆P (s)

It can be noticed that figure 2-3 can be obtained by figure 2-2 by including a full complex
perturbation block ∆P (jω) in feedback from the exogenous input w to the exogenous output
z. This perturbation is only used to examine the performance specification and is not a
physical perturbation. The proof of 2-8 is derived from [11]. In the context of this project,
we use the definitions for stability and performance as expressed in 2-7 and 2-8.

2-2 Controller design

In this section we describe the procedure that is used for controller synthesis such that the
closed-loop system is stable and ||Twz||∞ < 1. First we examine the relation between the
controller parameters and the determinant expression that is involved in the conditions for
stability and performance. Then, we introduce the linear constraints that are employed in
order to prevent the Nyquist curve from encircling the origin. Additionally we examine the
realization of the perturbation and the way that it can be utilized in the linear constraints
that refer to performance. Last, we consider the resulting feasibility problem and propose a
modification that leads to a convex optimization problem for certain controllers.

2-2-1 Determinant expression and controller parameters

In this paragraph, the expression of the determinant for equations 2-7 and 2-8 is examined.
Specifically, consider the simple case of a controller with two parameters φ1 and φ2 and a
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2-2 Controller design 7

scalar perturbation. Then, the generalized plant is of the form

P (jω) =

P11(jω) P
(11)
12 (jω) P

(12)
12 (jω)

P 11
21 (jω) P

(11)
22 (jω) P

(12)
22 (jω)

P 21
21 (jω) P

(21)
22 (jω) P

(22)
22 (jω)

 (2-9)

Let the determinant, that is related to the stability condition, be denoted as Q(φ, jω). Then,
for this case with two controller parameters it becomes

Q(φ, jω) = 1− P
(11)
22 φ1 − P

(22)
22 φ2 +

(
P

(11)
22 P

(22)
22 − P

(12)
22 P

(11)
21

)
φ1φ2 (2-10)

Respectively, let the determinant related to the performance condition be denoted as Q∆(φ, jω).
Then, for a scalar perturbation, that is for single exogenous input w and exogenous output
z, it becomes

Q∆(φ, jω) =1− P11∆P +
(
P11P

(11)
22 ∆P − P

(11)
12 P

(11)
21 ∆P − P

(11)
22

)
φ1

+
(
P11P

(22)
22 ∆P − P

(12)
12 P

(21)
21 ∆P − P

(22)
22

)
φ2

+
(
P

(11)
22 P

(22)
22 − P

(12)
22 P

(21)
22 − P11P

(11)
22 P

(22)
22 ∆P

+ P11P
(12)
22 P

(21)
22 ∆P + P

(11)
12 P

(11)
21 P

(22)
22 ∆P

+P
(11)
12 P

(12)
22 P

(21)
21 ∆P − P

(12)
12 P

(11)
21 P

(21)
22 ∆P + P

(12)
12 P

(11)
22 P

(21)
21 ∆P

)
φ1φ2

(2-11)

It can be seen in equations 2-10 and 2-11 that both Q(φ, jω) and Q∆(φ, jω) are bilinear with
respect to the controller parameters φ1 and φ2. Respectively, for controllers with multiple
parameters the relation will be multi-linear. In the following paragraph, the determinant
expressions Q(φ, jω) and Q∆(φ, jω) are constrained by some linear inequalities such that the
Nyquist criterion is satisfied.

2-2-2 Constraints in the Nyquist diagram

The main idea behind this algorithm is to constrain the Nyquist curves of Q(φ, jω) and
Q∆(φ, jω) from encircling the origin. An example of such a constraint is illustrated in figure 2-
4, where the Nyquist curve of Q(φ, jω) for a certain stable generalized plant P (jω) is depicted
with the solid line. The discs with centers at the solid line correspond to the Nyquist curve
of Q∆(φ, jω). The closed-loop system Twz is stable if and only if the Nyquist diagram of
Q(φ, jω) does not encircle the origin. Additionally, performance is satisfied if and only if
the Nyquist diagram of Q∆(φ, jω) does not encircle the origin. These two restrictions are
imposed by some linear constraints which in figure 2-4 are noted as l1(jω) and l2(jω). It is
noted that the linear constraints are imposed per frequecy point and additionally naturally
a different constraint is active for different ranges of frequency. This is illustrated in 2-4 by
the use of different colors which are indicating which linear constraint is active for a specific
range of frequencies for Q(φ, jω) and Q∆(φ, jω). That is, the area of Q(φ, jω) which is in
black color is contrained by l1(jω), whereas the area in grey color is constrained by l2(jω).

Linear constraints such as l1(jω) and l2(jω) are defined by the designer and require some
insight into the plant that is to be controlled. Generally, they have the following form, i.e.

Master of Science Thesis Georgios Skaltsis



8 Frequency-Domain Optimization of Fixed-Structure Controllers

Figure 2-4: Nyuquist diagram [12].

for stability,

l1(φ, jω) = Im(Q(φ, jω)) + a1Re(Q(φ, jω)) + c1 < 0, ω ∈ [ω1, ω2] (2-12)

where Re(·) and Im(·) denote the real and imaginary part of a complex number, and a1 and
c1 are the slope and the offset of the constrain l1. The frequencies ω1 and ω2 denote the range
of frequencies for which this constraint is active. Similarly, the Nyquist curve of Q(φ, jω) can
be constrained as

l2(φ, jω) = Im(Q(φ, jω)) + a2Re(Q(φ, jω)) + c2 < 0, ω ∈ [ω2, ω3], (2-13)

where a2 and c2 denote the slope and the offset of the constraint, while ω3 denotes the upper
limit of the active frequency range for l2.

Similar constraints, denoted as l∆1 and l∆2, are defined for performance if the value of
Q∆(φ, jω) is replaced instead of Q(φ, jω) in the linear inequalities 2-12 and 2-13. Hence,
when linear constraints for Q(φ, jω) are imposed, the resulting controller will satisfy sta-
bility requirements. Similarly, when constraints for Q∆(φ, jω) are considered, the resulting
controller will satisfy performance.

Since the developed method is a computational algorithm that is based on linear constraints
that are applied per frequency point, it is essential to find a way to realize the performance
perturbation ∆P , and this is discussed in the following subsection.

2-2-3 Realization of perturbation ∆P

In the following paragraphs the realization of the performance perturbation ∆P is discussed.
It holds that ||∆P (s)||∞ ≤ 1 and ∆P ∈ RHnw×nz

∞ . Hence, realizing l∆(φ, jω) would require to
evaluate an infinite number of constraints. For example realizing the constraint for a particular
frequency point it would be needed to realize all ∆P (jω) for which maxω σ̄(∆P (jω)) ≤ 1.
In order to circumvent this, the performance perturbation ∆P (jω) is realized by nd points
randomly drawn from maxω σ̄(∆P (jω)) ≤ 1.

The relization of the perturbation ∆P (jω) is denoted by ∆̄P (jω) and the corresponding
determinant expression is denoted by Q∆̄(φ, jω). For satisfying performance specifications
it should hold that the Nyquist diagram of Q∆̄(φ, jω) does not violate the constraints. For
that, it suffices to check the worst case for the perturbation ∆P which corresponds to realizing
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2-2 Controller design 9

∆P (jω) with maximum singular value, that is σ̄(∆P (jω) = 1. In other words, it suffices to
check the boundary, since an LFT will map closed contours in closed contours [1]. Thus,
finally we are interested in realizing the following set of perturbations

∆̄P := {∆̄P |σ̄(∆̄P (jω)) = 1}

It is noted that the resulting size of the feasibility problem is proportional to the number of
realizations nd of the perturbation. Naturally, by selecting a increased number of realizations
nd will reduce the probability of "missing" a critical uncertainty. On the other hand, an
increased number of realizations implies an increased computational effort of the algorithm.
This introduces a trade-off that the designer has to take under consideration when deciding
on the number of realizations of ∆P . After having resolved the issue of realizing ∆P , the
feasibility problem can be discussed.

2-2-4 Multilinear feasibility problem

In the following paragraphs we examine the feasibility problem, that is the details of setting up
the proposed algorithm. We consider that frequency response data are available from an FRF
of the plant which is denoted as P (jω). Additionally, a set of linear constraints l(φ, jω) and
l∆(φ, jω) is constructed for stability and performance, respectively. Thus, the computational
problem that addresses the satisfaction of stability requirements can be expressed as

Find φ such that l(φ, jω) < 0 ∀ω ∈ Ω, (2-14)

where Ω is the finite discrete set containing the frequency grid of the FRF of the plant.
Similarly, for performance the problem can be expressed as

Find φ such that l∆(φ, jω) < 0 ∀ω ∈ Ω, ∀∆̄P (jω) ∈ ∆̄P (2-15)

Solving the problems 2-14 and 2-15, controller parameters φ are obtained which satisfy closed-
loop stability for the former case, and closed-loop stability and performance for the latter case.
If the problem is not feasible the designer should consider either changing the structure of
the fixed-order controller or refine the linear constraints imposed in the Nyquist diagram.

It is stressed that multiple constraints can be applied per frequency point if this is desired.
Moreover, the size of the feasibility problem depends on the number of frequency points
that are considered, on the number of constraints that are imposed in each point as well
as on the number of realizations of the perturbation ∆P . Thus, for a single constraint per
frequency point the problem that addresses stability will lead to N linear constraints, where
N denotes the number of frequency points in the FRF. On the other hand, when performance
is considered, the problem will consist of N · nd linear constraints. Finally, it is noted that
the size of the problem does not depend on the number of the controller parameters.

2-2-5 Convex feasibility problem and optimization scheme

As discussed previously, extracting the controller parameters into a diagonal form results to
having a feasibility problem that is multi-linear with respect to the parameters φ. In the
following paragraphs we discuss the ways and conditions, under which the feasibility problem
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10 Frequency-Domain Optimization of Fixed-Structure Controllers

can be convexified. For this, we need to modify the configuration of the generalized plant,
and correspondingly of the controller as well, in a way that facilitates the transformation of
the linear constraints. Specifically, the diagonal form of the controller with the perturbation
∆P as presented previously 

∆p(jω) 0
φ1 0

0 . . .
0 φm


is modified to

KI(φ, jω) =
[
∆p(jω) 0

0 CI(φ, jω)

]
, (2-16)

where CI(φ, jω) denotes the full controller, including the tunable parameters. Naturally, the
configuration of the generalized plant needs to change as well. This modification implies that
instead of absorbing part of the controller into the generalized plant and extracting only the
tunable parameters, the full controller is represented by CI(φ, jω). In the case of a SISO
controller this leads to a convex optimization problem. This can be shown by examining
the determinant expression for the case of a scalar perturbation and a SISO controller. For
performance, the Nyquist theorem requires that the Nyquist curve of

det(I −KI(φ, jω)P (jω)) (2-17)

does not encircle the origin. By substituting 2-16 in 2-8 results to

(1−∆P P11) (1− CI(φ)P22)−∆P P12CI(φ)P21 (2-18)

which is affine with respect to the controller parameters φ. Thus, SISO controllers, such
PID controllers, result in a convex feasibility problem. It is noted that the realization of the
perturbation ∆P can be multidimensional without affecting the convexity of the feasibility
problem. Additionally, the feasibility problem remains convex for the case of a Multiple-Input
Single-Output (MISO) controller, while for SIMO it is not anymore convex. This can be easily
demonstrated by considering a simple case for each scenario.

Having described the configuration of the generalized plant that is required in order to have
a convex feasibility problem, according to [12] the optimization algorithm can be expressed
as

min
m∑

i=1
φ2

i

s.t. ln(φ, jω) < 0, ∀ω ∈ [ωi, ωi+1] n = 1, · · · , c− 1
ln∆(φ, jω) < 0, ∀ω ∈ [ωi, ωi+1] n = 1, · · · , c− 1,

(2-19)

where c denotes the total number linear constraints. It is stressed that the linear constraints
that refer to stability, that is ln(φ, jω) < 0 for n = 1, · · · , c−1, are more conservative than the
ones that refer to performance, and thus they can be omitted in the optimization procedure.
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Chapter 3

Robust Performance and Minimization
of Conservatism

In the previous chapter the main mechanism and the principles of the algorithm were de-
veloped. Specifically, it was shown that by imposing some linear constraints in the Nyquist
diagram one can satisfy closed-loop stability and performance specifications for a system,
given that a frequency response of the plant is available. However, frequency responses in
the form of Frequency Response Function (FRF) measurements often imply the existence of
uncertainties due to measurement or process noise. This means that the generalized plant is
not described accurately and hence the actual performance of the resulting controller might
deviate from the desired behavior.

In order to deal with uncertainties we propose an extension of the algorithm so that it can
guarantee stability and performance over a whole set of generalized plants, which are acquired
from multiple FRF measurements. This way the nominal performance that was guaranteed
in chapter 2 can be extended to robust performance. Such an extension naturally leads to the
increase of linear constraints that need to be considered, as it will be shown in more detail in
the following sections. As a solution to this problem we also develop a method of reducing
the number of the linear constraints that are imposed. Additionally, we propose a refined
optimization scheme which is based on an iterative algorithm that seeks to minimize a convex
approximation of the H∞ norm of the closed-loop. This refined optimization scheme arose as
a solution to the conservatism of the default optimization scheme proposed in [12]. Finally, we
propose an algorithm that constructs linear constraints, which are optimal in the sense that
they induce the least amount of conservatism with respect to an initially stabilizing solution.

3-1 A multi-model approach

In this section the H∞ controller design problem for a multi-model approach is addressed.
Specifically, we directly approach controllers that lead to a convex feasibility problem as
described in 2-2-5. Certainly, this extension to a multi-model approach can be applied in
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12 Robust Performance and Minimization of Conservatism

the general case of controllers in a diagonal form as well. In the following subsections we
propose a method that facilitates controller design in order to satisfy stability and performance
requirements over a whole set of generalized plants.

3-1-1 Problem formulation

Consider a set of M generalized plants given as[
zi

yi

]
=
[
P i

11(s) P i
12(s)

P i
21(s) P i

22(s)

] [
wi

ui

]
i = 1, · · · , M (3-1)

where zi ∈ Rnz denotes the error signal, wi ∈ Rnw denotes the external inputs, whereas ui ∈
Rnm and yi ∈ Rnm denote the input and output of the generalized plant i, with i = 1, · · · , M .
The transfer functions P i

11(s), P i
12(s), P i

21(s) and P i
22(s) have corresponding dimensions and

are all assumed to be stable.

As it was stressed previously, in this chapter we consider controllers that lead to a convex
feasibility problem. That is, Single-Input Single-Output (SISO) and Multiple-Input Single-
Output (MISO) controllers that can be represented as CI(φ, s), where CI is affine with respect
to the controller parameters φ. In particular CI(φ, s) can follow any linear parametrization
that is described in 2-1-2. Thus, the control law for all M generalized plants can be described
as

ui = CI(φ, s)yi, i = 1, · · · , M. (3-2)

Given that, the closed-loop systems for i = 1, · · · , M are obtained by

T i
wz(s) = Fl(P i, CI) = P i

11 + P i
12CI(I − P i

22CI)−1P i
21, (3-3)

where Fl denotes the lower linear fractional transformation (LFT). The objective is to find
controller parameters φ that satisfy ||T i

wz(s)||∞ < 1, for i = 1, · · · , M .

3-1-2 Condition for stability and performance

In this subsection the conditions for stability and performance for the closed-loop systems
described in 5-2 are given. Consider that multiple frequency responses of the generalized
plant P (s) are given, which are denoted as P i(jω) for i = 1, . . . , M . The two definitions are
based on the generalized Nyquist criterion of [6].

Definition for stability The closed-loop systems T i
wz, for i = 1, · · · , M in figure 3-1 are

asymptotically stable if for the stable generalized plants P i(jω), the Nyquist plots of

Qi(φ, jω) = det
(
1− CI(φ, jω)P i

22(jω)
)

(3-4)

do not encircle the origin. This is the generalized Nyquist theorem considering positive
feedback systems with stable loop transfer functions CI(φ, jω)P i

22(jω).
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3-1 A multi-model approach 13

Figure 3-1: Generalized plant configuration considering multiple models

Definition for performance The closed-loop systems T i
wz satisfy H∞ performance with

||T i
wz||∞ < 1, if for the stable generalized plants P i(jω), the Nyquist plots of

Qi
∆(φ, jω) = det

(
I −

[
∆p(jω) 0

0 CI(φ, jω)

]
P i(jω)

)
, ∀ω, ∀∆P (jω), (3-5)

do not encircle the origin for any stable rational transfer function ∆P ∈ RHnw×nz
∞ and

||∆P (s)||∞ ≤ 1.

Figure 3-2: Generalized plant configuration considering multiple models and performance per-
turbation
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14 Robust Performance and Minimization of Conservatism

3-1-3 Linear constraints

As it was described in the previous chapter, in subsection 2-2-2, the main idea of the algorithm
is to constraint the Nyquist curves of Qi(φ, jω) and Qi

∆(φ, jω) from encircling the origin.
Similarly to the single-model approach, some linear constraints are employed to guarantee
that the stability and performance conditions in 5-3 and 5-4 are met.

The general form of such constraints is, i.e. for stability

l1(φ, jω) = Im(Qi(φ, jω)) + a1Re(Qi(φ, jω)) + c1 < 0, ω ∈ [ω1, ω2], i = 1, · · · , M, (3-6)

where Re(·) and Im(·) denote the real and imaginary part of a complex number, while a1
and c1 are the slope and the offset of the linear constraint l1. In order to satisfy the stability
condition 5-3, multiple constraints are implemented for different ranges of frequency. For
instance l1 is active in the frequency interval [ω1, ω2]. The nth linear constraint would have
the form

ln(φ, jω) = Im(Qi(φ, jω)) + anRe(Q(iφ, jω)) + cn < 0, ω ∈ [ωn, ωn+1], i = 1, · · · , M,
(3-7)

where an and cn denote the slope and the offset of the constraint, while ωn and ωn+1 denote
the lower and the upper limit of the active frequency range for ln, for n = 1, · · · , c with
c being the number of total linear constraints. Given the stable generalized plants P i(jω)
for i = 1, · · · , M , if the linear constraints of the form of 3-6 and 3-7 are satisfied, then the
closed-loop systems T i

wz are asymptotically stable.

Similar linear constraints, denoted as ln∆i for i = 1, · · · , M , are defined for performance if the
value of Qi

∆(φ, jω) is replaced instead of Qi(φ, jω) in the linear inequalities 3-6 and 3-7.

3-1-4 Performance perturbation

As it was described in subsection 2-2-3 for the performance perturbation ∆P it holds that
||∆P (s)||∞ ≤ 1 and ∆P ∈ RHnw×nz

∞ . In order to avoid an infinite number of realizations,
and thus an infinite number of linear constraints, the perturbation ∆P (jω) is realized by nd

points. In order to keep the number of sampled points low as possible the perturbation in not
realized in the set for which σ̄(∆P (jω)) ≤ 1. Instead, the worst case scenario is considered
and thus we are interested in realizing the following set of perturbations

∆̄P := {∆̄P |σ̄(∆̄P (jω)) = 1}

As it was also described in 2-2-3, the size of the final problem is proportional to the number nd

of realizations of the perturbation ∆P . Specifically, the number of linear inequalities that are
implemented in the final algorithm is N ·nd ·M . This introduces a dilemma for the designer.
That is, an increased number of realizations nd improves the description of ∆P . On the other
hand, this would imply that the complexity of the algorithm would significantly increase. In
the following section we propose some methods that can drastically reduce the complexity of
the algorithm, without reducing the efficiency of the technique.
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3-2 Reduction of computational complexity 15

3-1-5 Configuration of the optimization scheme

Having described the procedure that needs to be followed for the realization of the perturba-
tion, and having defined the structure of the linear constraints, the optimization scheme for
the multi-model approach can be constructed. As deployed in [12], the optimization algorithm
can be expressed as

min
m∑

k=1
φ2

k

s.t. lin(φ, jω) < 0, ∀ω ∈ [ωn, ωn+1] i = 1, · · · , M, n = 1, · · · , c

li∆n(φ, jω) < 0, ∀ω ∈ [ωn, ωn+1] i = 1, · · · , M, n = 1, · · · , c

(3-8)

where c denotes the total number of linear constraints and M the total number of models
that are considered. It is stressed that the linear constraints that refer to stability, that is
lin(φ, jω) < 0 for n = 1, · · · , c, are more conservative than the ones that refer to performance,
and thus they can be omitted in the optimization procedure.

3-2 Reduction of computational complexity

The optimization algorithm proposed in section 3-1 for synthesis of fixed-structure controllers
based on frequency-domain data is subject to N · nd linear inequalities, where N is the
number of the frequency points that are considered and nd is the number of realizations of
the perturbation ∆P , per frequency point. Additionally, when a multi-model approach is
considered, the total number of linear inequalities results to be N · nd ·M , where M is the
number of the FRF models that are taken into consideration.

In practice, the number of linear inequalities can grow extremely. For instance, a regular
number of frequency points could be N = 400, and the number of realizations of ∆P can be
nd = 100, as it is used in [12]. That is, the optimization algorithm will be subject to 40.000
linear constraints. Additionally, if for example 10 FRF models are considered, then 400.000
linear inequalities need to be implemented. These numbers, which are conservative, indicate
that the size of the problem can grow hugely as the number of frequency points, the number
of realizations of ∆P and the number of models increase. In the following subsections we
propose some techniques that can scale down the size of the problem without jeopardizing
the performance of the algorithm.

3-2-1 Reducing the realizations of ∆P

As it was stressed in 3-1-3, the number of realizations of the perturbation ∆P , denoted as nd,
should be sufficiently large in order to reduce the probability of "missing" a critical uncertainty,
as depicted in [12]. In this subsection we make use of a simple geometrical rule that enables
the realization of the perturbation ∆P with just one sample per frequency point. That is,
a single linear inequality is sufficient to guarantee the satisfaction of the remaining nd − 1
inequalities.
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16 Robust Performance and Minimization of Conservatism

Consider the case of a scalar perturbation ∆P ∈ RH1×1. Then the function Q∆(φ, jω), with
regard to a single model, that corresponds to the satisfaction of performance requirements
becomes

Q∆(φ, jω) = det
(

I −
[
∆P (jω) 0

0 CI(φ, jω)

]
P (jω)

)

= det
([

1−∆P P11 −∆P P12
−CI(φ)P21 1− CI(φ)P22

])
=(1−∆P P11)(1− CI(φ)P22)−∆P P12CI(φ)P21

= (1− CI(φ)P22)−∆P [P11(1− CI(φ)P22) + P12CI(φ)P21]

(3-9)

It can be noticed that the first term (1− CI(φ)P22) is actually the expression of Q(φ, jω)
that is related to the satisfaction of stability. Additionally, the second term consists of a
multiplication of the perturbation ∆P and the quantity within the square brackets. If we
denote this term as R(φ, jω) = P11(1−CI(φ)P22) + P12CI(φ)P21, then the expression of Q∆
becomes

Q∆(φ, jω) = Q(φ, jω)−∆P R(φ, jω). (3-10)

This expression highlights the relation between the functions Q∆ and Q. It is first reminded
that ∆P is realized in the set for which σ̄(∆P (jω)) = 1, or in other words ∆P is realized
with nd points that lie on the unit circle. Thus, equation 3-10 reveals that for each frequency
point, the Nyquist plot of Q∆ is realized as a circle with radius R(φ, jω) and center equal
to the value of Q(φ, jω) for that particular frequency. This observation allows a geometrical
interpretation of the linear constraint that Q∆ is subject to.

The satisfaction of performance specifications depends on whether the circle representing the
function Q∆ in the Nyquist plot is below a linear constraint. It can be proved that if a
particular single point of the circle is below the linear constraint, that is under consideration,
it is implied that the same holds for all the points of the circle. This point is naturally the
point that has the least distance from the line and it can easily be found geometrically by
drawing a vertical line from the center of the circle to the line under consideration. This is
illustrated in figure 3-3, where it is denoted as Q∗.

Figure 3-3: Least distance of circle from line
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3-2 Reduction of computational complexity 17

When considering equation 3-10, the corresponding Q∗ point, that belongs to Q∆, can be
found for each frequency point using the following expression

Q∗(jω) = Q(φ, jω) + |R(φ, jω)|l̄, (3-11)

where l̄ denotes a unitary vector that is vertical to the linear constraint l(jω), as illustrated
in figure 3-3. Then, there is no need to produce nd realizations for ∆P , in order to calculate
an accurate description of Q∆. Instead, it is only necessary to compute Q∗(φ, jω) and then
performance specifications can be ensured if the following linear constraint is satisfied for all
frequency points.

ln(φ, jω) = Im(Q∗(φ, jω)) + anRe(Q∗(φ, jω)) + cn < 0, ω ∈ [ωn, ωn+1], ∀ω. (3-12)

It is stressed that the calculation of the value of Q∗ should always be performed with re-
spect to the linear constraint that is active in a specific frequency point. Additionally, this
method of reducing the linear inequalities obtained by performance requirements, can be
straightforwardly extended to the case of dealing with multiple models.
However, although introducing the calculation of the Q∗ point seems to be convenient for
the reduction of the linear inequalities of the problem, it influences the complexity of the
algorithm. Namely, the term |R(φ, jω)| in equation 3-11 implies that the expression of Q∆
will be nonlinear with respect to the controller parameters φ. In order to circumvent this
obstacle one could linearize |R(φ, jω)| around the values of the controller parameters that are
considered in each iteration. Alternatively, instead of creating the Q∗ point, selecting the point
of Q∆ that is closer to Q∗ would be equally efficient. Unfortunately, in the former case there
are no guarantees that the performance constraints will still be satisfied, whereas the latter
solution requires initially considering all nd realizations of Q∆ and results to the exclusion of
nd − 1 of them only in the final stage of the algorithm. In any case, the implementation of
this approach comes with great complexity.

3-2-2 Dealing with multiple models

As it was depicted previously, in the standard scenario the final number of linear inequalities
that the optimization algorithm is subject to, results to be N · nd ·M . The parameters N ,
nd and M denote the number of frequency points, the number of realizations of the pertur-
bation ∆P and the number of FRF models that are considered, respectively. In the previous
subsection we explored an idea that could potentially reduce the number of realizations nd.
In this subsection we examine a way that will facilitate the reduction of the total number of
linear constraints by utilizing a property of the FRF measurements.
Consider the FRF models acquired by input output data of a system that are illustrated in
figure 3-5. As it can be seen the values of the models are similar in the lower frequencies and
only at some point they start to differ. This implies that around such ranges of frequency
there is low uncertainty. Nevertheless, from a practical point of view, the similarity of the
models means that there will be multiple similar linear inequalities. For that, we propose a
method that can reduce the number of linear inequalities that are considered. Specifically,
let the ith FRF model of the plant be denoted as Gi(jω), for i = 1, · · · , M . Then, the mean
of those models is denoted as Ḡ(jω) and it is expressed as

Ḡ(jω) =
∑M

i=1 Gi(jω)
M

. (3-13)
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Figure 3-4: A typical example of multiple FRF measurements

A natural way to proceed in this case is to find the frequency at which the FRF models are
no longer identical. For this purpose we define the parameter

bi = Gi(jω)− Ḡ(jω)
Ḡ(jω)

∀ω, i = 1, · · · , M (3-14)

which takes different values in every frequency, for each model. The main idea of this approach
is that for the range of frequencies for which the parameter bi remains below a certain value,
which is to be defined by the designer, the multiple models can be accurately represented by
the mean Ḡ(jω). For sake of ease of comprehension the frequency at which the FRF models
start to differ is called critical frequency and it is denoted as ωcr. The procedure of calculating
the critical frequency can be better described by the following algorithm.

found = 0 and k = 1
while(found == 0)

max = 0
for i = 1, · · · , M

bi = Gi(jωk)− Ḡ(jωk)
Ḡ(jωk)

if (abs(ai) > max)
max = abs(bi)

end for
if(max > limit)

found = 1
ωcr = ωk

k = k + 1
end while

(3-15)
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3-3 Introducing multiplicative uncertainty 19

As it was mentioned above, the value of the variable limit is upon to the designer to be
decided, yet in any case it should be selected with a low value since it describes the degree
of similarity that is needed. For example, if we consider that some models are similar for a
specific range of frequency only if the absolute value of bi is below −40dB, then limit should
be selected to be equal to 10−2.

After having determined the critical frequency ωcr, the mean model Ḡ(jω) and the multiple
models Gi(jω), for i = 1, · · · , M , are used in different ranges of frequency in order to realize
the linear inequalities. Specifically, in the interval [ω0, ωcr] the mean model Ḡ(jω) is used,
where ω0 denotes the initial frequency. On the other hand, in the remaining range [ωcr, ωf ] the
linear constraints are imposed on the multiple models, where ωf denotes the final frequency
that is taken into consideration for the optimization algorithm.

It is stressed that the final number of linear inequalities is not fixed, since it depends on the
critical frequency ωcr. Namely, suppose that this frequency corresponds to the N th

cr point,
out of the N frequency points that are considered in total. Then, the total number of linear
inequalities will be Ncr · nd + (N − Ncr) · nd ·M . In other words, this approach eliminates
Ncr · nd · (M − 1) linear inequalities.

3-3 Introducing multiplicative uncertainty

In chapter 2, the theoretical background for synthesis of a fixed-structure controller satisfying
nominal performance based on frequency-domain data of the plant was deployed. Next, in
chapter 3 and specifically in section 3-1, the nominal performance was extended to robust
performance by considering the simultaneous stabilization of multiple models of the same
plant. In this section we propose an alternative method for satisfying robust performance.
Namely, the uncertainty, which is inherent in every system and so far has been dealt by
just considering multiple models, can be described by an additive or a multiplicative term.
Additive and multiplicative uncertainty are equivalent, since they differ only in terms of
representation, and for that we are going to concentrate on the multiplicative part.

Consider a set Π of M models Gi(jω), for i = 1, · · · , M . Our purpose is to describe this set
of models by a single transfer function

Gp(s) = G(s)(1 + wI(s)∆I(s)); |∆I(jω)| ≤ 1,∀ω, (3-16)

where G(s) denotes the nominal model, ∆I(s) is any stable transfer function which at each
frequency is not larger than one in magnitude, and wI(s) is a weight that describes the
complex uncertainty and is to be defined.

Following the theory that is developed in [11], we can consider as nominal model the mean of
all M models, which can be described as

Ḡ(jω) =
∑M

i=1 Gi(jω)
M

. (3-17)

Then, consider the function

qI(ω) = max
Gi∈Π

∣∣∣∣∣Gi(jω)− Ḡ(jω)
Ḡ(jω)

∣∣∣∣∣ . (3-18)
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20 Robust Performance and Minimization of Conservatism

Figure 3-5: Block diagram of Gp(s) representing multiplicative uncertainty

Finally, the weight wI(s) should be selected such that

|wI(jω)| ≥ lI(ω), ∀ω (3-19)

Given this representation for uncertainty, the configuration of the generalized plant might
end up having the form that is illustrated in figure 3-6. The multiplicative uncertainty can be
absorbed into the generalized plant in a straight forward manner. Yet, there are some open
issues with respect to the realization of the perturbation block ∆I .

Figure 3-6: Configuration of the generalized plant when multiplicative uncertainty is considered

3-3-1 Realization of ∆I

Similarly to the case of the performance perturbation ∆p that was developed in 2-2-3, the
perturbation block ∆I should be manipulated properly so it can be used in the computational
algorithm. It holds that, |∆I(jω)| ≤ 1, ∀ω. Realizing ∆I in this set would result to an infinite
number of realizations, and thus in an infinite number of linear inequalities. This problem can
be circumvented by realizing ∆I within the set that corresponds to the worst case scenario.
That is, a significant reduction of the resulting number of linear inequalities can be acquired
by realizing ∆I for which |∆I(jω)| = 1. As a result, for the realization of this perturbation
block we sample nI points randomly drawn from the unit circle.

Of course, this simplification of the perturbation term is necessary in order to avoid an extreme
number of realizations and linear inequalities. Yet, although the amount of models M that
are considered for the construction of the multiplicative weight wI does not affect the final
number of inequalities, the number of realizations of ∆I does affect it. Namely, the number
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3-4 An iterative algorithm to optimize H∞ performance 21

of linear inequalities that the optimization algorithm is subject to, results to be nI · nd · N ,
where nI denotes the number of realizations of ∆I , nd denotes the number of realizations of
∆p and N denotes the number of frequency points that are considered. When the multiple
models that are considered exceed a certain number, introducing a multiplicative uncertainty
might be a computationally attractive method. In any case, the performance and efficiency
of this approach are to be investigated in a simulation setup.

3-4 An iterative algorithm to optimize H∞ performance

Up to this point we have followed the optimization scheme suggested in [12], which is explained
in this project in 2-2-5 and in 3-1-5. According to that scheme the optimization algorithm is
constructed as

min
m∑

k=1
φ2

k

s.t. lin(φ, jω) < 0, ∀ω ∈ [ωn, ωn+1] i = 1, · · · , M, n = 1, · · · , c

li∆n(φ, jω) < 0, ∀ω ∈ [ωn, ωn+1] i = 1, · · · , M, n = 1, · · · , c

where c denotes the total number linear constraints and M the total number of models that
are considered.

However, it was found through simulations, that were done during working on chapter 4, that
the minimization of the sum of the squares of the controller parameters is not optimal with
respect to the minimization of ||Twz(φ, s)||∞, which is the ultimate objective. For example, in
many simulations a maximization of

∑m
k=1 φ2

k would lead to a better performance. Yet, in the
general case none of the two schemes approaches the optimal performance. Finding a proper
argument so as to minimize the infinity norm of the closed loop transfer function remains an
open problem and it is going to be investigated in the following paragraphs.

An idea that seems functional in order to deal with this problem is to linearly approximate
the norm ||Twz(φ, s)|| for a specific frequency. Naturally, we should address the frequency
at which the maximum value of ||Twz(φ, s)|| appears, so as to find an approximation of its
infinity norm. Finding this frequency is not only feasible but also straight forward to calculate
as long as frequency-domain data of the plant exist. For sake of simplicity let us denote this
frequency point, for a specific combination of stabilizing controller parameters φ∗, as ωm. It
is assumed that for a small neighborhood around the stabilizing solution φ∗, the infinity norm
will still appear at that particular frequency point ωm, or at a point really close to that. Thus,
the infinity norm for this small neighborhood will behave similarly to how the magnitude of
the closed loop system will behave, at that particular point. This can be expressed as

||Twz(φ, ωj)||∞ ≈ ||Twz(φ, ωmj)||, for φ ∈ [φ∗ − ε, φ∗ + ε] (3-20)

where ε is a sufficiently small constant of appropriate dimensions. Additionally, the behavior
of Twz(φ, ωmj) can be expressed analytically with respect to the controller parameters φ at
this neighborhood, and it is

Master of Science Thesis Georgios Skaltsis



22 Robust Performance and Minimization of Conservatism

Twz(φ, ωmj) = P11(ωmj) + P12(ωmj)CI(φ, ωmj)(I − P22(ωmj)CI(φ, ωmj))−1P21(ωmj)

The norm of this expression will be nonlinear with respect to the controller parameters φ.
Let us denote the norm as a function of the parameters and let it be

f(φ, ωmj) = ||Twz(φ, ωmj)||. (3-21)

The key idea is to linearize this expression around a stabilizing solution φ∗. Such a solution
exists by default, since it is necessary in order to acquire closed-loop frequency domain data.
The linear approximation of f(φ, ωmj) at the point φ∗ = [φ∗

1, · · · , φ∗
m] for Twz(φ, ωmj) can be

expressed as

f̃(φ, ωmj) ≈ f(φ∗, ωmj) + ∂f(φ, ωmj)
∂φ1

∣∣∣∣
φ∗

(φ1 − φ∗
1) + · · ·+ ∂f(φ, ωmj)

∂φm

∣∣∣∣
φ∗

(φm − φ∗
m). (3-22)

This expression, let it be denoted as f̃(φ), is apparently linear with respect to the controller
parameters and thus it can be used as an argument in the optimization scheme, without
violating the condition of convexity. The optimization scheme can thus be constructed as
follows

minf̃(φ)
s.t. lin(φ, jω) < 0, ∀ω ∈ [ωn, ωn+1] i = 1, · · · , M, n = 1, · · · , c

li∆n(φ, jω) < 0, ∀ω ∈ [ωn, ωn+1] i = 1, · · · , M, n = 1, · · · , c,

which remains a convex optimization problem. Additionally, the optimization is directed
towards minimizing an approximation of ||Twz(φ, s)||∞, and not of a random or intuitive
expression. For the sake of clarity and ease of comprehension let us denote the initially
stabilizing solution φ∗ as φ(0) and the corresponding frequency point ωm, at which the initial
maximum of the closed loop appears, as ω

(0)
m . Finally, the first linear approximation of the

infinity norm at φ(0), can be denoted as f̃ (0)(φ).

After the algorithm converges to some controller parameter values φ(1), we can again compute
the maximizing frequency point ω

(1)
m for the new controller parameters and the function

f (1)(φ, ω
(1)
m j) can be approximated again around the optimized parameters. Next, the linear

approximation f̃ (1)(φ), of the nonlinear approximation f (1)(φ, ω
(1)
m j) of the infinity norm, can

be re-calculated around φ(1). Then, a new optimization can be performed according to the
following optimization scheme

min max
(
f̃ (k)(φ)

)
k = 0, 1

s.t. lin(φ, jω) < 0, ∀ω ∈ [ωn, ωn+1] i = 1, · · · , M, n = 1, · · · , c

li∆n(φ, jω) < 0, ∀ω ∈ [ωn, ωn+1] i = 1, · · · , M, n = 1, · · · , c.

Introducing the minimization of the maximum value of the two, or more, linear approxima-
tions corresponds to approximating the behavior of the actual infinity norm, for which we do
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3-4 An iterative algorithm to optimize H∞ performance 23

not have any analytical expression, by a combination of linear functions. A new stabilizing
solution will result from this optimization, which will probably will be optimal with respect
to the previous ones. To conclude, we propose an iterative optimization scheme that is based
on approximating the behavior of the actual infinity norm of the closed loop by some lin-
ear functions that seeks to find a local minimum. Naturally, if the H∞ norm has a highly
non-convex behavior with respect to the controller parameters, then the algorithm will not
succeed to find a local minimum. This will happen because minimizing max

(
f̃ (k)(φ)

)
might

exclude some solutions. In any case, the algorithm explores the behavior of the H∞ norm
and returns the optimal parameters that it finds. This iterative optimization scheme can be
summarized by the following algorithm.

Algorithm for the revisited optimization scheme

1. Input: Initially stabilizing solution φ(0), FRF model G(ωj).
2. Construct linear constraints l∆n(φ, jω), n = 1, · · · , c .

3. Find ω(0)
m for G(ωj) and calculate f̃ (0)(φ) for φ(0).

4. J (0) ← ||Twz||∞, when G(ωj) and φ(0) are considered
5. Jmin ← J (0), φmin ← φ(0)

6. Solve min f̃ (0)(φ), s.t. l∆n(φ, jω) n = 1, · · · , c and i← 1.

7. Find φ(1) from optimization.

8. J (1) ← ||Twz||∞, when G(ωj) and φ(1) are considered
9. If J (1) < Jmin then Jmin ← J (1), φmin ← φ(1)

10. while i < imax do
11. Find ω(i)

m for G(ωj) and calculate f̃ (i)(φ) for φ(i).

12. Solve min max f̃ (k)(φ), s.t. l∆n(φ, jω) n = 1, · · · , c k = 1, · · · , i.

13. Find φ(i+1) from optimization and i← i + 1.

14. J (i) ← ||Twz||∞, when G(ωj) and φ(i) are considered
15. If J (i) < Jmin then Jmin ← J (i), φmin ← φ(i)

16. end while
17. return φmin as optimal controller parameters for the given constraints.
18. return Jmin as optimal infinity norm for the given constraints.

(3-23)

The parameter imax denotes the number of iterations that are going to be performed, and it
is a user-defined parameter. After a sufficient number of iterations, the function max f̃ (k)(φ)
for k = 1, · · · , i, seeks to describe the behavior of the actual infinity norm of the closed-loop
transfer function in the convex hull created by the controller parameter solutions φ(i), each
one of which can be also considered a vertex of that hull. Naturally, the algorithm is vul-
nerable to local minima and local maxima and to deal with that, considering multiple initial
controller parameters φ(0) increases the potential of finding the global minimum. Addition-
ally, this iterative algorithm can be extended for the case of multi-model optimization in a
straight forward manner, by considering multiple FRF models when constructing the linear
constraints.
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24 Robust Performance and Minimization of Conservatism

The ability of this algorithm to capture the behavior of the actual infinity norm with respect
to the controller parameters is better illustrated in chapter 4 and specifically in section 4-3.
There, one can see the actual relation between ||Twz(φ, s)||∞, f(φ, ωmj) and f̃(φ) for a given
FRF model and specific controller parameters. Moreover, the several stages of the algorithm
are described graphically and the corresponding performance is discussed in detail.

3-5 An algorithm for optimal design of linear constraints

Selecting proper linear constraints is rather an important issue. As it will be shown later, in
section 4-4-4, the choice of linear constraints is related to the set of controller parameters that
will be available for optimal performance. In [12], the selection of the constraints is left to the
designer and in fact it is not extremely difficult for a control engineer to come up with some
linear functions that will allow frequency-domain optimization of fixed-structure controllers
in the way that has been described so far.

However, being intuitive in the constraints’ selection introduces some kind of conservatism in
the controller design as it will be highlighted in 4-4-4. For this, it is considered important to
design an algorithm that will allow an optimized way for designing the linear constraints. In
order to do that, an initially stabilizing solution φ(∗) is necessary, and as mentioned previously
such a solution does exist by default, since it is needed for the acquisition of frequency-domain
data.

3-5-1 Single linear constraint of least conservatism

As mentioned in 3-1-2, the condition for stability relies on the Nyquist plot of the function

Q(φ, jω) = 1− CI(φ)P22.

Specifically, one should ensure that its Nyquist plot does not encircle the origin. The key idea
behind the proposed algorithm for optimal design of linear constraints lies on constructing the
constraints that would introduce minimum conservatism on the Nyquist plot of the function
Q(φ(∗), jω). This idea can be better understood by considering figure 3-7.

Figure 3-7: Representation of constructing optimal constraints on the Nyquist plot
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3-5 An algorithm for optimal design of linear constraints 25

For each frequency point ωi, i = 1, · · · , N , where N denotes the total number of frequency
points considered, let the Nyquist plot of Q(φ(∗), jωi) be represented by the point {a, b},
where a = Re (Q (φ∗, jωi)) and b = Im

(
Q
(
φ(∗), jωi

))
. In the context of this algorithm, we

consider the least conservative linear constraint, that should be imposed at that frequency
point, to be the one that is vertical to the line connecting the point {a, b} and the origin.
Additionally, such a linear constraint should necessarily have an offset from the origin, so as
to allow any potential representation of Q∆(φ, jω) to retain a certain distance from the origin.
In figure 3-7 one can see in gray color, what would be the optimal linear constraint for some
initial controller parameters φ(∗) and the frequency point ωi, which is denoted as li(jω).

Consider the Nyquist plot of the function Q(φ, jωi), for the ith frequency point and random
variables φ, which can be denoted as ~q. If the corresponding vector of Q(φ(∗), jωi) is denoted
by ~v, then the linear constraint that will be imposed can be expressed as

~v · ~q ≥ 0.

For instance, in figure 3-7 the point Q(φ, jωi) represented in red, will indeed satisfy the
constraint ~v · ~q1 ≥ 0, whereas the point Q(φ, jωi) represented in yellow will not, since it holds
that ~v ·~q < 0. Finally, this approach can be extended to a multi-model approach in a straight
forward manner.

A similar technique in order to construct linear constraints was proposed in [4], yet a desired
open loop transfer function was necessary. In our technique, no additional external infor-
mation is required, apart from an initially stabilizing solution, which actually is available by
default.

3-5-2 Complex linear constraints

In the previous subsection we proposed an algorithm that constructs N linear constraints,
that is, one per frequency point, based on the initially stabilizing controller parameter φ∗.
However, designing the linear constraints based on an initial value of the controller parameters
might still induce some conservatism. As it will be illustrated more clearly in section 4-4,
linear constraints of the form that was presented in the previous paragraph is possible to make
the optimization algorithm more biased to converge to controller parameters’ combinations
that are relatively "close" to the initially stabilizing solution.

For this reason, it is considered important to explore an improved version of the algorithm that
constructs the linear constraints. The main principle remains the same, that is, to construct
the linear constraint per frequency point that induces the least amount of conservatism. Yet,
in this improved version of the algorithm, we propose a complex constraint, as opposed to
the algorithm of the previous section, which proposed a single constraint per frequency point.
With the term complex, it is meant that a combination of two linear constraints, l(1)(jω) and
l(2)(jω), will be imposed per frequency point. In this way, one can ensure that the origin is
not encircled, however by constraining the minimum amount of area of the Nyquist diagram.
To illustrate better this idea, the figure 3-8 offers an enlightening description of the key idea
of this algorithm.
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26 Robust Performance and Minimization of Conservatism

Figure 3-8: Representation of constructing complex optimal constraints on the Nyquist plot

As it can be noticed, a combination of two linear constraints is imposed in each frequency
point and Q(φ, jω) in red color, should satisfy at least one of them. The combination of the
two linear constraints prevents the value of Q(φ, jω) from entering the dashed area between
l(1)(jω) and l(2)(jω). As a result, the area of the diagram that would imply instability is
minimized and thus the introduced conservatism is minimized as well.
However, although this approach seems promising, it comes with a rather significant barrier.
The set of figure 3-8 which satisfies the desired constraints is a non convex set. Consequently,
imposing the complex constraint, that either of the two linear constraints should be satisfied,
results to non convex optimization. Circumventing this barrier is not trivial and in the context
of this project it still remains an open problem.

3-6 An algorithm for optimal construction of linear constraints and
optimal controller parameters’ design

In sections 3-4 and 3-5-1 we have proposed two innovative algorithms. Specifically, in 3-4
we have proposed an iterative algorithm, which attempts to find the controller parameters’
combination that minimizes the infinity norm of a particular FRF model, and thus approaches
the optimal controller parameters. Additionally, in 3-5-1 we have proposed an algorithm that
constructs N linear constraints, one per frequency point that is considered, which induce the
least possible amount of conservatism on the Nyquist plot of Q(φ(∗), jω), where φ(∗) is an
initially stabilizing solution.
As mentioned previously, an initially stabilizing solution φ(∗) exists by default, since it is
necessary for the acquisition of FRF models. However, as it will be more clear in section 4-4-
4, even the updated linear constraints, designed based on an initially stabilizing solution, do
induce some conservatism which excludes a set of stabilizing solutions from the optimization
algorithm. The algorithm that is proposed in this section is based on the idea that some
improved linear constraints will potentially offer to the optimization algorithm more flexibility
on finding optimal solutions for the minimization of the infinity norm. In other words, we
propose an iterative algorithm that combines the two algorithms developed in 3-4 and 3-5-
1. The most important features and principles this technique are presented in the following
algorithm.
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3-6 An algorithm for optimal construction of linear constraints and optimal controller parameters’ design27

Algorithm for finding optimal linear constraints and controller parameters

1. Input: Initially stabilizing solution φ∗
(0), FRF model G(ωj).

2. Construct linear constraints l∆n(φ, jω), n = 1, · · · , N based on φ∗
(0).

3. J (0,0) ← ||Twz||∞, when G(ωj) and φ∗
(0) are considered

4. Jmin ← J (0,0), φmin ← φ∗
(0)

5. Find ω(0,0)
m for G(ωj) and calculate f̃ (0,0)(φ) for φ∗

(0).

6. Solve min f̃ (0,0)(φ), s.t. l∆n(φ, jω) n = 1, · · · , N and i← 1.

7. Find φ(1,0) from optimization.

8. J (1,0) ← ||Twz||∞, when G(ωj) and φ(1,0) are considered
9. If J (1,0) < Jmin then Jmin ← J (1,0), φmin ← φ(1,0)

10. while i < imax do
11. Find ω(i,0)

m for G(ωj) and calculate f̃ (i,0)(φ) for φ(i,0).

12. Solve min max f̃ (k,0)(φ), s.t. l∆n(φ, jω) n = 1, · · · , N k = 1, · · · , i.

13. Find φ(i+1,0) from optimization and i← i + 1.

14. J (i,0) ← ||Twz||∞, when G(ωj) and φ(i,0) are considered
15. If J (i,0) < Jmin then Jmin ← J (i,0), φmin ← φ(i,0)

16. end while
17. φ∗

(1) ← φ(i−1), i← 0, and p← 1
18. while p < pmax do
19. φ(i,p) ← φ∗

(p)

20. Construct linear constraints l∆n(φ, jω), n = 1, · · · , N based on φ∗
(p).

21. J (i,p) ← ||Twz||∞, when G(ωj) and φ∗
(p) are considered

22. If J (i,p) < Jmin then Jmin ← J (i,p), φmin ← φ∗
(p)

23. Find ω(i,p)
m for G(ωj) and calculate f̃ (i,p)(φ) for φ(i,p).

24. Solve min f̃ (i,p)(φ), s.t. l∆n(φ, jω) n = 1, · · · , N

25. Find φ(i+1,p) from optimization and i← i + 1
26. J (i,p) ← ||Twz||∞, when G(ωj) and φ(i,p) are considered
27. If J (i,p) < Jmin then Jmin ← J (i,p), φmin ← φ(i,p)

28. while i < imax do
29. Find ω(i,p)

m for G(ωj) and calculate f̃ (i,p)(φ) for φ(i,p).

30. Solve min max f̃ (k,p)(φ), s.t. l∆n(φ, jω) n = 1, · · · , N k = 1, · · · , i.

31. Find φ(i+1,p) from optimization and i← i + 1.

32. J (i,p) ← ||Twz||∞, when G(ωj) and φ(i,p) are considered
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33. If J (i,p) < Jmin then Jmin ← J (i,p), φmin ← φ(i,p)

34. end while
35. return Jmin as optimal infinity norm for the specific constraints.
36. φmin :optimal controller parameters for the specific constraints.
37. i← 0 and p← p + 1
38. end while
39. return φmin as optimal controller parameters for the optimal constraints.
40. return Jmin as optimal infinity norm for the optimal constraints.

It is stressed that the proposed algorithm can be extended to the multi-model approach in
a straight forward manner. Simply, when considering the construction of linear constraints
based on a single FRF model, one should consider linear constraints for as many models as
desired. That is, the step

Construct linear constraints l∆n(φ, jω), n = 1, · · · , N based on φ
(∗)
(0),

should be extended to the steps described below.

1. Input: M FRF models, denoted as G(i)(jω), i = 1, · · · , M .
2. for i = 1 : M

3. Construct linear constraints li∆n(φ, jω), n = 1, · · · , N based on φ∗
(0) and G(i)(jω).

4. Constraints← Constraints + li∆n(φ, jω), for n = 1, · · · , N.

5. end

In the following chapter we employ a stable plant in order to evaluate the performance and
efficiency of the proposed algorithms. Moreover, we present a detailed comparison with the
corresponding performance of the default algorithm.
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Chapter 4

Simulations and Results

Up to this point we have developed the main algorithm that facilitates frequency domain
optimization of fixed-structure controllers. Additionally, an extension that enables the ma-
nipulation of multiple models has been presented, which is a significant contribution of this
project. Moreover, the potential of reducing the size of the optimization problem has been
explored, by eliminating a number of linear inequalities, as it was discussed in section 3-2.
Additionally, in section 3-3 the introduction of multiplicative uncertainty was discussed as an
alternative to the multi-model approach. Finally, in sections 3-4 and 3-6 the main contribu-
tion of this project is presented, which is an original iterative algorithm that seeks to optimize
the H∞ performance of the closed-loop system and in addition it constructs optimal linear
constraints. In this chapter, we employ a simple plant and a corresponding Simulink model
in order to apply the methods that have been presented so far.

4-1 System and dynamics

In this section we present the system that is going to be used for the implementation of the pro-
posed techniques. Additionally, we describe the procedure of acquiring the frequency-domain
data and present the configuration of the generalized plant that is going to be considered
during the experiments.

4-1-1 Dynamics of the plant

The system that is used for the implementation of the proposed algorithm is a double-mass,
spring, damper system, which is presented in figure 4-1. In the figure, x1 and x2 denote the
position of the mass m1 and m2, respectively. Additionally, k denotes the constant of the
spring and d denotes the constant of the damper. Finally, F stands for the force, which is
the input of the system. For the dynamics of the system it holds

{
m1ẍ1(t) + d (ẋ1(t)− ẋ2(t)) + k (x1(t)− x2(t)) = f(t)
m2ẍ2(t) + d (ẋ2(t)− ẋ1(t)) + k (x2(t)− x1(t)) = 0 (4-1)
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Figure 4-1: Diagram of a double-mass-spring-damper system

After a Fourier transformation, equation 4-1 becomes

{
m1s2X1(s) + d (sX1(s)− sX2(s)) + k (X1(s)−X2(s)) = F (s)
m2s2X2(s) + d (sX2(s)− sX1(s)) + k (X2(s)−X1(s)) = 0 (4-2)

From the second equation of 4-2, it can be seen that

X1(s) = m2s2 + ds + k

ds + k
X2(s). (4-3)

After substituting in the first equation of 4-2, the transfer function between the input F and
the position X2 can be expressed as

G(s) = X2(s)
F (s) = ds + k

m1m2s4 + (m1 + m2)ds3 + (m1 + m2)ks2 . (4-4)

Apparently, G(s) has no right-half plane (RHP) poles, which implies that the corresponding
generalized plant will be stable. The values of the parameters of the system that are used are
m1 = m2 = k = 1 and d = 0.05. The bode plot of the transfer function G(s) is illustrated in
figure 4-2.
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Figure 4-2: Bode plot of transfer function between input F and position X2
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4-1 System and dynamics 31

4-1-2 System configuration

The implementation of the algorithm requires setting up the generalized plant. In other
words, we need to configure the closed loop system and clarify the purpose of the controller
design. We are interested in imposing a bound on the sensitivity function and for that we
employ a second order performance weight of the form

Wp(s) = α
s2/M2

p + 2βpωBs + ω2
B

s2 + 2βpApωBs + (ApωB)2 , (4-5)

where α = 0.7, βp = 0.3, Mp = 2, Ap = 1 · 10−3 and ωB = 0.1. Moreover, the nature of the
plant requires a PD controller so as to be stabilized, and thus the controller is selected to
be CI(φ, s) = kp+kds

0.01s+1 , where the parameter vector φ contains the proportional and derivative
gains kp and kd. The complete form of the generalized plant can be seen in figure 4-3.

Figure 4-3: Configuration of the generalized plant

Given this form, the generalized plant is expressed as

[
z
y

]
=
[
Wp(s) −Wp(s)G2(s)

I −G2(s)

] [
w
u

]
. (4-6)

4-1-3 Frequency-domain data

The implementation of the algorithm is based on frequency-domain data of the plant in the
form of Frequency Response Function (FRF) measurements. The transfer function G(s) is
open loop unstable which implies that an application of FRF measurements is not feasible in
the open loop. Instead, the experiment for the acquisition of data should be performed in a
closed loop configuration. Naturally, an initially stabilizing controller is necessary for such an
experiment. In the context of a simulation based experiment, such a controller can be found
easily by considering the bode plot of the plant. In the general case of a practical application,
given that the plant is initially totally unknown, the designer can refer to a theoretical model
of the plant in order to find some initially stabilizing values for the controller parameters.
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In our system, the controller parameters that satisfied closed loop stability for the FRF
experiments are kp = 0.2 and kd = 0.15. The block diagram of the closed loop configuration
that was used in Simulink in order to acquire frequency-domain data is illustrated in figure
4-4.

Figure 4-4: Configuration of the closed loop in Simulink for data acquisition

As it can be seen, there is a signal containing white noise that functions as measurement
noise. During the experiments for the acquisition of data, the amplitude of this signal ranged
between 10−5 and 10−4. As an input excitation a sinestream signal was used, containing 400
frequencies logarithmically located in the interval [0.1, 10]rad/sec, with amplitude ranging
between 10−3 and 10−2. After acquiring data concerning the closed loop, the data of the
plant were extracted. Specifically, 10 experiments were performed and the corresponding
bode plots of the acquired data are illustrated in figure 4-5.
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Figure 4-5: Bode plot of 10 FRF measurements

4-1-4 Multiplicative uncertainty

In the case that a multiplicative uncertainty is used in order to robustify the controller design,
a different configuration of the generalized plant should be taken into consideration. This form
is illustrated in figure 4-6, where as it can be seen the branch containing the uncertainty block
has been absorbed into the generalized plant.
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4-1 System and dynamics 33

Figure 4-6: Configuration of the generalized plant with multiplicative uncertainty

Of course, the complex weight wI should be determined. As described in section 3-3, the
complex weight is subject to the FRF models that are acquired. Let’s consider the mean of
all 10 models, denoted as Ḡ(jω), to be the nominal model. It will be

Ḡ(jω) =
∑10

i=1 Gi(jω)
10 . (4-7)

and its bode plot can be seen in figure 4-7.
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Figure 4-7: Bode plot of the mean of all models

Then, we are interested in the function qI(ω), which is expressed as

qI(ω) = max
Gi

∣∣∣∣∣Gi(jω)− Ḡ(jω)
Ḡ(jω)

∣∣∣∣∣ , i = 1, · · · , 10. (4-8)

Finally, wI(s) should be selected such that it satisfies the relation |wI(jω)| ≥ qI(ω). Thus,
we propose a fourth order weight transfer function that is expressed as

wI(s) = 0.03
(
10s2 + 2s + 1.8

)
s2 + 0.5s + 2.2

s2 + 10s + 70
s2 + 2s + 70 , (4-9)
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where as it can be seen, the second fraction describes a notch filter that enhances the mag-
nitude of wI(s) at the frequency 8.33rad/sec. The magnitude plot of wI(s) in bold purple
color, together with the relative errors related to the function qI(ω) are illustrated in figure
4-8. As it can be seen the condition |wI(jω)| ≥ qI(ω) holds for the entire range of frequencies.
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Figure 4-8: Magnitude plot of the weight transfer function wI(s) and the relative errors related
to the function qI(ω)

4-2 Default, single-model optimization with manually selected con-
straints

In this section we employ the default algorithm, deployed in chapter 2 and proposed by [12],
in order to synthesize a fixed-structure controller that satisfies stability and performance con-
ditions for the double-mass, spring, damper system. All the simulations in this project, were
performed in matlab and by making use of the YALMIP toolbox [5]. During the optimization
procedures that follow in this section of the project, the implementation of the algorithm is
subject to a single FRF model. Additionally, the performance of the resulting controllers will
be evaluated with respect to FRF models, as well as with respect to the actual model G(s)
expressed as a transfer function.

It is first important to define the linear constraints that are active in the different frequency
ranges in the interval [0.1, 10]rad/sec. As it was mentioned in the previous section, for
stability we employ three linear constraints which are expressed as

l1 : Im (Q(jω)) + 0.2 Re (Q(jω))− 0.001 < 0 for ω < 0.16
l2 : Im (Q(jω))− 0.05 Re (Q(jω)) + 0.001 < 0 for 0.16 6 ω 6 0.20
l3 : − Im (Q(jω))− 5 Re (Q(jω)) + 0.001 < 0 for ω > 0.20.

(4-10)

Additionally, the linear constraints that are imposed to ensure performance are expressed as
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4-2 Default, single-model optimization with manually selected constraints 35

l∆1 : Im (Q∆(jω)) + 0.2 Re (Q∆(jω))− 0.001 < 0 for ω < 0.16
l∆2 : Im (Q∆(jω))− 0.05 Re (Q∆(jω)) + 0.001 < 0 for 0.16 6 ω 6 0.20
l∆3 : − Im (Q∆(jω))− 5 Re (Q∆(jω)) + 0.001 < 0 for ω > 0.20.

(4-11)

Apparently, the resulting linear inequalities that concern stability are more conservative than
the ones concerning performance. For that, if the objective is to synthesize a controller that
satisfies the performance criterion, it suffices to consider only the linear inequelities that are
related with performance. In this case, according to [12] the optimization algorithm can be
summarized in the following optimization scheme

min k2
p + k2

d

s.t. l∆1, ∀ω ∈ [0.1, 0.16]rad/sec

l∆2, ∀ω ∈ [0.16, 0.20]rad/sec

l∆3, ∀ω ∈ [0.20, 10]rad/sec.

(4-12)

4-2-1 Evaluating on the actual plant

In the context of this subsection, we performed the optimization algorithm individually, for
all 10 FRF models that were acquired for this purpose, considering the default optimization
scheme, and evaluated the resulting controllers on the actual plant, as if it was available for
testing.

For the case that the optimization scheme proposed in [12] is used, the controller parameters
together with the corresponding value of the infinity norm of the closed-loop transfer function
Twz can be seen in the following table 4-1.

s.t. 1 2 3 4 5 6 7 8 9 10

kp 0.0521 0.0516 0.0515 0.0515 0.0516 0.0513 0.0515 0.0515 0.0517 0.0522

kd 0.0881 0.0885 0.0889 0.0887 0.0886 0.0885 0.0885 0.0886 0.0859 0.0879

||Twz||∞ 1.0649 1.0691 1.0577 1.0599 1.0609 1.0631 1.0621 1.0607 1.0963 1.0681

Table 4-1: Table containing the resulting controller parameters and the corresponding evaluation
on the actual system

Of course, in practice the actual plant will not be available for evaluating any controller pa-
rameters. For this reason we performed evaluations of the corresponding controller parameters
on other FRF models. These evaluations are presented in the following subsection.

4-2-2 Evaluating on the FRF models

Although it seems natural to evaluate the resulting controller of each optimization on the
actual plant G(s) expressed as a transfer function, it violates the assumption that G(s) is
practically unknown. As a result, even though G(s) offers an objective evaluation of the
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result, it is decided to evaluate the result of each optimization with respect to different FRF
models as well. The results of the evaluation for the default optimization scheme can be seen
in table 4-2. The integer numbers on the first row indicate the FRF model that was considered
by the optimization algorithm. Respectively, the integer numbers on the first column of the
table indicate the FRF model that was used in order to evaluate the corresponding controller
parameter.

1 2 3 4 5 6 7 8 9 10

1 0.9987 0.9967 0.9931 0.9953 0.9955 0.9992 0.9976 0.9966 1.0263 1.0003

2 0.9944 0.9922 0.9880 0.9903 0.9911 0.9936 0.9925 0.9964 1.0216 0.9961

3 0.9979 0.9959 0.9917 0.9940 0.9947 0.9976 0.9962 0.9942 1.0254 0.9995

4 0.9959 0.9939 0.9898 0.9920 0.9928 0.9947 0.9942 0.9975 1.0233 0.9975

5 0.9956 0.9935 0.9894 0.9916 0.9924 0.9954 0.9938 0.9924 1.0229 0.9972

6 0.9943 0.9923 0.9884 0.9906 0.9912 0.9944 0.9928 0.9924 1.0217 0.9959

7 0.9942 0.9921 0.9880 0.9902 0.9910 0.9933 0.9925 0.9910 1.0215 0.9958

8 0.9953 0.9933 0.9897 0.9919 0.9921 0.9958 0.9941 0.9975 1.0227 0.9969

9 0.9666 0.9645 0.9606 0.9627 0.9635 0.9660 0.9648 0.9674 0.9922 0.9682

10 0.9956 0.9935 0.9894 0.9916 0.9924 0.9951 0.9938 0.9927 1.0229 0.9972

Table 4-2: Evaluation table for the minimization scheme. Each column corresponds to a different
design, and the rows describe which FRF model the controller is evaluated on.

It is understandable that a 10× 10 table is not very easy to analyze. For that it is considered
useful to add some additional table which will contain the mean of all evaluations for each
controller design. Thus, in the following table one can see the controller parameters resulting
from an optimization subject to a specific FRF model, together with the average value of
||Twz||∞ from evaluations on other FRF models. For the default optimization scheme this
table is illustrated in 4-3.

Design
s.t. 1 2 3 4 5 6 7 8 9 10

kp 0.0521 0.0516 0.0515 0.0515 0.0516 0.0513 0.0515 0.0515 0.0517 0.0522
kd 0.0881 0.0885 0.0889 0.0887 0.0886 0.0885 0.0885 0.0886 0.0859 0.0879

||T̃wz||∞ 0.9928 0.9907 0.9868 0.9890 0.9896 0.9925 0.9912 0.9918 1.020 0.9944

Table 4-3: Evaluation table containing the means of evaluations of controller parameters on
other FRF models

From a first look on tables 4-2 and 4-3 one can observe that they constitute a trusty ap-
proximation of the table 4-1, containing the evaluations of the controller parameters on the
actual plant. However, there is an eye-catching difference, which is that all the infinity norm
values on table 4-1 are slightly higher than 1, and thus failing to satisfy ||Twz||∞ ≤ 1, whereas
the corresponding values on table 4-3 are in general slightly lower than 1. This difference
is attributed to the fact that this default optimization algorithm converges to a conservative
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solution that simply satisfies the specific linear constraints that it is subject to. However, ap-
parently, it is not implied that this conservative solution will satisfy the performance criterion
for the actual plant neither for other FRF models.

A prominent example that highlights this behavior is the controller parameters’ combination
that results from optimization subject to the 9th FRF model. The evaluation of this con-
troller on other FRF models is presented on the 10th column of table 4-2, that is, the column
below number 9. In this column one can see the evaluation of the controller with parameters
kp = 0.0517 and kd = 0.0859, on the 10 models. As it can be seen, the only value of this
column that is lower than 1 is the one corresponding to evaluation on the 9th FRF model
itself. In other words, the combination kp = 0.0517 and kd = 0.0859 satisfies the constraints
built for the 9th model. However it does not satisfy the constraints for any other model.
In general, all the values on the diagonal of table 4-2, will have by default an infinity norm
value lower than 1, given that the corresponding optimization has converged. Nevertheless,
this optimization scheme ensures in no way that the resulting controller parameters will be
performing satisfactorily. For this reason, it is interesting to examine the corresponding per-
forance of the refined optimization scheme that was proposed in section 3-4. This examination
is presented in the following section.

A graphical representation of the Nyquist plot of the function Q and the corresponding Q∆,
including the linear constraints that we employed, is presented in figure 4-9.
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Figure 4-9: Nyquist plot of Q and Q∆ for the 5th FRF model, with kp = 0.0516 and kd = 0.0886

4-3 Iterative, single-model optimization s.t. manually selected
constraints

In this section we employ the refined, iterative algorithm, that was proposed in 3-4, in order
to synthesize a fixed-structure controller that satisfies stability and performance conditions
for the double-mass, spring, damper system. Similarly to the previous section, during opti-
mization procedures that follow, the implementation of the algorithm is subject to a single
FRF model. Additionally, the performance of the resulting controllers will be evaluated with
respect to FRF models, as well as with respect to the actual model G(s) expressed as a
transfer function.
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4-3-1 Explanation of the basic idea of the algorithm

Let us recall the iterative algorithm, proposed in 3-4.

Algorithm for the revisited optimization scheme

1. Input: Initially stabilizing solution φ(0), FRF model G(ωj).
2. Construct linear constraints l∆n(φ, jω), n = 1, · · · , c .

3. Find ω(0)
m for G(ωj) and calculate f̃ (0)(φ) for φ(0).

4. J (0) ← ||Twz||∞, when G(ωj) and φ(0) are considered
5. Jmin ← J (0), φmin ← φ(0)

6. Solve min f̃ (0)(φ), s.t. l∆n(φ, jω) n = 1, · · · , c and i← 1.

7. Find φ(1) from optimization.

8. J (1) ← ||Twz||∞, when G(ωj) and φ(1) are considered
9. If J (1) < Jmin then Jmin ← J (1), φmin ← φ(1)

10. while i < imax do
11. Find ω(i)

m for G(ωj) and calculate f̃ (i)(φ) for φ(i).

12. Solve min max f̃ (k)(φ), s.t. l∆n(φ, jω) n = 1, · · · , c k = 1, · · · , i.

13. Find φ(i+1) from optimization and i← i + 1.

14. J (i) ← ||Twz||∞, when G(ωj) and φ(i) are considered
15. If J (i) < Jmin then Jmin ← J (i), φmin ← φ(i)

16. end while
17. return φmin as optimal controller parameters for the given constraints.
18. return Jmin as optimal infinity norm for the given constraints.

The linear constraints l∆ that are active in the different frequency ranges in the interval
[0.1, 10]rad/sec remain the same as previously and are expressed as

l∆1 : Im (Q∆(jω)) + 0.2 Re (Q∆(jω))− 0.001 < 0 for ω < 0.16
l∆2 : Im (Q∆(jω))− 0.05 Re (Q∆(jω)) + 0.001 < 0 for 0.16 6 ω 6 0.20
l∆3 : − Im (Q∆(jω))− 5 Re (Q∆(jω)) + 0.001 < 0 for ω > 0.20,

(4-13)

whereas the corresponding linear constraints referring to stability are omitted, since they
are more conservative than the ones that are related with performance. Given an initially
stabilizing solution φ(0), that is a stabilizing combination of kp and kd, and a particular
FRF model, denoted as G(ωj), one should first calculate the frequency ω

(0)
m at which the

maximum magnitude of the closed loop, with controller parameters φ(0), appears. That is,
the frequency at which the infinity norm, denoted as J (0), appears for this particular controller.
In general, an analytical expression of the infinity norm of the closed loop with respect to
the controller parameters does not exist. However, under the assumption that, for a small
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neighborhood around φ(0) the infinity norm appears in the same frequency point ω
(0)
m , one

can calculate an analytical expression of the behavior of the magnitude of the closed loop at
this particular frequency. This behavior is described by the nonlinear function f (0)(φ, ω

(0)
m j).

Next, a linear approximation of this nonlinear behavior can be calculated by linearizing the
function f (0)(φ, ω

(0)
m j) around φ(0). This linearization can be expressed as

f̃ (0)(φ, ω(0)
m j) ≈ f (0)(φ(0), ω(0)

m j)+ ∂f (0)(φ, ω
(0)
m j)

∂φ1

∣∣∣∣∣
φ(0)

(φ1−φ
(0)
1 )+· · ·+ ∂f (0)(φ, ω

(0)
m j)

∂φ
(0)
m

∣∣∣∣∣
φ(0)

(φm−φ(0)
m ).

For sake of ease of comprehension, we present an example by employing φ(0) = [0.05 0.09],
or in other words kp = 0.05 and kd = 0.09, and the 1st FRF model to demonstrate the
approximation of the behavior of the infinity norm by a nonlinear function f (0)(φ, ω

(0)
m j) and

next by a linear function f̃ (0)(φ, ω
(0)
m j). This example is illustrated in figure 4-10.

0.02
0.030

0.04

1

0.04

2

0.06 0.05

3

0.08 0.06

4

0.1 0.07

5

0.080.12
0.090.14

Figure 4-10: Figure of the infinity norm and its approximations for kp = 0.05 and kd = 0.09

In this figure, the behavior of the actual infinity norm is described by the red curve. The
behavior of f (0)(φ, ω

(0)
m j) is represented by the curve in blue color and the behavior of

f̃ (0)(φ, ω
(0)
m j) is described by the green plane. Additionally, the initially stabilizing point

around which we approximate the behavior of the actual infinity norm is illustrated by
the yellow star. As it can be seen, both the nonlinear and linear approximations describe
sufficiently accurately the pattern of the infinity norm for a small neighborhood around
φ(0) = [0.05 0.09]. On top of that, it appears that the linear approximation f̃ (0)(φ, ω

(0)
m j)

which is illustrated in green, describes accurately the behavior of the infinity norm for a
larger neighborhood than its nonlinear counterpart. This behavior can be roughly explained
by the fact that the nonlinear approximation is based on the assumption that the infinity
norm appears at the particular frequency point ω

(0)
m . Although this is a strong assumption

for a small neighborhood around φ(0), it appears to fall apart for any broader neighborhood.
On the other hand, the linear approximation f̃ (0)(φ, ω

(0)
m j) seems to express the pattern of
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the actual infinity norm in a much more reliable manner.

Nevertheless, although the linear function f̃ (0)(φ, ω
(0)
m j) describes the behavior of the infinity

norm sufficiently accurately for a remarkable neighborhood around φ(0), it seems to deviate
significantly for φ away from this neighborhood. For this reason, the proposed algorithm
suggests an iterative minimization procedure that aims to describe the behavior of the infin-
ity norm within the convex hull created by the attained controller parameters’ combinations,
as the intersection of a number of planes. Specifically, the behavior of the infinity norm is
approximated by the term J = max f̃ (k)(φ, ω

(k)
m j), for k = 1, · · · , i. Minimizing this approxi-

mation, subject to the corresponding linear constraints, that ensure stability and performance,
is projected to result to some optimal values for the controller parameters. After a number
of iterations, the minimum value of J that has been found is returned as the result of the
optimization. The iterative part of the optimization is described between the lines 10 and
16. It is highlighted that the proposed algorithm remains convex, since both the optimization
argument and the linear constraints are convex.

Let us describe in detail the stages of the optimization when applied to the 5th FRF model,
with initial controller parameters kp = 0.3 and kd = 0.04. The infinity norm of the closed-
loop, when evaluated on the 1th model is quite large, and specifically it is J (0) = 3.4164
and it appears at the frequency point ω

(0)
m = 0.4041rad/sec. The linear approximation

f̃ (0)([kp, kd](0), ω
(0)
m j) results from the linearization of f([kp, kd], ω

(0)
m j), which is the nonlinear

relation between the magnitude of the closed-loop transfer function at the frequency point
ω

(0)
m . Considering that the closed-loop transfer function for that frequency can be expressed

as

Twz(ω(0)
m j) = Wp(ω(0)

m j)
1 + G2(ω(0)

m j)CI([kp, kd], ω
(0)
m j)

,

where CI([kp, kd], ω
(0)
m j) denotes the PD controller and G2(ω(0)

m j) denotes the 5th FRF model
of the plant, the nonlinear function approximating ||Twz||∞ can expressed at the frequency
point ωm as:

f(k, ω(0)
m j) = |Wp(ω(0)

m )|√
(1 + kpa1 + kda2)2 + (kpa3 + kda4)2)

, (4-14)

where

a1 = Re
(
G2(ω(0)

m j)
)

a2 = −Im
(
G2(ω(0)

m j)
)

ω(0)
m

a3 = Im
(
G2(ω(0)

m j)
)

a4 = Re
(
G2(ω(0)

m j)
)

ω(0)
m

A linearization of this function around the point k(0) = [0.3, 0.04], will give

f̃([kp, kd], ω(0)
m j) = f(k(0), ω(0)

m j) + ∂f(k, ω
(0)
m j)

∂kp

∣∣∣∣∣
k(0)

(kp − k(0)
p ) + ∂f(k, ω

(0)
m j)

∂kd

∣∣∣∣∣
k(0)

(kd − k
(0)
d )

= 6.7114− 1.1957kp − 79.8912kd.
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4-3 Iterative, single-model optimization s.t. manually selected constraints 41

Apparently, f̃([kp, kd], ω
(0)
m j) describes the relation between ||Twz([kp, kd], ωj)||∞ and the con-

troller parameters [kp, kd], around [kp, kd](0), as a simple plane. For this specific combination of
parameters, this plane together with the actual nonlinear relation between ||Twz([kp, kd], ωj)||∞
and [kp, kd] is illustrated in figure 4-11.
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Figure 4-11: Illustration of the actual infinity norm, and its linearization around [0.3, 0.04]

It is stressed that there is no analytical expression that describes the nonlinear relation be-
tween ||Twz([kp, kd], ωj)||∞ and [kp, kd] that is illustrated in red color in figure 4-11. In the
context of this project we perform a grid search to calculate it for several combinations of kp

and kd.

The first iteration of the algorithm proposed in 3-4, results to controller parameters kp =
0.0545 and kd = 0.1770 and a corresponding infinity norm J (1) = 0.9625, when evaluation is
done on the 5th FRF model, i.e. on itsself. The updated controller parameter, together with
J (1), is represented by the yellow star in figure 4-12, only from a different perspective than
the previous one. Additionally, in figure 4-12 one can also see the blue plane by which the
infinity norm is approximated for the updated controller parameters.
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Figure 4-12: Illustration of the actual infinity norm, and its linearization around [0.0545, 0.1770]

After 6 iterations, the proposed algorithm will converge to a local minimum and specifically to
the controller parameters kp = 0.0556 and kd = 0.1495 with an infinity norm J (6) = 0.5798.
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The details of the iterative procedure are described in table 4-4. Additionally, in figure
4-13 one can see the planes resulting from all linearizations that were performed, and the
corresponding controller parameter values.
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Figure 4-13: Illustration of the actual infinity norm, and its linearization around [0.0556, 0.1495]

Iteration kp kd J (∗) Point Color Plane Color
0 0.3 0.04 3.4164 Blue Green
1 0.0545 0.1770 0.9625 Yellow Blue
2 0.0577 0.0966 0.8857 Green Cyan
3 0.0555 0.1529 0.6015 Cyan Magenta
4 0.0560 0.1405 0.6156 White Yellow
5 0.0556 0.1494 0.5804 Black Orange
6 0.0556 0.1495 0.5798 None None

Table 4-4: Details of the iterative algorithm for 6 iterations

4-3-2 Evaluation the refined algorithm on the actual plant

In order to be able to compare this proposed technique with the default optimization algorith
that was proposed in [12], we employ the same conditions with the ones of the previous
section and run respective simulations. As an initially stabilizing solution the combination
kp = 0.2 and kd = 0.15 is employed, which was the combination that was used during the data
acquisition. The algorithm is applied to all 10 FRF models, subject to the linear constraints
that have been described previously, and the resulting controller parameters are first evaluated
on the actual plant, and next on other FRF models as well. In all the following simulations
the value imax = 10 was sufficient for the algorithm to converge to a minimum solution. The
resulting controller parameters together with the corresponding evaluation on the actual plant
is presented in table 4-5.
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4-3 Iterative, single-model optimization s.t. manually selected constraints 43

s.t. 1 2 3 4 5 6 7 8 9 10

kp 0.0574 0.0520 0.0560 0.0548 0.0540 0.0551 0.0542 0.0550 0.0541 0.0487

kd 0.1026 0.2018 0.1007 0.1306 0.1498 0.1231 0.1465 0.1243 0.1516 0.1365

||Twz||∞ 0.8397 ∞ 0.8609 0.6662 0.7636 0.7060 0.7131 0.6998 0.7944 0.6589

Table 4-5: Table containing the resulting controller parameters and the corresponding evaluation
on the actual system

The results presented in table 4-5 are rather interesting. As it can be seen, for most of the
designed controllers, the corresponding infinity norm of the actual plant appears to have a
very improved performance comparing to the corresponding table of the default optimization
algorithm 4-1. However, the controller parameters, that result from optimization on the 2nd

FRF model, lead to ||Twz||∞ = ∞, or in other words, they lead to an unstable closed loop
system. After examining the reason behind this behavior, it was concluded that it stems
from the fact that the 2nd FRF model is corrupted. That is, it fails to capture sufficiently
accurately the behavior of the plant.

At this point, it is important to note that, in order to assess stability and performance for
an FRF model and a particular parameters’ combination, the only reliable method is to
consider whether the specific controller parameters satisfy the linear constraints imposed on
the model. For this reason, the result of a grid search can be very enlightening with respect
to the reliability of data, since it reveals the set of controller parameters which are acceptable
for a particular model. Consequently, we employ the result of a grid search on the 2nd FRF
model in order to have an insight on its behavior and assess the degree of its corruption.

In figure 4-14a one can see the set of controller parameters that imply stability and perfor-
mance for the 2nd FRF model. The area that is represented in deep blue color corresponds to
controller parameters’ combinations that lead to instability, whereas the green area represents
the combinations for which the stability constraints are satisfied. Finally, the yellow are rep-
resents the combinations for which performance is additionally attained. On the other hand,
in figure 4-14b, one can see the result of the corresponding grid search when the stability of
the actual plant is considered in addition to the satisfaction of the linear constraints, that
prevent the encirclement of the origin. As it can be seen, there is a slight, yet significant
difference between the two figures. Namely, in figure 4-14a, the green and yellow area extends
to parameters combinations for which the corresponding area in 4-14b is deep blue, that is,
the actual closed loop system is unstable. All in all, by figure 4-14 it can be concluded that
the satisfaction of the linear constraints does not ensure stability of the actual plant when
the linear constraints are imposed on corrupted data.
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(b) Checking poles of the actual closed loop as well

Figure 4-14: Grid search comparison

To illustrate even better this behavior, it is interesting to present the bode plots of the closed
loop, when the 2nd FRF model and the actual plant are considered. The bode plots can
be seen in figure 4-15. As expected, when the 2nd FRF model is considered, it seems that
there is no violation of the performance condition, whereas when from the bode plot of the
actual plant it is obvious that the performance specification is not satisfied. The behavior of
other FRF models for such controller parameters will be presented in the following subsection,
where the evaluation of the proposed algorithm on FRF models is presented.
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Figure 4-15: Bode diagrams with kp = 0.0520 and kd = 0.2018 for the actual plant and the 2nd

FRF model.

4-3-3 Evaluation of the refined algorithm on FRF models

Similarly to the previous section, the evaluation of the resulting controller parameters on
other FRF models is of high interest, since the actual plant is never available in practice. The
evaluation of the controllers, presented in table 4-5, with respect to other models is presented
in the following table.
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1 2 3 4 5 6 7 8 9 10

1 0.8364 ∞ 0.8578 0.6666 0.5849 0.7058 0.5971 0.6993 0.5777 0.6627

2 0.8339 0.4504 0.8552 0.6654 0.5839 0.7047 0.5961 0.6982 0.5768 0.6590

3 0.9316 ∞ 0.8632 4.6542 1.0347 3.9290 1.2083 4.5392 0.9604 1.9229

4 0.8347 0.7071 0.8555 0.6652 0.6652 0.7042 0.6428 0.6977 0.6789 0.6613

5 0.8346 ∞ 0.8551 0.6651 0.5838 0.7040 0.5960 0.6976 0.5911 0.6615

6 0.8336 0.8706 0.8545 0.6643 0.8652 0.7036 0.8180 0.6971 0.8943 0.6607

7 0.8337 ∞ 0.8538 0.6646 0.6170 0.7034 0.5956 0.6970 0.6357 0.6603

8 0.8346 0.8458 0.8554 0.6652 0.8266 0.7042 0.7850 0.6978 0.8523 0.6613

9 0.8150 ∞ 0.8345 0.6526 0.5740 0.6901 0.5859 0.6839 0.5672 0.6483

10 0.8347 0.9492 0.8556 0.6650 0.9004 0.7042 0.8452 0.6978 0.9347 0.6670

Table 4-6: Evaluation table for the minimization scheme. Each column corresponds to a different
design, and the rows describe which FRF model the controller is evaluated on.

The∞ values that appear on table 4-6 imply that the controller parameters that resulted from
optimization based on the FRF model of the corresponding column, result to encirclement of
the origin when other FRF models are used for evaluation. However, since it is remarkably
complicated to extract conclusions from a 10 × 10 table, we summarize the mean of the
evaluations on a smaller table presented below.

s.t. 1 2 3 4 5 6 7 8 9 10

kp 0.0574 0.0520 0.0560 0.0548 0.0540 0.0551 0.0542 0.0550 0.0541 0.0487

kd 0.1026 0.2018 0.1007 0.1306 0.1498 0.1231 0.1465 0.1243 0.1516 0.1365

||Twz||∞ 0.8423 ∞ 0.8541 1.0628 0.7236 1.0253 0.7270 1.0806 0.7269 0.7865

Table 4-7: Table containing the resulting controller parameters and the corresponding evaluation
on the actual system

By comparing the tables 4-7 and 4-3, one can not directly notice that the performance of the
controllers designed based on the proposed algorithm of this work is improved. As a matter
of fact, many results on table 4-7 appear to have ||Twz||∞ > 1, although the evauation on
the actual plant presented in table 4-5 indicates otherwise. This is attributed on the fact
that the evaluation of all controllers on the 3rd FRF model appears to have an unexpectedly
increased value as it appears in table 4-6. This indicates that the 3rd FRF model does not
offer trust worthy evaluations and these evaluations can be neglected as some kind of outliers.
By neglecting the evaluations on the 3rd FRF model the values on tables 4-7 and 4-5 would
be very close as it can be noticed from the values on table 4-6. All in all, the efficiency of the
algorithm proposed in section 3-4 outperforms the efficiency of the default algorithm.
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4-4 Grid search

Given that the optimization problem is relatively simple, since only two controller parameters
need to be optimized, we can first apply a grid search to explore the range of the parameters
kp and kd for which the closed loop system is stable and robust. It is stressed that robustness
implies that ||Twz||∞ ≤ 1.

4-4-1 Grid search on the actual plant

When the actual transfer function G(s) is used, the interval that corresponds to stability and
performance is illustrated in figure 4-16. As it can be seen, the grid search was performed in
the interval [0, 1] for the parameter kp and [0, 0.3] for the parameter kd.
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Figure 4-16: Results of the grid search for the parameters kp and kd.

The blue area represents the controller parameters’ combinations for which the closed-loop
system is unstable. The light green area corresponds to parameter combinations that result
to a stable closed-loop system. Finally, the yellow area represents the combinations for which
||Twz||∞ ≤ 1.

4-4-2 Grid search for stability on the FRF measurements

In this paragragh we perform a grid search on the same intervals for the controller parameters
kp and kd as in the previous paragraph. Specifically, we explore the area on which each model
satisfies the stability condition, which is checked by using the generalized Nyquist criterion.
As it was deployed in subsection 2-2-5, a sufficient condition, for stability for the convex
feasibility problem, is that the Nyquist plot of the function

Q(φ, jω) = 1− CI(φ)P22 (4-15)

does not encircle the origin. The linear constraints that are employed for this purpose are

l1 : Im (Q(jω)) + 0.2 Re (Q(jω))− 0.001 < 0 for ω < 0.16
l2 : Im (Q(jω))− 0.05 Re (Q(jω)) + 0.001 < 0 for 0.16 6 ω 6 0.20
l3 : − Im (Q(jω))− 5 Re (Q(jω)) + 0.001 < 0 for ω > 0.20.

(4-16)

The result of the grid search is illustrated in figure 4-17.
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Figure 4-17: Results of the grid search for the parameters kp and kd with respect to stability.

The blue area represents the controller parameters’ combinations for which no model is stable.
The color bar on the right of the figure indicates how many models are stable for each
parameter combination.

4-4-3 Grid search for performance on the FRF measurements

In this paragraph we explore the parameter combinations for which the closed-loop system
satisfies the performance condition ||Twz||∞ ≤ 1. The result of the grid search is illustrated
in figure 4-18
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Figure 4-18: Results of the grid search for the parameters kp and kd with respect to performance.

The blue area represents the controller parameters’ combinations for which no model satisfies
the performance condition. The color bar on the right of the figure indicates how many models
satisfy the performance condition for each parameter combination. An interesting feature of
figure 4-18 is that for kp ≈ 0.01 and kd ≈ 0.09 all FRF models satisfy the performance
specification. However, this parameter combination does not satisfy performance for the
actual plant. This interesting behavior is attributed to the fact that, although the linear
constraints that are imposed are not violated for any frequency point in [0.1, 10]rad/sec, the
performance condition is violated in a frequency point which does not belong to that interval,
and specifically at a freuqency lower that 0.1rad/sec. In other words, the frequency range
that we used in order to identify the behavior of our plant partially fails to do so. It is noted
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that considering the frequency range to be [0.01, 10]rad/sec, would prevent this defect from
happening.

4-4-4 Linear constraints and conservatism

One can notice that the map of the grid search that corresponds to stability and performance
of the actual plant differs significantly from the respective map for stability and performance of
the considered FRF models. Namely, in figure 4-16 the intervals of the controller parameters,
kp and kd for which the closed loop system satisfies stability and performance, are much larger
than the respective ones in figures 4-17 and 4-18 that describe the behavior of the closed loop
when FRF models are used instead of the actual model.
The reason behind this difference lies on the way that stability is assessed in the two different
cases. Specifically, when the actual system is assessed for stability, it suffices if all the poles of
the closed loop system lie on the LHP. On the other hand, when the FRF models are assessed
it is not feasible to check on this condition, since FRFs are not expressed analytically and
thus it is not possible to check where the poles of the closed loop lie on. Instead, in order to
check on stability one will have to ensure that the Nyquist plot of the function

Q(φ, jω) = 1− CI(φ)P22

does not encircle the origin. Appartently, this condition is checked by making use of the
linear constraints 4-16. If an FRF model for a certain controller parameters’ combination
satisfies these constraints then stability is inferred. However, checking for stability by checking
the satisfaction of these linear constraints is rather conservative, since there are certainly
controller parameters’ combinations for which there is no encirclement of the origin, yet these
particular linear constraints are violated. These parameter combinations are approximately
illustrated in figure 4-16, and specifically by the part of the green and yellow area of the figure
for which the corresponding spots on figure 4-17 are in deep blue. To illustrate this fact, it is
useful to present figure 4-19, which describes the intervals of kp and kd for which the actual
plant satisfies stability, and respectively performance, however by evaluating the satisfaction
of the linear constraints 4-16.
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Figure 4-19: Results of the grid search for the parameters kp and kd, checking stability of the
actual plant by evaluating the satisfaction of the linear constraints.

As it can be noticed, figure 4-19 is much closer to figures 4-17 and 4-18. The conservativeness
that is implied by the use of the linear constraints is inevitable, yet relatively managable. This
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means that the area in which the figures 4-16 and 4-17 differ significantly, can be reduced.
Namely, this can be done by dividing the entire range of frequency in more than just 3 pieces,
which was so far the case, and construct corresponding linear constraints that will induce less
conservatism. In other words, it is crucial to construct linear constraints that prevent the
Nyquist plot of Q(φ, jω) from encircling the origin, but do not constrain the expansion of
the Nyquist plot of Q(φ, jω) to, after all, "legitimate" areas, that is, to allow all the possible
patterns that do not imply instability.
An algorithm that attempts an automatic constraints’ design was proposed in section 3-5.
This algorithm can be evaluated in the context of this chapter and this evaluation is presented
in the following paragraph.

4-4-5 Algorithm for optimal design of the linear constraints.

In this subsection we evaluate the algorithm, proposed in 3-5 ,and next the one proposed in
3-6, which constructs one linear constraint per frequency point, based on the Nyquist plot of
the function Q(φ∗, jω), that is, when the initial controller parameters φ∗ are considered.
In order to perform this evaluation we employ the 2nd FRF model and construct the corre-
sponding linear constraints for kp = 0.2 and kd = 0.15, for which the infinity norm for the
2nd FRF model results to be 0.6727. It is stressed that although the 2nd FRF model has
been identified as corrupted data, it is very suitable so as to demonstrate the behavior of
the algorithm for updated versions of the linear constraints. Next we evaluate stability and
performance by applying a grid search within the interval [0, 1] for kp and [0, 0.3] for kd, by
examining the satisfaction of the N constructed linear constraints. The result of the grid
search is presented in figure 4-20.
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Figure 4-20: Results of the grid search for the parameters kp and kd, checking stability and
performance imposing N linear constraints on the 2nd FRF model

As it can be seen, by imposing N linear constraints, constructed based on the initially sta-
bilizing solution φ∗, still induces some conservatism. In other words, it appears that some
controller parameters’ combinations that indeed result to stability, are not "visible" to the
optimization algorithm if the specific constraints are imposed. However, in this case one can
see a different kind of conservatism, since the updated constraints motivate the algorithm to
explore solutions in the neighborhood around the initially stabilizing solution, which at this
case was kp = 0.2 and kd = 0.15. In other words, we can say that the algorithm becomes
more biased towards specific solutions.
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Having considered this behavior of the algorithm, a new question arises and specifically, what
would happen if we could optimize the constroller parameters, then re-construct the linear
constraints and re-apply the optimization. In other words, what if we applied an iterative
procedure that includes both the stage of constructing linear constraints and the stage of
optimizing our controller parameters. This iterative procedure is what the algorithm proposed
in 3-6 suggests. In fact, it combines the algorithm proposed in 3-4 and the one proposed in
3-5

By performing the optimization algorithm suggested in 3-4, subject to the updated linear
constraints, would result to some controller parameters kp = 0.1266 and kd = 0.1559. This
parameters’ combination indeed leads to an improved performance for the 2nd FRF model
and specifically its infinity norm results to be 0.5827. It is noticed that the light yellow area of
the figure corresponds to infinity norm less than 1, whereas the bold yellow area corresponds
to infinity norm lower than 0.6. We choose to highlight this detail because it turns out that
this controller parameters’ combination corresponds to the bold yellow area of figure 4-20,
which confirms the effectiveness of the optimization algorithm proposed in 3-4. It is then
implied that constructing new linear constraints will be based on an improved initial solution
φ∗.

After constructing the updated linear constraints, the grid search was once again performed
and the results are presented in figure 4-21.
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Figure 4-21: Results of the grid search for the parameters kp and kd, checking stability and
performance imposing N updated, linear constraints on the 2nd FRF model

As it can be seen, this figure is very similar to figure 4-20, yet there is a slight but rather
interesting difference. The interval of the parameters kp and kd which are visible to the opti-
mization algorithm is extended. In fact, it is extended towards an interval of the parameters
kp and kd for which the corresponding value of the infinity norm is improved. Again the bold
yellow area represents parameters’ combinations for which the infinity norm of the 2nd FRF
model is even lower that 0.6. Consequently, the optimization algorithm that is subject to
these updated linear constraints will be "free" to explore the resulting performance of a more
promising parameters’ interval.

If we perform a third iterative optimization using the algorithm proposed in 3-4, the resulting
controller parameters will be kp = 0.1001 and kd = 0.1486, and it is once again noted that
this parameters’ combination is located at the heart of the bold yellow are of figure 4-21,
and result to infinity norm of the 2nd FRF being 0.5654. The resulting grid search, that

Georgios Skaltsis Master of Science Thesis



4-5 Iterative algorithm with optimal linear constraints 51

reveals the parameters’ combinations that will be "visible" from the optimization algorithm,
is presented in figure 4-22.
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Figure 4-22: Results of the grid search for the parameters kp and kd, checking stability and
performance imposing N updated, linear constraints on the 2nd FRF model

Finally, in this figure, one can notice that the entire interval of the controller parameters that
correspond to infinity norm being lower that 0.6 is visible when the optimization algorithm
is subject to the updated linear constraints. Apparently, this implies that a local minimum
of the infinity norm is located in this interval. After performing the optimization algorithm
proposed in 3-4 once again, the controller parameters will result to be kp = 0.08571 and
kd = 0.1519, and the corresponding infinity norm will be 0.5350. Iterating again will not
give any improved results neither for the optimal constraints nor for the optimal controller
parameters, which means that the algorithm, proposed in 3-6, has converged. At this point it
is important to mention that the global minimum, where searched with a grid search, is indeed
around 0.5350, meaning that our algorithm managed to find the global optimum. Although
this might not be the case for more complicated systems and controllers’ structure, an update
on the initial values of the controller parameters and more importantly an refinement on the
optimization scheme, as suggested for future work in 6-2, is likely to solve this problem. In
the next section we are going to evaluate the performance of this advanced algorithm on all
10 FRF models and explore its behavior.

4-5 Iterative algorithm with optimal linear constraints

On the previous section it has been highlighted that employing used-defined linear constraints
induces an amount of conservatism that does not allow the proposed optimization algorithm
to converge to a minimum of the controller paramters’ set. For this reason, in section 3-6 we
have integrated the algorithm proposed in 3-4 with the algorithm proposed in 3-6, in order to
build an updated algorithm that considers an iterative optimization of the linear constraints
that are imposed, together with an iterative optimization of the controller parameters. The
steps of the algorithm proposed in 3-4 have extensively described in section 4-3-1 and, thus
we are not going to repeat its steps. In the following subsection we will present the way that
optimal constraints can be constructed for an initially stabilizing solution φ(∗).
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4-5-1 Explanation of the basic idea of the updated algorithm

As mentioned in 3-1-2, the condition for stability of closed loop system relies on the Nyquist
plot of the function

Q(φ, jω) = 1− CI(φ)P22,

and specifically, one should ensure that the Nyquist diagram does not encircle the origin.
The main idea of the proposed algorithm, that constructs linear constraints, is schematically
illustrated by figure 4-23.

Figure 4-23: Representation of constructing optimal constraints on the Nyquist plot

From a geometrical perspective, the satisfaction of the linear constraint li(jω) relies on the
satisfaction of the following inequality that express the relative position of vetors with respect
to a line ~v · ~q ≥ 0, where ~v descrives the vector that is vertical to the line li(jω), and pointing
towards the point Q(φ(∗), jωi), and ~q denotes the position of a random Q(φ, jωi) on the
complex plane. For example, by considering figure 4-23, ~v · ~q1 ≥ 0 is indeed satisfied, whereas
~v · ~q2 ≥ 0 is not. In order to robustify the procedure, a designer should consider some margin
between the line li(jω) and the origin. This margin is called offset. The entire procedure of
defining optimal linear constraints is best illustrated by the following algorithm.

Algorithm for construction of optimal constraints

1. Input: Initially stabilizing solution φ(∗), FRF model G(ωj).
2. Calculate Q(φ(∗), jω) = 1− CI(φ(∗))P22.

3. for i = 1 : N

4. ai ← Real
(
Q(φ(∗), jωi)

)
5. bi ← Imag

(
Q(φ(∗), jωi)

)
6. end
7. Define optimization parameters: φ and the function: Q(φ, jω) = 1− CI(φ)P22.

8. Define the offset: offset← ε, with 0 < ε� 1.

9. Constraints: ai · Real (Q(φ, jωi)) + bi · Imag (Q(φ, jωi))− |bi| · offset ≥ 0.
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It is stressed that it is necessary to use the absolute value for the parameter b when it is
multiplied with the offset, so as to preserve the line li(jω) on the proper side with respect to
the origin. It is noted that in all the following simulations the value pmax = 3 was sufficient
for the iterative algorithm to converge to some optimal solution. In the following paragraph
we present the performance of this proposed algorithm when it is integrated with the iterative
algorithm proposed in 3-4.

4-5-2 Evaluation on the actual plant

In this section we employ the algorithm that was analytically explained in section 3-6, to
synthesize frequency-domain fixed-structure controllers, which we plan to evaluate using the
actual plant. The resulting controllers for the FRF measurements that are considered are
presented in table 4-8.

s.t. 1 2 3 4 5 6 7 8 9 10

kp 0.0586 0.0806 0.1107 0.1666 0.0870 0.0579 0.0834 0.0674 0.0793 0.0556

kd 0.1398 0.1894 0.1272 0.1419 0.1505 0.1316 0.1495 0.1287 0.1523 0.1322

||Twz||∞ 0.6330 8.9838 0.6756 0.9048 0.8460 0.6526 0.8196 0.6502 0.8636 0.6554

Table 4-8: Table containing the resulting controller parameters and the corresponding evaluation
on the actual system

By examining the evaluation of the updated algorithm on the actual plant, one can observe
that for specific FRF models the resulting controller performs worse than in the corresponding
table of section 4-3-2. This is attributed to the fact that the updated linear constraints reveal
a new controller parameters’ set to the optimization algorithm. In this new set, it appears
that some FRF models suffer from corrupted data, since even though the linear constraints
are satisfied for themselves, they are not satisfied for the actual plant.

This behavior is simular to the behavior that was illustrated in figure 4-15, which presented
the bode plot of the closed-loop for the actual plant and the 2nd FRF model, which appears
to be corrupted. The problem of corrupted data can be generally dealt by considering more
sampling frequency points around the resonance peak of a certain plant. The reason why
some FRF models fail to capture the behavior around the resonance frequency of the plant
is that this behavior is changing "fast".

4-5-3 Evaluation on FRF models

In this paragraph we aim to evaluate the performance of the controllers that were designed
using the updated iterative algorithm that was proposed in section 3-6. Similarly to previous
sections, in table 4-9 we present the evaluation of each controller on all 10 FRF models.
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1 2 3 4 5 6 7 8 9 10

1 0.6123 ∞ 0.6721 0.7132 0.6826 0.6521 0.6529 0.6480 0.6511 0.6561

2 0.6116 0.4273 0.6893 0.6701 0.5416 0.6511 0.5416 0.6403 0.5300 0.6554

3 1.9140 ∞ 0.6715 0.7191 0.7953 5.3399 0.8639 4.7758 0.8381 4.0721

4 0.6197 1.2981 0.6733 0.6901 1.0122 0.6510 0.9471 0.6468 0.9536 0.6547

5 0.6114 0.9460 0.6741 0.6897 0.5491 0.6510 0.5518 0.6470 0.5458 0.6546

6 0.7584 1.8858 0.6726 0.6901 1.3161 0.6503 1.2377 0.6549 1.3197 0.6542

7 0.6111 1.0381 0.6727 0.6880 0.5577 0.6502 0.5508 0.6461 0.5703 0.6541

8 0.7335 1.8189 0.6733 0.6900 1.2697 0.6510 1.1900 0.6467 1.2527 0.6547

9 0.6010 0.9460 0.6673 0.6871 0.5432 0.6391 0.5456 0.6367 0.5347 0.6426

10 0.7724 2.1953 0.6741 0.6904 1.2795 0.6566 1.2187 0.6553 1.3224 0.6547

Table 4-9: Evaluation table for the minimization scheme. Each column corresponds to a different
design, and the rows describe which FRF model the controller is evaluated on.

Given that a 10 × 10 table is relatively not easy to analyze, we present the mean of the
evaluations in table 4-10.

s.t. 1 2 3 4 5 6 7 8 9 10

kp 0.0586 0.0806 0.1107 0.1666 0.0870 0.0579 0.0834 0.0674 0.0793 0.0556

kd 0.1398 0.1894 0.1272 0.1419 0.1505 0.1316 0.1495 0.1287 0.1523 0.1322

||Twz||∞ 0.7845 ∞ 0.6740 0.6928 0.8547 1.1192 0.8300 1.0598 0.8518 0.9953

Table 4-10: Table containing the resulting controller parameters and the mean of evaluation on
the 10 FRF models

Similarly to the corresponding table of section 4-3, it appears that the values of the mean
infinity norm presented in table 4-10 are increased due to the evaluation on the 3rd FRF
model. As it can be seen in the third row of table 4-9, the evaluation of some controller
parameters’ combinations is not proper. Naturally, these values can be considered outliers
and thus one could neglect them when calculating the mean values of table 4-10. In this
case, the mean of the evaluations on the 9 FRF models, omitting the 3rd, would give a very
representative description of the evaluations on the actual plant presented in table 4-8.

An illustration of the initially designed linear constraints based on kp = 0.0516 and kd =
0.0886 , for the 5th FRF model, is presented in figure 4-24. As one can see, for each frequency
point a different linear constraint is constructed.
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Figure 4-24: Nyquist plot of Q and Q∆ for the 5th FRF model, and optimal constraints, with
kp = 0.0516 and kd = 0.0886

4-6 Multi-model optimization

As it was stressed in the previous sections, corrupted data is one of the most significant
barriers of the proposed algorithms. Regardless the way that linear contraints are defined,
that is manually or by an optimized algorithm, corrupted data, especially around the area
of the reasonance peak, hurt the reliability of both the default and the proposed iterative
algorithm. Consequently, it is considered of crucial importance to find a way to deal with
data corruption, or else with the insufficiency of data to describe accurately the behavior of
the system. As suggested previously, a straight forward manner to deal with this problem
is to consider taking more samples of the actual plant around the reasonance peak, when
performing the FRF measurements. This way, the behavior of the actual plant can be better
captured and corruption of data should reduce.

An alternative manner to deal with corrupted data is to employ a multi-model approach on
the problem that was dealt so far. The problem of data corruption concerns mainly our
proposed algorithms and does not affect the default minimization scheme. This is reasonable,
since the default minimization scheme is a relatively conservative algorithm as it does not
aim to minimize the infinity norm. Instead it just proposes the minimization of the controller
parameters which, as it was illustrated in section 4-2, results to solutions that do not succeed
to satisfy the performance specification for the actual plant.

On the other hand, the proposed algorithms, deployed in section 3-4 and 3-6, are character-
ized by a more greedy minimization behavior, and search for the controller parameters that
minimize the approximation of the infinity norm. This greediness, motivates the algorithm
to look for the solution that seems to lead to minimization. However, when an FRF model
has not captured accurately the behavior of the actual plant, the approximation of the norm
fails to describe the actual infinity norm, resulting to solutions with low quality performance,
or even to instability. In this section, we introduce a multi-model approach for the proposed
algorithms, in order to deal with corruption of data.
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4-6-1 Iterative algorithm with optimal, multi-model, linear constraints

The algorithm that was proposed in 3-6, is easily compatible with constraining multiple
models, instead of just one. Simply at the step,

Construct linear constraints l∆n(φ, jω), n = 1, · · · , N based on φ∗
(0),

one should consider applying this construction to as many FRF models as desired. That is,

1. Input: M FRF models, denoted as G(i)(jω), i = 1, · · · , M .
2. for i = 1 : M

3. Construct linear constraints l
(i)
∆n(φ, jω), n = 1, · · · , N based on φ∗

(0) and G(i)(jω).

4. Constraints← Constraints + l
(i)
∆n(φ, jω), for n = 1, · · · , N.

5. end

Naturally, the approximation of the infinity norm has to be done with respect to a specific
FRF model. Yet, it is interesting to examine how corrupted FRF models will perform, when
the linear constraints are imposed to multiple models. In the following paragraphs, we employ
this updated algorithm by considering a multi-model optimization.

Evaluation on the actual plant

During the simulations that were performed in this section, we employ 3 FRF models in each
experiment. Specifically, when we are using the 1st FRF model to approximate the actual
H∞ norm, we impose constraints on the 10th, the 1st and the 2nd model. Respectively, when
the 2nd FRF model is used for approximation, we impose constraints on the the 1st , the 2nd

and 3rd model, and so on. The result of the corresponding simulations are presented in table
4-11, where the evaluation of the respective controllers is done with respect to the actual
plant.

s.t. 1 2 3 4 5 6 7 8 9 10

kp 0.1087 0.1086 0.1157 0.1667 0.0659 0.0638 0.0700 0.0511 0.0689 0.0671

kd 0.1256 0.1254 0.1354 0.1423 0.1488 0.1290 0.14686 0.1370 0.1466 0.1275

||Twz||∞ 0.6815 0.6823 0.6726 0.9131 0.7700 0.6534 0.7450 0.6467 0.7404 0.6567

Table 4-11: Table containing the resulting controller parameters and the corresponding evalua-
tion on the actual system

The most significant observation that one can make by observing the information on table 4-11
is that when we perform a multi-model, iterative optimization, minimizing the infinity norm
approximation based on the data of the 2nd FRF model, though imposing linear constraints
on the 1st, the 2nd and the 3nd, results to a controller that, not only produces a stable closed
loop system, but also satisfies the performance specification with ||Twz||∞ = 0.6823. This is a
terrific result, given that the 2nd FRF model was identified as a corrupted one in the previous
sections. Yet, when multiple models are considered in the optimization algorithm, even a
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corrupted model results to robust performance. In fact, when performing a multi-model
approach on our optimization algorithm, a single non-corrupted FRF model, among as many
corrupted ones, suffices to result to a solution that satisfies the performance specification,
since a non-corrupted model, by default, can not lead to violation of performance constraints.

The value of this conclusion is of exceptional importance in practical applications. Namely,
since corrupted data is hard to be identified in practice, it is crucial to have a data-driven con-
troller design algorithm which is robust against such corruption. As it has been demonstrated,
considering a multi-model approach within the context of our iterative frequency-domain al-
gorithm succeeds this robustification.

Evaluation on the FRF models

In this paragraph we evaluate the performance of the resulting controller parameters on all 10
FRF models. The results of the evaluations are directly presented in a form of a mean of all
10 evaluations, and not with a 10× 10 table, for sake of simplicity. The results are presented
in table 4-12.

s.t. 1 2 3 4 5 6 7 8 9 10

kp 0.1087 0.1086 0.1157 0.1667 0.0659 0.0638 0.0700 0.0511 0.0689 0.0671

kd 0.1256 0.1254 0.1354 0.1423 0.1488 0.1290 0.14686 0.1370 0.1466 0.1275

||Twz||∞ 0.6635 0.6983 0.6972 0.9006 0.8053 0.6952 0.7645 0.6851 0.7525 0.6724

Table 4-12: Table containing the resulting controller parameters and the mean of evaluation on
10 FRF models

It appears that table 4-12 offers a trust worthy description of table 4-11, which contains the
values of the actual closed-loop performance. The results presented in this section confirm
that considering a multi-model approach robustifies the controller design procedure against
corrupted data. Additionally, in combination with optimizing the linear constraints the iter-
ative algorithm yields very satisfying results. Yet, an open problem remains the performance
of the proposed algorithm on unstable systems. This case is going to be examined in chapter
5, where the proposed technique is extended in order to cover the case of plants with RHP
poles.

4-6-2 Optimization through multiplicative uncertainty

In this subsection we apply a multi-model approach that is based on multiplicative uncertainty
as it was described in section 3-3. We consider the mean of the FRF models Ḡ(jω) as described
in 4-1-4, and the weight function wI(jω) is

wI(s) = 0.03
(
10s2 + 2s + 1.8

)
s2 + 0.5s + 2.2

s2 + 10s + 70
s2 + 2s + 70 .

The number of realizations of the multiplicative uncertainty ∆I remains to be defined. A
highly accurate description of the uncertainty, for which it holds that |∆I(jω)| ≤ 1, would
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require a high number of realizations nI . However, considering for example nI = 100, N = 400
frequency points, and the number of realizations of ∆p to be nd = 100, would result to
100 ·100 ·400 = 4000000 linear inequalities. This is an extremely high number and in practice
the corresponding optimization would not converge. For this reason we are going to consider
a number of combinations for nI and nd.

3 realizations of ∆I : For nI = 3 and nd = 100, the total number of linear inequalities is equal
to the number that corresponds to having 3 FRF models. The results of this optimization
and the evaluation of the resulting controller on the actual plant are presented in table 4-13.

s.t. Ḡ(jω)

kp 0.0493

kd 0.1189

||Twz||∞ 0.7514

JḠ 0.7562

Table 4-13: Table containing the resulting controller parameters and the evaluation on the actual
plant

As it can be seen in table 4-13, the evaluation on the actual plant gives ||Twz||∞ = 0.7514,
whereas the evaluation on the mean of all FRF models gives JḠ = 0.7562, which are both
acceptable. The evaluation of the resulting controller on the FRF models is presented in table
4-14.

Eval 1 2 3 4 5 6 7 8 9 10

||Twz||∞ 0.7638 0.7516 1.9833 0.7535 0.7539 0.7527 0.7527 0.7532 0.7365 0.7533

Table 4-14: Table containing the resulting controller parameters and the mean of evaluation on
10 FRF models

As it can be seen in table 4-14, the evaluation of the resulting controller on the 3rd FRF
model gives ||Twz||∞ = 1.9833, which means that the performance condition is violated. This
behavior is clearly attributed to the fact that the number of realizations of ∆I is nI = 3,
which apparently is not sufficient. In the following paragraph simulate for nI = 15 and thus
we expect a satisfying performance even for the 3rd FRF model.

15 realizations of ∆I : For nI = 15 and nd = 100, the total number of linear inequalities
is equal to the number that corresponds to having 15 FRF models. The results of this
optimization and the evaluation of the resulting controller on the actual plant are presented
in table 4-15.
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s.t. Ḡ(jω)

kp 0.0493

kd 0.1189

||Twz||∞ 0.7514

JḠ 0.7514

Table 4-15: Table containing the resulting controller parameters and the evaluation on the actual
plant

The evaluation of the resulting controller on the FRF models is presented in table 4-16.

Eval 1 2 3 4 5 6 7 8 9 10

||Twz||∞ 0.6635 0.6983 0.6972 0.9006 0.8053 0.6952 0.7645 0.6851 0.7525 0.6724

Table 4-16: Table containing the resulting controller parameters and the mean of evaluation on
10 FRF models

As expected, realizing ∆I with more samples on the unitary disc robustifies the controller
design against corrupted data. However, in the general case the size of the problem grows
extremely when ∆I is realized by a relatively large number of samples. This implies that the
implementation of the optimization algorithm with multiplicative uncertainty might prove
to be inpractical, since for nI and nd larger than 50 the problem grows immensely and
convergence is not guaranteed. However, the idea of multiplicative uncertainty might be
useful for the generation of additional linear inequalities when the number of available FRF
models is not sufficient.
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Chapter 5

Extension to Unstable Systems

In chapter 4 we have employed a plant with no right-half plane (RHP)-poles or RHP-zeros, in
order to apply our proposed technique. The resulting controller design was proven to be very
promising, since during simulations it was shown that the performance can be significantly
optimized, while the existance of corrupted data can be succesfully dealt with, by considering a
multi-model approach, where a single non-corrupted Frequency Response Function (FRF) was
sufficient for the satisfaction of the performance specification. However, one can reasonably
question the effectiveness of the proposed algorithm in the general case, for systems with
RHP poles and zeros. For this reason, in this chapter we extend the existing theory, so that it
includes such systems. Next, we employ a certain plant with RHP-poles to apply the proposed
algorithm and evaluate its effectiveness in such plants.

5-1 Stability and performance

The theory deployed in chapter 3, can be extended for unstable systems in a straight for-
ward manner. In this section we briefly review the differences that arise and construct the
theoretical background for the experiments that will be performed in the following sections.

5-1-1 Condition for stability and performance based on the Nyquist diagram

Let us assume that we deal with an unstable plant G(s), which has p RHP poles and z RHP
zeros, yet we do have an initially stabilizing controller from which we can acquire closed-loop
frequency-domain data in the form of FRF measurements. Consequently, consider that the
multiple FRF models of the generalized plant P (s) are denoted as P i(jω), for i = 1, · · · , M .
The generalized configuration of the plant can be expressed as[

zi

yi

]
=
[
P i

11(jω) P i
12(jω)

P i
21(jω) P i

22(jω)

] [
wi

ui

]
i = 1, · · · , M.
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We consider a fixed structure controller of the form CI(φ, s), where φ denotes the controller
parameters, and thus the control law can be expressed as

ui = CI(φ, s)yi, i = 1, · · · , M. (5-1)

Given that, the closed-loop systems for i = 1, · · · , M are obtained by

T i
wz(s) = Fl(P i, CI) = P i

11 + P i
12CI(I − P i

22CI)−1P i
21, (5-2)

where Fl denotes the lower linear fractional transformation (LFT). The objective is to find
controller parameters φ that satisfy ||T i

wz(s)||∞ < 1, for i = 1, · · · , M .

Definition for stability Let Pol denote the number of open-loop unstable poles in CI(φ, s)P i
22(s)

and Pcl denote the number of closed-loop unstable poles in CI(φ, s)P i
22(s). Then, the closed-

loop systems T i
wz, for i = 1, · · · , M in figure 3-1 are stable if for the generalized plants P i(jω),

the Nyquist plots of
Qi(φ, jω) = det

(
1− CI(φ, jω)P i

22(jω)
)

(5-3)

make N = Pcl−Pol clockwise encirclements of the origin and do not pass through the origin.
This is the generalized Nyquist theorem considering positive feedback systems with open loop
transfer functions CI(φ, jω)P i

22(jω). It is stressed that the number of closed-loop unstable
poles Pcl is equal to the number of RHP-zeros of G(s) and Pol equals the number of RHP-poles
of G(s).

Figure 5-1: Generalized plant configuration considering multiple models

Definition for performance Let Pol denote the number of open-loop unstable poles in
CI(φ, s)P i

22(s) and Pcl denote the number of closed-loop unstable poles in CI(φ, s)P i
22(s).

Then, the closed-loop systems T i
wz satisfy H∞ performance with ||T i

wz||∞ < 1, if for the
generalized plants P i(jω), the Nyquist plots of
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Qi
∆(φ, jω) = det

(
I −

[
∆p(jω) 0

0 CI(φ, jω)

]
P i(jω)

)
, ∀ω, ∀∆P (jω), (5-4)

make N = Pcl−Pol clockwise encirclements of the origin and do not pass through the origin,
for any stable rational transfer function ∆P ∈ RHnw×nz

∞ and ||∆P (s)||∞ ≤ 1.

Figure 5-2: Generalized plant configuration considering multiple models and performance per-
turbation

In addition to the updated definitions for closed-loop stability and performance, the existance
of RHP-zeros and RHP-poles implies a number of limitations which are described in detail in
the following subsections, in the manner that they are deployed in [11].

5-1-2 Limitations imposed by RHP-zeros

As described in [11], RHP-zeros appear as a result of competing effects of slow and fast
dynamics. A useful example is the plant

G(s) = 1
s + 2 −

2
s + 15 = −s + 11

(s + 2)(s + 15) ,

which has a RHP-zero at z = 11. Complex RHP-zeros might also appear and, given that
they always appear in conjugate pairs, they are expressed as z = x± jy, where x ≥ 0.

The existence of a RHP-zero implies the inverse response phenomenon and some high gain
instability as depicted in [11]. In addition to that, such zeros impose some limitations on the
bandwidth, which are discussed in the following paragraphs.
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5-1-2-1 Bandwidth limitation I

For a real RHP-zero z the bandwidth limitation is that

ωB ≈ ωC <
z

2 , (5-5)

where ωB denotes the bandwidth of the closed-loop system and ωC denotes the crossover
frequency for the complementary sensitivity transfer function. For a complex pair of RHP-
zeros z = x± jy the limitations that are implied can be expressed as

ωB ≈ ωc <


|z|/4 Re(z)� Im(z) (y/x� 1)
|z|/2.8 Re(z) = Im(z) (y/x = 1)
|z| Re(z)� Im(z) (y/x = 1)

(5-6)

To conclude, RHP-zeros that are located close to the origin have bad influence on the control
of the system. Additionally, RHP-zeros being closer to the real axis is worse than being close
to the imaginary axis, as depicted in 5-6.

5-1-2-2 Bandwidth limitation II

The interpolation constraint for RHP-zeros implies that for z being one, it will be S(z) = 1
and T (z) = 0, where S(s) denotes the sensitivity transfer function and T (s) denotes the
complementary sensitivity. Suppose we are interested in bounding the infinity norm of the
sensitivity transfer function, that is ||WpS||∞ < 1, where Wp(s) is a weight function. However,
it will be ||WpS||∞ ≥ |Wp(z)S(z)| = |Wp(z)| , so as we must at least require that

|Wp(z)| < 1. (5-7)

We can use the requirement described in 5-7 so as to explore the limitations that are implied
by RHP-zeros. There are two cases that should be explored. Namely, the definition of a
weight function Wp(s) that requires good performance at low frequencies and, on the other
hand, a weight function Wp(s) that requires good performance at high frequencies.

Performance at low frequencies Consider a performance weight of the form

Wp(s) = s/M + ω∗
B

s + ω∗
BA

(5-8)

This weight specifies a minimum bandwidth ω∗
B for the sensitivity function S(s). In fact,

ω∗
B is the frequency at which the linear extension of Wp crosses 1. Additionally, the weight

function specifies a maximum peak of S less than M , a steady-state offset less than A < 1,
and at frequencies lower than the bandwidth the sensitivity is required to improve by at least
20dB/decade, as depicted in [11]. If the plant has a RHP-zero at s = z, then we must require

|Wp(z)| =
∣∣∣∣∣z/M + ω∗

B

z + ω∗
BA

∣∣∣∣∣ < 1 (5-9)
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Real zero In the case that z is real, then all variables are real and positive and 5-9 is
equivalent to

ω∗
B < z

1− 1/M

1−A
. (5-10)

For instance, with A = 0 (no steady-state offset) and M = 2 (||S||∞ < 2), we must at least
require ω∗

B < 0.5z, which is consistent to the requirement ωB < 0.5z in 5-5.

Imaginary zero For a RHP-zero on the imaginary axis, that is z = j|z|, an analogous
derivation results for A = 0:

ω∗
B < |z|

√
1− 1

M2 (5-11)

For instance, with M = 2 we require ω∗
B < 0.86|z|, which results to be very close to the

requirement ωB < |z|, that is given in 5-6.

Performance at high frequencies In this paragraph we explore the limitations that are
imposed in the case that we want tight control at high frequencies, by using a performance
function of the form

Wp(s) = 1
M

+ s

ω∗
B

(5-12)

This requires tight control (|S(jω)| < 1) at frequencies higher than ω∗
B, while the only re-

quirement at low frequencies is that the peak of S is less than M . It is stressed that the
requirement imposed by this particular performance weight, described in 5-12, is admittedly
unrealistic, since it requires S → 0 at higher frequencies, yet it reveals the bandwidth limita-
tions that are imposed. Nevertheless, in order to satisfy ||WpS||∞ < 1 we must at least require
that the performance weight satisfies |Wp(z)| < 1, and for a real RHP-zero we conclude for
the weight in 5-12

ω∗
B > z

1
1− 1/M

. (5-13)

For instance, with M = 2 the requirement is ω∗
B > 2z, and thus we can only achieve tight

control at frequencies over the frequency of the RHP-zero.

5-1-3 Limitations imposed by unstable RHP-poles

In this subsection, we explore the limitations that are imposed by the existance of RHP-poles.
For instance, the plant G(s) = 1

s−2 has a RHP-pole with p = 2.

For plants with RHP-poles, feedback is necessary for stabilization. Namely, the existance of an
unstable pole p requires for internal stability T (p) = 1, where T (s) denotes the complementary
sensitivity transfer function, and as a result two limitations are imposed.
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RHP-pole Limitation 1 (input usage).

Basically, we have to manipulate the system’s input u, and the transfer function CIS from
plant outputs to plant outputs must always satisfy [2], [3],

‖CIS‖∞ ≥
∣∣∣Gs(p)−1

∣∣∣ , (5-14)

where Gs is the "stable version" of G, with its RHP-poles mirrored in the left-half plane (LHP),

G(s) = Gs(s) ·
∏

i

s + p̄i

s− pi
. (5-15)

For instance, for the plant G(s) = 1
s−4 we have Gs = 1

s+4 and the lower bound of the peak of
CIS is |Gs(p)−1| = 4 + 4 = 8.

This limitation is imposed by the need to avoid saturation of the input signal in practical
applications. Specifically, it is u = −CIS (Gdd + n), where d denotes the disturbance signal
and n denotes the measurement noise signal. Additionally, Gd(s) denotes the transfer function
of the disturbance, as illustrated in figure 5-3. In this general case, in order to avoid input
saturation, that would lead to instability issues, it should hold

‖CISGd‖∞ ≥
∣∣∣Gs(p)−1Gd,ms(p)

∣∣∣ , (5-16)

where Gd,ms denotes the "stable version" of Gd, as depicted in [11]. The proof of the first
limitation imposed by RHP-poles is omitted, since it is derived in full detail in [11].

RHP-pole Limitation 2 (bandwidth).

In the presence of a RHP-pole p we need to ensure that the system reacts sufficiently fast,
and specifically we must require that the bandwidth of the closed-loop system is larger than
2p, approximately. This limitation results from the bound ‖WiT‖∞ ≥ |Wi(p)|. As a result,
while the presence of a RHP-zero imposes an upper bound on the bandwidth, the presence
of a RHP-pole implies a lower bound on the feasible bandwidth. Similarly to the case of the
first limitation, imposed by an unstable pole, the proof of the second limitation is omitted as
well, and a detail derivation is provided in [11].

5-1-4 Combination of RHP-zeros and RHP-poles

Stabilization. Theoretically, any linear plant can be stabilized irrespectively of the position
of its RHP-zeros and RHP-poles, as long as the plant does not contain any hidden unstable
modes. Nonetheless, this might require an unstable controller, and in practice it is often
required that a stable controller is used. If there exist a stable controller that stabilizes the
closed-loop system, then the plant is said to be strongly stabilizable. It has been proved by
Youla et al. [13], that a strictly proper Single-Input Single-Output (SISO) plant is strongly
stabilizable by a proper controller if and only if every RHP-zero in G(s) lies to the left
of an even number (including zero) of real RHP-poles in G(s), as described in [11]. It is
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stressed that the presence of any complex RHP-zeros or complex RHP-poles does not affect
this requirement.

For example, consider the strictly proper plant G(s) = s−z
(s−p)(τs+1) . According to the require-

ment described in the previous paragraph, G(s) can be stabilized by a stable proper controller
if and only if z > p. However, in order to acquire acceptable performace, the limitations im-
posed by RHP-zeros and RHP-poles should be better examined. Previously, it was derived for
a real RHP-zero the approximate bound ωB < z/2 (with MS = 2), and for a real RHP-pole
the approximate bound ωc > 2p (with MT = 2). This implies that for a system with a single
real RHP-zero and a single real RHP-pole, one must require z > 4p so as to get acceptable
performance and robustness.

Sensitivity peaks. For a plant with a single real RHP-zero and a single real RHP-pole, we
always have

‖S‖∞ ≥ c, ‖T‖∞ ≥ c, c = |z + p|
|z − p|

. (5-17)

5-1-5 Controllability analysis with feedback control

In this subsection, we discuss the consequences of limitations, that are imposed by the presence
of RHP-zeros and RHP-poles, on the controller design procedure. Additionally, we summarize
on the necessary conditions that should hold in order to satisfy performance on unstable
systems. The block diagram presented in figure 5-3 illustrates the configuration of the closed-
loop, of a SISO system, including the disturbance signal d. In the following paragraphs, we
consider that all signals are scaled.

Figure 5-3: Block diagram of the scaled general closed-loop system.

The limitations that were described in the previous paragraphs can be summarized as follows.

Speed of response to track reference changes We may require that |S(jω)| ≤ 1/R up to
the frequency ωr at which reference tracking is required, where R denotes the maximum value
that the reference signal is allowed to take.
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Input constraints arising from disturbances. For acceptable control (|e| < 1), it should hold
that |G(jω)| > |Gd(jω)| − 1 for frequencies that |Gd(jω)| > 1. For perfect control (e = 0),
one must require that |G(jω)| > |Gd(jω)|.

Input constraints arising from setpoints. The designer must require that G(jω) > R − 1,
up to the frequency ωr, that reference tracking is required.

Tight control at low frequencies with a RHP-zero z in G(s) . For a real RHP-zero we
require ωc < z/2 and for an imaginary RHP-zero we approximately require ωc < |z|.

Real open-loop unstable pole in G(s) at s = p. In this case, we need high feedback gains
to stabilize the system and we require ωc > 2p. Moreover, for unstable plants we need
|Gs(p)| > |Gd,ms(p)|, in order to avoid input saturation in the presence of disturbances.

All these limitations, have to be considered by a designer in order to synthesize a proper
control analysis problem. In the general case that the closed-loop system is represented by a
generalized plant, these limitations are absorbed into the design of suitable weight functions
Wp and Wi. Moreover, in this general case, the controller design is done by considering a
disturbance signal that is constructed by the designer.

Finally, nominal performance is ensured by imposing linear constraints that, when satisfied,
guarantee that the resulting controller satisfies the performance specifications. Respectively,
for robust performance a multi-model approach can be implemented, ensuring that the per-
formance specifications are satisfied for all the models that are under consideration.

5-2 Simulations and results for unstable systems

In this section we present an additional experiments’ session in order to evaluate our proposed
technique on unstable plants. Moreover, the entire procedure of acquiring FRF measurements
of the considered plant is described in detail.

5-2-1 Dynamics of the plant

For the purposes of this chapter we employ an unstable system, and specifically the magnet-
ically levitated train.

This type of train "flies" on an air gap above its rail system. The gap control is exceptionally
critical for the operation of the train, and the transfer function describing this gap can be
expressed as

G(s) = 8(s + 1)(s + 3)
s(s− 1)(s + 4)(s + 8) . (5-18)

Apparently, this system has a RHP-pole, which is located at p = 1. This implies that the
theory deployed in chapter 3 does not apply in this case, since the satisfaction of stability
and performance requires a single, anti-clockwise encirclement of the origin, instead of no
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Figure 5-4: A sketch of a magnetically levitated train.

encirclement. However, the case of unstable systems was theoretically covered in section 5-1.
As a result, in this section we are going to employ our proposed algorithm and evaluate its
performance on this unstable system. In figure 5-4, one can see a schematic representation of
the magnetically levitated train. The bode plot of the transfer function G(s) describing the
gap of the magnetically levitated train is presented in figure 5-5.
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Figure 5-5: Bode plot the transfer function G(s)

5-2-2 System configuration

The implementation of the proposed algorithm on the unstable system requires setting up the
generalized plant. That is, we have to set the objective of the controller design by deciding
on the form of the perfromance weights W and on the signals of the closed-loop that we
are interested in bounding. In figure 5-6 one can see the configuration of the generalized
plant, where Wp is the performance weight that corresponds to the sensitivity and Wi is the
respective performance weight for the complementary sensitivity.
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Figure 5-6: Configuration of the closed-loop for mixed-sensitivity controller design

Apparently, we are interested in performing a mixed-sensitivity controller design, for which
the performance specification can be described as ||Twz||∞ ≤ 1, or specifically∥∥∥∥∥ WpS

WiT

∥∥∥∥∥
∞

= max
ω

√
|WpS|2 + |WiT |2 < 1. (5-19)

The nature of such a plant requires a PID controller in order to be stabilized, and thus the
structure of the controller is decided to be CI(s) = kp

Tf s+1 + ki
s + kds

Tf s+1 , where kp, ki and kd

are the proportional, integral and derivarive gains, respectively. Given that, the generalized
plant can be expressed as[

z
y

]
=
[
Wp(s) + G(s)Wi(s) −G(s)
Wp(s) + G(s)Wi(s) −G(s)

] [
w
u

]
. (5-20)

Defining properly the performance weights Wp and Wi is related to the control objective of
the designer. In our case we have selected

Wp(s) = αp

s2/M2
p + 2βpωBs + ω2

B

s2 + 2βpApωBs + (ApωB)2 ,

where αp = 5, βp = 0.6, Mp = 3, Ap = 10−2 and ωB = 1.5. Given the performance objective,
the sensitivity transfer function of the closed-loop system should lie below the bode plot

1
|Wp(s)| .
Additionally, for the performance weight Wi we have

Wi(s) = αi
s2/M2

i + 2βiωBs + ω2
B

s2 + 2βiAiωBs + (AiωB)2 ,

where αi = 0.5 · 106, βi = 0.5, Mi = 3, Ai = 1 · 103 and ωB = 50. Given the performance
objective, the complementary sensitivity transfer function of the closed-loop system should
lie below the bode plot 1

|Wi(s)| . The bode plots of the inverse of Wp and Wi are illustrated in
figure 5-7. The red bode plot corresponds to Wi, whereas the blue plot corresponds to Wp.

Georgios Skaltsis Master of Science Thesis



5-2 Simulations and results for unstable systems 71

-100

-50

0

M
ag

ni
tu

de
 (

dB
)

10-4 10-2 100 102 104 106
-180

0

180

P
ha

se
 (

de
g)

Frequency  (rad/s)

Figure 5-7: Bode plot of the inverse of Wp(s) and Wi(s)

5-2-3 Frequency-domain data

As it was stressed previously, the implementation of the algorithm is based on frequency-
domain data of the plant in the form of FRF measurements. Given that G(s) is an unsta-
ble plant, we need a closed-loop configuration in order to stabilize the system and acquire
frequency-domain data. Naturally, an initially stabilizing controller is necessary for such an
experiment. The block diagram of the closed loop configuration that can be used in Simulink
in order to acquire frequency-domain data is illustrated in figure 5-8.

Figure 5-8: Configuration of the closed loop for data acquisition

For sake of simplicity, and given that system identification is not of the main interest of this
project, we produced the FRF models by making use of the original transfer function G(s)
and by adding noise. In other words, we artificially created the FRF models that are going
to be used in this section. This technique offers the priviledge to directly control the amount
of noise that is added on a specific model, which implies that one can also consider the case
of creating very noisy models or artificially constructed corrupted data. Additionally, for the
needs of our algorithm we used an initially stabilizing solution with kp = 12.5, ki = 12.5 and
kd = 2.5, which results to ||Twz||∞ = 1.4057 when evaluated on the actual plant. For the
purposes of our experiments we created 5 FRF models, which are illustrated in figure 5-9.
Each FRF model consists of 1000 frequency points, logarithmically located in the interval
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[0.01, 1000]rad/sec.
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Figure 5-9: Bode plot of 5 FRF models

As it can be seen, the magnitude bode plot of the 5th FRF model illustrated in cyan in figure
5-9 deviates significantly with respect to the remaining 4. This is done on purpose in the
procedure of constructing our data as a mean to artificially construct corrupted data. In
other words, we have created this corrupted model of the plant in order to be able to assess
the performance of our algorithm in the presence of data disruption.

5-3 Iterative algorithm with optimal constraints

In this section, we employ the 5 FRF models that were acquired previously in order to
implement our proposed algorithms to an unstable system. In particular, in the following
paragraphs we employ the iterative algorithm based on optimal constraints that was deployed
in section 3-6, for the single-model case. A multi-model approach will be considered in the
next section of this chapter.

5-3-1 Evaluation on the actual plant

In this paragraph, we evaluate the resulting fixed-structure controllers on the actual plant as
if it was available for such evaluations. These results are useful in order to compare them
with the corresponding results of the evaluation on other FRF models, which is described in
the next paragraph. The evaluations on the actual plant are presented in table 5-2.
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s.t. 1 2 3 4 5

kp 32.672 30.507 33.456 40.342 17.1200

ki 61.343 35.420 56.046 31.959 34.1189

kd 3.2418 2.9701 3.1713 2.7808 1.6259

||Twz||∞ 0.6949 0.6962 0.6979 0.7677 1.0669

Table 5-1: Table containing the resulting controller parameters and the corresponding evaluation
on the actual system

As it can be seen, the controller parameters that correspond to optimization subject to the
5th FRF model do not satisfy the performance condition when evaluated on the actual plant.
This was expected, since the 5th FRF model deviates from the actual plant on purpose, as
described previously. On the other hand, the controller parameters for the first 4 models
satisfy the performance condition.

5-3-2 Evaluation on FRF models

In this paragraph we evaluate the controllers that resulted from optimization, also presented
in the previous paragraph, on other FRF models. Such an evaluation is very critical, since
the actual plant is not available in practical applications. The results are presented in table
5-2.

1 2 3 4 5

1 0.7044 0.7015 0.7061 0.7718 1.0733

2 0.7261 0.7050 0.7209 0.7719 1.0770

3 0.7017 0.6989 0.7044 0.7717 1.0704

4 0.7027 0.7008 0.7038 0.7726 1.0706

5 0.8657 0.8345 0.8598 0.8311 0.6987

Table 5-2: Table containing the evaluation of the controller parameters on all FRF models

As it can be seen, the controller parameters that result from optimization that is subject
to the 5th FRF model violate the performance condition when evaluated on the other FRF
models. This behavior has been explained in the previous paragraph.

Additionally, It is useful to present the result Nyquist diagram of Q, that corresponds to
stability. For kp = 32.672, ki = 61.343 and kd = 3.2418 and using the data of the 1st FRF
model, the Nyquist diagram is illustrated in figure 5-10. Althought it is not visible, the
encirclement of the origin is an anti-clockwise encirclement.
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Figure 5-10: Nyquist diagram for the 1st FRF model with kp = 32.672, ki = 61.343 and
kd = 3.2418

5-4 Iterative, multi-model, approach with optimal constraints

In this section, we employ the 5 FRF models and implement the algorithm deployed in
section 3-6, only by considering a multi-model approach. As it was also illustrated in section
4-6, a multi-model approach can be used to robustify the controller design procedure against
corrupted data. Similarly to the procedure followed in 4-6, we apply the multi-model approach
by considering 3 FRF models at each optimization in order to evaluate the proposed technique.

5-4-1 Evaluation on the actual plant

During the simulations that were performed in this section, we employ 3 FRF models in each
experiment. Specifically, when we are using the 1st FRF model to approximate the actual
H∞ norm, we impose constraints on the 5th, the 1st and the 2nd model. Respectively, when
the 2nd FRF model is used for approximation, we impose constraints on the the 1st , the 2nd

and 3rd model, and so on. The result of the corresponding simulations are presented in table
5-3, where the evaluation of the respective controllers is done with respect to the actual plant.

s.t. 1 2 3 4 5

kp 31.252 33.506 35.536 43.231 22.2951

ki 59.225 38.536 52.235 29.257 45.3595

kd 3.231 3.256 3.3215 2.9563 1.8839

||Twz||∞ 0.7019 0.6905 0.6966 0.7581 0.9112

Table 5-3: Table containing the resulting controller parameters and the corresponding evaluation
on the actual system

As it can be seen on the fifth column of table 5-3, a multi-model approach robustifies the
controller design even in the case that corrupted data are used, since it is now ||Twz||∞ =
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0.9112, whereas in the previous subsection it was ||Twz||∞ = 1.0669. Namely, when the 5th

FRF model is used for optimization, subject to constraints on the 4th, 5th and 1st model,
the resulting controller does indeed satisfy the performance condition when evaluated on the
actual plant. A similar result is expected for evaluation on other FRF models as well.

5-4-2 Evaluation on FRF models

In this paragraph we evaluate the performance of the resulting controller parameters on all 5
FRF models. The results are presented in table 5-4.

1 2 3 4 5

1 0.7083 0.7054 0.7107 0.7651 0.9124

2 0.7248 0.7210 0.7331 0.7651 0.9131

3 0.7077 0.7036 0.7093 0.7651 0.9137

4 0.7073 0.7045 0.7101 0.7643 0.9144

5 0.8622 0.8680 0.8784 0.8543 0.7230

Table 5-4: Table containing the evaluation of the controller parameters on the FRFmodels

As it can be seen in the 5th column of table 5-4 and 5-3, in the multi-model approach the
algorithm converges to controller parameters that satisfy performance even when corrupted
data is used for optimization. By considering the results presented in this section we can
derive that imposing linear constraints on multiple models robustifies the controller design
even in the presence of corrupted data. This result was expected given the corresponding
results in chapter 4, yet it is of high importance to confirm that this behavior applies also for
unstable systems.
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Chapter 6

Conclusions and Future Work

6-1 Conclusions

In this thesis project we have examined the problem of frequency-domain optimization of fixed-
structure controllers. Specifically, the main idea of the technique is to ensure H∞ performance
by imposing linear constraints on the Nyquist diagram of the closed-loop system, making use
of Frequency Response Function (FRF) models of the plant.

Throughout chapter 3 we have extended the initial approach so that it considers optimization
subject to multiple FRF models, instead of just one, resulting to robust performance controller
design. Additionally, we have proposed a method to reduce the size of the problem by
reducing the number of the resulting linear inequalities. More importantly, we have proposed
an iterative algorithm that succeeds to minimize the H∞ norm of the closed-loop system by
using an approximation of the norm, which is linear with respect to the controller parameters.
The linear approximation of the H∞ norm is based on the assumption that the maximum
magnitude of a certain transfer function, for an initially stabilizing solution, will still appear in
the same frequency for a small neighborhood around the initial solution. Moreover, given the
fact that user-defined linear constraints induce some significant amount of conservatism on the
resulting solution, we have proposed an algorithm that constructs linear constraints, which
are optimal in the sense that they induce the least amount of conservatism for a given initially
stabilizing solution. Being able to combine these two algorithms, we have proposed the final
optimization scheme, which suggests a procedure that iteratively optimizes the controller
parameters and the corresponding linear constraints.

In chapter 4 we employed the plant of a double mass-spring-damper system in order to apply
our proposed algorithm and to compare it with the default technique. Simulations that were
performed for 10 FRF models revealed that our proposed algorithm outperforms the default
technique. The remarkably improved performance that was succeeded is mainly attributed
to the fact that the default algorithm uses a conservative optimization scheme that aims
to minimize the sum of the squares of the controller parameters. On the other hand, the
objective of our proposed algorithm is to minimize a linear approximation of the H∞ norm,
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which indeed proves to be more effective in terms of closed-loop performance. On top of that,
optimizing the linear constraints also improves the performance of the closed-loop. Moreover,
although our proposed algorithm appears to be vulnerable to corrupted data, since such
data might lead to unstable controllers, in 4-6 it has been demonstrated that considering a
multi-model approach robustifies the controller design even when corrupted data are present.

However, although our proposed algorithm was proved to be very efficient for a stable plant,
one could reasonably question its effectiveness for unstable plants with right-half plane (RHP)-
poles. For this reason, in chapter 5 we extended the existing theory so as it covers the general
case of both stable and unstable plants. Next, we employed the dynamics that describe the
behavior of the gap of a magnetically levitated train, that is an unstable plant, to demonstrate
the performance of our algorithm. The algorithm showed to be effective also in such systems,
whereas it was also tested for the multi-model approach.

Yet, although we have succeeded a remarkable improvement upon the initial algorithm, pre-
sented in [12], there are still margins for further development and future work. These issues
are discussed in the following section.

6-2 Future Work

The main contribution of this thesis project is the iterative algorithm which seeks to minimize
the approximation of the H∞ norm of the closed-loop system. However, this search is being
done by approximating the behavior of the norm by a linear function around a given solution,
and by minimizing the maximum of the resulting linear functions as described in detail in
3-4. In the case that the infinity norm shows a convex behavior with respect to the controller
parameters, this technique will succeed to find the minimum inside a given parameters’ inter-
val. Yet, in the general non-convex case there is no guarantee that the algorithm will explore
optimal solutions, which during the iterations might get excluded from the set of feasible
solutions, due to the form of the optimization scheme. In other words, although in practice
it will succeed to find a very satisfying solution, the proposed algorithm will not succeed to
find a global-, or even a local-mimimum of the H∞ norm of the closed-loop.

This weakness of the algorithm can be dealt by introducing a different kind of optimization.
Such optimization algorithms could be Powell’s perpendicular method [10] with multi-start
local optimization, so as a global minimum can be found. Additionally, for small-sized prob-
lems the Nelder-Mead method [8] with multi-start local optimization could also be functional.
It should be noted though, that a multi-start local optimization is not directly feasible, since
in the context of the considered problem there is just one initially stabilizing solution. A
solution to this barrier would be to make use of our proposed algorithm in order to gener-
ate multiple stabilizing solutions and then employ one of the two suggested algorithms to
perform multi-start local optimization. It would be interesting to explore the computational
complexity that would be implied by such an implementation

Moreover, in order to consider an additional improvement on the controller design procedure,
one should examine the entire procedure of system identification and controller synthesis.
The procedure that we have used up to this point can be described by the diagram in figure
6-1.
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Figure 6-1: Schematic representation of the current control strategy

As it can be seen, the current approach assumes that we can acquire measurements, given
an initially stabilizing controller, in order to construct FRF data. Next, using our proposed
algorithm we iteratively optimize the controller parameters and finally we implement the
resulting controller to the actual system. However, a procedure with a single measurement
might lead to disruption of data, and thus to low performance of the resulting controller. In
order to deal with this danger, we suggest to develop a data-driven control cycle. In this
case, the controller design can be performed upon data which are iteratively improved by
repetitive measurements. This control strategy is better illustrated by figure 6-2. Such a
strategy would significantly robustify the controller synthesis procedure, and would improve
the resulting performance.

Figure 6-2: Schematic representation of the data-drive control cycle

All in all, although the proposed algorithm succeeds to outperform the default technique,
there are still margins for improvement of the overall method. By refining the optimization
scheme so that it can converge to local- and global-minima, and by consdering a data-driven
control cycle, as described previously, the proposed method appears to have potential for
further improvements. In the light of the results of this project, the iterative algorithm that
is contributed offers a powerful toolbox which can be proved to be very useful in practical
applications for both stable and unstable plants where FRF models are available.
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List of Acronyms

LQ Linear Quadratic

FRF Frequency Response Function

SISO Single-Input Single-Output

MIMO Multiple-Input Multiple-Output

MISO Multiple-Input Single-Output

SIMO Single-Input Multiple-Output

LFT linear fractional transformation

RHP right-half plane

LHP left-half plane
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