
Enhancing DAG-Based Consensus Protocols with Weighted Voting: A
Performance Analysis of Narwhal and Tusk

Vian Robotin

Supervisor(s): Jérémie Decouchant, Rowdy Chotkan

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Vian Robotin
Final project course: CSE3000 Research Project
Thesis committee: Jérémie Decouchant, Rowdy Chotkan, Kaitai Liang

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
This paper explores the integration of weighted vot-
ing mechanisms into DAG-based consensus proto-
cols, such as Tusk [EuroSys’22], which promise
high throughput and low latency. Weighted voting,
pioneered by protocols like WHEAT [SRDS’15]
and AWARE [TDSC’20], aims to optimize perfor-
mance metrics such as latency and throughput by
assigning weights to nodes based on their latency
with other nodes. We employ real-world latency
data from CloudPing to evaluate the impact of
weighted voting on Tusk, comparing them against
its unweighted counterpart. Our results demon-
strate significant performance improvements, with
the weighted voting mechanism achieving up to
37% lower consensus latency compared to un-
weighted approaches.

1 Introduction
Consensus algorithms lie at the heart of many distributed sys-
tems, such as blockchains and cryptocurrency systems. They
play a critical role in ensuring data consistency across multi-
ple, independent nodes. This is accomplished by allowing the
nodes to agree on a single value or a sequence of actions, even
in the presence of failures or network issues. In blockchains,
it allows participants to reach an agreement on a shared ledger
of transactions and prevent double-spending.

Blockchain consensus algorithms fall into two categories:
permissionless, where participation is open to all, and permis-
sioned, where a predetermined set of nodes governs the net-
work. The latter system is sometimes preferred as it demon-
strates superior throughput, lower latency, and immediate fi-
nality. Multiple strategies have been explored to improve the
performance of permissioned systems further, such as mini-
mizing the system size [12] or leader rotation schemes [3].

The PBFT [7] protocol is a Byzantine Fault Tolerant con-
sensus algorithm designed to withstand f Byzantine nodes
with arbitrary behaviour in a system with n = 3f + 1 total
nodes. This enhances the resilience of distributed systems,
however, it comes with the cost of high message complex-
ity and heavy view change procedure. In the optimistic case,
when the leader is honest, performance is stable, but it de-
grades significantly when the leader is not trustworthy.

These disadvantages have been supporting the research for
better alternatives. Notably, there has been notable progress
in the development of DAG-based consensus algorithms [11],
showcasing superior time complexity and throughput com-
pared to traditional consensus approaches. Among these ad-
vancements are Narwhal and Tusk [8]. Narwhal is a mem-
pool protocol that obtains high throughput even amidst faults
and asynchrony by using a reliable broadcast protocol, and
Tusk is a zero-message overhead consensus algorithm de-
signed to run on top of Narwhal, ensuring security under full
asynchrony. Further refining this innovation, Bullshark [15]
represents a significant leap forward from Tusk. It combines
the strengths of both partially synchronous and asynchronous
protocols, achieving a remarkable balance. This allows Bull-

shark to leverage the efficiency of synchronous communica-
tion when possible, while maintaining functionality and fault
tolerance even in asynchronous environments.

In parallel, the idea of incorporating weighted voting
in consensus algorithms has gained traction. This ap-
proach led to improved performance in state machine repli-
cation across geographically dispersed networks, exempli-
fied by WHEAT [14]. Subsequently, researchers combined
the weighted voting mechanism from WHEAT with BFT-
SMaRt [6], a recent implementation of PBFT [7], to develop
AWARE [5]. This led to substantial latency and throughput
improvement over PBFT.

While the benefits of weighted voting have been primarily
studied in algorithms like PBFT, there is potential for broader
application. This research aims to extend the investigation of
weighted voting to DAG-based consensus protocols such as
Narwhal and Tusk.

To this end, this paper aims to:

• Adapt AWARE’s algorithms to find the optimal weight
for a Narwhal node given the network latencies.

• Incorporate weighted voting in Narwhal using
WHEAT’s weight assignment scheme.

• Evaluate the impact of weighted voting on the perfor-
mance of Narwhal and Tusk.

The rest of this paper is organized as follows: Section 2
discusses previous research on weighted voting in consen-
sus algorithms and other methods to improve consensus la-
tency. Section 3 provides an overview of the protocols and
mechanisms that are the most relevant to this work, includ-
ing WHEAT, Narwhal, Tusk, and AWARE. Section 4 outlines
the integration of weighted voting into Narwhal and modifi-
cations to Narwhal and Tusk for weighted voting. Section 5
presents our experimental setup, including latency data col-
lection, and our experiment results, comparing the perfor-
mance of our weighted and the unweighted versions of Tusk.
Section 6 addresses ethical considerations, including repro-
ducibility and objectivity, ensuring adherence to research in-
tegrity standards. Section 7 discusses the limitations of this
research and suggests directions for future work. Finally, Sec-
tion 8 concludes the paper with an overview of the impact of
studying weighted voting on Narwhal and Tusk.

2 Related Work
The idea of weighted voting in consensus algorithms has been
studied in the past. Swiper and Dora [17] discusses con-
verting protocols designed for a nominal setting (where all
parties are equal) to a weighted setting (where parties have
weights). The authors propose three weight reduction prob-
lems to achieve this conversion. For Narwhal, the Dora al-
gorithm is applicable, which is the solution to the proposed
Weight Qualification problem. However, this research con-
siders a different approach, namely using WHEAT’s weight-
ing scheme.

Other methods to improve the performance of consen-
sus algorithms have been explored. Damysus [9] and
OneShot [10] introduce trusted components and leverage
them to tolerate a minority of faulty nodes and use a reduced

1



number of communication rounds. ThreatAdapt [13] estab-
lished the conditions for a BFT-SMR protocol to safely re-
configure itself based on a synchronous threat detector, al-
lowing for dynamic optimization by reducing the number of
active replicas and achieving reconfiguration 30% faster than
previous methods. Mir [16] presents a novel protocol mech-
anism that allows a set of leaders to propose request batches
independently and in parallel, while rotating the assignment
of a partitioned request hash space to leaders.

All works presented above concern PBFT or HotStuff-like
protocols, which are vastly different from the approach intro-
duced by Narwhal. To the best of our knowledge, this consti-
tutes the first paper to improve on the Narwhal protocol.

3 Background
WHEAT
WHEAT [14] is a WAN-optimized State Machine Replication
(SMR) protocol built on top of BFT-SMART. The protocol
first employs WAN optimizations, such as reducing commu-
nication steps and the number of replies clients wait for, and
decreasing the ratio between quorum size and total replicas.
It favors tentative executions over fast executions to handle
network unpredictability effectively.

The weight assignment scheme introduces the concept of
weighted replication to SMR protocols. The goal is to pri-
marily rely on the fastest replicas in the system while ensuring
safety and liveness. To this end, the authors introduce ∆ extra
replicas in the system and prove that their weight assignment
scheme progresses with fewer replicas while still upholding
the requirements of quorum formation. More specifically, in
CFT mode, where the total number of nodes is n = 2f+1+∆
total nodes, the scheme assigns a weight of Vmax = 1+ ∆

f to
the fastest f replicas in the system, while all other replicas are
assigned a weight of 1. Additionaly, the minimum number of
votes becomes f + ∆ + 1. Similarly, in BFT mode, where
n = 3f + 1 + ∆, the weight Vmax is assigned to the 2f
fastest replicas in the system and a quorum needs a minimum
of 2(f +∆) + 1 weights to form.

This weight distribution is shown to improve the system’s
latency and fault tolerance by allowing more flexibility in se-
lecting optimal quorums based on the performance of indi-
vidual replicas. Additionally, adjusting the replica group and
reassigning votes in response to detected faults enhances fault
tolerance, enabling the system to withstand up to f+∆ faulty
replicas in certain scenarios.

Narwhal
The Narwhal [8] protocol presents a novel approach to build-
ing a mempool and achieving high-throughput consensus. It
combines concepts from reliable broadcast, reliable storage,
and Byzantine fault-tolerant Threshold clocks. Narwhal’s
core innovation lies in its structured Mempool, which lever-
ages a DAG-based approach to ensure reliable broadcast of
transaction blocks in causal order. An illustration of Narwhal
operation, forming a block DAG, can be seen in Figure 1.

The protocol operates by maintaining local rounds for val-
idators, who continuously receive transactions from clients

Figure 1: Three rounds of Narwhal.

and accumulate them into transaction lists. Validators also ac-
cumulate certificates of availability for blocks from previous
rounds. Once a validator accumulates 2f+1 certificates from
the previous round, it advances the local round and creates
a new block, broadcasting it to other validators. Validators
reliably broadcast blocks they create and acknowledge valid
blocks by signing their digests, round numbers, and creators’
identities. A block is considered valid if it meets certain crite-
ria, including containing valid signatures, being at the correct
local round, and having the necessary certificates from the
previous round. After a validator accumulates 2f + 1 signa-
tures on its proposed block, it generates a certificate of avail-
ability for that block, which can be utilized in the next round.
The system initializes with validators creating and certifying
empty blocks for round zero.

The security of the protocol is based on the presence of a
sufficient number of honest validators signing certificates of
availability, ensuring block availability and integrity. Addi-
tionally, quorum intersection ensures the integrity and avail-
ability of each block, and the protocol maintains causality by
certifying and making available all blocks in the causal his-
tory.

Tusk
Tusk [8] is an asynchronous consensus protocol that runs on
top of Narwhal and remains live even under conditions of
asynchrony or DDoS attacks.

Tusk validators manage a Narwhal mempool and include
in their blocks information necessary for generating a per-
fect global random coin. This random coin is critical for the
consensus process and is derived using an adaptively secure
threshold signature scheme. Notably, this key setup is robust
enough to be performed under full asynchrony, ensuring the
system’s resilience and security even in the face of network
delays or adversarial conditions.

A core innovation in Tusk is its approach to block order-
ing, leveraging the causally ordered Directed Acyclic Graph
(DAG) constructed by Narwhal. Unlike traditional consensus
algorithms that may require extensive communication over-
head, Tusk achieves total block ordering with zero additional
communication. Validators independently interpret their lo-
cal views of the DAG and utilize shared randomness to deter-

2



Figure 2: Example of commit rule in Tusk. Every odd round has
a coin value that selects a leader of round r − 2. If the leader has
less than f + 1 support (red) they are ignored, otherwise (blue) the
algorithm searches the causal DAG to commit all preceding leaders
(including red) and totally orders the rest of the DAG afterward.

mine the global order of blocks. This process involves divid-
ing the DAG into waves, each comprising three consecutive
rounds. In the first round, validators propose their blocks; in
the second round, they vote on these proposals by including
them in their blocks; and in the third round, validators pro-
duce randomness to retrospectively elect a random leader’s
block.

The mechanism for committing and ordering blocks in
Tusk ensures that all honest validators eventually reach con-
sensus on the same block leaders, despite potential discrep-
ancies in their local views of the DAG. After a validator com-
mits a leader block in a wave, it recursively examines previ-
ous waves to ensure all intermediary blocks are correctly or-
dered. This recursive verification process involves checking
paths between candidate leaders and previously committed
blocks, thereby ensuring a consistent and agreed-upon order
of blocks. The safety of this mechanism is analogous to that
of DAG-Rider [11], providing a robust guarantee that all hon-
est validators will converge on the same set of block leaders
over time.

Figure 2 shows two waves of Tusk: the first wave covers
rounds 1-3, and the second wave covers rounds 3-5. There
are 4 validators, and f = 1. Leaders for waves 1 and 2 are
chosen at rounds 3 and 5, named L1 and L2 respectively.
In round 2, there are not enough blocks (fewer than f + 1
) that vote for L1, so L1 is not committed when round 3 is
evaluated. However, in round 4, f+1 = 2 blocks vote for L2,
leading to L2’s eventual commitment. Since there is a path
between L2 and L1, L1 is ordered before L2. This means
that the sub-DAG dependent on L1 is ordered first using a
deterministic rule, and the same rule is then applied to the
sub-DAG dependent on L2.

AWARE
AWARE [5] presents a comprehensive framework for self-
optimization in Byzantine fault-tolerant (BFT) consensus
protocols within distributed systems. The system addresses

the critical requirement for robust self-monitoring capabili-
ties, ensuring accurate measurements to facilitate optimiza-
tion processes effectively.

Self-optimization in AWARE is achieved through predic-
tive modeling of optimal configurations, leveraging simulated
protocol runs to minimize consensus latency. This is based on
the following two algorithms.

The first algorithm, formQuorum, determines the time at
which each replica can progress to the next protocol stage by
forming a weighted quorum of votes. Initially, the algorithm
calculates the time when each replica receives WRITE mes-
sages from all other replicas. Subsequently, it computes the
time required for each replica to accumulate sufficient voting
weights to proceed to the next phase, such as moving from
WRITE to ACCEPT. This is achieved by leveraging a prior-
ity queue that sorts incoming messages by their arrival times.
The time at which the last necessary message arrives, com-
pleting the quorum, dictates when the replica can advance to
the subsequent protocol stage.

The second, predictLatency, calculates the consensus la-
tency by iteratively simulating multiple consensus rounds. It
determines when replicas receive the leader’s proposal and
complete the WRITE and ACCEPT stages using formQuo-
rum as a building block. By averaging the leader’s consensus
latency over multiple rounds, this method provides an accu-
rate prediction of the system’s consensus performance under
a specific weight configuration.

To find the optimal weight configuration that minimizes
predicted consensus latency, AWARE employs Simulated An-
nealing [2], which is a search algorithm that explores the con-
figuration space and gradually converges towards configura-
tions with lower predicted latency.

Finally, once the optimal weight configuration is identi-
fied, all replicas are informed, and a reconfiguration process
is initiated to adjust voting weights accordingly. This allows
AWARE to dynamically adapt to network conditions and op-
timize performance.

4 Weighted voting in Narwhal and Tusk
This section presents the methodology used to perform the
experiments. Section 4.1 showcases how to incorporate
weighted voting in Narhwal. Section 4.2 describes the
changes made to the original Narwhal and Tusk implemen-
tation to allow weighted voting.

4.1 Weighted Narwhal
A step-by-step analysis of the Narwhal protocol reveals that
each validator forms 2 quorums per round: first to receive sig-
natures on its own block from other validators and create the
certificate of availability and second to receive the certificates
of other validators. In each case, the threshold is 2f + 1 out
of the 3f + 1 validators.

Given the required information on the network latencies
between validators and the weight assignment, we created a
latency prediction model for Narwhal. This model computes
the quorum formation times for each node, resulting in the
completion time of a round for each validator.

The model leverages the voting power of a node during the
quorum formation process. It considers messages that arrive

3



faster and sums the weights of the senders until the threshold
is reached. This idea comes from AWARE’s formQuorum
algorithm [5].

In line with WHEAT’s weight assignment, the Narwhal
consensus protocol was adapted as follows:

• Introduce ∆ extra validators in the system
• Each validator is assigned weight Vmin = 1 or Vmax =
1 + ∆

f

• In total, 2f out of n validators are assigned weight
Vmax = 1 + ∆

f

• Validators form quorums based on the weights of the
participants

• The threshold for quorum formation becomes 2(f +

∆) + 1 for the weighted protocol and ⌈N+f+1
2 ⌉ for the

unweighted one.

The model returns the average completion time which is
used as a performance metric. Alongside this, it returns the
objective value that it tries to minimize. We implemented 4
objective functions:

• Average consensus latency
• Maximum consensus latency of a validator
• Standard deviation of the consensus latency
• Average consensus latency, using standard deviation as

a tiebraker
Throughout the remainder of the paper, we will refer

to these objective functions as Mean, Max, Stddev and
Mean+Stddev respectively. Mean+Stddev behaves the same
as the Mean objective function, however, it accepts a configu-
ration with a slightly higher avearage if the standard deviation
is lower than the previous best configuration.

The model supports two types of searching for the opti-
mal weights. Exhaustive search iterates through every possi-
ble weight assignment and evaluates it. This method is sim-
ple to implement and is suitable for systems with few nodes.
Simulated Annealing [2] starts with an initial configuration
and changes it slightly, accepting the change with a certain
probability. The probability of accepting a worse solution is
initially high and gradually decreases as the number of itera-
tions increases. This allows the algorithm to escape from lo-
cal minima and converge to a global minimum. For systems
with a high number of nodes, employing Simulated Anneal-
ing is advantageous because even if the algorithm is halted
prematurely, it will still produce a viable solution.

4.2 Weighted Narwhal and Tusk
For evaluating the combination of Narwhal and Tusk, we
opted to modify the original code presented in [8]. We first
introduced artificial latencies in order to use real-world laten-
cies between nodes. We achieved this using the sleep func-
tionality, which interrupts a node for a specified duration.
More specifically, each node, before sending a message to
another node, would wait for a duration equal to the latency
specified in the matrix.

Secondly, we appropriately adjusted the threshold for quo-
rum formation as previously mentioned: 2(f +∆)+1 for the
weighted protocol and ⌈N+f+1

2 ⌉ for the unweighted one.

Figure 3: Heat map of latency measures gathered from CloudPing.

Lastly, using the simulation for Narwhal, we were able to
inspect the weight assignment found for the chosen objec-
tive function. Thus, we were able to assign the weights in
the original code so that we can evaluate Narwhal and Tusk
according to the same 4 objective functions.

5 Experimental Setup and Results
Latency gathering. To ensure our results reflected real-
world conditions, we utilized latency data gathered from
CloudPing [1]. This website reports on the latencies between
servers located across the globe within the AWS infrastruc-
ture. Figure 3 showcases the latency matrix used in our ex-
periments as a heat map. This method is superior to a random
matrix, as it incorporates real-world connections between re-
gions. It is important to acknowledge that CloudPing data
represents a snapshot in time, and latency can fluctuate due to
network congestion and server load.

Narwhal. The experiment was conducted using a simula-
tion of the described variant of Narwhal, written in Python.
The results were gathered by running the weighted protocol
for two rounds and comparing it with the performance of the
unweighted variant. In both variants of the algorithm, the la-
tencies presented in Figure 3 were used. Note that when run-
ning the simulation with N nodes, the latency matrix consists
of the first N servers showcased in Figure 3. For example,
if n = 5, the simulation uses the 5x5 matrix consisting of
Africa (Cape Town), Asia Pacific (Hong Kong), Asia Pacific
(Tokyo), Asia Pacific (Seoul), Asia Pacific (Osaka).

Our Narwhal latency prediction model is released on Git-
lab1. It provides a Validator class, which encapsulates the
logic of the protocol. Additionally, it features Block and Cer-
tificate classes, representing the blocks that validators broad-
cast and sign, as well as the certificates used to demonstrate
the availability of the blocks.

1https://gitlab.com/vianrobotin/cse3000-weighted-voting

4

https://gitlab.com/vianrobotin/cse3000-weighted-voting


Table 1: Narwhal and Tusk evaluation metrics with different weight assignments.

Unweighted Mean Max Stddev

Consensus TPS 36,296 tx/s 27,330 tx/s 29,394 tx/s 21,572 tx/s
Consensus BPS 18,583,673 B/s 13,993,181 B/s 15,049,521 B/s 11,044,740 B/s
Consensus latency 2,607 ms 1,673 ms 2,008 ms 2,245 ms
End-to-end TPS 35,977 tx/s 27,086 tx/s 29,151 tx/s 20,675 tx/s
End-to-end BPS 18,420,032 B/s 13,868,152 B/s 14,925,111 B/s 10,585,449 B/s
End-to-end latency 2,982 ms 1,961 ms 2,643 ms 2,788 ms

Figure 4 showcases the performance of the weighted pro-
tocol in accordance with several objective functions. The re-
sults were produced by running the simulation with n = 5,
f = 1 and ∆ = 0 for unweighted or ∆ = 1 for the weighted
algorithm. For each objective function, the first bar high-
lights the latency decrease achieved by the weighted protocol
in comparison with the unweighted one. The second presents
the mean consensus latency in the ideal case - optimal weights
that minimize the objective function and no replica is faulty.
Lastly, the final bar provides insight into the effect that a
faulty replica has on the system. The replica to be made faulty
was chosen so that it would cause a significant increase in the
consensus latency. Analysing the latencies in Figure 3 reveals
that the 5th node, Asia Pacific (Osaka), is the best connected
node in the first 5 nodes. Therefore, this node is always the
faulty node in our experiments.

As seen in Figure 4, finding weights that minimize the av-
erage consensus latency of the validators achieves the largest
latency decrease. However, depending on the needs of the
system, the Mean+Stddev objective function may be more
helpful, as validators will complete the rounds at closer time
intervals. Figure 4 showcases this behaviour and achieves
comparable performance with plain average minimization.

With only 5 nodes, the number of possible configurations
is relatively small. Figures 5 and 6 explore the behaviour for
8 and 11 nodes, respectively. Across the different parame-
ter settings, the Stddev objective function yields the lowest
latency decrease, while Mean and Max have similar perfor-
mances.

Narwhal and Tusk. Using the steps described in Sec-
tion 4.2, the performance of Narwhal and Tusk with weighted
voting was evaluated. The experiment was conducted with
parameters n = 5 and f = 1, using ∆ = 0 for the unweighted
algorithm and ∆ = 1 for the weighted algorithm.

The metrics used in Table 1 are the same ones used to eval-
uate Narwhal and Tusk in the original paper. The ’Consen-
sus TPS’ and ’Consensus latency’ respectively report the av-
erage throughput and latency without considering the client.
The consensus latency thus refers to the time elapsed between
the block’s creation and its commit. In contrast, ’End-to-end
TPS’ and ’End-to-end latency’ report the performance of the
whole system, starting from when the client submits the trans-
action.

Table 1 highlights the result of the evaluation. The un-
weighted variant dominates both consensus and end-to-end
transactions per second. However, the weighted algorithm
with the Mean objective achieves the lowest consensus and

Figure 4: Narwhal performance metrics for different objective func-
tions (n = 5, f = 1)

Figure 5: Narwhal performance metrics for different objective func-
tions (n = 8, f = 2)

5



Figure 6: Narwhal performance metrics for different objective func-
tions (n = 11, f = 3)

end-to-end latency, which is the focus of this research. More-
over, the other objective functions have better performance
than the unweighted algorithm, solidifying their place as rea-
sonable options. The Mean+Stddev objective function is not
present here because it utilises the same weight assignment
as the Mean objective function, resulting in equivalent per-
formance.

6 Responsible Research
This section reflects upon the ethical aspects of the research,
adhering to the Netherlands Code of Conduct for Research
Integrity [4]. The discussion will cover the reproducibility
of the methods, the objectivity of the results, and the ethical
conduct throughout the research process.

Reproducibility. To ensure the reliability and repro-
ducibility of the results, real-world latency data gathered from
CloudPing was employed. This data represents latencies be-
tween AWS servers across the globe, providing a realistic
basis for the experiments. By using real-world data instead
of synthetic or randomly generated values, the credibility of
the findings is enhanced. The latency matrix used in the ex-
periments is publicly available, allowing other researchers to
replicate the study under similar conditions. Furthermore,
a GitLab repository includes the complete codebase and de-
tailed documentation, enabling others to reproduce the exper-
iments by running the provided scripts. This transparency en-
sures that the research adheres to the FAIR principles (Find-
able, Accessible, Interoperable, and Reusable).

Objectivity and Ethical Conduct. The interpretation of
results was conducted with strict adherence to objectivity,
avoiding any manipulation of data to favor desired outcomes.
A thorough analysis of the results was provided, highlight-
ing both strengths and weaknesses of the weighted and un-
weighted algorithms without bias. The design choices and
modifications to the Narwhal and Tusk protocols were metic-
ulously documented, ensuring that all steps are transparent
and justified. Ethical integrity was maintained throughout
the research process by conducting a comprehensive litera-
ture review, ensuring that the methodologies were grounded

in established research, and by critically evaluating the re-
sults. This study aims to contribute to the academic com-
munity with accurate, reliable, and ethically sound research,
offering a solid foundation for future studies in the field of
blockchain algorithms.

7 Discussion
The results presented in Section 5 illustrate the improved per-
formance of Narwhal and Tusk, achieved using weighted vot-
ing. By developing a model to optimise Narwhal and Tusk
according to different objective functions, this research rein-
forces the benefits of weighted voting for DAG-based con-
sensus algorithms.

The current research is made on latencies gathered from
CloudPing. While it provides reliable insights into the effect
of weighted voting on Narwhal and Tusk, a more diverse set
of latencies could reveal situations in which weighted Nar-
whal performs better or worse than expected. Furthermore,
both approaches to finding the optimal weights, Exhaustive
Search and Simulated Annealing, are computationally expen-
sive, rendering simulations with n > 20 infeasible. For Sim-
ulated Annealing, the parameters of simulated annealing can
be changed to return a result faster, but it might be subopti-
mal.

We propose two recommendations for future work on
the research presented in this paper. First, future work
should evaluate the performance of other consensus algo-
rithms compatible with Narwhal, such as HotStuff [18] and
Bullshark [15], when used with the weighted Narwhal pro-
tocol. Second, the introduction of artificial latencies in Nar-
whal and Tusk is not optimal, as using sleep could result in
a node dismissing a message that it would otherwise receive
and acknowledge. A better alternative would be to directly
add delays to messages in the communication channel.

8 Conclusion
In this study, the incorporation of weighted voting in the
Narwhal and Tusk consensus protocols was explored, aim-
ing to enhance their performance metrics. By leveraging
WHEAT’s weight assignment scheme, the use of weighted
voting was extended beyond first-generation algorithms like
PBFT to DAG-based consensus mechanisms. Modifications
to the Narwhal and Tusk implementations, along with the in-
corporation of real-world latency data, allowed for simulation
and evaluation of the impact of different weight configura-
tions on system performance.

Findings demonstrate that weighted voting can signifi-
cantly reduce consensus latency in both Narwhal and Tusk
protocols. Specifically, the Mean objective function achieved
the lowest consensus and end-to-end latency, showcasing its
potential for optimizing system performance. Other objective
functions, such as Max and Stddev, also contributed to perfor-
mance improvements, highlighting the flexibility of weighted
voting in addressing various optimization goals.

While the unweighted algorithm exhibited superior
throughput, the weighted approach excelled in minimizing
latency, which is crucial for time-sensitive applications. The
results affirm the potential of integrating weighted voting into

6



advanced consensus protocols, providing a pathway for fur-
ther research and development in this area.

References
[1] Cloudping. https://www.cloudping.co/grid/latency/

timeframe/1D. Accessed on 04-06-2024.

[2] Emile Aarts, Jan Korst, and Wil Michiels. Simulated
Annealing, pages 187–210. Springer US, Boston, MA,
2005.

[3] Yair Amir, Brian Coan, Jonathan Kirsch, and John
Lane. Prime: Byzantine replication under attack. IEEE
Transactions on Dependable and Secure Computing,
8(4):564–577, 2011.

[4] Association of Universities in the Netherlands (VSNU).
Netherlands Code of Conduct for Research Integrity,
2018.

[5] Christian Berger, Hans P Reiser, João Sousa, and
Alysson Bessani. Aware: Adaptive wide-area replica-
tion for fast and resilient byzantine consensus. IEEE
Transactions on Dependable and Secure Computing,
19(3):1605–1620, 2020.

[6] Alysson Bessani, João Sousa, and Eduardo E. P.
Alchieri. State machine replication for the masses
with bft-smart. In Proceedings of the 2014 44th An-
nual IEEE/IFIP International Conference on Depend-
able Systems and Networks, DSN ’14, page 355–362,
USA, 2014. IEEE Computer Society.

[7] Miguel Castro and Barbara Liskov. Practical byzantine
fault tolerance. In 3rd Symposium on Operating Systems
Design and Implementation (OSDI 99), New Orleans,
LA, February 1999. USENIX Association.

[8] George Danezis, Eleftherios Kokoris-Kogias, Alberto
Sonnino, and Alexander Spiegelman. Narwhal and tusk:
a dag-based mempool and efficient bft consensus. Pro-
ceedings of the Seventeenth European Conference on
Computer Systems, 2021.

[9] Jérémie Decouchant, David Kozhaya, Vincent Rahli,
and Jiangshan Yu. Damysus: streamlined bft consensus
leveraging trusted components. In Proceedings of the

Seventeenth European Conference on Computer Sys-
tems, EuroSys ’22, page 1–16, New York, NY, USA,
2022. Association for Computing Machinery.

[10] Jérémie Decouchant, David Kozhaya, Vincent Rahli,
and Jiangshan Yu. Oneshot: View-adapting streamlined
bft protocols with trusted execution environments. In
IPDPS 2024. 2024.

[11] Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor,
and Alexander Spiegelman. All you need is dag. In Pro-
ceedings of the 2021 ACM Symposium on Principles of
Distributed Computing, PODC’21, page 165–175, New
York, NY, USA, 2021. Association for Computing Ma-
chinery.

[12] Douglas Simões Silva, Rafal Graczyk, Jérémie De-
couchant, Marcus Völp, and Paulo Esteves-Verissimo.
Threat adaptive byzantine fault tolerant state-machine
replication. In 2021 40th International Symposium
on Reliable Distributed Systems (SRDS), pages 78–87,
2021.

[13] Douglas Simoes Silva, Rafal Graczyk, Jérémie De-
couchant, Marcus Volp, and Paulo Esteves-Verissimo.
Threat adaptive byzantine fault tolerant state-machine
replication. 2021.

[14] João Sousa and Alysson Bessani. Separating the wheat
from the chaff: An empirical design for geo-replicated
state machines. In 2015 IEEE 34th Symposium on Reli-
able Distributed Systems (SRDS), pages 146–155, 2015.

[15] Alexander Spiegelman, Neil Giridharan, Alberto Son-
nino, and Lefteris Kokoris-Kogias. Bullshark: Dag bft
protocols made practical. page 2705 – 2718, 2022.
Cited by: 31.

[16] Chrysoula Stathakopoulou, Tudor David, and Marko
Vukolic. Mir-bft: High-throughput bft for blockchains.
arXiv preprint arXiv:1906.05552, 92, 2019.

[17] Andrei Tonkikh and Luciano Freitas. Swiper: a new
paradigm for efficient weighted distributed protocols.
Cryptology ePrint Archive, Paper 2023/1164, 2023.
https://eprint.iacr.org/2023/1164.

[18] Maofan Yin, Dahlia Malkhi, Michael Reiter, Guy
Gueta, and Ittai Abraham. Hotstuff: Bft consensus with
linearity and responsiveness. pages 347–356, 07 2019.

7

https://www.cloudping.co/grid/latency/timeframe/1D
https://www.cloudping.co/grid/latency/timeframe/1D
https://eprint.iacr.org/2023/1164

