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Robust Lane Detection Through Self Pre-Training
With Masked Sequential Autoencoders and

Fine-Tuning With Customized PolyLoss
Ruohan Li and Yongqi Dong

Abstract— Lane detection is crucial for vehicle localization
which makes it the foundation for automated driving and many
intelligent and advanced driving assistant systems. Available
vision-based lane detection methods do not make full use of
the valuable features and aggregate contextual information,
especially the interrelationships between lane lines and other
regions of the images in continuous frames. To fill this research
gap and upgrade lane detection performance, this paper proposes
a pipeline consisting of self pre-training with masked sequential
autoencoders and fine-tuning with customized PolyLoss for the
end-to-end neural network models using multi-continuous image
frames. The masked sequential autoencoders are adopted to
pre-train the neural network models with reconstructing the
missing pixels from a random masked image as the objective.
Then, in the fine-tuning segmentation phase where lane detection
segmentation is performed, the continuous image frames are
served as the inputs, and the pre-trained model weights are
transferred and further updated using the backpropagation
mechanism with customized PolyLoss calculating the weighted
errors between the output lane detection results and the labeled
ground truth. Extensive experiment results demonstrate that,
with the proposed pipeline, the lane detection model performance
on both normal and challenging scenes can be advanced beyond
the state-of-the-art, delivering the best testing accuracy (98.38%),
precision (0.937), and F1-measure (0.924) on the normal scene
testing set, together with the best overall accuracy (98.36%)
and precision (0.844) in the challenging scene test set, while the
training time can be substantially shortened.

Index Terms— Lane detection, self pre-training, masked
sequential autoencoders, PolyLoss, deep neural network.

I. INTRODUCTION

LANE detection is one of the crucial parts of automated
driving and is the foundation of many intelligent and

advanced driving assistant systems. However, lane detection
has always been a challenging task, for complex and variable
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realistic road conditions (these scenes are easily disturbed
by factors including shadows, degraded road signs, blocking,
poor lighting, and bad weather), and the curved and elongated
features of lane lines [1].

In recent years, many deep learning models have been
proposed for vision-based lane detection [2]. Before the
emergence of deep learning, traditional methods mainly
utilize traditional computer vision techniques, which rely
on manually manipulated operators to extract handcrafted
features, including geometry [3], [4], color [5], etc., to do
the detection, and then refine the results using a series of
fitting methods, such as Hough transform [6] and B-spline
fitting [7]. Although some progress had been made, traditional
methods are not robust to complex and challenging traffic
scenes. In contrast, deep learning based methods can extract
more favorable features automatically and achieve superior
performance in a variety of complex environments [2].
Generally, deep learning approaches are currently
developed from three main perspectives: segmentation-
based [1], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17],
anchor-based [18], [19], [20], [21], and parameter-
based [22], [23], among which the most commonly used
approach is the segmentation-based method. The performance
of segmentation-based methods for lane detection has
been continuously improving with various neural network
structures developed. Getting rid of dense layers, fully
Convolutional Networks (FCNs) [12], [24] employ solely
locally connected layers, e.g., convolution, pooling, and
upsampling, to enable efficient learning of inputs images with
arbitrary sizes, which makes it well-suited for the varying
input images of lane detection. Spatial convolutional neural
network (SCNN) [8] adopts customized spatial convolutional
layers using slice-by-slice convolutions for message passing
to capture essential spatial information and correlation for
lane detection. UNet-based [1], [9], [10], [11], [17], [25]
neural networks with symmetrical encoder-decoder structures,
can extract features at multiple scales, leading to accurately
identifying lane markings of different sizes and shapes.
Using similar symmetrical encoder-decoder structures,
SegNet-based [26], [27], [28] models employ pooling
indices for upsampling, reducing trainable parameters
and memory requirements. Generative Adversarial Neural
Network (GAN) [29] with embedding loss can preserve
label-resembling qualities and improve the outputs’ realism
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and structure preservation, reducing the need for complex
post-processing in lane detection.

On the other hand, self-supervised learning has shown in
recent studies [30], [31], [32], [33] that learning a generic
feature representation by self-supervision can enable the down-
stream tasks to achieve highly desirable performance. The
basic idea, masking and then reconstructing, is to input a
masked set of image patches to the neural network model and
then reconstruct the masked patches at the output, allowing the
model to learn more valuable features and aggregate contextual
information. When it comes to vision-based lane detection,
self-supervised learning can provide stronger feature charac-
terization by exploring interrelationships between lane lines
and other regions of the images in the continuous frames for
the downstream lane detection task. With self-supervised pre-
training, it is also possible to accelerate the model convergence
in the training phase reducing training time. Meanwhile, with
the aggregated contextual information and valuable features by
pre-training, the lane detection results can be further advanced.

In this paper, a self pre-training paradigm is investigated
for boosting the lane detection performance of the end-to-end
encoder-decoder neural network using multi-continuous image
frames. The masked sequential autoencoders are adopted to
pre-train the neural network model by reconstructing the
missing pixels from a randomly masked image with mean
squared error (MSE) as the loss function. The pre-trained
model weights are then transferred to the fine-tuning seg-
mentation phase of the per-pixel image segmentation task
in which the transferred model weights are further updated
using backpropagation with a customized PolyLoss calculating
the weighted errors between the output lane detection results
and the labeled ground truth. With this proposed pipeline,
the model performance for lane detection on both normal
and challenging scenes is advanced beyond the state-of-the-
art results by considerable ratios.

The main contributions of this paper are as follows:
1. This study proposes a robust lane detection pipeline

through self pre-training with masked sequential autoencoders
and fine-tuning with customized PolyLoss, and verified its
effectiveness by extensive comparison experiments;

2. A customized PolyLoss is developed and adopted to
further improve the capability of the neural network model.
Without many extra parameter tuning, the customized Poly-
Loss can bring a significant improvement in the lane detection
segmentation task while substantially accelerating model con-
vergence speed and reducing the training time;

3. The whole pipeline is tested and verified
using three deep neural network structures, i.e.,
UNet_ConvLSTM [1], SCNN_UNet_ConvLSTM [10], and
SCNN_UNet_Attention [17], with the SCNN_UNet_Attention
based model delivering the best detection results for normal
testing scenes, while SCNN_UNet_ConvLSTM model
delivering the best detection results for challenging scenes
surpassing baseline models.

II. PROPOSED METHOD

This study proposes a pipeline for lane detection through
self pre-training with masked sequential autoencoders and

fine-tuning segmentation with customized PolyLoss. In the
first stage, the images are randomly masked as the inputs,
and the neural network model is pre-trained with recon-
structing the complete images as the objective. In the sec-
ond stage, the pre-trained neural network model weights
are transferred to the segmentation neural network model
with the same backbone and only the structure of the
output layer is adjusted. In this phase, continuous image
frames without any masking are served as inputs. The
neural network weights are further updated and fine-tuned
by minimizing PolyLoss with the backpropagation mech-
anism. In this study, three neural network models, i.e.,
UNet_ConvLSTM [1], SCNN_UNet_ConvLSTM [10], and
SCNN_UNet_Attention [17] are tested. In the last stage, post-
processing methods, e.g., Density-based spatial clustering of
applications with noise (DBSCAN) [34] for clustering the
lane types and curve fitting to smooth the detected lines,
are proposed to further improve the overall performance of
the detection. However, due to time constraints and computa-
tional restrictions and following the convention in literature,
e.g., [1], [10], and [11], post-processing is not specifically
explored in this paper. The framework of the proposed pipeline
is illustrated in Fig. 1. In the remaining parts of this section,
each phase will be introduced in detail.

A. Preliminary and Network Backbone

This study tests the proposed pipeline with three hybrid
neural network models based on the UNet [25] backbone,
i.e, UNet_ConvLSTM [1], SCNN_UNet_ConvLSTM [10],
and SCNN_UNet_Attention [17]. The three models are in
similar structures composing three parts, i.e., encoder Convo-
lutional Neural Network (CNN), Convolutional Long Short-
Term Memory (ConvLSTM) block or Attention block, and
decoder CNN, and they both work in an end-to-end approach.

Encoder-decoder is a widely used framework in the field of
deep learning with various network structures. It is capable
of mapping directly from the original input to the desired
output in an end-to-end manner and keeping the input and
output of the same size. Such a framework has demonstrated
good performances in natural language processing tasks, e.g.,
machine translation, summary extraction, and computer vision
tasks, e.g., target detection, scene perception, and image seg-
mentation e.g., [1], [10], [11], and [25]. Lane detection as a
typical image semantic segmentation or instance segmentation
task can surely be tackled with super results under the encoder-
encoder structure, e.g., [1], [10], [11], and [17].

A commonly used base neural network backbone for lane
detection (and also other image segmentation task) is the
UNet [25], which is an improved FCN. UNet with a symmetric
encoder-decoder structure is originally developed to solve the
problem of medical image segmentation. In UNet, a block
of its encoder contains two convolutional layers, and the
feature map is downsampled using pooling layers to reduce
the feature map size and increase the number of channels.
The decoder, which is symmetric with the encoder, performs
deconvolution and upsampling operation for feature recovery
and data reconstruction. The decoder CNNs have the same
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Fig. 1. The framework of the proposed pipeline.

size and number of feature maps as in the encoder but are
arranged in the opposite direction, and the feature maps are
appended in a direct manner. With symmetrical CNN-based
encoder-decoder

structure, UNet is widely used in various aspects of seg-
mentation tasks, including lane detection, with outstanding
performances.

However, the original pure UNet does not consider the slen-
der spatial structure and the correlations and continuity of lane
lines in continuous image frames. To tap the temporal continu-
ity of the lane line detection, the ConvLSTM module is embed-
ded between the encoder-decoder in the UNet_ConvLSTM
model [1], which can integrate the time series features
extracted from the input multi-continuous frames. To further
improve lane detection results, SCNN_UNet_ConvLSTM [10]
incorporates SCNN in its single image feature extrac-
tion module to make use of the spatial correlations of
lane structure and achieves state-of-the-art performance.
SCNN_UNet_Attention [17] which applies a spatial-temporal
attention module with liner LSTM in the middle of the
encoder and decoder rather than ConvLSTM, can further
exploit spatial-temporal correlations and dependencies of dif-
ferent image regions among different frames in the continuous
image sequence, and further advance the detection perfor-
mance. This study implemented and tested UNet_ConvLSTM,
SCNN_UNet_ConvLSTM, and SCNN_UNet_Attention mod-
els to verify the proposed pipeline.

B. Self Pre-Training With Masked Sequential Autoencoders

For vision-based lane detection, in most of the driving
scene image frames, lane lines only account for a small
fraction of the whole image, which means there is more
spatial redundancy compared to other segmentation tasks.
It is vital but challenging to make full use of the valuable
features and aggregate contextual information, especially the
interrelationships between lane lines and other regions of the
images in continuous frames.

He et al. [31] show that taking advantage of a pre-training
strategy by randomly masking a high proportion of input

image and reconstructing the original image from the masked
patches using the latent representations can improve accuracy
and accelerate training speed for downstream tasks. That is,
the images with a high masking rate are input into the designed
model for reconstruction as a self-supervised learning task, and
then the pre-trained model can be migrated to the downstream
tasks for fine-tuning. With this pre-training method, the model
can gain a better overall “understanding” of the images, since
reconstructing the masked pixels in the pre-training phase
facilitates the trained model a good generalization capability,
which can serve for downstream tasks.

Inspired by and upgraded upon the idea of self-training
by “random masking-reconstructing” with autoencoders [31],
this study proposed to incorporate a pre-training phase with
masked sequential autoencoders to pre-train the lane detection
models and facilitate their capabilities in aggregating con-
textual information for feature extraction through continuous
frames. In the pre-training phase, S (for the experiments
carried out in this study, S = 5) consecutive images are
used as the inputs with every image getting certain parts
randomly masked. To implement the masking, each of the
input images with the size of (128 × 256) is firstly divided
into non-overlapping patches with the size of (16 × 16), and
then random masking is applied to mask a certain ratio of the
(8 × 16=128) patches in each image. The original last image
within the input consecutive five image frames is set as the
target of the reconstruction task. Using the mean squared error
(MSE) as the loss function, the image reconstruction task can
be expressed as a minimization problem by (1):

min
1
S

S∑
k=1

d2(Mk, Pk) (1)

where S is the number of image samples; Mk is the pixel value
matrix with a size of (128 × 256) containing all pixel values
in the reconstructed image k reconstructed from the one with
masked patches; Pk is the pixel value matrix with a size of
(128 × 256) containing all pixel values in the original image
k; d2(·) means Euclidean norm which calculates the Euclidean
distance between the matrix Mk and Pk , and can be illustrated
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Fig. 2. Pre-training network and lane line detection neural network structure.

by (2):

d2(Mk, Pk) =
1

h ∗ w

h∑
i=1

w∑
j=1

(mi, j − pi, j )
2 (2)

where mi, j and pi, j are the pixel values on i th row j th column
in the constructed image matrix Mk and original image matrix
Pk respectively; h is the height of the image with h = 128 in
this study; w is the width of the image with w = 256 in this
study.

Using UNet_ConvLSTM, SCNN_UNet_ConvLSTM, and
SCNN_UNet_Attention models, the input continuous images
with maskings are downsampled four times consecutively by
the encoder, and the extracted time-series features of size
(8 × 16×512) are then transferred to the ConvLSTM module
(or Attention module) for spatial-temporal features integration.
Finally, the decoder upsamples the integrated features four
times into the same size as the input image and calculates
the MSE loss between the reconstructed 5th image and the
original 5th image of the input frames. Note in the pre-
training phase, the output layers of both UNet_ConvLSTM,
SCNN_UNet_ConvLSTM, and SCNN_UNet_Attention, are
adjusted from the original models reported in [1], [10],
and [17], with the number of channels changed to 3 (check
Fig. 2).

Regarding the masking ratio, the results of ablation tests
with ratios set at 25%, 50%, or 75% found that a 50% ratio
delivers a balanced performance. Thus, in the pre-training
phase, the random masking ratio is set at 50% for all models.

Different from the original masked autoencoders [31] imple-
mented by the vision transformer, the proposed upgrade
version of masked sequential autoencoders for pre-training is
implemented under the “CNN-ConvLSTM-CNN” or “CNN-
Attention_LSTM-CNN” architecture, which can further aggre-
gate valuable image contextual information and spatial-
temporal features. By masking the whole continuous 5 image
frames and only recovering the last frame, which is also

the current frame for lane detection, the proposed upgraded
masked sequential autoencoders facilitate the model to learn
not only correlations of different regions within one image but
also the spatial-temporal interrelationships and dependencies
between different regions of the images among continuous
frames.

C. Fine-Tuning With PolyLoss

Vison-based lane detection as a typical segmentation task
aims to classify the image at the pixel level, labeling each
pixel with its corresponding class, i.e., lane or background.
Generally, for a segmentation task, the input is one image, but
in the proposed pipeline, a continuous image sequence is used
as input, and only the last image of the continuous sequence
is segmented, check Fig 1 for details.

By pre-training with reconstructing the masked patches, the
pre-trained model should already get the aggregate contextual
information and valuable spatial-temporal features, however,
fine-tuning is required to further train the model to adapt it
to the per-pixel segmentation task, making full use of those
extracted features.

With the elongated structure, lane lines often occupy only a
very small fraction of the overall pixels in an image, making
lane detection a typical imbalanced two-class segmentation
task. Usually, weighted cross entropy loss is adopted for
addressing this imbalanced two-class segmentation, which
reshapes the standard cross entropy (CE) loss by introducing
weighting factors to reduce the weights of the background
samples and focus more on the weights of lane pixels.
However, literature [35], [36] revealed that weighted CE loss
does not perform well under certain situations with severely
imbalanced data. To further improve the performance of the
lane detection models and improve the capabilities of handling
the severe imbalance between lane line and background pixels,
this study customizes a PolyLoss (PL for short in the model
names), and tests and verifies its effectiveness.

PloyLoss is based on the Taylor expansions of CE loss and
focal loss (FL), which treats the loss functions as a linear
combination of polynomial functions [36]. The CE loss and
FL loss can be expressed in (3) and (4):

LCE = − log(Qt ) (3)
LFL = −α(1 − Qt )

ε log(Qt ) (4)

where LCE and LFL stand for the CE loss and FL loss
respectively; Qt is the prediction probability of the tar-
get ground-truth class; α, ε are the tunable hyperparameters
for LFL.

The loss functions of both CE and FL can be decomposed
into a series of weighted polynomial bases in the form of∑

∞

j=1 α j (1 − Qt )
j where j ∈ Z+, α j ∈ R+ is the polynomial

coefficient. Each polynomial basis (1−Qt )
j is weighted by the

corresponding polynomial coefficients α j ∈ R+, so that it is
easy to adjust the different polynomial bases of PolyLoss. The
Taylor expansion of FL, indicated by LFL-T, is given in (5)

LFL-T = −(1 − Qt )
ε log(Qt ) =

∞∑
j=1

(1 − Qt )
j+ε

j
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= (1 − Qt )
1+ε

+
(1 − Qt )

2+ε

2
+ · · · +

(1 − Qt )
N+ε

N

+
(1 − Qt )

N+1+ε

N + 1
+ · · · (5)

where N ∈ Z+; ε is a modulating factor, with which the FL
can simply shift the power j by ε, i.e., shift all polynomial
coefficients horizontally by ε [36].

To improve the model performance and robustness, drop-
ping the higher order polynomials and tuning the leading
polynomials are applied in previous studies [36], [37]. Sim-
ilarly here, after truncating all higher order (N + 1 → ∞)

polynomial terms and tuning the leading N polynomials using
the perturbation term γ j , j = 1, 2, 3, · · · , N , the truncated
LPL-N is obtained and shown in (6):

LPL-N = (γ1 + 1)(1 − Qt )
1+ε

+ (γ2 +
1
2
)(1 − Qt )

2+ε

+ . . . + (γN +
1
N

)(1 − Qt )
N+ε

= −(1 − Qt )
ε log(Qt ) +

N∑
j=1

γ j (1 − Qt )
j+ε (6)

To further simplify the LPL-N and render it applicable to be
easily tuned for different tasks and data sets, Leng et al. [36]
carried out extensive experiments and observed that adjusting a
single coefficient for the leading polynomial can achieve better
performance than the original FL loss. With this, the general
form of the finally simplified formula of PolyLoss LPL (of FL)
is illustrated by (7):

LPL = −α(1 − Qt )
ε log(Qt ) + γ (1 − Qt )

ε+1 (7)

where α, γ, ε are the tunable hyperparameters. Adapting it to
the imbalanced two-class segmentation task of lane detection,
this study further customized (7) into (9) which will be
discussed in the following subsection E.

More details about PolyLoss can be referred to in [36].

D. Postprocessing Phase

Since in real driving scenarios, it is necessary to identify the
types and colors of the lane lines (e.g., dashed lines, contin-
uous double yellow lines), the detected lane lines need to be
grouped into different colors to indicate their different types,
i.e., lane detection considered as an instance segmentation
task. With the fine-tuning lane line segmentation outputs, the
DBSCAN [34] algorithm is proposed to cluster the detected
lane lines to diffident colors, indicating different types. Then,
curve fitting is proposed at the end to smooth the detected
lines repairing the discontinuous broken ones (see the post-
processing section in Fig. 1). One needs to note that this paper
only presents here the idea of post-processing which can serve
to upgrade the lane detection results, however, all the results
in this paper do not use post-processing which follows the
general convention in literature, e.g., [1], [10], [11], and [17].

E. Implementation Details

1) Configuration Details: In this paper, to reduce the com-
putational payload and save training time, the size of the

images for both the training set and test set is set to a resolution
of 128×256. In pre-training, the proportion of masked patches
is set to 50%. Experiments were carried out on two NVIDIA
Tesla V100 (32 GB memory) GPUs, using PyTorch version
1.9.0 with CUDA Deep Neural Network library (cuDNN)
version 11.1. The batch size is set to be as large as possible,
which is 60. The learning rate was initially set to 0.001 with
decay applied after each epoch.

2) Network Details: In network models of UNet_
ConvLSTM, SCNN_UNet_ConvLSTM, and SCNN_UNet_
Attention, most of the convolutional kernel size is 3 × 3,
except for the SCNN block in SCNN_UNet_ConvLSTM
and SCNN_UNet_Attention. The encoder part (see the left
Encoder section in Fig. 2) uses two convolutional layers as
a downsampling block, in which the size of the feature map
is reduced by half and the number of channels is doubled by
the pooling layer. Four successive downsampling blocks are
performed, and the last downsampling block does not change
the number of output channels compared with its input. The
final feature map of the encoder with a size of 8 × 16×512
is fed into the spatial-temporal ConvLSTM (or Attention)
module.

The sequential features of the feature map are learned in
the ConvLSTM/Attention module, which is equipped with
2 hidden layers of size 512 and outputs an 8 × 16 feature
map of the same size as its input. The decoder network
(check the Decoder part in Fig. 2), is with the same size and
number of feature maps as in the encoder but of a reverse-
arranged symmetric structure that upsamples the extracted
features to the original size of the input image. One needs
to note that, in the pre-training task, to recover the image
into original RGB pixels, the number of channels in the
output layer of the decoder is set as 3; while in the fine-
tuning segmentation phase, it is set as 2 for the two-class
segmentation task. Therefore, for model weights transfer from
the pre-training to fine-tuning phase, the pre-trained model
weights are transferred to the fine-tuning model except for the
weights of the output layer. Both the pre-training and fine-
tuning segmentation phases output images of the same size as
the input one. Details can be checked in Fig. 2.

3) Loss Function Details: As mentioned before, to make the
proposed pipeline work, different loss functions are adopted
accordingly in different phases. In the pre-training phase, the
objective is to reconstruct the masked images, and for that,
the mean square error (MSE) is selected as the loss function.

While in the fine-tuning segmentation phase, the objective
is to segment the pixels into lanes or backgrounds, which is
a typical discriminative binary segmentation task. This study
tested the weighted cross entropy loss and the customized
PolyLoss and compared their performances in tackling the
imbalanced lane segmentation task. The two tailored losses
applied in the fine-tuning segmentation phase are illustrated
by (8) and (9).

CE=−
1
T

T∑
i=1

[ω1 yi log(hθ (xi ))+ω0(1 − yi ) log(1 − hθ (xi ))]

(8)
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PL = −
1
T

T∑
i=1

 α

[
yi (1 − hθ (xi ))

ε log(hθ (xi ))+

(1 − yi )hθ (xi )
ε log(1 − hθ (xi ))

]
−

γ

[
yi (1 − hθ (xi ))

ε+1)+

(1 − yi )hθ (xi )
ε+1

]


(9)

where CE and PL stands for the weighted cross entropy
loss and the customized PolyLoss, respectively; T is the
number of training examples; yi is the true segmentation
label for the training example i ; ω1 and ω0 stands for the
weights for lane class and background class respectively; xi
is the input training example i ; hθ (·) represents the neural
network model with trainable weights θ ; and α, γ , ε are the
tunable hyperparameters for the customized PolyLoss, which
are determined by grid search method.

4) Optimizer Details: To efficiently train and validate the
proposed model pipeline, different optimizers were tested in
different stages. Three optimizers, Stochastic Gradient Descent
(SGD), Adaptive Moment Estimation (Adam), and Rectified
Adaptive Moment Estimation (RAdam), were tested in the
pre-training and fine-tuning segmentation phases. Compared to
Adam, SGD requires more parameters, decreases more slowly,
and may oscillate continuously on both sides of the gully.
Through the tests, Adam performed better than SGD in both
the pre-training task and the fine-tuning lane segmentation
task. Furthermore, RAdam solves the problem of falling into
local optimization that is easily encountered by Adam, and
is more robust to the changes of learning rate. Experiments
verified that there was even a slight improvement in the model
performance of RAdam over Adam. Therefore, the RAdam
optimizer was finally chosen for both the pre-training and the
fine-tuning segmentation phases.

III. EXPERIMENTS AND RESULTS

A. Datasets Descriptions

To verify the proposed pipeline, a lane image dataset
with continuous image frames is required. Although there
are various open-sourced lane detection image datasets, e.g.,
CULane [8], CurveLane [38], seldom do they contain contin-
uous frames. Therefore, this study adopted the tvtLANE [1]
dataset, which is upgraded on the TuSimple lane detection
challenge dataset, to train and verify the proposed method.
There are one integrated training dataset and two testing sets
in tvtLANE.

The tvtLANE dataset is mainly built based on the TuSimple
lane detection challenge dataset. In the original TuSimple
dataset, there are 3, 626 training segments and 2, 782 test
segments with 20 continuous frames in each segment. The
images are collected in different scenes at different times,
and only the last frame of each segment, e.g., the 20th

frame, is labeled with ground truth. Zou et al. [1] additionally
labeled the 13th image in each segment and enlarged the
dataset by adding 1, 148 segments of rural driving scenes
collected in China. Furthermore, data augmentation methods
with cropping,

flipping, and rotating operations are employed, and finally
a total number 19, 096 continuous segments are produced.

TABLE I
SAMPLE METHODS FOR THE TRAINSET AND TESTSET

Fig. 3. Image samples in the tvtLANE training set and the test set. The first
five images in each column are the inputs of consecutive frames, and the sixth
one is the labeled ground truth of the last image in the consecutive frames.
The first column is one sample in the training set, the second column is for
the test set #1 (normal), and the third column is for test set #2 (challenging).

The tvtLANE consists of two test sets, i.e., test set #1
(normal) which is built on the original TuSimple test set for
normal driving scenario testing, and test set #2 (challenging)
which consists of 12 challenging driving scenarios for robust-
ness evaluation. More details of tvtLANE can be found in [1]
and [10].

In this study, 5 images are sampled from the continuous
frames with a fixed stride. The sampling strides and frames
used in the training and testing sets are elaborated in Table I,
and image samples are demonstrated in Fig. 3.

B. Evaluation Metrics

Overall, the model performance is evaluated in terms of
both visual qualitative examination with results demonstration
and quantitative analysis with metrics. Considering the vision-
based lane detection task as a pixel-level classification task,
commonly used metrics, i.e., accuracy, precision, recall, and
F1-measure [1], [10], [11], [17], are adopted. The calculations
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Fig. 4. Visualization of the reconstructing results in the pre-training phase.
The first row shows images with 50% of the patches masked. The second row
shows the reconstructed images after pre-training. The third row shows the
original images.

of these metrics are illustrated by (10)-(13).

Accuracy =
T ruly Classi f ied Pixels
T otal Number of Pixels

(10)

Precision =
T rue Posi tive

T rue Posi tive + False Posi tive
(11)

Recall =
T rue Posi tive

T rue Posi tive + False Negative
(12)

F1 − measure = 2 ∗
Precision ∗ Recall
Precision + Recall

(13)

In the above equations, true positive indicates the number of
image pixels that are lane lines and are correctly identified;
False positive indicates the number of image pixels that
are background but incorrectly classified as lane lines; False
negative indicates the number of image pixels that are lane
lines but incorrectly classified as background.

Furthermore, for estimating the models’ computational com-
plexities, the model parameter size, i.e., Params (M), and the
multiply-accumulate (MAC) operations, i.e., MACs (G), are
provided.

C. Results

In this sub-section, reconstruction performance in the self
pr-training phase will be visually demonstrated, while the lane
detection testing results of various models on both tvtLANE
test set#1 (normal) and tvtLANE test set#2 (challenging) will
be evaluated qualitatively and quantitatively.

1) Self Pre-Training Results: Fig. 4 shows the reconstruct-
ing results of the masked images in the pr-training phase. It can
be seen that the masked patches in the images can be restored
very well. Although there are some minor blurs in certain
images, the reconstructed images generally recover the main
and critical patterns.

2) Testing Results on tvtLANE Testset#1 (Normal): Fig. 5,
Fig. 7 (A), and Table. II (a) demonstrate the qualitative and
quantitative testing results on tvtLANE testset#1 (normal).

Qualitatively, for the lane detection segmentation task, the
model should be able to accurately predict the total number
of lane lines, correctly detecting the location of the lane lines
while avoiding unexpected broken lines and blurs. Visualiza-
tions of the lane detection results show that models using
the proposed self pre-training method generally perform better

Fig. 5. Lane detection results obtained by SCNN_UNet_Attention_PL∗∗ on
tvtLANE test set #1 (normal) without post-processing.

Fig. 6. Lane detection results obtained by SCNN_UNet_ConvLSTM_PL∗∗

on tvtLANE test set #2 (challenging) without post-processing.

than those without. Furthermore, models using the customized
PolyLoss generally outperform those using weighted cross
entropy loss with thinner detected lane lines and fewer blurs.
Aligning with previous studies [1], [10], [11], [17], models
using multi-continuous image frames defeat those using one
single image as indicated in rows (c) and (d) there are fatter
lane lines,

merged lanes, and blurred areas at the top boundary of the
image, and even wrongly detected lane numbers (check the
first column in Fig. 7 (A)). One can also notice that even
when vehicles or shadings of the vehicles are blocking the
lane lines,

the models with the proposed pretraining method and using
the proposed PolyLoss can identify the lane lines completely
and continuously with correct locations (check the first, fourth,
and sixth columns in Fig. 7 (A)), which is crucial for vehicle
localization.

Quantitatively, Table. II (a) demonstrates that the proposed
self pre-training method improves the lane detection results for
both UNet_ConvLSTM and SCNN_UNet_ConvLSTM models
and the models using the customized PolyLoss all outper-
form those using the weighted cross entropy loss regarding
the accuracy, precision, and F1-measure. To be specific,
with the self pre-training pipeline and using the customized
PolyLoss, UNet_ConvLSTM_PL∗∗advances a lot from the
baseline UNet_ConvLSTM with testing accuracy improved
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TABLE II
MODEL PERFORMANCE COMPARISON
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Fig. 7. Qualitative visual comparison of the lane detection results testing on tvtLANE test set #1 (normal) (A) and tvtLANE test set #2 (challenging)
(B). All results in the figure are without post-processing. (a) Original input images; (b) Ground truth; (c)∼(l) are the lane detection results corresponding
to the models: (c) SegNet, (d) UNet, (e) SegNet_ConvLSTM [1], (f) UNet_ConvLSTM, (g) UNet_ConvLSTM_CE∗∗, (h) UNet_ConvLSTM_PL∗∗,
(i) SCNN_SegNet_ConvLSTM [10], (j) SCNN_UNet_ConvLSTM, (k) SCNN_UNet_ConvLSTM_ CE∗∗, (l) SCNN_UNet_ConvLSTM_PL∗∗, (m)
SCNN_UNet_Attention_PL∗∗. (Note: CE and PL are short for weighted cross entropy loss and PolyLoss respectively, while ∗∗ means the model is pre-trained
with the proposed self pre-training method.)

from 98.00% to 98.34%, precision improved from 0.857 to
0.921, and F1-measure improved from 0.904 to 0.915; while
SCNN_UNet_ConvLSTM_PL∗∗ also improves a lot from
the baseline SCNN_UNet_ConvLSTM with testing accuracy
improved from 98.19% to 98.38%, precision improved from
0.889 to 0.929, and F1-measure improved from 0.918 to 0.922.
All the models’ parameter sizes and MACs do not increase.

One can find that for both models the most signifi-
cant improvement was identified in precision, (i.e., 0.857 to
0.921 and 0.889 to 0.929). The higher the precision the lower
the false positive is (check (11)) which means the models
become more strict on pixel samples to be classified as the
lane line contributing to fewer wrong detected lane pixels,
which is also illustrated by the thinner detected lane lines
in Fig. 7 (A). However, this might increase the number
of lane pixels that are incorrectly identified as background,
i.e., higher false negative, thus the recall ratio decreases.
Therefore, the F1-measure which balances precision and
recall, is a more reasonable evaluation measure to serve as
the main benchmark [1], [8], [10], [11], [17]. Furthermore,
SCNN_UNet_Attention, which was tested only under the
best setting of using pre-training and customized PolyLoss,
obtained the best precision (0.937) and F1-measure (0.924)
beating all other state-of-the-art baseline models on this tvt-
LANE testset#1 (normal scene testing).

3) Testing Results on tvtLANE Test Set#2 (Challenging):
Fig. 6, Fig. 7 (B), and Table II (b) demonstrate the quali-
tative and quantitative testing results on tvtLANE testset#2
(challenging).

Qualitatively, as illustrated in Fig. 6 and Fig. 7 (B), when
testing on the challenging driving scenes, all the models do
not perform well. However, the results obtained by the models

using the proposed self pre-training method are still better
than those without pre-training. Especially models adopting
the customized PolyLoss still output thinner lanes with less
blur and more correct lane numbers.

Quantitatively, as shown in Table II(b), models with pre-
training generally outperform those without regarding the
overall accuracy and precision. Typically, using self pre-
training method plus the customized PolyLoss, the developed
UNet_ConvLSTM_PL∗∗ model obtains the best overall accu-
racy (98.38%), and together with other proposed models

(with ∗∗ in their names), they take all the best accuracies
in all 12 challenging scenes; SCNN_UNet_ConvLSTM_PL∗∗

obtains the best overall precision (0.8444) followed by
SCNN_UNet_Attention_PL∗∗(0.8413), and also together with
other proposed models, they fill 11 best precisions out of all
the 12 challenging scenes except for only scene 9 blur.

It is worth noting that the models using the proposed
self pre-training deliver slightly worse F1-measures compared
to those without pre-training. This is because the models
are more strict with the pixels classified as the lane lines
which might increase the number of lane pixels that are
incorrectly identified as background, i.e., resulting in higher
false negatives, thus the recall ratio decreases and the F1-
measures get slightly worse (even if there are increases in
precisions). From Fig. 7 (B), it is more intuitive to see that the
developed models with the proposed pre-training and PolyLoss
still show acceptable results better than the baselines.

D. Ablation Study and Discussion

1) Masking Ratio: Experimental results in the previous
study [32] showed that the masking ratio needs to correspond
to the mask patch, i.e., “for a small mask patch size of 8, the
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Fig. 8. Model performance comparison with different masking ratio settings:
reconstruction loss in pre-training phase (a), and the F1-measure testing on
tvtLANE test set #1 (b).

masking ratio needs to be as high as 80% to perform well”,
while “for a large masking patch size of 32, the approach can
achieve competitive performance in a wide range of masking
ratios (10%-70%)”. In this study, the patch size is set as 16,
i.e., (16×16), and the experimental comparisons were carried
out with ratios set as 25%, 50%, and 75%.

Testing on SCNN_UNet_ConvLSTM model, Fig. 8 (a)
shows the average normalized reconstruction loss indicated
by mean square error (MSE) of the image reconstruction
task during the pre-training phase. It is observed that using
a smaller masking ratio leads to lower reconstruction loss,
which is easy to understand, as a smaller masking ratio means
fewer pixels need to be reconstructed.

Fig. 8 (b) shows the lane detection performance on the nor-
mal driving scene dataset regarding F1-measure with different
masking ratios and TABLE III shows the detailed quantitative
results.

It is found that although the result of masking at a 75% ratio
achieves the best F1-measure of 0.926 on the normal dataset,
it does not perform particularly well on the challenge dataset,
where it only achieves an F1-measure of 0.71815 worse than
that of masking at a 50% ratio (F1-measure at 0.7327).

Furthermore, referring to the results of the pre-training
phase, it is clear that masking at a 50% ratio delivers balanced
results during both the pre-training phase and fine-tuning
testing phases. It is more reasonable to adopt the balanced
setting to verify the proposed lane detection pipeline and
method, and thus, 50% was chosen as the masking ratio for
all testing models.

2) Loss Function: Earlier mentioned in this paper, two loss
functions (i.e., weighted cross entropy loss and PolyLoss) were

TABLE III
MODEL PERFORMANCE WITH DIFFERENT MASKING RATIOS

tested in the experiments under the proposed pipeline in the
fine-tuning segmentation phase. The quantitative comparison
results are shown in Table II, and the qualitative results are
intuitively demonstrated with visualizations in Fig. 7.

As shown in Table II(a), testing on tvtLANE test set#1
(normal scene), for both SCNN_UNet_ConvLSTM and

UNet_ConvLSTM based models, the overall performance
of using PolyLoss outperforms that of weighted cross entropy
loss. To be specific, compared with UNet_ConvLSTM_CE∗∗,
the UNet_ConvLSTM_PL∗∗ model obtains an increase of
0.15% in accuracy; a significant increase of 0.039, i.e.,
around 4.4% improvement, in precision; while a bit decrease
in recall; and, overall, a better F1-Measure of 0.915 over
0.910. SCNN_UNet_ConvLSTM_PL∗∗ gets the same
superiority patterns over SCNN_UNet_ConvLSTM_CE∗∗,
and SCNN_UNet_ConvLSTM_PL∗∗ obtains the second-
best F1-measure (0.922), the second-best precision
(0.929), and the best accuracy (98.38%), among all
tested models. SCNN_UNet_Attention_PL∗∗ slightly beats
SCNN_UNet_ConvLSTM_PL∗∗ in F1-Mesure (0.924) and
precision (0.937). The superiority of the customized PolyLoss
over weighted cross entropy loss can be explained by that
the PolyLoss function is designed as a linear combination of
polynomial functions so that the importance of polynomial
bases can be adjusted according to the imbalanced dataset
and regarding the segmentation task. With the fine-tuned
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hyperparameters α, γ , ε in (9), the customized PolyLoss is
perfectly adjusted to the dedicated lane detection task.

The model using PolyLoss also performs better than the
ones using weighted cross entropy loss in almost all chal-
lenging scenes regarding accuracy and precision. In par-
ticular, testing on the challenging driving scenes dataset,
UNet_ConvLSTM_PL∗∗ gets the highest overall accuracy at
98.38%, while SCNN_UNet_ConvLSTM_PL∗∗ obtains the
best overall precision at 0.8444.

3) Training Time and Model Complexity: In addition to the
improvement regarding the evaluation metrics, the proposed

self pre-training pipeline plus the customized PolyLoss
can also reduce the training time with the model conver-
gence speed greatly improved. To be specific, tests revealed
for UNet_ConvLSTM based models, UNet_ConvLSTM_PL∗∗

converged at the 10th epoch, while UNet_ConvLSTM_CE∗∗

converged at the 91st epoch, and UNet_ConvLSTM with-
out the proposed pertaining needed around 100 epochs to
converge [1]. Similarly, for SCNN_UNet_ConvLSTM based
models, SCNN_UNet_ConvLSTM_PL∗∗ converged at the
12th epoch, while SCNN_UNet_ConvLSTM_CE∗∗ converged
at the 29th epoch, and SCNN_UNet_ConvLSTM without the
proposed pre-training needed around 100 epochs to converge.

These results demonstrate that pre-training with masked
sequential autoencoders plus fine-tuning with PolyLoss can
not only boost the models’ overall performance regarding
accuracy, precision, and F1-measure, but also speed up model
convergence greatly reducing the training time.

Furthermore, from the parameters and MACs illustrated
in Table II (a), it is demonstrated that, with the proposed
pre-training and customized PolyLoss, the model size and
complexity merely change.

In short, the proposed pipeline contributes to the improve-
ment of model efficiency and detection accuracy simultane-
ously.

IV. CONCLUSION

In this paper, a novel deep learning pipeline integrating self
pre-training with masked sequential autoencoders, fine-tuning
segmentation with customized PolyLoss, and post-processing
with clustering and curve-fitting, is proposed for the vision-
based robust lane detection task. With the proposed self
pre-training method by reconstructing the randomly masked
image frames and the customized PolyLoss for the fine-
tuning segmentation phase, the tested three neural network
models (i.e., UNet_ConvLSTM, SCNN_UNet_ConvLSTM,
and SCNN_UNet_Attention) all delivered significantly better
performances in comparison to baselines. Through extensive
experiments, the models under the proposed pipeline surpass
other state-of-the-art models with the best testing accuracy,
precision, and F1-measure on the normal driving dataset (i.e.,
tvtLANE test set #1) and the best overall accuracy and
precision on the 12 challenging driving scenarios (tvtLANE
test set #2). Furthermore, without changes in the model size
and complexity, under the proposed pipeline, the test models
converged faster, especially when adopting the customized
PolyLoss in the fine-tuning segmentation phase, while per-
forming better detection results. These findings demonstrate

the effectiveness of the proposed lane detection pipeline which
upgrades the model training efficiency and detection accuracy
simultaneously.

It is witnessed that when testing with some brand new
challenging samples, i.e., no similar samples are covered
in the training phase, the model might be defeated with a
low F1-measure. In practice, lane detection models trained
on datasets from one certain country might not work well
when testing on datasets with different lane structures from
another country. To tackle this problem and further enhance
the model’s robustness, for future studies, it is suggested to
investigate domain generalization and adaption methods to
transfer the knowledge and patterns learned from available
datasets to unseen domains and fields with brand new data.
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