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Abstract

Helium-ion induced deposition (He-IBID) is a small-scale manufacturing technique that uses
a helium microscope to focus a helium-ion beam onto an adsorbed precursor gas, causing
nanometer-scaled depositions onto a substrate. However, due to local depletion of the precursor
gas, the amount of deposition can not be expected to be proportional to the beam current.
The mechanisms of this growth need to be well investigated to understand the limitations and
capabilities of this technique.

Most studies look at simple pillar growth with a stationary beam, and most models exclude
the surface diffusion of precursor molecules. We attempt to model the growth of horizontally
grown pillars using a horizontally moving ion beam. According to experiments with this type
of growth [1], precursor surface diffusion is a key mechanism, and thus past studies may not be
sufficient.

We use develop a continuum model based on solving differential equations. One benefit over
the more common Monte Carlo methods is that the effect of the various mechanisms are more
explicitly written in differential equation form. Another benefit is that the simulation is dif-
ferentiable, lending itself to better application of new differentiable programming techniques.
One difficulty, however, is in the accurate modelling of the energy-dependent interactions with
a source that has varying electron energies.

We derive a system of ordinary differential equations to model a simplified two-dimensional
approach and an approximation for an effective secondary electron flux to use in decomposition
rate calculations. We investigate the available literature to find realistic values for the physical
and operational parameters required to calculate solutions. Through numerical integration we
find solutions and show how the model estimates pillar width changes when these parameters
are altered.

We use numerical integration to solve the ODE system, and present the results. We find a
nucleation boundary—dependent on the beam movement speed and current—below which pillars
cannot be grown, consistent with experiment [1].

We find that the assumptions made in the surface diffusion calculation are too extreme, and
that likely solving a PDE system of the full surface in three-dimensional space will be required
for accurate results.
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1 Introduction

Although the development of mechanical computers and vacuum tube computers might have
empowered the owners of such magical devices, and vacuum tubes greatly assisted the prolif-
eration of long distance communication such as radio and telephone, they were too expensive
and lacked the raw computational power to truly change the world. The development of the
semiconductor transistor—along with many other technologies—greatly decreased the attain-
able size and cost of commercially available processors and computer memory, and it is this that
made the information age possible.

That the oft paraphrased Moore’s law (that the number of transistors in a dense integrated
circuit doubles every one to two years) has been followed for over 50 years stands testament to
the importance assigned to the minification of these semiconductor devices even now. Indeed,
many techniques have been developed for the fabrication of circuitry and tools on the micro- and
nanoscale, the most important of which are photolithography, soft lithography, film deposition,
etching, and bonding [2].

This study focuses on the nanofabrication technique Ion-Beam-Induced Deposition (IBID), a.k.a.
Focused Ion Beam Chemical Vapour Deposition (FIB-CVD), which is a variant of the more
pervasive method Electron-Beam-Induced Deposition (EBID). IBID is the process of using a
ion beam to locally decompose gaseous precursor molecules adhered to a substrate to cause
local deposition of products of the decomposition onto said substrate; the beam can be moved
relative to the substrate to create three dimensional structures. [graphic here] In particular, the
assumptions made in this study are such that the results pertain especially to He-IBID, where
helium ions are used as a beam source. A focused beam of helium ions—as opposed to electrons
and gallium ions—provides better spatial resolution and is back-scattered and deflected less,
making it easier to control where deposition occurs.

In terms of practical applications, IBID is used in integrated circuit modification through ”de-
position of either metallic or insulating materials to either modify existing or to create new
structures” and also in ”producing small quantity prototypes which would require substantial
investments in other methods” [3]. Similar to the production of prototypes, IBID is also used
in the creation of experimental setups for research into the electrical and mechanical behaviour
of nanoscale structures. [references here] [hammerhead afm probe] [photonic crystal]

Directing a stationary helium ion beam directly onto a substrate that is continuously fed a
precursor gas results in the growth of a pillar of 30 to 60 nm width with common beam current
values. This is much smaller than achievable with the more common electron- and gallium
ion beam induced deposition because of the negligible scattering of primary particles and the
negligible sputtering in the case of helium [4]. Since the substrate is growing along the direction
of the beam, the helium ions continue to travel on the inside of the pillar, causing sideways
growth.

Even smaller ”nanoneedles” are achievable by moving ion beam pillar growth. The beam is
oriented so that it just grazes a feature on the substrate, and then moved away from the substrate
at a controlled speed (see Figure 2). The beam passes through the tip of the growing needle
such that scattering is minimal and deposition is localised to the extreme end of the tip. By
optimising the speed of the beam movement, a needle width of 13nm has been achieved [1].

Utilising the horizontal growth mode of IBID, many complex structures can be fabricated.
[pictures] [5]
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Figure 1: Ion beam induced deposition and related mechanisms. Used with permission from [4].
Refl Impinging precursors may reflect off instead of adsorbing, especially if the surface is satu-

rated.
Dif The precursors diffuse over the surface towards the depleted areas.

Ads Impinging precursors has a chance to adsorb onto the surface if it is not saturated.
DI Deflected ion.
SE Secondary electrons that reach the surface are the primary mechanism for decomposition.

GPR Gas-phase reaction. Rare event.
BIDes Beam induced desorption.

Sp Sputtering. High energy ions may cause ejection of atoms from the deposit.
BI Backscattered ion.

TDes Thermal desorption—also referred to as spontaneous desorption. Standard evaporation
that would occur regardless of the ion beam.
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1.1 The IBID process

IBID starts with a substrate kept under vacuum. A precursor gas for (metal) deposition such
as Trimethyl(methylcyclopentadienyl)platinum (MeCpPtMe3) is then fed onto the substrate via
a gas injection system ending in a thin pipe that can be brought to within 100 µm from the
substrate surface. The gas molecules have a tendency to adhere to the surface in a monolayer;
the surface can be saturated (Langmuir adsorption).

When an energetic particle collides with a precursor gas molecule, the gas molecule breaks up
into volatile and non-volatile components. This is called decomposition. The volatile molecules
drift off into the vacuum. If this occurs while the molecule is adhered to a surface, the non-
volatile components bond with that surface.1 This is called deposition.

To cause this deposition, an ion beam is focused onto the substrate covered in precursor gas
molecules. However, the direct interaction between the ions and the gas molecules has a neg-
ligible cross-section; the ions mostly pass through the adsorbed precursor layer and generate
secondary electrons as they travel through the substrate. If these generated electrons reach the
surface, they can interact with the precursor molecules to cause the deposition. Typical He ions
(30 keV) travel 100 nm in solids, while their SEs travel around 1 nm in metals or 10-20 nm in
insulators.

The secondary electrons can also stimulate the precursor molecules to desorb from the surface
when they do not decompose. As opposed to this stimulated desorption, there is also spon-
taneous/thermal desorption, which has the same probability of occurring for each adsorbed
molecule, regardless of electron flux.

While adhered, precursor molecules freely move across the surface, colliding with other pre-
cursor molecules. Diffusion plays an important role in restoring depleted areas of precursor
molecules.

Indeed, a complete model the IBID process will need to keep track of all these mechanisms:

• Secondary electron production

• Precursor

– adsorption (due to the gas feed)

– decomposition

– desorption (spontaneous & stimulated)

– diffusion over the surface

• Surface growth due to deposition

This study will set up a model of the steady state horizontal growth mode through differen-
tial equations. It will then attempt—through the solving of differential equations—to find the
pillar width given a set of realistic parameters (including beam power, beam/growth speed,
precursor diffusion constant, etc.), and observing the change incurred when the parameters are
altered.

1In the case of MeCpPtMe3, 8-20% of the deposition consists of platinum. [4]
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Figure 2: He-IBID moving ion beam pillar growth

2 Theory

2.1 Previous Models and Simulations

In this section we will describe existing models and simulations of IBID (and some relevant ones
of EBID).

2.1.1 Utke

In the 2008 review article [6], Utke et al. exhibit continuum models which investigate deposition
in the case of a focused ion (or electron) beam incident on a flat substrate. Dimensionless
variables are introduced and used to classify process regimes based on the limiting factor in
precursor dissociation. Unfortunately, the models assume flat geometry and that dissociation
occurs proportionally to the ion flux (with no mention of secondary electrons), making the results
not directly applicable to our situation.

Monte Carlo models for EBID are also presented, but at the time of the review article, no MC
simulations were reported for IBID.

2.1.2 Monte Carlo (Philip Rack)

A series of Monte Carlo simulations of HeIBID pillar growth was completed by Smith et al.
in 2010 [7] with a custom-built program called EnvisION. The simulation tracks the path and
interactions of Helium ions into the substrate, where secondary electrons are generated and
subsequently tracked.

This model only deals with pillars grown via a stationary beam. It also assumes no surface
diffusion of precursors; only (non-directional) adsorption from the gas phase contributes to
precursor repletion. However, with moving ion beam pillars, diffusion plays an important role
in precursor repletion [1].

A more detailed description of the implementation of the MC simulation can be found in
[8].

In 2013 another Monte Carlo simulation was carried out to compare depositions caused by
Helium and Neon ions [9]. The results indicated that a Neon ion beam has a smaller interaction
region (and thus deposits thinner pillars).
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Figure 3: Overview of the variables and the mechanisms in He-IBID
n [-] is the precursor coverage; it measures how covered the surface is in precursors from 0 to 1
(empty to full monolayer).
fp [prec./nm2] is the flux of the precursors from the gas-injection system onto the surface.
c [/ms] is the precursor decomposition rate in monolayers per unit time.
~r [nm] indicates the location/shape of the surface.
fSE [elec./nm2] is the secondary electron flux on the surface due to the ion beam.

Similar to the earlier Monte Carlo experiments, stationary beams and a lack of surface diffusion
were assumed. Due to these two points, the results of these simulations are not directly applica-
ble, but if surface diffusion was to be added, the EnvisION program may provide some powerful
insight to growth using moving ion beams.

2.1.3 Alkemade model

A 2010 paper [10] an analytical model for pillars grown perpendicular to the substrate was
derived and fit to experiment. It was used to describe vertical, lateral and volumetric growth
rates as functions of beam current, and for calculating ion deposition efficiency, which was found
to be only weakly dependent on beam current. However, [1] does see some change in efficiency
when changing the speed of the beam in the growth of horizontal pillars. This indicates that the
growth mechanism is qualitatively different. This paper also identified the distinct precursor-
limited and ion-limited growth regimes.

An overview from 2014 [4] presented various insights. It wrote mechanisms contributing to
precursor coverage rate of change as terms in a differential equation, which will be presented in
the following section. It also included an important estimation of the effective cross-section and
the diffusion constant using empirical data.

2.2 Equations governing He-IBID

The diagram in figure 3 shows the mechanisms that relate and affect these state variables. Note
that only the precursor coverage n has more than one mechanism affecting it. To facilitate the
description of each mechanism separately, we write the rate of change in precursor coverage as
a sum, where each term denotes the contribution of a separate mechanism:

∂n

∂t
=
∑
i

mi (1)

8



Each mechanism is ascribed an equation that describes its behaviour. The time-dependency of
the state/input variables in each of these equations is implicit.

2.2.1 I - Diffusion

mI = D∇2
Sn (2)

Where n is the precursor coverage, D is the diffusion constant, ∇2
S is the Laplace-Beltrami

operator for surfaces.

The dependency on the surface ~r is not directly visible in the equation; it is hidden in the ∇2
S

symbol, as the surface derivative is directly dependent on the metric of the surface; for any
scalar field φ(~u) [11],

∇2
Sφ =

1
√
g

∂

∂ui

(
√
ggij

∂φ

∂uj

)
. (3)

Where g is the metric, ui indicates the ith component of ~u and the Einstein summation conven-
tion is used.

2.2.2 II - Adsorption

Assuming the precursors impinge at a constant angle and flux across the entire work area,

mII = 1p(~r)
s

nsat
(1− n) ~fp · ~N. (4)

1p(~r) =

{
1 if ~r visible by ~fp

0 otherwise

Where s is the probability of an impinging precursor sticking to an unoccupied site, ~fp is the flux

of impinging precursors, nsat is the maximal precursor density, and ~N is the outward pointing
surface normal.

We say 1p(~r) = 1 when the impinging precursors can reach that part of the surface ~r, i.e. there
is not another part of the surface blocking off the precursor supply.2

2.2.3 III - Decomposition

Arguably the most important mechanism; it is the only one where two state variables are used
to define another, and the only which affects multiple state variables.

c = σeffnfSE (5)

mIII = −c

A straightforward product of n and fSE with the effective cross-section σeff gives the decom-
position rate (of precursor monolayers) c, which in turn causes a diminishment of precursor
coverage.

2A more rigorous definition that may be useful for computation is the following. We define a point on the
surface ~p ∈ ~r[U ] to be visible by a vector ~f ∈ R3 when max{ k | −k ~f + ~p ∈ ~r[U ] } = 0
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2.2.4 IV - Stimulated desorption

mIV = −σdesnfSE (6)

Where σdes is the cross-section of SEs causing precursors to unstick from the surface without
decomposing.

2.2.5 V - Thermal desorption

Thermal excitations occasionally exceed the adhesion energy of the precursor molecules, causing
the molecules to escape into to the vacuum chamber. The rate at which this happens depends
on the surface temperature, which may vary over time.

mV = − n

τdes
(7)

τdes is the average time for thermal desorption of a precursor molecule which can be calculated
from the temperature and desorption energy.

2.2.6 VI - Deposition

The volumetric deposition rate (per area) is the product of the volume per decomposition Vp
and the decomposition rate (per area) c:

d(V/δA)

dt
= Vpnsatc (8)

We must use results from differential geometry to then relate the local volumetric deposition
to a change in the local surface to find how the surface is actually evolving given some amount
of deposition. As discussed in Deserno [11], this can be calculated for example via the mean
curvature of the surface. Later we will be making assumptions such that the variation in the
surface is constant over the surface, leading to a much simpler relation.

2.2.7 VII - SE production

Assuming an infinitesimally thin ion beam which has isotropic production of secondary electrons
along its trajectory in the solid, and that the momentum of an SE remains unchanged after
emission (besides completely stopping), the SE flux can be calculated on the surface as

fSE(~r) =
I

qe
NSE

∫
B
e−
|~r′|
λe

1

|~r′|2
d~b (9)

with ~r′ = ~r −~b

Where I is the beam current, qe is the elementary charge, NSE is the number of secondary
electrons generated per unit distance per ion, ~b ∈ B indicate points on the He ion beam path
inside the pillar, and λe is the inelastic mean free path of the SEs.

The integrand consists of three factors each with their own reasoning behind them:

I
qe
NSE Rate of secondary electron generation per unit distance along the beam [SEs m−1 s−1]

e−
|~r′|
λe Limited penetration distance of SEs (exponential decay)

|~r′|−2 Inverse square law (spreading out from a point source)
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3 The stable form of the simplified 2D problem

As the pillar is grown further from the substrate, its fixed width implies that the growth (and
thus decomposition) reaches some equilibrium. We want investigate this stable state of the
horizontal growth mode–and whether it exists under the assumptions of our model. In search of
the stable growth state, we look for solutions that satisfy ∂n

∂t = 0, and we restrict the growth of
the surface to to one that retains the shape of the surface over time (just shifted in the direction
of growth).

x

y

↑ Growth

u
~r

w

Beam
Pillar surface
After growth

Figure 4: Diagram of the geodesic polar parametri-
sation of the pillar surface at the tip. The beam at
the graph origin points into the page. y indicates the
direction of growth. For a given w, u is the arc-length
of a geodesic that extends from the tip of the pillar
at an angle of w.

To define our surface, we will use a
geodesic polar parameterisation with the
tip of the pillar (u = 0) being the origin,
and w = 0 corresponding to the cross-
section perpendicular to the ion beam
(for x > 0).

~r(u,w) =

x(u,w)
y(u,w)
z(u,w)

 (10)

with the metric

g =

[
1 0
0 x2w + y2w + z2w

]
(11)

where g11 = 1 is called the arc-length
restriction (|~ru| = 1) and g12 = g21 =
0 is called the orthogonality restric-
tion.

To simplify matters, we look at the sur-
face cross-section perpendicular to the
beam with only the suspected key mech-
anisms included:

I Diffusion

II Adsorption

III Decomposition

VI Deposition

VII SE production

That is to say, we leave out both spontaneous/thermal and stimulated desorption effects. While
we are only looking at a cross-section, there is still significant diffusion perpendicular to this
plane (later referred to as angular diffusion, as per the angular coordinate w). The diffusion
(and some minor relevance to the volumetric surface growth) is why a three-coordinate system
will still be required for some steps in the derivation.

3.1 Adapting Equations for the Model

Now we take the equations governing each mechanism, adapt and make simplifying assumptions
according to the situation of stable growth in 2D.
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3.1.1 I - Diffusion

For the diffusion term we have (from equation 3)

mI = D∇2
Sn =

D
√
g

∂

∂ui

(
√
ggij

∂n

∂uj

)
.

The inverse metric values for our parametrisation are g11 = 1 and g22 = 1
x2w+y

2
w+z

2
w

, and the root

of the determinant of the metric is
√
g =
√
g22. Since the non-diagonal values of the metric are

zero, we get

mI = D∇2
Sn =

D
√
g

(
(
√
gnu)u + (

√
gg22nw)w

)
. (12)

This can be expanded and simplified further by accounting for symmetry when on the cross-
section w = 0. Since the cross-section is perpendicular to the beam, the shape and precursor
distribution of the pillar in this model must follow mirror symmetry across the plane of the
cross-section z = 0. And so, odd-ordered w-derivatives of x, y, n and their u-derivatives are
zero, and even-ordered w-derivatives of z and its u-derivatives are zero.

3.1.2 II - Adsorption

For the impinging precursor adsorption term we have

mII = 1p(~r)
s

nsat
(1− n)

∣∣∣~fp · ~N ∣∣∣ .
To remove the positional dependency–leaving only dependency on n–we assume the follow-
ing:

• ~fp(~r) has a constant magnitude fp over the area where the pillar is growing, also taking
into account the angle of incidence. (In reality the magnitude varies significantly based
on the position relative to the needle of the gas injection system, but not on the scale of
pillar-lengths.)

• The pillar is approximately cylindrical, so that the ratio of side-profile area (visible to
impinging precursor molecules) to surface area is everywhere 1 : π.

• The pillar is long and thin, so diffusion around the circumference of the pillar occurs
relatively instantaneously. (And thus adsorption causes increase in coverage around the
whole circumference at the same time.)

From these assumptions, we can derive the adsorption source term to be

mII =
sfp
πnsat

(1− n) =
γ

nsat
(1− n) . (13)

where γ is the rate of precursor density per fraction of empty precursor sites on the pillar surface
due to adsorption.
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~N

ŷ

û

δ~r

δA

Figure 5: Everywhere equal growth in the y direction: The normal ~N flattens out with increasing
u in proportion to the decrease in volumetric growth (area inside thick lines).

3.1.3 VI - Deposition

From equation (8):
d(V/δA)

dt
= Vpnsatc

For stable state growth, the rate of change in the surface in the direction of growth must be
everywhere equal to the beam speed vb.

d~r

dt
=
dy

dt
ŷ = vbŷ (14)

We know from Deserno [11] that a constant surface variation δ~r leads to a volume variation of
simply

δV = δ~r · (~ru × ~rw). (15)

Turning the variations into time derivatives (with d~ru
dt = d~rw

dt = 0 since the surface shape is

invariant and with ~ru × ~rw = δA ~N):

d(V/δA)

dt
=
d~r

dt
· ~N = vb(ŷ · ~N) (16)

where ŷ · ~N = xuzw−xwzu√
x2w+y

2
w+z

2
w

is the y-component of the normal. And thus we have the growth

constraint:

ŷ · ~N =
Vpnsatc

vb
=
nsat
α
c (17)

where α [prec./nm2/ms] is the precursor decomposition rate density required at the tip to for
the growth to keep pace with beam movement.

3.1.4 VII - SE production (and III - Decomposition)

The SE flux experienced on the perpendicular cross-section surface is only dependent on the
distance from the beam, so it can be written as a function of r = |~r| =

√
x(u)2 + y(u)2. When

calculating w-derivatives the flux may also depend on z.
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Figure 6: Strength of the dimensionless SE flux at the surface as a function of distance from the
beam. Also shown is the approximation f̃(r) = e−r πr .

The perpendicular cross-section has smaller pillar width than the parallel3, so we can approx-
imate the SE source as an infinite line (exponential decay even reduces the error from this
approximation). This also makes f independent of z.

fSE(r) =
I

qe
NSE

∫
B
e−

r′
λe

1

r′2
db ≈ I

qe
NSE

∫ ∞
−∞

e−
r′
λe

1

r′2
db, (18)

with r′ =
√
r2 + b2

We can remove the dependency on λe from the flux equation by substituting R = r/λe and
B = b/λe. We then have R′ =

√
R2 +B2 = r′/λe. Since the integration is unlimited, there is

no change in the integration bounds.

fSE(r) =
I

qe
NSE

∫ ∞
−∞

e−R
′ 1

(λeR′)2
d(λeB) =

INSE

qeλe
f(R) =

INSE

qeλe
f(
r

λe
) (19)

where

f(R) =

∫ ∞
−∞

e−R
′ 1

R′2
dB. (20)

Inserting the above results for the SE flux into equation 5 for decomposition rate, we have

c = σeff
INSE

qeλe
f(r/λe)n =

β

λe
f(r/λe)n. (21)

where β scales the decomposition rate due to the SE flux from the ion beam and has the units
of [decompositions

precursors
m
s ].

4 Derivation of the ODE with angular surface diffusion

The differential equation describing the rate of change in precursor coverage is the sum of the
m terms I, II, and III

∂n

∂t
= D∇2

Sn+
γ

nsat
(1− n)− c. (22)

3This is simply due to the parallel cross-section experiencing more flux on the sides near the beam entrance
and exit.
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The growth restriction (constant vertical growth over the whole surface) is

~N · ŷ =
nsat
α
c (23)

where c is the decomposition rate

c =
β

λe
f(r/λe)n, (24)

~N · ŷ = xuzw−xwzu√
x2w+y

2
w+z

2
w

is the y-component of the normal, r =
√
x2 + y2 is the distance to the ion

beam, and α, β, γ,D, nsat, λe are constants.

4.1 On the cross-section

Our first step is to evaluate equations 22 and 23 on the cross-section w = 0 to find an ODE we
can integrate to find the stable state (nt = 0) shape of the surface on that cross-section.

Expanding the Laplace-Beltrami operator as in equation 12:

mI = D∇2
Sn (25)

=
D
√
g

(
(
√
gnu)u + (

√
gg22nw)w

)
= D

(
nuu +

√
g
u√
g
nu +

1
√
g2
nww −

√
g
w√
g2
nw

)

Where we had for this coordinate system
√
g =

√
x2w + y2w + z2w and g22 = 1√

g2
.

Evaluating the equation on the cross-section means that the mirror symmetry can be applied. As
stated before, symmetry dictates that odd-ordered w-derivatives of x, y, n and their u-derivatives
are zero, and even-ordered w-derivatives of z and its u-derivatives are zero. Applying this mirror
symmetry at w = 0, we get

mI/D = ∇2
Sn = nuu +

zuw
zw

nu +
1

z2w
nww =

(zwnu)u
zw

+
1

z2w
nww (26)

We merged the nuu and nu terms into one to avoid having to explicitly calculate nuu in the first
step of integration.

Filling in this result in equation 22, setting nt = 0, and evaluating at w = 0 gives us an partial
differential equation for precursor density:

(zwnu)u =
zw
D

(
c− γ

nsat
(1− n)

)
− 1

zw
nww (27)

And evaluating equation 23 at w = 0 gives a differential equation for x depending only on x and
y:

xu =
nsat
α

(28)

An equation for the value of y can be found via the arc-length constraint:

yu =
√

1− x2u (29)

The above three equations give us an ODE system that can be numerically integrated to find
the shape of the cross-section x, y, and the precursor density n. Unfortunately the equation for
n requires us to know the angular derivatives zw and nww, so we will derive their formulae in
the next section.
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4.2 Deriving formulae for the angular variables

In the previous section we evaluated equations 22, 23 and the arc-length constraint within the
cross-section z = w = 0. To retrieve an estimate about the diffusion that occurs perpendicularly
to this cross-section, we look at the w-derivatives in this cross-section, akin to higher order
Taylor series terms.

As will be shown shortly, to calculate zuw we need information about the curvature in the form of
xww and yww, so formulae for xuww and yuww will be needed as well. The formula for (zwnuww)u
includes zuwww and zwww, so similarly we will need xuwwww and yuwwww.

The derivations that follow were assisted by the symbolic mathematics package SymPy in Julia,
and double-checked by hand derivation.

First we use the orthogonality of the parameterisation eu · ew = xuxw + yuyw + zuzw = 0, take
the first and third derivative to w, and evaluate at w = 0 to find:

zuw =− 1

zw
(xuxww + yuyww) (30)

zuwww =− 1

zw
(xuxwwww + 3xuwwxww + yuywwww + 3yuwwyww + 3zuwzwww) (31)

Second, we take the second and fourth derivative to w of the growth constraint (equation 23)
to find:

xuww =
nsat
α
cww + (x2ww + y2ww)

xu
z2w

+ 2xww
zuw
zw

(32)

xuwwww =
nsat
α
cwwww + 4 (xwwzuwww + xwwwwzuw)

1

zw
(33)

− 9
(
x2ww + y2ww

)2
xu

1

z4w
− 12(xuzwww + xwwzuw)(x2ww + y2ww)

1

z3w

+ 2(+2xuxwwww + 3xwwxuww − 6zwwwzuw)xww
1

z2w
+ 2(2xuywwww + 3ywwxuww)yww

1

z2w

Note that the zwww term in the first equation and the zwwwww term in the second equation both
cancel out to zero.

Third, we use the arc-length constraint eu · eu = x2u + y2u + z2u = 1 and take the second and
fourth derivative to w:

yuww = − 1

yu
(z2uw + xuxuww) (34)

yuwwww = − 1

yu
(xuxuwwww + 3x2uww + 3y2uww + 4zuwzuwww) (35)

Finally, if we take the second derivative to w of equation 22 (with nt = 0):

(zwnuww)u =
zw
D

(
cww +

γ

nsat
nww

)
+ 4

(
(x2ww + y2ww)

1

zw
+ zwww

)
1

z2w
nww

+

(
2(x2ww + y2ww)

zuw
zw
− 2xwwxuww − 2ywwyuww + zuwzwww − zwzuwww

)
1

zw
nu

− 1

zw
nwwww

(36)
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We can repeat this process to find an equation for nuuwwww, but this would be endless so
instead we derive an estimate through the following: Given a slice of the surface for some
constant y value, we assume the intersection with the surface to be roughly elliptical, such that
z = C1(y) sin θ (where θ is the angular parameterisation of the ellipse, Ci indicate arbitrary
functions). Since nuu has some local minima/maxima at the points θ ∈ {0, π/2, π, 3π/2} due
to reflective symmetry at these points, we assume nuu is roughly (co-)sinusoidal with respect
to θ such that nuu = C2(y) + C3(y) cos(2θ). Using the identity cos(2 arcsin(·)) = 1 − 2(·)2, we
find

nuu = C4(y) + C5(y)z2

and thus ∂4nuu
∂z4

= 0. Using this result–and arbitrarily neglecting higher order u-derivatives4 of
n–we find by the chain rule for partial derivatives:

nuuwwww =

(
4
zwww
zw
− 12

ywwzuw
yuzw

)
nuuww

Since for u = 0 we have nww = nuww = nwwww = nuwwww = 0, in general

nwwww(u,w) =

(
4
zwww
zw
− 12

ywwzuw
yuzw

)
nww. (37)

With the addition of the above equations, we now have a complete and integrable ODE sys-
tem:

4When including the higher order u-derivatives and inserting them into the equation for (zwnuww)u, the
equation becomes higher order, leading to inaccuracies when using it merely to calculate an estimate. It may be
possible to rearrange the equation to become a calculation for nuuuu, but this leads to more unsolved complexity–
for example in the calculation of yuu, and in determining the initial values of yuu and nuu. A minor validation for
the resulting estimate of nwwww is that it leads to a factor of nww which has the correct sign to allow solutions
with the expected asymptotic behaviour for u→∞ (zero diffusion).
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xu =
nsat
α
c

xuww =
nsat
α
cww + (x2ww + y2ww)

xu
z2w

+ 2xww
zuw
zw

xuwwww =
nsat
α
cwwww + 4 (xwwzuwww + xwwwwzuw)

1

zw

− 9
(
x2ww + y2ww

)2
xu

1

z4w
− 12(xuzwww + xwwzuw)(x2ww + y2ww)

1

z3w

+ (4xuxwwww + 6xwwxuww − 12zwwwzuw)xww
1

z2w
+ (4xuywwww + 6ywwxuww)yww

1

z2w

yu =
√

1− x2u
yuww = − (z2uw + xuxuww)/yu

yuwwww = − 1

yu
(xuxuwwww + 3x2uww + 3y2uww + 4zuwzuwww)

zuw = − 1

zw
(xuxww + yuyww)

zuwww = − 1

zw
(xuxwwww + 3xwwxuww + yuywwww + 3ywwyuww + 3zuwzwww)

(zwnu)u =
zw
D

(
c− γ

nsat
(1− n)

)
− 1

zw
nww

(zwnuww)u =
zw
D

(
cww +

γ

nsat
nww

)
+ 4

(
(x2ww + y2ww)

1

zw
+ zwww

)
1

z2w
nww

+

(
2(x2ww + y2ww)

zuw
zw
− 2xwwxuww − 2ywwyuww + zuwzwww − zwzuwww

)
1

zw
nu

−
(

4
zwww
z2w
− 12

ywwzuw
yuz2w

)
nuuww

with

r =
√
x2 + y2

rww = (xxww + yyww)/r

rwwww = (xxwwww + 3x2ww + yywwww + 3y2ww − 3r2ww)/r

f = f(r/λe, z = 0)

fww = rwwfr + z2wfzz

fwwww = 3r2wwfrr + 4rwwz
2
wfrzz + rwwwwfr + z4wfzzzz + 4zwzwwwfzz

c =
β

λe
fn

cww =
β

λe
(fwwn+ fnww)

cwwww =
β

λe
(fwwwwn+ 6fwwnww + 4

zwww
zw

fnww)

Putting the above in simple terms, the slope of x (which determines the width of the pillar)
depends on the amount of decomposition c (via the steady-state assumption). yu is related to xu
simply such that the arc-length parameterisation holds. zw is kept such that the orthogonality
between u and w is maintained. Finally, n is determined by the amount of decomposition and
diffusion. For each of these there are then also the higher order w-derivative equivalents.

Note that the z-derivatives of f are also written down, but they are equal to zero while the
assumption that the beam SE generation length is infinite is in place.
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4.3 Initial conditions

The initial conditions (at u = 0) are:

x = 0 y = r0

n = n0 (zwnu) = 0

zw = 0

xww = 0 yww = 0

nww = 0 (zwnuww) = 0

Using the symmetry condition that xu(u = 0) = 1, we can calculate a value for r0 from some
initial n0:

r0 =
λe
n0

f−1(
αλe
βnsat

) (38)

where f−1 is the inverse (unitless) SE flux. The function f has no closed form, so we cannot
derive one for its inverse, but f−1(f) can be found numerically by finding the root of f(·) − f .
We use an approximation of the inverse of f in a root-finding algorithm to find the true inverse.
This is to ensure more reliable convergence. We run the root-finding algorithm on the function
f̃−1(f(·)):

f̃−1(f(·))− f̃−1(f)→ 0

with an initial estimate of

f̃−1(f)

where

f̃−1(f) = W0

(
π

f

)
where W0 is (the principal branch of) the Lambert W function, the inverse of x → xex. This
approximation is based on (r) ≈ e−r πr which is obtained by moving the exponential term outside
of the integral5.

During the first integration step, the second half of the formulae in the ODE system contain
division by zw = 0, so we use a polar parameterisation that holds near the origin, trivial from
the definition of the geodesic polar parameterisation

~r(u,w) =

cos(w)u+O(u3)
r0 +O(u2)

sin(w)u+O(u3)

 (39)

Limit evaluation of the parameterisation then gives the following results.

xu(0, 0) = 1 xuww(0, 0) = −1 xuwwww(0, 0) = 1

yu(0, 0) = 0 yuww(0, 0) = 0 yuwwww(0, 0) = 0

zuw(0, 0) = 1 zuwww(0, 0) = −1

(zwnu)u(0, 0) = 0 (zwnuww)u(0, 0) = 0

Note that we have no direct way of calculating the initial values of nuu and nuuww, which is why
the equations for (zwnu)u and (zwnuww)u are used in the ODE system instead.

5The definite integral of 1/(r2 + x2) over x is evaluated as π/r
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D 540 (?) nm2/ms

nsat 1.9 ±0.5 /nm2

α 0.56–11.1 ± (0.12–2.5) /nm2/ms

vb 0.05–1.00 nm/ms
Vp 0.09 ±0.02 nm3

β 0.83 ±0.18 nm decomp./prec./ms

I 0.35 ±0.05 pA
NSE 0.32 SE/ion/nm
qe 1.602×10−4 fC/ion
σeff 1.2 ±0.2× 10−3 nm2 decomp./prec./SE

γ 0.0102 ±0.0035 prec./nm2/ms

fp 0.32 ±0.11 prec./nm2/ms
s 0.1 (?)

λe 1.5 (0.8–6.0) nm

Table 1: Ranges and values of parameters and constants as as relevant to the experiment of [1].
Uncertainties are approximate. Question marks (?) indicate that the uncertainty is significant
but unknown.

4.4 Physical constants and operational parameters

The equations derived for the model has 6 independent constants/parameters: D,nsat, α, β, γ, λe,
where α, β, γ are multiplicative combinations of various constants/parameters. To compare the
results of our model with the experiments of [1], we need to use the same values for opera-
tional parameters (precursor type, beam speed, beam current, precursor flux). We also need to
determine values for physical constants from literature.

The results of this section may be found in table 1.

4.4.1 Diffusion constant D

The diffusion constant for precursor gases at room temperature are estimated to be on the order
of 100 nm2/ms for use in simulation [12] [13]. The precursor MeCpPtMe3 has been calculated
to have a diffusion coefficient of 540 nm2/ms based on fits to empirical measurements of IBID
pillar growth with a pulsed beam [4].

4.4.2 Precursor saturation density nsat

In [6] nsat for MeCpPtMe3 is given as 1.9 /nm2. This value is calculated using ”the maximum
bond length of the molecule from crystallographic data”. The uncertainty in this method ”can
differ within several tens of percent for the same molecule according to its geometric configura-
tion”, and thus we approximate an uncertainty of 0.5 /nm2.

4.4.3 Beam speed vb

[1] uses a 1 nm beam step size and varied the beam dwell time between 1 and 20 ms. This range
in dwell times leads to a vb range of average speeds 0.05–1 nm/ms.
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4.4.4 Deposition volume Vp

Vp is given as 0.091 nm3 per Pt atom in [4], which cites the value for PtC4 density (11 /nm3)
from [14]. (This seems to assume that on average 1 Pt and 4 C is deposited per decomposition.)
This PtC4 density is in turn based on the mass density with 11% uncertainty calculated in [15]
via cantilever experiments. However this mass density was for a deposition of an estimated 15%
platinum deposit (made with FEB), as opposed to 20%; there some more uncertainty in the
value due to our uncertainty of the Pt:C ratio of the deposit. And so we take Vp = 0.09± 0.02
nm3.

4.4.5 Beam current I

The experiments in [1] uses 0.35± .05 pA (a very low setting). For investigating the precursor-
limited regime, we may want to use a higher value–likely still below 10 pA.

4.4.6 SE production rate NSE

[14] uses a secondary electron coefficient of 2.9 (SEs per ion) for a flat Pt20C80 substrate, which
is allegedly equal to that of pure Pt and pure C. This value is based on the results of [16].
However, this is the value stated for a 25 keV beam (1.1 × 106 m/s). The experiments in [1]
used a 30 keV beam (1.2× 106 m/s), which according to [16] means a SE coefficient of 3.0. This
SE coefficient is the number of SEs that exit the substrate when the beam is fired straight into
a flat surface. We call this coefficient N⊥.

However, we need NSE , which we defined as the number of SEs that are emitted isotropically
from the ion path per unit distance.

The number of SEs generated per unit distance NSE can be calculated from the secondary
electron coefficient for a flat Pt20C80 substrate N⊥ by calculating the integral of the flux over
a flat surface (for a beam perpendicular to the surface). The flux function f is divided by 2 here
since it normally integrates from −∞ to ∞.

N⊥ =
NSE

λe

∫ ∞
0

2πr
f(r/λe)

2
dr = 2πλeNSE . (40)

The equation is simplified by using the result
∫∞
0

∫∞
0 e−

√
(ar)2+b2 r

(ar)2+b2
dr db = 1

a2
. Thus we

have simply NSE = N⊥
2πλe

= 0.32 SE/ion/nm.

4.4.7 Elementary charge qe

The elementary charge qe ≈ 1.602× 10−4 fC is assumed to be common knowledge.

4.4.8 Effective decomposition cross-section σeff

The electron-precursor cross-section depends highly on the energy of the electron. [17] has
empirically determined values for the MeCpPtMe3 precursor cross-section ranging over 3–3000
eV.
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The energy distribution of SEs due to excitation by a He-ion beam may be seen in [18] and
[14].6 The distribution peaks around 1 eV and has a thick tail going to 6 eV, which then drops
off to nothing after 11 eV. Visually taking the product between this NSE distribution and the
cross-section as a function of energy, we find an approximately flat distribution between 3-8 eV
that is close to zero everywhere else.

In this range the cross-section is approximately equal to 4.2± 0.3× 10−3 nm2 (the value stated
for 8 eV). Since not all SEs have a significant cross-section, we multiply by the fraction of SEs
produced in the range 3-8 eV: about 0.8/2.9 based on the bar graph of [14].

In total this gives σeff = 1.2± 0.2× 10−3 nm2.

4.4.9 Precursor flux fp

In the experiments of [1] they use a nozzle with a 500 µm wide opening positioned around
150-200 µm above the substrate, at an angle of 25◦. The calculations of [19] gives a precursor
flux at the nozzle tip of 1.72 molecules /nm2/ms under similar conditions (precursor reservoir
at room temperature and background pressure around 5 × 10−7 mbar); only the diameter is
500 µm instead of 400 µm.7 In accordance with these calculations, the flux at the nozzle tip is
proportional to the diameter, so 2.15 /nm2/ms for our case.

The flux at the deposition site should be 5-10 times lower than the at the tip [19]. So we have
an approximate value of fp = 0.32± 0.11/nm2/ms.

4.4.10 Precursor sticking coefficient s

[14] cites a sticking coefficient of 0.1, but mentions that it has a high uncertainty. The citation
is of [6], but I could not find a value given in the citation.

[9] also cites a value of 0.1 from [12], but its references for this value are not reliable: The
first simply assumes 0.1 for an order of magnitude calculation (in the context of adsorption to
SiN rather than amorphous PtCx), and the second is a calculated value for Pt during physical
vapour deposition.

Unfortunately this means that the best we have to go off of is that assuming 0.1 for the sticking
coefficient is the precedent.

4.4.11 Electron inelastic mean free path λe

There seems to be no clear consensus yet in the accurate measurement of the IMFP (inelastic
mean free path) of low energy electrons (<100 eV) [20] [21] [22] [23] [24].

The IMFP also has a strong sensitivity to energy at low energies. 4eV electrons can have 4
times higher IMFP than 8eV due to IMFP being roughly proportional to 1

energy2
at low energies

[25].

[20] gives approximately λe = 1.5 nm in elemntal Pt for an electron with 6 eV of energy remaining
in vacuum. No data could be found specifically for IMFP in PtCx compounds.

6We do not take into account that electron penetration depth depends on energy when considering the distri-
butions.

7[19] also uses an angle of 34◦ which allows the beam access to more the more concentrated part of the
impingement, but further away from the surface at 450 µm.
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If we assume for PtCx that we also have λe(6eV) = 1.5 nm, given our energy range 3–8 eV–and
the inverse square dependence on energy–we get an IMFP in the range λe ∈ 0.8–6.0 nm. If we
assume the SE energy distribution (weighted by cross-section) is flat, the higher λe values in this
range is rarer due to the inverse square relationship with energy, and so we take an ’average’
value as λe = 1.5 nm.

4.5 Numerical methods

For our numerical calculations, we use the Julia language [26], which boasts the ease of use of a
dynamic language like Python combined with the computation speed of low level languages like
C.

4.5.1 ODE solver

We use the ”performant and feature-rich ecosystem for solving differential equations in Julia”
package called DifferentialEquations.jl [27].

Since the ODE system includes many divisions by variables that go to 0 as u→ 0, there is some
potential for instability. To avoid this, we first make 20 integration steps (of size 1e-4*r0) using
the RKO64 solver as provided by the package. RKO65 is Tsitouras’ Runge-Kutta-Oliver 6 stage
5th order method, which has been developed to be robust on problems which have a singularity
at the initial value [28].

Unfortunately, this solver has not yet been implemented to allow for adaptive timestepping, so
to speed up the solution, another solver is used after this initial integration. For the second
integration, we use the BS5 solver as supplied by DifferentialEquations.jl with relative tolerance
specified as 1-e8. BS5 is one of the solvers recommended for non-stiff problems and uses the
Bogacki-Shampine 5/4 Runge-Kutta method [29].

The solver is stopped once the precursor coverage goes below 0 or above 1.

4.5.2 Flux approximation

The (unit-less) SE flux integral of equation 20 was implemented to be calculated by quadgk

from QuadGK.jl [30] with a relative tolerance of 1e-10.

The first and second order derivatives were implemented using forward-mode automatic differ-
entiation via ForwardDiff.jl [31].

These functions take around 17–26 µs to evaluate, and take up the majority of the computation
time when used in the numerical integration steps.

To speed up these function evaluations, we use ApproxFun.jl [32], which can actually be used for
spectral solving of differential equation systems, but for now we are just using the approximation
of functions as Chebyshev polynomials functionality.

We calculate the approximations by finding a piece-wise polynomials that approximate the
logarithms of the functions, and exponentiating when evaluating. The logarithms are used
because the flux function has a singularity, and has a range over many orders of magnitude.
The logarithms and the splitting up of the domain achieves a greater accuracy across the full
domain using less terms than just using one polynomial to represent the whole function.

The relative error introduced by these approximations is less than 10−13—less than that of the
numerical integration. These approximations take around 550 ns to evaluate: a speed-up of 40
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times! This leads to faster ODE solving, which in turn allows for real-time viewing of results
and tweaking of calculations.
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Figure 7: The precursor coverage over the arc-length u for different starting values of n(u = 0).
The red line is of the solution corresponding to the longest pillar. It has n(u = 0) = 0.86.

5 Results

In the results section we will heavily compare with the pillar width measurements of the exper-
iments carried out in [1] by G. Nanda et al. The authors identified three regimes separated by
different beam dwell times (resulting in different speeds). From the paper:

Three regimes can be distinguished in the plot of the needle volume per ion versus
dwell time: (1) the nucleation regime (0-4 ms in Fig. 3) where no significant growth
takes place; (2) an intermediate regime (4-8 ms) characterized by a fast increase of
the needle volume per ion; (3) and the saturation regime (beyond 12 ms) where the
needle volume per ion attains a more or less constant value

The latter two is referred to in [4] as the ion-limited regime and the precursor-limited regime,
respectively.

5.1 Short dwell time

We start with the lowest dwell time (i.e. the fastest beam speed) used in the experiment, 1 ms
(α = 11.11 /nm2/ms). Using the parameters in table 1, we solve the ODE for various initial
values of n. The precursor coverage n(u) of these solutions (over the arc-length u) is shown in
figure 7.

Our model requires infinite pillars for the assumptions of constant precursor coverage (nt = 0)
and growth equalling beam speed to be appropriate. Since the solutions presented in figure 7
have precursor coverage values that depart the physical range between 0 and 1 within a finite u
value, there seems to be no steady-state solutions with this set of parameters.

It is tempting to interpret these solutions as shorter pillars that are limited in growth, but pillars
that are undergoing changes due to growth are not reconcilable with the restrictions we have
added: Real solutions would have the precursor coverage on the pillar to be decreasing as it
grows, since the diffusion source (base) keeps getting further away (hence nt 6= 0). If a pillar
cannot be grown beyond a certain length, it is because the growth cannot keep up with the
speed of the beam (hence growth < beam speed). Thus we cannot read much into the exact
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Figure 8: Short dwell time (1 ms) solution. The curves are generated through Taylor approxima-
tion along the cross-section w = 0 via the partial derivatives. This may be seen as an estimate
of the local shape and precursor distribution. xrot and yrot shows the surface after being rotated
π/4 around the x-axis and −π/4 around the y-axis.

characteristics of these solutions, except that in some way, the longer they are, the closer they
are to a real steady-state solution.

It is expected that this fast beam speed (dwell time of 1 ms) outpaces any significant growth.
This lack of long solutions may be what was referred to as the nucleation regime, found by [1]
to be with a dwell time in the range of 0–4 ms.

The precursor coverage of some solutions have sharp peaks followed by a rapid descent. That
the solutions don’t reach saturation indicates that these low precursor coverage values cannot
be attained by having a saturated diffusion source at the base of the pillar. The presence of
such solutions are somewhat expected. However, it is unusual that the solutions show a very
constant coverage followed by a steep ascent. Whereas we expect a depleted tip (due to SE
decomposition) followed by a gradual increase in coverage (due to adsorption effects), indicating
further that these solutions are not realistic.

Figure 8 shows the shape of the surface close to the w = 0 cross-section of the longest solution
in figure 7 (shown with the red line). The x-y-z positions were calculated for an array of u and
w values by interpolating the solution for the u values, and using the w-derivatives as Taylor
coefficients for the w values.

The monotone colour indicates that it has a precursor coverage that does not vary significantly.
This is especially notable on the curved part of the tip, since we would expect depletion there.
This is a strong indication that this solution is in the precursor-limited regime (as expected for
a high beam speed).

The shape along the w = z = 0 cross-section is as one would expect for the pillar shape: a round
tip with a asymptotically vertical wall further away. This can easily seen on the bottom right
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x-y subplot.

However, we find that the pillar is unrealistically thin with a diameter of 1.5 nm, much less
than the smallest needle achieved of 13 nm. With such a small dwell time, the growth volume
is similarly small, and thus a very thin pillar is theoretically needed for the growth to keep
up with the beam speed. It may be possible that such a small pillar would be possible under
more ideal circumstances of infinitely thin ion beam and vibration-less motion, but for now we
should remember that this solution is still not valid due to assumptions that require infinite
pillar length.

The surface appears very flat close to the z = 0 cross-section, as can be seen in the two right-hand
subplots. The surface has apparently zero Gaussian curvature around the w = 0 cross-section.
Further away (higher z values) it does start curving due to the fourth derivative eventually
overwhelming, but this may well be due to the inaccuracy of Taylor approximations. This
low (and even outwards) curvature indicates that the solution is not really pillar-like. In the
numerical solving, there is an assumption baked in that yu(w = 0) is negative, so the surface will
always be curving downwards along w = z = 0. There is no such assumption for the z-direction,
meaning that curving upwards in the z-direction is a technically valid solution, which can result
in the tip being a saddle-point. With the outwards-curving surface, this seems to be the case
with this solution.

5.2 Nucleation regime

For any given set of parameters, we can find the n0 value that corresponds to the solution
which has the longest the pillar. Figure 7 shows the solution of the longest pillar for that set of
parameters as a red line. We use the optimize method8 of the Optim.jl package over the bounds
n0 ∈ [0.2, 0.995] with a low relative tolerance of 1e-4. The low relative tolerance approximately
halves the required function evaluations (each of which requires solving the ODE) to speed up
calculation.

If we plot this maximal pillar length as a function of the parameters, we can see a distinct
boundary between the regions where pillar solutions of unlimited length exist and where they
don’t. See figure 9.

For the experimental parameters, we found the boundary to be at α = 5.59β = 4.66 /nm2/ms,
corresponding to the a dwell time of 2.4 ms. Dwell times larger than 2.4 ms have solutions
with unlimited pillar length. According to this model then, the length of pillars grown in this
regime are only limited by the duration of precursor and ion bombardment. This boundary
value compares well with the experimental value of 4 ms, especially considering the level of
uncertainty present.

Looking at the n0 values of the maximal solutions, we can see high saturation, especially with
such low values for β. When the precursor saturation is high, the only parameter9 that affects
the ODE is the unit-less nsatβ

αλe
. With the experimental parameter values the nucleation or growth

regime is thus approximately
nsatβ

αλe
& 0.227 (41)

This boundary described by this inequality is a linear relationship between α and β, as can be
seen in figure 9. The deviation from this linear boundary at higher β values is likely due to
the lower precursor density, complicating the system by introducing diffusion and adsorption

8The default zeroth-order univariate solver is Brent’s method.
9Excluding the physical constant λe, which also appears within the flux calculation.
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Figure 9: Points where the maximum pillar length is over 500 nm are left blank; due to the
steep asymptotic behaviour, these points are at least very close to—or in—the nucleation regime.
The dotted green line indicates the α = 5.59β boundary approximation. The blue lines indicate
the values of α (proportional to beam speed) and β (proportional to ion current) that were
investigated in the previous and following sections.

effects. Indeed, if the precursor density is lower, one would expect also that a higher ion dose
(β) is needed for similar amounts of deposition and reliable growth.

5.3 Multiplicitous solutions

The experiments of [1] found a nucleation boundary at 4 ms dwell time and a transition in
two growth regimes around 8 ms. Considering our model predicts 2.4 ms for the nucleation
boundary, we may expect the transition in growth regimes to be the same doubling of the
nucleation boundary at 4.8 ms (α = 2.31). We are looking for a qualitative difference in the
sensitivity to α on either side of this value.

Figure 10 highlights two solutions with this higher dwell time: The small solution (with lower
n) and the large solution (with higher n). These two solutions are the only two solutions with
asymptotic behaviour of the precursor coverage towards 1. Rather than infinitely long pillars,
a finite pillar with a precursor coverage of 1 near its base is more realistic. Realistic solutions
like these may be found with n0 values just above the large solution or just below the small
solution.

Considering that the z-direction diffusion term is dominant, it appears that the depleted areas
of beam ingress and egress are not properly accounted for in this model. The large solution
is especially egregious in this sense, as the diffusion in the z-direction is very large (while we
expect it to be negative due to the depleted areas on the sides).

We can see also that for u = 0 the two terms of the diffusion rates are equal. This indicates
that nuuww(u = 0) = 0, and is confirmed by seeing from the solution that limu→0

nww
u2

= 0. This
turns out to be due to a problem with the neglecting of the higher order u-derivatives of nuu
in the assumption that nuu is (co-)sinusoidal in the x–z plane (see equation 37). To see this,
dividing by zw and taking the limit u→ 0 of equation 36 (with application of L’Hôpital where
appropriate) results in:

2nuuww = lim
u→0
−nwwww

z2w
=

(
2 + 3

yuuww
yuu

)
nuuww
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Figure 10: The two solutions with infinite pillar length at α = 2.31. The initial precursor
coverage of these solutions are n0 = 0.314 and n = 0.980.
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Which requires that either nuuww or yuuww is zero, and the latter is not zero due to the calculation
of yuww.

This shows that the assumption was too strong; the diffusion terms are not realistic, at least
relative to each other.

The above problem is normally prevented by the fact that in the expanded chain rule formulation
of ∂4nuu

∂z4
, the −12ywwzuwyuzw

nuuww term cancels with the 6ywwyu nuuuww term at u = 0. But as stated
earlier, introducing this term (and other terms with higher order derivatives of nww) introduces
too much complexity.

The simplest way of solving the problem at u = 0 is to use the assumption that nuu = Ca(u) +
Cb(u) cos(2w), which leads to nwwww(u,w) = 4 zwwwzw

nww. This assumption holds at u = 0, but
quickly becomes less and less accurate as u increases and the geodesics start overlapping each
other due to the pillar not being rotationally symmetrical, and thus we cannot reliably apply it
to long pillars.

5.4 Sensitivity Analysis

Starting with the small solution, we look at how its characteristics vary when varying each
parameter α, β, γ, λ, nsat and D while holding the rest constant. Figure 11 shows the results
of this.

The most striking result from figure 11 is that the pillar width increases with increasing beam
speed (α) and also with decreasing ion dosage (β). This is highly unintuitive, since a larger
amount of ions per unit distance over the length of the pillar should lead to more depositions
and thus a wider pillar. The magnitude of the variation is very small compared to the variation
observed in the experiment (which had a factor 6 variation in pillar width over a similar variation
of beam speed). With just this we can judge that the small solution is not realistic.

The following figure 12 shows how the characteristics of the large solution changes due to varying
parameters. We can see that this behaviour is much more intuitive compared to that of the small
solution: The pillar width decreases with increasing beam speed and with decreasing ion dosage.
The amount of variation is higher at a factor difference of roughly 2, but still much smaller than
the factor 6 difference observed in experiment.

Rather than finding ourselves in the transition between the ion-limited and precursor-limited
regimes as we expected for a dwell time of 4.8 ms, the precursor layer is nearly saturated and
thus the growth must be ion-limited. In the ion-limited regime, we expect that an increase in ion
dosage per unit length along the pillar (β/α) leads to a proportional increase in volume. This
proportionality with volume manifests as a square root dependence with pillar width, which can
be seen in figure 12 as the slope of the pillar radius is roughly half that of the reference line,
affirming the ion-limited nature of this set of parameters.

It is understandable that nsat closely mimics the behaviour of β, as they are both proportional
to the number of depositions, and nsat cannot differentiate itself without significant diffusion or
deposition mechanisms at play.

It is also quite natural that γ and D have very little effect on the shape of the pillar in this
regime: Since the precursor layer is so saturated, very little increase of precursors can occur due
to adsorption or diffusion.

Pillar width increasing with larger λe is expected since larger λe means the SE flux contour
surfaces are proportional to λe. However, the pillar width is not proportional to λe since wider
pillars also need more SE flux to sustain the higher volumetric growth.
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Figure 11: Sensitivity analysis on the 6 parameters for the small solution. The vertical black line
indicates the default value (which is used for that parameter in the plots for other parameters).
The grey dashed lines forming a cross are reference lines used for judging proportionality; if
the size follows the same slope, it is proportional to either the parameter or its multiplicative
inverse, respectively. The red line indicates the estimated nucleation boundary via equation 41.

31



1 2 3 4 6
= vb

Vp
[/nm2/ms]

1

0.6

2

Si
ze

 [n
m

]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

ur
so

r c
ov

er
ag

e 
[-]

10.6 2 3 4
e [nm]

1

0.6

2

Si
ze

 [n
m

]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

ur
so

r c
ov

er
ag

e 
[-]

10.3 0.4 0.6 2
= I

qe
NSE

eff [nm/ms]

1

0.6

2

Si
ze

 [n
m

]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

ur
so

r c
ov

er
ag

e 
[-]

1 2 3 4
nsat [/nm2]

1

0.6

2

Si
ze

 [n
m

]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

ur
so

r c
ov

er
ag

e 
[-]

0.010.004 0.006 0.02
= s fp [/nm2/ms]

1

0.6

2

Si
ze

 [n
m

]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

ur
so

r c
ov

er
ag

e 
[-]

1000200 300 400 600
D [nm2/ms]

1

0.6

2

Si
ze

 [n
m

]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

ur
so

r c
ov

er
ag

e 
[-]

Pillar radius
r0
n0

Figure 12: Sensitivity analysis on the 6 parameters for the large solution. The vertical black line
indicates the default value (which is used for that parameter in the plots for other parameters).
The grey dashed lines forming a cross are reference lines used for judging proportionality; if
the size follows the same slope, it is proportional to either the parameter or its multiplicative
inverse, respectively. The red line indicates the estimated nucleation boundary via equation 41.
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β seems to be close to some kind of local optimum regarding the precursor coverage at the tip
n0, but it is still not clear that decreasing α (increasing dwell time) will eventually lead to a
precursor limited regime.

It is notable that in all these sensitivity plots, the pillar radius seems to be consistently close
to double that of the distance of the tip to the beam r0. This may be a useful rule of thumb in
considerations of discrete beam step sizes: For pillars of some diameter d, the step size should
at most be d/4.

6 Conclusion

We found the nucleation boundary below which no growth occurs:

nsatβ

αλe
& 0.227

(equation 41). The value corresponds to a dwell time of 2.4 ms when using the parameters of
table 1, which is reasonably close to the experimentally observed [1] value of 4 ms, given the
large uncertainties in the parameters involved.

The transition between ion-limited and precursor-limited growth was not observed at dwell time
values near that of the experiment. It is likely that there is still a precursor-limited regime at
much smaller α values. However, given that the pillar diameters observed in the model is roughly
a factor 10 thinner than the experimentally observed pillars, there are clearly large inaccuracies
at play, and only lowering the α value may not lead to more accurate results.

Roughly based on the sensitivity analysis results, inaccuracy of the physical constants used is
likely insufficient to explain the amount of deviation we see here, as multiple coefficients would
have to be changed by large amounts to approach the observed pillar widths. The most apparent
culprit causing these inaccurately small pillars is the assumption that the ion beam has no width:
The full-width-at-half-maximum of the ion distribution in the beam is approximately 1 nm [19],
the tails would still have a significant contribution, as they would coincide with less depleted
parts of the pillar tip. This means that realistically, significant SE production occurs over an
area multiple nanometers in diameter, of similar or greater size than the pillars calculated here.
This indicates that a more accurate ion beam profile would certainly result in wider pillars.

On the other hand is the omitted mechanism of stimulated desorption. [4] estimates ”ten times
as many precursors are lost by beam-induced desorption than by decomposition.” Including this
mechanism in the model would be equivalent to decreasing the growth volume per deposition
Vp—and by thus increasing α—by a factor of 10. Unfortunately this can not explain the observed
size discrepancy with experiment, as larger α would mean even smaller pillars.

A more accurate (3D with diffusion and desorption) model or simulation would be needed to con-
firm or deny whether the assumptions made are indeed excessive, and decide more conclusively
whether the accuracy of the physical constants may be to blame. If a Monte-Carlo simulation is
used, testing the effects of a diffuse beam should be relatively simple, as it simply means adding
some stochasticity to the ion starting location.

We have also observed concrete indications that one of the assumptions that was made was
stricter than intended, leading to not properly accounting for diffusion in the circumferential
direction of the pillar. Rather than increasing the ODE complexity further by including even
higher order derivatives, the problem is likely to be solved by modelling the full 2D surface
instead, and solving a PDE. In other words, rather than making some simplifying assumption
to determine nwwww, periodic boundary conditions should be used to pin down the angular

33



diffusion; there should be no need for calculation of higher order derivatives. This problem is
not so easily transferred to a PDE, however: The geodesic polar parametrisation is likely to run
into problems, since the geodesics eventually overlap when the pillar is non-isotropic, making
periodic boundary conditions difficult to enforce—among other issues. Using an irregular finite
element mesh might be required, but a parametrisation is still needed since the shape of the
surface is not known a priori. Furthermore, the ingress/egress location of the beam is not known
a priori, so dynamic element generation is required.

Monte Carlo simulation is still a very powerful option to simulate this growth, but current
models do not include precursor diffusion effects (and it may not be simple to include given the
inherently non-smooth surfaces). The continuum model we have partly explored could—given
expansion into a full 3D simulation and SE flux with a full range of energies—lead to more
accurate results, since diffusion and other effects may be easier to include.

New differentiable programming techniques [33] mean that if we can develop a reliable differen-
tiable simulation of IBID growth via the integration of differential equations, it may eventually
be possible to combine this simulation with machine learning to invert the problem. Which
would mean that a user could insert a desired 3D structure into some software, and it would
calculate the beam movements required to produce the structure. This would clearly be more
difficult with a stochastic simulation like Monte Carlo.
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