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Systematic review of machine learning
applications using nonoptical motion
tracking in surgery

Check for updates

Teona Z. Carciumaru 1,2 , Cadey M. Tang 1, Mohsen Farsi1, Wichor M. Bramer3, Jenny Dankelman4,
Chirag Raman 5, Clemens M. F. Dirven2, Maryam Gholinejad1,4 & Dalibor Vasilic1

This systematic review explores machine learning (ML) applications in surgical motion analysis using
non-optical motion tracking systems (NOMTS), alone or with optical methods. It investigates
objectives, experimental designs, model effectiveness, and future research directions. From 3632
records, 84 studieswere included,with Artificial Neural Networks (38%) andSupport VectorMachines
(11%)being themost commonMLmodels. Skill assessmentwas theprimaryobjective (38%).NOMTS
used included internal device kinematics (56%), electromagnetic (17%), inertial (15%), mechanical
(11%), and electromyography (1%) sensors. Surgical settings were robotic (60%), laparoscopic
(18%), open (16%), and others (6%). Procedures focused on bench-top tasks (67%), clinical models
(17%), clinical simulations (9%), and non-clinical simulations (7%). Over 90% accuracy was achieved
in 36%of studies. Literature showsNOMTSandML can enhance surgical precision, assessment, and
training. Future research should advance ML in surgical environments, ensure model interpretability
and reproducibility, and use larger datasets for accurate evaluation.

Machine learning (ML)models have gained consistent attention within the
medical field for their potential to revolutionise healthcare practices. ML
algorithms are adept at modelling high dimensional data distributions,
improving process efficiency, and reducing burden on healthcare profes-
sionals through data-driven insights1,2. They can be trained to identify data
patterns and optimise predictive precision3–5, making them valuable tools in
medical decision-making across various specialties, such as radiology5,6 and
oncology7. This successful integration of ML into healthcare workflow
demonstrates how technology to complement and enhance the capabilities
of medical experts.

An emerging domain for ML application is surgical motion tracking,
which offers potential advancements in surgical practice. Capturing and
analysing the motion characteristics of surgeons’ hands and surgical
instruments during procedures provides valuable data for several purposes.
Surgical skill training and evaluation are labour-intensive and time-
consuming for both trainers and trainees. Their automation could offer
much-needed efficiency8,9, support professional development, and ensure
high-quality care. Additionally, motion data could aid the development of
assistive surgical tools to improve surgeon precision and patient outcomes.
Research has also explored using surgical motion data to predict patient

post-surgical outcomes10, offering the potential for real-time adjustments
during surgery to reduce post-operative complications.

However,muchof the existing surgicalmotions tracking research relies
on visual sensors, such as cameras.While these systems are valuable for their
convenience and integration into laparoscopic and robotic surgical devices,
they have inherent limitations, such as poor quality and susceptibility to
occlusion11. Non-optical motion tracking systems (NOMTS) offer pro-
mising solutions by providing robust and versatile data capture capabilities
without the constraints of optical systems.

This systematic review aims to provide an overview ofML applications
in surgical manoeuvre analysis using NOMTS. Objectives include identi-
fying ML algorithms and models used, comparing their effectiveness,
identifying NOMTS applications in surgical settings, and highlighting
research trends, gaps, challenges, and future research directions.

Results
Search results
A total of 3632 unique records were identified through the literature search
after duplicate removal. An additional 32 records were identified by bib-
liographic cross-referencing. After undergoing screening based on title and
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abstract, as well as full-text retrieval, a total of 139 studies were assessed in
full text. The inclusion process led to 84 reports meeting the criteria for
inclusion (Fig. 1). Table 1 provides full overview of the included studies,
categorised by their machine learning aim. Six primary machine learning
aimswere identified: (1) skill assessment (SA); (2) feature detection (FD); (3)
a combination of skill assessment and feature detection; (4) tool segmen-
tation and/or tracking (TT); (5) undesirable motion filtration (UMF); (6)
other. These are further detailed in the Results sectionsML tasks.

Data collection and sources
The included studies featured one ormore experiments, each designed with
different set-ups, sensors, and procedures. Twenty studies included more
than one experiment12–31. The procedures were categorised by surgical field
and task. Robotic procedures were the most common, appearing in 65
experiment types, followed by laparoscopic in 20, and open in 17. Basic
bench-top (BB) tasks, such as peg transfer or suturing, composed 72
experiments. Clinical simulations (CS), which mimic real-life surgery, were
conducted in 10 experiments. Clinical models (CM) were used in 18
experiments, including animal models19,24,26,28,29,31–35, cadaver models16,29,34,
and real-life surgeries like septoplasty12, tumour removal36, or
prostatectomy10,22,30,37–39. Non-clinical simulations (NCS), which simulate
surgical movement without a defined surgical task, were present in eight
experiments (Fig. 2).

Among the experiments with human participants, 40 utilised datasets
with at least 10 participants, while only 14 included at least 25 participants
(Table 1). The largest datasets included 117 participants40, followed by 67
participants41 and 52 participants24.

One frequently used public dataset was the JHU-ISI Gesture and Skill
Assessment Working Set (JIGSAWS)42, which appeared in 26 use cases
(Table 1). It includes synchronised robotic video and toolmotion fromeight
surgeonsperformingBB tasks (needlepassing, knot tying, suturing)within a
robotic surgical context. Multiple studies leveraged this dataset to compare
their algorithms with others on the same dataset15,17,21,22,24–28,43–45, as well as
for transfer learning applications20,26.

Another dataset, used by two studies, is the Johns Hopkins
Minimally Invasive Surgical Training and Innovation Center Science
of Learning Institute (MISTIC-SL) dataset14,23. It consists of synchro-
nised robotic video and tool motion during BB tasks. The Robotic
Intra-Operative Ultrasound (RIOUS) and RIOUS+ datasets are used
by Qin et al. containing robotic video and tool motion of drop-in
ultrasound scanning in dry-lab, cadaveric, and in-vivo settings28,29. The
Basic Laparoscopic Urologic Skills (BLUS) also features synchronised
video and tool motion of BB laparoscopic tasks40. The Bowel Repair
Simulation (BRS) dataset consists of 255 porcine open enterotomy
repair procedures captured with electromagnetic sensors and two
camera views24. However, these datasets are not publicly available.

Non-optical motion tracking systems (NOMTS)
The included studies utilised five categories of NOMTS across various
experiments, often featuring multiple experiment types within a single
study. In total, 107 experiment designs were found across the 84 studies.
(1) Device kinematic (DK) data recordings: in 67 experiments to capture

the internal position logging of virtual reality46,47, laparoscopic40,48,
endoscopic49, or robotic10,12,14,15,17,20–32,34,35,37–39,43–45,50–69 surgical devices.

Fig. 1 | PRISMA flow diagram of study inclusion
process. The figure shows the number of records
identified, retrieved, assessed, and included at dif-
ferent stages within the systematic review process.
From3632 unique records, 84 studies were included.
The 84 studies are further divided into their
respective categories of ML aims.

Records identified from:
• Databases (n = 5952)
• Bibliographic cross-referencing

(n = 32)

Duplicate records removed 
(n = 2352)

Records screened by title and abstract
(n = 3632)

Records excluded
(n = 2368)

Reports sought for full-text retrieval
(n = 141)

Reports not retrieved
(n = 2)

Reports reviewed for eligibility in full-
text format
(n = 139)

Reports excluded:
• No use of NOMTS (n = 27)
• No ML (n = 16)
• No surgical motion (n = 4)
• Article type (n = 8)

Studies included in review
(n = 84)

Identification of studies via databases and registers
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• Tool Segmentation and/or Tracking 
(n = 11)

• Undesirable Motion (n = 3)
• Other (n = 3)

• Skill Assessment (n = 32)
• Feature Detection (n = 22)
• Skill Assessment and Feature 

Detection (n = 13)
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Table 1 | Overview of included studies, categorised in order of machine learning aim

Index Author Year Sensor Video Field Task Subjects Trials Machine Learning Model Performance
Metric (%)

Cross-
Validation

Skill Assessment

1 Ahmidi, N72. 2015 EM CO Open CM 14 86 (Stroke-based) SVM MA:
74.24-90.91

LOTO, LOUO

Descriptive Curve Coding
+ SVM

MA:
81.03-91.66

HMM+ SVM MA:
23.06-70.93

2 Albasri, S12. 2021 DK (J) CO Robotic BB 10 150 Procrustes DTW + kNN MA: 88.9-100 LOSO

I No Open CS 4 120 Procrustes DTW + kNN MA: 80-100 LOSO, LOTO

3 Allen, B70. 2010 EM No Lap. BB 30 696 SVM MA: 90-93.7 Hold out

4 Baghdadi,
A50.

2020 DK+M No Robotic BB 30 1440 LASSO+ RF MA: 63 k-fold

LASSO + kNN MA: 63

LASSO+ LR MA: 70

LASSO+ RF + kNN + LR MA: 78

5 Bissonnette,
V46.

2019 DK No Open CS 41 41 SVM MA: 97.6 LOO, k-fold

kNN MA: 92.7

LDA MA: 87.8

Naive Bayes MA: 86.9

Decision tree MA: 70.7

6 Brown, J.D85. 2017 I+M CO Robotic BB 38 110 SVM + Elastic Net Regression
+ Regression Trees + kNN

MA: 63.3-73.3 LOO

RF MA: 51.7-75

7 Brown, K.C32. 2020 DK CO Robotic CM - 100-131 LR MA:
76.32-98.27

k-fold

8 Chen, A.B39. 2021 DK CO Robotic CM 17 68 RF MA: 71.6-76.9 -

AdaBoost MA: 69.9-80.1

Gradient Boosting MA: 67.2-78.4

9 Fard, M.J53. 2018 DK (J) CO Robotic BB 8 80 kNN MA: 71.9-89.7 LOSO, LOUO

LR MA: 70.2-89.9

SVM MA: 75.4-79.8

10 Horeman, T92. 2012 M No Lap. BB 31 93 PCA+ LDA MA: 78-84 LOO

11 Hung, A.J38. 2018 DK No Robotic CM 9 78 RF MA: 87.2 Stratified
k-fold

SVM MA: 83.3

LR MA: 82.1

12 Hung, A.J10. 2019 DK No Robotic CM 8 100 MLP (DeepSurv) - k-fold

13 Hung, A.J68. 2022 DK CO Robotic BB 22 226 NoiseRank + LSTM - -

14 Jiang, J73. 2017 EM CO Robotic BB 10 10 DTW - -

15 Jog, A67. 2011 DK No Robotic BB 17 41 Decision tree + SVM MA: 67.5-87.5 k-fold

16 Kelly, J.D40. 2020 DK CO Lap. BB 117 454 Bi-LSTM MA:
73.33-96.88

Hold out

17 Khan, A86. 2020 I CO Open BB 15 50 SVM - LOTO,
LOUO, k-fold

18 Laverde, R88. 2018 I No Lap. BB 7 207 ANN - k-fold

19 Li, K51. 2020 DK (J) No Robotic BB - 96 kMC + DNN ME: 9.18-9.47 -

20 Lin, Z89. 2011 I No Lap. BB 16 48 PCA+ LDA MA: 93.75 LOO

21 Lin, Z87. 2013 I No Lap. BB 16 96 PCA+ LDA MA: 94 LOO

22 Lyman,
W.B52.

2021 DK No Robotic CS 2 25 Kernel Regularised Linear
Squares Multivariate prediction
+ Multivariate Linear
Regression

MA: 89.3 -

23 Megali, G48. 2006 DK No Lap. BB 6 24 HMM - Hold out

24 Oquendo,
Y.A71.

2018 EM+M CO Lap. BB 32 63 Regularised Least Squares +
Regression Trees

MA: 38-88 LOUO

25 Sbernini, L90. 2018 I+M No Open BB 18 360 LDA ME:5.86-8.06 LOO
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Table 1 (continued) | Overview of included studies, categorised in order of machine learning aim

Index Author Year Sensor Video Field Task Subjects Trials Machine Learning Model Performance
Metric (%)

Cross-
Validation

SVM ME: 0.89-2.05

MLP ME: 0.57-0.61

26 Sewell, C69. 2008 DK CO Open CS 15 30 HMM MA: 87.5 LOO

Naive Bayes -

LR MA: 50-100

27 Soangra, R13. 2022 I+ EMG No Open +
Lap. +
Robotic

BB 26 234 RF MA: 40-60 Hold out

Naive Bayes MA: 28-47

SVM MA: 35-57

28 Uemura, M41. 2018 EM No Lap. BB 67 67 Chaotic NN MA: 79 Hold out

29 Wang, Z.H43. 2018 DK (J) CO Robotic BB 8 40 CNN MA: 84.9-95.4 LOSO,
Hold out

30 Watson,
R.A91.

2014 I No Other CS 24 48 SVM MA: 83 -

31 Xu, J93. 2023 M No Open BB 13 20 LSTM MA:
76.67-78.86

LOUO

Bi-LSTM MA:
80.51-84.92

GRU MA:
75.46-77.57

Convolutional LSTM DNN MA:
93.65-96.19

Transformer network MA:
86.68-90.67

TCN MA:
88.95-97.45

32 Zhang, D20. 2020 DK Yes Robotic BB 8 66 CNN MA:
84.72-97.92

LOSO

DK (J) CO Robotic BB 8 103 CNN MA:
80.80-99.17

LOSO

Feature Detection

33 Ahmidi, N21. 2017 DK (J) CO Robotic BB 8 101 LDA+GMM-HMM MA:
64.12-92.56

LOSO, LOUO

K-Singular Value
Decomposition +
Sparse-HMM

MA:
62.48-83.54

Markov semi-Markov CRF MA:
44.68-81.99

Skip Chain CRF MA:
74.77-85.18

Linear Dynamical System MA:
47.96-84.61

DK (J) Yes Robotic BB 8 101 Markov semi-Markov CRF MA: 65.87-85.1 LOSO, LOUO

Skip Chain CRF MA:
81.60-85.04

34 van
Amsterdam,
B63.

2019 DK (J) CO Robotic BB 8 40 GMM MA: 59-85 Experimental
Validation

35 van
Amsterdam,
B45.

2020 DK (J) CO Robotic BB 8 39 Bi-LSTM MA: 85.1-89.2 LOUO

36 van
Amsterdam,
B22.

2022 DK (J) Yes Robotic BB 8 39 CNN + Concatenation TCN MA: 82.3 LOUO

CNN + Ensemble TCN MA: 82.6

CNN + Multimodal
Attention TCN

MA: 83.4

DK Yes Robotic CM 8 45 CNN + Concatenation TCN MA: 79.3 Hold out

CNN + Ensemble TCN MA: 78.1

CNN + Multimodal
Attention TCN

MA: 80.9
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Table 1 (continued) | Overview of included studies, categorised in order of machine learning aim

Index Author Year Sensor Video Field Task Subjects Trials Machine Learning Model Performance
Metric (%)

Cross-
Validation

37 Despinoy, F61. 2016 DK CO Robotic BB 3 12 kNN MA: 78.4-97.4 LOO

SVM MA: 77.5-96.2

38 DiPietro, R14. 2019 DK CO Robotic BB 15 39 RNN ME: 17.9 LOUO

LSTM ME: 15.3

GRU ME: 15.2

MIST RNN ME: 15.3

DK (J) CO Robotic BB 8 39 RNN ME: 11.6 LOUO

LSTM ME: 8.7

GRU ME: 8.6

MIST RNN ME: 9.7

39 Fard, M.J64. 2016 DK (J) CO Robotic BB 8 - PCA+DTW + Soft-Boundary
Unsupervised Gesture
Segmentation

MA: 64-73.8 Experimental
Validation

40 Gao, Y23. 2016 DK (J) CO Robotic BB 8 39 DTW + Autoencoder MA: 68-84 -

DK CO Robotic BB 15 55 DTW + Autoencoder MA: 59-74 -

41 Goldbraikh,
A81.

2022 EM CO Open BB 24 96 MS-TCN++ MA: 82.4-94.69 k-fold

LSTM MA:
79.94-94.18

GRU MA:
82.21-95.04

42 Goldbraikh,
A24.

2024 EM CO Open BB 25 11 Bi-LSTM MS-TCRN MA: 83-84.2 k-fold

Bi-GRU MS-TCRN MA: 83.1-84.3

EM CO Open CM 52 255 Bi-LSTM MS-TCRN MA: 77.8-80.5 LOUO

Bi-GRU MS-TCRN MA: 77.4-79.2

DK (J) CO Robotic BB 8 39 Bi-LSTM MS-TCRN MA: 84.2-84.8 LOUO

Bi-GRU MS-TCRN MA: 85.0-86.4

43 Itzkovich, D25. 2019 DK (J) CO Robotic BB 8 39 LSTM MA: 67-72 LOUO

DK CO Robotic BB 2 14 LSTM MA: 55-71 LOUO

44 Itzkovich, D26. 2022 DK (J) CO Robotic BB 8 75 LSTM MA: 46-64 Hold out

DK CO Robotic BB 2 15 LSTM MA: 8-52 Hold out

DK CO Robotic CM 6 - LSTM MA: 13-68 Hold out

45 Lea, C65. 2016 DK (J) CO Robotic BB 8 39 Latent Convolutional Skip
Chain CRF

MA:
81.69-83.45

LOUO

46 Lin, H.C54. 2006 DK No Robotic BB 2 27 LDA + Bayes Classifier MA:
92.21-95.26

k-fold

47 Long, Y27. 2021 DK (J) Yes Robotic BB 8 75 CNN+ TCN-LSTM +
Graph NN

MA: 87.9-88.1 LOUO

DK Yes Robotic BB - 36 CNN+ TCN-LSTM +
Graph NN

MA: 87.3-91.0 k-fold

48 Loukas, C75. 2013 EM CO Lap. CS 21 21 Gaussian mixture MAR - -

49 Meißner, C84. 2014 I+ EM CO Other CS 2 24 HMM MA: 81-99 LOO

50 Murali, A66. 2016 DK (J) Yes Robotic BB 8 67 PCA+CNN+GMM +
Transition state clustering

- -

51 Peng, W62. 2019 DK CO Robotic BB 12 360 DTW + Continuous HMM MA:
94.73-97.48

Experimental
Validation

52 Qin, Y28. 2020 DK (J) Yes Robotic BB 8 39 CNN-TCN+ LSTM-TCN MA: 86.3 LOUO

DK Yes Robotic CM 5 10 CNN-TCN+ LSTM-TCN MA: 82.7 LOUO

53 Zheng, Y74. 2022 EM CO Lap. BB 29 29 LSTM MA:
68.18-75.86

LOUO

54 Zia, A37. 2019 DK Yes Robotic CM - 100 CNN-LSTM+ LSTM - Hold out

Skill Assessment and Feature Detection

55 Anh, N.X55. 2020 DK (J) No Robotic BB 8 40 CNN+ SVM MA:
92.75-96.84

LOSO

LSTM+ SVM MA:
89.75-95.09
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Table 1 (continued) | Overview of included studies, categorised in order of machine learning aim

Index Author Year Sensor Video Field Task Subjects Trials Machine Learning Model Performance
Metric (%)

Cross-
Validation

CNN-LSTM+ SVM MA:
90.98-96.39

Autoencoder + SVM MA:
80.63-83.46

56 Baghdadi,
A36.

2023 M No Open CM 13 50 CNN+DNN-LSTM MA FD: 82-95 k-fold

KNN+ XGBOOST+DNN-
LSTM

MA SA: 71

57 Ershad, M76. 2019 EM CO Robotic BB 14 84 PCA+ SVM MA: 71.03-98.5 k-fold

58 Forestier, G15. 2018 DK (J) CO Robotic BB 8 101 SAX-VSM MA FD:
75.29-93.69

LOSO, LOUO

MA SA:
61.11-96.3

DK No Robotic BB 3 30 SAX-VSM MA FD: 100 LOO

MA SA: 83.33

DK CO Robotic CS 6 27 SAX-VSM MA SA: 85.19 LOO

59 King, R.C16. 2009 I+M No Lap. BB 5 25 HMM MA FD: 56-100 -

I+M No Lap. CM 7 28 PCA+HMM+GMM
Clustering

- -

60 Loukas, C77. 2011 EM CO Lap. BB 22 44 MAR+ PCA+ SVM MA: 86-96 -

HMM MA: 65-87

61 Loukas, C78. 2013 EM CO Lap. CS 22 22 MAR - -

62 Nguyen,
X.A17.

2019 I CO Open BB 15 75 SVM MA: 71.3-81.7 LOSO

CNN-LSTM+ SVM MA: 88.1-95.4

CNN-LSTM + SENet + SVM MA: 90.3-96.7

CNN-LSTM + SENet + Restart
+ SVM

MA: 92.1-98.2

DK (J) No Robotic BB 8 101 CNN-LSTM+ SVM MA: 91.5-97.3 LOSO

CNN-LSTM + SENet + SVM MA: 94.7-98.3

CNN-LSTM + SENet + Restart
+ SVM

MA: 94.8-98.4

63 Reiley, C.E60. 2010 DK CO Robotic BB 11 20 DTW+GMM/GMR+HMM - -

64 Rosen, J33. 2001 M CO Lap. CM 10 10 kMC + HMM MA: 87.5 -

65 Topalli, D49. 2019 DK No Other BB 28 1260 kNN + AdaBoost M1 MA: 85.71 k-fold

kNN + Jrip MA:
64.28-78.57

kNN + kNN MA: 57.14-75

kNN + Locally Weighted
Learning

MA:
67.86-82.14

kNN + LR MA: 75-82.14

kNN + SVM MA:
64.28-82.14

66 Wang, Z44. 2018b DK (J) CO Robotic BB 8 120 GRU-CNN MA FD: 100 LOSO

MA SA: 96

67 Zia, A18. 2018 I CO Open BB 41 103 ApEn + Cross ApEn + Nearest
Neighbour

MA: 78.7-86.8 k-fold, LOO

I Yes Open BB 41 103 kMC + ApEn + Cross ApEn +
Nearest Neighbour

MA: 93.2-94 k-fold, LOO

Tool Tracking

68 Korte, C47. 2021 DK No Open CS 5 60 LSTM-RNN - Experimental
validation

69 Lee, E.J19. 2019 EM Yes Lap. BB - 1500 Random walk + Deep CNN - Hold out

EM Yes Lap. CM - 100 Random walk + Deep CNN - -

70 Liu, J34. 2023 DK Yes Robotic CM - 950 CNN - LOO

71 Pachtrachai,
K30.

2021 DK Yes Robotic BB - 8502 CNN+ LSTM - Experimental
validation
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Table 1 (continued) | Overview of included studies, categorised in order of machine learning aim

Index Author Year Sensor Video Field Task Subjects Trials Machine Learning Model Performance
Metric (%)

Cross-
Validation

DK Yes Robotic CM - 15002 CNN+ LSTM - Experimental
validation

72 Qin, Y29. 2020 DK (J) Yes Robotic BB 8 39 CNN-LSTM+ LSTM Encoder
+ LSTM Decoder

ME: 4.72-10.14 LOUO

DK Yes Robotic CM 5 40 CNN-LSTM+ LSTM Encoder
+ LSTM Decoder

ME: 1.1-2.43 LOUO

73 Rocha, C.D31. 2019 DK Yes Robotic BB - 910 GMM+CNN MA: 99 Experimental
validation

DK Yes Robotic BB - 2737 GMM+CNN MA: 98.2 Experimental
validation

DK Yes Robotic CM - 481 GMM+CNN MA: 97 Experimental
validation

74 Shu, X56. 2021 DK No Robotic NCS - 1524 MLP ME: <1.5 Hold out

LSTM ME: <1.5

75 Sun, Z83. 2018 EM No Other NCS - 150 ANN - Experimental
validation

76 Wang, Z82. 2022 EM No Lap. BB 4 80 LSTM ME:
11.43-15.11

Hold out

77 Xu, W79. 2017 EM No Robotic NCS - 20000 GMR MA: 87.39-95 Hold out

kNN MA: 90.5-95.9

Extreme machine learning MA: 98.2

78 Zhao, H59. 2018 DK (J) Yes Robotic BB 8 67 PCA+DTW + Transition State
Clustering Dense
Convolutional Encoder-
Decoder Network

MA: 60.1-70.6 LOO

Undesirable Motion Filtration

79 Sang, H57. 2016 I+DK No Other NCS - Zero Phase Adaptive Fuzzy
Kalman Filter

- Experimental
validation

80 Tatinati, S95. 2015 I Yes Other NCS 3 6 Moving Window Least Squares
- SVM

MA: 71 Experimental
validation

81 Tatinati, S94. 2017 I Yes Other NCS 3 9 Moving Window Least Squares
- SVM

MA: 74 Experimental
validation

Multidimensional Robust
Extreme Learning Machine

MA: 78

Online sequential
Multidimensional Robust
Extreme Learning Machine

MA: 81

Other

82 Sabique,
P.V35.

2023 M+DK Yes Robotic BB - - PCA + Generalised
Discriminant Analysis +
RNN-LSTM

- Experimental
validation

PCA + Generalised
Discriminant Analysis +
CNN-LSTM

-

PCA+GDA + Encoder
network

-

83 Song, W80. 2006 M+ EM Yes Open BB - 120 Fuzzy NN - -

84 Su, H58. 2019 M+DK No Robotic NCS - 73776 ANN - Experimental
validation

An overview of the methodologies and technologies employed across different studies.
Sensor: DK device kinematics, (J) JHU-ISI Gesture and Skill Assessment Working Set dataset, I inertial, EM electromagnetic, Mmechanical, EMG electromyography. Video:CO context only. Field: Lap.
Laparoscopic. Task: BB basic bench-top, CS clinical simulation, NCS non-clinical simulation, CM clinical model.Machine Learning Model: SVM support vector machine, HMM hidden Markov model,
DTW dynamic time warping, kNN k-nearest neighbours, LASSO least absolute shrinkage and selection operator, RF random forest, LR logarithmic regression, LDA linear discriminant analysis, PCA
principal component analysis,MLPmultilayer perceptron, LSTM long short-term memory, Bi- bidirectional, ANN artificial neural network, kMC k-means clustering, DNN deep neural network, NN neural
network, CNN convolutional neural network, GRU gated recurrent unit, TCN temporal convolutional network, GMM Gaussian mixture model, CRF conditional random field,MISTmixed history, RNN
recurrent neural network,MS multi-stage, TCRN temporal convolutional recurrent network, SAX-VSM symbolic aggregate approximation vector space model,MARmultivariate autoregressive, SENet
squeeze-and-excitation network, GMRGaussian mixture regression, ApEn approximate entropy. Performance Metric:MAmean accuracy,MEmean error. Cross Validation: LOTO leave one trial out,
LOUO leave one user out, LOSO leave one super-trial out, LOO leave one out.
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(2) Electromagnetic (EM) systems: in 20 experiments, mostly using active
EM systems19,24,41,70–82, except for a passivemagnetic system83 and radio
frequency identification (RFID)84.

(3) Inertial (I) sensors: in18experiments, includingaccelerometers12,13,16,18,84–89

and inertial measurement units17,57,90,91.
(4) Mechanical (M) sensors: in 13 experiments, including

force33,35,36,50,58,80,85,92,93 and flex sensors16,71,90.
(5) Surface electromyography (EMG): in one study13.

Twelve experiments combined multiple NOMTS
types13,16,35,50,57,58,71,80,84,85,90, with mechanical16,35,50,58,71,80,85,90 and inertial13,16,57,84,85,90

sensors being the most frequently combined types. All combinations of
experimental designs may be found in Fig. 2.

Optical sensor data as an NOMTS supportive tool
Of the81experiment designs that didnotuse optical sensors as input forML
analysis, 47 used video recordings to provide context for NOMTS data
processing. The video recording served several purposes, including pro-
viding time-stamps, enabling third-party expertise evaluation, con-
textualising non-visual data, and facilitating manual annotation of
manoeuvres and gestures. Twenty-six experiments incorporated additional
optical sensors forMLanalysis, including red-green-blue (RGB) endoscopic
cameras34,37,39,40,44,45,68, RBG cameras aimed the subject18,20,24,35,69,80, and
infrared (IR) cameras94,95. Among these, 19 experiments required
manual annotation34,35,37,59,66,80. However, five experiments aimed to
train their algorithms to automatically segment image frames, using
their annotations as ground truth verification31,59,66. Two studies
trained their ML models exclusively on optical data before testing on
NOMTS data94,95 (Table 2).

NOMTS sensor placement
Sensorplacementvaried across taskswithin the studies, as detailed inTable 3,
with studies exploring relevant sensor placement combinations for their
tasks. One study highlighted the significance of shoulder joint metrics for
laparoscopic skill assessment87, while another identified the most relevant
sensors in a tracking glove for gesture and skill identification during tissue
dissection tasks16. Additionally, another used an ML model to determine
optimal EMG sensor placement for open, laparoscopic, and robotic tasks13.

When examining the influence of surgeon handedness, the dataset
showed apredominance of right-handedness: among 106 experiments, only
10 included left-handed surgeons, 48 deliberately excluded them, and 48
provided no information. However, two studies augmented their data by
hand inversion to simulate left-handed surgeons and pseudo-balance their
dataset24,26. Loukas et al. evaluated task recognition for both left and right
hands using a database consisting of right-handed individuals, revealing
superior performance on the right hand due to its higher activity level and
consequent abundance of data75. Two studies usedonly right-handed sensor
gloves for data collection16,90. Furthermore, 89 of the 106 experiments
analysed data from both hands, while 16 focused solely on one hand.

Sensor and data challenges
Several challenges were identified regarding sensor usage. Metallic inter-
ference affected data collection for both EM sensors71,76,80,82–84 and IMUs
usingmagnetometers17. Increasing thedistance betweenEMsensors and the
magnetic source led to increased tracking error83. Some studies used isola-
tion methods to limit EM sensor contact with metal71,80. Nguyen et al.
excluded magnetometer data from IMU analysis, favouring accelerometer
data over gyroscopic data for skill identification17. However, precise accel-
erometer, gyroscope, and magnetometer data are needed to compute roll,

Fig. 2 | Experiment configurations of the included
studies. Central layer represents surgical field.
Middle layer represents task type. External layer
represents sensor types and combinations: DK
device kinematic, EM electromagnetic, I inertial, M
mechanical, EMG electromyography.
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Table 2 | Optical data collection types and purpose in included studies

Index Author Year Optical Type Purpose

1 Ahmidi, N72. 2015 Kinect (RGB and IR) Annotate tool usage times

2 Ahmidi, N21. 2017 Robotic endoscope video Annotate gesture type

Robotic endoscope video Model training and validation

3 Albasri, S12. 2020 Robotic endoscope video Grade skill level

4 van Amsterdam, B63. 2019 Robotic endoscope video Annotate gesture type

5 van Amsterdam, B45. 2020 Robotic endoscope video Annotate gesture type

6 van Amsterdam, B22. 2022 Robotic endoscope video Annotate gesture type; Model training and validation

2022 Robotic endoscope video Annotate gesture type; Model training and validation

7 Brown, J.D85. 2017 Robotic endoscope video Grade skill level

8 Brown, K.C32. 2020 Robotic endoscope video Annotate start/stop times of tasks

9 Chen. A.B39. 2021 Robotic endoscope video Annotate start/stop times of tasks

10 Despinoy, F61. 2016 Robotic endoscope video Annotate gesture type

11 DiPietro, R14. 2019 Robotic endoscopic video Annotate manoeuvre type

Robotic endoscopic video Annotate gesture type

12 Ershad, M76. 2019 Videos of subject, video of task Crowdsourced stylistic labelling

13 Fard, M.J64. 2016 Robotic endoscope video Annotate gesture type

14 Fard, M.J53. 2018 Robotic endoscope video Grade skill level

15 Forestier, G15. 2018 Robotic endoscope video Annotate gesture type

Robotic endoscope video Annotate gesture type

16 Gao, Y23. 2016 Robotic endoscope video Annotate gesture type

Robotic endoscope video Annotate gesture type

17 Goldbraikh, A81. 2022 Videos of subject, video of task Annotate tool usage and gesture type

18 Goldbraikh, A24. 2024 Video of subject, video of task Annotate gesture and manoeuvre type

Video of subject, video of task Annotate gesture and manoeuvre type

Robotic endoscope video Annotate gesture and manoeuvre type

19 Hung, A.J68. 2022 Robotic endoscope video Annotate manoeuvre type; Grade skill level

20 Itzkovich, D25. 2019 Robotic endoscope video Annotate gesture type

Robotic endoscope video Annotate gesture type

21 Itzkovich, D26. 2022 Robotic endoscope video Annotate gesture type

Robotic endoscope video Annotate gesture type

Robotic endoscope video Annotate gesture type

22 Jiang, J73. 2017 Robotic endoscope video Annotate instrument trajectories; Annotate start/stop times of tasks

23 Kelly, J.D40. 2020 Laparoscopic video Grade skill level (via expert and crowdsourcing)

24 Khan, A86. 2020 Video of subject Annotate gesture type; Grade skill level

25 Lea, C65. 2016 Robotic endoscope video Annotate gesture type

26 Lee, E.J19. 2019 Laparoscopic video Model training and validation

Laparoscopic video Model training and validation

27 Liu, J34. 2023 Robotic endoscope video Annotation of tools; Model training and validation

28 Long, Y27. 2021 Robotic endoscope video Annotate gesture type; Model training and validation

Robotic endoscope video Annotate gesture type; Model training and validation

29 Loukas, C75. 2013 Video of task Annotate manoeuvre type

30 Loukas, C77. 2011 Video of task Assistance in interpretation of signals

31 Loukas, C78. 2013 Video of task Assistance in interpretation of signals; Annotate gesture type

32 Meißner, C84. 2014 Video of instrument tray, video of task Annotate active tool usage times; Annotate gesture type

33 Murali, A66. 2016 Robotic endoscope video Annotate gesture type; Model training and validation

34 Nguyen, X.A17. 2019 Video of task Grade skill level

35 Oquendo, Y.A71. 2018 Video of subject Grade skill level

36 Pachtrachai, K30. 2021 Robotic endoscope video Annotation of tools; Model training and validation

Robotic endoscope video Annotation of tools; Model training and validation

37 Peng, W62. 2019 Robotic virtual reality video Annotate gesture type

38 Qin, Y28. 2020 Robotic endoscope video Annotate gesture type; Model training and validation
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pitch, and yaw angles. Errors in these three propagate over time, causing a
phenomenonknownasdrift96. Sang et al. experienceddriftwith their IMU57,
and Brown et al. note the inability to estimate the yaw angle using accel-
eration data alone, suggesting future work with additional magnetometers
and gyroscopes85.

Uncorrelated noise was observed in EM sensors82,83 and IMUs57. Sun
et al. used an artificial neural network (ANN) to address random mea-
surement errors in EM sensors by directly incorporating the sensors’
intrinsic characteristics83. Acquisition errors were also noted with EM
sensors74, robotic kinematics52, and video cameras18.

EM71,flex71,90, and force58,80 sensors required calibration.Oquendo et al.
calibrated their EM and flex sensor after every five participants to ensure
correct positioning and angle recording71. Sbernini et al. chose to omit
calibration offlex sensor voltage to specific angles to save time, instead using
raw voltage measurements90. For force sensors, Song et al. used an electrical
scale for calibration80, while Su et al. used singular value decomposition58.

Loukas et al. found interpreting waveform non-optical data alone
challenging, preferring to have video recordings of the experiments to assist
in data interpretation75. Sensor data may lack clarity compared to visual
data, such as when identifying tools in use81. However, video data is also
limited by visibility, lighting, image background, and camera placement81.
An ML model combining video and EM data for tool tracking yielded
poorer results on an animal dataset than on a phantom dataset due to blood
obstruction of the video input19. Zhao et al. found kinematic data better for
clustering in tool trajectory segmentation, as video data has unclear detail
and less stability59. However, they found video data more necessary when
analysingnon-expert demonstrations.Murali et al. reported similarfindings
for surgical task segmentation66.

Some studies raised concerns aboutwearability andusability, reporting
issues such as sensor detachment18 and wire clutter16,87.

Machine learning methods
Several studies have explored a variety of ML methods and their combi-
nations. Among these, ANNswere themost popular (91 times), followed by
support vector machines (SVM) (26 times), and k-nearest neighbours
(kNN) (16 times). While SVMs have received consistent attention since
2010, recent researchhas increasingly focusedonANNsandother emerging
methods (Fig. 3), a trend also observed by Buchlak et al4. and Lam et al. 8.

The varied goals and outputs of these ML models have led to a wide
range of evaluation metrics being used by researchers. Mean accuracy was
reported in69.0%(58/84) of the studies primarily for skill assessment and/or
feature detection with only five exceptions31,59,79,94,95. Researchers also used
metrics such as mean error14,29,30,47,51,56,83,90, precision and
recall13,17,21,23,26,31,36,44,61,64,67,74,75,84, F-1 score13,17,19,22,24,26,31,34,44,45,61,64,74,81,88,93, root
mean square error29,35,57,58,79,83, sensitivity and specificity36,46,77,91, area under
the curve26,36,68,70,91,93, and Jaccard index18,19,34. In terms of validation, 82.1%
(69/84) of studies detailed their processes, with leave-one-user-out and
k-fold splitting being the most common (Table 1).

ML task: Skill assessment
Surgical skill assessment, which evaluates task execution by surgeons, is the
focus of most studies (32/84) (Table 1). Notably, 24 of these were published
after 2015.

To train ML methods, surgeon skill levels were established using var-
ious assessment measures, such as self-reported experience metrics such as
hours12,20,32,43,51,67 or years10,13,38,50 of experience, number of surgeries
performed39,41,73,87,89,92,93, or status as a student, resident, or surgeon46,70,72,90,91.
One study did not specify any criteria for skill48. Allen et al. found that some
of their included novices were classified as experts by the ML model70.
Similarly, two other studies found that the “misclassified” novices actually
possessed the skills to be considered expert46,87.

Table 2 (continued) | Optical data collection types and purpose in included studies

Index Author Year Optical Type Purpose

Robotic endoscope video Annotate gesture type; Model training and validation

39 Qin, Y29. 2020 Robotic endoscope video Annotate gesture type; Model training and validation

Robotic endoscope video Annotate gesture type; Model training and validation

40 Reiley, C.E60. 2010 Robotic endoscope video Annotate manoeuvre type

41 Rocha, C.D31. 2019 Robotic endoscope video Annotation of tools; Model training and validation

Robotic endoscope video Annotation of tools; Model training and validation

Robotic endoscope video Annotation of tools; Model training and validation

42 Rosen, J33. 2001 Video of task Annotate gesture type

43 Sabique, P.V35. 2023 Video of task Annotate tool motion; Model training and validation

44 Sewell, C69. 2008 Video of task Grade skill level

45 Song, W80. 2006 Video of task Model training and validation

46 Tatinati, S94. 2017 IR stylus Model training

47 Tatinati, S95. 2015 IR stylus Model training

48 Wang, Z.H43. 2018 Video of subject Grade skill level

49 Wang, Z44. 2018 Robotic endoscope video Annotate gesture type

50 Zhang, D20. 2020 Microscope video, video of task Annotate tool motion; Model training and validation

Robotic endoscope video Annotate manoeuvre type

51 Zhao, H59. 2018 Robotic endoscope video Annotation of tools; Model training and validation

52 Zheng, Y74. 2022 Video of task Grade skill level; Error and peg transfer counting; Annotate frames as “stressed” or
“normal”

53 Zia, A18. 2018 Video of task Annotate manoeuvre type

Video of task Model training and validation

54 Zia, A37. 2019 Endoscopic video Model training and validation

An overview of the optical data collection methods employed in the included studies, detailing their specific purposes within the experimental models.
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Table 3 | Included study sensor types, placement, and surgeon handedness inclusivity

Index Author Year Sensor Types Sensor Placement Single /Double-
handed

Left-
handed (n)

1 Ahmidi, N72. 2015 EM 1 EM on tool, 1 EM on patient head Single –

2 Ahmidi, N21. 2017 DK, RGB cam. Internal device recordings Double No

3 Albasri, S12. 2020 DK Internal device recordings Double No

Accelerometer 1 accelerometer per wrist Double Yes (1)

4 Allen, B70. 2010 EM 2 EM per laparoscopic arm Double –

5 van
Amsterdam, B63.

2019 DK Internal device recordings Double No

6 van
Amsterdam, B45.

2020 DK Internal device recordings Double No

7 van
Amsterdam, B22.

2022 DK, RGB cam. Internal device recordings Double No

DK, RGB cam. Internal device recordings Double –

8 Anh, N.X55. 2020 DK Internal device recordings Double No

9 Baghdadi, A50. 2020 DK, Force Internal device recordings, 1 force sensor between robotic
end-effector and forceps

Single –

10 Baghdadi, A36. 2023 Force Force sensing bipolar forceps Single –

11 Bissonnette, V46. 2019 DK Internal device recordings Double –

12 Brown, J.D85. 2017 Accelerometer, Force 1 accelerometer per robotic arm, 1 accelerometer on camera
arm; 1 force sensor under working surface

Double Yes (3)

13 Brown, K.C32. 2020 DK Internal device recordings Double –

14 Chen, A.B39. 2021 DK Internal device recordings Double –

15 Despinoy, F61. 2016 DK Internal device recordings Double –

16 DiPietro, R14. 2019 DK Internal device recordings Double No

Double No

17 Ershad, M76. 2019 EM 1 EM per shoulder, wrist, hand Double –

18 Fard, M.J64. 2016 DK Internal device recordings Double No

19 Fard, M.J53. 2018 DK Internal device recordings Double No

20 Forestier, G15. 2018 DK Internal device recordings Double No

Double No

Double –

21 Gao, Y23. 2016 DK Internal device recordings Double No

DK Internal device recordings Double No

22 Goldbraikh, A81. 2022 EM 1 EM per thumb, index, dorsal wrist Double No

23 Goldbraikh, A24. 2024 EM 1 EM per thumb, index, dorsal wrist Double Yes (1)

EM 1 EM per thumb, index, dorsal wrist Double Yes (6)

DK Internal device recordings Double Yes*

24 Horeman, T92. 2012 Force 1 force sensor under phantom Double No

25 Hung, A.J10. 2019 DK Internal device recordings Double –

26 Hung, A.J38. 2018 DK Internal device recordings Double –

27 Hung, A.J68. 2022 DK Internal device recordings Double –

28 Itzkovich, D25. 2019 DK Internal device recordings Double No

DK Internal device recordings Double –

29 Itzkovich, D26. 2022 DK Internal device recordings Double Yes*

DK Internal device recordings Double –

DK Internal device recordings Double Yes (-)

30 Jiang, J73. 2017 EM 1 EM per robotic instrument tip Double No

31 Jog, A67. 2011 DK Internal device recordings Double –

32 Kelly, J.D40. 2020 DK Internal device recordings Double –

33 Khan, A86. 2020 Accelerometer 1 accelerometer on forceps, 1 accelerometer on needle holder Double –

34 King, R.C16. 2009 Accelerometer,
Flex, Bend

Glove: 2 accelerometers on fingers 2-3, 1 accelerometer on
fingers 1, 4 and dorsal hand, 1 bend sensor in palm

Single No

Single No

35 Korte, C47. 2021 DK Internal device recordings Double –

36 Laverde, R88. 2018 IMU (Apple watch) 1 IMU (Apple watch) per wrist Double No
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Table 3 (continued) | Included study sensor types, placement, and surgeon handedness inclusivity

Index Author Year Sensor Types Sensor Placement Single /Double-
handed

Left-
handed (n)

37 Lea, C65. 2016 DK Internal device recordings Double No

38 Lee, E.J19. 2019 EM, RGB cam. 1 EM per laparoscopic handle, 1 EM on imaging tip of
ultrasound transducer

Double –

Double –

39 Li, K51. 2020 DK Internal device recordings Double No

40 Lin, H.C54. 2006 DK Internal device recordings Double –

41 Lin, Z89. 2011 IMU 1 IMU per head, back, upper arms, forearms, hands Double No

42 Lin, Z87. 2013 IMU 1 IMU per head, back, upper arms, forearms, hands Double Yes (2)

43 Liu, J34. 2023 DK, RGB cam. Internal device recordings Double –

44 Long, Y27. 2021 DK, RGB cam. Internal device recordings Double No

DK, RGB cam. Internal device recordings Double –

45 Loukas, C75. 2013 EM 1 EM per laparoscope handle Double No

46 Loukas, C77. 2011 EM 1 EM per laparoscopic handle Double No

47 Loukas, C78. 2013 EM 1 EM per laparoscopic handle Double No

48 Lyman, W.B52. 2021 DK Internal device recordings Double No

49 Megali, G48. 2006 DK Internal device recording Double –

50 Meißner, C84. 2014 RFID, Accelerometer 1 RFID tag per instrument (9 total), 1 accelerometer per dorsal
hand and wrist

Double No

51 Murali, A66. 2016 DK, RGB cam. Internal device recordings Double No

62 Nguyen, X.A17. 2019 IMU 1 IMU per dorsal hand Double Yes (1)

DK Internal device recordings Double No

53 Oquendo, Y.A71. 2018 EM, Flex 1 EM per laparoscopic tool, 1 EM on endoscope lens, 1 flex
sensor per laparoscopic handle

Double No

54 Pachtrachai, K30. 2021 DK, RGB cam. Internal device recordings Double No

DK, RGB cam. Internal device recordings Double No

55 Peng, W62. 2019 DK Internal device recordings Double No

56 Qin, Y28. 2020 DK, RGB cam. Internal device recordings Double No

DK, RGB cam. Internal device recordings Double –

57 Qin, Y29. 2020 DK, RGB cam. Internal device recordings Double No

DK, RGB cam. Internal device recordings Double –

58 Reiley, C.E60. 2010 DK Internal device recordings Double –

59 Rocha, C.D31. 2019 DK, RGB cam. Internal device recordings Double –

DK, RGB cam. Internal device recordings Double –

DK, RGB cam. Internal device recordings Double –

60 Rosen, J33. 2001 Force 1 force sensor on laparoscope handle, 1 force sensor under
surgeon’s thumb

Double No

61 Sabique, P.V35. 2023 DK, Force, RGB cam. Internal device recordings, 1 force sensor on surgical tool
holder

Single –

62 Sang, H57. 2016 DK, IMU Internal device recordings, 1 IMU on robotic control
manipulator

Single –

63 Sberini, L90. 2018 IMU, Flex Glove: 14 flex sensors on finger joints, 1 IMU on dorsal hand Single No

64 Sewell, C69. 2008 DK Internal device recordings (simulator) Double No

65 Shu, X56. 2021 DK Internal device recordings Double –

66 Soangra, R13. 2022 EMG, Accelerometer 1 EMG + accelerometer per bicep brachii, tricep brachii,
anterior deltoid, flexor carpi ulnaris, extensor carpi ulnaris,
thenar eminence

Double –

67 Song, W80. 2006 EM, Force, RGB cam. 1 EM of sheath of scalpel, 1 force sensor on scalpel handle Single –

68 Su, H58. 2019 DK, Force Internal device recordings, 1 force sensor at robotic end
effector

Single –

69 Sun, Z83. 2018 EM 8 EM arranged around the site Not applicable –

70 Tatinati, S95. 2015 Accelerometer, IR cam. IR stylus, 3 accelerometers on tremor compensation
instrument

Single –

71 Tatinati, S94. 2017 Accelerometer, IR cam. IR stylus, 4 accelerometers on tremor compensation
instrument

Single –

72 Topalli, D49. 2019 DK Internal device recordings Double No
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Eleven studies used objective Global Rating Scale (GRS) systems: the
Objective Structured Assessment of Technical Skills (OSATS) system71,86; a
modified OSATS12,43,53; the Global Evaluative Assessment of Robotic Skills
(GEARS)85; the Global Operative Assessment of Laparoscopic Skills
(GOALS)40; the Robotic Anastomosis Competence Evaluation tool
(RACE)68; a Cumulative Sum (CUSUM) analysis-based approach52; and
customscoring systems69,88.Wanget al. discovered thatMLmodelsmatched
GRS scores more accurately than self-reported skill levels43. However,
Brown et al. found grading each trial time-consuming and maintaining
calibration between reviewers challenging85. Kelly et al. only trained their
ML model on the top and bottom 15% of graded trials40.

Almost half of the experiments (47.2%) are conductedwithin a robotic
surgical context, ten in laparoscopic, and eight in open scenarios. Watson
et al. designed amicrosurgical vessel anastomosis task91. BBmodelswere the
most common surgical task (68.6%), particularly prevalent in robotic con-
texts (41.2%).

As shown inTable 1,motion tracking in18experimentsused internally
logged device kinematic data. Inertial sensors were used in nine

experiments, with five using accelerometers12,13,85–87 and four using inertial
measurement units88–91. Magnetic tracking systems were used in five
experiments, and EMG sensors in one. Additionally, six studies used
mechanical sensors,with four using themalongside other sensor types.Only
one study used video footage as additional training data for ML models.
However, 14 studies used video recordings to aid human analysis.

Across the 32 studies, 59 algorithm architectures were evaluated.
The most commonML algorithm was ANN, appearing 16 times. SVM
was used in eight architectures, while LR, RF, and kNN were each used
six times. An ensemble approach, combining multiple methods, was
noted in 59.4% of cases. Evaluation methods were detailed in 28 stu-
dies, with 25 reporting mean accuracy and two reporting mean error.
Twelve studies achieved a maximum accuracy rate exceeding 90%
(Table 1).

ML task: Feature detection
Feature detection, which identifies specific surgical tasks or motion com-
ponents, was the primary focus of 22 studies (Table 1). Except for one, all

Table 3 (continued) | Included study sensor types, placement, and surgeon handedness inclusivity

Index Author Year Sensor Types Sensor Placement Single /Double-
handed

Left-
handed (n)

73 Uemura, M41. 2018 EM 1 EM per laparoscopic tool tip Double –

74 Wang, Z.H43. 2018 DK Internal device recordings Double No

75 Wang, Z44. 2018 DK Internal device recordings Double No

76 Wang, Z82. 2022 EM 1 EM per instrument tip Double –

77 Watson, R.A91. 2014 IMU 1 IMU on dorsal right hand Single No

78 Xu, J93. 2023 Force 1 force sensor on thumb Single No

79 Xu, W79. 2017 EM 1 EM on manipulator tip Single –

80 Zhang, D20. 2020 DK, RGB cam. Internal device recordings Double –

DK Internal device recordings Double No

81 Zhao, H59. 2018 DK, RGB cam. Internal device recordings Double No

82 Zheng, Y74. 2022 EM 1 EM per laparoscopic handle Double Yes (1)

83 Zia, A37. 2019 DK, RGB cam. Internal device recordings Double –

84 Zia, A18. 2018 Accelerometer,
RBG cam.

Knot tying: 1 accelerometer per dorsal wrist Double –

Suturing: 1 accelerometer on dominant wrist, 1 accelerometer
on needle holder

Single –

This table provides an overviewof the sensor types and combinations used in the included studies, their placement, and information on the inclusion of both left and right hands, aswell as hand dominance.
Sensor Types and Placement: cam. Camera. Left-handed: (n) number of surgeons included, hyphen (-) no information supplied, asterisk * Not in original dataset, but achieved via data augmentation.

Fig. 3 | Trends in machine learning model usage
in time. Usage trend depiction of various machine
learning models, ranging from 2001 to 2024. HMM
hidden Markov model, PCA principal component
analysis, DTW dynamic time warping, LR logarith-
mic regression, LDA linear discriminant analysis,RF
random forest.
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studies used video, either to contextualise non-optical data or as training
input for ML models (Table 2).

RNNs, especially LSTM14,37,45,74,81, were the most commonly used ML
techniques in this context. Zheng et al. developed a method combining
attention-based LSTM to distinguish normal and stressed trials with a
simple LSTM to distinguish normal and stressed surgical movements74. Zia
et al. combined a CNN-LSTM for creating video feature matrices with a
separate LSTM for extracting kinematic features37. Two studies compared
differentRNNs for gesture identification14,81.Goldbraikh et al. suggested that
an ANN for non-optical data could be smaller and faster than one for video
data, facilitating easier real-time analysis81.

Only 14 studies used ML to break down surgical procedures into
actionable steps, with all but two15,16 falling into the feature detection
category14,37,45,54,66,75,81,84. This process, termed surgical process modelling,
involves detecting and segmenting surgical steps97.

Among the 18 papers reporting mean accuracy54,74,81,84, Peng et al.
achieved the highest at 97.5%, using a continuous HMM with DTW to
segment DK motion data into a labelled sequence of surgical gestures62.
Precision and recall were also evaluation metrics in six studies26,61,64,74,75,84.
Loukas et al. achieved the best results, with 89% precision and 94% recall,
focusing on surgical phase segmentation75.

ML task: Skill assessment and feature detection
This section of the systematic review covers 13 studies (Table 1).While skill
assessment remains the primary focus, interest in utilising feature detection
for skill evaluation is growing. Most experiments were conducted in a
robotic setting,withBB tasks representing 72.2%of experiment designs.The
most commonly used data sources were internal DK data and inertial
sensors.Video recordingswere utilised in 11 studies, but only one used them
as ML input data (Table 2).

Zia et al. used only the OSATS scale to determine surgeon skill level18

whereas Nguyen et al. initially categorised participants by the number of
procedures performed and then verified eligibility with the OSATS scale17.
Two studies use the number of hours/surgeries performed44,49, four used the
year of training or surgeon status15,36,77,78, and six did not specify how they
determined skill levels15,16,33,55,60,76. However, King et al. found novices were
more likely to be misclassified as experienced with each task attempt,
indicating a learning curve16.

Twenty-eight distinct ML architectures were employed, with 60.7%
(17/28) involving a feature detection algorithm followed by a skill classifier.
Eleven studies used different types of ANNs for feature detection, while 13
employed SVM as the skill classifier. King et al. used HMM for surgical
process modelling to classify specific surgical gestures in laparoscopy16, and
Forestier et al. used SAX-VSM on the JIGSAWS database to classify higher
level surgical manoeuvres15.

All studies reported mean accuracy except for two60,78, and only two
provided separate accuracy scores for feature detection and skill
assessment15,44. The remaining studies focused on identifying the best fea-
ture detection ML methods for accurate skill classification. Nguyen et al.
achieved the highest overall accuracy of 98.4% when evaluating data from
the JIGSAWS database17.

ML task: Tool segmentation and/or tracking
Tool segmentation and/or tracking, which involve accurately identifying
and locating surgical instruments within the operative field, are discussed in
11 papers (Table 1). Most studies were conducted in robotic settings,
focusing on BB or CM tasks with video input. In laparoscopic settings,
Wang et al. conducted BB tasks82, while Lee et al. conducted both BB and
CM tasks19. Three NCS used EM or DK sensors for tool localisation. All
studies used ML models involving ANNs, while one also used Gaussian
mixture and kNN regression methods79.

ML task: Undesirable motion filtration
Undesirable motion filtration algorithms aim to predict and remove det-
rimental surgical movement, such as tremors. Three studies focused on this

task (Table 1), all conducted through NCS of surgical motion. While all
utilised inertial sensors, one also included DK57. Two studies gathered
training data using infrared technology and validated their tremor estima-
tion and prediction algorithms with real-time accelerometer data94,95.

Sang et al. implemented a zero-phase adaptive fuzzy Kalman filter and
experimentally validated its effectiveness57. Tatinati et al. introduced a
moving window-based least squares SVM in 201595, later comparing it to a
multidimensional robust extreme learningmachine in 2017, achieving up to
81% accuracy94.

ML task: Other studies
The “other” category includes three studies with unique objectives not
covered by the previous descriptions (Table 1). Su et al. used an ANN to
provide robotic surgeons precise force feedback by measuring the force
between tools and tissue, compensating for gravity on the robotic end-
effector58. Song et al. used a fuzzy NN trained with video, force sensors, and
EM tracking inputs to achieve accurate haptic modelling and simulation of
surgical tissue cutting80. Sabique et al. used RNN methods with DK, force
sensors, and video to investigate dimensionality reduction techniques for
force estimation in robotic surgery35.

Quality Assessment
TheaverageMERSQI scorewas11.0,with scores ranging from9.5 to14.The
highest achievable score is 18. Many studies were limited in score by their
design as single-group studies conducted at a single institution, with out-
comes solely from a test setting. The full table of scores can be found in
Supplementary Table 1.

Discussion
This study reviewed the application of ML in analysing surgical motion
captured through NOMTS. The findings indicate rapid growth in ML
applications for surgical motion analysis and demonstrate the diverse
applicability of NOMTS. However, challenges persist in data availability,
practical implementation, and model development.

A critical constraint identified is the lack of large, open-source data-
bases. Only 14 experiments used databases with more than 25 participants
(Table 1). Most databases remain closed-source, hampering result valida-
tion and cross-study comparison. JIGSAWS, a widely-used open-source
database, enables comparative analysis. However, its limitation to eight
participants restricts the training and testing of ML models, particularly
deep learning architectures that require substantial data for effective
generalisation98.

The predominant reliance on BB task models, due to their ease of
execution and data collection, limits the applicability of ML in real surgical
contexts. While foundational, BB tasks fail to capture the complexity and
unpredictability of real surgical procedures. Nevertheless, there are pro-
mising applications in surgical environments: Brown et al. achieved accu-
racy rates exceeding 90% in porcine prostatectomy experiments32, and
Ahmidi et al. had similar success in septoplasty procedures72. Federated
learning could enhance these efforts by enabling the use of decentralised
data from multiple institutions while maintaining data privacy99. Future
research should prioritise developing larger, standardised, open-source
databases applicable to real surgical scenarios. This would enable more
robust training, benchmarking, and comparison of ML models across
diverse surgical environments.

Machine learning methods have shown potential in processing
NOMTS data, particularly in detecting subtle patterns in surgical motion
that are imperceptible to human observers. The multidimensional, time-
series nature of NOMTS data presents challenges for traditional analysis
methods. ML approaches like RNNs and transformers are particularly
valuable due to their ability to capture sequential dependencies and handle
unstructured information100.

Selecting appropriate ML models for NOMTS requires careful con-
sideration of data characteristics. RNNs are useful for capturing the
sequential nature of surgical motions101. CNNs, while traditionally used in
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image processing, can be adapted to handle spatial aspects of motion
data27,98. Recent developments in hybrid architectures, such as combining
CNNs for local feature extractionwithRNNs for global sequencemodelling,
have shown promise in addressing both spatial and temporal
dependencies37,102. Transformers offer advantages through parallel data
processing, mitigating latency issues common in sequential models, and
making them suitable for real-time surgical applications29. Additionally,
they can capture motion patterns over extended periods100. This is impor-
tant because predictive accuracy in surgery relies on recognising extended
sequences of motion rather than just the most recent ones.

Task-specific considerations also influence model selection. Con-
tinuous motion prediction benefits from RNNs or hybrid models, while
spatial relationship analysis may favour CNNs, such as in tracking the
position of instruments. Hybrid models that integrate CNNs and RNNs
provide the flexibility to handle both the spatial and temporal dimensions of
surgical motion data. For skill assessment, sliding-scale models that move
beyond binary classifications of novice or expert would enable more
nuanced assessments of surgical ability. Notable insights for trainee edu-
cation include observations that expert surgeons use certain motion classes
less frequently with greater separability between motions54, and that needle
driving tasks were more relevant for skill differentiation51. Furthermore,
subjective skill labelling canmisrepresent talented beginners and occasional
expert errors43,46,70,87, leading to inaccurately labelled data and reduced ML
model accuracy.

Preprocessing NOMTS data for use with ML models presents chal-
lenges. Sensors such as IMUs and EM sensors generate large volumes of
high-frequency data with inherent noise46,54,57,75,84,94,95. Techniques such as
Kalman filtering and down-sampling can help reduce noise and make the
data more manageable87, but challenges remain for real-time applications.

Surgical procedures generate data from various sources like IMUs, EM
sensors, and optical systems, each with different data formats and noise
characteristics. Integrating these multimodal data streams into a coherent
framework that supports real-time performance is challenging. Recent
advancements inML, especially transformer-based architectures, enable the
parallel processing of large volumes of multimodal data without sacrificing
accuracy or speed29,100. This capability is necessary formaintaining real-time
performance in NOMTS applications, as it preserves the temporal rela-
tionships across different data streams and ensures data synchronisation.

Despite advances in ML, the field still faces challenges related to
interpretability. Future research should rationalise decisions on ML model
architecture and hyperparameter tuning to enhance interpretability among
peers, promote collective advancement in the field, and ensure reproduci-
bility. Improved interpretability would increase human trust in the algo-
rithms. The field of Explainable Artificial Intelligence (XAI) is developing
methods to increase the transparency of supervisedML techniques103. In the
context of non-optical sensor time-series data, explainability techniques
predominantly target sequence classification models. However, there is
insufficient research addressing explainability in probabilistic regression
models104.

ML holds potential for integration into clinical practice. Further
development of training algorithms for future surgeons could reduce
training time and identify underdeveloped skills. Intelligent surgical systems
could also be developed as decision support tools, thereby reducing fatigue
and improving outcomes. An underexplored area is the use of ML for
surgical process modelling, which could reveal insights and patternsmissed
by humans, furthering understanding of these processes97. Utilising ML to
split tasks into smaller granularity levels is a first step. The JIGSAWS
database could be a good starting point as it provides labelled manoeuvres
and gestures14,15.

While ML can enhance surgical performance and reduce the required
training time, it should be viewed as an augmentation tool rather than a
replacement for clinical expertise. Despite rapid advancements in technol-
ogy and ML models, their utility is limited by the data they are trained on
and may struggle in new, unforeseen situations. Given the complexities of

medical practice, broader ML applications face challenges in effective
implementation.

Over a third of studies (30/84) show accuracy rates exceeding 90%,
demonstrating the potential effectiveness ofML in surgical motion analysis.
However, this also highlights the early stage of development in this field.

In 79/84 studies, at least one performance metric was reported, and
69/84 provided information on the validation process ofMLmodels. There
is notable diversity in assessment and validation techniques due to different
applications (Fig. 4). Studies focusing on skill assessment or feature detec-
tion typically report accuracy rates, while other categories use a wide range
of metrics, posing challenges for cross-model comparisons. Standardising
methods is challenging due to variations in database structures and the
different approaches required by ML models. A potential solution is stan-
dardised benchmark datasets, such as JIGSAWS, enabling researchers to
compare and evaluate models effectively.

NOMTSoffer benefits in surgicalmotion analysis. Prioritising research
to address implementation challenges and find effective solutions is
necessary to unlock their potential in surgical practice.

Synchronisation of multiple data sources is necessary for accurate,
reliable, and useful data. It allows precise event sequencing, time series
analysis, direct comparison betweenmeasurements, and facilitates temporal
correlation by linking data frommultiple sensors to specific events. This can
bedoneby aligning commonevents observed inmultipledata streams, but it
may lead to timestamp misalignment. Fixing desynchronisation post-hoc
may render data unusable if metadata is not available to synchronise
timestamps across multiple sensor streams. A reliable approach is syn-
chronisation upon acquisition105. This may motivate analysing robotic
device kinematic data, as the system outputs consistent timestamps.

Manual annotation of events was often required for useful data;
however, this was also seen for optical data18,19,37,80. Adding an optical data
source may help interpret as non-visual data, which is not easily
interpreted75.

Magnetic interference poses a challenge for IMUs and EM sensors,
particularly in environments with metal and electronic equipment like
operating rooms. Some studies isolated their tracking systems71,80 or avoided
using magnetometers to address this issue17,90. While reducing magnetic
interference in experimental settings may be feasible, addressing inaccura-
cies in clinical settings remains difficult. Future research should focus on
developing solutions to mitigate these inaccuracies.

Variation in sensor placement is observed across studies and even
within the same study18. Only three studies investigated the optimal sensor
placement to maximise accuracy and minimize data volume13,16,87. The lack
of consistency suggests further research into comparing sensor placement
within trials to determine the best positioning. Improper sensor attachment
could cause jerking and noise in the data18, highlighting the importance of
secure attachmentmethods for consistent and accurate sensor placement to
maintaindata quality. Excluding left-handeddata underminesnon-bias and
inclusivity, neglecting many left-handed or ambidextrous surgeons. Incor-
porating this data or using data augmentation techniques prevents biased
outcomes and enhances generalisation to real-life scenarios. It also enables
the development of more effective surgical tools and techniques, improving
patient outcomes.

Integrating NOMTS into surgical practice faces notable legal and
practical constraints. Devices used in operating rooms must undergo rig-
orous medical certification and not disrupt the surgical process. Incorpor-
ating NOMTS directly into surgical instruments, as seen in certain robotic
and laparoscopic devices10,37,38, may offer a solution. One study used a force-
sensing forcepswith regulatory approval36, andEMsystems are already used
in catheter procedures106 and experimentally in live surgery72, suggesting
that the adoption of NOMTS in surgery may be closer than anticipated.

Due to taxonomy variability within the ML field, not all relevant
publications may have been identified. Tomitigate this, the authors created
search terms with an information specialist, utilised multiple databases
spanning medical and technical domains, and explored references from
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included studies. As only English publications were included, potential
language bias may exist.

The possibility of publication bias should be noted, as significant and
positive work ismore likely to be published107,108. Research with poor results
often goes unpublished, possibly leading to an absence of failed attempts in
this review. Grey literature was excluded to maintain data quality109,
potentially omitting some valuable works. The scientific community should
publish failed attempts and conference presentations, as these contribute to
understanding in the field.

In conclusion, the integration of NOMTS and ML in surgical motion
analysis represents a promising frontier for surgical advancement. The
challenges outlinedby this review serve as a roadmap for future research and
highlight the importance of collaborative interdisciplinary efforts to shape
the future of surgical training and performance.

Methods
Search strategy
A comprehensive literature search was conducted across several databases:
Embase.com, MEDLINE ALL via Ovid, Web of Science Core Collection,
CINAHL via EBSCOhost, and Scopus. The search strategy was developed
and implemented by an experiencedmedical information specialist (WMB)
at Erasmus Medical Center on August 23 2024. It was based on three
primary concepts: (1) machine learning and artificial intelligence; (2)
motion tracking; (3) surgery and surgeon. The search query, detailed in
Supplementary Note 1, included relevant terms and their synonyms. All

retrieved records were imported into EndNote software, where duplicates
were removed using an established method110. Additionally, relevant sup-
plementary references identified through backward snowballing biblio-
graphic cross-referencing during the full-text screening stage were
considered for further analysis111. The reviewand researchprotocolwerenot
registered prior to study commencement.

Study selection
The inclusion criteria required the use of ML techniques to analyse surgical
motion data acquired through NOMTS, either independently or in con-
junction with optical tracking. In this work, surgical motion is defined as
deliberate hand and/or instrument movements performed by surgeons to
accomplish surgical tasks. This includes basic tasks like suturing and knot-
tying, simulations, and real-life surgeries.Original studies published in peer-
reviewed journals, written in English, and available in full-textwere assessed
for eligibility. Additionally, conference papers from three high-profile
medical engineering conferences were included: the International Con-
ference on Intelligent Robots and Systems, the International Conference on
Robotics and Automation, and the Conference of the IEEE Engineering in
Medicine and Biology Society. Reviews, case-reports, and commentaries
were excluded, as well as publications prior to the year 2000 due to their
dated relevance. The first reviewer (TZC) screened titles and abstracts to
determine eligibility, and full-text versions of selected studies were sought
for in-depth review. Any papers lacking an immediate determination of
eligibility underwent a secondary review by other reviewers (CT,MG, DV).

• Test set composed of one 
trial from every subject’s set 
of trials

• Training/testing repeated 
with different super-trials as 
the test set

• Results are averaged

+ Provides insight into performance on 
groups of trials

+ Considers dependencies between super-
trials

- Computationally and time-intensive for a 
large number of super-trials

- Not practical for datasets with few super-
trials

Leave one super-trial out

• Dataset divided into k folds
• Each fold maintains the 

same class proportions as 
the whole dataset

• Training/testing repeated k 
times with a different test 
fold 

• Results are averaged

+ Preserves class distribution in each fold
+ Reduces risk of bias in imbalanced 

datasets where class representation is 
relevant

- Computationally and time-intensive for 
large k values

- May be less suitable for small datasets 
with limited samples of a class

Stratified k-fold

• Test set composed of one 
trial

• Training/testing repeated 
with different trials as the 
test set

• Results are averaged

+ Provides insight into performance at the 
trial level

+ Considers dependencies between trials

- Computationally and time-intensive for a 
large number of trials

- Not practical for datasets with few trials

Leave one trial out

• Dataset divided into k folds
• Each fold maintains the 

same class proportions as 
the whole dataset

• Training/testing repeated k 
times with a different test 
fold 

• Results are averaged

+ More reliable due to multiple iterations
+ Better use of data for training/testing
+ Suitable for a large range of dataset 

sizes

- Computationally and time-intensive for 
large k values

- Less suitable for very imbalanced 
datasets

k-fold

• Dataset divided into one 
training and test set, 
typically 70:30

• Model trained on training 
set

• Model tested on test set

+ Simple and easy to implement
+ Suitable for large datasets
+ Computationally efficient
+ Useful for initial model assessment

- Dataset is evaluated only once
- Training set may not represent testing 

set
- Not ideal to evaluate model robustness

Hold out

• n samples in the dataset
• One sample is the test set, 

the rest are the training set
• Training/testing repeated n 

times with a different 
sample as the test

• Results are averaged

+ Uses all samples for training and testing
+ Useful for small datasets
+ Evaluates model performance in 

individual data points

- Computationally and time-intensive
- Not practical for large datasets

Leave one out

• Test set composed of trials 
from a specific subject

• Training/testing repeated 
with different subjects as 
the test set

• Results are averaged

+ Accounts for subject-specific variations

- Computationally and time-intensive for a 
large number of subjects

- Not practical for datasets with few 
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Fig. 4 | Cross-validation techniques. Cross-validation techniques presented as
technique description, (plus sign +) advantages, and (minus sign -) disadvantages.
Consists of hold out17,19,28,31,33,43,44,46,51,59,73,82,85, k-fold10,15,18,27,37,42,49,52,53,57,70,79,84,89,91,

stratified k-fold29, leave-one-out21,35,37,49,62,64,72,87,88,90,92,93,95, leave one user
out18,20,23,31,34,35,39,41,42,48,56,68,74,75,77,89,96, leave one trial out26,75,89, leave one super-trial
out26,35,36,38,39,46,47,56,58.
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Data extraction process
The primary objective of the systematic review was to outline the types and
applications of MLmodels using NOMTS for surgical motion analysis and
to pinpoint future directions for the field, addressing any challenges iden-
tified. Secondary objectives included identifying the surgical approach,
setting, procedure type, and dataset composition. Additionally, the study
aimed to identify the roles of optical sensors when used alongside NOMTS,
evaluate the effectiveness of ML models in achieving their tasks, and
document the performance metrics and cross-validation techniques
employed. All study characteristics and outcome measures were extracted
by the first reviewer (TZC).

Quality assessment
The Medical Education Research Study Quality Instrument (MERSQI)112

was used for quality and risk of bias assessment. The tool consists of six
domains of study quality: (1) study design, (2) sampling, (3) type of data, (4)
validity of evaluation instrument, (5) data analysis, (6) outcomes. Each
domain has amaximum score of 3, leading to an overall maximum score of
18. The included articles were scored by the first reviewer (TZC).

Data availability
The data extracted during the current study is available from the corre-
sponding author upon reasonable request.

Code availability
No code was used for this study.
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