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Abstract 

This thesis project developed an alternative PM2.5 concentration prediction model and early 

warning system of extreme air pollution based on the long short-term memory (LSTM) and 

achieved satisfying performance. To research more deeply, we divided the task into two parts. 

The first task was predicting the PM2.5 concentration of next 24 hours and another one was 

building early warning system of extreme air pollution of next 12 hours.  

To solve the first task, we started from the 1-hour prediction problem, that was predicting PM2.5 

of next hour based on the last hours’ data. We did parameter optimization to derive the best 

network architecture and we got a RMSE of 19.7863. We then successfully built 24-hour 

prediction model that was predicting PM2.5 concentration of next 24 hours according to the 

optimal 1-hour prediction model. The proposed 24-hour prediction model exhibited satisfactory 

performance, including the 13-24 h prediction task which is predicting the mean PM2.5 

concentration among next 13-24 hours (RMSE=49.41). 

Although we got a satisfying RMSE for the PM2.5 prediction problem, we didn’t get accurate 

prediction for extreme conditions and that’s why we continued to focus on the second task. We 

regarded the highest PM2.5 value among 12 hours as the extreme air pollution of this period 

and we divided the warning level into 4 parts. Then we built the early warning system based on 

the LSTM to predict the warning level of highest PM2.5 value of next 12 hours. As indicated 

by the ACC and AUC, our LSTM model achieved sound performance (ACC=86.7%, 

AUC=0.837).  

To improve the prediction performance, we focused on several model optimization techniques 

for the 1-hour prediction model and each technique has effectively improved the accuracy. 

Moreover, we combined these optimization methods together, which leaded to the lowest 

RMSE of 14.1937. The combined optimization method performed better than any single 

optimization method, which suggested that we can use some effective optimization methods 

together to improve the prediction accuracy of LSTM model. In addition, we also compared 

our model with the random forest (RF) model and the comparison result proved that LSTM 

network worked better for both tasks. 
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1. Introduction 

1.1 Research problem  

With the growth of economy, air pollution is gradually increasing in many developing areas 

which leads to the change of climate and threatens human survival. Air pollutants have 

significant influence on the natural environment, and could also harm vegetation and 

monuments[1]. In addition to ordinary air pollution, the phenomenon of extreme air pollution 

(in our thesis project, we define extreme air pollution as the air condition with a very high value 

of PM2.5) has also become more frequent in recent years. Extreme air pollution highly threatens 

people health and economic development. Thus we need to build a reliable PM2.5 predicting 

system and to set up an early warning system of the extreme air pollution.  

Accuracy and efficiency are especially important in the prediction of PM2.5 and there has been 

a lot of improvements in research on air pollution prediction. However, existing global or 

national PM2.5 forecast models are not able to provide sufficient details and accuracy for local 

areas, often a city of size 10km by 10km is only one grid point in the model. What’s more, the 

accurate prediction on the extreme air pollution is still a research challenge and worth 

studying[2-3]. 

Prediction methods can be applied to many cases [4-6] and there are mainly two type of methods: 

numerical models based on Partial Differential Equations (PDEs) and statistical models[7]. 

Apart from traditional prediction methods, artificial intelligence (AI) has been used in 

forecasting problems and achieves outstanding performance[8]. AI and deep learning algorithms 

can process high-dimensional information cross a variety of disciplines. Applying AI 

techniques can effectively improve prediction skill for air pollution and extreme air pollution[2-

3,8]. Besides, deep learning provides many outstanding performance, like easily dealing with 

extensive data and increasing the chance of reaching accuracy with the greater degree of 

precision. 

 and  models are two kinds 

of representative algorithms in AI methods. However, in the training process of RNN, the 

 appears which greatly restricts the ability of model (see 

further explanation in section 1.2).  A special model,  is developed to overcome 

Recurrent neural network RNN( ) long short- term memory LSTM( )

gradient disappearing phenomenon

RNN LSTM
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the shortcomings of .  and traditional  exhibit outstanding results for time 

series forecasting cases[9], thus are especially suitable for  concentration prediction tasks. 

We will build a prediction model for  concentration and build an early warning system 

of extreme air pollution based on model in our thesis.   

1.2 Previous research 

In recent years, the research on air pollution forecasting methods has achieved some progress. 

Numerical models based on PDEs simulate weather patterns and statistical methods give 

prediction mainly based on the corresponding historical data [10].  

For the numerical models based on PDEs, the Chemical Transport Model (CTM)[11], CMAQ [12] 

and WRFChem[13] has been applied to predict the air pollution. Based on the CTM model, a lot 

of software were developed to make prediction for gas diffusion, climate change and so on. In 

order to simulate the diffusion and chemical change of aerial contaminant, the LOTOS-EUROS 

CTM is established in Holland and is widely applied in Europe[14]. The CTM method can be 

used with a small amount of training samples and it is able to predict the density of contaminant 

for the area without observatories. However, the prediction precision is strongly depending on 

the information quality and magnitude of the problem. Although these models give clear 

simulation of dispersion, advanced physical-chemistry knowledge is required for most of these 

models for the sake of reliability[15].  

For statistical methodology, the random forest model (RF)[16], the multi-linear regression 

(MLR)[17], the support vector regression (SVR)[18], neural network (NN) [19] and hybrid 

methods[20] are broadly utilized for predicting the extent of contaminant. In these methods, NN 

is broadly employed in current research and typically produces good results. NN can deal with 

nonlinear problems easily and has high efficiency and flexibility. Moreover, many variants of 

NN emerged which significantly broaden the range of application. Representative methods 

involve the convolutional neural network (CNN)[21], back propagation neural network 

(BPNN)[22], multilayer perceptron (MLP)[23], general regression neural network (GRNN) [24] 

and recurrent neural network (RNN)[25]. 

Conventional NN has a simple connection structure where each processing vector is 

independent from one another. However, to predict the air quality in a short period ahead, the 

current status of air quality is very likely to be informative. RNN can deal with the same 

problem for each unit within the recurrent structure and past calculation will influence the next 

RNN LSTM RNN

PM2.5

PM2.5

LSTM
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operation[26]. Combining with the variational trend of air pollution, RNN is especially suitable 

for processing time series data and discovering potential principle[27]. Previous researches also 

show the applicability of RNN on pollution forecast[28,29].  

However, in the training process of RNN, the calculated gradients which are important for the 

parameter updates always exponentially increase or decrease. Therefore, the ability of RNN for 

simulating long-term data is restricted, which affects the performance of RNN for time series 

prediction. Unlike traditional RNN, as a special variant of RNN, LSTM has capacity of 

modelling long-range data and doesn’t have the gradients decreasing problems[30]. This 

advantage is particularly essential for modelling the dispersion of aerial contaminant.  

Recently, there are many successful application of LSTM model including stock pricing 

forecasting[30], photovoltaic power forecasting[31], earthquake prediction[32], etc. For the 

prediction of air quality, Sak[33] utilized LSTM method to predict the hazards of pollutants. 

However, they didn’t predict the specific density of air pollutants and only focused on the 

forecasting of hazard level. Besides, they gave forecasts only for single observation station and 

didn’t analyse the correlation among different areas. 

To overcome these drawbacks and improve the prediction performance, Xiang Li[34] proposed 

a LSTM based method which successfully predicts the PM2.5 concentrations for next 24h. In 

order to derive an accurate prediction, they divided the next 24 h into 6 time lags (1h,2h,3h,4-

6h,7-12h,13-24h). They built the prediction model separately and forecast the average density 

of pollutants for each period. The proposed model exhibited a root mean square error (RMSE) 

of 12.60 for 1h prediction tasks and they got a RMSE of 41.94 for 13-24h prediction tasks. 

Compared with their experiments on traditional method (RMSE of SVR is 22.04, RMSE of 

ARMA is 24.40) and traditional neural network (RMSE is 16.19), the result of LSTM is 

satisfactory.  

However, their research did not consider three issues: 1) the prediction performance on the 

extreme air pollution. Thus, in the evaluation of the model they also neglected the prediction 

error on the extreme air pollution (high peak value of PM2.5 concentration which are most 

relevant because they have large impact on human life) 2) in the construction of LSTM network 

architecture, they used the default parameters for simplicity and built model with fixed network 

structure without a scientific explanation and validation. 3) optimization techniques to improve 

the model performance which is particularly important because of the restricted amount of 

historical datasets available for the modelling.  
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1.3 Thesis objective 

Based on the literature review and discussions in section 1.2, this thesis project will develop an 

alternative methodology for PM2.5 concentration prediction and in particular focusing on 

extreme air pollution by designing an LSTM based system. It should be able to learn inherent 

principle from a large number of variables and also performs well for extreme air pollution. 

More specifically, we will focus on the following research targets: 

(1) build a basic air quality prediction model based on the LSTM 

(2) investigate the influence of model structure and data structure on the prediction performance 

including the basic and extreme air pollution conditions 

(3) compare the performance of LSTM with other method (Random Forest) 

(4) optimise the model by optimization techniques including neural network dropout and 

decreasing learning rate 

(5) finally, build an air pollution prediction and early-warning system of extreme condition 

based on the LSTM 
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2. Introduction to RNN and LSTM 

In this chapter, we will introduce the theoretical basis of RNN and LSTM which are important 

foundation to build the PM2.5 concentration prediction model. We will start from the network 

structure and the recurrent process in the RNN. After analysing the advantages and 

disadvantages of RNN, we will introduce the LSTM model and discuss the difference and the 

improvements compared with RNN. Then we will introduce the whole process from the input 

vector xt to the output vector ht when a single LSTM unit gets the input vector xt at timestep t. 

Finally, we will show how the back propagation through time (BPTT) and gradient descent (GD) 

are used to update parameters and give better predictions.  

2.1 Nomenclatures 

Table 1 is the description of some important symbols which are involved in this thesis project. 

Table 1. Description of symbols 

Symbol Description 

 Input of a LSTM 

 Output of a LSTM 

  

tanh  

 Forget gate’s activation vector 

 Weight matrix of forget gate 

 Bias of forget gate 

 Input gate’s activation vector 

 Weight matrix of input gate 

 Bias of input gate 

 Candidate of cell state  

 Learning rate 

xt ∈R
d

ht ∈R
h

σ σ x( ) = 1
1+ e− x

tanh x( ) = 2σ 2x( )−1= 2
1+ e−2x

−1

ft ∈R
h

Wf ∈R
h× h+d( )

bf ∈R
h

it ∈R
h

Wi ∈R
h× h+d( )

bi ∈R
h

!ct ∈R
h ct ∈R

h

γ
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 Weight matrix of cell state 

 Bias of cell state 

 Cell state vector 

 Output gate’s activation vector 

 Weight matrix of output gate 

 Bias vector of output gate 

 Multiplication by elements 

 

2.2 RNN 

As mentioned above, we first introduce the model structure and properties of RNN. The idea 

behind RNN is to utilize the information within sequences. For a conventional NN, it is assumed 

that all input vectors are independent and similar assumptions are applicable for outputs as well. 

However, for many real-world problems, these assumptions are unrealistic. We better know the 

previous air pollution concentration if we need to forecast the air pollutant concentration at the 

next timestep. RNN is called recurrent because the same task is performed for each element of 

the series and the output depends on past calculations.  

 

Fig. 1. RNN and its unfolding form 

Fig. 1 presents the structure of RNN and its unrolled form. The computations happened per 

timestep are as followings[31]: 

1) xt represents the input at timestep t. In the PM2.5 concentration prediction tasks, xt 

should provide the information like PM2.5 value and wind direction at time t which we 

think is likely to be helpful to forecast the PM2.5 values at time t +1. 

2) st refers to the hidden state at timestep t, which is designed to ‘memory’ the information. 

In timestep t, its hidden state st is calculated according to the hidden state at timestep  

WC ∈R
h× h+d( )

bC ∈R
h

ct ∈R
h

ot ∈R
h

Wo ∈R
h× h+d( )

bo ∈R
h

∗
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t-1 (st-1) and the input at timestep t (xt). That is, st = f (Uxt+Wst-1). In general, function f 

mentioned here is a nonlinear function such as sigmoid or ReLU. As for the first hidden 

state s-1, it is usually set as zero for initialization. 

3) ot corresponds to the output at timestep t. In the task of PM2.5 concentration prediction, 

it would be the predicted PM2.5 concentration at time t. Ot =g(Vst). Typically, the 

function g is a nonlinear function such as sigmoid or ReLU. 

Through unrolling, it is shown that a RNN can be used to deal with time series. Another 

perspective of RNN is that they are capable to extract information obtained so far by means of  

“memory”. In the PM2.5 concentration prediction tasks, this “memory” can be regarded as the 

information about the past changes in PM2.5 and other data we input to the model like wind 

direction or temperature. Theoretically, RNN is able to “memory” information in arbitrarily 

long series, but practically the length is restricted to just a few timesteps. 

2.3 LSTM 

LSTM is a branch of RNN and is specially developed to overcome the gradient decreasing 

problem that RNN face. Compared with RNN, LSTM also has the chain structure but the 

module inside is replaced with a different setting. Since RNN is sensitive for short term memory 

and insensitive for long term memory, LSTM adds a special cell state C to store the long term 

memory to address the problems. 

 

 

Fig. 2. A sketch for the LSTM structure. Hidden layer h and cell state c are included in the red 

solid box which is called a LSTM unit.  

Fig. 2 is a sketch for the LSTM structure and the red solid box in the figure is called a LSTM 

unit. We can see that at time t there are 3 input vectors ( ) and 2 output vectors 

( ) for the LSTM unit. Within the LSTM unit, the green cycle is called the cell state 

xt ,ht−1 and ct−1
ht and ct
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which is the key part for this unit as well as for the whole LSTM structure. Gates are a special 

way for the LSTM unit to optionally let information through. Fig. 2 is just a sketch for the 

LSTM and the network structure within a single LSTM unit is not as simple as it looks in the 

figure. In fact, there is a complex network structure within the LSTM unit and it uses three type 

of gates to protect and control itself.  

In the following part, we will introduce the network structure within a single LSTM unit which 

are important theoretical basis for the LSTM model we built in next chapter. Moreover, in the 

training process of the general LSTM networks, the Back-propagation Through Time (BPTT) 

algorithm and Gradient Descent (GD) are used to update weights. Although BPTT and GD are 

used in the whole LSTM model, the principle and process are same for each single part of the 

LSTM network. For this reason, we will just start from the forward propagation for a single 

LSTM unit to introduce the LSTM unit structure and the principle of BPTT. After that we will 

discuss the back propagation of BPTT within a single LSTM unit and the GD method for 

parameter updates.  

2.3.1 Forward propagation 

BPTT involves forward propagation and back propagation and this algorithm is widely used in 

many type of neural networks. The forward propagation can be considered as the propagation 

of input data through the network and we will have an output after this process. Then we will 

compare the output with the value we want and calculate the error. To reduce this error, we need 

give the feedback to the network and change parameters of the network (parameters are shown 

in Table 2 of section 2.3.2). That is why we use back propagation to propagate the error and use 

GD to find the best way to change parameters to reduce the error. By repeating this forward and 

back propagation, we can improve the prediction performance step by step. This repeating 

process is usually called the training process of the model while the dataset used for modelling 

are training dataset.  

We now start from the forward propagation to introduce the training process for a single LSTM 

unit. We will explain how the LSTM works with the special cell state and three gates when it 

receives the input data x = (x1, ..., xT ) at time t. Generally speaking, LSTM uses 2 gates to 

control the contents of cell state . One is the forget gate that is designed to decide how much 

of  is retained for . The other is the input gate, which determines how much of the is 

saved to . Then LSTM uses 1 gate that is output gate to control how many information of 

is output to . 

Ct

Ct−1 Ct xt

Ct Ct

ht
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(1) Forget gate  

Firstly, the LSTM determines what information will be forgotten. In the PM2.5 concentration 

prediction tasks, not all the data about the past are important and we need to forget some 

unimportant information, which is decided by a sigmoid layer, namely the forget gate layer.  

 

Fig. 3. Forget gate in LSTM 

In Fig. 3, [.,.] represents the vector embedding operation that combines 2 vectors to a single 

vector. And the corresponding formula of forget gate is shown in equation (1). 

 (1) 

In equation (1),    is the output of a LSTM at timestep t -1 and   is the air 

condition received by the LSTM at timestep t.  is the weight matrix of forget gate 

and is the bias of forget gate. Moreover, to make it easier to understand, we can think 

that  is embedded by two weight matrix, which are  and . We do this 

representation because we will use the  in the following part of parameter updating. 

Besides,  refers to the sigmoid function 

ft =σ (Wf ⋅[ht−1, xt ]+ bf )

=σ ([Wf ]
ht−1
xt

⎡

⎣
⎢

⎤

⎦
⎥ + bf )

=σ ([Wfh Wfx ]
ht−1
xt

⎡

⎣
⎢

⎤

⎦
⎥ + bf )

=σ Wfhht−1 +Wfxxt + bf( )
ht−1 ∈R

h xt ∈R
d

Wf ∈R
h× h+d( )

bf ∈R
h

Wf Wfh ∈R
h×h Wfx ∈R

h×d

Wfh ,Wfx

σ
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 (2) 

and  is the forget gate’s activation vector.  

(2) Input gate and candidate cell state  

Secondly, the LSTM determines what new information will be stored. If we want to forecast 

the value of PM2.5 including the extreme air pollution, we have to store the important 

information about the past. This is achieved by two parts. First, the input gate layer determines 

which value will be updated and is shown in equation (3), 

 (3) 

in which , and are activation vector, weight matrix and bias in the 

input gate respectively. Then we calculate the candidate cell state which is calculated by 

the previous time output and current input and describes current input status. 

 (4) 

 Fig. 4 describes the calculation of candidate cell state and input gate. 

 

Fig. 4. Input gate and candidate cell state 

(3) Cell state   

Now we calculate the cell state   as equation (6) in which   represents multiplication by 

elements as equation (5).  

σ x( ) = 1
1+ e− x

ft ∈R
h

!ct

it =σ (Wi ⋅[ht−1, xt ]+ bi )
=σ Wihht−1 +Wixxt + bi( )

it ∈R
h Wi ∈R

h× h+d( ) bi ∈R
h

!ct ∈R
h

!Ct = tanh WC ⋅[ht−1, xt ]+ bC( )
= tanh WChht−1 +WCxxt + bC( )

Ct

Ct ∗



 

 11 

 (5) 

We first multiply the old state by  to forget the information we need to forget. Continually, w 

is added, which shows how many information we wanted to learn from candidate cell 

state .  

 (6) 

Fig. 5 shows the calculation of . 

 

Fig. 5. Calculation of  

By equation (6), we combine the current candidate memory with the long term memory 

together and have a new cell state . Through the control of forget gate and input gate,  can 

save the information about long time ago and avoid the entering of insignificant information to 

the current memory.  

(4) Output gate 

In the end, the LSTM determines what will be outputted. Equation (7) shows the calculation of 

the output gate and is named the activation of the output gate. 

 (7) 

a∗b =

a1
a2
a3
!
an

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

∗

b1
b2
b3
!
bn

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=

a1b1
a2b2
a3b3
!
anbn

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

ft

it ∗ !Ct

!Ct

Ct = ft ∗Ct−1 + it ∗ !Ct

Ct

Ct

!Ct Ct−1

Ct Ct

ot ∈R
h

ot =σ (Wo ⋅[ht−1, xt ]+ bo )
=σ Wohht−1 +Woxxt + bo( )
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The final output is obtained by combining the output gate’s activation vector and the 

cell state . 

 (8) 

Equation (8) shows the calculation of the final output vector of the LSTM unit. And Fig. 6 

shows the calculation of the final output. 

 

 

Fig. 6. Output gate and final output  

We can also see the whole forward calculation process in Fig. 6. Now we have the value of each 

neural units of LSTM ( ) and we need to do a back propagation to know the 

errors of each neural units which provides essential information for parameters updating.  

2.3.2 Back propagation 

There are 8 type of parameters need to be trained and updated, which are given in Table 2.  

Table 2. Parameters need to be trained in LSTM 

Parameter Description Parameter Description 

 weight matrix of forget gate  bias of forget gate 

 weight matrix of input gate  bias of input gate 

 weight matrix of cell state  bias of cell state 

 weight matrix of output gate  bias of output gate 

ht ∈R
h ot

ct

ht = ot ∗ tanh ct( )

ht

ft ,it ,ct ,ot and ht

Wf = [Wfh Wfx ] bf

Wi = [Wih Wix ] bi
Wc = [Wch Wcx ] bc

Wo = [Woh Wox ] bo
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During the back propagation, we will make a comparison between the output values and the 

expected results and then evaluate their errors. Then the derivatives of error function about the 

network weights will be calculated and we will update the weights to minimize the error. 

(1) Back propagation of error term through time  

At timestep t, the output of a LSTM is . We define the error term at time t as 

 (9) 

In which E is loss function. In PM2.5 prediction tasks, loss function is normally taken as mean 

square error (MSE) to minimize the expected loss. In our thesis, we take MSE as the loss 

function. 

 (10) 

In equation (10), yi
* is the real PM2.5 value and yi is the calculated PM2.5 value and n is the 

number of test samples. Back propagation of error term through time means we want to 

calculate the error term of previous time . Through mathematical derivation, we can prove 

that can be calculated by equation (11). 

 (11) 

Equation (12) to (15) are the definition of . 

 (12) 

 (13) 

 (14) 

 (15) 

Equation (11) (12) are the formulas to achieve back propagation of error term through time, and 

we can calculate the error term at time k. 

 (16) 

 

 

ht δ t

δ t =
def ∂E
∂ht

MSE = 1
n

yi − yi
*( )2

i=1

n

∑

δ t−1

δ t−1

δ t−1 = δ f , t
T Wfh +δ i, t

T Wih +δ c, t
T Wch +δ o, t

T Woh

δ f , t
T ,δ i, t

T ,δ c, t
T and δ o, t

T

δ f , t
T = δ t

T ∗ot ∗ 1− tanh ct( )2( )∗ct−1 ∗ ft ∗ 1− ft( )

δ i, t
T = δ t

T ∗ot ∗ 1− tanh ct( )2( )∗ !ct ∗ itt ∗ 1− it( )

δ c, t
T = δ t

T ∗ot ∗ 1− tanh ct( )2( )∗ itt ∗ 1− !ct2( )
δ o, t
T = δ t

T ∗ tanh ct( )∗ot ∗ 1− ot( )

δ k
T = δ f , j

T Wfh +δ i, j
T Wih +δ c, j

T Wch +δ o, j
T Woh( )

j=k

t−1

∏
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(2) Back propagation of error term through layer  

Assume current layer is the l th layer, then we can prove that the error term of l-1 layer can be 

calculated by equation (17). 

 (17) 

In equation (17), represents the activation function of layer l-1 and is the weighted 

sum of input to the layer l-1. 

(3) Calculation of gradient 

Based on the error term, the gradient can be calculated with equation (18) to (25).  

 
(18) 

 
(19) 

 
(20) 

 
(21) 

 
(22) 

 
(23) 

 
(24) 

 
(25) 

After we have the gradient of the weight, we will introduce how to use gradient descent to adjust 

the weights to minimize the error.  

2.3.3 Gradient Descent (GD)  

We want to minimize the loss function to have a better prediction and we already calculate the 

gradient, now we use Gradient Descent (GD) to do the parameter updates. GD as an 

optimization method is usually applied to search for the coefficients that AI algorithms need to 

δ t
l−1 = δ f , t

T Wfx +δ i, t
T Wix +δ c, t

T Wcx +δ o, t
T Wox( )∗ f l−1 nettl−1( )

f l−1 nett
l−1

∂E
∂Wfh

= δ f , jhj−1
T

j=1

t

∑

∂E
∂Wih

= δ i, jhj−1
T

j=1

t

∑

∂E
∂Wch

= δ c, jhj−1
T

j=1

t

∑

∂E
∂Woh

= δ o, jhj−1
T

j=1

t

∑

∂E
∂bf

= δ f , j
j=1

t

∑

∂E
∂bi

= δ i, j
j=1

t

∑

∂E
∂bc

= δ c, j
j=1

t

∑

∂E
∂bc

= δ c, j
j=1

t

∑
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determine. The target of GD is to find the parameters which can minimize the objective function 

on the train data. We will first introduce the basis princple of GD, then we will introduce the 

mini-batch ADAM, which is the varients of GD that we will used in this thesis project. 

 

 

Fig. 7. Minimizing cost function J(w) by gradient descent 

Fig. 7 shows the main idea of gradient descent for a single variable function J(w). More 

commonly, for a function E(x) with several variables, it is assumed that E(x) is known and 

differentiable in the neighbourhood of a point . E(x) declines fastest in the reverse direction 

of the gradient of E(x) at , namely . If the new value of  is chosen as following 

 (26) 

for small enough, then . In this formula, the term  is removed 

from the old value of  because we need to go towards the inverse direction of the gradient to 

further minimize the cost function. For this reason, if we start with  randomly and consider 

the series s.t. 

 (27) 

Then 

 (28) 

and ideally the series  converges to a local minima. Here, is named the learning rate and 

the value of can be adjusted after per iteration.  

θ

θ −∇E θ( ) θ

θnew = θold − γ ∇E θold( )
γ E θnew( ) ≤ E θold( ) γ ∇E θold( )

θ

θ0
θ0,θ1,θ2,…

θt+1 = θt − γ ∇E θt( ),t ≥ 0

E θ0( ) ≥ E θ1( ) ≥ E θ2( ) ≥…
θt{ } γ

γ
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After making some assumptions to the function E (i.e, E is convex and  is Lipschitz stability) 

and careful choices of the learning rate , it is guaranteed that the function E can convergence 

to a local minima. This process is illustrated in Fig. 8. 

 

Fig. 8. Gradient descent process for multivariable function 

In Fig. 8, the red arrow corresponds to the inverse direction of the gradient from a starting point. 

Besides, the direction of the red line is orthogonal to contour lines that pass the point. According 

to this figure, the final point is located at the bottom of the bowl, in which the function value is 

minimized. 

Many variants of GD are widely used in the optimization of artificial networks, like Mini Batch 

GD (MBGD), Batch GD (BGD), Stochastic GD (SGD) and Adaptive Moment Estimation 

(ADAM). Among these methods, ADAM is a more adaptive technique. The main idea of 

ADAM is shown in equation (29). In which, is the learning rate, is the parameter we want 

to update,   are exponential decay rates,  is the gradient of   at time t, 

are first and second momentum new defined. For more details, please consult the paper 

of Kingma and Ba[35]. 

ADAM does not require too much memory and is effective in computation. For above reason, 

ADAM is currently widely used in complex neural networks like LSTM.  

∇E
γ

γ θt

β1,β2 ∈[0,1] ∇E θt( ) θ

mt ,vt

 

 

 

(29) mt = β1mt−1 + (1− β1)∇E θt( )

vt = β2vt−1 + (1− β2 )∇E θt( )2

θt+1 = θt −
γ
vt + ε

1− β2
2

1− β1
2 mt
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In our thesis project, we will use ADAM to update the parameters shown in Table 2. Suppose 

we have one year PM2.5 hourly concentration data (365*24=8760) and we use it to train our 

LSTM model. There are 3 possible ways to update parameters with ADAM. 

The first method is called Stochastic Gradient Descent (SGD). We calculate the gradient and 

update the parameter for each sample in the training data. It is also called online machine 

learning algorithm because the system update for each example. The frequent update indeed 

has its benefits. However, updating the weights in high frequency is computationally expensive 

and consumes more time to train the model on larger collection of data. Besides, such an update 

may lead to a noise for gradient. Therefore, SGD are not suitable for large data set and LSTM. 

The second method is called Batch Gradient Descent (BGD), which is an opposite approach of 

SGD. We still calculate the error for every sample in the training set. The average error of all 

training examples are used to calculate the gradient and fewer updates are done to the system. 

However, BGD may result in the early convergence to a less locally optimum because of the 

more stable error gradient.  

The third method is called Mini-batch Gradient Descent (MBGD), which aims at balancing the 

robustness of SGD and the time-efficiency of BGD. We can split the training dataset into groups 

and these groups are called mini-batches. We only update parameters after the errors (sum or 

average of the gradient) of one mini-batch are calculated. MBGD updates frequently than BGD, 

which enables a much more robust convergence. Moreover, MBGD is much more efficient than 

SGD. MBGD is the most common GD method in AI algorithms. In our thesis project, we will 

use mini-batch type of ADAM to update our parameters. 

2.3.4 LSTM network structure 

We already know the structure within a single LSTM unit and algorithms (BPPT and mini-batch 

ADAM) that are used to update the network. Now we introduce how LSTM units are used in a 

LSTM network and how can we control the memory ability of LSTM. Recalling the dimension 

of vectors we mentioned in the introduction of LSTM unit, that are , , . 

The dimension of xt is easy to understand that the input vector to the LSTM unit has dimension 

d. But why the dimension of ct and ht is h? Can we set the value of h or it should be default 

value based on the dimension of input vector? Actually, we can set h manually and this value is 

normally called the number of neurons of a LSTM unit. And in the real world programming, d 

always takes same value as h by using a matrix-vector multiplication to map the original data 

to h-dimensional.  

xt ∈R
d ht ∈R

h ct ∈R
h
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Suppose we have a prediction task that predicting PM2.5 of next hour mainly based on the 

PM2.5 data of past 24 hours and we have one year PM2.5 data. Suppose we select 8 features 

including current PM2.5, wind direction, temperature that we think are important data to predict 

the PM2.5 of next hour. Then for this task, our input vector has 8 dimensions (d = 8), and output 

vector has 1 dimension (single PM2.5 value of next hour). And we want to build a prediction 

model based on LSTM network.  

 

 

Fig. 9 (a) Fig. 9 (b) 

Fig. 9 (a) is a sketch for LSTM network with 2 FC layers and 1 LSTM layer. (b) is the 

recurrent LSTM unit within a LSTM layer  

A simple and common structure is shown as Fig. 9 (a), a LSTM network with 2 fully connected 

(FC) layers and 1 LSTM layer. As an example, here we simplify use 1 LSTM layer with 256 

neurons (h = 256) based on the assumption that this size is reasonable for this task. The FC 

layer A are used for mapping the input data from 8 dimensions to 256 dimensions by matrix-

vector multiplication. And the same for the FC layer B, mapping the output of LSTM (256 

dimensional vector) to 1 dimension. Now we only left the explanation of the part of LSTM 

layer. We know that LSTM is a variant of RNN, that means LSTM also has recurrent structure. 

Fig. 9 (b) show the recurrent structure for a LSTM unit. For easy understanding, we unfold this 

recurrent LSTM unit, and the LSTM structure in Fig. 9 (a) can be shown as Fig. 10. 
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Fig. 10. Recurrent structure for a LSTM network with 2 FC layers and 1 LSTM layer 

Before we explain the recurrent structure in Fig. 10, we should remember that the network only 

receives and propagates a single vector during each time. So in Fig. 10, the LSTM network first 

receives the 8-dimensional vector , and maps it to 256-dimensional vector  by FC 

layer A. Then  is propagated to the LSTM unit. By the recurrent structure shown in Fig. 

9 (b),  are received by the LSTM unit and  are calculated. Since this 

is the first calculation for LSTM unit,  are set as default values. Now we finish the 

calculation of the LSTM unit for one time step. Since we want the predict the PM2.5 of next 

hour mainly based on the PM2.5 data of past 24 hours, we don’t give the prediction to next 

layer now and continue to receive the . Same as before,  are received by 

the LSTM unit and are calculated. Then we continue to receive .We do this for 

24 times and the memory about the past is continually propagated by the cell state. In the last 

time,   are received by the LSTM unit and   are calculated. Since we already 

calculate 24 times and the predicted value ht is calculated by the information of past 24 hours, 

now we send the predicted value  (equal to ) to the next layer and give the prediction of 

xt−23 x 't−23

x 't−23
x 't−23,ct−24 ,ht−24 ct−23,ht−23

ct−24 ,ht−24

xt−22 x 't−22,ct−23,ht−23

ct−22,ht−22 xt−21

x 't ,ct−1,ht−1 ct ,ht

y 't ht
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 through FC layer B. Now we finish the first prediction. Moreover, the value stored in the 

cell state c and hidden layer h are initialized to their default value to get prepared for next 24-

time steps calculation.  

 

Fig. 11. Calculation process within a LSTM unit 

Fig. 11 shows the calculation process within a LSTM unit and we could see the relation between 

the neurons and LSTM units. After the calculation of , next step is the prediction on  

based on the value of . Similarly, the LSTM network first receives the 8-

dimensional vector  , and map it to 256-dimensional vector  by FC layer A. Then 

is propagated to the LSTM unit. By the recurrent structure shown in Fig. 9 (b), 

 are received by the LSTM unit and are calculated. Since this is the 

first calculation for LSTM unit,  are set as default values. Same as before, in the last 

time, are received by the LSTM unit and are calculated. Since we already 

calculate 24 times and the predicted value  is calculated by the information of past 24 hours, 

now we send the predicted value  (equal to ) to the next layer and give the prediction 

of through FC layer B. Now we finish the second prediction. 

yt

yt yt+1
xt−22, xt−21,..., xt , xt+1

xt−22 x 't−22

x 't−22
x 't−22,ct−23,ht−23 ct−22,ht−22

ct−23,ht−23
x 't+1,ct ,ht ct+1,ht+1

ht+1

y 't+1 ht+1
yt+1
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Fig. 12. Details for data example and mini batch (time step=24, mini batch size=24) 

Since we set time step as 24 and we need the calculation based on 24 vectors, each group of 24 

vectors is regarded as one data example. As we mentioned in chapter 2.3.3, we will use mini-

batch ADAM which means we will put the data examples into groups and these groups are 

called mini-batches. We only update parameters after the errors of one mini-batch are calculated. 

Fig. 12 shows the details of data example and mini batch when time step is 24 and mini batch 

size is 24. Since the mini batch size is 24, each mini batch has 24 data examples. For example, 

mini batch 1 contains from data example 1 to data example 24. Similarly, mini batch 2 contains 

from data example 25 to data example 48. In next chapter, we will build the air quality 

prediction and early warning system of extreme air pollution model based on the LSTM 

network. 
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3.  PM2.5 concentration prediction and early warning system of extreme air 

pollution based on the LSTM 

In this chapter, we will build the PM2.5 concentration prediction model and early warning 

system of extreme air pollution based on the LSTM. As we mentioned in section 1.1, we define 

extreme air pollution as the air condition with a very high value of PM2.5. We will start from 

the data collection and processing, then we will build the LSTM model to forecast the PM2.5 

concentrations in the following 24 hours. Since we also care about the extreme conditions, we 

will also build an early warning systems of extreme air pollution by predicting the grade of 

extreme air pollution in next 24 hours based on LSTM.  

3.1 Data collection and processing 

3.1.1 Data collection 

Since the air pollution problem is extremely serious in the capital of China, Beijing, in our thesis 

project, we choose Beijing as our research city. Hourly air quality information observed by 

twelve observation stations in Beijing from January 18, 2013 to April 18, 2018 were 

downloaded (http://data.epmap.org/ ). Besides, we also need to collect meteorological data that 

might affect air pollutant concentrations. Half-Hourly weather condition data of Beijing from 

July 18, 2013 to Oct 31, 2016 were obtained from the Qingyue data center 

(http://data.epmap.org/ ). Constraint by the available meteorological data, our experiment 

values use hourly air quality and weather condition from July 18, 2013 to Oct 31, 2016. 

Although these data are not the most recent, the research process of model structure and 

optimisation method are still the same for data of other time periods. 

3.1.2 Descriptive statistical analysis and preprocessing 

Before we start to build the model, we need to check the data first and make sure they are 

suitable for data mining. We do the data cleaning first, such as deleting the invalid records and 

filling in the missing values by linear interpolation, and then we present the descriptive statistics 

of the data in Table 3 (Since we have 12 monitoring stations, here we show the description of 1 

station for brevity). 
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Table 3. Description of the data (station 1001A) 

 count mean std min 25% 50% 75% max 
Wind direction 20481 185.54 117.10 10 90 160 310 360 
Wind speed (m/s) 26542 2.91 2.21 0 1 2 4 20 
Temperature(℃) 26540 14.16 11.62 -16 4 16 24 42 
Dew point(℃) 26530 3.22 13.98 -40 -8 5 16 27 
AQI 26384 109.27 89.53 0 44 85 144 500 
SO2(ug/m3) 25568 16.30 24.15 1 2 6 19 411 
NO2(ug/m3) 26258 52.14 35.24 0 25 45 73 224 
CO(mg/m3) 25538 1.31 1.18 0 0.6 1.0 1.6 13 
O3(ug/m3) 24963 58.78 58.51 1 9 45 86 358 
PM10 (ug/m3) 18391 115.44 97.46 1 46 94 153 1000 
PM2.5 (ug/m3) 25566 80.18 81.08 1 22 56 110 857 

Since there were too many missing values in the PM10 data, we remove PM10 values in the 

experiment. We normalize each variable such that it takes value between zero and one, see Fig. 

13. Finally, our dataset contains 26542 records for each station and each record consists of 10 

variables (wind direction, wind speed, temperature, dew point, AQI, SO2, NO2, CO, O3, 

PM2.5). Moreover, 70% of the dataset contributes to the training set while the rest 30% is used 

for validation. 

 

Fig. 13. Data after normalization. For each subfigure, X axis corresponds to the time line and 

Y axis represents normalized value 
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3.1.3 Pearson’s and autocorrelation analysis 

In section 3.1.2, we finished the basis preprocessing of data and we have 10 variables now, like 

the wind direction and wind speed shown in Fig. 13. In this section, we do Pearson’s and 

autocorrelation analysis to measure the correlations among the data. 

(1) Pearson’s coefficients between PM2.5 and other variables  

In this section, the Pearson’s coefficient is used to measure the linear correlation among variable 

A and B. The result ranges from -1 to +1, in which +1 refers to absolutely positively linear 

dependence. 0 indicates that there is no linear dependence existed, and −1 represents perfectly 

negatively correlated.   

Table 4. Pearson’s coefficients between PM2.5 at timestamp t and other variables at 

timestamp t-1 

R PM 

2.5 

Wind 

direction 

Wind 

speed  

Temper

-ature 

Dew 

point  

AQI SO2 NO2 CO O3 

PM2.5 0.97 -0.05 -0.16 -0.15 0.03 0.93 0.51 0.68 0.79 -0.18 

The Pearson’s coefficients between different factors at timestamp t-1 and PM2.5 at timestamp 

t are shown in Table 4. Since the correlation value between the PM2.5 at timestamp t and the 

PM2.5 at timestamp t-1 is 0.97 (p-value < 0.05), it is demonstrated that there is a strong 

relationship between the current PM2.5 and the PM2.5 concentration of previous time. Besides, 

the Pearson’s coefficients of AQI, SO2, NO2, CO are higher than 0.5 (p-value < 0.05), which 

indicates the PM2.5 data are more or less linear correlated with these factors. However, 

according to the Pearson’s coefficients shown in Table 4, no obvious linear dependence can be 

founded between PM2.5 and the remaining features. This means that linear regression model is 

not suitable for this problem if we want to forecast PM2.5 according to these 10 variables. 

Based on the special gate-control recurrent structure and non-linear function, LSTM can deal 

with these non-linear time series prediction problems. 

(2) Pearson’s coefficients between stations 

The spatial correlations of PM2.5 concentration among different observations are given in Table 

5. According to Table 5, all the results are higher than 0.86 (p-value<0.05), which indicates 

there are strong spatial correlations among the selected observations. These correlations also 

lead to the optimization method used in section 3.2.2, in which the prediction is based on 12 

stations’ information including neighbouring correlated data. 
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Table 5. Pearson’s coefficients between stations 

R No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10 No.11 No.12 

No.1 1.00            
No.2 0.99 1.00           
No.3 0.97 0.97 1.00          
No.4 0.96 0.95 0.93 1.00         
No.5 0.95 0.96 0.96 0.95 1.00        
No.6 0.96 0.93 0.95 0.93 0.95 1.00       
No.7 0.91 0.88 0.95 0.94 0.96 0.95 1.00      
No.8 0.88 0.90 0.88 0.91 0.92 0.94 0.93 1.00     
No.9 0.90 0.91 0.91 0.89 0.93 0.95 0.94 0.93 1.00    
No.10 0.92 0.93 0.92 0.88 0.96 0.92 0.88 0.91 0.96 1.00   
No.11 0.94 0.92 0.87 0.91 0.91 0.87 0.86 0.90 0.93 0.90 1.00  
No.12 0.91 0.91 0.94 0.92 0.92 0.88 0.90 0.91 0.88 0.92 0.95 1.00 

 

(3) Auto-correlation coefficients  

In this section, the auto-correlation function is used to evaluate the temporal correlation among 

the air pollutants data. The auto-correlation value is defined as: 

in which  and  denote the PM2.5 values at corresponding time.   represents 

standard deviation and cov(·) refers to covariance. The auto-correlation values of PM2.5 

concentration of station 1001A are shown in Fig.14.  

With the increase of time-lag, there is a clear decrease in terms of coefficients, which reveals 

that the event of earlier time has less effect to present condition. Besides, the auto-correlation 

value is greater than 0.5 for the time-lag below 14. In the following works, these observations 

are helpful for choosing the suited time-lag. 

 

x t( ) x t + k( ) σ ⋅( )

 
(30) 

ρk =
cov x t( ), x t + k( )( )

σ x t( )σ x t+k( )
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Fig. 14. The auto-correlation values of station 1001A 

3.2 Real-time prediction model of PM2.5 concentration based on LSTM 

In this section, we will build the real-time forecasting system of PM2.5 values based on LSTM. 

We first start from the 1-hour prediction task, that is predicting PM2.5 of next hour based on 

previous data. We will do parameter optimization to determine the best network architecture. 

In the training process, loss function is taken as Mean Square Error (MSE) to minimize expected 

loss. In the testing process, three indexes are employed to assess the prediction precision as 

shown in following equations.  

In equation (31)(32)(33),  represents observed data and  represents model result and n is 

the size of test samples. Based on the optimal 1-hour prediction model, we will build 24-hour 

prediction model that is predicting PM2.5 concentration of next 24 hours. 

3.2.1 1-hour prediction 

(1) 1-hour prediction model  

y* yi

 
(31) 

 
(32) 

 
(33) 

RMSE = 1
n

yi − y
*
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∑
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We first start from the 1-hour prediction problem, that is predicting PM2.5 of next hour based 

on previous data. We choose station 1001A as our research target and Fig. 15 shows the details 

of 1-hour prediction problem with time lag r.  

 

Fig. 15. Illustration of the 1-hour prediction problem with time lag r 

From the LSTM model structure shown in Fig. 10, we know that several hyper parameters need 

to be determined first, like the time-lag, size of LSTM network and learning rates. In the 

following parts, we will investigate the influence of these parameters and search an optimal 

setting of parameters and the structure. 

(2) Parameter optimization 

In order to get optimal parameters, we need determine the model structure first. Based on 

existing research and experiences, neurons number of LSTM layers was selected from {8, 16, 

32, 64, 128}. The number of LSTM layers was chosen from {1,2} that is, using 1 LSTM layer 

or 2 LSTM layers. Learning rate was selected from {0.01, 0.0005, 0.0001, 0.00005}. We use 2 

FC layers in our research. We chose these settings according to the findings from some contrast 

tests, which shows these configurations are reasonable for our problem scale. And based on the 

autocorrelation analysis shown in Fig. 14, time-lag was chosen from {2, 6, 10, 14, 18, 22}.  

We first researched the neurons number of LSTM layers and learning rate. The model structure 

was set as 1 LSTM layer and 2 FC layers and the time lag was set as 14 for experiment. The 

test result (RMSE of test data) is shown in Table 6. 

Table 6. Effect of the number of neurons in LSTM layer and learning rate (RMSE of test data)  

            LSTM neurons 

Learning rate 
8 16 32 64 128 

0.001 21.0105 22.2738 26.0959 23.9387 24.1670 

0.0005 20.6172 21.9289 23.0614 27.8988 26.6133 

0.0001 20.3021 21.1407 23.3050 26.3387 27.9382 
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0.00005 20.2744 20.2264 23.0846 26.4727 28.9341 

From Table 6, we can see that the test result of LSTM model with 8 and 16 neurons were 

normally better than performance of model with larger number of neurons. As a comparison, 

we can check the PTB language model shown in the tutorial of Tensorflow 

(https://www.tensorflow.org/tutorials/recurrent), a famous LSTM based natural language 

processing model, which deals with 929,000 data records (each record is consists of 256 

variables) by a LSTM model structure with 500-2000 neurons and could get satisfying results. 

However, our dataset contained 26542 records and each record consists of 10 variables, our 

data size is much more suitable for smaller LSTM model.  

 

Fig. 16. Training loss during training process. Learning rate=0.00005, number of neurons=16. 

The vertical axis stands for the training loss and the horizontal axis stands for the number of 

training epoch.  

For the learning rate, we could find that for LSTM model with larger size like model with 64 

and 128 neurons, smaller learning rate performed more poorly than larger learning rate. This is 

possibly because model with more neurons has more parameters need to be optimised, and 

smaller learning rate could not guarantee a good learning speed and ability. Thus it’s likely to 

trap into local optima which leads to a low convergence accuracy. For LSTM model with 

smaller size, we had opposite result. Larger learning rate speeds up the learning process and 

guarantees the learning speed, however, compared with the smaller learning rate, it’s easy to 

skip extreme points and this might cause instability in the optimization process. The RMSE 

result also proved this point.  
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Based on the above analysis, in 1-hour prediction model, the number of LSTM neurons was set 

as 16 and learning rate was set as 0.00005. The training loss during training process is given in 

Fig. 16, the vertical axis stands for the training loss and the horizontal axis stands for the number 

of training epoch. An epoch is a measure of the number of times all of the training dataset are 

employed one time for parameter updates.  

At the beginning of training, the loss was around 8 because all the parameters were set as initial 

values. However, after one training epoch the loss rapidly dropped below 3 and was stably kept 

below 1 after five epochs. Finally, we got a satisfying training loss of 0.1 after 20 training 

epochs. This proved that our LSTM model had strong learning ability and high efficiency in the 

prediction of PM2.5. To improve the performance, we continued to examine the influences of 

different time lags and Table 7 indicated the RMSE of test result. 

Table 7. Effect of time-lag 

Time lag 2 6 10 14 18 22 

RMSE 28.2343 22.2157 20.0768 20.2264 21.2340 22.7687 

The prediction performance shows that the LSTM model got sound performance when the time-

lag was set as 10. Past research also found that smaller value of time-lag cannot ensure sufficient 

memory of existing trends. Thus, the model is unable to utilize the information adequately. 

Larger time-lag leads to the increasing of input information, which also add complexity of 

model and valuable patterns are hard to learn. For these reasons, we set time-lag as 10 which 

was a suitable choice regarding this problem.  

Table 8. Effect of the number of LSTM layers 

                              LSTM layers 

Learning rate 
1 2 

0.001 22.0239 22.2349 

0.0005 21.6289 21.1233 

0.0001 21.1047 20.0121 

0.00005 20.0768 19.7863 

Finally, we focused on the research of LSTM layers. Time-lad was fixed to 10 and we set LSTM 

neurons as 16 based on the above results. There is a slight improvement for forecasting 

precision with the increasing of layers. As a result, the number of LSTM layers was set as 2 

which can guarantee the forecast precision and efficiency. After determining an optimal 
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structure for the LSTM model, collected data were employed to train the system. The test data 

were used to evaluate the performance of the model and the results were given in Fig. 17. 

  

Fig. 17 (a) Predicted and real value of all the test 

data set (6542 records) 

Fig. 17 (b) Predicted and real value of part of  

test data set (350 records) 

Fig. 17. Predicted and real value of the test data set 

Fig. 17 indicates that the forecasted value was universally close to the real condition and the 

RMSE of test data was 19.7863. Although this was a satisfying result, compared with the RMSE 

of Xiang Li’s research (RMSE=12.60)[39], our RMSE was bigger than theirs. This was possibly 

because the training and testing dataset we use were different; thus the quality and feature of 

two dataset were also different. During the data processing in section 3.1.1, we also found that 

our data had thousands of missing values that need to be filled. This definitely affected the data 

quality. Besides, the models we built were different and the PM2.5 data they used were observed 

by 12 monitoring stations which provided more information to enhance the prediction precision. 

Although the method and data we use were different, compared with their result, our RMSE 

had the same order of magnitudes (19.79 vs 12.60). This proved that our model achieved 

satisfactory performance.  

3.2.2 24-hour prediction 

Now we focus on the 24-hour prediction problems, that is predicting PM2.5 of next 24 hours 

based on previous data.  Obviously, historical information from various time period has various 

influence to the future of interest. As indicated in Fig. 18, the collected data within certain time 

lags r were used as input for 24-hour forecasting problems. Each solid line given in Fig. 18 

represented one prediction problem. For the first 3 coming hours, we used different models for 

every hour. Continually, the next 4-24 h was split into three time lags (4-6, 7-12, and 13-24 h) 

and different models were trained separately to output the average value of each period. 



 

 31 

 

Fig. 18. Illustration of the 24-hour prediction problem with time lag r 

In order to produce the best performance, the parameter for each task should be determined 

separately. However, aiming at simplifying the calculations, a fixed setting was applied in all 

tasks. There are 2 LSTM layers and 2 FC layers within this network. In this research, we just 

changed the value of time-lag. After utilizing grid search method, which was explained in 

section 3.2.1, the optimal structure for all problems were decided. The forecasting performance 

are given in Table 9. 

Table 9. Structure and prediction accuracy of 24-hour PM2.5 concentration prediction 

Task Time lag RMSE MAE MAPE(%) 

1-h prediction 10 19.79 8.91 20.23 

2-h prediction 10 21.14 10.13 23.89 

3-h prediction 14 21.31 10.89 24.37 

4 to 6-h prediction 15 26.33 14.15 32.60 

7 to 12-h prediction 19 39.45 17.32 34.64 

13 to 24-h prediction 28 49.41 21.93 40.20 

According to Table 9, with the increase of time-lag, the best input time-lag increased as well 

while the forecast precision declined quickly based on the MAPE values, which changed from 

20.23% to 40.20%. Since long-period forecasting problems are typically much more difficult, 

more information are needed compared with short-period problems. Our 24-hour prediction 

system showed sound precision including 13-24 h prediction task (RMSE=49.41). 
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3.3 Real time early warning system of extreme air pollution  

3.3.1 Early warning system 

In addition to ordinary air pollution, the phenomenon of extreme air pollution has also become 

more frequent in recent years (In section 1.1, we define extreme air pollution as the air condition 

with a very high value of PM2.5). Extreme air pollution poses serious influence to both 

environment and people survival. In this section, we will build an early warning systems of 

extreme conditions based on LSTM.  

 

Fig. 19. Observed and predicted PM2.5 concentration for 1-h prediction model 

From Fig. 19, we see that our PM2.5 prediction model performed well for most of data except 

the extreme air pollution with a high PM2.5 value. Although we got a satisfying RMSE (19.79), 

we cannot get accurate prediction for extreme conditions. Moreover, the predicted value of high 

PM2.5 concentration were always lower than the real value which cannot accurately monitor 

the extreme air pollution in advance. It is therefore necessary to build a model specially 

predicting the extreme air pollution and giving the early warning of extreme conditions. 

Table 10 shows the standard rank of PM2.5 concentration in China, where rank I is the best air 

condition and rank VI is the worst. Since we define extreme air pollution as the air condition 

with a very high value of PM2.5, to simplify the problem, we here regard the highest PM2.5 

value in the next 12 hours as the extreme air pollution of this period.  
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Table 10. Rank of PM2.5 concentration 

Rank Range of PM2.5 concentration 

I  

II  

III  

IV  

V  

VI  

If we want to give an early warning of extreme air pollution to citizens 12 hours in advance, we 

can predict the rank of highest PM2.5 value of next 12 hours. By the predicted rank, we could 

know the most extreme level of PM2.5 pollution of next 12 hours and be prepared for it. In 

section 3.2, the LSTM model we built can predict the continuous PM2.5 concentration and that 

is a regression problem. Now we want to predict the discrete rank and this problem becomes a 

classification task. The loss function we use will be different and to make the output discrete 

we should also change the model structure. 

3.3.2 Cross entropy and Softmax 

In this section, we introduce the cross entropy and Softmax function that are always used in the 

classification model. And next section we will introduce how can we use these function to build 

the extreme air pollution classification model based on the LSTM. 

(1) Cross entropy loss function  

In the regression model like PM2.5 concentration prediction model we built in section 3.2, loss 

function is always set as MSE function. However, in the classification problem, cross entropy 

is normally used. For a given dataset x, the cross entropy for two distributions p and q is 

formulated as: 

In information theory, the cross entropy is usually used to evaluate the amount of information 

required to distinguish an event from the dataset. We can understand that the cross entropy 

measures the distance between p and q, and the smaller cross entropy they have, the closer they 

are. We want to use the cross entropy to evaluate the accuracy of the LSTM classification 

algorithm, however, the output of the neural network is not necessarily a probability distribution. 

0 ≤ x < 50

50 ≤ x <100

100 ≤ x <150

150 ≤ x < 200

200 ≤ x < 300

x ≥ 300

 (34) H p,q( ) = − p x( )logq x( )
x
∑
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To solve this problem, Softmax function is used to transfer the normal output of neural network 

to probability distribution. 

(2) Softmax function 

The softmax function generalizes the logistic function and is able to map a vector y of random 

real value to a vector , in which every element ranges between 0 and 1 and the sum of all 

the elements is 1. The Softmax function is shown in equation (35)(36). In the next section, we 

will introduce how to use the Softmax function in our classification task. 

3.3.3 Model structure and result 

(1) One-hot encoding 

Recall that in the PM2.5 concentration prediction model, the input vector  has 10 dimensions 

which involves information like the wind direction and PM2.5 values at timestep t. The output 

vector  has 1 dimension which refers to the PM2.5 values of timestep t+1.  

Table 11. One-hot encoding for the warning level and corresponding range of PM2.5  

Warning level One-hot vector 
Range of 

PM2.5 
Frequency Percent 

Level 1: Safe (1,0,0,0)  6692 25.22% 

Level 2: Warning for 

sensitive groups 
(0,1,0,0)  7231 27.26% 

Level 3: Warning for 

general populations 
(0,0,1,0)  5534 20.86% 

Level 4: Serious 

warning 
(0,0,0,1)  7073 26.66% 

In this extreme air pollution prediction model, the input data  is still the same as the PM2.5 

concentration model. However, the output vector  represents the warning level for the PM2.5 

condition of next 12 time lags (from time t+1 to time t+12) and it has 4 dimensions. In our 

σ y( )

xt

yt

0 ≤ x < 50

50 ≤ x <100

100 ≤ x <150

x ≥150

xt

yt

 
(35) 

 
(36) 

σ :!N → σ ∈!N σ i > 0, σ i = 1
i=1

N

∑⎧
⎨
⎩

⎫
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research, we divided the warning level into 4 parts which were encoded using one-hot encoding 

method shown in Table 11. We also counted the frequency and the percentage of each level in 

our dataset. We could see that the percentages of four warning level in our data are 25.22%, 

27.26%, 20.86% and 26.66% respectively. These values are close to each other which means 

our data is suitable for 4-class classification problem. 

(2) Model structure 

 

Fig. 20. Extreme air pollution prediction model based on LSTM 

Since the real warning vector has 4 dimensions, the predicted warning vector should also have 

4 dimensions. This can be achieved by changing the dimension of second fully connected layer 

from 1 neuron to 4 neurons. The normal output  of the second FC layer is 

However, to calculate the cross entropy between the predicted and the real warning vector, we 

need add a Softmax layer after the second FC layer to transfer the normal output to to probability 

distribution output as shown in equation (38).  

yt
normal

yt

. (37) 

 (38) 

yt
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1, yt
2, yt

3, yt
4 ), where yt

i ∈R,i = 1,2,3,4
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1, yt
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∑
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Based on these operations, the model structure of extreme air pollution prediction is shown in 

Fig. 20. From Fig. 20 we could see compared with the PM2.5 prediction model, the extreme air 

pollution prediction model has one more Softmax layer. We know that the Softmax layer won’t 

influence the data dimension and the dimension of output vector varies slightly, from 1 to 4. 

This supports that we could get satisfying result using similar LSTM structure as the optimal 

PM2.5 concentration prediction model that is 2 LSTM layers with 16 neurons and 2 FC layers, 

and set learning rate as 0.00005. Then we only change the time lag and find the optimal time 

lag for this model. Based on this target, the structure detail of extreme air pollution prediction 

model we used is shown in Fig. 21. 

 

Fig. 21. Structure detail of extreme air pollution prediction model based on LSTM (number of 

LSTM neurons = 16, time lag = r) 

(3) Receiver Operating Characteristic curve (ROC) and accuracy 

Now we introduce how to assess the accuracy of our classification system. Receiver Operating 

Characteristic curve (ROC) and accuracy formula are often used to measure the forecast 

accuracy of a binary classification problem. We first introduce the basic principle and then 

explain how we apply these indicators in our research.  
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For a binary classification task, the outputs are labelled either as positive (p) or negative (n). 

Totally, there are 4 possible outputs. If the output of a forecast is p while the real condition is 

also p, then it is said to be a true positive (TP). If the real condition is n, then it is defined as a 

false positive (FP).On the contrary, a true negative (TN) appear if the output result and the real 

condition are n, and false negative (FN) is occurred if the model output is n while the real 

condition is p. As indicated in Table 12, these 4 outputs can be summarized in a confusion 

matrix. 

Table 12. The confusion matrix of a binary classification problem 

  True condition 

 Total data Condition positive Condition negative 

Predicted 

condition 

Predicted  

condition positive 
TP FP 

Predicted  

condition negative 
FN TN 

Accuracy (ACC) of binary classification problem is defined as equation (39) which can show 

the model performance directly and higher accuracy indicates a better performance.  

Moreover, ROC curve is always used together to describe the classification model performance 

comprehensively. A ROC curve requires the true positive rate (TPR) and false positive rate 

(FPR) defined in equation (40)(41). The TPR represents the total amount of correct positive 

results appears among all positive examples. In addition, FPR represents the amount of 

incorrect positive outputs appear among all negative examples. By defining the x-axis and y-

axis by FPR and TPR, a ROC space describes relative trade-offs between TP (benefits) and FP 

(costs).  

 
(39) 

 
(40) 

 
(41) 

ACC =
True positive+ True negative∑∑

Total data∑

TPR =
True positive∑

Condition positive∑

FPR =
False positive∑

Condition negative∑
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Each confusion matrix corresponds to a point in the ROC figure. The point (0,1) of the ROC 

curve corresponds to the best forecasting performance. In addition, this point means 100% 

sensitivity (no FN) and 100% specificity (no FP). What’s more, points above the diagonal 

indicate satisfactory classifications while points below this line show unsatisfactory 

classifications. After normalization of the unit, the Aera Under Curve (AUC) represents the 

chance that a classification model will classify a randomly selected positive sample greater than 

the negative sample we selected. 

Table 13. The confusion matrix of 4-class classification problem 

  True condition 

 Total data Level 1 Level 2 Level 3    Level 4 

Predicted 

condition 

Level 1 True level 1    

Level 2  True level 2   

Level 3   True level 3  

Level 4    True level 4 

In our 4-class classification model, we can still use ACC and ROC curve to measure the model 

performance. For the ACC, it can be calculated by equation (42), in which True level are defined 

in Table 13.  

As for the ROC curve and AUC for our 4-class classification model, we first derive the 

possibility matrix P and label matrix L of our test data shown in equation (43) and (44). In 

equation (43), P represents the prediction result of our model and pn1 represents the predicted 

possibility that data n belongs to warning level 1. Matrix L represents the true classification of 

our test data and ln represents the one-hot vector of the warning level of data n. 

 
(42) 

 

(43) 

ACC =
True level 1+ True level 2 + True level 3+ True level 4∑∑∑∑

Total data∑

P =
p11 … p14
! " !
pn1 ! pn4

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
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For each warning level, we could derive 2 vectors from corresponding column in possibility 

matrix P and label matrix L. The first vector represents the predicted possibility of all test data 

belong to this level and the second vector represents the real possibility of all test data belong 

to this level. Based on these 2 vectors, we could derive the TPR and FPR of each level and draw 

corresponding ROC curve. Finally, we can take the average to get the final ROC curve of our 

4-class classification model. 

(4) Results and analysis 

We used the model shown in Fig. 21 to train the data separately with different time lag until 

convergence. Then we used ACC and ROC curve to assess the classification accuracy. The ACC 

and AUC of our model with different time lag are given in Table 14.  

Table 14. Effect of time lag 

Time lag ACC on test data AUC 

10 68.7% 0.722 

15 75.3% 0.765 

20 83.4% 0.801 

25 86.4% 0.837 

30 74.8% 0.749 

35 63.2% 0.714 

40 58.9% 0.705 

According to the ACC and AUC (ACC=86.4%, AUC=0.837), our LSTM model can achieve 

the best performance when the time-lag r is equivalent to 25.  

 

(44) 

L =

one− hot vector l1
one− hot vector l2

!
one− hot vector ln

⎛

⎝
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Fig. 22. ROC curve and AUC of the LSTM classification model with time lag r = 25 

The ROC curve of optimal model is shown in Fig. 22. As we found in section 3.2.1, a small 

time-lag is not enough for our LSTM model and therefore the model cannot make adequately 

use of the LSTM to capture the required memory. This explains why the accuracy of model 

with small time lag is poor. However, very large input length leads to an increase of unrelated 

information, which makes the model much more difficult to extract valuable patterns.  

Table 15. Confusion matrix of test result 

  True condition 

 Total data Level 1 Level 2 Level 3 Level 4 

Predicted 

condition 

Level 1 68 1 1 0 

Level 2 7 79 4 1 

Level 3 2 4 51 4 

Level 4 1 2 10 37 

In our LSTM classification model, we find that when time lag exceeds 25, the model 

performance turns down. Finally, the setting time-lag was 25. This value was very suitable for 

our early warning model. The ROC curve also shows that the model can guarantee a good 

performance when the setting time-lag was 25. Besides, the confusion matrix shown in Table 

demonstrates that our classification model successfully gave the early warning of PM2.5 

condition, even for the extreme conditions. Above findings proves that our model achieved 

satisfactory performance for the early warning of extreme air pollution. 
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4. Model Optimization 

In this section, we will focus on model optimization techniques to improve the prediction 

performance. Since the model structure of PM2.5 prediction model and early warning model 

are similar, to simplify the research, we will only optimize the 1-h PM2.5 prediction model 

architecture we built in section 3.2.1. Four different methods will be done separately to test the 

influence and efficiency of optimization. Finally, we will combine these four methods together 

to derive an overall optimal model. 

4.1 Parameter optimization: decreasing learning rate 

In section 3.2.1, we found that high learning rate can speed up the convergence but it might be 

too large to skip extreme points. Low learning rate results in slow convergence but it can get 

better result. For this reason, if the learning rate was set at a relatively large rate in the beginning, 

so that the model can move forward to the extreme point quickly. Then the learning rate was 

decreased gradually to avoid skipping extreme points or causing instability in the optimization 

process. 

 

Fig. 23. Alternative schedule scheme of learning rate 

An alternative schedule scheme of learning rate is given in Fig. 23. In the training process of 

LSTM, we reduced the learning rate by half by each 50 epochs until the convergence. As we 

mentioned in section 3.2.1, an epoch is a measure of the number of times all of the training 

dataset are used once to update the weights. 
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Table 16. Test result of decreasing learning rate 

Learning rate 0.001 0.00005 Decreasing learning rate 

RMSE 22.2349 19.7863 18.6133 

Test result of adaptive learning rate is shown in Table 16. Compared with fixed learning rate, 

decreasing learning rate optimized both convergence speed and accuracy. 

4.2 LSTM structure optimization: dropout regularization layer 

In order to successfully apply NN, regularization is often required. Dropout, the most successful 

technique for regularizing NN, is often used in LSTM network to improve performance[36]. 

With the application of Dropout, input and recurrent connection to LSTM layers are 

probabilistically removed from the system during training. When keep probability is 1, the 

dropout layer has no effect on the network because every LSTM units can join the activation 

and weight updates. When keep probability is 0.5, each LSTM unit has a probability of 0.5 

joining the activation and weight updates during training. A suitable dropout layer and keep 

probability can reduce overfitting and improve model performance.  

 

Fig. 24. LSTM model structure with dropout layer 
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To test the effect of dropout layer, we added it between the LSTM layer and the FC layer. The 

LSTM model structure with dropout layer is shown in Fig. 24.  Then we tested different keep 

probability and results are given in Table 17. 

Table 17. Test result of dropout layer with different keep probability 

Keep 

probability 

1.0 0.9 0.8 0.7 0.6 0.5 

RMSE 19.7863 19.3212 19.0177 20.3890 22.2123 24.0922 

When keep probability was set as 0.9 or 0.8, the test result was slightly better than the 

performance of LSTM model without dropout layer (RMSE 19.3212/19.0177 vs 19.7863). 

However, if we set keep probability as 0.7 or lower, the RMSE increased. This was probably 

because our model size was relative small. Too much dropout made our model lose important 

information and it became hard to learn the details. 

4.3 Data optimization: use of seasonal information 

Air pollution are known to change with season and the time of a day, and this information may 

be used to improve the prediction performance.  

 

Fig. 25. Input data with seasonal information 
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In our 1-h PM2.5 concentration prediction model, our input data has 10 dimensions, which 

include the information about air pollutant and meteorology. We want to improve the model 

performance by using auxiliary data to provide more useful information. Since the 

concentration of PM2.5 varies with month and the time of a day, we increased the seasonal 

information in our data set. We used one-hot encoding and changed categories into binary code. 

For instance, there are 12 months, and with the usage of one-hot encoding, each monthly 

indicator can be converted into a vector of 12 dimensions (e.g., [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0] 

stands for the May). As a model improvement, this seasonal and time assistant information was 

concatenated into the output of the LSTM for learning. 

 

Fig. 26. 1-h PM2.5 prediction model with seasonal information 

The 1-h PM2.5 prediction model structure with seasonal data is shown in Fig. 26. As shown in 

Fig. 26, the seasonal and time assistant information were concatenated into the output of the 

LSTM to add extra patterns. We did this mainly because high dimensional seasonal information 

already has obvious periodic trends and it’s more efficient and easier for the normal fully 

connected layer to learn this feature. However, it’s time consuming and expensive for LSTM to 

learn and store this obvious periodic trends from high dimensional seasonal information. That 
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is why we didn’t put these data into the input variable of the LSTM unit. Since the input vector 

of the LSTM unit was still the same, only the dimension of the fully connected layer B increased. 

Using the same structure, we got a RMSE of 17.4531 which obviously improves the model 

performance compared with the model training on original data (RMSE of 19.7863). This 

suggests that seasonal information can be useful to improve the prediction accuracy of our 

LSTM model. 

4.4 Data optimization: use of 12 monitoring stations’ information 

There are 12 air condition monitoring stations in Beijing, named from station 1001A to station 

1012A. In our previous research, we focused on the PM2.5 prediction of station 1001A and 

only used the PM2.5 records of station 1001A. Now we want to improve the prediction accuracy 

for station 1001A by using information of all the 12 stations.  

 

Fig. 27. 1-h PM2.5 prediction model with the information of 12 monitoring stations 

Recall that in section 3.1.3, the spatial correlation of PM2.5 among the selected observations is 

given in Table 5. Since all coefficients are above 0.86 (p value<0.05), the PM2.5 data show 
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strongly correlations among the stations. This high spatial relation leads to the optimization 

method we will use in this section, predicting one station’s PM2.5 based on 12 stations’ 

information because nearby data can optimize the model. 

Fig. 27 shows the structure of 1-h PM2.5 prediction model with the information of 12 

monitoring stations. Recall that in the optimized model with seasonal information, we 

concatenated the seasonal and time assistant information into the output of the LSTM to add 

extra features. We did that mainly because high dimensional seasonal information already has 

obvious periodic trends and it is more efficient and easier for the normal fully connected layer 

to learn this feature.  

In this time, the assistant information is about the PM2.5 at the rest observations. There is no 

obvious trend in the PM2.5 data and the normal fully connected layer cannot exploit and store 

the memory of the time series. For this reason, we used LSTM unit to learn and store this 

complex time series feature and the PM2.5 data of other 11 monitoring stations were embedded 

into the input data of the LSTM unit. Since the dimension of input vector increases from 10 to 

21, we test different number of LSTM neurons based on the optimal 1-h PM2.5 prediction 

model in section 3.2.1 and the results are given in Table 18. 

Table 18. Test result of model with different number of neurons 

Number of 

neurons 

16 28 40 52 64 

RMSE 24.7831 19.0327 16.4325 23.3341 26.2343 

Using the LSTM structure shown in Fig. 27 with 40 neurons, we got a RMSE of 16.4325 which 

effectively improved the model performance compared with the model training on original data 

(RMSE of 19.7863). This proves that PM2.5 concentration of nearby stations can effectively 

improve the prediction accuracy of our LSTM model. Besides, compared with optimal 1-h 

PM2.5 concentration prediction model in section 3.2.1, the optimal number of LSTM neurons 

increases from 16 to 40, this is possibly because the dimension of our input vector increases 

from 10 to 21 dimensions as well and model need more LSTM neurons to learn the feature 

among the data. 
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4.5 Comparison and combination of optimization methods 

From section 4.1 to section 4.4, we done four different optimization methods separately based 

on the original 1-h PM2.5 prediction model and the RMSE on test data decreased accordingly. 

Intuitively, we wonder what if we combine all these optimization methods together to optimize 

the 1-h PM2.5 prediction model. We combined these four optimization together, that is using 

decreasing learning rate based on the LSTM structure with dropout layer shown in Fig. 24. 

Similarly, the information about 12 stations were embedded into the input data of the LSTM 

unit and the seasonal and time auxiliary data were concatenated into the LSTM output feature 

vector. Using the same experimental procedures as before, we got a much lower RMSE of 

14.1937 when the number of LSTM neurons was set as 40. The comparison of different 

optimization method is shown Table 19.  

Table 19. Comparison of different optimization method 

Optimization method RMSE on test data 

Original 1-h PM2.5 prediction model 19.7863 

Parameter optimization: decreasing learning rate  18.6133 

LSTM structure optimization: dropout regularization layer 19.0177 

Data optimization: use of seasonal information 17.4531 

Data optimization: use of 12 stations’ information  16.4325 

Combination optimization 14.1937 

According to Table 19, there are three main conclusions. Firstly, compared with original 1-h 

PM2.5 prediction model, all the optimization method exhibited better prediction performance. 

This finding proved that all these optimization techniques were suitable for the LSTM model 

and can improve the prediction performance accordingly. Second, compared with the parameter 

and LSTM structure optimization, data optimization methods produced better forecasting from 

RMSE perspectives. This result suggested that the optimization on the data can more efficiently 

help the LSTM model to capture spatiotemporal correlations and to get better performance. 

Table 19 also indicates that the combination optimization performed better than any single 

optimization method, which suggested that we can use some effective optimization methods 

together to increase the prediction precision of LSTM model. 
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5. Comparison of experiments 

Random forests (RF) as an ensemble algorithm can be applied for both classification and 

regression. The key of RF is to construct several decision trees during training. For 

classification, the output is the mode of the classes of the individual trees while the output for 

regression is mean prediction of the decision trees. Tin Kam Ho used the random subspace 

method to build the first algorithm for RF. This algorithm made a combination between bagging 

and random feature selection [13].  

RF is a powerful learning algorithm with high accuracy and can be employed efficiently on 

large datasets. RF has many advantages. Firstly, it can deal with thousands of features without 

variable selection. Secondly, because of the building progress, it can produce an unbiased 

estimate of the generalization error internally. Besides, RF can estimate missing data efficiently 

and keep accuracy when many data missed. In order to evaluate the performance of the LSTM 

model, we compare its performance of 24 hour PM2.5 prediction with the RF model in the 

beginning. 

Table 20. Comparison of the PM2.5 prediction performance of the LSTM and RF 

Task RMSE of LSTM RMSE of RF 

1-h PM2.5 prediction 19.79 19.11 

2-h PM2.5 prediction 21.14 23.45 

3-h PM2.5 prediction 21.31 26.57 

4 to 6-h PM2.5 prediction 26.33 32.60 

7 to 12-h PM2.5 prediction 39.45 44.64 

13 to 24-h PM2.5 prediction 49.41 56.20 

The training and test datasets used in the LSTM prediction were applied for the RF model 

during training and testing. We trained the RF model mainly based on the RF regression package 

of python (RandomForestRegressor). The forecast precision of these two methods is given in 

Table 20 and we can get two useful findings. First, both LSTM and RF can get satisfying 

prediction performance in the PM2.5 prediction tasks, especially for 1 hour PM2.5 prediction. 

Secondly, we found that the LSTM model exhibited better prediction performance for long time 

prediction tasks from RMSE perspectives. This observation agrees with pass research (Li et al., 

2016), where the LSTM model was demonstrated very appropriate for modelling complicated 
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spatiotemporal relations. Table 20 proves that our LSTM model can capture spatiotemporal 

correlations much more efficiently for long term time series prediction tasks.  

  

Fig. 28 (a) ROC curve of LSTM Fig. 28 (b) ROC curve of RF 

Fig. 28. Comparison of the ROC curve of early warning system of extreme conditions. 

Additionally, in order to assess the precision of our LSTM model on the prediction of extreme 

conditions, we also compare our early warning system with the RF model. We trained the RF 

model mainly based on the RF classification package of python (RandomForestClassifier). The 

comparison of ROC curve is given in Fig. 28 and Table 21 gives the comparison of confusion 

matrix. 

Table 21. Comparison of confusion matrix of LSTM and RF (result of LSTM is in red bold 
font style) 

  True condition 

 Total data Warning 

level 1 

Warning 

level 2 

Warning 

level 3 

Warning 

level 4 

Predicted 

condition 

Warning level 1 68|64 1|4 1|3 0|1 

Warning level 2 7|6 79|73 4|10 1|3 

Warning level 3 2|6 4|5 51|49 4|6 

Warning level 4 1|2 2|4 10|4 37|32 

From Fig. 28, we could see that the AUC of our early warning system of extreme air pollution 

is 0.837, which is significantly higher than the AUC of RF (AUC of RF=0.744). And Table 21 

shows that our early warning system based on LSTM has higher accuracy compared with the 

RF(ACC of LSTM=86.4%, ACC of RF=80.1%). These comparisons suggest that both the 

PM2.5 prediction model and the early warning system performed better than the traditional RF 

model. Besides, according to the structure character of the LSTM model, we can flexibly design 
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the model structure and the dimension of the output by change the number of neurons of 

network easily. Moreover, as we discussed in chapter 4, there are several optimization methods 

we can use to improve the prediction performance; thus our model not only has wide 

applicability but also performs well in multiple tasks. 
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6. Conclusions and recommendations 

6.1 Conclusions 

This thesis project developed an alternative PM2.5 concentration prediction model and early 

warning system of extreme air pollution based on the LSTM model and achieved satisfying 

performance. Since the air pollution problem is extremely serious in the capital of China, 

Beijing, we chose Beijing as our research city and hourly PM2.5 concentration and 

meteorological data were collected.  

To research more deeply, we divided the task into two parts. The first task was predicting the 

PM2.5 concentration of next 24 hours and another one was building early warning system of 

extreme air pollution of next 12 hours. The LSTM model can model long period sequences and 

one could find best input time-lag easily. Although the first task was a regression problem and 

the second one was a classification task, LSTM can be applied for two tasks with similar 

architecture due to the flexible model structure of neural network.  

To solve the first task, we started from the 1-hour prediction task, that was predicting PM2.5 of 

next hour based on previous data. We did parameter optimization to determine the best network 

architecture. In the training process, loss function was taken as Mean Square Error (MSE) to 

minimize the expected loss. In the testing process, in order to assess the performance of the 

model, three index were measured. Finally, we determined the optimal model structure which 

was 2 LSTM layers and 2 FC layers. The time-lag was set as 10 and the learning rate was 

0.00005. The RMSE of test data was 19.7863 which was a sound precision.  

Based on the optimal 1-hour prediction model, we then successfully built 24-hour prediction 

model that was predicting PM2.5 concentration of next 24 hours. Since previous information 

have various influence to the future of interest, the prediction tasks is split into several parts 

and we trained the model for each task. In order to produce the best performance, we decided 

the appropriate input time-lag for every problem. We found that with the increasing of time-lag, 

the best input time lag increased as well while the forecast precision declined quickly (MAPE 

ranged from 20.23% to 40.20%). Since long-period forecasting problems are typically much 

more difficult, more information are needed compared to short-period forecasting problems. 
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Our 24-hour prediction method produced sound performance, including the 13-24 h prediction 

task (RMSE=49.41). 

Although we got a satisfying RMSE for the PM2.5 prediction task, we didn’t get accurate 

prediction for extreme conditions and that’s why we continued to focus on the second task. 

Since we defined extreme air pollution as the air condition with a very high value of PM2.5, to 

simplify the problem, we regarded the highest PM2.5 value among 12 hours as the extreme air 

pollution of this period. If we want to give an early warning of extreme air pollution to citizens 

12 hours in advance, we can predict the rank of highest PM2.5 value of next 12 hours.  

For this reason, we divided the warning level into 4 parts which are represented by one-hot 

vector and the problem becomes a 4-class classification problem. Based on the optimal 1-hour 

PM2.5 prediction model, we changed the dimension of second FC layer and added a Softmax 

layer to transfer the normal output to to probability distribution. The loss function was taken as 

cross entropy between model outputs and the real warning vector. According to the ACC and 

AUC (ACC=86.4%, AUC=0.837), our LSTM model can achieve the best performance when 

the time-lag r is equivalent to 25.  

To improve the prediction performance, we also focused on several model optimization 

techniques for the LSTM model and effectively improved the accuracy. Since the model 

structure of PM2.5 prediction model and early warning model are similar, to simply the research, 

each optimization method was done separately based on the optimal 1-h prediction model. We 

first focused on the parameter optimization and used an alternative schedule scheme of learning 

rate which optimized both convergence speed and accuracy (RMSE decreases from 19.79 to 

18.61).  

Then we focused on the LSTM structure optimization. Dropout, the most successful technique 

to regularize NN, was used in our optimized LSTM network to improve performance. We added 

the dropout layer between the LSTM layer and the FC layer and we tested different keep 

probability. We found that when keep probability was set as 0.9 or 0.8, the test result was slightly 

better than the performance of LSTM model without dropout layer (RMSE 19.3212/19.0177 vs 

19.7863). However, if we set keep probability as 0.7 or lower, the RMSE increased. This 

probably because our model size was relative small and too much dropout made model lose 

important information and was hard to learn the details. 

Finally, we focused on the data optimization. Seasonal information and PM2.5 data of nearby 

obervations were added to the dataset separately to test the influence of optimization. Using the 
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seasonal information, we got a RMSE of 17.4531 which effectively improves the model 

performance compared with the model training on original data (RMSE of 19.7863). This 

proved that seasonal information effectively improves the prediction accuracy of our LSTM 

model. Moreover, with the PM2.5 concentration of nearby monitoring stations, we got a much 

lower RMSE of 16.4325 which showed that the information of nearby PM2.5 concentration 

was much more important for improving prediction accuracy. Besides, we also combined these 

four optimization methods together and we got the lowest RMSE of 14.1937 when the number 

of LSTM neurons was set as 40. The combination optimization performs better than any single 

optimization method, which suggests that we can use some effective optimization methods 

together to improve the prediction precision of LSTM model. 

To assess the performance of our LSTM model, we compared our PM2.5 prediction model with 

the Random Forest (RF) model first. Both LSTM and RF got satisfying prediction performance 

in the PM2.5 prediction tasks, especially for 1 hour PM2.5 prediction. However, the LSTM 

based model produced better prediction performance for long time prediction tasks according 

to the RMSE. These findings suggested our LSTM model can more efficiently learn 

spatiotemporal relations for long term time series prediction tasks.  

In addition, to assess the accuracy of our LSTM model on the prediction of extreme conditions, 

we also compare our early warning system of extreme air pollution with the RF model. The 

comparisons show that our model performed better than the RF(AUC: LSTM=0.837, RF=0.744; 

ACC: LSTM=86.4%, RF=80.1%). These comparisons suggest that both the PM2.5 prediction 

model and the early warning system performed better than the traditional RF model. Besides, 

according to the structure character of the LSTM model, we can flexibly design the model 

structure and the dimension of the output by change the number of neurons of network easily; 

thus our model not only had wide applicability but also performed well in multiple tasks. 

6.2 Possible improvements 

Although we already got a satisfying prediction performance and found some optimization 

techniques, there are still some possible improvements. 

1) From the perspective of data, we can also collect the data from more areas in the future 

research. If we want to predict the air quality of Beijing, we can also take the nearby cities’ air 

quality data into account to improve the model performance.  
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2) Our data has some missing values and we use linear interpolation to fill in the missing values. 

In addition to simple linear interpolation, other method like polynomial interpolation can also 

be used to improve the approximation precision. 

3) From the perspective of model architecture, there are also some variants of LSTM, like the 

Factorized LSTM (F-LSTM) which replaces matrix W by the product of two smaller matrices. 

The key assumption here is that W can be well approximated by the matrix of rank r. Such 

approximation contains less LSTM parameters than original model, therefore, can be computed 

faster and synchronized faster in the case of distributed training. This method can be considered 

when we have much more data to process and we want to improve the computing efficiency. 
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