

Delft University of Technology

A Multi-Objective Harmony Search Algorithm for Sustainable Design of Floating
Settlements

Çubukçuoglu, Cemre; Chatzikonstantinou, Ioannis; Tasgetiren, Mehmet Fatih; Sariyildiz, Sevil; Pan, Quan-
Ke
DOI
10.3390/a9030051
Publication date
2016
Document Version
Final published version
Published in
Algorithms

Citation (APA)
Çubukçuoglu, C., Chatzikonstantinou, I., Tasgetiren, M. F., Sariyildiz, S., & Pan, Q.-K. (2016). A Multi-
Objective Harmony Search Algorithm for Sustainable Design of Floating Settlements. Algorithms , 9(3),
Article 51. https://doi.org/10.3390/a9030051

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.3390/a9030051
https://doi.org/10.3390/a9030051

algorithms

Article

A Multi-Objective Harmony Search Algorithm for
Sustainable Design of Floating Settlements †

Cemre Cubukcuoglu 1, Ioannis Chatzikonstantinou 2,3, Mehmet Fatih Tasgetiren 4,*,
I. Sevil Sariyildiz 2,3 and Quan-Ke Pan 5

1 Department of Interior Architecture and Environmental Design, Yasar University, Izmir 35100, Turkey;
cemre.cubukcuoglu@yasar.edu.tr

2 Department of Architecture, Yasar University, Izmir 35100, Turkey; i.chatzikonstantinou@yasar.edu.tr (I.C.);
sevil.sariyildiz@yasar.edu.tr (I.S.S.)

3 Faculty of Architecture, Delft University of Technology, Delft 2600, The Netherlands
4 Industrial Engineering Department, Yasar University, Izmir 35100, Turkey
5 Department of Industrial and Manufacturing System Engineering, School of Mechanical Science and

Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;
panquanke@hust.edu.cn

* Correspondence: fatih.tasgetiren@yasar.edu.tr; Tel.: +90-530-827-3715
† This paper is an extended version of our paper entitled “Identification of Sustainable Designs for Floating

Settlements Using Computational Design Techniques”, published in the IEEE Congress on Evolutionary
Computation, Sendai, Japan, 25–28 May 2015.

Academic Editor: Javier Del Ser Lorente
Received: 26 April 2016; Accepted: 27 July 2016; Published: 30 July 2016

Abstract: This paper is concerned with the application of computational intelligence techniques to the
conceptual design and development of a large-scale floating settlement. The settlement in question
is a design for the area of Urla, which is a rural touristic region located on the west coast of Turkey,
near the metropolis of Izmir. The problem at hand includes both engineering and architectural aspects
that need to be addressed in a comprehensive manner. We thus adapt the view as a multi-objective
constrained real-parameter optimization problem. Specifically, we consider three objectives, which
are conflicting. The first one aims at maximizing accessibility of urban functions such as housing and
public spaces, as well as special functions, such as a marina for yachts and a yacht club. The second
one aims at ensuring the wind protection of the general areas of the settlement, by adequately
placing them in between neighboring land masses. The third one aims at maximizing visibility of
the settlement from external observation points, so as to maximize the exposure of the settlement.
To address this complex multi-objective optimization problem and identify lucrative alternative
design solutions, a multi-objective harmony search algorithm (MOHS) is developed and applied in
this paper. When compared to the Differential Evolution algorithm developed for the problem in
the literature, we demonstrate that MOHS achieves competitive or slightly better performance in
terms of hyper volume calculation, and gives promising results when the Pareto front approximation
is examined.

Keywords: evolutionary computation; harmony search algorithm; computational design; floating
city optimization; performance-based design; multi-objective optimization

1. Introduction

Floating settlements have become a lucrative alternative for future urban development, given the
growing number of environmental concerns, such as disasters and rising sea level. However,
their design process is critical and technical and architectural challenges should be considered
simultaneously. In this regard, computational intelligence methods may be very useful to handle

Algorithms 2016, 9, 51; doi:10.3390/a9030051 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://www.mdpi.com/journal/algorithms

Algorithms 2016, 9, 51 2 of 17

these complex problems for floating settlement design. This paper aims at the conceptual design and
development of a floating neighborhood by using computational intelligence methods. A coastal
town, Urla, located on the western coast of Turkey close to the city of Izmir, has been chosen
as a site for a floating settlement. We choose to place the proposed settlement in between four
small neighboring islands in the proposed region. The reason is that the area between the islands
provides protection from strong winds and sea currents otherwise present. The proposed settlement
is themed around touristic and yachting activities. In accordance with that, and with respect to
conceptual design, we determine four main functions of the floating neighborhood, namely housing,
yacht marina, yacht club, and public spaces. We thus come across the design problem of how to locate
the abovementioned functions so that a suitable spatial distribution is achieved, in accordance with
our objectives.

In particular, we consider the following three objectives: maximization of accessibility,
maximization of wind protection for keeping living spaces such as houses and yacht marina protected
from wind, as well as maximization of visibility for making commercial places such as houses, a yacht
marina, and a yacht club noticeable from outside the settlement. With respect to these objectives,
we aim to find the most efficient location for these functions. Since wind protection and visibility
objectives, as well as accessibility and visibility, are conflicting objectives, we employ multi-objective
algorithms to solve this complex problem. Specifically, we present the results of the application of
the multi-objective harmony search (MOHS) algorithm to identify suitable solutions for the problem
mentioned above.

To the best of our knowledge, applications of evolutionary computation and swarm intelligence
methods on floating neighborhood design do not exist in any previous study. In [1], the author discusses
floating architectural design using fuzzy logic and rule-based decision support system. IF...THEN
logical statements in the form of a rule base having both controllable and uncontrollable parameters
are transformed into simple linguistic variables. The author uses expert knowledge on motion effects
due to vibration by framing a rule-based decision support model. The model is formed with seven
input variables converted through fuzzy rules into a single output variable. In [2], the author considers
urban water management innovations to reduce vulnerability of urban areas and social aspects that are
relevant to mainstreaming and application of innovations. The author also reflects on the reasons why
the floating structures are more common nowadays, such as land subsidence, increasing sea levels,
increasing population, increase in habitation of areas close to the sea, and climate change. Several
recommendations have been made for floating structures; however, evolutionary optimization or
swarm intelligence methods have not been used in the study. In [3], design considerations for very
large floating structures have been discussed.

As seen above, the literature review on floating settlements is very scarce. At the neighborhood
scale, there is no floating architectural work making use of evolutionary and swarm algorithms.
Evolutionary algorithms are nature-inspired processes mimicking the selection and reproduction
processes in living organisms. Evolutionary and Swarm algorithms provide satisfactory good design
solutions and handle the complexity of the architectural problems. In this regard, Pareto front
approximation is an efficient way to distinguish between inferior and good solutions. Recently,
in [4], the authors worked on identifying configurations of functions for a floating neighborhood
design proposal by using multi-objective optimization. Two evolutionary algorithms are developed
and their results are compared with each other. Differential evolution (DE) algorithm is a stochastic
real-parameter optimization algorithm developed by [5]. DE algorithms have three parameters.
These are the population size (NP), the crossover rate (CR), and the mutation rate (F). These parameters
have a significant impact on the performance of DE algorithms. In [6], a self-adaptive DE algorithm,
called JDE, is developed. It is a very simple and effective algorithm that converges much faster than the
traditional DE, particularly when the dimensionality of the problem is high or the problem concerned
is complicated. In JDE, each individual has its own Fi and CRi values. Initially, they are assigned

Algorithms 2016, 9, 51 3 of 17

to CRi “ 0.5 and Fi “ 0.9 and they are updated at each generation g as Fg
i “

#

Fl ` r1.Fu i f r2 ă t1

Fg´1
i otherwise

and CRg
i “

#

r3 i f r4 ă t2

CRg´1
i otherwise

, where rj P t1, 2, 3, 4u are uniform random numbers in the range r0, 1s.

t1 and t2 denote the probabilities to adjust the Fi and CRi values. They are taken as t1 “ t2 “ 0.1
and Fl “ 0.1 and Fu “ 0.9. In [7], the authors investigated sustainable designs of floating settlements by
using a multi-objective self-adaptive differential evolution (JDE) algorithm inspired by [6]. The main
contribution of the JDE algorithm was to show that many architectural design problems are mainly
multi-objective constrained real-parameter optimization problems. This paper is an extension of [7] by
developing a multi-objective harmony search (MOHS) algorithm for the same benchmark instance
in order to identify a set of design alternatives for decision-makers. The basic harmony search (HS)
algorithm is developed in [8,9]. Regarding the multi-objective harmony search algorithms (MOHS),
Geem [10,11] proposed two MOHS algorithms for the time–cost trade-off optimization of project
management and water distribution network optimization, respectively. These two MOHS algorithms
employ a strict domination rule in such a way that a new solution is generated by HS operators and the
new solution is replaced by the worst solution in the population if the new solution strictly dominates
the worst solution. However, in the MOHS algorithm developed in this paper, a new population of
solutions is generated by HS operators. Then, the old and new population are merged. To determine
the population in the next generation, the fast non-dominated sorting algorithm in [12] is employed to
identify the non-dominated fronts and the constrained-dominance rule in [12] is used to compare the
solutions. An excellent survey of the applications of HS algorithm can be found in [13].

The rest of the paper is organized as follows: Section 2 introduces the problem through a concise
definition. Section 3 presents the generative model and MOHS algorithm that have been applied in
this paper. Section 4 discusses the computational results. Finally, Section 5 gives the conclusions.

2. Problem Definition

As mentioned above, the problem in this study is concerned with the establishment of a floating
settlement between four islands in the studied region. We consider four islands (Akça, Yassıca, Incirli,
and Pırnarlı), with their locations shown in Figure 1. In establishing such a settlement, our aims
include architectural and urban planning related ones, such as accessibility, as well as technical ones,
such as location in suitable sea water depths, etc.

Algorithms 2016, 9, 51 3 of 17

= + . 	 <ℎ and = 	 <ℎ , where ∈ {1,2,3,4} are uniform

random numbers in the range 0,1 . and denote the probabilities to adjust the and
values. They are taken as = = 0.1 and = 0.1 and = 0.9. In [7], the authors investigated
sustainable designs of floating settlements by using a multi-objective self-adaptive differential
evolution (JDE) algorithm inspired by [6]. The main contribution of the JDE algorithm was to show
that many architectural design problems are mainly multi-objective constrained real-parameter
optimization problems. This paper is an extension of [7] by developing a multi-objective harmony
search (MOHS) algorithm for the same benchmark instance in order to identify a set of design
alternatives for decision-makers. The basic harmony search (HS) algorithm is developed in [8,9].
Regarding the multi-objective harmony search algorithms (MOHS), Geem [10,11] proposed two
MOHS algorithms for the time–cost trade-off optimization of project management and water
distribution network optimization, respectively. These two MOHS algorithms employ a strict
domination rule in such a way that a new solution is generated by HS operators and the new
solution is replaced by the worst solution in the population if the new solution strictly dominates the
worst solution. However, in the MOHS algorithm developed in this paper, a new population of
solutions is generated by HS operators. Then, the old and new population are merged. To determine
the population in the next generation, the fast non-dominated sorting algorithm in [12] is employed
to identify the non-dominated fronts and the constrained-dominance rule in [12] is used to compare
the solutions. An excellent survey of the applications of HS algorithm can be found in [13].

The rest of the paper is organized as follows: Section 2 introduces the problem through a
concise definition. Section 3 presents the generative model and MOHS algorithm that have been
applied in this paper. Section 4 discusses the computational results. Finally, Section 5 gives the
conclusions.

2. Problem Definition

As mentioned above, the problem in this study is concerned with the establishment of a floating
settlement between four islands in the studied region. We consider four islands (Akça, Yassıca,
Incirli, and Pırnarlı), with their locations shown in Figure 1. In establishing such a settlement, our
aims include architectural and urban planning related ones, such as accessibility, as well as technical
ones, such as location in suitable sea water depths, etc.

Figure 1. A top view of the islands of Urla [7].

Figure 1. A top view of the islands of Urla [7].

Algorithms 2016, 9, 51 4 of 17

In particular, we consider three main objectives for our problem definition. The first one concerns
the accessibility of our different functions. By accessibility in this study we refer to the walking distance
between the functions. We wish to minimize this distance, so that users of the settlement can easily
move on foot within the settlement. As such, the need for additional transportation is eliminated.
The second objective concerns the protection of our settlement from wind currents present in the area.
The third one is maximization of visibility for making commercial places such as houses, a yacht
marina, and a yacht club noticeable from outside the settlement.

After the abstract establishment of our functions is complete, we consider how to connect
functions, most efficiently with a minimal pedestrian network, which will be realized using pontoons.
In other words, this constitutes a form-finding problem. This is a second phase of our problem
definition, and takes place after the multi-objective optimization.

The following notations are used in the formulation of the problem:

hx “ x coordinate o f houses
hy “ y coordinate o f houses
mx “ x coordinate o f marina
my “ y coordinate o f marina
yx “ x coordinate o f yacht club
yy “ y coordinate o f yacht club
px “ x coordinate o f public area
py “ y coordinate o f public area
pix “ x coordinate o f protected region
piy “ y coordinate o f protected region
dbh,p “ distance between houses and public f unctions
dby,p “ distance between yacht club and public f unctions
dbm,p “ distance between marina and public f unctions
dbm,y “ distance between marina and yacht club
dbh,pi

“ distance between houses and protected area piq , i “ 1, 2
dbm,pi “ distance between marina and protected area piq , i “ 1, 2
noilh “ number o f intersected lines f or houses
noily “ number o f intersected lines f or yacht club
noilm “ number o f intersected lines f or marina
wdy “ water depth f or yacht club
z1 “ accessibility
z2 “ wind protection
z3 “ visibility

2.1. Optimization Model

As mentioned before, we have three design goals, accessibility, wind protection, and visibility,
subject to the constraints of suitable water depth and intersection resolution. Our decision variables
(i.e., chromosome) are given as hx, hy, mx, my, yx, yy, px, py, which are the coordinates corresponding
to one of the following functions: housing, yacht marina, yacht club, and public area.

In our model, we determine the overall accessibility of the public space from all other modules as
in Equations (1)–(3) and the proximity between the yacht club and the yacht marina as in Equation (4).
These accessibility measures in terms of distances are given as follows:

dbh,p “

b

|hx´ px|2 ` |hy´ py|2 (1)

dby,p “

b

|yx´ px|2 ` |yy´ py|2 (2)

Algorithms 2016, 9, 51 5 of 17

dbm,p “

b

|mx´ px|2 ` |my´ py|2 (3)

dbm,y “

b

|mx´ yx|2 ` |my´ yy|2 (4)

Minimum and maximum distances are desired to be between 300 m and 1500 m. The following
formulas are used to determine the accessibility:

maxp0, min
ˆ

1,
current value´max

min´max

˙

q (5)

d1 “ maxp0, min
ˆ

1,
dbh,p ´ 1500
300´ 1500

˙

q (6)

d2 “ maxp0, min
ˆ

1,
dby,p ´ 1500
300´ 1500

˙

q (7)

d3 “ maxp0, min
ˆ

1,
dbm,p ´ 1500
300´ 1500

˙

q (8)

d4 “ maxp0, min
ˆ

1,
dbm,y ´ 2000
500´ 2000

˙

q (9)

Maximize z1 “ minp
1
d1

,
1
d2

,
1
d3

,
1
d4
q (10)

As the second objective, wind protection needs to be maximized for living spaces, such as
housing spaces and a yacht marina. Through on-site inspection, we have determined that the area
is characterized by a dominant wind coming from the northeast or southeast. For this reason, close
offshore islands should protect other islands close to the coastline, and vice versa. Protected regions are
determined as secluded areas between each pair of islands. Thus, it is desirable to locate the sensitive
functions, namely housing and a yacht marina, near these protected regions. For instance, in Figure 2,
housing is close to the protected regions, but the yacht marina is not close enough.

Algorithms 2016, 9, 51 5 of 17

max	(0,min 1, −−) (5) = max(0,min 1, , − 1500300 − 1500) (6)

= max(0,min 1, , − 1500300 − 1500) (7)

= max(0,min 1, , − 1500300 − 1500) (8)

= max(0,min 1, , − 2000500 − 2000) (9)

= min(1 , 1 , 1 , 1) (10)

As the second objective, wind protection needs to be maximized for living spaces, such as
housing spaces and a yacht marina. Through on-site inspection, we have determined that the area is
characterized by a dominant wind coming from the northeast or southeast. For this reason, close
offshore islands should protect other islands close to the coastline, and vice versa. Protected regions
are determined as secluded areas between each pair of islands. Thus, it is desirable to locate the
sensitive functions, namely housing and a yacht marina, near these protected regions. For instance,
in Figure 2, housing is close to the protected regions, but the yacht marina is not close enough.

Figure 2. Top view of the project region to illustrate protected regions [7].

To achieve this objective in the model, the distances between desired functions and the
protected regions are first calculated by Equations (11) and (12). Then Equation (13) provides the
maximization of wind protection as follows:

, = |ℎ − | + |ℎ − | (11)

, = | − | + | − | (12) = (1, + ,) (13)

The last objective is the maximization of visibility to the functions. Since the yacht club and
yacht marina are commercial functions, they should be made noticeable. There is frequent sailing of
cruise ships near the location in question, which attracts a lot of tourists to the region.

Objective function calculation begins with establishing visual trajectories between the
cruise-ship passing line and the desired functions in the parametric model as illustrated in Figure 3.
If the trajectories intersect with the close offshore islands, it is concluded that the function is not
visible from the particular point. By tracing multiple visibility trajectories along the cruise ship
course, we may obtain a figure of the overall visibility of the settlement functions. We thus focus on

Figure 2. Top view of the project region to illustrate protected regions [7].

To achieve this objective in the model, the distances between desired functions and the protected
regions are first calculated by Equations (11) and (12). Then Equation (13) provides the maximization
of wind protection as follows:

dbh,pi
“

b

|hx´ pix|2 ` |hy´ piy|2 (11)

dbm,pi “

b

|mx´ pix|2 ` |my´ piy| 2 (12)

Algorithms 2016, 9, 51 6 of 17

Maximize z2 “ p
1

dbh,pi
` dbm,pi

q (13)

The last objective is the maximization of visibility to the functions. Since the yacht club and yacht
marina are commercial functions, they should be made noticeable. There is frequent sailing of cruise
ships near the location in question, which attracts a lot of tourists to the region.

Objective function calculation begins with establishing visual trajectories between the cruise-ship
passing line and the desired functions in the parametric model as illustrated in Figure 3. If the
trajectories intersect with the close offshore islands, it is concluded that the function is not visible from
the particular point. By tracing multiple visibility trajectories along the cruise ship course, we may
obtain a figure of the overall visibility of the settlement functions. We thus focus on maximizing the
visibility figure, calculated as described above and shown in Equation (14), for the relevant functions
in the settlement. For example, the number of intersected visibility lines with the close offshore islands
is six for a housing unit in Figure 4.

Maximize z3 “ p
1

pnoilh ` noily ` noilmq
q (14)

Algorithms 2016, 9, 51 6 of 17

maximizing the visibility figure, calculated as described above and shown in Equation (14), for the
relevant functions in the settlement. For example, the number of intersected visibility lines with the
close offshore islands is six for a housing unit in Figure 4. = (1(+ +)) (14)

Figure 3. A view of the project region’s cruise-ship passing lines [7].

	
Figure 4. Example of generating the intersected lines for a housing unit [7].

Decision variables have boundaries, which have been determined so as to describe the water
area between the four islands, after on-site observation and expert opinion: 1101 < ℎ < 4000 (15) 1184 < ℎ < 3184 (16) 1101 < < 4000 (17) 1184 < < 3184 (18) 1101 < < 4000 (19) 1184 < < 3184 (20) 1101 < < 4000 (21) 1184 < < 3184 (22)

Distances near the wind-protected areas should be restricted to less than 300 m: < 300 (23)

Visibility lines should be restricted to less than 5:

Figure 3. A view of the project region’s cruise-ship passing lines [7].

Algorithms 2016, 9, 51 6 of 17

maximizing the visibility figure, calculated as described above and shown in Equation (14), for the
relevant functions in the settlement. For example, the number of intersected visibility lines with the
close offshore islands is six for a housing unit in Figure 4. = (1(+ +)) (14)

Figure 3. A view of the project region’s cruise-ship passing lines [7].

	
Figure 4. Example of generating the intersected lines for a housing unit [7].

Decision variables have boundaries, which have been determined so as to describe the water
area between the four islands, after on-site observation and expert opinion: 1101 < ℎ < 4000 (15) 1184 < ℎ < 3184 (16) 1101 < < 4000 (17) 1184 < < 3184 (18) 1101 < < 4000 (19) 1184 < < 3184 (20) 1101 < < 4000 (21) 1184 < < 3184 (22)

Distances near the wind-protected areas should be restricted to less than 300 m: < 300 (23)

Visibility lines should be restricted to less than 5:

Figure 4. Example of generating the intersected lines for a housing unit [7].

Decision variables have boundaries, which have been determined so as to describe the water area
between the four islands, after on-site observation and expert opinion:

1101 ă hx ă 4000 (15)

Algorithms 2016, 9, 51 7 of 17

1184 ă hy ă 3184 (16)

1101 ă mx ă 4000 (17)

1184 ă my ă 3184 (18)

1101 ă yx ă 4000 (19)

1184 ă yy ă 3184 (20)

1101 ă px ă 4000 (21)

1184 ă py ă 3184 (22)

Distances near the wind-protected areas should be restricted to less than 300 m:

z2 ă 300 (23)

Visibility lines should be restricted to less than 5:

noilh ă 5 (24)

noily ă 5 (25)

noilm ă 5 (26)

The real depth data are taken from NAVIONICS, which is an electronic navigation chart and
system for marine and outdoor use. To obtain an approximate sea bottom model, interpolation was
used. By doing so, the location of the functions is controlled to be in a specific water depth. The yacht
club location is restricted to a water depth greater than 20 m:

wdy ą 20 (27)

This constraint also avoids the surface intersections like functions to functions and islands
to functions.

2.2. Form Finding

The second part of the problem is to establish a network of pedestrian pathways among city
functions. This step involves connecting each function by establishing meaningful paths between city
functions, as seen in Figures 5 and 6. Creating the connections between functions is achieved by the
shortest walk algorithm, which obtains the shortest distance between functions, where their locations
are already obtained from Pareto front approximated solutions coming from our MOHS algorithm.

Algorithms 2016, 9, 51 7 of 17 < 5 (24) < 5 (25) < 5 (26)

The real depth data are taken from NAVIONICS, which is an electronic navigation chart and
system for marine and outdoor use. To obtain an approximate sea bottom model, interpolation was
used. By doing so, the location of the functions is controlled to be in a specific water depth. The yacht
club location is restricted to a water depth greater than 20 m: > 20 (27)

This constraint also avoids the surface intersections like functions to functions and islands to
functions.

2.2. Form Finding

The second part of the problem is to establish a network of pedestrian pathways among city
functions. This step involves connecting each function by establishing meaningful paths between city
functions, as seen in Figures 5 and 6. Creating the connections between functions is achieved by the
shortest walk algorithm, which obtains the shortest distance between functions, where their locations
are already obtained from Pareto front approximated solutions coming from our MOHS algorithm.

Figure 5. Generating the roads between functions using the shortest walk algorithm [7].

Figure 6. Shortest walk generation in GH model.

Figure 5. Generating the roads between functions using the shortest walk algorithm [7].

Algorithms 2016, 9, 51 8 of 17

Algorithms 2016, 9, 51 7 of 17 < 5 (24) < 5 (25) < 5 (26)

The real depth data are taken from NAVIONICS, which is an electronic navigation chart and
system for marine and outdoor use. To obtain an approximate sea bottom model, interpolation was
used. By doing so, the location of the functions is controlled to be in a specific water depth. The yacht
club location is restricted to a water depth greater than 20 m: > 20 (27)

This constraint also avoids the surface intersections like functions to functions and islands to
functions.

2.2. Form Finding

The second part of the problem is to establish a network of pedestrian pathways among city
functions. This step involves connecting each function by establishing meaningful paths between city
functions, as seen in Figures 5 and 6. Creating the connections between functions is achieved by the
shortest walk algorithm, which obtains the shortest distance between functions, where their locations
are already obtained from Pareto front approximated solutions coming from our MOHS algorithm.

Figure 5. Generating the roads between functions using the shortest walk algorithm [7].

Figure 6. Shortest walk generation in GH model. Figure 6. Shortest walk generation in GH model.

3. Generative Model and MOHS Algorithm

The parametric model has been created in the Grasshopper (GH) [14] platform. GH is a part of
Rhinoceros [15], a CAD program; it defines geometric entities and performs calculations on Rhinoceros
with great ease through visual programming. The complete GH model can be seen in Figure 7.

Algorithms 2016, 9, 51 8 of 17

3. Generative Model and MOHS Algorithm

The parametric model has been created in the Grasshopper (GH) [14] platform. GH is a part of
Rhinoceros [15], a CAD program; it defines geometric entities and performs calculations on
Rhinoceros with great ease through visual programming. The complete GH model can be seen in
Figure 7.

Figure 7. Overview of the GH model [7].

The MOHS algorithm has been programmed in the C-Sharp programming language. The
necessary geometric and measurement operations required for formulating the objectives and
constraints in our problem have been implemented in the Grasshopper design tool, which is a part of
the Rhinoceros CAD product. This tool has been very useful in offering the necessary building
blocks (such as the shortest path algorithm) for computationally implementing our problem. The
C-Sharp algorithm makes use of this tool to calculate objective function values and constraint values.
The summary of this process is shown in Figure 8.

Figure 8. Grasshopper and algorithm interaction.

In the generative model, the coordinates of the functions are defined first, then the functions are
demonstrated with the circles with their specific areas. In the second stage, objective functions are
formulized in the GH model. After setting up the constraints, the MOHS algorithm is implemented
as a plug-in for the GH environment, as mentioned previously. After choosing a design from the set
of design alternatives handled by the optimization, the shortest walk component was used in the GH
environment to generate the streets between each function.

As mentioned previously, the basic harmony search (HS) algorithm is developed in [8,9]. It is a
populated optimization method. The natural musical performance process is the key to the HS

Figure 7. Overview of the GH model [7].

The MOHS algorithm has been programmed in the C-Sharp programming language. The necessary
geometric and measurement operations required for formulating the objectives and constraints in our
problem have been implemented in the Grasshopper design tool, which is a part of the Rhinoceros
CAD product. This tool has been very useful in offering the necessary building blocks (such as the
shortest path algorithm) for computationally implementing our problem. The C-Sharp algorithm
makes use of this tool to calculate objective function values and constraint values. The summary of
this process is shown in Figure 8.

Algorithms 2016, 9, 51 9 of 17

Algorithms 2016, 9, 51 8 of 17

3. Generative Model and MOHS Algorithm

The parametric model has been created in the Grasshopper (GH) [14] platform. GH is a part of
Rhinoceros [15], a CAD program; it defines geometric entities and performs calculations on
Rhinoceros with great ease through visual programming. The complete GH model can be seen in
Figure 7.

Figure 7. Overview of the GH model [7].

The MOHS algorithm has been programmed in the C-Sharp programming language. The
necessary geometric and measurement operations required for formulating the objectives and
constraints in our problem have been implemented in the Grasshopper design tool, which is a part of
the Rhinoceros CAD product. This tool has been very useful in offering the necessary building
blocks (such as the shortest path algorithm) for computationally implementing our problem. The
C-Sharp algorithm makes use of this tool to calculate objective function values and constraint values.
The summary of this process is shown in Figure 8.

Figure 8. Grasshopper and algorithm interaction.

In the generative model, the coordinates of the functions are defined first, then the functions are
demonstrated with the circles with their specific areas. In the second stage, objective functions are
formulized in the GH model. After setting up the constraints, the MOHS algorithm is implemented
as a plug-in for the GH environment, as mentioned previously. After choosing a design from the set
of design alternatives handled by the optimization, the shortest walk component was used in the GH
environment to generate the streets between each function.

As mentioned previously, the basic harmony search (HS) algorithm is developed in [8,9]. It is a
populated optimization method. The natural musical performance process is the key to the HS

Figure 8. Grasshopper and algorithm interaction.

In the generative model, the coordinates of the functions are defined first, then the functions are
demonstrated with the circles with their specific areas. In the second stage, objective functions are
formulized in the GH model. After setting up the constraints, the MOHS algorithm is implemented as
a plug-in for the GH environment, as mentioned previously. After choosing a design from the set of
design alternatives handled by the optimization, the shortest walk component was used in the GH
environment to generate the streets between each function.

As mentioned previously, the basic harmony search (HS) algorithm is developed in [8,9].
It is a populated optimization method. The natural musical performance process is the key to the HS
algorithm. This happens when a musician looks for a better state of harmony. In the HS algorithm,
solutions are defined as harmonies and each harmony has an n-dimensional real vector. An initial
population is randomly constructed as a harmony memory (HM). Then, generation of a new candidate
harmony is achieved by all of the harmonies in HM through the use of a memory consideration,
a pitch adjustment, and a random selection. Then, HM is updated by comparing the new harmony
with the worst harmony vector in HM. This process is repeated until a certain termination criterion
is met.

There are five basic parameters in the HS algorithm. These are the harmony memory size
(HM), the harmony memory consideration rate (HMCR), the pitch adjusting rate (PAR), the distance
bandwidth (BW), and the termination criterion. Suppose that Si “ tsi1, si2, . . . , sinu represent the ith

harmony vector in the harmony memory and sij P
“

LBj, UBj
‰

, j “ 1, 2, . . . , n where LBj and UBj are
the lower and upper bound for each dimension j, respectively. The HMS is the total harmonies in
the memory as tS1, S2, . . . , SHMSu. In other words, the population size is HMS. A harmony vector
Si “ tsi1, si2, . . . , sinu is randomly and uniformly generated as follows:

sij “ LBij `
`

UBij ´ LBij
˘

ˆU p0, 1q , j “ 1, 2, . . . , n (28)

where LBij and UBij are lower and upper bounds for each dimension j and U p0, 1q is a uniform random
number between 0 and 1 for each dimension (decision variables).

Three rules are employed to improvise a new harmony vector, Snew. These rules are a memory
consideration, a pitch adjustment, and a random selection. As shown in Algorithm 1, a uniform
random number U p0, 1q is obtained. If U p0, 1q is less than the HMCR probability, each dimension
snew,j is obtained by the memory consideration; otherwise, random selection is used and snew,j is
obtained by Equation (28). Memory consideration chooses any harmony a in the range t1, 2, . . . HMu
as snew,j “ sa,j. Then, each dimension snew,j will be modified by a pitch adjustment rule with a
probability PAR if it is updated by the memory consideration. The pitch adjustment rule is given
as follows:

snew,j “ snew,j `U p´1, 1q ˆ BW (29)

where U p0, 1q is a uniform random number between 0 and 1 and BW is the distance bandwidth.

Algorithms 2016, 9, 51 10 of 17

Algorithm 1 Basic Harmony Search

1: for (i “ 1 to HM) do
2: for (j “ 1 to n) do
3: if (U p0, 1q ă HMCR) then
4: snew,j “ sa,j where a P p1, 2, . . . , HMSq
5: if pU p0, 1q ă PAR q then
6: xnew,j “ xnew,j `U p´1, 1q ˆ BW
7: else
8: xnew,j “ LBj `

`

UBj ´ LBj
˘

ˆ U p0, 1q
9: endif
10: endfor
11: if p f pxnewq ă f pxwqq then xw “ xnew

12: endfor

Once a new harmony vector snew is obtained, it is compared to the worst harmony vector in the
HM. The selection is based on the survival of the fittest between snew and the worst harmony vector sw

in the HM. In other words, if snew is better than sw, it will replace the worst harmony vector to become
a new member of the HM. In the traditional HS, population size is taken as small and at each iteration
only one harmony is generated. However, in this paper, we generate HM number of harmonies as
shown in Algorithm 1.

The above HS is designed for single-objective unconstrained/constrained real-parameter
optimization problems. In order to extend it to a multi-objective constrained optimization problem as
in this paper, we mainly use the non-dominated sorting approach and constrained-domination rule of
NSGA-II algorithm of Deb [12]. An excellent review of multi-objective genetic algorithms (GAs) is
provided in [16]. In order to ease the understanding of the MOHS algorithm, we briefly summarize
the NSGA-II algorithm as follows:

Most GAs employ Pareto-ranking approaches. In the Pareto-ranking approach, the concept
of Pareto dominance is used to give a rank to each solution. The population is ranked by using a
dominance rule and ranks are determined as f1, f2, .., fk. The first rank f1 corresponds to the Pareto
front of the population. Goldberg [17] proposed the first Pareto ranking technique with a population P
with size N as follows:

Step 1: Set i “ 1 and tempP “ P.
Step 2: Determine non-dominated solutions in tempP and assign them to rank fi.
Step 3: Set tempP “ tempP ´ fi. If tempP “ ∅, then go to Step 4, else set i “ i ` 1 and

go to Step 2.
Step 4: For every solution s P P at generation g, assign a rank ri ps, gq “ i i f s P fi.

However, NSGA-II uses the fast non-dominated sorting algorithm to establish non-dominated
fronts. Another distinct feature of the NSGA-II algorithm is the crowding distance approach to generate
a uniform spread of solutions around the best-known Pareto front. The crowding distance is calculated
in NSGA-II as follows:

Step 1: Rank the population and determine non-dominated fronts f1, f2, .., fk.
Step 2: For each front j “ 1, ..k, repeat.

Step 2.1: Sort the solutions in f j for each fitness function x in the increasing order.
Set l “

ˇ

ˇ f j
ˇ

ˇ Suppose that si,x is the ith solution in the sorted list with respect to the
objective function x. Make sure cDx ps1,xq “ 8 and cDx

`

sl,x
˘

“ 8. Suppose that
the fitness function is denoted as Fx.

Algorithms 2016, 9, 51 11 of 17

Step 2.2: Calculate the crowded distance for i “ 2, .., l ´ 1 as follows:

cDx
`

si,x
˘

“
Fx

`

si`1,x
˘

´ Fx
`

si´1,x
˘

Fmax
x ´ Fmin

x

Step 3: To find a crowding distance of a solution s, add up the crowding distances with respective
to each fitness function, i.e., cD psq “

ř

x cDx psq.

In NSGA-II, this crowding distance measure is a tiebreaker for the crowded tournament selection
operator. Two solutions, x and y, are randomly selected. Then, if the solutions are in the same
non-dominated front, the solution with a higher crowding distance is chosen. Otherwise, the solution
with the lowest rank is favored. Since we deal with a constrained problem in this paper, we also
employ the constrained-domination concept in NSGA-II [12]. In [12], the constrained-domination
concept works as follows: A solution x is said to be constrained-dominated a solution y if one of the
following conditions is satisfied:

‚ Solution x is feasible and solution y is infeasible.
‚ Solutions x and y are both infeasible; however, solution x has a smaller constraint violation than y.
‚ Solutions x and y are both feasible, but solution x dominates solution y.

In the constraint tournament method, first, non-constrained-dominance fronts f1, f2, .., fk are
determined in such a way that the constrained-domination principle is employed instead of the regular
domination principle. Note that set f1 is the set of feasible non-dominated solutions in the population.
In the constraint tournament selection, two solutions x and y are randomly chosen from the population.
Between x and y, the one with a lower front is preferred. If solutions x and y are both in the same
front, then the one with a higher crowding distance is the winner. Now, we are ready to give the
computational flow of the proposed MOHS algorithm as follows:

Procedure MOHS:

Step 1: Create a random harmony population P0 of size HM and set g “ 0.
Step 2: Apply harmony search operators to P0 and obtain offspring population Q0 of size HM.
Step 3: If the stopping criterion is satisfied, stop and return Pg.
Step 4: Set Rg “ Pg YQg.
Step 5: Using the fast non-dominated sorting algorithm, identify the non-dominated fronts

f1, f2, .., fk in Rg.
Step 6: For i “ 1, .., k, do the following steps:

Step 6.1: Calculate crowding distance of the solutions in fi.
Step 6.2: Create Pg`1 as follows:

‚ i f
ˇ

ˇPg`1
ˇ

ˇ` | fi| ď HM, then set Pg`1 “ Pg`1 Y fg

‚ i f
ˇ

ˇPg`1
ˇ

ˇ` | fi| ą HM, then add the least crowded N´
ˇ

ˇPg`1
ˇ

ˇ solutions from fi to Pg`1.

Step 7: Use crowded tournament selection to select a harmony from Pg`1. Apply harmony
search operators to Pg`1 and obtain offspring harmony population Qg`1 of size HM.

Step 8: Set g “ g` 1 and go to Step 3.

4. Computational Results and Discussion

The MOHS algorithm is run on an Intel (R) Core (TM) i5-3210M CPU @2.50GHz computer
with 4 GB of RAM. We compare the MOHS algorithm to the JDE algorithm in [6] as mentioned before.
The population size is taken as 100 for both algorithms. Both algorithms performed 100 generations
for each run. We took five runs for each algorithm with a different seed number. In order to analyze

Algorithms 2016, 9, 51 12 of 17

the performance of algorithms, we employ the hypervolume (HV), measuring the volume of the
non-dominated portion of the objective space, as a performance metric [18]. Among the five replications
with different numbers (S), we report the best, median, worst, and standard deviation values at
generation 100 as given in Table 1 for JDE and MOHS algorithms, respectively. In addition, the line
plot of HV values for both algorithms is given in Figure 9.

Table 1. Hypervolume values of JDE and MOHS algorithms at generation 100.

Algorithm S1 S2 S3 S4 S5 Best Median Worst Std

JDE 0.99985 0.9979 0.99941 0.98133 0.99917 0.99985 0.99917 0.98133 0.007972
MOHS 0.99898 0.99993 0.99902 0.99834 0.99955 0.99993 0.99902 0.99834 0.000627

As seen in Table 1 and Figure 9, both algorithms have a good performance in 100 generations for
the best, median, worst, and Std values of HV. In addition, the proportions of non-dominated solutions
are similar. The MOHS algorithm was slightly more robust than the JDE algorithm because the standard
deviation was slightly smaller. These values are very close to each other because both algorithms
employ the non-dominated sorting procedure and constrained-domination principle borrowed and
adopted for JDE and MOHS algorithms from NSGA-II.

The chart of the non-dominated solutions (f1 f ront) for the JDE algorithm at generation 100 and
MOHS at generation 100 can be seen in Figures 10 and 11, respectively. Since we have a feasible set
of solutions, the seed number 3 is selected for the JDE algorithm, and seed number 2 is selected for
the MOHS algorithm. Additionally, in each figure, we pick three solutions. They represent different
design alternatives generated by the algorithms for the decision-maker.

In the first selected solution from the JDE algorithm in Figure 12, wind protection for houses is
satisfied but it is not valid for the visibility of the yacht marina. On the other hand, accessibility is very
high and the visibility of the yacht club is satisfying. For the second selected solution in Figure 13,
privacy is good for both houses and the yacht marina, but there is an interesting placement between
houses since different modules of houses are far away from each other. Although the visibility value is
higher in this solution, one housing module prevents the visibility of the yacht club. The third selected
solution from the JDE algorithm shown in Figure 14 has very poor wind protection. However, the
yacht club is very noticeable and accessibility is satisfactory.

Algorithms 2016, 9, 51 12 of 17

club. The third selected solution from the JDE algorithm shown in Figure 14 has very poor wind
protection. However, the yacht club is very noticeable and accessibility is satisfactory.

Figure 9. Line plot of HV volumes for both algorithms.

Figure 10. Scatter plot of the JDE algorithm.

Figure 11. 3D Scatter plot of the MOHS algorithm.

StdWorstMedianBest

1.0

0.8

0.6

0.4

0.2

0.0

HV

JDE
MOHS

Row

Line Plot of Algorithms

Figure 9. Line plot of HV volumes for both algorithms.

Algorithms 2016, 9, 51 13 of 17

Algorithms 2016, 9, 51 12 of 17

club. The third selected solution from the JDE algorithm shown in Figure 14 has very poor wind
protection. However, the yacht club is very noticeable and accessibility is satisfactory.

Figure 9. Line plot of HV volumes for both algorithms.

Figure 10. Scatter plot of the JDE algorithm.

Figure 11. 3D Scatter plot of the MOHS algorithm.

StdWorstMedianBest

1.0

0.8

0.6

0.4

0.2

0.0

HV

JDE
MOHS

Row

Line Plot of Algorithms

Figure 10. Scatter plot of the JDE algorithm.

Algorithms 2016, 9, 51 12 of 17

club. The third selected solution from the JDE algorithm shown in Figure 14 has very poor wind
protection. However, the yacht club is very noticeable and accessibility is satisfactory.

Figure 9. Line plot of HV volumes for both algorithms.

Figure 10. Scatter plot of the JDE algorithm.

Figure 11. 3D Scatter plot of the MOHS algorithm.

StdWorstMedianBest

1.0

0.8

0.6

0.4

0.2

0.0

HV

JDE
MOHS

Row

Line Plot of Algorithms

Figure 11. 3D Scatter plot of the MOHS algorithm.Algorithms 2016, 9, 51 13 of 17

Figure 12. The first selected solution from the JDE algorithm.

Figure 13. The second selected solution from the JDE algorithm.

Figure 14. The third selected solution from the JDE algorithm.

Figure 12. The first selected solution from the JDE algorithm.

Algorithms 2016, 9, 51 14 of 17

Algorithms 2016, 9, 51 13 of 17

Figure 12. The first selected solution from the JDE algorithm.

Figure 13. The second selected solution from the JDE algorithm.

Figure 14. The third selected solution from the JDE algorithm.

Figure 13. The second selected solution from the JDE algorithm.

Algorithms 2016, 9, 51 13 of 17

Figure 12. The first selected solution from the JDE algorithm.

Figure 13. The second selected solution from the JDE algorithm.

Figure 14. The third selected solution from the JDE algorithm. Figure 14. The third selected solution from the JDE algorithm.

If we consider the selected solutions from the MOHS algorithm, the most accessible solution,
which is the first one, represents a different configuration than the one in the JDE algorithm, as
seen in Figure 15. This is because, in this design alternative, all functions are coming together.
For the second one chosen from the MOHS alternatives (Figure 16), all objectives are highly desirable.
However, the third solution chosen from the MOHS algorithm is very similar to the second selected
one, with only the location of one house unit seriously changed (Figure 17).

Algorithms 2016, 9, 51 15 of 17

Algorithms 2016, 9, 51 14 of 17

If we consider the selected solutions from the MOHS algorithm, the most accessible solution,
which is the first one, represents a different configuration than the one in the JDE algorithm, as seen
in Figure 15. This is because, in this design alternative, all functions are coming together. For the
second one chosen from the MOHS alternatives (Figure 16), all objectives are highly desirable.
However, the third solution chosen from the MOHS algorithm is very similar to the second selected
one, with only the location of one house unit seriously changed (Figure 17).

Figure 15. The first selected solution from the MOHS algorithm.

Figure 16. The second selected solution from the MOHS algorithm.

Figure 15. The first selected solution from the MOHS algorithm.

Algorithms 2016, 9, 51 14 of 17

If we consider the selected solutions from the MOHS algorithm, the most accessible solution,
which is the first one, represents a different configuration than the one in the JDE algorithm, as seen
in Figure 15. This is because, in this design alternative, all functions are coming together. For the
second one chosen from the MOHS alternatives (Figure 16), all objectives are highly desirable.
However, the third solution chosen from the MOHS algorithm is very similar to the second selected
one, with only the location of one house unit seriously changed (Figure 17).

Figure 15. The first selected solution from the MOHS algorithm.

Figure 16. The second selected solution from the MOHS algorithm. Figure 16. The second selected solution from the MOHS algorithm.
Algorithms 2016, 9, 51 15 of 17

Figure 17. The third selected solution from the MOHS algorithm.

5. Conclusions

This paper proposed a multi-objective optimization of the conceptual design and development
of a floating settlement. The goal was to configure the city functions (i.e., housing and
accommodation, yacht marina, yacht club, and public areas) so as to maximize accessibility, wind
protection, and visibility subject to both technical and architectural constraints. Then, a suitable form
was generated by shortest walk algorithm establishing pathways between functions, where their
locations were gathered from solutions through a multi-objective heuristic optimization process.

Because wind protection, accessibility, and visibility objectives can conflict with each other,
multi-objective JDE and MOHS algorithms are applied to solve this complex problem and identify
alternative design solutions for decision-makers. Through the experimental results, we show that
the two proposed algorithms generated satisfactory design solutions. The computer renderings of
the proposed floating settlement design can be seen in Figures 18 and 19.

Figure 18. Computer rendering of the proposed floating settlement.

Figure 17. The third selected solution from the MOHS algorithm.

Algorithms 2016, 9, 51 16 of 17

5. Conclusions

This paper proposed a multi-objective optimization of the conceptual design and development of
a floating settlement. The goal was to configure the city functions (i.e., housing and accommodation,
yacht marina, yacht club, and public areas) so as to maximize accessibility, wind protection,
and visibility subject to both technical and architectural constraints. Then, a suitable form was
generated by shortest walk algorithm establishing pathways between functions, where their locations
were gathered from solutions through a multi-objective heuristic optimization process.

Because wind protection, accessibility, and visibility objectives can conflict with each other,
multi-objective JDE and MOHS algorithms are applied to solve this complex problem and identify
alternative design solutions for decision-makers. Through the experimental results, we show that the
two proposed algorithms generated satisfactory design solutions. The computer renderings of the
proposed floating settlement design can be seen in Figures 18 and 19.

Algorithms 2016, 9, 51 15 of 17

Figure 17. The third selected solution from the MOHS algorithm.

5. Conclusions

This paper proposed a multi-objective optimization of the conceptual design and development
of a floating settlement. The goal was to configure the city functions (i.e., housing and
accommodation, yacht marina, yacht club, and public areas) so as to maximize accessibility, wind
protection, and visibility subject to both technical and architectural constraints. Then, a suitable form
was generated by shortest walk algorithm establishing pathways between functions, where their
locations were gathered from solutions through a multi-objective heuristic optimization process.

Because wind protection, accessibility, and visibility objectives can conflict with each other,
multi-objective JDE and MOHS algorithms are applied to solve this complex problem and identify
alternative design solutions for decision-makers. Through the experimental results, we show that
the two proposed algorithms generated satisfactory design solutions. The computer renderings of
the proposed floating settlement design can be seen in Figures 18 and 19.

Figure 18. Computer rendering of the proposed floating settlement. Figure 18. Computer rendering of the proposed floating settlement.Algorithms 2016, 9, 51 16 of 17

Figure 19. Computer rendering of housing units.

Author Contributions: Mehmet Fatih Tasgetiren, Cemre Cubukcuoglu, and Ioannis Chatzikonstantinou wrote
the C Sharp Codes for JDE and MOHS algorithms. Quan-Ke Pan provided the C Sharp Codes for the
hypervolume calculations. All runs were performed by Cemre Cubukcuoglu. Mehmet Fatih Tasgetiren, Sevil
Sariyildiz, and Ioannis Chatzikonstantinou wrote the paper. Final checks were done by Quan-Ke Pan. All
authors read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Tartar, A. Floating Architecture Design Process Modelling Supported by Rule-Based Decision-Making.
Ph.D. Thesis, İstanbul Technical University, Istanbul, Turkey, 2012.

2. De Graaf, R.E. Innovations in Urban Water Management to Reduce the Vulnerability of Cities: Feasibility,
Case Studies and Governance. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2009.

3. Watanabe, E.; Wang, M.; Utsunomiya, T.; Moan, T. Very Large Floating Structures: Application, Analysis and
Design; Technical Report No. 2004-02; Available online: http://www.eng.nus.edu.sg/core/Report%20200402.pdf
(accessed on 28 July 2016).

4. Kirimtat, A.; Chatzikonstantinou, I.; Sariyildiz, S.; Tartar, A. Designing self-sufficient floating
neighborhoods using computational decision support. In Proceedings of the 2015 IEEE Congress on
Evolutionary Computation, Sendai, Japan, 25–28 May 2015; pp. 2261–2268.

5. Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over
continuous spaces. J. Glob. Optim. 1997, 11, 341–359.

6. Brest, J.; Greiner, S.; Boskovic, B.; Mernik, M.; Zumer, V. Self-adapting control parameters in differential
evolution: A comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 2006, 10,
646–657.

7. Ugurlu, C.; Chatzikonstantinou, I.; Sariyildiz, S.; Tasgetiren, M.F. Identification of sustainable designs for
floating settlements using computational design techniques. In Proceedings of the 2015 IEEE Congress on
Evolutionary Computation, Sendai, Japan, 25–28 May 2015; pp. 2303–2310.

8. Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search.
Simulation 2001, 76, 60–68.

9. Lee, K.S.; Geem, Z.W. A new meta-heuristic algorithm for continuous engineering optimization:
Harmony search theory and practice. Comput. Methods Appl. Mech. Eng. 2005, 194, 3902–3933.

10. Geem, Z.W. Multiobjective optimization of time-cost trade-off using harmony search. J. Constr. Eng.
Manag. 2010, 136, 711–716.

11. Geem, Z.W. Multiobjective optimization of water distribution networks using fuzzy theory and harmony
search. Water 2015, 7, 3613–3625.

12. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multi-objective genetic algorithm:
NSGA-II. Evolut. Comput. 2002, 6, 182–197.

Figure 19. Computer rendering of housing units.

Algorithms 2016, 9, 51 17 of 17

Author Contributions: Mehmet Fatih Tasgetiren, Cemre Cubukcuoglu, and Ioannis Chatzikonstantinou wrote
the C Sharp Codes for JDE and MOHS algorithms. Quan-Ke Pan provided the C Sharp Codes for the hypervolume
calculations. All runs were performed by Cemre Cubukcuoglu. Mehmet Fatih Tasgetiren, Sevil Sariyildiz,
and Ioannis Chatzikonstantinou wrote the paper. Final checks were done by Quan-Ke Pan. All authors read and
approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Tartar, A. Floating Architecture Design Process Modelling Supported by Rule-Based Decision-Making.
Ph.D. Thesis, İstanbul Technical University, Istanbul, Turkey, 2012.

2. De Graaf, R.E. Innovations in Urban Water Management to Reduce the Vulnerability of Cities: Feasibility,
Case Studies and Governance. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2009.

3. Watanabe, E.; Wang, M.; Utsunomiya, T.; Moan, T. Very Large Floating Structures: Application, Analysis
and Design; Technical Report No. 2004-02; Available online: http://www.eng.nus.edu.sg/core/Report%
20200402.pdf (accessed on 28 July 2016).

4. Kirimtat, A.; Chatzikonstantinou, I.; Sariyildiz, S.; Tartar, A. Designing self-sufficient floating neighborhoods
using computational decision support. In Proceedings of the 2015 IEEE Congress on Evolutionary
Computation, Sendai, Japan, 25–28 May 2015; pp. 2261–2268.

5. Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over
continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [CrossRef]

6. Brest, J.; Greiner, S.; Boskovic, B.; Mernik, M.; Zumer, V. Self-adapting control parameters in differential
evolution: A comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 2006, 10,
646–657. [CrossRef]

7. Ugurlu, C.; Chatzikonstantinou, I.; Sariyildiz, S.; Tasgetiren, M.F. Identification of sustainable designs for
floating settlements using computational design techniques. In Proceedings of the 2015 IEEE Congress on
Evolutionary Computation, Sendai, Japan, 25–28 May 2015; pp. 2303–2310.

8. Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search.
Simulation 2001, 76, 60–68. [CrossRef]

9. Lee, K.S.; Geem, Z.W. A new meta-heuristic algorithm for continuous engineering optimization: Harmony
search theory and practice. Comput. Methods Appl. Mech. Eng. 2005, 194, 3902–3933. [CrossRef]

10. Geem, Z.W. Multiobjective optimization of time-cost trade-off using harmony search. J. Constr. Eng. Manag.
2010, 136, 711–716. [CrossRef]

11. Geem, Z.W. Multiobjective optimization of water distribution networks using fuzzy theory and harmony
search. Water 2015, 7, 3613–3625. [CrossRef]

12. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multi-objective genetic algorithm: NSGA-II.
Evolut. Comput. 2002, 6, 182–197. [CrossRef]

13. Manjarres, D.; Landa-Torres, I.; Gil-Lopez, S.; del Ser, J.; Bilbao, M.N.; Salcedo-Sanz, S.; Geem, Z.W. A survey
on applications of the harmony search algorithm. Eng. Appl. Artif. Intell. 2013, 26, 1818–1831. [CrossRef]

14. McNeel, R. Grasshopper 3D. Available online: www.grasshopper3d.com (accessed on 21 September 2015).
15. McNeel, R. Rhinoceros 3D. Available online: www.rhino3d.com (accessed on 21 September 2015).
16. Konak, A.; Coit, D.W.; Smith, A.E. Multi-objective optimization using genetic algorithms: A tutorial.

Reliab. Eng. Syst. Saf. 2006, 91, 992–1007. [CrossRef]
17. Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learning; Addison-Wesley: Reading,

MA, USA, 1989.
18. Bader, J.; Zitzler, E. HypE: An algorithm for fast hypervolume-based many-objective optimization.

Evolut. Comput. 2011, 19, 45–76. [CrossRef] [PubMed]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.eng.nus.edu.sg/core/Report%20200402.pdf
http://www.eng.nus.edu.sg/core/Report%20200402.pdf
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1109/TEVC.2006.872133
http://dx.doi.org/10.1177/003754970107600201
http://dx.doi.org/10.1016/j.cma.2004.09.007
http://dx.doi.org/10.1061/(ASCE)CO.1943-7862.0000167
http://dx.doi.org/10.3390/w7073613
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1016/j.engappai.2013.05.008
www.grasshopper3d.com
www.rhino3d.com
http://dx.doi.org/10.1016/j.ress.2005.11.018
http://dx.doi.org/10.1162/EVCO_a_00009
http://www.ncbi.nlm.nih.gov/pubmed/20649424
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Problem Definition
	Optimization Model
	Form Finding

	Generative Model and MOHS Algorithm
	Computational Results and Discussion
	Conclusions

