

Delft University of Technology

Autoencoder-enabled model portability for reducing hyperparameter tuning efforts in side-
channel analysis

Krček, Marina; Perin, Guilherme

DOI
10.1007/s13389-023-00330-4
Publication date
2023
Document Version
Final published version
Published in
Journal of Cryptographic Engineering

Citation (APA)
Krček, M., & Perin, G. (2023). Autoencoder-enabled model portability for reducing hyperparameter tuning
efforts in side-channel analysis. Journal of Cryptographic Engineering, 14(3), 475-497.
https://doi.org/10.1007/s13389-023-00330-4

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s13389-023-00330-4
https://doi.org/10.1007/s13389-023-00330-4

Journal of Cryptographic Engineering
https://doi.org/10.1007/s13389-023-00330-4

REGULAR PAPER

Autoencoder-enabled model portability for reducing hyperparameter
tuning efforts in side-channel analysis

Marina Krček1 · Guilherme Perin2

Received: 4 January 2023 / Accepted: 26 June 2023
© The Author(s) 2023

Abstract
Hyperparameter tuning represents one of the main challenges in deep learning-based profiling side-channel analysis. For each
different side-channel dataset, the typical procedure to find a profiling model is applying hyperparameter tuning from scratch.
The main reason is that side-channel measurements from various targets contain different underlying leakage distributions.
Consequently, the sameprofilingmodel hyperparameters are usually not equally efficient for other targets. This paper considers
autoencoders for dimensionality reduction to verify if encoded datasets from different targets enable the portability of profiling
models and architectures. Successful portability reduces the hyperparameter tuning efforts as profiling model tuning is
eliminated for the new dataset, and tuning autoencoders is simpler. We first search for the best autoencoder for each dataset
and the best profiling model when the encoded dataset becomes the training set. Our results show no significant difference
in tuning efforts using original and encoded traces, meaning that encoded data reliably represents the original data. Next, we
verify how portable is the best profiling model among different datasets. Our results show that tuning autoencoders enables
and improves portability while reducing the effort in hyperparameter search for profiling models. Lastly, we present a transfer
learning case where dimensionality reduction might be necessary if the model is tuned for a dataset with fewer features than
the new dataset. In this case, tuning of the profiling model is eliminated and training time reduced.

Keywords Side-channel analysis · Autoencoders · Preprocessing · Hyperparameter tuning · Portability · Transfer learning

1 Introduction

Hardware and software implementations of cryptographic
algorithmsmay leakunintended andmeasurable side-channel
information such as power consumption, electromagnetic
emissions, and execution time. Although mathematically
secure, these cryptographic implementations may become
vulnerable to side-channel attacks (SCAs). SCA is an imple-
mentation attackmainly categorized into direct and two-stage
attacks. Direct attacks, also known as non-profiled SCA,
mainly consist of simple power analysis [17], differential
power analysis [18], and correlation power analysis [5].
These attacks explore the statistical dependency between

B Marina Krček
m.krcek@tudelft.nl

Guilherme Perin
g.perin@liacs.leidenuniv.nl

1 Delft University of Technology, Mekelweg 2, Delft, The
Netherlands

2 Leiden University, Rapenburg 70, Leiden, The Netherlands

leaked side-channel information and secret cryptographic
keys. Recovering the secret depends on running the attack
over all possible key hypotheses through a divide-and-
conquer strategy and selecting an efficient statistical distin-
guisher (e.g., Pearson correlation, difference-of-means, or
mutual information). On the other hand, a two-stage or pro-
filing SCA [11] can evaluate the security of a cryptographic
implementation by assuming a stronger adversary. Profil-
ing SCA assumes that a potential adversary has an open
device (identical to the target one) that provides conditions
to learn a profiling model by reprogramming the key and
input data to the cryptographic algorithm. Depending on how
much knowledge is assumed that the adversary possesses
(e.g., source code and access to the secret randomness of
the implementation), profiling SCA allows the deployment
of worst-case (i.e., white-box) or black-box security assess-
ment.

Countermeasures such as masking and hiding are often
considered to mitigate SCA. For twenty years, Gaussian
template attacks (GTA) [11] have proven to be theoret-
ically the best option to test the worst-case security of

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13389-023-00330-4&domain=pdf

Journal of Cryptographic Engineering

SCA countermeasures [6]. Deep learning (DL) has been
widely investigated as an alternative profiling SCA solution
in the last few years. The results with real-world datasets
have demonstrated that deep neural networks provide sev-
eral practical advantages in comparison to GTA, such as
skipping points-of-interest or feature selection from raw
measurements [20, 26], relaxing assumptions about under-
lying leakage distribution, and being less sensitive to trace
desynchronization [8, 33, 37]. However, together with large
training times, the main open challenge for DL-based SCA
is hyperparameter tuning. In [27], the authors suggested that
hyperparameter tuning should be taken as one of the adver-
sarial assumptions, together with the number of profiling
and attackmeasurements.However, verifying the correctness
and reliability of a DL-based profiling model concerning its
hyperparameters is still difficult. Even considering advanced
hyperparameter search algorithms [29, 34] cannot guarantee
that the obtained best model delivers reliable security assess-
ment.

Hyperparameter tuning is a trade-off between time effort
and neural network performance, as there is no proven best
way to tune the network in a reasonable time. According
to [27], the maximum number of searched DLmodels should
be consideredwhen inferring the target’s security. A profiling
SCA process that is unbounded in the number of hyperpa-
rameter tuning models (or learnability capacity) would be
able to deliver reliable security assessment.1 However, as
the number of searched models is always limited in real-
ity, one would like to optimize the model search process
by reducing the hyperparameter tuning efforts by ensuring
that a reliable and efficient DL model is always found and
trained within available computation bounds. In other words,
by applying DL-based profiling SCA, the security evaluator
wants to ensure that a successful security assessment (i.e., the
one that fails in recovering the secret) results from an SCA-
secure implementation instead of a wrong profiling attack.
One way to reduce hyperparameter search effort across dif-
ferent targets is to apply preprocessing techniques on raw
side-channel measurements, such as points-of-interest selec-
tion or dimensionality reduction.

In this paper, we consider only dimensionality reduction
because points-of-interest selection tends to be inefficient
due to the presence of masking countermeasures in the eval-
uated datasets. We assume a black-box threat model, i.e., an
adversarywithout access to secretmasks during profiling and
attack phases. We consider autoencoders for dimensionality

1 Note that this conclusion only holds, at the moment, for first-order
masking schemes with hiding countermeasures (e.g., desynchroniza-
tion). For high-order masking schemes with or without shuffling and
desynchronization, it is still an open question whether deep learn-
ing models can deliver reliable worst-case or non-worst-case security
assessments (see, for instance, the discussion in [21], Sect. 6, for the
non-worst-case assessments).

reduction, which were already considered in several other
applications in SCA [19, 23, 35], which we discuss in Sect. 2.
Our primary goal is to verify whether efforts can be moved
from tuning a profiling deep neural network model to tuning
an autoencoder by reusing profiling modes across different
datasets. Our main contributions are:

1. We experimentally confirm that the standard reconstruc-
tion error metric for autoencoders works well for SCA
settings. Moreover, the data encoded with autoencoders
stays relevant, where we show that tuning efforts on
encoded data are similar to tuning on original traces.

2. We demonstrate that the portability of profiling model
hyperparameters is possible.We apply the same best pro-
filing model across different datasets encoded into the
same dimension with the obtained best autoencoders.
Thus, the same profiling model obtained for one dataset
can be utilized for other datasets, which reduces the
hyperparameter search effort.

3. We show through transfer learning that our best profiling
model can be applied to different datasets, eliminating
hyperparameter tuning of the profiling model and reduc-
ing training time.

The analysis provided in this paper contributes to making
DL-based SCA more practical for security evaluations of
cryptographic implementationswhen protectedwith the first-
order Boolean masking schemes.

The paper is organized as follows. Related work is
discussed in Sect. 2. We explain the necessary details on
deep learning-based side-channel attacks, autoencoders, and
transfer learning, followed by a description of utilized
datasets in Sect. 3. Section4 details our experimental setup,
explaining the steps of our analysis and several use cases
we consider. Experimental results are reported in Sect. 5.
We conclude the paper in Sect. 6, shortly discussing possible
future work.

2 Related work

Many papers address the portability issue between profiling
and target device of the same type. For example, [12] uses
different devices in template attacks (TAs). They use Fisher’s
linear discriminant analysis and principal component anal-
ysis to improve the TA performance. Another approach
proposed in several papers is to use multiple devices to
improve the attack performance [4, 13]. In [9], the authors
suggest improving the pre-trained model on a profiling set
with unlabeled traces from the target. They propose a loss
function that consists of the usual classification task and a
task to minimize the distribution discrepancy between data
traces. The authors in [10] offer a method inspired by genera-

123

Journal of Cryptographic Engineering

tive adversarial networks (GANs),where an encoder replaces
the generator to decrease the data discrepancy before the
attack. Transfer learning is also proposed to transfer knowl-
edge from the profiling device to the target device. In [15],
several scenarios are investigated that differ in the position
and type of EM probe, then side-channel information, and
lastly, the device differs but belongs to the same family. All
the mentioned works discuss the portability between the pro-
filing and target device samples, while we use public data
from different devices and acquisitions. Authors in [31] have
a similar setup as our third set of experiments. They use trans-
fer learning to speed up the attack by reusing a model trained
on a different target. However, the authors fixed their input
size to reuse the models. We do not restrict the input size
from the initial model we want to reuse since we can create
an effective dimension reduction and latent representation
with autoencoders for our target device.

Autoencoders were used in [19] to reduce noise and align-
ment of the measurements that improved the performance
of traditional and deep learning methods in non-profiling
SCA. Similarly, [35] use autoencoders (denoising autoen-
coder) as a preprocessing method to remove the traces’ noise
and enable training with clean data. In [23], autoencoders are
used to reduce the dimension of SCA traces to minimize the
complexity of the profiling, reduce the computational time,
and increase classification performance. Thus, autoencoders
have mainly been used to improve attack performance on
the same dataset (target) by removing countermeasures and
reducing the complexity of the traces. Similar to [23], we use
autoencoders to obtain a reduced latent representation of the
given input (SCA trace). Still, contrary to related work, uti-
lizing autoencoders, in our case, enables attacks on different
datasets (targets).

3 Background

3.1 Deep learning-based side-channel attacks

In deep learning-based side-channel attacks (DL-based
SCA), the main goal is to train deep neural network parame-
ters θ with training data D by minimizing a loss function L.
Each instance of training data D consists of a tuple (xi ,yi),
where xi is a one-dimensional vector representing the i-
th side-channel measurement (or trace) in a dataset D. The
range of i is from 0 to the size of the dataset |D|. The term
yi refers to the label (or class) associated with xi .

Labeling a dataset requires the definition of a leakage
model and a selection function. In SCA, the main leakage
models are identity (ID), Hamming weight (HW), Ham-
ming distance (HD), and bit-levelmodels. The identitymodel
refers to the direct value of an intermediate being processed
by a cryptographic algorithm, while HW refers to the Ham-

ming weight of such intermediate. The HD model returns
the Hamming weight from the xor between two interme-
diate variables. Bit-level models usually consider the most
or least significant bit from an intermediate variable. The
intermediate variable is defined according to a key-dependent
selection function that usually returns an intermediate byte
from the cryptographic algorithm. For the case of AES
encryption, this intermediate for the i-th trace xi could be
an S-Box output byte in the first encryption round, i.e.,
yi = S-Box(d j ⊕ k j), where d j and k j are the j-th plain-
text and key bytes (j ∈ [0, 15] for a key size of 128 bits),
respectively.

From the training setD, we select a subsetV to validate the
trainedmodel. This model is later tested on a separate dataset
A collected from the attacked device that we refer to as the
attack set. Since the goal is to obtain the secret key fromA (or
a single byte of the key), we use guessing entropy (GE) [30]
to assess the attack performance. The best possible neural
network model is the one that requires minimal attack com-
plexity, which is measured in terms of the minimum number
of attack traces that are necessary to successfully recover the
key [7].

To compute GE, we first predict the validation or attack
set and obtain class probabilities pi,yi for each trace i . As
labels yi are derived from a key-dependent selection func-
tion, we obtain the log-likelihood lk of a certain key byte
k j ∈ [0, 255]:

lk =
Na−1∑

i=0

log pi,yi , (1)

where Na is the number of traces in the predicted set. This
process is then repeated for all possible key byte hypotheses.
Each hypothesis will define different labels yi for each trace.
The key rank of the correct key k∗ is obtained by sorting all
lk values and by returning the position of lk∗ associated with
the correct key byte k∗. The GE of the correct key, ge∗, is
given by an empirical process in which we repeat the key
rank process multiple times (each time with a different and
randomly selected subset from the attack or validation set).
We obtain an average log-likelihood or key guessing vector
g and get the average position of the correct key k∗ inside g.
When ge∗ = 1, we say that the model successfully recovers
the keywith Na attack traces. Theminimumnumber of traces
to retrieve the key is referred to as Nge∗=1.

Although the primary goal of training a deep neural net-
work in the SCA context is to minimize Nge∗=1, the models
in this paper are still trained with a categorical cross-entropy
loss function. In [22], the authors showed that minimizing
this loss function is aligned with minimizing Nge∗=1.

123

Journal of Cryptographic Engineering

3.2 Autoencoders (AEs)

Autoencoder (AE) is a specific self-supervised neural net-
work used for data compression, dimensionality reduction,
generating new data, denoising, etc. The authors in [16] first
used autoencoders for dimensionality reduction. Different
autoencoders, such as denoising or variational autoencoders,
are described in [1, 25]. We use autoencoders for dimen-
sionality reduction to learn, in an unsupervised manner, an
informative smaller representation of the data. We consider
deep autoencoders since they are often better than shallow or
linear counterparts. While variational autoencoders are very
popular, they are more helpful in generating new data, which
is different from our goal here.

Autoencoders usually have an encoder and decoder part.
The encoder takes the original input and learns a function that
encodes the data into a representation given by a latent space.
In dimensionality reduction, the input dimension is reduced
in latent space. That middle layer is known as the “bottleneck
layer,” as it holds the data’s compressed representation. Later,
we use the decoder function to reconstruct the original input
from the encoded data. Both encoder and decoder are neural
networks, commonly symmetrical, having the same type and
number of layers with the same layer sizes.

The objective function of the autoencoder is minimizing
the difference between input and output by preserving the
relevant information. The compressed data are evaluated by
the decoder’s ability to reconstruct the original input from
the compressed data, so the common metric is mean squared
error (MSE). The output for autoencoders is the input itself,
so MSE is calculated with

MSE = 1

m

m∑

i=1

(
xi − x̂i

)2
, (2)

wherexi is the original observation and x̂i its reconstruction,
while m is the number of inputs (samples). In SCA, xi is the
side-channel trace with n features, for which the distance
from x̂i is again MSE. Therefore, we do not use labels as in
profiling models and do not need to use any leakage model.
In this work, we search for the best autoencoders, following
the information from [25] for defining the hyperparameter
tuning space.

3.3 Transfer learning

Transfer learning (TL) in machine learning focuses on trans-
ferring knowledge across domains and aims to leverage
knowledge from a related domain to improve learning in a
new task (target domain). The success of transfer learning
depends on many factors, such as the relevance between the
source and target domains and the learner’s (model’s) capac-
ity to find transferable and valuable knowledge across the

two domains. Transfer learning can be categorized based on
the feature space between the two domains and the availabil-
ity of the labels. More information on categorizations of TL
is found in surveys, e.g., [24, 32, 38].

Our case belongs to inductive transfer learning, where we
have labels for both the source and target domains (different
intermediate values belonging to a specific dataset). We aim
to achieve high performance in the target task. There are
many approaches to transfer learning, and they depend on
what we aim to transfer. In our case, we use parameter-based
TL to transfer knowledge at the model/parameter level. We
use models trained on one dataset and use them for different
datasets. Our main objective is to obtain accurate predictions
in the target domain for the new task. Specifically, we train
the model to learn the correct key k∗ of another dataset. We
do it with parameter sharing so that we have a neural network
for the source task, and we share (freeze) most of the layers
and fine-tune the last few layers to obtain a network that
works for the targeted task. We keep the first layers since the
first layers in deep neural networks appear not to be specific
to particular datasets or tasks [36].

3.4 Datasets

We describe three datasets that are used in our experiments.
For all datasets, we use 5000 traces for validation and another
5000 traces as the attack set in both profiling attacks and
autoencoders. We use 3000 traces randomly chosen from
that 5000 in each key rank calculation to calculate GE.

3.4.1 DPAcontest v4.2

DPAcontest v4.2 dataset (here referred as DPAv4.2)2 is the
second implementation available in the DPAcontest v4 [3].
It is an improved version implemented in software on an
8-bit Atmel ATMega-163 smart card and corrects several
leaks identified in its previous generation. This dataset rep-
resents the power consumption of the first AES encryption
round, and the AES implementation is protected with Rotate
Shift countermeasure. The dataset contains a total of 80000
traces, and each of them contains 1704402 sample points.
In our experiments, we trim the dataset to the interval repre-
senting the processing of the 13-th S-box byte, resulting in
2000 samples per trace. The first interval ranges from sample
305000 to 315000 from original measurements. We apply
the resampling process with a resampling window of 10 and
step of 5, resulting in 2000 samples per measurement. We
use 70000 traces for training (which contains 14 different
keys).

2 https://www.dpacontest.org/v4/42_doc.php.

123

https://www.dpacontest.org/v4/42_doc.php

Journal of Cryptographic Engineering

3.4.2 ASCAD

ASCAD dataset3 with a fixed key (ASCADf), along with
ASCAD dataset with a random key (ASCADr), consists of
measurements from masked AES on the 8-bit ATMega8515
MCU target without any specific hiding countermeasures
activated on the target [2]. For ASCADf dataset, the key is
fixed for all measurements. We have 50000 training traces
with 700 features per trace. ASCADr dataset corresponds to
the second campaign with the same target and setup as in
ASCADf. However, in this setting, the key is variable for
66% of the measurements. We use 200000 training traces
with 1400 features per trace.

4 Experimental setup

In this section, we provide details about our experimental
setup. The process starts with a hyperparameter search to
find the best autoencoders for different datasets. Before that,
we verify that the MSE metric is appropriate as it keeps
the side-channel leakage in the reconstructed traces. Then,
we verify if searching for profiling neural network models
remains similar when we train the models with the encoded
datasets. We compare the attack performance of profiling
models trained with encoded and original datasets. That is
necessary to validate that encoded data stays relevant without
worsening tuning efforts. Next, we reused profiling models’
hyperparameters across multiple datasets as it was shown
that tuning encoded data is equal to tuning original datasets.
We consider portability from encoded data to other encoded
data and from original to encoded data. The first case enables
universal models where all datasets are represented in a sim-
ilar latent space. The second case addresses the portability
of architecture between different feature spaces. Finally, we
explore transfer learning advantages utilizing autoencoders
and profiling models. To summarize, we apply the following
steps:

1. Search for the best latent space size for all datasets based
on two datasets.

2. Search for the best autoencoders with the lowest mean
squared error (MSE) by setting the best found latent
space size.

3. Compare the performance of profiling models when
trained with original and encoded traces of the datasets.

4. Investigate the portability of best profiling model hyper-
parameters trained with an encoded dataset to other

3 https://github.com/ANSSI-FR/ASCAD/tree/master/
ATMEGA_AES_v1.

encoded datasets. All datasets are encoded into the same
latent dimension by using best-found autoencoders.

5. Investigate the portability of the best profiling model
hyperparameters trainedwith anoriginal dataset to other
encoded datasets. The concept is used when a new
dataset has more features than the original dataset. The
new dataset is encoded into the same dimension as the
original dataset using best-found autoencoders.

6. Investigate transfer learning of best profiling model
trained with an original dataset to other encoded
datasets encoded into the same dimension using the best
autoencoders.

The overall structure of our experimental setup and the
corresponding steps are shown in Fig. 1. Additionally, the
source code is publicly available.4

4.1 Autoencoder architectures

Weconsider the followingCNNandMLP autoencoder struc-
tures:

– ae_cnn: autoencoders with convolution layers.
– ae_mlp: autoencoders given by symmetric encoder and
decoder blocks, in which all layers have the same number
of neurons. Latent size can be smaller, equal, or larger
than the number of neurons in previous layers.

– ae_mlp_dcr: autoencoder with decreasing number of
neurons in subsequent layers (with possible repetition).
We do not ensure that the layer before the latent space is
strictly larger (or equal) to the latent dimension.

– ae_mlp_str_dcr: autoencoder with decreasing num-
ber of neurons in subsequent layers in the encoder. Here,
_str_dcr stands for strictly decreasing. The latent size is
smaller than the number of neurons in the previous layer.
However, the cases where we still use the same number
of neurons in layers before the latent layer are possible.

We have several options for MLP autoencoders, while the
usual, most common choice is ae_mlp_str_dcr. A
decreasing number of neurons in the encoder and sym-
metrical decoder are commonly chosen because, intuitively,
decreasing the number of neurons forces generalization and
seems useful for dimensionality reduction. The real benefit
of this structure is possibly lower computation costs com-
pared to alternatives. However, as in classification, other
options can be explored. Thus, we test the possibilities men-
tioned above where the number of neurons is not consistently
decreasing, and the latent size is not strictly following the
decreasing pattern.

4 The code is available at https://github.com/marinakrcek/
AutoEncodersDLSCA.

123

https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1
https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1
https://github.com/marinakrcek/AutoEncodersDLSCA
https://github.com/marinakrcek/AutoEncodersDLSCA

Journal of Cryptographic Engineering

Fig. 1 Experimental setup. The term n refers to the number of features in datasets. We denote h as the set of architecture hyperparameters and θ

as trainable parameters (weights and biases) in portability cases

In described autoencoder types, the encoder and decoder
with MLP structure are always symmetrical, which means
that the number of layers is the same in both encoder and
decoder blocks. Also, the layer sizes are symmetrically
decreasing in the encoder while increasing in the decoder.
While common, this is again not strictly defined and can be
explored. Intuition again says it makes the most sense for
the decoder to follow a reverse structure from its encoder
counterpart, but other possibilities can be similarly capable
of good performance. For this setting, we keep the traditional
symmetrical design.

CNN autoencoder uses similar convolutional blocks to
those reported in [25]. Specifically, we use a convolutional
layer followed by a pooling layer in the encoder. While they
specified Max pooling, we allow both Max and Average
pooling in hyperparameter selection. For the decoder, we
use upsampling followed by a standard convolutional layer.
Since there are more options, the convolutional autoencoder

(ConvAE) structure is more complex to define than the MLP
autoencoder. We observe in the literature versions of Con-
vAE increasing and decreasing the number of filters while
kernel size and pooling size remain the same. In some cases,
kernel sizes were changing. Thus, there is no specific best
way to structure the ConvAE. In our case, we increase the
number of filters in the encoder because the kernel size and
pooling reduce the number of features, sometimes to only
one. Thus, having more filters in those deeper layers ensures
that after flattening, we havemore than one neuron before the
last fully connected layer. We increase the number of filters
per layer following the expression nb_ f ilters · 2i , where
i is the order of the layer + 1. In the decoder, with the
combination of upsampling and standard convolutional layer,
upsampling increases the number of features, while kernel
size again decreases it. Thus, we keep the same expression
for increasing the number of filters. Both the encoder and
decoder end with a flattened layer followed by a fully con-

123

Journal of Cryptographic Engineering

nected layer with the number of neurons equal to the latent
size in the encoder and input size in the decoder.

In this work, we tested different structures ofMLP autoen-
coders. At the same time, more analysis should be done for
the CNN autoencoder, as the described structure is one of
many possibilities. We leave this exploration on CNN struc-
tures for future work.

4.2 Autoencoder metric analysis

Autoencoders for dimensionality reduction imply finding a
reduced representation of input data through a latent space.
To assess the quality of the reduction and obtained latent rep-
resentation, the most common error metric is mean squared
error (MSE):

MSE = 1

mn

m∑

i=1

n∑

j=1

(
xi j − x̂i j

)2
, (3)

where xi j is the j-th feature value of i-th original side-
channel observation and x̂i j its reconstruction. m is the
number of traces (inputs), and n is the number of features
in the side-channel trace. Minimizing the MSE leads to a
good reconstruction of the original input. To verify whether
minimizing MSE is meaningful for SCA traces, we quantify
if the leakage is still preserved in the reconstructed traces
by calculating the signal-to-noise ratio (SNR). SNR is com-
puted as a leakage assessment of side-channel measurements
according to a pre-selected intermediate variable. Since eval-
uated datasets in this paper were collected from first-order
masking AES implementations, first-order intermediate val-
ues (such as S-Box(d j ⊕k j)) show no significant leakages.
Thus, we compute SNR to verify the occurrence of leak-
ages for the masked S-Box output intermediate values,5

i.e., v = S-Box(d j ⊕ k j) ⊕ mi , where mi is the mask of
the i-th trace. For that, we compute the mean and variance
side-channel traces for a group of traces represented by a
specific intermediate variable v ∈ [0, 255]:

μv = 1

Nv

nv−1∑

i=0

xv
i (4)

σ 2
v = 1

Nv − 1

Nv−1∑

i=0

(
xv
i − μv

)2
, (5)

where Nv is the number of side-channel traces represented
or labeled with intermediate variable v. Next, we obtain the

5 Although our profiling attacks in later sections are all executed in a
black-box manner, here we assume the knowledge of the masks only to
assess if MSE metric is consistent.

mean vector from all 256 variance vectors σ 2
v :

μσ = 1

256

255∑

v=0

σ 2
v (6)

and the variance of mean vectors μv:

σμ = 1

255

255∑

v=0

(μv − μσ)2 . (7)

Finally, SNR is given by:

SN R = σμ

μσ

. (8)

The SN R from Eq. (8) results in a vector with the same
length as side-channel traces. We compute this vector for
original and reconstructed traces. Then, we take the maxi-
mum SNR peak obtained with original traces and subtract it
from the value on that exact location in the SNR obtained
from reconstructed traces. In the result figures, we refer to
this as SNR diff.

5 Experimental results

5.1 Autoencoders search

In this section, we deploy a random search to find the best
latent space size for autoencoders based on experiments with
two datasets. After defining the best latent space size, we
deploy a random search to find the best autoencoder architec-
ture for MLP- and CNN-based structures. We also obtain the
best autoencoder types. Datasets are then encoded with these
best autoencoders. Finally, we deploy another random search
to find the best profiling model trained with the encoded
datasets. We include the third dataset later for portability
experiments while also evaluating how well the decisions
made on two other datasets for latent size and autoencoder
type apply to new datasets.

5.1.1 Assessing MSEmetric with SNR

We conduct a random search on autoencoders using MSE as
the loss function for achieving good reconstruction from the
latent space. In these experiments, we consider SNR to verify
that minimizing MSE is a meaningful objective when tuning
autoencoder hyperparameters. Here, we are not searching for
the best latent space size, so we fix the latent dimension to
100 features in all cases to evaluate the MSE metric.

Hyperparameter search space for all autoencoder types
are listed in Tables 19 and 20 in Appendix A. We randomly
search for 20 models with each of the four autoencoder

123

Journal of Cryptographic Engineering

types and calculate the SNR difference, as described before,
between SNR vectors obtained from original and recon-
structed traces. The analysis is conducted for the Hamming
weight and identity leakage models with v = S-Box(d j ⊕
k j) ⊕ mi as the intermediate variable to compute SNR.

Results are shown inFig. 2 for theDPAv4.2 andASCADr
datasets. The x-axis inFig. 2a andb shows themaximumpeak
SNR value difference between the original and reconstructed
traces. The corresponding MSE value for each autoencoder
is on the y-axis. These figures show that MSE increases as
the SNR peak difference increases regardless of the autoen-
coder type and leakage models in SNR calculations. The
vertical lines occur when the reconstructed traces result in
insignificant SNR peak values, indicating that side-channel
leakages concerning v = S-Box(d j ⊕ k j) ⊕ mi are not
preserved in the reconstructed traces. Negative SNR differ-
ence values on the x-axis indicate that the reconstructed trace
has a higher SNR value than the original trace on the same
sample point, which means that the corresponding autoen-
coder is preserving and even amplifying the occurrence of
side-channel leakages concerning v. However, MSE is not
created to lead the autoencoder (AE) to amplify any such
SNR peak, as it gets minimized by correct reconstruction of
the trace without amplifications.

Next, we consider Pearson correlation coefficient ρ to test
whether there is a positive (linear) correlation between MSE
and SNR differences. Indeed, from the results in Table 1, we
see a high correlation until the vertical lines (maximum dif-
ference in the SNRvalues). Specifically, for both datasets, the
correlation is stronger forMSE below 0.5. For the DPAv4.2
dataset, the maximum correlation is for MSE values below
0.25, and in the case of ASCADr, below 0.5. Therefore, we
conclude that minimizing MSE is a meaningful objective
error function to optimize autoencoder models for the given
datasets.

5.1.2 Searching for the best latent space size

In this section, we use random search to compare different
latent space sizes. The latent sizes we consider are 20, 40, 50,
100, 200, 250, 400, and 500 for all autoencoder types except
that for the ae_mlp_str_dcr, we do not use the latent
size 500 as we also limit the search to 400 neurons per layer
(see Table 19). By choosing these latent sizes, we ensure that
the bottleneck layer in the autoencoder is always smaller than
the input layer (which contains the same number of units as
the input side-channel trace dimension). The datasets eval-
uated in this section contain 2000 features (DPAv4.2) and
1400 features (ASCADr), which is significantly larger than
the chosen latent space sizes given by the bottleneck layer.
Hyperparameter search space (Tables 19 and 20) is the same
as in the metric analysis provided in the previous section.
The hyperparameters for the autoencoders are chosen at ran-

Fig. 2 Relation between MSE and SNR difference

dom, and we train 20 autoencoder models per latent size,
dataset, and autoencoder-type combination. The total num-
ber of autoencoder combinations in this search is 62.

The main idea here is to verify if a specific latent space
size tends to provide the lowest MSE among the searched
ones regardless of the dataset and autoencoder (AE) type.
Considering our two datasets and four autoencoder types,
we have eight cases, each testing eight or seven latent sizes.
Autoencoder type ae_mlp_str_dcr does not use latent
size 500, which leads to trying seven latent sizes instead of
eight. We apply the following procedure to obtain the best
latent size:

1. For each of these 62 combinations,we extract the autoen-
coder (out of 20) with the lowest MSE for that dataset,
autoencoder type, and latent size.

123

Journal of Cryptographic Engineering

Table 1 Pearson correlation coefficient ρ and p-value for testing non-
correlation

Dataset MSE LM ρ p-value

DPAv4.2 > 0 HW 0.12 2.32e−03

ID 0.12 2.67e–03

< 0.5 HW 0.76 8.85e−68

ID 0.76 1.62e−65

< 0.375 HW 0.83 1.03e−80

ID 0.83 4.35e−78

< 0.25 HW 0.93 2.04e–78

ID 0.93 1.32e−80

ASCADr > 0 HW 0.03 4.84e−01

ID 0.03 5.01e−01

< 0.5 HW 0.87 3.92e−112

ID 0.86 6.58e−106

< 0.375 HW 0.68 1.05e−34

ID 0.70 3.10e−37

< 0.25 HW -0.10 5.16e−01

ID 0.01 9.37e−01

The highest correlation is bolded
LM stands for leakage model

2. For each autoencoder type and dataset combination, we
rank the latent sizes based on the best (lowest)MSE. The
latent size for the model with the lowest MSE gets the
rank 1 being the best one.

3. For each of the latent space sizes, we average these eight
ranks coming from the dataset-autoencoder (AE)-type
combination.

Table 2 shows the average ranks of the latent sizes.
The left side of the table is for AE types except for
ae_mlp_str_dcr as that one must have a decreasing
structure, and with the latent size of 500, we cannot achieve
that as we limited our number of neurons to a maximum of
400. On the right side of Table 2, we order all latent sizes
according to the average rank, except for 500, and include
the results from ae_mlp_str_dcr.

Following,weuse theFriedman test [14] across all autoen-
coder types and the two datasets (ASCADr and DPAv4.2).
This test determines whether there is a statistically signifi-
cant difference between the means of three or more groups
in which the same subjects appear in each group. In our case,
groups are based on latent sizes, and subjects are dataset-AE-
type combinations. The comparison is based on the lowest
MSE obtained. Friedman test calculates test statistic Q using
the ranks from the samples in the groups. Q value has to
be greater than the critical value of Q for a selected sig-
nificance level α to reject the null hypothesis. Commonly,
significance level α of 0.05 works well [28]. We determine
the critical value from the Chi-Square distribution table with

k − 1 degrees of freedom where k is the number of groups
and selected significance level α. The p-value is the proba-
bility of obtaining test results at least as extreme as a result
observed under the assumption that the null hypothesis is
correct. The null hypothesis for the Friedman test is that the
mean of the groups is the same. A very small p-value means
such an extreme observed outcome would be very unlikely
under the null hypothesis. The null hypothesis can be rejected
if the p-value is below α.

We report the Friedman test results at the bottom row in
Table 2. Since the p-value is below 0.05, we conclude that
the difference between the mean values of the groups (latent
sizes) is statistically significant. Additionally, the test statis-
tic Q on the left part is greater than the critical value of 14.07
for the degree of freedom 7. On the right side, the test statis-
tic is greater than the critical value 12.59 for α = 0.05 and
degree of freedom 6. We perform the Nemenyi post hoc test
to determine which groups have different means. The results
are shown in Appendix B in Tables 23 and 24 corresponding
to the cases without and with ae_mlp_str_dcr model.
The values in the tables are p-values where if the value is
below 0.05, the two groups (column-row combination) have
statistically significantly different means. The lowest MSE
values for models with latent sizes 400 and 200 differ sig-
nificantly from models with lower latent sizes (20, 40, and
50). For latent sizes 100 and 250, the difference is signif-
icant compared only to latent size 20 in the case with the
ae_mlp_str_dcrmodel. Thus, we select latent sizes 200
and 400 to find the best autoencoders using a random search.

5.1.3 Selecting the best autoencoders

After we found the best latent size for the ASCADr and
DPAv4.2 datasets, we randomly search for additional 80
autoencoder models to obtain a total of 100 models for latent
space sizes of 200 and 400. The hyperparameter search space
for each autoencoder type stays the same as in the search for
the best latent size. From these 100 autoencoder models, we
select the best autoencoder for each dataset. Table 3 shows
the MSE of the best autoencoder for each of the given latent
sizes (200 or 400) and autoencoder types per dataset. We see
that for ASCADr, latent size 400 always results in a lower
MSE. For DPAv4.2, ae_mlp and ae_mlp_dcr had bet-
ter results with 200 features in latent space. However, we can
conclude that the best autoencoder types are ae_cnn and
ae_mlp_str_dcr, with the lowest MSE in both datasets
obtained using latent size 400.

Since we initially only allow up to 400 neurons per
layer, with a latent space size of 400, the autoencoder
ae_mlp_str_dcr type could not create a bottleneck
architecture with decreasing number of neurons in consec-
utive layers of the encoder. Thus, we repeated the random
search for another 100 models for this autoencoder type by

123

Journal of Cryptographic Engineering

Table 2 Average ranks for each
latent space size

Latent space size w/o ae_mlp _str_dcr Latent space size With ae_mlp _str_dcr

400 1.5 400 1.375

200 1.83 200 2

500 3.67 250 3.375

100 4 100 3.5

250 4.3 50 5.25

50 6.33 40 5.75

40 6.67 20 6.75

20 7.67

Q: 35.17, p-value: 1.04e−5 Q: 40.66, p-value: 3.38e−7

Table 3 Best autoencoders

Dataset AE type Latent size MSE

DPAv4.2 ae_mlp 200 0.053842735

400 0.068908036

ae_mlp_dcr 200 0.053061113

400 0.071744457

ae_mlp_str_dcr 400 0.033211511

200 0.042860519

ae_cnn 400 0.026164241

200 0.057221718

ASCADr ae_mlp 400 0.177198691

200 0.198677342

ae_mlp_dcr 400 0.133906147

200 0.194515368

ae_mlp_str_dcr 400 0.121792312

200 0.196267218

ae_cnn 400 0.118710345

200 0.209023259

The lowest MSE between different AE types for a specific dataset is
bolded
The rows are sorted based on the MSE, so the latent size order in rows
is not fixed

allowing layers with 500 and 600 neurons. Table 4 shows
the minimum, mean, median, and maximum MSE found in
100 models for the two datasets. Note that this table shows
MSE results when the autoencoder contains layers with 400
neurons and MSE results when layers can include 400, 500,
and 600 neurons.

For DPAv4.2 dataset, an autoencoder with up to 400
neurons per layer results in a lowerMSE than when we allow
400, 500, and 600 neurons per layer. The hyperparameters of
the best models for both cases are in Table 5. Note that this
architecture has one hidden layer with 400 neurons between
the input layer and the layer with the specified latent size,
and the decoder is symmetrical. When allowing 500 and 600
neurons in the random search, the best-found autoencoder
has an architecture with two hidden layers with 400 neurons
in the encoder and decoder. They also differ in batch size,
activation function, learning rate, and weight initialization,

Table 4 Autoencoder ae_mlp_str_dcr with latent space size of
400

Dataset Nb. neurons Min Mean Median Max

DPAv4.2 400 0.03321 0.5295 0.3889 3.68

400, 500, 600 0.03373 0.8548 0.4529 27.67

ASCADr 400 0.12179 0.6028 0.4701 2.01

400, 500, 600 0.12107 0.7988 0.4832 7.71

Better results are bolded between the two setups with different number
of neurons allowed
Values are calculated on MSE from a random search of 100 different
models, and the number of neurons represents the allowed values from
the hyperparameter search space

but the optimizer is the same. The best model in the second
case is not using a larger number of neurons in the first layers.

The autoencoder for the ASCADr dataset has a lower min-
imal MSE when the number of neurons includes 500 and
600 neurons in the random search. However, the ability to
use a larger number of neurons in layers closer to the input
layer was not utilized. In both cases for ASCADr dataset, the
best model has the same architecture: one hidden layer with
400 neurons for the encoder and decoder and a bottleneck
layer with 400 neurons. They differ in activation function
and weight initialization, while batch size, learning rate, and
optimizer are the same. As the best autoencoders have the
same architecture (layers and neurons) for both datasets, the
slight difference in the performance comes from the other
hyperparameters.

In general, the results in Table 4 indicate that a random
search only including the option of 400 neurons per layer
delivers betterMSEvalues thanwhenwe allowmore neurons
per layer. Mean, median, and maximum MSE are always
lower when only 400 neurons are permitted. These results
are confirmed for both datasets.

Based on these results, the best autoencoder we use in fur-
ther experiments is the MLP autoencoder for the DPAv4.2
dataset with an MSE of 0.03321. For the ASCADr dataset,
we use the MLP autoencoder with an MSE of 0.12179. The
autoencoder with the CNN structure achieves even better
MSE—with 0.026 for DPAv4.2, and 0.1187 for ASCADr.

123

Journal of Cryptographic Engineering

Table 5 MLP autoencoders for
DPAv4.2 and ASCADr with
latent space size of 400 with
different allowed numbers of
neurons in layers

Nb. neurons Hyperparameters MSE

DPAv4.2

400 ae_mlp_dpav42_best: architecture: [400],
batch_size: 200, activation: tanh, learning_rate:
0.0001, weight_init: he_normal, optimizer: Adam

0.03321

400, 500, 600 Architecture: [400, 400], batch_size: 100, activation:
elu, learning_rate: 0.001, weight_init:
glorot_normal, optimizer: Adam

0.03373

ASCADr

400 ae_mlp_ascadr_best: architecture: [400],
batch_size: 100, activation: elu, learning_rate:
0.0001, weight_init: random_uniform, optimizer:
RMSprop

0.12179

400, 500, 600 Architecture: [400], batch_size: 100, activation: selu,
learning_rate: 0.0001, weight_init:
random_normal, optimizer: RMSprop

0.12107

The hyperparameters for the best ae_cnn autoencoders are
in Table 6. We use these four autoencoders in the further
experiments, which are denoted ae_mlp_dpav42_best,
ae_mlp_ascadr_best, ae_cnn_dpav42_best,
and ae_cnn_ascadr_best.

5.2 Are encoded datasets as good as original
datasets?

After defining the best ae_mlp_str_dcr and ae_cnn
autoencoder structures for DPAv4.2 and ASCADr datasets,
we investigate if the encoded datasets can keep relevant leak-
age information when they are considered as training and
attack datasets.

We run a random search to find different MLP and
CNN profiling models, and we compare the search perfor-
mance using original and encoded traces obtained from the
best autoencoders listed in Tables 5 and 6. The hyperpa-
rameter search space for the profiling models is shown in
Table 21. Training, validation, and attack sets are labeled
with S-box(d2 ⊕ k2) (third S-box output byte in first AES
encryption round)6 for ASCADr and S-box(d12 ⊕k12) (13-
th S-box output byte in the first AES encryption round)
for DPAv4.2. We consider the Hamming weight (HW) and
identity (ID) leakage models. We search for 100 models
for each combination of the leakage model and profiling
model type (MLP-ID, MLP-HW, CNN-ID, and CNN-HW).
We measure how many out of the random 100 models reach
ge∗ = 1 for a given number of validation traces. With that
information, we compare if we can more easily obtain a
good model using original or encoded traces within the same
hyperparameter search space. If we can get a similar amount
of models out of 100 that reach ge∗ = 1 with original and

6 Note that we start counting from byte index 0.

encoded traces, it means that encoded traces preserve enough
information and can be used for training profiling models in
SCA. Results for both datasets are shown in Fig. 3.

From the results, we see that out of 100 models, for the
ASCADr dataset, only in the case with MLP and the ID leak-
age model we obtained the same number of models with
ge∗ = 1. Looking at the number of traces Nge∗=1, using
original traces on average 1462.8 traces are necessary, while
for the dataset encoded with ae_mlp_ascadr_best,
we need on average Nge∗=1 = 1205.9 traces. For other
attack setups, using original traces led to more models with
ge∗ = 1. However, using encoded data was not much worse.

On the other hand, for DPAv4.2, in three out of four
attack settings, we obtained more models with ge∗ = 1
when using traces encoded with ae_mlp_dpav42_best
or ae_cnn_dpav42_best. Those cases are theMLP pro-
filingmodel with both leakagemodels and the CNNprofiling
model with the ID leakage model. The result with the CNN
profiling model and HW leakage model is again close in per-
formance for encoded data with ae_cnn_dpav42_best
and original traces.

We use the Friedman test on the eight scenarios presented
in Fig. 3. We want to see if there is a statistical difference
between training on encoded and original traces. We obtain
a test statistic of 2.7742 and a p-value of 0.2498. Thus, there
is no significantly better setup based on the number ofmodels
reaching ge∗ = 1 out of 100 runs. The initial hypothesis for
Friedman is that there is no statistically significant difference
in the mean of these numbers. Since the p-value, in this case,
is not below 0.05, all the setups lead to similar performance.
To conclude, using original traces is not statistically signifi-
cantly better than using encoded data, meaning that encoded
data preserves relevant features that can be used in a profiling
attack.

123

Journal of Cryptographic Engineering

Table 6 Best ae_cnn
autoencoders for DPAv4.2 and
ASCADr with latent space size
of 400

Dataset Hyperparameters MSE

DPAv4.2 ae_cnn_dpav42_best: batch_size: 200, filters:
16, kernel_size: 10, strides: 5, pool_size: 2,
pool_strides: 2, pooling_type: Avg, conv_layers: 1,
activation: tanh, learning_rate: 0.0001, weight_init:
random_normal, optimizer: Adam

0.02616

ASCADr ae_cnn_ascadr_best: batch_size: 200, filters:
16, kernel_size: 20, strides: 5, pool_size: 2,
pool_strides: 2, pooling_type: Avg, conv_layers: 1,
activation: tanh, learning_rate: 0.001, weight_init:
random_uniform, optimizer: Adam

0.11871

Fig. 3 Results on tuning effort using original and encoded traces. We
compare the number of models reaching ge∗ = 1 out of 100 trained
models with different hyperparameters selected using random search

5.3 The portability of profilingmodels

In this section, we verify the efficiency of the best profiling
model (obtained in the previous section) when found through
hyperparameter tuning with one dataset but concerning dif-
ferent datasets. We include a third dataset to show portability
from one to two other datasets. This way, we can answer the
following question: Can we move effort from profiling model
tuning into autoencoder tuning to reuse the same profiling
model across multiple encoded side-channel datasets?

Table 7 Best MLP and CNN
profiling models obtained for
the encoded DPAv4.2 dataset
when encoded with the
best-found
ae_mlp_dpav42_best

Model LM ge∗ Nge∗=1

MLP ID 1 3

HW 1 29

CNN ID 1 65

HW 1 819

Table 8 Best MLP and CNN
profiling models obtained for
the encoded DPAv4.2 dataset
when encoded with the
best-found
ae_cnn_dpav42_best

Model LM ge∗ Nge∗=1

MLP ID 1 2

HW 1 16

CNN ID 1 3

HW 1 18

5.3.1 Portability of encoded-data trained profiling model to
different encoded datasets

We start by verifying the portability of a best-found profil-
ing model trained with an encoded dataset concerning other
encoded datasets. That is possible because we encode all
datasets into the same encoding dimension, i.e., all encoded
datasets contain an equal number of features. We take the
best MLP and CNN profiling models trained with encoded
DPAv4.2 dataset for both leakage models. Their attack
performance is shown in Tables 7 and 8, while their hyperpa-
rameters are presented in Tables 25 and 26, respectively. We
test the performance of those architectures on the encoded
ASCADr and ASCADf datasets.

For ASCADr, we already have the best autoencoders
with the latent size of 400 (see Tables 5 and 6 for hyper-
parameters and MSE). We additionally train autoencoders
ae_mlp_str_dcr and ae_cnn for the ASCADf dataset
to encode it to 400 features per trace as well. The hyperpa-
rameters range to find the best ae_cnn autoencoder with the
random search are the same as considered for the DPAv4.2
and ASCADr datasets (see Table 20). To find the best
ae_mlp_str_dcr autoencoder for the ASCADf dataset,
we again consider the random search settings shown in

123

Journal of Cryptographic Engineering

Table 9 Best autoencoders for
ASCADf with latent space size
of 400

AE type Hyperparameters MSE

ASCADf

ae_mlp _str_dcr ae_mlp_ascadf_best: architecture: [400, 700],
batch_size: 200, activation: tanh, learning_rate:
0.0001, weight_init: random_normal, optimizer:
Adam

0.01245

ae_cnn ae_cnn_ascadf_best batch_size: 200, filters:
16, kernel_size: 20, strides: 10, pool_size: 4,
pool_strides: 2, pooling_type: Avg, conv_layers: 1,
activation: tanh, learning_rate: 0.0001, weight_init:
he_uniform, optimizer: Adam

0.01380

Table 10 Portability results with best MLP and CNN models obtained with the encoded DPAv4.2 datasets (from ae_mlp_dpav42_best and
ae_cnn_dpav42_best)

Model LM Encoded DPAv4.2 with ae_mlp_dpav42_best Encoded DPAv4.2 with ae_cnn_dpav42_best

ae_cnn_*_best ae_mlp_*_best ae_cnn_*_best ae_mlp_*_best

Encoded ASCADr

MLP ID 100 100 19 51

HW 97 97 89 73

CNN ID 79 65 99 100

HW 98 100 100 99

Encoded ASCADf

MLP ID 35 24 17 0

HW 0 0 10 5

CNN ID 97 5 30 0

HW 16 0 66 1

In these results, before training, we use standardization. The training is done 100 times, and the reported number is the number of times we reach
ge∗ = 1. Datasets ASCADr and ASCADf are encoded with their respective best autoencoders

Table 19. However, we allow the number of neurons per layer
for a latent size of 400 to be [400, 500, 600, 700]. The hyper-
parameters for best autoencodersae_mlp_ascadf_best
and ae_cnn_ascadf_best for ASCADfwith latent size
400 are reported in Table 9.

Table 10 shows the attack performance of the best CNN
andMLP profiling architectures on DPAv4.2 from Tables 7
and 8 when trained with the encoded ASCADr and ASCADf
datasets. The results in this table indicate the number of
times (out of 100) that the profiling model reaches ge∗ = 1
for each scenario (leakage model, profiling model type, and
autoencoder type). Before the training, we performed stan-
dardization on the encoded datasets. Standardization is a
typical preprocessing method before training in the SCA and
other domains. However, later we also test without standard-
ization to observe the effects.

The results with encoded ASCADr indicate superior per-
formance compared to results obtained with the encoded
ASCADf. Performance with the encoded ASCADr for MLP
with the identity leakage model when this architecture was
found with ae_cnn_dpav42_best-encoded DPAv4.2
dataset is slightly worse with finding 19 and 51 models out

Table 11 Best ae_mlp_str_dcr autoencoder for ASCADf with
latent space size of 400, allowing only 400 neurons per layer

Hyperparameters MSE

ae_mlp_ascadf_best: architecture:
[400], batch_size: 100, activation: selu,
learning_rate: 0.0001, weight_init:
he_normal, optimizer: RMSprop

0.01345

of 100 reaching ge∗ = 1. As mentioned, the results with
encoded ASCADf are not good, specifically for cases with
ASCADf encodedwithae_mlp_ascadf_best. The poor
performance might come from the fact that the features in
encoded data do not share comparable features despite the
equal latent size. We observe that the architecture of that
autoencoder is different from the architectures for the other
two datasets. To improve these results for encoded ASCADf,
and since for ASCADf we allowed more than 400 neurons
per layer (whichwas not the case for other datasets), we again
train 100 ae_mlp_str_dcr autoencoders for ASCADf
but with only 400 neurons per layer and latent size 400. This
way, the autoencoder architecture will be more similar to

123

Journal of Cryptographic Engineering

Table 12 Results with using
encoded ASCADf from
ae_mlp_ascadf_best with
only 400 neurons per layer

Model LM Best model for DPAv4.2 encoded with

ae_mlp_dpav42_best ae_cnn_dpav42_best

MLP ID 69 37

HW 0 2

CNN ID 100 100

HW 51 17

We use standardization of the encoded dataset when training the profiling model 100 times. The number
represents the number of times we reach ge∗ = 1

Table 13 Portability results with best MLP and CNN models obtained with encoded DPAv4.2 datasets (from ae_mlp_dpav42_best and
ae_cnn_dpav42_best)

Model LM Encoded DPAv4.2 with ae_mlp_dpav42_best Encoded DPAv4.2 with ae_cnn_dpav42_best

ae_cnn_*_best ae_mlp_*_best ae_cnn_*_best ae_mlp_*_best

Encoded ASCADr

MLP ID 75 100 0 73

HW 98 93 100 87

CNN ID 87 83 100 100

HW 97 100 100 99

Encoded ASCADf

MLP ID 0 83 100 11

HW 12 3 0 2

CNN ID 98 100 43 100

HW 29 85 1 86

Datasets ASCADr and ASCADf are encoded with their respective best autoencoders. We use encoded data directly, without standardization. The
training is done 100 times, and the reported number is the number of times we reach ge∗ = 1

autoencoders of other datasets. The resulting features also
become more comparable, which could improve the perfor-
mance. The hyperparameters of the best autoencoder for this
case are in Table 11.

The results using the ae_mlp_ascadf_best-encoded
ASCADf from the described search are in Table 12. Here,
we see an improvement, which indicates our hypothesis on
the similarity of latent representations with DPAv4.2 and
ASCADr could be true. Accordingly, this is a crucial remark
to consider if universal models are to be considered. As the
feature space is more similar, the portability becomes easier.
Despite the MSE being slightly worse than before, the attack
performance is better since the representations aremore com-
parable.

After improving ae_mlp_ascadf_best, we also test
best MLP and CNN profiling architectures from Tables 7
and 8without data standardization. The results are inTable 13
and show that for ASCADr, we have similar successful
behavior in comparison to results from Table 10 when data
standardization was done. For encoded ASCADf, we com-
pare results with Table 12 for ae_mlp_ascadf_best as
that autoencoder was used for encoding as it was shown
to be better. Additionally, we compare it with Table 10 for

ae_cnn_ascadf_best. Results with and without stan-
dardization for ASCADf are also similar.

Our analysis demonstrates that reusing profiling models
trained on an encoded dataset is possible. That reduces hyper-
parameter tuning efforts when considering new encoded
datasets, where the effort is moved to tuning the autoen-
coder. Additionally, universal profiling architecture is then
something we can consider on autoencoder-encoded data.
Moreover, tuning autoencoders is easier as optimization of
MSE is more straightforward.

5.3.2 Portability of original-data trained profiling model to
different original and encoded datasets

In this section, we test the portability of a best-found pro-
filing model architecture (from random search) when it is
trained on an original (i.e., not encoded) dataset. For that,
we consider ASCADf, which contains 700 features. We
made this choice because ASCADf has fewer features than
ASCADr and DPAv4.2, which contain 1400 and 2000 fea-
tures, respectively, in their original versions. In this case, to
reuse that architecture, we need to decrease the number of
features of other datasets to the size of the data used in train-
ing. However, since the input layer is a dedicated first layer

123

Journal of Cryptographic Engineering

Table 14 Autoencoders for
DPAv4.2 and ASCADr with
latent space size of 700

AE type Hyperparameters MSE

DPAv4.2

ae_mlp_str_dcr ae_mlp_dpav42_best_700: architecture:
[1400], batch_size: 100, activation: tanh,
learning_rate: 0.0001, weight_init: he_normal,
optimizer: Adam

0.017

ae_cnn ae_cnn_dpav42_best_700: batch_size: 200,
filters: 16, kernel_size: 10, strides: 5, pool_size: 4,
pool_strides: 2, pooling_type: Avg, conv_layers: 1,
activation: elu, learning_rate: 0.001, weight_init:
random_uniform, optimizer: Adam

0.013

ASCADr

ae_mlp_str_dcr ae_mlp_ascadr_best_700: architecture:
[900], batch_size: 200, activation: selu,
learning_rate: 1e-05, weight_init:
random_uniform, optimizer: RMSprop

0.052

ae_cnn ae_cnn_ascadr_best_700: batch_size: 400,
filters: 8, kernel_size: 20, strides: 5, pool_size: 2,
pool_strides: 4, pooling_type: Avg, conv_layers: 1,
activation: elu, learning_rate: 0.001, weight_init:
he_uniform, optimizer: RMSprop

0.141

in neural networks, to reuse the architecture, we can also
replace that first layer. In that case, we can keep the origi-
nal number of features of the new datasets. Our goal is to
verify if the best-found profiling architecture with ASCADf
also provides good attack performance when trained with
the encoded and original ASCADr and DPAv4.2 datasets.
Therefore, we have three cases per dataset—using original
and encoded data with two different AE types.

Since this timewe have to encodeASCADr and DPAv4.2
into 700 features, we again run a hyperparameter search to
find the best autoencoders, which are reported in Table 14
with their corresponding MSE values. The hyperparameter
search spaces are shown in Tables 20 and 22.

Table 15 shows the results with the best MLP and
CNN profiling architectures found for the original ASCADf
dataset. We ran a random search for 100 models using hyper-
parameter search space from Table 21. Hyperparameters for
the models with results presented in Table 15 can be found
in Table 27.

Since we reuse only the architecture and not the trained
parameters (weights and biases), we modify the input layer
to use the original ASCADr and DPAv4.2 datasets that have
more features than the original ASCADf. This way, we take
the best architectures from Table 15 and train them with the
originalASCADr andDPAv4.2 datasets aswell aswith their
encoded versions by using the best-found autoencoders listed
in Table 14. For each dataset, profiling model architecture,
and leakage model, we run 100 trainings and compare the
number of times the model reaches ge∗ = 1. The analysis is
also done with and without data standardization.

Table 15 Best profiling models
for ASCADf

Model LM ge∗ Nge∗=1

MLP ID 1 151

HW 1 1476

CNN ID 1 265

HW 1 1734

The results in Table 16 show that best-found architec-
ture provides good performance even if we use directly
original traces from the DPAv4.2 and ASCADr datasets.
However, with DPAv4.2, the best-found CNN architec-
tures are less successful. For the encoded DPAv4.2 dataset,
results are better than original traces as it leads to either sim-
ilar performance or often better. With the dataset encoded
with ae_cnn_dpav42_best_700, we got better results
without standardization, and for the encoded dataset from
ae_mlp_dpav42_best_700, it was better using stan-
dardization.

Using original traces was already very successful for the
ASCADr dataset, so using encoded data is less valuable, but
still shows good performance when the dataset is encoded
with ae_cnn_ascadr_best_700, especially with stan-
dardization. On the other hand, using ae_mlp_ascadr_
best_700 encoded data usually resulted in worse out-
comes. Considering the standardization of encoded data,
we see that it was slightly beneficial to use standardization
for data encoded with both ae_mlp_ascadr_best_700
and ae_cnn_ascadr_best_700 encoded cases. Statis-
tically, however,we cannot claim that it is always necessary to
use standardization. On the other hand, based on our results,

123

Journal of Cryptographic Engineering

Table 16 Results with DPAv4.2 and ASCADr using attack architecture trained on the ASCADf dataset

Model LM Orig. W/o stand. With stand.

ae_cnn_*_best_700 ae_mlp_*_best_700 ae_cnn_*_best_700 ae_mlp_*_best_700

DPAv4.2

MLP ID 48 100 100 100 100

HW 100 100 100 100 100

CNN ID 0 48 1 0 100

HW 4 96 77 100 95

ASCADr

MLP ID 25 9 0 75 66

HW 100 100 99 100 100

CNN ID 95 100 0 100 0

HW 99 100 4 98 0

The numbers represent the number of times we reach a GE of 1 when the training is done 100 times

models trained with encoded data perform similarly or better
in most experiments than those trained with original data.
In Table 16, the cases where the performance is worse are
marked in red color. Thus, we conclude that using encoded
data to reuse the profiling attack architecture trained with
other datasets’ original traces can be done despite differ-
ent feature spaces. Moreover, encoded data are beneficial
when the performance with the original data is unsuccessful.
Hyperparameter tuning for new datasets can be significantly
reduced in thatway.Again, tuning ismore straightforward for
autoencoders by minimizing MSE and does not require the
typical attack phase in classification with GE calculations.

5.4 Transfer learning with profilingmodels to
different encoded datasets

We also test the benefit of autoencoders in the context of
transfer learning. Again, we have the same best profiling
models for the ASCADf dataset (Table 15), and we retrain
the last layer to obtain the secret key byte for the new dataset.
In this case, the input must be the same size since we also
use the trained parameters (weights and biases). Therefore,
we encoded the ASCADr and DPAv4.2 datasets for transfer
learning to the profiling model input size. Additionally, we
again test with and without standardization of the encoded
data. Since the training is faster as we train only one layer, we
have a setting where we train one by one epoch, calculating
theGE after each epoch and stoppingwhenwe reach age∗ =
1. The maximum number of epochs is 100. Another setting
is running training for a given number of epochs, which is
100, as in all our experiments.

In the results shown in Table 17, when datasets were
encoded using the ae_cnn_*_best_700 autoencoder, we see
that in all cases, we reached ge∗ = 1. Often the necessary
number of epochs is small. However, when using standard-

ization of encoded data, we see that with DPAv4.2, we
reach ge∗ = 1 in fewer cases. Standardization for encoded
ASCADr did not have much influence.

Table 18 shows the attack results when datasets are
encodedwith ae_mlp_*_best_700. Here,we see that the per-
formance is a bit worse. However, we can still reach ge∗ = 1
in some cases without standardization. For DPAv4.2, pro-
filing models using the identity leakage model did not reach
ge∗ = 1. Using CNN, we see that it got close to one
with ge∗ = 1.65 and ge∗ = 1.15, so we believe this can
be corrected using, e.g., more epochs. Thus, we increased
the number of epochs to 150 and got a ge∗ = 1 within
Nge∗=1 = 854 traces. Similarly, we select other specific
cases that did not reach ge∗ = 1, and we experiment with
the number of epochs and training two instead of one last
layer in the model to verify if with those modifications we
can obtain better performance. Since using the standardiza-
tion primarily led to worse results, we only experimented
without standardization, changing the number of epochs and
the number of layers we train.

Specifically, for the MLP and HW combination with
DPAv4.2, we reach ge∗ = 1 in 12 epochs when checking
the GE after every epoch. Training for 100 epochs at once,
GE gets worse (3.8). Thus, we testedwith only 50 epochs and
reached Nge∗=1 = 1993. A combination of MLP and the ID
leakage model is the worst, with minimal GE being 67.8 in
41 epochs and 115.75 after 100 epochs. Therefore, we tested
multiple modifications. We tested with training two last lay-
ers in the model, again with a different number of epochs
- 100, 150, and 200. The lowest GE are in cases with 150
epochs training one layer where we reach ge∗ = 98.8, and
training two last layers with 200 and 150 epochs reaching
ge∗ = 104.7 and ge∗ = 99.55, respectively. Similarly, we
do this for theASCADr dataset. In the case ofMLP and the ID
leakage model, again, we tested all cases as with DPAv4.2,

123

Journal of Cryptographic Engineering

Table 17 Results for transfer learning with datasets encoded with
ae_cnn_*_best_700

Model LM W/o stand. With stand.

epochs GE NT epochs GE NT

Encoded DPAv4.2

MLP ID 74 1 2878 1 23.9 2998

100 80.8 2809 100 38.1 2998

CNN ID 53 1 2769 82 34 2832

100 1 309 100 57.95 2938

MLP HW 9 1 2738 43 53.65 2743

100 1 71 100 77.6 2724

CNN HW 14 1 2861 37 1 2557

100 1 812 100 1 852

Encoded ASCADr

MLP ID 5 1 1226 24 1 2581

100 1 459 100 25.95 80

CNN ID 10 1 1702 11 1 2286

100 1 356 100 1 382

MLP HW 4 1 2641 4 1 2508

100 1 1621 100 1 1643

CNN HW 12 1 2738 9 1 2157

100 1 1636 100 1 1486

The table shares the number of epochs that the model was trained for as
well as the minimum GE with a corresponding number of traces (NT)

and the improvement happens only with training the two last
layers with 200 epochs getting ge∗ = 1.25. In combina-
tion with CNN and ID, the minimal GE we get is 2.55 after
100 epochs, and when we train epoch by epoch, the mini-
mum GE is 1.8 in epoch number 96. The results indicate that
the model has the capacity to learn the new dataset. We tried
addingmore epochs, 150 and 200, but we did not reach better
results (GEwas 2.5 and 4.5, respectively). Also, with only 50
epochs, we get worse results with minimal GE of 35.45. We
reached ge∗ = 1.3 by training the two last layers with 150
epochs. While not investigated, it seems that perhaps using
early stopping could help in this case. Early stopping could
prevent GE from increasing after a certain number of epochs.
The last combination we tested is the MLP and HW, where
we reach a GE of 1 when training epoch by epoch. Using 50
epochs gets us to ge∗ = 1.05, and using 150 epochs results
in ge∗ = 1.2. However, we already showed that we could
get ge∗ = 1 training epoch by epoch. Thus, the model can
learn, and early stopping could help get ge∗ = 1.

In most cases, we could get GE close to 1. In many cases,
we also see capacity in the model to learn the new dataset
where early stopping could be beneficial as GE seems to
deteriorate after some epochs. On the other hand, training
modifications did not help reach ge∗ = 1 for the MLP and
the ID leakagemodel for the DPAv4.2 dataset. Possibly, the
autoencoder requires improvements, but we also see that the
results for this case specifically were better with standardiza-

Table 18 Results for transfer
learning with datasets encoded
with ae_mlp_*_best_700

Model LM W/o stand. With stand.

Epochs GE NT Epochs GE NT

Encoded DPAv4.2

MLP ID 41 67.8 2791 53 28.35 2700

100 115.75 2827 100 77.9 17

CNN ID 100 1.65 2935 59 44.2 2931

100 1.15 2635 100 86.4 2915

MLP HW 12 1 2603 1 72.1 249

100 3.8 2501 100 136.7 0

CNN HW 15 1 1990 19 1 2711

100 1 747 100 1 1741

Encoded ASCADr

MLP ID 57 18.5 14 56 21.85 1074

100 1.95 2799 100 28.95 2973

CNN ID 96 1.8 2992 101 6.65 2873

100 2.55 2969 100 21.15 2826

MLP HW 11 1 1931 12 46.1 2090

100 7.95 2989 100 48.75 2993

CNN HW 25 1 2430 84 1.2 2925

100 1.55 2976 100 6.3 2894

The table shares the number of epochs the model was trained for as well as the minimum GE with a corre-
sponding number of traces (NT)

123

Journal of Cryptographic Engineering

tion. Including standardization with training modifications
might help. Additionally, from the setup with training epoch
by epoch, the minimum GE is around 50 epochs and gets
larger as we train for the entire 100 epochs. Thus, early stop-
ping might also be beneficial in this case, along with other
training alternatives.

Here, we see that results using data encoded with
ae_cnn_*_best_700 are better than those encoded with
ae_mlp_*_best_700 with and without standardization.
In both cases, standardization made performance worse, so
with transfer learning, we could opt not to use standard-
ization, at least when the reused model is trained on the
original dataset and now used for encoded data. However,
more exploration of this can be done as the sample might be
small. Additionally, if we use transfer learning from a model
trained on encoded data and then used for new encoded data,
this conclusion about standardization may not be valid. Still,
our experiments show significant benefits of transfer learn-
ing where tuning the profiling model for a new dataset was
eliminated and training time reduced. That holds while the
data are also in different feature spaces as themodel is trained
on original data, then transferred for encoded data of other
datasets.

6 Conclusions and future work

In this work, we proposed autoencoders to decrease the
hyperparameter tuning effort of profiling models for new
datasets. Hyperparameter tuning for profilingmodels in SCA
is a necessary but time-consuming task, and additionally,
those efforts are needed for each specific dataset. Thus, we
propose reusing profiling models to reduce the efforts for
each new dataset by using autoencoders. The commonly
used metric for autoencoders is MSE, which we showed to
be positively correlated with the SNR difference between
the original and reconstructed trace. Tuning autoencoders is
more effortless as the MSE metric is relevant to the goal
of reconstruction. On the contrary, with the classification of
intermediate values, we need to perform GE calculations to
validate the performance of the profiling model. Since those
calculations are computationally expensive, they are not done
during training, contrary to MSE computation. Therefore,
AEs are easier to tune and train than profiling models of
SCA.

Concerning the observed results, we show that the hyper-
parameter tuning was not significantly better with original
traces, which means that encoded data does keep relevant
information for the attacks. We consider three portability
cases enabled with autoencoders.

– Reusing profiling architecture trained on one encoded
dataset for other encoded datasets: This approach
comes close to finding a universal profilingmodel, where
all the datasets get encoded to the same feature size using
autoencoders and then attacked with the same attack
architecture. The results show good performance over
encoded datasets. One important note is that the autoen-
coders with similar architecture (number of layers and
neurons) lead to better attack performances. In that way,
the features in encoded data are more alike, which boosts
the performance of the same profiling architecture across
different datasets.

– Reusing profiling architecture trained on one dataset’s
original traces for attacking other datasets with more
features:Here,weuse autoencoders to decrease thenum-
ber of features of the new datasets to the feature size of
the dataset used to train themodel. Trainingwith encoded
data was better or similar in performance to training with
original traces. Thus, if original traces do not lead to
good performance, we can consider using autoencoders
to encode data to fewer features to achieve better per-
formance with lower tuning efforts than finding a new
profiling model.

– Reusing profiling model trained on one dataset’s orig-
inal traces for attacking other datasets with more
features: We utilize autoencoders to allow using trans-
fer learning between different datasets. Dimensionality
reduction is necessary as we keep the trainable param-
eters of the model. The results show great performance
with data encoded with the ae_cnn architecture type
without standardization. In other cases, we also reach
ge∗ = 1with a bit longer training or trainingmore layers.
The benefit of transfer learning enabled by autoencoders
is that we eliminate the hyperparameter tuning of the pro-
filingmodel and significantly reduce training time for the
new dataset.

In future work, CNN autoencoder types need to be more
thoroughly investigated as they are more powerful consid-
ering feature extraction than MLPs. On the other hand, we
should studywhat is represented in the latent space of autoen-
coders for SCA traces. We can compare autoencoders as
feature processing tools with classical approaches, such as
principal component analysis (PCA). Instead of running a
DL-based SCA attack on encoded data, performing classical
SCA on AE-encoded data would be interesting.

Author Contributions All authors contributed equally.

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as

123

Journal of Cryptographic Engineering

Table 19 Hyperparameter search space for autoencoder ae_mlp, ae_mlp_dcr and ae_mlp_str_dcr in the initial experiments for metric analysis
and latent dimension search

Hyperparameter Values

ae_mlp ae_mlp_(str_)dcr

Layers [1, 2, 3, 4, 5, 6] [1, 2, 3, 4, 5, 6]

Neurons [20, 50, 100, 250] [20, 40, 50, 100, 150, 200, 300, 400]

Batch size [100, 200, 400] [100, 200, 400]

Activation [tanh, elu, selu, sigmoid] [tanh, elu, selu, sigmoid]

Learning rate [0.005, 0.001, 0.0001, 0.00001] [0.005, 0.001, 0.0001, 0.00001]

Weight init [random_uniform, he_uniform, glorot_uniform, ran-
dom_normal, he_normal, glorot_normal]

[random_uniform, he_uniform, glorot_uniform, ran-
dom_normal, he_normal, glorot_normal]

Optimizer [Adam, RMSprop, SGD, Adagrad] [Adam, RMSprop, SGD, Adagrad]

Table 20 Hyperparameter search space for autoencoder ae_cnn

Hyperparameter Values

Conv. layers [1, 2, 3, 4]

Filters [4, 8, 16]

Kernel size [10, 20]

Strides [5, 10]

Pool size [2, 4]

Pool strides [2, 4]

Pooling type [Avg, Max]

Batch size [100, 200, 400]

Activation [tanh, elu, selu, sigmoid]

Learning rate [0.005, 0.001, 0.0001, 0.00001]

Weight init [random_uniform, he_uniform, glorot_uniform,

random_normal, he_normal, glorot_normal]

Optimizer [Adam, RMSprop, SGD, Adagrad]

long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

A Hyperparameter search spaces

We execute a random search over hyperparameter search
spaces for autoencoders and profiling models. This section
reports hyperparameter search spaces for all of our experi-
ments. Hyperparameter search space for MLP autoencoders
in the initial experiments with metric analysis and best latent
size search are in Table 19. The differences are in the number
of neurons per layer for the different types of autoencoders

we use. Table 20 shows search space for CNN autoencoders.
The batch size, activation, learning rate, weight initialization,
and optimizer are the same for all AE types.

For profiling models, the hyperparameter search space for
MLP and CNN is in Table 21.

Lastly, we use autoencoders with latent size 700, so we
report in Table 22 the number of layers and neurons per layer
we allow. Other hyperparameters stay the same as in Table 19
and Table 20.

B Statistical tests

Using a Friedman test, we identify that there is indeed a
significant difference in the means of the groups. However,
we need to find out which ones differ specifically. Thus, a
post hoc test is necessary. One such test is the Nemenyi test,
and using Python packages, we obtain the results for differ-
ent latent sizes in Tables 23 and 24. Latent dimensions are
in rows and columns. The Nemeyi post hoc test returns the
p-values for each pairwise comparison of means. Using a
significance level α = 0.05, the pairwise latent sizes with a
significant difference are bolded. Table 23 shows the pair-
wise comparison for eight latent sizes because we exclude
the results for ae_mlp_str_dcr type as with specified
hyperparameter search it did not work for latent size 500.
Table 24 shows results including that AE type but excluding
the latent size 500.

C Hyperparameters values of models from
experiments

This section provides information on hyperparameter val-
ues for the models we use in our experiments. In Table 25,
we show hyperparameters of the best MLP and CNN profil-
ing models for the encoded DPAv4.2 dataset when encoded
with the best-found ae_mlp_dpav42_best. These mod-

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Journal of Cryptographic Engineering

Table 21 Hyperparameter search space for profiling models.

Hyperparameter MLP CNN

FC layers [1, 2, 3, 4, 5, 6] [1, 2]

Neurons [20, 40, 50, 100, 150, 200, 300, 400] [20, 50, 100, 200]

Conv. layers – [1, 2, 3, 4, 5]

Filters – [4, 8, 12, 16]

Kernel size – [10, 20, 30, 40]

Strides – [5, 10, 15, 20]

Pool size – [2]

Pool strides – [2]

Pooling type – [Avg]

Batch size [100, 200, 400] [100, 200, 400]

Activation [elu, selu, relu] [elu, selu, relu]

Learning rate [0.005, 0.0025, 0.001, 0.0005, 0.00025, 0.0001,
0.00005, 0.000025, 0.00001]

[0.005, 0.0025, 0.001, 0.0005, 0.00025, 0.0001,
0.00005, 0.000025, 0.00001]

Weight init [random_uniform, he_uniform, glorot_uniform, ran-
dom_normal, he_normal, glorot_normal]

[random_uniform, he_uniform, glorot_uniform, ran-
dom_normal, he_normal, glorot_normal]

Optimizer [Adam, RMSprop, SGD, Adagrad] [Adam, RMSprop, SGD, Adagrad]

The number of filters increases by being multiplied by the corresponding order of the layer
For CNN models, the convolutional layer is followed by BatchNormalization and then the pooling layer

Table 22 Hyperparameter search space for autoencoder ae_mlp_str_dcr with latent space size of 700

DPAv4.2 ASCADr

Layers [1, 2, 3, 4, 5, 6] [1, 2, 3, 4, 5, 6]

Neurons [700, 800, 900, 1000, 1200, 1400, 1600, 1800] [700, 800, 900, 1000, 1100, 1200, 1300]

We exclude the batch size, activation, learning rate, weight initialization, and optimizer hyperparameters as they are already shown in Tables 19
and 20

Table 23 p-values of Nemenyi
post hoc test for without the
ae_mlp_str_dcr model

Latent sizes 20 40 50 100 200 250 400 500

20 1.0 0.9 0.9 0.158 0.001 0.263 0.001 0.088

40 0.9 1.0 0.9 0.552 0.015 0.693 0.006 0.403

50 0.9 0.9 1.0 0.693 0.032 0.834 0.015 0.552

100 0.158 0.552 0.693 1.0 0.763 0.9 0.623 0.9

200 0.001 0.015 0.032 0.763 1.0 0.623 0.9 0.9

250 0.263 0.693 0.834 0.9 0.623 1.0 0.481 0.9

400 0.001 0.006 0.015 0.623 0.9 0.481 1.0 0.763

500 0.088 0.403 0.552 0.9 0.9 0.9 0.763 1.0

Pairwise latent sizes with significant difference are bolded

Table 24 p-values of Nemenyi
post hoc test for with the
ae_mlp_str_dcr model

Latent sizes 20 40 50 100 200 250 400

20 1.0 0.0 0.783 0.042 0.001 0.030 0.001

40 0.9 1.0 0.9 0.364 0.009 0.296 0.001

50 0.783 0.9 1.0 0.647 0.042 0.579 0.006

100 0.042 0.364 0.647 1.0 0.783 0.9 0.438

200 0.001 0.009 0.042 0.783 1.0 0.851 0.9

250 0.030 0.296 0.579 0.9 0.851 1.0 0.511

400 0.001 0.001 0.006 0.438 0.9 0.511 1.0

Pairwise latent sizes with significant difference are bolded

123

Journal of Cryptographic Engineering

Table 25 Best MLP and CNN
profiling models obtained for
the encoded DPAv4.2 dataset
when encoded with the
best-found
ae_mlp_dpav42_best

Hyperparameters MLP CNN

ID HW ID HW

FC layers 2 3 1 2

Neurons 100 40 50 20

Filters – – 16 12

Kernel size – – 20 40

Strides – – 5 15

Conv. layers – – 4 5

Batch size 200 200 100 100

Activation selu selu selu elu

Learning rate 0.005 0.0025 0.005 0.001

Weight init Random Uniform Glorot uniform Random normal Glorot uniform

Optimizer Adam RMSprop Adam RMSprop

Table 26 Best MLP and CNN
profiling models obtained for
the encoded DPAv4.2 dataset
when encoded with the
best-found
ae_cnn_dpav42_best

Hyperparameters MLP CNN

ID HW ID HW

FC layers 6 6 1 2

Neurons 200 50 200 200

Filters – – 12 12

Kernel size – – 30 40

Strides – – 5 15

Conv. layers – – 4 5

Batch size 200 200 400 400

Activation selu elu selu elu

Learning rate 0.0005 0.0025 0.0025 0.0005

Weight init Random uniform Glorot normal Glorot normal Random normal

Optimizer RMSprop RMSprop RMSprop RMSprop

Table 27 Best profiling models
for ASCADf dataset

Hyperparameters MLP CNN

ID HW ID HW

FC layers 4 4 2 1

Neurons 40 20 50 200

Filters – – 4 4

Kernel size – – 10 40

Strides – – 5 5

Conv. layers – – 1 4

Batch size 400 100 200 400

Activation relu elu relu selu

Learning rate 0.001 0.001 0.0001 0.005

Weight init Random uniform Random normal Random uniform Glorot uniform

Optimizer Adam RMSprop RMSprop RMSprop

123

Journal of Cryptographic Engineering

els correspond to results in Table 7. Corresponding toTable 8,
weprovide hyperparameter values for the bestMLPandCNN
models for the encoded DPAv4.2 dataset when encoded
with the best-found ae_cnn_dpav42_best in Table 26.
Hyperparameter values of the best MLP and CNN models
for ASCADf dataset are visible in Table 27. The attack per-
formance of those models is shown in Table 15.

References

1. Bank, D., Koenigstein, N., Giryes, R.: Autoencoders. arXiv
preprint arXiv:2003.05991 (2020)

2. Benadjila, R., Prouff, E., Strullu, R., Cagli, E., Dumas, C.: Deep
learning for side-channel analysis and introduction to ASCAD
database. J. Cryptogr. Eng. 10(2), 163–188 (2020). https://doi.org/
10.1007/s13389-019-00220-8

3. Bhasin, S., Bruneau, N., Danger, J.L., Guilley, S., Najm, Z.: Anal-
ysis and improvements of the dpa contest v4 implementation. In:
International Conference on Security, Privacy, and Applied Cryp-
tography Engineering, pp. 201–218. Springer (2014)

4. Bhasin, S., Chattopadhyay, A., Heuser, A., Jap, D., Picek, S., Ran-
jan, R.: Mind the portability: A warriors guide through realistic
profiled side-channel analysis. In: NDSS 2020-Network and Dis-
tributed System Security Symposium, pp. 1–14 (2020)

5. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with
a leakage model. In: Joye, M., Quisquater, J. (eds.) Cryptographic
Hardware and Embedded Systems - CHES 2004: 6th International
Workshop Cambridge, MA, USA, August 11–13, 2004. Proceed-
ings, Lecture Notes in Computer Science, vol. 3156, pp. 16–29.
Springer (2004). https://doi.org/10.1007/978-3-540-28632-5_2

6. Bronchain, O.: Worst-case side-channel security: from evaluation
of countermeasures to new designs. Ph.D. thesis, Catholic Univer-
sity of Louvain, Louvain-la-Neuve, Belgium (2022). https://hdl.
handle.net/2078.1/258155

7. Bronchain, O., Hendrickx, J.M., Massart, C., Olshevsky, A., Stan-
daert, F.: Leakage certification revisited: Bounding model errors in
side-channel security evaluations. IACR Cryptol. ePrint Arch. p.
132 (2019). https://eprint.iacr.org/2019/132

8. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks
with data augmentation against jitter-based countermeasures - pro-
filing attacks without pre-processing. In: Fischer, W., Homma, N.
(eds.) Cryptographic Hardware and Embedded Systems - CHES
2017 - 19th International Conference, Taipei, Taiwan, September
25-28, 2017, Proceedings, LectureNotes inComputer Science, vol.
10529, pp. 45–68. Springer (2017). https://doi.org/10.1007/978-3-
319-66787-4_3

9. Cao, P., Zhang, C., Lu, X., Gu, D.: Cross-device profiled side-
channel attack with unsupervised domain adaptation. IACR Trans.
Cryptogr. Hardw. Embedded Syst. pp. 27–56 (2021)

10. Cao, P., Zhang, H., Gu, D., Lu, Y., Yuan, Y.: Al-pa: cross-device
profiled side-channel attack using adversarial learning. In: Proceed-
ings of the 59th ACM/IEEE Design Automation Conference, pp.
691–696 (2022)

11. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: B.S.K. Jr.,
Koç, Ç.K., Paar, C. (eds.) Cryptographic Hardware and Embed-
ded Systems - CHES 2002, 4th International Workshop, Redwood
Shores, CA, USA, August 13–15, 2002, Revised Papers, Lecture
Notes in Computer Science, vol. 2523, pp. 13–28. Springer (2002).
https://doi.org/10.1007/3-540-36400-5_3

12. Choudary, O., Kuhn, M.G.: Template attacks on different devices.
In: Constructive Side-Channel Analysis and Secure Design: 5th

International Workshop, COSADE 2014, Paris, France, April 13-
15, 2014. Revised Selected Papers 5, pp. 179–198. Springer (2014)

13. Das, D., Golder, A., Danial, J., Ghosh, S., Raychowdhury, A., Sen,
S.: X-deepsca: Cross-device deep learning side channel attack. In:
Proceedings of the 56th Annual Design Automation Conference
2019, pp. 1–6 (2019)

14. Friedman, M.: The use of ranks to avoid the assumption of normal-
ity implicit in the analysis of variance. J. Am. Stat. Assoc. 32(200),
675–701 (1937)

15. Genevey-Metat, C., Gérard, B., Heuser, A.: On what to learn: Train
or adapt a deeply learned profile?Cryptology ePrintArchive (2020)

16. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of
data with neural networks. Science 313(5786), 504–507 (2006)

17. Kocher, P.C.: Timing attacks on implementations of diffie-hellman,
rsa, dss, and other systems. In: Annual International Cryptology
Conference, pp. 104–113. Springer (1996)

18. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In:
Wiener, M.J. (ed.) Advances in Cryptology - CRYPTO ’99, 19th
Annual International Cryptology Conference, Santa Barbara, Cal-
ifornia, USA, August 15-19, 1999, Proceedings, Lecture Notes
in Computer Science, vol. 1666, pp. 388–397. Springer (1999).
https://doi.org/10.1007/3-540-48405-1_25

19. Kwon, D., Kim, H., Hong, S.: Improving non-profiled side-channel
attacks using autoencoder based preprocessing. Cryptology ePrint
Archive (2020)

20. Lu, X., Zhang, C., Cao, P., Gu, D., Lu, H.: Pay attention to
raw traces: A deep learning architecture for end-to-end profiling
attacks. IACRTrans. Cryptogr.Hardw. Embed. Syst. 2021(3), 235–
274 (2021). https://doi.org/10.46586/tches.v2021.i3.235-274

21. Masure, L., Cristiani, V., Lecomte, M., Standaert, F.: Don’t learn
what you already know: Grey-box modeling for profiling side-
channel analysis against masking. IACR Cryptol. ePrint Arch. p.
493 (2022). https://eprint.iacr.org/2022/493

22. Masure, L., Dumas, C., Prouff, E.: A comprehensive study of deep
learning for side-channel analysis. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems 2020(1), 348–375
(2019). https://doi.org/10.13154/tches.v2020.i1.348-375. https://
tches.iacr.org/index.php/TCHES/article/view/8402

23. Paguada, S., Batina, L., Armendariz, I.: Toward practical
autoencoder-based side-channel analysis evaluations. Comput.
Netw. 196, 108230 (2021)

24. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans.
Knowl. Data Eng. 22(10), 1345–1359 (2009)

25. Pawar, K., Attar, V.Z.: Assessment of autoencoder architectures
for data representation. In: Deep Learning: Concepts and Archi-
tectures, pp. 101–132. Springer (2020)

26. Perin, G., Wu, L., Picek, S.: Exploring feature selection scenarios
for deep learning-based side-channel analysis. IACR Trans. Cryp-
togr. Hardw. Embed. Syst. 2022(4), 828–861 (2022). https://doi.
org/10.46586/tches.v2022.i4.828-861

27. Picek, S., Heuser, A., Perin, G., Guilley, S.: Profiled side-channel
analysis in the efficient attacker framework. In: Grosso, V., Pöppel-
mann, T. (eds.) Smart Card Research and Advanced Applications -
20th International Conference, CARDIS 2021, Lübeck, Germany,
November 11-12, 2021, Revised Selected Papers, Lecture Notes in
Computer Science, vol. 13173, pp. 44–63. Springer (2021). https://
doi.org/10.1007/978-3-030-97348-3_3

28. Quinn,G.P.,Keough,M.J.: ExperimentalDesign andDataAnalysis
for Biologists. Cambridge University Press, Cambridge (2002)

29. Rijsdijk, J.,Wu, L., Perin, G., Picek, S.: Reinforcement learning for
hyperparameter tuning in deep learning-based side-channel analy-
sis. IACRTrans. Cryptogr. Hardw. Embed. Syst. 2021(3), 677–707
(2021). https://doi.org/10.46586/tches.v2021.i3.677-707

30. Standaert, F.X., Malkin, T.G., Yung, M.: A unified framework for
the analysis of side-channel key recovery attacks. In: Joux, A. (ed.)

123

http://arxiv.org/abs/2003.05991
https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/978-3-540-28632-5_2
https://hdl.handle.net/2078.1/258155
https://hdl.handle.net/2078.1/258155
https://eprint.iacr.org/2019/132
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.46586/tches.v2021.i3.235-274
https://eprint.iacr.org/2022/493
https://doi.org/10.13154/tches.v2020.i1.348-375
https://tches.iacr.org/index.php/TCHES/article/view/8402
https://tches.iacr.org/index.php/TCHES/article/view/8402
https://doi.org/10.46586/tches.v2022.i4.828-861
https://doi.org/10.46586/tches.v2022.i4.828-861
https://doi.org/10.1007/978-3-030-97348-3_3
https://doi.org/10.1007/978-3-030-97348-3_3
https://doi.org/10.46586/tches.v2021.i3.677-707

Journal of Cryptographic Engineering

Adv. Cryptol. EUROCRYPT 2009, pp. 443–461. Springer, Berlin
Heidelberg, Berlin, Heidelberg (2009)

31. Thapar, D., Alam, M., Mukhopadhyay, D.: Transca: Cross-family
profiled side-channel attacks using transfer learning on deep neural
networks. Cryptology ePrint Archive (2020)

32. Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer
learning. J. Big data 3(1), 1–40 (2016)

33. Won, Y., Hou, X., Jap, D., Breier, J., Bhasin, S.: Back to the basics:
Seamless integration of side-channel pre-processing in deep neural
networks. IEEETrans. Inf. Forensics Secur. 16, 3215–3227 (2021).
https://doi.org/10.1109/TIFS.2021.3076928

34. Wu, L., Perin, G., Picek, S.: I choose you: Automated hyperparam-
eter tuning for deep learning-based side-channel analysis. IEEE
Trans. Emerg. Top. Comput. pp. 1–12 (2022). https://doi.org/10.
1109/TETC.2022.3218372

35. Wu, L., Picek, S.: Remove some noise: On pre-processing
of side-channel measurements with autoencoders. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems
2020(4), 389–415 (2020). https://doi.org/10.13154/tches.v2020.
i4.389-415. https://tches.iacr.org/index.php/TCHES/article/view/
8688

36. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are
features in deep neural networks? Adv. Neural Inf. Process. Syst.
27 (2014)

37. Zhou, Y., Standaert, F.: Deep learning mitigates but does not anni-
hilate the need of aligned traces and a generalized resnet model
for side-channel attacks. J. Cryptogr. Eng. 10(1), 85–95 (2020).
https://doi.org/10.1007/s13389-019-00209-3

38. Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H.,
He, Q.: A comprehensive survey on transfer learning. Proc. IEEE
109(1), 43–76 (2020)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1109/TIFS.2021.3076928
https://doi.org/10.1109/TETC.2022.3218372
https://doi.org/10.1109/TETC.2022.3218372
https://doi.org/10.13154/tches.v2020.i4.389-415
https://doi.org/10.13154/tches.v2020.i4.389-415
https://tches.iacr.org/index.php/TCHES/article/view/8688
https://tches.iacr.org/index.php/TCHES/article/view/8688
https://doi.org/10.1007/s13389-019-00209-3

	Autoencoder-enabled model portability for reducing hyperparameter tuning efforts in side-channel analysis
	Abstract
	1 Introduction
	2 Related work
	3 Background
	3.1 Deep learning-based side-channel attacks
	3.2 Autoencoders (AEs)
	3.3 Transfer learning
	3.4 Datasets
	3.4.1 DPAcontest v4.2
	3.4.2 ASCAD

	4 Experimental setup
	4.1 Autoencoder architectures
	4.2 Autoencoder metric analysis

	5 Experimental results
	5.1 Autoencoders search
	5.1.1 Assessing MSE metric with SNR
	5.1.2 Searching for the best latent space size
	5.1.3 Selecting the best autoencoders

	5.2 Are encoded datasets as good as original datasets?
	5.3 The portability of profiling models
	5.3.1 Portability of encoded-data trained profiling model to different encoded datasets
	5.3.2 Portability of original-data trained profiling model to different original and encoded datasets

	5.4 Transfer learning with profiling models to different encoded datasets

	6 Conclusions and future work
	A Hyperparameter search spaces
	B Statistical tests
	C Hyperparameters values of models from experiments
	References

