
Possibility of Using Overrule to Evaluate Overlap in Causal Inference
<What is the performance of Overrule in identifying overlap for different types of datasets?>

Shukun Cheng1

Supervisor(s): Jesse Krijthe1, Rickard Karlsson1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Shukun Cheng
Final project course: CSE3000 Research Project
Thesis committee: Jesse Krijthe, Rickard Karlsson, Frans Oliehoek

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
Causal inference is a widely recognized concept
in various domains, including medicine, for esti-
mating the effect of a medication on a certain dis-
ease. During this estimation, overlap is commonly
used to eliminate the error caused by other features.
However, finding the real overlap region in prac-
tice is challenging due to the limited sample size
and unknown data distribution. Therefore, some
machine-learning methods have been proposed to
estimate the overlap region. One such method is
Overrule, a Python package proposed by Oberst et
al.[1], Overrule is based on rule-based classifica-
tion and estimates the overlap region by interpret-
ing it as several rules across the features. However,
it is still unclear how Overrule performs under dif-
ferent circumstances. Thus, the primary objective
of this project is to test the performance of Over-
rule with different datasets. To accomplish this, a
series of tests are built and executed to evaluate the
performance of Overrule in diverse scenarios.

1 Introduction
“Causal inference is the field dedicated to estimating causal
effects of some interventions from real-world retrospective
data” [2]. It can represent how each causal variable affects
the outcome. At its most basic concept, estimating an effect
of a causal variable is done by comparing two groups that
have different values for the causal variable. For example,
smoking may have casual inference on heart disease, to esti-
mate this, a group of smokers needs to be compared with a
group of people that do not smoke. However, if some other
variables might also affect heart diseases, such as age and
exercise frequency, it is necessary to reduce or eliminate the
effects of other casual variables. Finding sufficient overlap is
a significant step in this process.

Figure 1: An illustration of an overlapped dataset [3]

Overlap of classes exists when classes share a common re-
gion in the data space [3]. Figure 1 shows the overlapping re-
gion between two classes. To find the overlap in the dataset,
multiple methods can be used such as estimating the class
conditional probabilities of all classes. However, with the
limited amount of data, it becomes difficult to estimate the
probability, especially in a high dimensional problem since
the data become sparse. Thus, in this project, we are aim-
ing to use a machine learning algorithm to evaluate overlap.
A Python package called Overrule, which is based on a rule-
based classification method, is the main focus of this project.

Although Overrule has been implemented by Oberst et
al.[1], the possibility of using it in practice and the perfor-
mance is still unknown. Therefore, this report aims to find
the answer to the following research question: What is the
performance of Overrule in identifying overlap for different
types of datasets? To achieve this goal, several sub-questions
need to be answered:

• How does Overrule identify overlap?

• How to find feasible hyperparameters of Overrule with
a given dataset?

• Is Overrule sensitive to outlier data points?

• How does Overrule scale as the number of features and
samples increases in the dataset?

In this report, the background information about this topic
will be listed in Section 2, then in Section 3, some other meth-
ods that might evaluate overlap will be explained. Section 4
mainly shows the setup of the experiments, then the results
will be shown and discussed in Section 5. After this, Section
6 will explain related issues of this research. In the end, the
project will be concluded in Section 7.

2 Background
As mentioned in Section 1, the goal of this project is to test
the performance of Overrule under different conditions. In
this Section, some background information about this project
will be expressed, such as overlap, rule-based classification,
and Overrule.

2.1 Overlap
Section 1 has described that the overlap of classes happens
when all classes share a common region in the data space [3].
However, this definition is still unclear about how to formu-
late the common region and use it as a standard to test the
performance of Overrule. So, it is necessary to find another
way to represent overlap. In this project, most of the test-
ing dataset will be simulated by some distribution function,
therefore, posterior probability is used as a baseline in order
to compare with the overlapping result from Overrule.

Posterior probability P (Y |X) is the probability of class
Y given the data point X [4]. Usually, it is estimated by
Bayes’ theorem in 1, where P (Y) is the prior probability of
class Y, P (X) is the probability of data point X , and P (X|Y)
is called class conditional probability. Since the simulated
data used for this project has their distribution function, so the
posterior probabilities of these data can be easily calculated.

P (Y |X) =
P (Y)P (X|Y)

P (X)
(1)

The overlap in this project is defined as where the posterior
probabilities of all classes are higher than a predetermined
threshold value ϵ as shown in 2, which is set to 0.05 in most
of the tests in this project.

Overlap = {X;∀Y : P (Y |X) > ϵ} (2)

2.2 Rule-based Classification
In this project, rule-based classification is the main method
that will be used. A rule-based classification is a process that
extracts relevant IF-Then rules from training data and uses
these rules to classify unknown data. This method can be used
to evaluate the overlap of given datasets with the support of
other methods. There are two different ways to extract rules
from datasets, one is using sequential covering algorithms to
extract rules directly from the data, which is also called rule
induction [5], such as CN2, RIPPER, and Holte’s 1R, and the
other one takes the rules indirectly from other data mining
methods such as decision tree, for example, C4.5rules.

2.3 Overrule
Overrule [1] is used as the base of this project, it is a Python
package that uses a rule-based classification method to evalu-
ate the overlap between treatment groups. As Figure 2 shows,
this method consists of two main processes, estimating α-
minimum-value set Sα of all classes and estimating the rule
set Bϵ using Boolean rules restricted to Sα.

Figure 2: Estimate overlap Oα,ϵ with α-MV set Sα and Boolean
rule set Bϵ [1]

Estimation of α-minimum-value set Sα

Let x1, x2, ...xm be random variables in a set X with distribu-
tion P . Let ℓ be a class of measurable subsets of X and V (C)
denote the volume of a set C ∈ ℓ. An α-minimum-volume
(α-MV) set Sα is then:

Sα := argmin
C

{V (C);P (C) ≥ α,C ∈ ℓ} 0 < α ≤ 1

(3)
This means a set C is the minimum volume set when it con-
tains at least a fraction α of the probability mass.

Based on the research from Schölkopf et al [6], it is dif-
ficult to calculate the real Sα, therefore, One-Class SVM is
a feasible tool for calculating the estimation of α-MV set Ŝ.

It uses a technique called the kernel trick with function Φ to
map the data into a higher-dimensional space, the function
can be presented as follows

k(x,y) = (Φ(x) · Φ(y)) (4)

The most used kernel is radial basis function (RBF) kernel:

k(x,y) = e−||x−y||2/c (5)

Then isolates them from the origin of the higher-dimensional
space with maximum margin as normal SVM. This method
will return a function f that determines if the given data point
is in this class by evaluating which side of the hyperplane it
falls on. Therefore, to separate the data point from the origin,
the following function should be solved

min
w∈F,ξ∈Rm,ρ∈R

1

2
∥w∥2 + 1

νm

∑
i

ξi − ρ

subject to (w · Φ(xi)) ≥ ρ− ξi, ξi ≥ 0

(6)

The parameter ν is an upper bound on the fraction of outliers
and a lower bound on the fraction of SVs. Then the decision
function f can be expressed as:

f(x) = sgn((w · Φ(x))− ρ) (7)

Where 1 means the given data point belongs to this class, -1
means not. For each class, a One-Class SVM will be trained,
then they can generate the estimated α-MV set Ŝ. A data x is
in Ŝ when there is at least one One-Class SVM returns 1.

Estimation of rule set Bϵ

After estimating the α-MV set Ŝ, the rough estimation of the
overlap, B̃ can be found by taking the intersection of all Ŝ.
Then the estimation of the real overlap, which is represented
as B̂ can be calculated with the formula as follows

B̂ := argmin
C

1

|Ŝ\B̃|

∑
i:xi∈Ŝ\B̃

1[xi ∈ C] +R(C)

subject to
∑

i:xi∈Ŝ∩B̃

1[xi ∈ C] ≥ β|Ŝ ∩ B̃|
(8)

Where R(C) is the regularization term that controls complex-
ity by placing penalties λ0 on each clause in the rule and λ1

on each condition in a clause [1]. This can be formulated as
follows

R(C) = Kλ0 + λ1

K∑
k=1

pk (9)

3 Related Works
Overrule is the main method used in this project, it is based
on rule-based classification. Moreover, several other meth-
ods that are based on machine learning techniques have also
been proposed besides Overrule to evaluate overlap. Such
as propensity score, nearest neighbors, novelty detection, and
density estimation. In this Section, all of these methods will
be explained.

3.1 Propensity score
Crump et al. [7] have proposed a method based on propensity
score to estimate overlap. A propensity score is the proba-
bility of a sample being assigned to a particular class given a
set of observed covariates. For evaluating overlap, the frame-
work used is from Rosenbaum and Rubin [8]. For each sam-
ple i in the given dataset, Wi indicates the class that this sam-
ple belongs to, and Yi(Wi) denotes the outcome for sample i
with class Wi. Then Wi and Yi can be observed as follow:

Yi = Yi(Wi) =

{
Yi(0), Wi = 0

Yi(1), Wi = 1
(10)

For a dataset with a K-dimensional vector of variables or co-
variates, denoted by Xi, with support X ∈ RK . Then propen-
sity score can be expressed as:

e(x) = P (Wi|Xi = x) (11)

To solve the overlap problem with propensity score, two as-
sumptions should be satisfied for any sample in the estimated
overlap region:
Assumption 1: Wi ⊥⊥ {Yi(0), Yi(1)}|Xi

Assumption 2: For some c > 0, and all x ∈ X, c ≤ e(x) ≤
1− c

3.2 Nearest neighbors
The nearest neighbors algorithm is a machine-learning algo-
rithm that classifies the class of a given sample based on its
neighbors in the test set. There are two main categories for
this algorithm: k nearest neighbors (kNN) and radius neigh-
bors. kNN takes k nearest samples of the test sample, then
checks the majority class in these samples and assigns it to
the test sample. The other method, radius neighbors, takes
all samples within the circle centered on the test sample, then
assigns the majority class to the test sample. Both classifiers
can be formulated as follows

Yx =

{
0, N0 > N1

1, N0 ≤ N1
(12)

Where Ni is the number of class i samples in neighbors of
sample x. One of the shortages of this classification algorithm
is that it may misclassify the samples when there is overlap
occurs. But on the other hand, this shortage can be used to
evaluate overlap.

3.3 Novelty detection
Novelty detection can be defined as finding the difference in
some respect between the test data and training data, this may
be seen as one-class classification [9]. This method is also
used in Overrule as shown in formula 6. To estimate the over-
lap region with this algorithm, data from each class should
train a separate one-class classification algorithm to get the
estimation of the distribution region, then the intersection is
taken as estimated overlap.

3.4 Density estimation
Density estimation is a method that estimates the distribution
f of a class by assigning a kernel density to every sample in

this class. This can be formulated as follow:

f̂(x) =
1

nh

n∑
i=1

K(
x−Xi

h
) (13)

Where the kernel function K should satisfy
∫
K(x)dx = 1

and h is known as bandwidth. In practice, there are many
functions that can be used as K, such as the most popular
one, the Gaussian kernel. The following Figure shows the
estimation of a normal distribution dataset with three different
kernel functions.

Figure 3: Density estimation of a normal distribution dataset with
Gaussian, Tophat, and Epanechnikov

Same as novelty detection algorithm, the density function
of each class should be estimated, and the overlap region can
be found by checking the densities of all classes as formula
2.

4 Experimental Setup

In order to generate answers for the research question and
sub-questions, experiments with different setups are required.
In this section, the setups of these experiments will be ex-
plained first, such as how the method’s performance is mea-
sured and how to simulate datasets with specific structures
that each experiment needs. Then the results from these ex-
periments will be shown.

4.1 General dataset simulation

When testing the performance of the method in a spe-
cific scenario, the effects of other factors should be elim-
inated. Therefore, simulated data is used for the experi-
ments. In this project, numpy.random package is used for
this, numpy.random is a standard Python package that can
produce pseudo-random numbers, which can be defined to
distribute under different probability densities. In this project,
the most used distribution is a normal distribution [10]. There
is an example of two datasets generated by a normal distribu-
tion shown in Figure 5.

Figure 4: Density of two normal distribution classes x1 (µ=-1,
σ2=1, n=100000) and x2 (µ=1, σ2=1, n=100000), blue region is
the overlap

4.2 Matrix
Testing the performance of the method needs a baseline to
compare with, where intersection over union (IoU) is used
for this project. It is originally for comparing the similarity
between two arbitrary shapes [11]. However, in this project, it
is used for comparing the classification output for each sam-
ple in the dataset. It is calculated with a confusion matrix
between the actual condition and the predicted condition as
shown below:

A
ct

ua
lc

on
di

tio
n

Prediction condition

Positive (PP) Negative (PN)

Positive (P)
True
Positive
(TP)

False
Negative
(FN)

Negative (N)
False
Positive
(FP)

True
Negative
(TN)

Table 1: Confusion matrix for classification problem

With this confusion matrix table, we can get the values of
TP, FN, FP, and TN with true overlap classification output and
the predicted one, the IoU value can be calculated as:

IoU =
TP

TP + FP + FN
(14)

However, this formula leads to another question, how to
generate the true overlap classification output for all samples?
In this project, most of the test datasets are simulated datasets
that are generated by a certain distribution function. As men-
tioned in subsection 2.1, formula 2 represents that overlap
occurs when the possibilities of all classes are higher than
a predefined value. Therefore, with given distribution func-
tions, it is easy to obtain the true overlap classification.

4.3 Hyperparameters optimazation

As mentioned in Section 2.3, the Overrule package used for
this project contains two main hyperparameters, α, and β.
where α is the fraction of the probability mass or the mini-
mum volume set, and β is the fixed fraction of the overlap
set.

Oberst et al. [1] did not establish the direct relationship
between these two hyperparameters (α and β) and the given
condition, such as the size of the datasets, the number of fea-
tures, and the predetermined threshold value. Consequently,
it is necessary to identify a method for determining suitable
hyperparameter values based on given conditions. Since both
α and β have defined boundaries, grid search is a suitable
tool to find feasible hyperparameter values. Grid search is
a traditional method of hyperparameters optimization, which
simply makes a complete search over a given subset of the
hyperparameters space of the training algorithm [12].

Listing 1 Code example of Optuna

1 import optuna
2 import ...
3

4 def objective(trial):
5 alpha = trial.suggest_float("alpha", 0.01, 1)
6 beta = trial.suggest_float("beta", 0.01, 1)
7 clf = RuleBasedOverlapEstimator(alpha,
8 beta)
9 clf.fix(x_train, y_train)

10

11 return clf.score(x_test, y_test)
12

13 search_space = {
14 'alpha': np.linspace(0, 1, 21),
15 'beta': np.linspace(0, 1, 21)
16 }
17 study = optuna.create_styudy(direction="maximize",
18 sampler=optuna.samplers.GridSampler(search_space))
19 study.optimize(objective, n_trial=100)

Akiba et al.[13] has designed a Python package called Op-
tuna. It is an open-source optimization software that tries to
find feasible hyperparameters with the best performance by
using an objective function that takes a set of hyperparameters
as input and returns its validation score. Listing 1 shows an
example of how Optuna works. In this example, the objective
function creates a space of two hyperparameters, alpha and
beta with both boundary [0.01, 1]. Optuna is able to use dif-
ferent optimization strategies and in this case, grid search is
used. The Figure below shows a hyperparameter optimization
process for Overrule package, more processes can be checked
in Appendix A.

Figure 5: Optuna hyperparameters optimization with grid search for
a dataset with 1 feature and 2 normal distributed classes, x1 (µ=0,
σ2=1, n=200) and x2 (µ=2.5, σ2=1, n=200)

However, in a real experiment, the real overlap region is
unknown, it is impossible to tune hyperparameters as in the
process above. Therefore, the goal of this process is to find
a set of hyperparameter values that can generate reasonable
estimation in most cases.

4.4 Outliers

Figure 6: Outlier data (triangle marker) for class x1 (red) in a dataset
with 2 features, the true overlap is colored in yellow

Hawkins [14] defined outlier as a data sample that deviates
a lot from other samples. This occurs frequently in real
datasets. In this project, simulated data with normal distri-
bution is mostly used, so outlier data can also be added as a
small group of data with a uniform distribution that randomly
generates samples in the distribution region. Figure 6 above
provides an example of an outlier in a dataset, where the red
circle is the distribution of class 1 and the blue one is for class
2, the triangle markers stand for outlier data of class 1, which
are far away from the main distribution region. During the

experiment, the fraction of the outlier data starts from 1% of
the amount of class data and increases to 10% in order to see
the change in the performance.

4.5 Different numbers of samples and features

In order to test the performance of Overrule under different
conditions, the number of samples and features are consid-
ered. During these tests, the number of samples will start
from 10 to 30000 with exponential increments, datasets with
1 feature to 6 features will be tested. However, when com-
paring the performances of different numbers of features, the
region of true overlap might be different and influence the
outcome. To reduce this effect, for each dataset, the mean
and variance are tuned to ensure for every dataset there is ap-
proximately 30% of overlap.

5 Results and Discussion

In this section, the results of the experiments during the re-
search will be shown and discussed. First some basic re-
sults such as with 1d and 2d normal distribution datasets with
default hyperparameters (α = 0.01, β = 0.95). Then the
performance under different hyperparameters will be tested.
Later the results for different numbers of samples and features
will be compared. After this, the performance under different
fractions of outlier data will be investigated.

5.1 Basic test

Figure 7: Overlap estimation of two normal distribution classes with
1 feature x1 (µ=-1, σ2=1, n=500) and x2 (µ=1, σ2=1, n=500) with
threshold ϵ=0.05, where the blue region is true overlap and the red
is estimated overlap

Figure 8: Overlap estimation of two normal distribution classes with
1 feature x1 (µ=0, σ2=1, n=500) and x2 (µ=0, σ2=3, n=500) with
threshold ϵ=0.05, where the blue region is true overlap and the red
is estimated overlap

Figure 9: Overlap estimation of two normal distribution classes with
2 features x1 (µ=-0.5, σ2=1, n=500) in red and x2 (µ=0.5, σ2=1,
n=500) in blue with threshold ϵ=0.05, where the yellow region is the
true overlap region and blue points are the estimated overlap samples

Figure 7 shows the performance of Overrule with default
hyperparameters, on evaluating overlap for two normal dis-
tributed datasets with 1 feature. In this test, the true overlap
is defined as where both classes have densities higher than
0.05. The true overlap is visualized as a blue region in the
figure, and the estimated overlap is shown as a red one, where
the overlap of both boxes becomes purple. This result means
that the default rule-based method overestimated the overlap.
Figure 8 has a similar setup but only the distributions of the
classes are different, in this experiment one class is fully cov-
ered by another class. Figure 9 is from a test with a dataset
that has 2 features, as it shows that with default hyperparam-
eters, estimated overlap B̂ from Overrule is the same as B̃
from One-Class SVM. These tests indicate that with default
hyperparameters, Overrule performs well in 1 feature, but de-
creases significantly when increasing the number of features.
This means that hyperparameter tuning is necessary for Over-
rule.

5.2 Different hyperparameters
As mentioned in 4.3, both hyperparameters α and β do not
have a clear relation with a given dataset. Also in real ex-
periments the true overlap region is unknown, so tuning α

and β with IoU is not possible. Therefore, in this subsection,
Each hyperparameter will be tested separately to find a regu-
lar pattern to ensure the performance of Overrule stays at an
optimum level for most of the conditions.

(a) varying α, β = 0.95, ϵ = 0.05 (b) varying β, α = 0.1, ϵ = 0.05

Figure 10: IoU of One-Class SVM and Overrule for dataset(30%
overlap) with only one varying hyperparamer

In the two Figures 10a, 10b above, two hyperparameters
are tested separately. When testing one of them, the other
value is set to the default value, where α is 0.1 and β is 0.95.
More results for different numbers of features can be found
in Appendix B. From Figure 10a it is known that the overall
trend for α is that IoU decreases with the increment of α, but
with datasets that have 1 or 2 features, low α will also gener-
ate low IoU. Therefore, it is wise to choose a value between
low α and the peaks, in this case, 0.1 is assigned to α for the
later experiments. Figure 10b shows that β is not as sensitive
as α, for most of the experiments the IoU stays at its peak
when β is higher than a certain value, however, for some ex-
periments the IoU drops when β reaches the maximum. Thus,
0.9 is assigned to β.

5.3 Outliers

(a) 1 feature (b) 2 features

Figure 11: IoU of One-Class SVM and Overrule in dataset (30%
overlap) with different numbers of outlier samples

After completing experiments with the outliers, the results
are shown in Figure 11 above. For both the 1 feature and 2
features datasets, it is clear that outlier data does not influence
the performance until the fraction increases to 5%.

5.4 Different number of samples and features

Figure 12: IoU of Overrule for 30% overlap datasets with different
numbers of samples and dimensions, where α = 0.1, β = 0.9, ϵ =
0.05

Figure 12 shows the results of Overrule (α = 0.1, β = 0.9)
with different numbers of samples and features, when sam-
ple size increases, the performance of Overrule first increases
and then stays at a stable level, which means that Overrule
does not get affected by the number of samples once the num-
ber reaches the minimum requirement. With more features,
the number of samples needed to reach a stable state will in-
crease.

For different numbers of features, Overrule has decent per-
formance with datasets that have 1, 3, 4, or 5 features. But
for datasets with 2 or 6 features, it does not have good re-
sults. From Appendix 16b it is known that the influence of
α value on the performance has a bell curve with a peak at
0.3, so α = 0.1 will cause low IoU for 2 features case. For the
dataset with 6 features, IoU drops a lot with the increments
of α, which also result in the low IoU in Figure 12.

5.5 Iris dataset

After determining the feasible hyperparameter values through
grid search, experiments with real datasets become valuable.
In this subsection, the Iris dataset is used to evaluate the
performance of Overrule as a practical case study. The Iris
dataset is well-known and widely used in the field of ma-
chine learning. The figure below scatters 2 chosen classes
in Iris with 2 features, it shows that these two classes share
the common data space in the middle of the figure, where the
overlap occurs.

Figure 13: 2 classes in Iris dataset with Sepal.Width and Petal.Width

Overrule estimated the overlap region as follows. As Fig-
ure 14 shows that the estimated overlap from Overrule is
closely aligned with the actual overlap region.

Figure 14: Overrule overlap estimation in Iris with two classes and
two features

In Appendix C, additional experimental results are pre-
sented, showcasing the performance of different overlap esti-
mation algorithms on the Iris dataset. The figures in the ap-
pendix provide comparative analyses of several algorithms,
including Overrule, K nearest neighbors LOF, K nearest
neighbors LRD, and radius neighbors. The results demon-
strate that Overrule, K nearest neighbors LOF, K nearest
neighbors LRD, and radius neighbors have good perfor-
mance. On the other hand, propensity score, and kernel den-
sity estimation tend to overestimate the overlap region, they
produce a larger overlap region than the actual region.

6 Responsible Research
One of the goals of this project is to investigate the Overrule
package and check whether it can contribute to real produc-
tion. By the end of the project, an open-source library for this
project will be built and released publicly in Github1. Mean-
while, some issues also come up, such as the possibility of

1https://github.com/ShukunCheng/
Rule-Based-Overlap-Estimator

https://github.com/ShukunCheng/Rule-Based-Overlap-Estimator
https://github.com/ShukunCheng/Rule-Based-Overlap-Estimator

reproducing the experiment results, and some ethical prob-
lems of misconduct.

6.1 Reproducibility
In this project, all the experiments are implemented in Python
and released to the same repository as the main method.
Therefore, anyone who installed all required packages is able
to reproduce the experiment results locally.

6.2 Misconduct
Evaluating overlap is a common process in many fields, and
some of them always come with some ethical issues such as in
the medical field. In this project, the performance of Overrule
package was only tested by simulated data, the performance
on the real dataset is still unknown, also the consequences
of misconduct also need to be determined. Therefore, Over-
rule is still not yet recommended to be used in some sensitive
fields.

7 Conclusion and future work
In conclusion, several experiments have been set and tested
in this project to answer the subquestions and main research
question mentioned in Section 1. It becomes clear how Over-
rule evaluates overlap by using One-Class SVM and Boolean
rule method to generate an interpretable rule set. Grid search
is used to find the feasible choice of the values for hyperpa-
rameters α and β, with the experiments that have been done,
α = 0.1, β = 0.9 seems to be a feasible option for most of
the cases. With this hyperparameter set, Overrule performs
mostly well with different numbers of samples and features.
When the number of features increases, Overrule requires
more samples to have stable performance. Overrule is not
sensitive to outlier data since in the experiments the perfor-
mance starts dropping when the fraction of outliers is higher
than 5%.

After this project, more work could be organized to gain
more insight into Overrule package. Experiments that have
been done were based on normal distribution data, it would
be valuable to redo the experiments with datasets that have
different densities or two separated overlap regions. Also,
datasets with varying amounts of classes or different types of
features could be tested to check the scalability of Overrule.
Since all experiments of this project were using simulated
data, the performance of Overrule in practice is unknown,
testing with real data will make the result more convincing.

References
[1] Michael Oberst, Fredrik Johansson, Dennis Wei, Tian

Gao, Gabriel Brat, David Sontag, and Kush Varshney.
Characterization of overlap in observational studies. In
International Conference on Artificial Intelligence and
Statistics, pages 788–798. PMLR, 2020.

[2] Ehud Karavani, Peter Bak, and Yishai Shimoni. A dis-
criminative approach for finding and characterizing pos-
itivity violations using decision trees. arXiv preprint
arXiv:1907.08127, 2019.

[3] Pattaramon Vuttipittayamongkol, Eyad Elyan, and An-
drei Petrovski. On the class overlap problem in im-
balanced data classification. Knowledge-based systems,
212:106631, 2021.

[4] Vijay Kotu and Bala Deshpande. Chapter 4 - classifica-
tion. In Vijay Kotu and Bala Deshpande, editors, Data
Science (Second Edition), pages 65–163. Morgan Kauf-
mann, second edition edition, 2019.

[5] Xiaoli Li and Bing Liu. Rule-based classification.,
2014.

[6] Bernhard Schölkopf, John C Platt, John Shawe-Taylor,
Alex J Smola, and Robert C Williamson. Estimating
the support of a high-dimensional distribution. Neural
computation, 13(7):1443–1471, 2001.

[7] Richard K Crump, V Joseph Hotz, Guido W Imbens,
and Oscar A Mitnik. Dealing with limited overlap in
estimation of average treatment effects. Biometrika,
96(1):187–199, 2009.

[8] Paul R Rosenbaum and Donald B Rubin. The central
role of the propensity score in observational studies for
causal effects. Biometrika, 70(1):41–55, 1983.

[9] Marco AF Pimentel, David A Clifton, Lei Clifton, and
Lionel Tarassenko. A review of novelty detection. Sig-
nal processing, 99:215–249, 2014.

[10] Eric W Weisstein. Normal distribution.
https://mathworld. wolfram. com/, 2002.

[11] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak,
Amir Sadeghian, Ian Reid, and Silvio Savarese. Gen-
eralized intersection over union: A metric and a loss
for bounding box regression. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 658–666, 2019.

[12] Petro Liashchynskyi and Pavlo Liashchynskyi. Grid
search, random search, genetic algorithm: a big com-
parison for nas. arXiv preprint arXiv:1912.06059, 2019.

[13] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru
Ohta, and Masanori Koyama. Optuna: A next-
generation hyperparameter optimization framework. In
Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining,
pages 2623–2631, 2019.

[14] Douglas M Hawkins. Identification of outliers, vol-
ume 11. Springer, 1980.

A Optuna hyperparameter optimization

(a) 1 feature (b) 2 features (c) 3 features

(d) 4 features (e) 5 features (f) 6 features

Figure 15: Optuna optimization result for datasets with different number of features

B Grid search for one hyperparameter

(a) 1 feature (b) 2 features (c) 3 features

(d) 4 features (e) 5 features

Figure 16: IoU of One-Class SVM and Overrule for dataset(30% overlap) with 1 feature and different α, β = 0.95, ϵ = 0.05

(a) 1 feature (b) 2 features (c) 3 features

(d) 4 features (e) 5 features

Figure 17: IoU of One-Class SVM and Overrule for dataset(30% overlap) with 1 feature and different β, α = 0.1, ϵ = 0.05

C Iris dataset comparison
This project used Overrule to evaluate overlap, meanwhile, as mentioned in Section 3, several other machine learning algorithms
have been proposed for this topic. In this Appendix, the results of these different algorithms will be compared, the dataset used
for this comparison is Iris dataset from sklearn package. Two classes and two features are chosen for this experiment. The
chosen classes and features are shown as a figure below

Figure 18: Iris dataset with

The algorithms that are included in this comparison are Overrule, propensity score, K nearest neighbors LOF, K nearest
neighbors LRD, radius neighbors, and kernel density estimation. All results are shown in the figures below

(a) Overrule (b) propensity score (c) K nearest neighbors LOF

(d) K nearest neighbors LRD (e) radius neighbors (f) Kernel density

	Introduction
	Background
	Overlap
	Rule-based Classification
	Overrule
	Estimation of -minimum-value set S
	Estimation of rule set B

	Related Works
	Propensity score
	Nearest neighbors
	Novelty detection
	Density estimation

	Experimental Setup
	General dataset simulation
	Matrix
	Hyperparameters optimazation
	Outliers
	Different numbers of samples and features

	Results and Discussion
	Basic test
	Different hyperparameters
	Outliers
	Different number of samples and features
	Iris dataset

	Responsible Research
	Reproducibility
	Misconduct

	Conclusion and future work
	Optuna hyperparameter optimization
	Grid search for one hyperparameter
	Iris dataset comparison

