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3D slope stability analysis with spatially variable and cross-correlated

shear strength parameters

D. Varkey, M.A. Hicks & P.J. Vardon

Section of Geo-Engineering, Faculty of Civil Engineering and Geosciences, Delft University of Technology,

Delft, The Netherlands

ABSTRACT: The paper investigates the stability of slopes with spatially variable and cross-correlated
shear strength parameters in 3D. The influence of various cross-correlation coefficients between these
parameters on the probability of 3D slope failure has been considered for different levels of anisotropy
of the heterogeneity in the shear strength. Specifically, 3D random fields of cohesion and friction angle
were generated using the Local Average Subdivision method, and these were correlated with eachother by
various degrees. The fields were then linked to finite element analyses within a Monte Carlo framework.
The results indicate that a positive cross-correlation between the parameters reduces the slope reliability,
whereas a negative cross-correlation between the parameters increases the reliability.

1 INTRODUCTION

The inherent nature of soil is to be spatially vari-
able (Phoon & Kulhawy 1999). The uncertainty in
the spatial variability of parameters arises due to
a combination of various geologic, environmental
and physio-chemical processes. However, quanti-
fication of this heterogeneity is not a trivial task
and demands extensive field and laboratory tests
(Jaksa et al. 1999, de Gast et al. 2017). There can
also be other types of uncertainties, such as geo-
metric uncertainty in the form of uncertain soil
layer boundaries, or epistemic uncertainties asso-
ciated with sampling, modeling, and so on. The
uncertainty in the spatial variability of the shear
strength parameters alone has been considered in
this paper.

Conventionally, the stability of slopes is calcu-
lated deterministically, i.e., by ignoring the spatial
variability in heterogeneity within soil layer(s) and
considering the entire slope to be made up of a sin-
gle or multiple homogeneous layers. The outcome
of such an analysis is a single factor of safety (FS),
which gives no information about the reliability.
Ignoring the heterogeneity within the soil has been
shown to have a significant influence on computa-
tions of FS (Hicks & Samy 2002, Hicks 2007, Cho
2007, among others) and also on the failure mech-
anisms (Hicks & Spencer 2010). Various reliabil-
ity-based methods have been developed to include
heterogeneity; for example, the first order second
moment method, first order reliability method,
point estimate method, stochastic response surface
methods and the random finite element method
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(RFEM) (Fenton & Griffiths 2008). The outcome
of RFEM is a range of possible responses of the
structure. Research has also been done to effi-
ciently use the available data to condition random
fields, for improving the confidence in results (Llo-
ret-Cabot et al. 2012, Li et al. 2016).

Soils generally exhibit spatial variability in a
range of parameters. These parameters, in addi-
tion to being correlated over certain lengths, may
also be correlated to each other. The influence
of cross-correlation between effective cohesion
(¢") and effective friction angle (") on bear-
ing capacity predictions has been investigated by
Cherubini (2000) and Fenton & Griffiths (2003).
The influence of this cross-correlation on the
reliability of slopes (Le 2014, Javankhoshdel &
Bathurst 2016, among others), as well as dif-
ferent methods for constructing the bivariate
distributions (Tang et al. 2015) and their influ-
ence on the reliability of retaining walls (Li
et al. 2015) have also been investigated. Griffiths
et al. (2009a) identified critical values of the
coefficients of variation of the shear strength
parameters, beyond which ignoring the spatial
variability gives unconservative results with or
without cross-correlation between them.

Research has also been done on the reliability
analysis of slopes in 2D to understand the influ-
ence of various levels of heterogeneity in the
mechanical and hydraulic parameters (Arnold &
Hicks 2011), and on making use of inverse analysis
techniques to reduce the uncertainty in hydraulic
conductivity by using pore pressure measurements
(Vardon et al. 2016). All these studies are based on



the assumption that the mechanical and hydraulic
parameters are correlated over an infinite distance
in the third dimension. Although this is generally
not the case, only a limited amount of research
has been done regarding full 3D probabilistic
analysis, possibly due to the large computational
requirements.

Vanmarcke (1977) pioneered 3D reliability
assessments of slopes by assuming the governing
soil parameter to be the spatial average of the ran-
domly varying parameter over a predefined sur-
face. In contrast, 3D RFEM does not make any
assumption regarding equivalent soil parameter
or failure mechanism, although it requires a large
computational effort to carry out multiple reali-
sations. Spencer (2007), Griffiths et al. (2009b),
Hicks & Spencer (2010) and Li et al. (2015) used
3D RFEM to investigate the influence of ani-
sotropy of the heterogeneity in undrained shear
strength and slope length in the third dimension
on the estimation of failure probability. Hicks &
Spencer (2010) grouped the failure modes into
three different categories based on the anisotropy
of the heterogeneity in shear strength relative to
the slope dimensions. Strategies for quantifica-
tion of the failure consequences have also been
developed (Hicks et al. 2008, Huang et al. 2013,
Hicks et al. 2014).

This paper considers the spatial variability and
cross-correlation between shear strength param-
eters (¢" and ¢') for an idealised long slope. The
random fields of the parameters were generated
using the 3D Local Average Subdivision method,
and linked with the finite element model within a
Monte Carlo framework. Different values of ani-
sotropy of the heterogeneity in the shear strength
were considered. The influence of different cross-
correlation coefficients between these parameters
on the probability of failure of a 3D slope has been
investigated.

2 RANDOM FINITE ELEMENT METHOD
(RFEM)

The mathematical representation of the spatial
variability of soil parameters can be made in the
form of a random field. This can be univariate or
multivariate, depending whether the field value at
a point in space is a random variable or a random
vector.The field is said to be stationary if the mean
() and variance ( 0 ) of the random variables are
constant and the autocorrelation coefficient ( o)
is only dependent on the separation between the
points (z,7) under consideration.The correlation
structure for the random variable ( X ) between
these points is given as:
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E[(X, - E[X, (X, - E[X,])]
0,0,

=

AX, X)= (1)

where X, and X. are the respective values of
X at ¢t and 7', and E[X,], E[X,] and o, O,
are the expectations and standard deviations of
X, respectively. For a stationary random field,
E[X,]=E[X,]=4 and c,0. =0".

In the context of finite element analysis, the
mechanical response of a system is approximated
by the spatial discretization of the geometry.
RFEM combines random fields with finite ele-
ments and hence discretization of the random
fields is required, as carried out in this paper by
Local Average Subdivision (LAS) [?]. In this
method, a local integral process is obtained by
integrating X over a moving window (7" ), such
that the new process has the same average as X
and is smoother than X , i.e. with a reduced vari-
ance to account for local averaging. The variance
reduction (I'(7")) is dependent on the correlation
function ( (7)) for a stationary process, and is
given in 1D as:

2 T 2 T
I“(T)=?_[O ,o(r)arz-Fj0 o 0)dr )

where 7 is the lag distance. A 3D separable Gauss
Markov correlation structure is used in this paper,
with the correlation in the vertical (z) direction
separated from the two horizontal ( x and y ) direc-
tions. The 3D covariance function ( f= c?p) is:

2z,

6

X

I _2i_ 2 ﬁz
Az,,7,,7.) = 0exp( ) (=) +( 7 ) (3)

where €, € and & are the scales of fluctuation
and 7., 7, and 7. are the lag distances in the
respective directions.

The separation of the vertical correlation struc-
ture from the two horizontal directions was done
to model the long-term depositional characteristic
in the soil. It is assumed that the horizontal lay-
ers were deposited at the same instant, whereas the
vertical deposition occurs over time.

LAS is a top-down recursive approach, which
begins with generating a random number (from a
standard Gaussian distribution) which is assigned
as the initial global mean for the entire domain.
Proceeding downwards, the domain is subdivided
into equal halvesin each direction, i.e. each cell is
divided into 2° cells at each subdivision level in 3D
LAS. In the subdivision process, the global average
is preserved by the top-down approach, whereas
the variance of the local average reduces and



tends towards the target variance as the number
of subdivision levels increases. In this paper, the
minimum required subdivision level is determined
in order to have a variance reduction value not less
than 0.8, i.e. as given by the scale of fluctuation of
the process being at least four times the averaging
window in the last sub-division level (Li 2017).

2.1 Cross-correlation between variables

The generated random fields, for say »n param-
eters, can be correlated to each other by using the
correlation matrix ( R ) given in Equation 4, with
Py,x, being the correlation coefficient between the
randomly varying parameters, X; and X, at the
same point in space.

1 Px.x,
_ | Prax, 1

Pxx,

Pr.x,

R 4)

Py x, Prx,x, - 1

The generated »n wunivariate Gaussian ran-
dom variables are cross-correlated by using the
Cholesky decomposition ( LL" ) of R, and using
the following matrix transformation to generate
the cross-correlated fields ( ¢ ):

g X,
gl - )
g“" X’i
where L is the lower triangular matrix. The
above transformation requires that the individual
random fields are stationary, and the Cholesky
decomposition fails if R has negative eigenval-
ues. Figure 1 shows the random variables for two
parameters, X, and X, . correlated to each other
with different values of p , .

Figure 2 shows the covariance structure
obtained in the field of X, cross-correlated to
X, for different values of p, , . The generated
fields coincide with the exact covariance structure
(Eq. 3) for an isotropic field with &=1m . Hence,
cross-correlation does not affect the covariance
structure within the fields.

Note that for generating anisotropic random
fields, the authors have first generated isotropic
random fields for each uncertain parameter by LAS
using #=¢6 =6 =46 in Equation 3, followed by
cross-correlating the fields using Equation 5. This

field was then post-processed by squashing and/or
stretching in the respective directions to generate
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Figure 1. Cross-correlated fields in standard normal
space; (a) Py x, =0,(b) py,x, =0.5.() pyx, =—0.5,
(d) pl\].\'z = _r‘

1 —— Exact
L 1&1x2 it
08
LRI WHAMLE
Q 12
L e il
g 1
g
§o
0.2
il S s
0 L : 3 4 5

Lag distance (m)

Figure 2. Covariance structure obtained in a cross-cor-
related isotropic 3D field with &= Im and domain side
length of 5m , for different cross-correlation coeflicients

(Pyy, )-

the required level of anisotropy (&£=86,/8,); see
Hicks & Samy and (2002) and Hicks & Spencer
(2010) for details. The cross-correlated random
fields corresponding to each parameter were then
transformed into their physical space using the
point statistics and type of parameter distribution.



3 PROBLEM DESCRIPTION

A 50 m long slope, with the cross-sectional geom-
etry shown in Figure 3, was analysed by RFEM.
Different values of the cross-correlation coefficient
(p. . ) between the shear strength parameters ( ¢
e, .
and ¢ ) were considered. The parameters of the
model are summarised in Table 1. The slope was
meshed with a total of 4000 20-node regular hexa-
hedral elements with a 2 x2 x2 Gaussian integra-
tion scheme. The elements were of size 1m x1Im
in plan and 0.5m in depth. The boundary condi-
tions applied to the model were: fixed along the
base, rollers on the side face, and rollers on the
vertical end-faces allowing only vertical move-
ment; see Spencer (2007) for an explanation of
these boundary conditions. The random field vari-
ables corresponding to each uncertain parameter,
after post-processing, were assigned to the Gauss
points within each element. A linear elastic, per-
fectly plastic Mohr-Coulomb model was used to
define the stress-strain conditions within the prob-
lem domain. In each realisation, the in-situ stresses
were generated by applying gravity loading in a
single step, and the slope was checked for stability
under its own weight using the strength-reduction
method. A total of 500 realisations were carried
out for each set of statistics of the parameters, and
a distribution of the FS was determined.

A wide range of values for the cross-correlation
coefficient between ¢ and ¢ have been reported
in the literature. The different values of p., are

Sm
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%7 777 7 T 7
Figure 3. Sketch of the cross-sectional geometry.
Table 1. List of parameter values.
Standard

Parameter Mean deviation
Cohesion 10 KPa 2
Friction angle 25° 5°
Dilation angle 0° -
Young’s modulus 1 x 10° kPa -
Poisson’s ratio 0.3 -
Unit weight 203 -
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attributed to different soil types, sampling technique
and testing rates used. The results for different valug
of P, are summarised in the next section.

4 RESULTS

In this section, the response of the structure, i
terms of FS distributions obtained from 500 realis:
tions of the problem by RFEM, are presented. Fc
simplicity, the same value of ¢ was used to generat
the random fields for ¢ and ¢"e . The vertical sca
of fluctuation & was fixed to 1 m in all the analy
ses. A 2D deterministic analysis of the slope for tk
mean values given in Table 1 gave a FS of 1.4.

Figure 4 plots the FS obtained in each realis:
tion using perfectly positive and perfectly negativ

16
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-
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(b)

Figure 4. FS obtained with (a) p., =1 and
(b) p., =-1 against p., =0 for §,=12m.



cross-correlated ¢ -¢ fields, against the FS
obtained from uncorrelated ¢ -¢ fields for
6, = 12 m. Extreme values of p.. compared to
values reported in literature have been chosen, to
highlight the differences between the solutions.
For positively cross-correlated fields of the shear
strength parameters, the weak zones (and the strong
zones) of the shear strength are exaggerated com-
pared to uncorrelated fields, making it easier to seek
out the failure path. Hence, the positive cross-corre-
lation decreases (or increases) the safety factor for
each realisationand increases the range of possible
solutions. In contrast, a negative cross-correlation
between the shear strength parameters reduces the
range of possible solutions.
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Figure 5. Probability density functions of FS for

different valuesof p..: (a) £=1,(b) &= 12,(c) £=2000.

Figure 5 compares the distributions of FS
at different values of ¢, for different p.,. The
different values of £ considered in Figure 5(a-c)
are similar to deterministic, 3D stochastic
and 2D stochastic solutions, respectively, as
in Hicks & Spencer (2010) and Varkey et al.
(2017). In Figure 5(b), for the case of § = 12,
i.e., for a value of 6, lying between the slope
height and half of the slope length, there is the
possibility of discrete weak zones generated
within each realisation (Spencer 2007, Varkey
et al. 2017). This results in the mean FS being
lower than 1.4, which is also the case for other
values of 6, lying in this range (not shown in
Fig. 5). For positive values of p.,, the failure
propagates through even weaker zones and the
mean FS reduces further below 1.4. In contrast,
for negatively cross-correlated fields of ¢’ and
¢, the average of the mobilised shear strength
over all the realisations increases. This results in
the mean FS tending towards the deterministic
FS for p.,=-1. Also, the range of possible
solutions decreases considerably compared to
the uncorrelated and positively cross-correlated
fields, and the variance of FS therefore reduces
considerably.

For the case of a very large 6, relative to the
slope length (Fig. 5(c)), there is a wide range of
possible solutions for uncorrelated fields and an

even wider range for positively correlated fields.
This wide range is due to the relative locations of
very extensive weak zones through which the fail-
ure propagates.

For very small scales of fluctuation relative to
the slope height, as in Figure 5(a), extreme averag-
ing takes place and thus there is a negligible dif-
ference between the responses with different values
of p.,

Figure 6 shows the reliability obtained at dif-
ferent values of F for slopes with p.,. =-0.50
and 0.5, for the range of & values considered in
Figure 5. Here, F is defined as the factor of safety
based only on the mean shear strength. The reli-
ability at each F for a given set of input statistics is
calculated as:

Reliability = 1- % (6)

where N is the total number of realisations and N,
is the number of realisations in which the slope
fails at a value less than or equal to F.

A negative cross-correlation between ¢’ and ¢’
increases the reliability, whereas a positive cross-
correlation decreases the reliability of the structure
for all values of & considered.
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Figure 6. Reliability of the slope for various values of
anisotropy of the heterogeneity (&) in the shear strength;
(@ —05<0,,<0, ®) 0<p,,<05.

5 CONCLUSIONS

An idealised 50 m long slope has been analysed
by RFEM for various degrees of cross-correlation
between the shear strength parameters (¢’ and
¢ ). It has been shown that assuming a positive
cross-correlation between the parameters reduces
the reliability, whereas a negative cross-correlation
between the parameters increases the reliability of
the slope. At intermediate and very large horizon-
tal scales of fluctuation of ¢’ and ¢, assuming
a perfectly negative cross-correlation consider-
ably reduces the range of possible outcomes and
makes the mean safety factor tend towards the
plane strain safety factor based on the mean val-
ues alone. Hence, caution is needed when assigning
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cross-correlation coefficients between the shear
strength parameters in an analysis.

ACKNOWLEDGEMENT

This work is part of the research programme
Reliable Dykes with project number 13864 which
is financed by the Netherlands Organisation for
Scientific Research (NWO), and was carried out
on the Dutch National e-infrastructure with the
support of SURF Foundation.

REFERENCES

Arnold, P. & M.A. Hicks (2011). A stochastic approach
to rainfall-induced slope failure. In Proc. 3rd Int.
Symp. Safety and Risk, Munich, pp. 107-115.

Cherubini, C. (2000). Reliability evaluation of shallow
foundation bearing capacity on ¢’, ¢’ soils. Canadian
Geotech. J. 37, 264-269.

Cho, S.E. (2007). Effects of spatial variability of soil
properties on slope stability. Engng Geology 92(3),
97-109.

de Gast, T., P.J. Vardon, & M.A. Hicks (2017). Estimat-
ing spatial correlations under man-made structures on
soft soils. In Proc. 6th Int. Symp. Geotech. Safety and
Risk, Colorado, USA, pp. 382-389.

Fenton, G.A. & D.V. Griffiths (2003). Bearing-capacity
prediction of spatially random c-¢ soils. Canadian
Geotech. J. 40, 54-65.

Fenton, G.A. & D.V. Griffiths (2008). Risk Assessment in
Geotechnical Engineering. John Wiley & Sons.

Fenton, G.A. & E.H. Vanmarcke (1990). Simulation of
random fields via local average subdivision. J. Engng.
Mech. 116(8), 1733-1749.

Griffiths, D.V., J. Huang, & G.A. Fenton (2009a). Influ-
ence of spatial variability on slope reliability using 2D
random fields. J. Geotech. Geoenviron. Engng. 135(10),
1367-1378.

Griffiths, D.V., J. Huang, & G.A. Fenton (2009b). On
the reliability of earth slopes in three dimensions.
Proc. R. Soc. London A: Math., Phys. Engng Sc. 465,
3145-3164.

Hicks, M.A. (2007). Risk and Variability in Geotechnical
Engineering. Thomas Telford.

Hicks, M.A., J. Chen, & W.A. Spencer (2008). Influence
of spatial variability on 3D slope failures. In Proc.
6th Int. Conf. Computer Simulation Risk Analysis and
Hazard Mitigation, Kefalonia, pp. 335-342.

Hicks, M.A., J.D. Nuttall, & J. Chen (2014). Influence of
heterogeneity on 3D slope reliability and failure con-
sequence. Comp. Geotech. 61, 198-208.

Hicks, M.A. & K. Samy (2002). Influence of heterogene-
ity on undrained clay slope stability. Quart. J. Engng.
Geology and Hydrogeology 35(1), 41-49.

Hicks, M.A. & W.A. Spencer (2010). Influence of het-
erogeneity on the reliability and failure of a long 3D
slope. Comp. Geotech. 37(7), 948-955.

Huang, J., A.V. Lyamin, D.V. Griffiths, K. Krabbenhoft, &
S. Sloan (2013). Quantitative risk assessment of



