
Advisory System for MDO Architecture
Selection in the MDO System Formulation
Stage
A. Marik

Advisory System for
MDO Architecture

Selection in the MDO
System Formulation

Stage
by

Arnab Marik
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Wednesday, October 13, 2021 at 12:30 PM.

Student number: 4622405
Project duration: January, 2019 – September 2021
Thesis committee: Prof. dr. ir. G. La Rocca, TU Delft, Committee Chair

Dr. M. F. M. Hoogreef, TU Delft
Dr. O. A. Sharpanskykh, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Summary

Machine learning is not a new phenomenon. Having evolved from pattern recognition and computational
learning theory, it can be defined as a set of techniques that can learn from an existing repository of data,
to make certain predictions on a similar set of data without being specifically programmed to do so. Due to
the exponential increase in computing power, Machine Learning is being increasingly used for operations in
medical, financial, and engineering fields. Some of its applications include surrogate modeling of compu-
tationally expensive analysis tools and recommendation systems that can suggest commercials based on a
user’s search history or automatically filter spam messages from important ones. Multidisciplinary Design
Optimization(MDO) is a field that can benefit from a machine learning based recommendation system.

MDO problems deal with the optimization of coupled systems. By considering a specific optimization
approach, referred to as an MDO architecture, MDO enables the concurrent optimization of multiple disci-
plines to arrive at optimal solutions. The structure of an MDO problem can be represented by internal prob-
lem parameters such as number of disciplines, number of design variables, and parameters that define the
nature of interdisciplinary couplings. The performance of each optimization approach, in terms of solution
time, depends on the above-mentioned internal problem parameters and also on execution environment-
related parameters such as the number of processor cores used in the optimization process. One of the
challenges in the formulation of MDO systems is the selection of the most appropriate MDO architecture,
in terms of optimization time, for a given MDO problem.

This has lead to research in the field of benchmarking the performance of MDO architectures. The
existing studies follow a similar template. Firstly, by considering a particular class of MDO problems, called
scalable problems, a repository of MDO problems is created. Scalable MDO problems are formed in a way
that allow the user to alter one or more internal problem parameters to create a particular iteration of an MDO
problem. The repository of scalable MDO problems is used to test the performance of MDO architectures.
Based on the assessment, certain observations are made regarding the effect that each problem parameter
has on the performance of MDO architectures.

A couple of drawbacks are observed from the existing research in this field. Firstly, the benchmarking
results obtained from one set of MDO problems cannot be validated on new MDO problems. This is because
internal problem parameters used for generating the repository of MDO problems are not defined in a gen-
eralized manner. Secondly, not every problem parameter is considered in the same study. This is because the
choice of parameters is dependent on the structure and the disciplinary origin of the MDO problems. The
focus of this thesis was to resolve the above two drawbacks and make a better comparative study of MDO
architectures. Based on the comparative study, it was required to create an advisory system or a prediction
model, that could recommend the most appropriate MDO architecture for a given MDO problem, by applying
a suitable machine learning algorithm on a database of MDO problems.

To achieve the above goal, a new benchmarking process was developed. This process was inspired by
a recently proposed scaling methodology that allowed the user to create a scaled or "transformed" version
of an existing MDO problem, by defining a set of internal problem parameters. Unlike earlier studies, the
benchmarking process was flexible such that the parameters could be defined in a normalized manner, and
the obtained results could be applied to predict the relative performance of MDO architectures on new MDO
problems, irrespective of their structure and disciplinary origin. Additionally, the problem agnostic nature of
the benchmarking process allowed for a wider choice of problem parameters compared to earlier compara-
tive studies.

The benchmarking process was applied to a well-known MDO problem from literature to create a
database of MDO problems. The problems in the database were executed using two MDO architectures,
Multiple Discipline Feasible(MDF)(using either Gauss-Seidel or Jacobi convergence scheme) and Individual
Discipline Feasible(IDF). Using the outcome of the two executions, a label value was defined that indicated
the relative cost of optimization for an MDO problem using IDF and MDF architectures. This label value
was calculated and attached to each entry in the database of scaled problems. Following this, an appropri-
ate machine learning algorithm was applied on the database to create a prediction model that could predict
the label value(cost ratio of optimization) for a new MDO problem. The prediction model was validated on
test MDO problems that were extracted from the literature. The feature-set of the machine learning model

iii

iv Summary

was adjusted to improve the predictive performance on the new test problems. The improved prediction
model was further tested on a real aircraft based MDO problem. The model was able to predict, with more
than eighty percent accuracy, the relative performance of the two MDO architectures on the aircraft based
problem.

The impact of the thesis is that, contrary to earlier works, this thesis made significant steps towards a
general form of a prediction model that could predict the relative solution cost of two MDO architectures, on
any given MDO problem, irrespective of its structure and disciplinary origin.

Future works involve creating a more accurate prediction model by introducing more MDO problems
at the training stage. By including optimization settings(as part of the set of problem parameters), the trade-
off between solution time and objective accuracy can be brought into consideration in the training process
of the prediction model. Additionally, by making use of more complicated machine learning algorithms, a
prediction model can be trained that uses as input the entire structure of the MDO problem and not just a set
of parameters.

Delft, September 28, 2021

Contents

List of Figures vii

List of Tables xi

List of Abbreviations xiii

List of Symbols xv

1 Introduction 1

2 Literature Review 7
2.1 MDO in Aerospace - History and Outlook . 7
2.2 Monolithic MDO Architectures . 7
2.3 Benchmarking MDO architectures with Scalable Problems . 9

2.3.1 Coupling Strength . 9
2.3.2 Problem Size . 11

2.4 Machine Learning - History and Outlook . 17
2.5 Machine Learning application in Aerospace . 17

2.5.1 Drag coefficient prediction of wing configurations . 17
2.5.2 Estimation of manufacturing cost using machine learning. 20

3 Reproducibility Study - Scalable Analytic Replacement Function 23
3.1 SARF Methodology . 23

3.1.1 One-dimensional Restriction . 25
3.1.2 Scaling and Interpolation . 26
3.1.3 Extrapolation . 27

3.1.3.1 Input-Output Dependency Matrix . 27
3.1.3.2 Component Dependency Graph . 30
3.1.3.3 Extrapolated Output . 31

3.2 Implementation of SARF methology on SSBJ Problem . 32
3.3 Pre-processing / Optimization settings . 36

3.3.1 Cost criterion for Comparing MDF-GS and IDF Architectures 36
3.3.2 Optimization and Tolerance Parameters . 37

3.4 Critical Analysis of Existing Results . 37
3.5 Outcome of Critical Analysis and Further Investigation . 39

4 Prediction Model of MDO Architecture 41
4.1 Visual Analysis - SSBJ problem . 42

4.1.1 Problem size and Coupling density . 42
4.1.2 Constraint size . 45
4.1.3 Number of Processors . 46

4.2 Building a Prediction model. 49
4.2.1 Feature Definition - Generation of a Normalized Database 49
4.2.2 Testing Machine Learning Algorithms on SSBJ Database. 50

4.2.2.1 Neural Networks . 52
4.2.2.2 Selecting the most effective Algorithm . 56

4.2.3 Verify Prediction Model - Test MDO problems . 58
4.2.4 Feature Engineering - Resolve Incompatibility and Retrain model 60

4.2.4.1 Derive the Differentiating Feature - Coupling Strength 60
4.2.4.2 Numerical Estimate of Coupling Strength . 61
4.2.4.3 Verify Coupling Strength Estimation - Empirical Evidence 63
4.2.4.4 Retrain/Verify model based on Combined Database 64

v

vi Contents

4.3 Prediction Model - Summary . 65

5 Testing and Deployment of the Prediction Model 67
5.1 Testing Scaled Problems on Re-Trained Neural Network . 68
5.2 Advisory Systems for Scaled Problems . 69
5.3 Testing Original Problems on Re-Trained Neural Network . 72

5.3.1 Test Original Problems - Average Based Feature Extraction. 73
5.3.2 Test Original Problems - Sensitivity based Feature Extraction 75

5.4 Verification with Literature . 76
5.5 Deployment of the Prediction Model . 78

5.5.1 Computation of coupling density(d) . 78
5.5.2 Computation of Coupling Strength(ρ) . 80
5.5.3 Extraction of Problem Size related Values(nx ,ny ,nc) . 80
5.5.4 Application of Prediction Model . 81

5.6 Summary - Test Cases . 81

6 Conclusions and Recommendations 83
6.1 Conclusion . 83
6.2 Recommendations . 85

A Implementation of SARF methodology on SSBJ problem 87
A.1 One-dimensional restriction class . 87
A.2 Interpolation class . 90
A.3 Large random matrix class . 91
A.4 Scaled dependency matrix class. 91
A.5 Component dependency graph class . 92
A.6 Extrapolation class . 93
A.7 Script to calculate coupling strength for a Problem . 95
A.8 UML diagram for SARF method . 96
A.9 Downscaling of Large Dependency Matrix . 97

B Optimization and Tolerance Parameters 99
B.0.1 Optimizer/ Solver Tolerance . 99
B.0.2 Constraint Tolerance. 101
B.0.3 Bounds on Design Variables . 103

C Building Linear Regression, KNN and Decision Tree based Machine Learning Models 107
C.1 Linear Regression . 107
C.2 KNN - K Nearest Neighbours Algorithm . 108
C.3 Decision Tree . 110

D Test MDO problems for SSBJ based neural network 113
D.1 Propane Combustion Problem . 113
D.2 Speed Reducer Problem. 116
D.3 Heart Dipole Problem . 118

E Test MDO problems for retrained neural network 121
E.1 Fuel Minimization problem using Q3D-EMWET . 121

E.1.1 Scaled Fuel Minimization Problem. 122
E.1.2 Sellar Problem . 126

Bibliography 127

List of Figures

1.1 MDO problem representation . 1
1.2 Two MDO architectures - MDF and IDF[16] . 1
1.3 MDO problem parameters . 2
1.4 Comparative study of MDO architectures - Example . 2
1.5 Benchmark process using SARF method . 4

2.1 Four Monolithic Approaches . 8
2.2 Coupling between thermal and structural analysis . 9
2.3 Computation time vs coupling strength (E) for MDF and IDF . 9
2.4 Coupled system with 3 disciplines . 10
2.5 Curves of the equation x1a x2b – 1 = 0 . 10
2.6 Normalized objective vs no. of evaluation(for a highly coupled MDO system) (left: single-level

architectures, right: Collaborative Optimization) Feasible solution not found with CSSO 10
2.7 Scalable problem convergence times - left: Design variable investigation, right: coupling vari-

able investigation . 13
2.8 Scalable problem convergence times - left: Design variable investigation, right: coupling vari-

able investigation . 13
2.9 A two discipline MDO problem . 14
2.10 SARF scaling process(Problem size) for Discipline 2 . 15
2.11 SARF scaling process(Dependency matrix) for Discipline 2 . 15
2.12 Cost Criterion for MDF-GS and IDF architectures . 16
2.13 Estimated cost for MDF-GS and IDF optimizations on the SSBJ test case 16
2.14 Fitting process of neural network . 19
2.15 Grid Search to find lowest MSE . 19
2.16 Visualize performance of optimized neural network . 20
2.17 Neural network to predict manufacturing cost of components . 20
2.18 Predicted cost vs Actual cost . 21

3.1 Disciplinary interface . 23
3.2 Original/scaled disciplinary interface . 24
3.3 Effect of density factor d . 24
3.4 one-dimensional restriction . 25
3.5 Scaled and Interpolated Function . 26
3.6 Original(φ : R2 → R2) and Interpolated Function(φ(i nt) : [0,1]1 → [0,1]2) 26
3.7 Extrapolation step for discipline φ of Figure 3.6 . 27
3.8 Super Sonic Business Jet(SSBJ) MDO Problem . 28
3.9 Effect of density factor on the original SSBJ problem . 28
3.10 Large dependency matrix scaled to desired dimension . 29
3.11 Large dependency matrix(biased) scaled to desired dimension . 29
3.12 Effect of density factor on scaled SSBJ problem . 30
3.13 Random mapping of components between extrapolated and interpolated outputs 30
3.14 Dependency matrix and extrapolated disciplinary interface . 31
3.15 XDSM for Original SSBJ problem(MDF-GS) . 32
3.16 XDSM for Original SSBJ problem(IDF) . 33
3.17 dependency matrix and disciplinary interface for constraint g1 . 33
3.18 Interpolation of disciplinary interface . 34
3.19 Coupling between y211 and y120 . 34
3.20 No coupling between y211 and y121 . 35
3.21 Flow diagram for extrapolation of constraint g1,(nx ,ny ,nc ,d) = (5,8,5,0.5) 35

vii

viii List of Figures

3.22 Pre-processing settings for SSBJ based scaled problem . 37
3.23 Estimated cost for MDF-GS and IDF optimizations on the SSBJ test case with Nx ∈ [20,60] and

Ny ∈ [40,200] . 38
3.24 Estimated cost for MDF-GS and IDF optimizations on the SSBJ test case with Nx ∈ [80,120] and

Ny ∈ [40,200] . 38
3.25 Estimated cost for MDF-GS and IDF optimizations on the SSBJ test case(multiple runs, more

sample points) . 39

4.1 nx ,ny ,nc - Effect on scaled MDO problem . 41
4.2 Interpolation for factor R . 43
4.3 Scatterplot - cost ratio vs (nx , ny , d) . 43
4.4 Scatterplot - cost ratio(R) vs (nx , ny , d) (Extended parameter range) 44
4.5 Binning cost ratios into three categories (Extended parameter range) 44
4.6 Scatterplot - cost ratio(R) vs (nx ,ny ,d) / varying constraint sizes 45
4.7 Binning cost ratios into three categories for Figure 4.6(c) . 46
4.8 XDSM for scaled SSBJ problem (nx ,ny ,nc = 2,2,2) (MDF-Jacobi) 47
4.9 XDSM for scaled SSBJ problem (nx ,ny ,nc = 2,2,2) (IDF) . 47
4.10 Scatterplot - time ratio(Rt) vs (nx ,ny ,d) / number of processors 48
4.11 Test method-Predicted vs Actual cost ratios . 51
4.12 Predictive Performance of three machine learning models on the SSBJ based database of Table

4.5 . 52
4.13 Derivation of Perceptron . 52
4.14 Neural Network - Node Representation . 53
4.15 Neural Network - Grid Search Optimization . 54
4.16 Effect of batch size on model training . 55
4.17 Selection of optimum Epoch . 56
4.18 Performance evaluation of Neural Network . 56
4.19 Derivation of Confusion matrix . 57
4.20 Comparison of Neural Network/Decision Tree . 57
4.21 Predictions made by SSBJ based neural network model . 59
4.22 Spectral radius of iteration matrix and wall time vs solver iterations(Original and scaled SSBJ

problem) . 62
4.23 Spectral Radius vs Direct Solver Iterations . 63
4.24 Spectral Radius vs Direct Solver Iterations . 63
4.25 Predictive performance of neural network on combined database 64

5.1 original("vanilla")/ re-trained model . 67
5.2 Performance evaluation of re-trained prediction model on scaled problems 68
5.3 Example of Advisory system for scaled test problems . 69
5.4 Decision Tree based prediction model . 70
5.5 Decision tree based prediction model(limited branches/decision nodes) 71
5.6 Predictive plot of decision tree(limited branches/decision nodes) 71
5.7 Predict cost ratios on Original Problems . 72
5.8 Incompatibility in problem size(Original vs scaled Problem) . 73
5.9 Problem Size parameters for Fuel Minimization Problem . 73
5.10 Predictive plot of Original Problems (estimated using average based feature extraction) 74
5.11 Iteration Matrix(1st Direct Solver iteration) (Fuel minimization Problem) 75
5.12 Predictive plot of Original Problems (re-estimated using sensitivity based feature extraction) . . 76
5.13 Verification of cost ratios with Literature . 77
5.14 Original Heart Dipole problem / disciplines . 78
5.15 SARF compatible heart dipole problem/ disciplines . 79
5.16 Dependency matrix for the SARF compatible heart dipole problem 79
5.17 Accumulate iteration matrix for Heart Dipole problem . 80
5.18 Extract problem size parameters . 80
5.19 Prediction model - Two approaches . 81

A.1 UML diagram for SARF methodology . 96

List of Figures ix

A.2 Downscaling of Large dependency matrix . 97

B.1 Objective Convergence history vs optimizer iterations (default OpenMDAO settings) 100
B.2 Residual vs optimizer iterations(default OpenMDAO settings) . 100
B.3 Objective vs optimizer iterations (optimizer tolerance = 1e-4) . 100
B.4 Residual vs optimizer iterations(optimizer tolerance = 1e-4)) . 101
B.5 History of local constraint(tolcon = 1e −3) . 102
B.6 History of local constraint g 2 for MDF . 102
B.7 History of local constraint g 2 for IDF . 102
B.8 Final Objective/ Solution cost vs tolcon . 103
B.9 Representative cuts of original SSBJ problem . 104
B.10 Representative cuts of original SSBJ problem . 104
B.11 Interpolated library of output functions(Original Bounds) . 104
B.12 Interpolated library of output functions(Restricted Bounds) . 105
B.13 history of objective function for extended and reduced bounds . 105

C.1 Two-feature linear regression . 107
C.2 Performance evaluation of linear regression . 108
C.3 Cost Ratio distribution over two features . 108
C.4 Effect of k parameter on the test point . 109
C.5 Estimation of optimum k value for SSBJ database . 109
C.6 Performance evaluation of KNN(k = 7) . 109
C.7 Cost Ratio(Rt) distribution over two features . 110
C.8 Performance evaluation of decision tree . 110
C.9 Decision Tree (max_depth = 7, max_lea f _nodes = 9) . 111
C.10 Decision Trees - Estimate parameters and Performance Evaluation 111

D.1 Data Flow Diagram . 113
D.2 XDSM for Propane Combustion (MDF-GS) . 115
D.3 dependency matrix/ Component dependency graph for Propane Combustion Problem 115
D.4 Speed Reducer Gearbox . 116
D.5 Data flow diagram for Speed Reducer Problem . 116
D.6 XDSM for Speed Reducer Problem(MDF-GS) . 117
D.7 Dependency matrix/ Component dependency graph for Speed Reducer Problem 118
D.8 Data flow diagram for Heart Dipole Problem . 118
D.9 XDSM for heart dipole problem(MDF-GS) . 120
D.10 Dependency matrix/ Component dependency graph for Heart Dipole Problem 120

E.2 One dimensional restriction, Scaling and Interpolation for Load Vector 122
E.3 One dimensional restriction, Scaling and Interpolation for Moment Vector 122
E.4 Dependency matrix for original (unscaled) fuel minimization problem 123
E.5 Dependency Matrix/ Component dependency graph {nx ,ny ,ncon ,d} = {3,5,3,0.6} 123
E.6 Extrapolation from Load and moment couplings to y12load_moment vector 124
E.1 XDSM for the original Fuel minimization MDO problem(using MDF-GS scheme) 125
E.7 Spectral radius vs Solver iterations (Scaled fuel minimization problem) 126
E.8 Flow diagram (Sellar Problem) . 126

List of Tables

2.1 Performance of 7 approaches in terms of function calls . 12
2.2 List/Range of inputs . 18
2.3 Database for training neural network(forty features and one label) 18

3.1 Range of parameters used for comparison . 37
3.2 Coefficients used within cost buildup . 37

4.1 Initial range of parameters . 42
4.2 Sample Database for analysis . 42
4.3 Extended range of parameters . 44
4.4 Initial data-set for training(SSBJ Problem) . 50
4.5 Split the SSBJ based database (1:2 train-test split ratio) . 50
4.6 Optimized hyper-parameters . 56
4.7 Template for test databases . 58
4.8 Collinearity due to same feature - different label . 60
4.9 Strength of Coupling(ρ) (test problems) . 63
4.10 Strength of Coupling for test problems . 63
4.11 Combined database of four problems(coupling strength ρ included) 64

5.1 Database for Scaled fuel minimization problem . 68
5.2 Database of Original Problems . 74
5.3 EVRS values for the prediction model(all problems) . 78
5.4 Estimation of parameters from Original Problems . 78

B.1 Default tolerance values in OpenMDAO . 99
B.2 Final Objective Values . 99
B.3 Converger settings for reproducibility study . 101

xi

List of Abbreviations

ANN Artificial Neural Network

BLISS Bi-Level Integrated System Synthesis.

CCF Custom Cost Function

CFD Computational Fluid Dynamics

CNN Convolutional Neural Network

CO Collaborative Optimization

CSSO Concurrent Subspace Optimization

CST Class Shape Transformation

DOE Design of Experiments

DSM Design Structure Matrix

EVRS Explained Variance Regression Score

GASEN Genetic Algorithm based Selective Ensemble

GSE Global Sensitivity Equations

IDF Individual Discipline Feasible

KNN K Nearest Neighbour

LDA Linear Discriminant Analysis

MDF-GS Multiple Discipline Feasible - Gauss Seidel

MDF-J Multiple Discipline Feasible - Jacobi

MDO Multidisciplinary Design Optimization

MDOIS Multidisciplinary Design Optimization based on Independent Subspaces

NLBGS Non Linear Block Gauss Seidel

NLBJ Non Linear Block Jacobi

OSA Optimum Sensitivity Analysis

PDE Partial Differential Equation

QDA Quadratic Discriminant Analysis

SARF Scalable Analytic Replacement Function

SLSQP Sequential Least Squares Programming

SNARC Stochastic Neural Analog Reinforcement Calculator

SQP Sequential Quadratic Programming

SSBJ Super Sonic Business Jet

SVM Support Vector Machines

xiii

List of Symbols

nx Size of each design variable

ny Size of each coupling variable

d Coupling density

np Number of processors

nc Number of constraint variables

ρ Coupling strength

Nx Total size of design space

Ny Total size of coupling variable space

R Normalized cost ratio of IDF over MDF architecture

Rt Normalized ratio of execution time of IDF over MDF architecture

E Modulus of elasticity

xv

1
Introduction

Figure 1.1: MDO problem representation

Conventional product design processes rely on the
independent and parallel designing of product com-
ponents, without taking into account the effect that
one component has over the other. This prevents
the design optimization of the product from the per-
spective of multiple disciplines and leaves a portion
of the design space unexplored. Due to the con-
stant requirement to build more efficient, sustain-
able, and high-performance products, especially in
the aerospace and automotive sector, there is a push
to include more integrated design methods at earlier
stages of design. Multidisciplinary Design Optimiza-
tion(MDO) is a design method that enables interac-
tion between disciplines to maximize performance requirements of products[1]. The mutual interaction be-
tween disciplines, referred to as a coupling, enables designers to simultaneously alter design parameters across
multiple disciplines[2]. With MDO, designers get the ability to formulate design choices and to analyze them
from the perspective of multiple disciplines[3] which leads to a more accurate final solution compared to sin-
gle discipline optimization methods. A representation of a two discipline MDO problem is shown in Figure
1.1. Alongside the above benefits, MDO also presents new obstacles beyond those found in single discipline
optimization methods. Because of the presence of coupled disciplines, MDO problems pose tougher compu-
tational challenges compared to the sum of computational effort spent in single discipline optimizations[4].
This has lead to the development of multiple MDO solution strategies, called MDO architectures. Each MDO
architecture proposes a unique way to resolve the interdisciplinary coupling present within an MDO problem.
This is shown using Figure 1.2.

Figure 1.2: Two MDO architectures - MDF and IDF[16]

1

2 1. Introduction

Figure 1.2 shows an MDO problem containing three coupled disciplines. An Optimizer or optimization
algorithm is also shown at the top. The vector of xi components represents the design points and the sys-
tem responses gi and hi represent inequality and equality constraints respectively. The optimizer handles an
MDO problem in the same manner as it handles a single discipline optimization problem. The MDO archi-
tecture works at a lower level, and creates a unique version of the Multi-Disciplinary Analysis(MDA) model,
depending on the method used to resolve the interdisciplinary couplings. Thus, an MDO architecture creates
a unique version of a given optimization problem, while preserving the optimization objective and the design
constraints.

Figure 1.3: MDO problem parameters

The formulation of an MDO problem can be rep-
resented by a number of internal problem param-
eters as shown in Figure 1.3. Internal parameters,
such as the number of design variables or the num-
ber of disciplines affect the performance of MDO ar-
chitectures in terms of computational cost/solution
time. One of the challenges in setting up an MDO
system is the selection of the most appropriate MDO
architecture for a given MDO problem, in terms of
the computational cost/solution time. This chal-
lenge has led to research in the area of benchmark-
ing MDO architectures with respect to a range of problem parameters[5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. The main
objective of such studies has been the comparison of MDO architectures, using a repository of MDO problems.
The repository of MDO problems is created such that it represents a range of problem parameters. There are
two ways of creating this repository. The first is to assemble several random MDO problems from literature,
each representing a particular combination of problem parameters[9]. This method allows only a qualitative
analysis of MDO architectures and the exact contribution of each problem parameter cannot be analyzed. An-
other disadvantage to this method is the limited number of MDO problems that are available in the existing
literature, which makes the comparative study less elaborate. A better method is to implement the idea of scal-
able problems[5, 8]. Scalable problems work by extracting certain internal parameters as rules from a given
MDO problem. An example of a rule is the ratio of design and coupling variables present in the MDO problem.
A scalable MDO problem is built in a way such that each value of the rule generates a particular iteration of the
MDO problem. By assigning a range of values to each extracted parameter/rule, it becomes possible to create
a repository of a large number of MDO problems, so that the contribution of individual problem parameters
can be analyzed. Following this, conclusions are made regarding the effect that problem parameters have on
the relative solution cost of MDO problems. An example of this process is given in Figure 1.4

Figure 1.4: Comparative study of MDO architectures - Example

3

The existing research in this field (using scaled problems) provides evidence that internal problem pa-
rameters such as the ones shown in Figure 1.3 have an impact on the comparative performance of MDO
architectures. However, there are two shortcomings as discussed below:

1. Every problem parameter is not analyzed in the same comparative study
The scalable problems used in the existing comparative studies belong to one of two classes. One class
of scalable problems allows the user to alter the size of the problem in terms of the number of de-
sign, coupling, and constraint variables[9, 6, 14]. The second class of scalable problems allows the
user to alter the sensitivity of coupling variables with respect to each other[5, 8, 10]. In such prob-
lems, a parameter called coupling strength or degree of coupling is used. The definition of coupling
strength varies between existing papers, but the common purpose is to define a single value that cap-
tures the sensitivity of interdisciplinary couplings for the entire MDO problem. The value of coupling
strength is calculated either by applying sensitivity analysis tools on an MDO problem[15] or by se-
lecting a parameter within the MDO problem definition as an indicator of coupling strength[5]. In an
aero-structural optimization problem, for instance, the wing sweep might be considered as an indi-
cator of coupling strength because it’s a quantity that alters the sensitivity between coupled structural
and aerodynamic disciplines[8]. Within the first class of scalable problems[9, 6, 14], when the number
of design or constraint variables are altered, the coupling strength(defined using a particular sensitiv-
ity analysis method) also changes. Analyzing the effect of altering the coupling strength independent
of the problem size based parameters is not possible in such studies. The same drawback applies to
scalable problems that allow the user to alter the coupling strength[5, 8, 10]. Such MDO problems don’t
give the user the flexibility to make changes in the number of design or coupling variables. The existing
studies, therefore, fail to define an all-encompassing scalable problem that allows the user to simulta-
neously vary the size of the MDO problem as well as the coupling strength.

2. The parameters used for comparison are not defined in a generalized manner
Another drawback of existing studies is that the problem parameters are not defined in a generalized
manner. For instance, a comparative study that creates a three discipline scalable problem to analyze
the effect of the number of coupling variables on the performance of MDO architectures cannot be
validated on a new MDO problem with four disciplines, unless there is a definite pattern to the distri-
bution of those coupling variables. The same applies to parameters like coupling strength that are not
normalized using a logical value. Therefore, the results obtained from a particular comparative study
cannot be validated on new MDO problems.

A recent investigation in this field was conducted in 2017 by Vanaret et.al.[16]. The scaling methodology
proposed in this investigation, the Scalable Analytic Replacement Function(SARF) solves the above draw-
backs to a large extent as explained below.
Instead of a proposing a new scalable MDO problem, the method proposes a scaling methodology that al-
lows the user to create a scaled version of an existing MDO problem. The method allows the user to define
problem size related parameters in a normalized manner, irrespective of the number of disciplines used in
the MDO problem. The method also proposes an additional normalized parameter called the density of cou-
pling which allows the user to randomly allocate a certain percentage of interdisciplinary couplings as active
. Although the SARF method does not propose a parameter to alter the coupling strength of the MDO prob-
lem, the coupling strength remains largely unaffected when an MDO problem is scaled according to the SARF
method. The effect of altering the coupling strength can therefore be analyzed by scaling MDO problems of
varying coupling strengths and adding it to the repository of scaled MDO problems. Because of these advan-
tages, the research paper by Vanaret et. al.[16] is used as a starting point in this thesis.
In the application part of the investigation by Vanaret et.al.[16], the SARF methodology is used to compare
two MDO architectures, Multiple Discipline Feasible(MDF)(using a particular convergence scheme) and In-
dividual Discipline Feasible(IDF). A well-known test case from the NASA MDO test suite[17], the Supersonic
Business Jet(SSBJ) [18] MDO problem is used for the comparative study. Two problem size related param-
eters, related to the number of design variables and the number of coupling variables are used to create a
repository of SSBJ based scaled MDO problems and the optimization cost of MDF and IDF architectures is
compared. The process is shown in Figure 1.5[16].

4 1. Introduction

Figure 1.5: Benchmark process using SARF method

Based on the comparative study, it is concluded by Vanaret et. al.[16], that a direct correlation cannot
be observed between problem parameters and performance of MDO architectures. However, the following
drawbacks can be seen from the comparative study:

1. In the comparative study, each scaled problem(created using a unique combination of problem pa-
rameters) is given only one run. However, the SARF scaling method leads to a certain amount of ran-
domness in the scaled problem formulation(because of the coupling density factor). Therefore, it is
required to run each scaled problem multiple times and consider the average of the optimization cost
to make a fair comparison.

2. Only two parameters are considered (number of design variables and the number of coupling variables)
in the comparative study even though the SARF method offers more scaling options such as parameters
related to the number of constraints and coupling density.

The implementation of the SARF method on test cases, based on the above-listed shortfalls, can be called
rushed and unconvincing. The conclusion made in the paper, that a direct correlation cannot be observed
between internal problem parameters and performance of MDO architectures, needs to be revisited by ac-
counting for the above drawbacks. This forms the premise for this thesis project. The intention is to conduct
a more thorough comparison of single-level architectures, MDF(using two convergence schemes) and IDF, by
implementing the complete dashboard of options provided in the SARF methodology. This is to be followed
by the development of a prediction model of MDO architecture by applying a suitable machine learning al-
gorithm on a large database of MDO problems, that have been created using the SARF methodology.

The research question to be answered through this thesis is:

Is it possible to create a prediction model that can recommend the better MDO architecture between MDF
and IDF in terms of solution cost, for a given MDO problem, solely based on features that have been ex-
tracted from the problem formulation, without executing the problem?
The following three sub-questions can be formed out of the above question:

1. What are the drawbacks of existing comparative studies of MDO architectures and how does the thesis
propose to resolve them?

2. How is the prediction model developed and validated?

3. How is the prediction model tested on new MDO problems?

The goal of the thesis is to create a prediction model that can predict the relative performance of MDF
and IDF architecture for a previously unseen MDO problem, based on certain pre-execution features of the
problem. To fulfill this goal the following steps and sub-steps can be defined:

1. Perform a reproducibility study of the comparative analysis performed by Vanaret et.al[16].

(a) Apply the SARF method on the Super Sonic Business Jet(SSBJ) MDO problem by selecting the
same range and sparsity of parameter values as used in the original study by Vanaret et. al.[16] to
create a repository of SSBJ based scaled MDO problems. Perform the comparative analysis of the
two MDO architectures.

5

(b) Repeat the comparative analysis by including more data points(parameter values) and providing
more runs to each data point to find contradictions with the established result in the paper by
Vanaret et.al.[16].

(c) Acquire the motive for pursuing a more elaborate comparative analysis of MDF and IDF architec-
tures based on the SARF method and developing a machine learning based prediction model.

2. Create a prediction model of MDO architecture based on the outcome of the SSBJ based scaled MDO
problems.

(a) Consider the implementation of the SARF Method on the SSBJ problem. Identify the parameters,
both internal to the problem as well as related to the optimization setup, that can be used for
building the prediction model.

i. Identify the normalized predictive parameters, i.e, the problem parameters that influence
the cost of optimization for the two architectures to create a feature set for training a machine
learning algorithm.

ii. Define a normalized cost parameter that can account for the relative performance of MDF
and IDF architectures on the scaled MDO problems. This forms the outcome of the prediction
model.

(b) Generate a database of SSBJ based scaled MDO problems. The database should contain predictive
parameter columns, and a single cost parameter column representing the predicted outcome for
each entry in the database.

(c) Apply four machine learning algorithms onto the database of scaled problems and compare each
algorithm’s fitting accuracy by selecting an error metric. The best performing algorithm is the first
prediction model created in the thesis.

3. Validate the prediction model on new MDO problems.

(a) Consider three new MDO problems from existing literature. Scale the new problems using the
SARF method such that a database of scaled test problems can be formed.

(b) Apply the prediction model to predict the outcome(cost parameter) of the test cases.

(c) Improve the prediction on the new problems by identifying a new predictive parameter and re-
training the machine learning model. The re-trained machine learning model is the second and
final prediction model created in the thesis.

4. Test the re-trained prediction model on original, unscaled MDO problems.

(a) Introduce two new original, unscaled MDO problems, including an aircraft based MDO case. Also,
import the original versions of the existing scaled MDO problems.

(b) Define a method to extract features from the unscaled MDO problems to create a database that is
compatible with the prediction model.

(c) Apply the re-trained prediction model on the database to predict the cost parameter(relative per-
formance of MDF and IDF architecture) on the unscaled problems and verify the predictions with
literature(existing comparative studies).

The research goal and objective can be summarized in the following manner:

By executing a class of scalable MDO problems with varying characteristics such as number of design
variables, number of coupling variables, and the coupling strength between disciplines a database is to
be constructed which should enable a suitable machine learning algorithm to train on, using the problem
characteristics as features. The trained algorithm should then be able to analyze a new MDO problem and
recommend the more effective solution strategy between MDF and IDF.

The thesis is structured into four chapters. Chapter 2 focuses on the Literature Review performed before the
thesis project. The topics of MDO and machine learning are discussed. The current state of MDO as a field is
reviewed along with a discussion on single level MDO architectures and scalable MDO problems. Examples
of comparative studies of MDO architectures from the existing literature are reviewed. This is followed by a

6 1. Introduction

discussion on machine learning that covers the current state and outlook of machine learning, examples of
machine learning applied to aerospace, and the method of implementing a machine learning based predic-
tion model.

Chapter 3 of the thesis is a reproducibility study of the investigation by Vanaret et.al.[16], which includes
a detailed explanation of the SARF methodology, and a repetition of the comparative study made in the orig-
inal paper by Vanaret et.al.[16]. The reproduced results are compared with the original paper. The effect of
making a more robust comparative study(more values between parameter ranges as well as multiple runs to
each parameter combination) is looked at. Based on the outcome, a motive is obtained for building a predic-
tion model based on executing a range of MDO problems with the SARF method.

Chapter 4 of the thesis deals with the construction of a machine learning based prediction model of MDO ar-
chitecture. The data for building the prediction model is extracted by applying the SARF scaling methodology
on the SSBJ MDO problem. Based on existing examples of estimation models from literature[19, 20, 21, 22],
the idea of build, validate, and test is applied to create a prediction model of MDO architecture. The major
steps in this process include a visual analysis based feature definition, creation of a database of SSBJ based
scaled MDO problems, application of machine learning algorithms to create prediction models, testing the
best performing model on new scaled MDO problems, and feature engineering of a new parameter to im-
prove the prediction accuracy.

Chapter 5 of the thesis deals with the testing of the prediction model on original, unscaled MDO problems.
For applying the prediction model on unscaled MDO problems, a feature extraction method is defined so that
a compatible database of original MDO problems can be created. The prediction obtained by the machine
learning model on unscaled MDO problems is verified using examples from earlier comparative studies. Fol-
lowing this, the steps to deploy the prediction model on a given MDO problem are explained.

2
Literature Review

The goal of this thesis is to create a machine learning assisted prediction model, that can recommend the
faster MDO architecture(between MDF and IDF) for a given MDO problem. The literature review addresses
the topics in MDO and machine learning that are relevant to the goal of this thesis. Firstly, a brief introduc-
tion is made on single-level MDO architectures, followed by a review of the existing research where MDO
architectures are compared with respect to problem parameters. The drawbacks of the existing research are
discussed. The paper by Vanaret et.al.[16] is discussed as the last example and a connection is made between
the literature review and the upcoming chapters.

2.1. MDO in Aerospace - History and Outlook
The roots of MDO are found in structural optimization[2]. Very early work on iterative and gradient methods
for optimum design of structures was conducted by Sved et al.[23] in 1968, who suggested an alternative solu-
tion to Schmit’s[24] 3 bar truss constrained optimization problem, which was able to find a global optimum.
This early work in structural engineering paved the way for the concept of constrained non-linear optimiza-
tion to be extended to aerospace applications by including other disciplines such as aerodynamics (aerofoil
and wing shape), aircraft performance(mission profile) and propulsion (engineering thermodynamics)[2].
The idea of an MDO approach or architecture was pioneered by J.Sobieszczanski Sobieski who, in his 1971
technical report[25], discussed the need for the development of a new method for optimization of large mul-
tidisciplinary engineering systems. The development of the scheme was to be driven by two factors. One of
them was the need to bring mathematical optimization methods to bear on large engineering optimization
problems, while the other was the opportunity to take advantage of the recent computer technology devel-
opments such as approximate analysis and variable linking, analytical generation of gradient information
and piecewise linear optimization of non-linear problems[25]. The development of MDO architectures is
based on two major contexts, one being a method to account for the level of coupling present between disci-
plines, and the other being a method to carry out the overall optimization problem[26]. In this process, two
classes of MDO architectures have evolved, monolithic and distributed. Monolithic architectures are based
on solving a single optimization problem. Monolithic architectures differ in the management of the coupling
between disciplines to achieve multidisciplinary feasibility[26]. Distributed architectures work by decom-
posing an optimization problem into a set of smaller optimization problems, or sub-problems, that have the
same solution when reassembled[26], which enables better handling of certain organizational aspects of an
engineering optimization problem. From the context of the current thesis project, only monolithic architec-
tures are discussed in this literature review(section 2.2).

2.2. Monolithic MDO Architectures
Monolithic architectures are single-level MDO formulations where the decision making is centralized and
performed by a single optimizer[5]. Following the naming scheme provided in the paper by Martins et al.[26],
single-level MDO architectures have four basic variations:

1. MDF(MultiDisciplinary Feasible): Also referred to as NAND(Nested Analysis and Design), MDF uses
a single system-level optimizer. The single system-level optimizer supplies the system analyzer with

7

8 2. Literature Review

a design vector, consisting of design variables and the Multi Disciplinary Analyzer(MDA) supplies the
optimizer with appropriate response functions in terms of objective and constraints[5, 26]. This ap-
proach is desirable if the disciplines are weakly coupled and the multidisciplinary analysis is not com-
putationally expensive[5, 26]. For running an optimization problem with the MDF architecture, it is
also required to specify the convergence scheme for the MDA routine. A few convergence schemes ex-
ist such as Gauss-Seidel, Jacobi and Newton. There are existing studies that compare the advantages
and disadvantages of these convergence schemes[8, 27]. In this thesis, two convergence schemes are
used, Gauss-Seidel and Jacobi. While being usually slower than Gauss-Seidel for most applications[28],
Jacobi enables parallel evaluation of disciplinary outputs when multiple processors are available.

2. IDF(Individual Discipline Feasible): IDF differs from MDF in the way that the optimizer coordinates
the interactions between disciplines, which enables more parallelization compared to MDF-Jacobi. In
IDF, the interdisciplinary responses are decoupled from each other and replaced with coupling variable
copies. The original coupling variables are implicit functions of the design variables and the coupling
variable copies[26]. The performance of IDF does not depend on the strength of coupling present in the
MDO problem[5]. For highly coupled problems, IDF is considered to be a more effective architecture
than MDF. This comes at the cost of greater centralization[5, 29]. Unlike MDF, the design point is not
feasible at every iteration[30].

3. SAND(Simultaneous Analysis and design): Like IDF, SAND is a centralized approach where the resid-
uals of governing equations are also included in the problem statement[5, 26], so additional auxiliary
constraints are required to ensure zero residuals at problem convergence[5, 26]. The system optimizer
is loaded with three sets of decision variables, coupling variables and the state variables[5] but there
are no separate target and response groups, so consistency constraints are eliminated.

4. AAO(All At Once): AAO is the most general form of describing an MDO problem, which includes design
variables, response variables, coupling variables and coupling variable copies[5]), as well as consis-
tency constraints and residuals of the governing equations directly in the problem statement[26]. This
results in a very large problem formulation.[31]. This also makes AAO the most centralized of all the
four monolithic approaches.

Figure 2.1[26] shows the four monolithic approaches from the fully centralized AAO to fully nested MDF
approach.

Figure 2.1: Four Monolithic Approaches

2.3. Benchmarking MDO architectures with Scalable Problems 9

2.3. Benchmarking MDO architectures with Scalable Problems
The idea of scalable problems and their usage in testing the performance of MDO architectures in terms of
solution cost was discussed in the introduction. This part of the Literature Review is used to look at the ex-
isting research in this field, where scalable problems are used to benchmark MDO architectures with respect
to internal problem parameters (Figure 1.3). This section is divided into two parts. The first part deals with
the existing studies that compare MDO architectures from the standpoint of coupling strength. In the second
part, the comparative studies are considered which compare the performance of MDO architectures with re-
spect to problem size related parameters, such as the number of design variables and the number of coupling
variables.

2.3.1. Coupling Strength
MDO problems differ from a standard constrained nonlinear programming problem due to the presence of
disciplinary boundaries. Interdisciplinary couplings are a result of these boundaries. Coupled systems may
be viewed as simultaneous systems of nonlinear equations, which are solved with iterative methods such as
the fixed point Iterations[5] or with substitute variables. As mentioned in the introduction, coupling strength
is a term used to represent the sensitivity of interdisciplinary couplings with respect to each other in an MDO
problem. Many researchers[5, 29, 10] have used coupling strength between disciplines as a parameter to test
the performance of different MDO architectures. Two such papers are discussed below:

1. A method to test the performance of MDO architectures with respect to coupling strength was con-
ducted by Allison et al.[5], who tested IDF and MDF formulations on the design optimization of a tur-
bine blade. This is an analytic problem that allows for the variation of coupling strength between two of
its disciplines, Structural and thermal analysis via coupling variables dilated length and temperature
profile as shown in Figure 2.2[5]. Coupling strength can be adjusted by the modulus of elasticity E. A
smaller value of E leads to a more compliant blade by increasing elongation and exposed surface area,
which results in a strongly coupled system[5]. Allison et al.[5] tested the dependence of computation
time on the coupling strength for MDF and IDF optimization architectures and the result is plotted in
Figure 2.3[5].

Figure 2.2: Coupling between thermal and structural analysis

Figure 2.3 shows the performance of IDF and
MDF(using fixed point iterations as MDA conver-
gence scheme) with respect to coupling strength
[5]. It can be observed that weakly coupled sys-
tems are more effectively solved with MDF, in
terms of computation time while strongly cou-
pled systems require excessive iterations, possi-
bly due to inner analysis loops of MDF[5]. The
inherently decoupled IDF approach expectedly
maintains a nearly constant computation time,
irrespective of the strength of coupling in the
problem.

Figure 2.3: Computation time vs coupling strength (E) for
MDF and IDF

10 2. Literature Review

2. A study was conducted by Balling et al.[29], who
tested multiple single-level and distributed ar-
chitectures on a three discipline system, given
as closed-form mathematical expressions and
shown in Figure 2.4[29]. The structure of the
problem is discussed briefly here. The constraint
functions and the coupling functions can be con-
structed for discipline 1 as follows:

Figure 2.4: Coupled system with 3 disciplines

g1i =
ην∏
j=1

ν1
a1i j

j −1; g1i =
ην∏
j=1

ν1
b1i j

j −1

y12i =
ην∏
j=1

ν1
c1i j

j −1; y13i =
ην∏
j=1

ν1
d1i j

j −1

Where vector ν1 contains the values of the input variables for discipline 1 while a1, b1, c1, d1 are ran-
domly generated exponent values. The above constraints form a convex feasible region as shown in
Figure 2.5 [29].

A non-linear, quadratic form for the disciplinary ob-
jective function is used as follows:

f1 = 1/2
ην∑
j=1

e1 j (ν1 j)2

f = f1 + f2 + f3
where the disciplinary optimality equation gives the
formulas for the coefficient e1 j in terms of a1i j , b1i j ,
c1i j , d1i j .
The problem allows the user to alter the strength of
coupling between disciplines using a factor Acoup .
How the factor Acoup integrates into the problem for-
mulation is complicated and therefore not discussed
here. A non-zero value of Acoup indicates some level
of coupling between disciplines.
Balling et al.[29] tested the AAO, IDF, MDF,
CSSO(Concurrent Subspace Optimization) and
CO(Collaborative Optimization) architectures using
different coupling strength values Acoup . Figure
2.6[29] shows the convergence plot for a highly
coupled system where Acoup = 1.

Figure 2.5: Curves of the equation x1a x2b – 1 = 0

Figure 2.6: Normalized objective vs no. of evaluation(for a highly coupled MDO system)
(left: single-level architectures, right: Collaborative Optimization)

Feasible solution not found with CSSO

2.3. Benchmarking MDO architectures with Scalable Problems 11

It can be seen in Figure 2.6(right) that CO approach uses two algorithms, SQP and cutting plane while
the single-level approaches use only the SQP algorithm. The relevant observation that can be made
from the figure is that the multi-level CO approach(using both SQP and cutting plane algorithms) takes
an order of magnitude higher number of function evaluations compared to the single-level approaches,
which reflects their inefficiency. Among the single-level architectures shown in Figure 2.6(left), AAO re-
quires the least number of evaluations, followed by IDF and MDF. Since the disciplines are highly cou-
pled (Acoup = 1), it is no surprise that the AAO and IDF approaches are faster than the MDF approach,
which requires more function evaluations due to the presence of system analyzer[29]. This trend is
similar to one observed by Allison et al.[5], where higher coupling strength prefers a more centralized
MDO approach.

A point of difference between the comparison made by Allison et al.[5] and Balling et al.[29] is that
Allison et al.[5] used computation time while Balling et al.[29] used function evaluations. This could
be because Allison et. al.[5] defined a real-world MDO problem based on turbine blade elongation
while Balling et al.[29] defined a problem based on mathematical disciplines. While solving engineer-
ing problems, the time for an approximation process and a function call can be more dominant than
the time of optimization [9]. Therefore, comparison of MDO methods on mathematical problems is
made on function calls rather than solution time.

Looking at the above two studies from the context of the drawbacks discussed in the Introduction, it
can be seen that the results obtained from the comparative plot by Allison et. al.[5] cannot be used to
make predictions on other problems. This is because the coupling strength metric, represented by the
modulus of elasticity, is not normalized with a logical value. Additionally, the modulus of elasticity is
considered to be indicative of the coupling strength based on background knowledge of the problem.
Such a quantity might not be available on different MDO problems. The study by Balling et al.[29] looks
at the computational effort utilized by MDO architectures for solving a highly coupled MDO problem.
The coupling strength factor is again, not defined in a normalized manner. From the context of MDF
and IDF, the only takeaway is that for a highly coupled problem, IDF is nearly four times faster than
MDF.
While both the studies show IDF to be faster for strongly coupled MDO problems, the studies are not
suitable to be applied on new MDO problems. Additionally, for both the papers it can be seen that
there is no provision to study the effect of problem size (design/ coupling/ constraint vectors) on the
performance of MDO architectures.

2.3.2. Problem Size
The problem size for an MDO problem can be represented in terms of the number of disciplines, the number
of global/local design variables, the number of coupling variables and the number of global/local constraints.
There are existing papers, which compare the performance of MDO architectures with respect to problem size
related parameters. In this section, three of these papers are discussed.

1. A study was conducted by Shin et al.[9], who tested and compared MDO methods using seven mathe-
matical problems from the iSIGHT manual[32] and the NASA MDO test suite[17] . One of the problems
is shown below:

Find: b1,b2,b3

To minimize: z1 + z2

Subject to the following constraints:
g1 = z3 ≥ 0 ; g2 = z6 ≥ 0
and the following residual equations:
z1 = b2

1 +b2 +b3 −4−0.2z4 ; z2 = z1 + (b1 −2)2

z3 = z1/8−1 ; z4 = b1 +b3 −2+p
z1

z5 = b3 −2+exp−z4 ; z6 = 1− z4/10
The problem is solved using the MDF, IDF, AAO, CSSO, BLISS, CO and MDOIS approaches. The results
are tabulated below followed by the observations:

12 2. Literature Review

Table 2.1: Performance of 7 approaches in terms of function calls

It can be observed in Table 2.1[9] that IDF has the least number of function calls while MDF has the
most. BLISS has the best objective function value, while CO is the worst performing approach both
in terms of number of function calls and objective value. To vary the problem size, Shin et al.[9] con-
structed six more mathematical examples. The example problems simulated the effect of using only
local design variables, using only common design variables and using both local and common design
variables. Based on the multiple problem formulations and testing, Shin et al.[9] made the following
conclusions:

(a) MDF is recommended when system analysis is simple, but when it’s difficult to construct a system
analysis, then IDF/ AAO are more effective[9].

(b) It is difficult to apply CO to MDO problems because of the larger number of function calls and
worse convergence[9].

(c) In the above set of problems, the GSE(Global Sensitivity Equations) and OSA(Optimum sensitivity
Analysis) are analytically calculated whereas, in engineering problems, finite difference might be
the only resort, which increases the function calls. But if sensitivity information can be easily
calculated then BLISS might be a competitive multi-level method.

Because the comparison is made on the basis of a repository of imported MDO problems(each hav-
ing different problem size in terms of the number of design and constraint variables) and not scalable
problems, the above paper does not provide a direct comparison of the performance of MDO architec-
tures with respect to well-defined problem size parameters. The paper also does not discuss the effect
of coupling strength. The following paper by Tedford[6], relies on using a scalable mathematical prob-
lem and gives a direct comparison of the performance of single-level MDO approaches with respect to
problem size (in terms of the number of design and coupling variables).

2. Tedford[6] created a scalable problem to investigate the effects of altering the problem dimensionality
(in terms of local and coupling variables) on MDO architectures. The optimization problem statement
for the scalable problem setup is given as follows:

Mi ni mi ze :
∑

Z 2 +∑
y2

i
w.r.t: z, xi

with i = 1,2,N
With the disciplines defined as follows:
Di sci pl i nei :
g i ven : z, xi (from system-level); y j (from other disciplines)
sol ve : yi =−1/Cyi (Cz Z +Cxi xi −Cy j y j)

Two separate investigations are performed. In the first investigation the number of disciplines, global
design variables and coupling variables are held constant and the number of local design variables
associated with each discipline is varied. In the second, the number of coupling variables is varied,

2.3. Benchmarking MDO architectures with Scalable Problems 13

keeping the other variables constant. Figure 2.7[6] shows the results of the optimization time taken by
three approaches MDF, IDF and SAND.

Figure 2.7: Scalable problem convergence times - left: Design variable investigation, right: coupling variable investigation

It can be observed that in both cases, SAND and IDF consistently outperform MDF. Though the state
variables are identical for each investigated problem, SAND’s use of state variables and residual con-
straints seems to allow it to converge slightly more rapidly than the structurally similar IDF[6]. It can be
seen that the slope of the MDF line is less than that of IDF. Tedford claimed in his study, that provided
results can be obtained beyond the 600 coupling variable mark, MDF may begin to outperform IDF. His
claim remained unsubstantiated until 2010, when an improvement to the above analysis was made by
Tedford and Martins[7] in another paper. In this paper, a more thorough investigation was conducted
on the same scalable problem by including more data points, spread across a larger range of problem
size parameters as shown in the logarithmic plot of Figure 2.8[7].

Figure 2.8: Scalable problem convergence times - left: Design variable investigation, right: coupling variable investigation

The results obtained by Tedford and Martins[7] (Figure2.8) can be seen as a refined version of the earlier
result by Tedford[6] (Figure2.7). Altering the number of design variables seems to have a lesser impact
on the relative performance of MDF and IDF architectures as compared to the coupling variables. For
an extraordinarily large number of coupling variables(> 103), IDF loses its solution time advantage over
MDF. As the number of coupling variables increase, so does the number of consistency constraints that

14 2. Literature Review

have to be satisfied at every optimizer iteration. This reduces the effectiveness of IDF at higher dimen-
sionality of coupling variables[7].

The above papers[6, 7] give a good example of a scalable problem that is used to make a direct com-
parison of MDF and IDF architectures. The scalable problem allows the user to independently alter the
number of design and coupling variables. However, it can be seen from the structure of the problem
that the number of disciplines is fixed to the number of coupling variables. This reduces the applica-
bility of the results to MDO problems where the number of disciplines is independent of the number of
coupling variables. Additionally, there is no provision to change the coupling strength of the problem.

The research papers by Tedford and Martins[7] serve as a starting point for the work done by Vanaret
et al.[16] who suggested that the above study as well as other existing scalable problems are limited to
disciplines that contain simple mathematical expressions, and are not inspired from real MDO prob-
lems that are defined by aerospace or automobile engineers. These problems often include disciplinary
outputs(couplings/constraints/objective) that have higher-order convexities with respect to the design
space which cannot be emulated using mathematical expressions. Vanaret et al.[16] suggested the need
for:

(a) An analytic replacement function that is not only scalable with design and coupling variable pa-
rameters but also able to preserve the mathematical structure of a real MDO problem.

(b) An inclusive cost function that gives an accurate estimate of the Optimization cost, by taking into
account the various architecture-specific sub-steps within an optimization procedure.

The scaling methodology suggested by Vanaret et. al.[16] is discussed next.

3. Vanaret et al.[16] proposed to benchmark different MDO architectures by replacing an existing MDO
problem with a SARF based problem(previously mentioned in the introduction) that can be scaled in
terms of the problem size, yet captures the structure and behavior(convexity of outputs w.r.t inputs for
each discipline) of the original problem[16]. The process is explained using Figure 2.9

Figure 2.9: A two discipline MDO problem

Figure 2.9 shows a two discipline MDO problem with shared(x0) and local(x1, x2) design vectors along
with vectors representing constraints(g1, g2) and coupling(y12, y21) functions. The objective is repre-
sented by f . Figure 2.9 also shows the formalization of the inputs and outputs for Discipline 2 in the
form of a disciplinary interface. In the SARF method, each input and output for a discipline is con-
sidered to be a vector. Each "square dot" represents the size of the corresponding vector. Since y12 is a
vector of size four, it conveys that four response variables from Discipline 1 serve as inputs to Discipline
2. The SARF scaling process for Discipline 2 is demonstrated in Figure 2.10 and 2.11

2.3. Benchmarking MDO architectures with Scalable Problems 15

Figure 2.10: SARF scaling process(Problem size) for Discipline 2

Figure 2.11: SARF scaling process(Dependency matrix) for Discipline 2

The SARF scaling process scales each discipline by defining the following parameters:

(a) Three parameters to alter the size of input, coupling and constraint vectors.

(b) One parameter to alter the coupling density(explained below) within each disciplinary interface.

Looking at Figure 2.10(left), it can be seen that the original disciplinary interface for Discipline 2 has
non-uniform sizes of inputs and outputs. The SARF method allows the user to define three problem
size parameters to set the size of design vectors, coupling vectors and constraint vectors. In this case,
the parameter values are three, five and two respectively. It can be seen that within the scaled disci-
plinary interface(Figure 2.10(right)), both input and output coupling vectors have a size of five. Simi-
larly, each design variable vector(shared or local) receives a dimension of three, and constraint vectors
g1 and g2 receive a dimension of two. The SARF method proposes another factor that gives the user
the ability to set the percentage of dependencies between inputs and outputs for the interface. Figure
2.11(left) shows the dependency between inputs(along the abscissa) and outputs(along the ordinate)
for the original disciplinary interface for Discipline 2. A "square dot" in this case represents the exis-
tence of a dependency. The SARF method allows the user to define a coupling density factor for the
scaled disciplinary interface for Discipline 2. For a coupling density factor of 0.5(Figure 2.11(right)),
this results in fifty percent of the dependencies being existent. The distribution of dependencies is ran-
dom. For problems with more than two disciplines, the same values of the above defined parameters
are applied. Since the problem size related parameters are defined for the whole problem the same
parameter value applies to each design, coupling, and constraint variable irrespective of the number
of disciplines. Similarly, the same coupling density factor is used to generate a random dependency
matrix for each disciplinary interface. Therefore, unlike the scalable problems used in the previous
studies[6, 7, 9], the scaling parameters used by the SARF method work independent of the number of
disciplines. More details on this method, including the way the scaled outputs are calculated, are dis-
cussed in the next chapter.
As far as coupling strength is concerned, the SARF method is similar to the previous scaling processes
related to problem size in the way that it does not explicitly offer a parameter to alter the coupling
strength of the MDO problem. However, due to the mathematical structure of the original problem
being preserved, the coupling strength of the scaled MDO problem does not get affected by the SARF
scaling process. The feature regarding the coupling strength retention is discussed in detail in the next
chapter. Due to the coupling strength retention and the problem agnostic nature of the SARF method,
several MDO problems can be simultaneously scaled to create a repository of SARF based scaled MDO
problems representing a range of both problem sizes and coupling strength.

16 2. Literature Review

For benchmarking MDF-GS and IDF approaches, the SARF method proposes a cost criterion(C) as
shown below:

Figure 2.12: Cost Criterion for MDF-GS and IDF architectures

The cost criterion consists of common as well as architecture-specific costs. The mathematical details
of the cost criterion are discussed in the next chapter.

A comparative study of MDF-GS and IDF architectures was performed by Vanaret et.al[16] by con-
sidering a scaled version of the SSBJ problem(introduced in Chapter 1). Out of the above discussed
four parameters, the comparison uses two, representing the size of design and coupling vectors. The
benchmark uses two symbols Nx and Ny representing the cumulative size of design and coupling vec-
tors respectively. So, for the scaled version of the two discipline problem shown above(Figure 2.9),
Nx = si ze(x0)+ si ze(x1)+ si ze(x2) = 12, Ny = si ze(y12)+ si ze(y21) = 10. Vanaret et al.[16] applied the
above cost criterion to a repository of SSBJ based scaled MDO problems and the results are plotted in
Figure 2.13 [16]

(a) Nx = [20; 60], Ny = [40; 200] (b) Nx = [80; 120], Ny = [40; 200]

Figure 2.13: Estimated cost for MDF-GS and IDF optimizations on the SSBJ test case

The above plot does not show a definite trend in the cost criterion with Nx and Ny . There are some val-
ues of (Nx , Ny) which show dips in the cost criterion. For some values of (Nx , Ny) such as (20,160), the
cost is exceptionally high. Vanaret et. al.[16] concluded that a clear trend cannot be observed between
the cost criterion and the problem parameters. However, there are three shortcomings in this analysis:

(a) It can be observed that the cost function has only been calculated for a few (Nx , Ny) pairs.

(b) There is a certain amount of randomness in the SARF based scaled problem formulation due to
the density factor, which randomly distributes the dependencies. This can be accounted for by
having multiple runs for each combination of problem parameters.

(c) Other parameters such as the coupling density factor and constraint vector size are available in
the SARF methodology but not considered in the comparative study.

2.4. Machine Learning - History and Outlook 17

It can be said that the SARF based scaling methodology proposed by Vanaret at.al.[16] is better than the
earlier scalable problems discussed in this literature review, but the comparative study performed using
the SARF method is limited and not conclusive. This opens the possibility for further investigation.
The next chapter(Chapter 3) consists of a reproducibility study of the research paper by Vanaret et.
al.[16]. In this chapter, firstly, the SARF method is discussed in detail. Following this, by accounting for
the above stated shortcomings, the conclusion made in the original paper([16]) regarding the lack of
correlation between the problem parameters and solution cost of MDO architectures is challenged.

The final part of the literature review is a brief introduction to machine learning.

2.4. Machine Learning - History and Outlook
Machine learning is a new buzzword in the technological space, but the underlying concepts have been in
use for a long time. One of the earliest series of papers titled Method of least squares[33] was published by
Gauss and Legendre, which showed the application of what is now referred to as Linear Regression. Towards
the end of the 18th century, this approach was initially applied in observational astronomy to quantify and
calibrate the cosmic distance scale necessary for the study of the large scale structure of the universe[34]. In
1913, Andrey Markov, a Russian mathematician best known for his work on stochastic(random) processes,
invented a set of techniques known as Markov chains, which he used to analyze poems[35]. In 1950, Alan
Turing proposed a learning machine that could learn and become artificially intelligent. The scope of appli-
cation to real-world problems was still restricted, until a year later when Marvin Minsky and Dean Edmonds
made the first neural network machine called SNARC. Finally, in 1952, Arthur Samuel, also known as The
Pioneer in Machine Learning began development on some of the very first machine learning programs and
created a program that could play checkers[36]. Until 1930, Linear regression was mainly used for predicting
quantitative values such as an employee’s salary[37], the distance between celestial objects, and stock prices.
For predicting qualitative values, such as the rate of default within Loan applicants, the mortality rate for a
particular disease, or the outcome of a football match, other models had to be developed that could predict
responses with categorical variables. These are called classification models. Among these models, logistic re-
gression and linear discriminant analysis are the ones used most widely[37]. More computationally intensive
methods, such as K nearest neighbours, Decision trees and Support Vector Machines(SVM) also exist, which
can be used for both classification and regression tasks. In the past 20 years, a particular set of techniques
called Artificial Neural Networks(ANN) have become popular as the first choice method for processing most
types of machine learning tasks. These techniques can be referred to as a digital form of the original SNARC
neural network build by Minsky, replacing potentiometers and electro-mechanical components with digital
weights1. These methods serve the same purpose as the previous ones i.e. solving certain classification or
regression tasks, but they have a basis in biology, in the sense that they attempt to mimic biological neurons
with an artificial neuron, known as the perceptron.

2.5. Machine Learning application in Aerospace
In the field of aerospace, machine learning is used for a wide variety of applications. At airports, machine
learning algorithms are being used to improve and accelerate threat and anomaly detection in areas such
as baggage scanning and queue monitoring at security checkpoints2. Machine learning algorithms can be
applied on large telemetry data, accumulated over thousands of aircraft/spacecraft missions to ensure better
safety and fault diagnosis[38]. In areas that are closer to aircraft design, machine learning is used for meta-
modeling of analytical disciplines[22, 39, 19, 20, 21] and cost estimation/ performance prediction of airplane
components[21]. Two such papers are discussed below.

2.5.1. Drag coefficient prediction of wing configurations
An example of neural network based meta-modeling was proposed by Secco et. al.[39]. This approach uses
artificial neural networks(ANN) for predicting aerodynamic drag coefficients of wing configurations to re-
place a full potential code with viscous corrections. The first step is to generate a database using inputs for
the original analytical discipline and drag prediction. The full potential code comprises of forty inputs, that
are used to define the geometry of the wing, the shape of the airfoil at three span locations, and flying condi-
tions. Table 2.2 shows the range of these inputs.

1https://historyof.ai/snarc/
2https://www.airport-suppliers.com/supplier/aurora-ai/

18 2. Literature Review

Type of input Input Range
Mach Number 0.2-0.8

Flying Conditions Altitude 0-13000m
(3 inputs) Angle of attack -3◦−6◦

Wing Aspect Ratio 7- 11.5
Wing Taper Ratio 0.2 - 0.6

Wing Geometry . .
(10 inputs) . .

. .
Inboard Wing Dihedral 0◦−5◦

Wing Area 50-200
Maximum relative thickness(root) 0.1- 0.16

Leading edge radius(root) 0.005 - 0.2
Airfoil Shape . .

(27 inputs) . .
. .

Location of the maximum relative thickness(tip) 0.2 - 0.46
Maximum camber(tip) 0-0.03

Table 2.2: List/Range of inputs

The inputs and their ranges shown in Table 2.2 represent the training data on which the neural network
algorithm is to be trained. In creating a database for training a machine learning algorithm, each input is
assigned to a feature or a predictor column while the quantity to be predicted, which is the overall drag coef-
ficient in this case, is assigned to a label column. By considering each unique combination of input values as
a "data point", the database for training a machine learning algorithm is built. Table 2.3 represents a training

Case
Features Label

Mach Altitude Angle Maximum Leading Drag
Number of Attack Camber(tip) Edge Radius(tip) Coefficient

1 0.2 10000 3◦ 0.01 0.005 0.015
2 0.3 12000 3◦ 0.02 0.007 0.016
3 0.4 12000 3◦ 0.02 0.005 0.017
4 0.5 12500 3◦ 0.03 0.008 0.018
5 0.2 10000 3◦ 0.03 0.009 0.019
.
.
.
.

139999 0.8 13000 5◦ 0.03 0.2 0.024
140000 0.8 13000 5◦ 0.03 0.2 0.028

Table 2.3: Database for training neural network(forty features and one label)

database consisting of 140000 rows and forty-one columns, of which forty are feature columns used to train
the neural network model, while the last column represented by the drag coefficient is the predicted quantity.
Once the database is created, it is required to normalize each input variable within the [-1, 1] interval. Ac-
cording to Secco et. al.[39], creating a normalized database is mandatory for running the neural network with
the particular optimization algorithm used in the study (Nguyen-Widrow weights initialization algorithm).
Following the normalization, it is required to split the database into training and test sets. By considering
a particular ratio, called the train-test split ratio, a certain number of rows are separated from the database,
such that the machine learning model can be trained on them. The test rows are used to test the predictive
capability of the machine learning model. This is shown in Figure 2.14

2.5. Machine Learning application in Aerospace 19

Figure 2.14: Fitting process of neural network

Figure 2.14 shows a train-test split made using a 1:1 train-test split ratio. It must be noted that the neural
network shown in Figure 2.14 is just an example and does not represent the actual structure of the neural
network model used by Secco et. al.[39]. From the point of view of the thesis, it is not required to review
the mathematical details of the optimization process applied within the training of a neural network. The
relevant parts to be included in the review are the practical choices made in creating the machine learning
model, such as the options selected while fitting the neural network model and the method used to test the
fitting accuracy. One of the requirements in implementing a neural network on a database is the selection of
the right size of the network in terms of the number of layers and the number of neurons(shown with empty
spheres) in each layer. For instance, the example neural network shown in Figure 2.14 consists of three hid-
den layers in the form of 5 - 8 - 6 neurons. Hidden layers signify the middle layers of the model. In a simple
regression problem such as this, the last layer is always a single neuron that outputs the prediction while the
first layer always has the same number of neurons as the inputs or features present in the database(should
be forty for this problem, but only six are shown). In the paper by Secco et. al.[39], the number of hidden
layers is fixed at two and the right number of neurons are discovered using an experimental grid search ap-
proach. The number of neurons used on the first layer varies between 20 and 100, in steps of 20. The same
interval is used for the neurons of the second layer. The performance of each iteration of the neural network
is tested using a Mean Square Error (MSE) metric, which is a non-dimensional metric used to measure the
prediction accuracy of machine learning models. The MSE is calculated using two arrays of data, represent-
ing the predicted test label values(drag coefficients predicted by the neural network model) and the actual
test label values(obtained from the full potential solver). The result of the grid search operation is shown in
Figure 2.15[39]

Figure 2.15: Grid Search to find lowest MSE

It can be seen from Figure 2.15[39] that the lowest MSE is obtained for the neural network representing

20 2. Literature Review

120 - 60 hidden layer configuration(circled in red). The performance of the corresponding neural network
is visualized in two ways. One way is to make a plot of the predicted vs actual test labels as shown in Figure
2.16a[39]. The Target(T) represents the actual test label values while Output(Y) represents the predicted test
label values. It can be seen that the prediction accuracy is extremely high for the neural network model as all
test points lie very close to the line Y=X(line of perfect prediction) Figure 2.16b[39] shows a second way to plot
the performance of the neural network based prediction model. Using certain Mach Number and geometry
Inputs the drag prediction from the potential solver and neural network model are compared.

(a) Predicted vs actual test labels
(b) Comparison of Drag prediction

from solver and the ANN meta model

Figure 2.16: Visualize performance of optimized neural network

The above study by Secco et. al. [39] presents a workflow of implementing a machine learning based
prediction model, including feature definition, database creation, model fitting, and performance testing.
A similar workflow is used for implementing machine learning based prediction models later in the thesis
(Section 4.2.2.1). The final paper to be looked at in the literature review is about a machine learning based
cost estimation tool of airplane components by Loyer et.al.[21]

2.5.2. Estimation of manufacturing cost using machine learning

Figure 2.17: Neural network to predict manufacturing cost of components

Loyer et al.[21] proposed a machine
learning based method to predict the
manufacturing cost of jet engine com-
ponents during a preliminary design
stage. As shown by the neural network
representation in Figure 2.17, the data
contains six inputs or predictors, two
of which are related to geometry(span
and chord), two to material proper-
ties(machinability, cost rate) and one to
the economics of the product (produc-
tion volume). Additionally, a new fea-
ture can be seen as span∗chor d . This is
an example of feature engineering, where
the background knowledge of the pre-
diction problem is applied to create a
feature that helps create a more accu-
rate machine learning model. This paper
shows the application of machine learning algorithms on a database which is much smaller than the database
used in the earlier paper(Table 2.3), both in terms of number of columns(6 vs 41) and rows(254 vs 140,000).
This shows that machine learning algorithms are applicable in a wide variety of data-sets. In this thesis, the
database used for building the prediction model(Table 4.4) has a size which is intermediate between the size

2.5. Machine Learning application in Aerospace 21

of the databases used in the above two papers, both in terms of rows and columns. A relevant part of this
study is the comparison of various machine learning approaches, that are applied on the database. Loyer et
al.[21] looked at five machine learning algorithms:

1. Multiple Linear Regression(MLR)

2. Generalized Additive Models(GAM)

3. Artificial Neural Networks(ANN)

4. Support Vector Regression(SVR)

5. Decision Trees(DT)

Figure 2.18: Predicted cost vs Actual cost

Figure 2.18 shows the accuracy of the
predictions made by the five algorithms.
The figure maps the outcome predicted
by the algorithms(predicted cost) vs the
actual cost for the five algorithms tested.
The points are mapped and a least-
squares curve is drawn through them.
Ideally, the points should be along y =
x line. The SVR(Support Vector Regres-
sion) and ANN(Artificial Neural Network)
lines seem to be the most aligned with
the y = x line, which gives proof of
their higher accuracy. A similar process
is adopted in the thesis as well(Section
4.2.2), where four machine learning algo-
rithms are applied on a created database
of MDO problems and their predictive
performance is compared as shown in
Figure 2.18.

3
Reproducibility Study - Scalable Analytic

Replacement Function

As discussed in the Introduction and the Literature Review, the starting point for the thesis is a reproducibil-
ity study of the research paper by Vanaret et. al.[16]. The methodology, called Scalable Analytic Replacement
Function(SARF) proposes to create a scalable version of a computationally expensive MDO model, which al-
lows the user to independently vary the dimensions of input and output variables and their dependencies on
each other so that the performance of MDO architectures can be compared with respect to such parameters.
However, the conclusion made in the paper that a direct correlation cannot be observed between problem
parameters and performance of MDO architecture has some pitfalls and requires a better inspection. This
was explained in Chapter 2, Section 3. This chapter is used to explain the SARF method and conduct a critical
analysis of the conclusions made in the paper by Vanaret et. al.[16]. Based on the critical analysis, a motive is
to be gained for creating a prediction model of MDO architecture by expanding on the feature-set provided
in the SARF scaling method. Following are the sub-steps within the reproducibility study:

1. An explanation of the SARF methodology used for creating a scaled MDO problem.(Section 3.1)

2. Demonstrating the implementation of the SARF methodology on a test case, the well known SSBJ(Super
Sonic Business Jet) benchmark problem.(Section 3.2)

3. Setting up the cost criterion/optimization parameters for performing the critical analysis.(Section 3.3)

4. Performing a critical analysis of the observations provided in the study by Vanaret et al.[16], challenging
the existing conclusion(Section 3.4) and acquiring the motive for further investigation(Section 3.5)

The following subsections are used to explain the above points.

3.1. SARF Methodology
(Though a brief introduction to the SARF method was previously provided in the Literature Review, an in-depth explanation of the SARF method and the

scaling process is required to explain certain points that are relevant to this thesis but were not taken up in the original paper.)

An MDO problem can be seen as an interaction of multiple disciplinary interfaces. An example of a two
discipline MDO problem is shown in Figure 3.1a. Figure 3.1b shows the disciplinary interface for Discipline
2.

(a) Coupled two discipline Problem (b) Disciplinary Interface

Figure 3.1: Disciplinary interface

23

24 3. Reproducibility Study - Scalable Analytic Replacement Function

The meaning of g, x, and y used in Figure 3.1b is standard and can be inferred from Figure 3.1a. The SARF
methodology is used to create a scalable version of an MDO problem, which allows the user to parametri-
cally change the dimensions of inputs and outputs for every disciplinary interface. Figure 3.2a represents
the dimension of every input/output of the coupled two discipline MDO problem shown in Figure 3.1a. The
number of squares beside every input and output represents its dimension. Therefore, in Figure 3.2a, y12 is a
vector of size three. To create a scaled version of this problem, the SARF methodology defines a set of param-
eters that allow the user to independently vary the dimensions of variables used in the MDO problem. In the
paper by Vanaret et.al.[16], these parameters are mentioned as nx , ny and nc , representing the dimension of
input, coupling and constraint variables respectively. By setting the values of the parameters as nx = 3, ny = 4,
and nc = 2, the scaled disciplinary interface is shown in Figure 3.2b. Within the scaled disciplinary interface,
each design vector is assigned the same size which is determined by the parameter nx . The same applies
to each coupling vector through ny and to each constraint vector through nc . Apart from the dimensions of
variables, the SARF methodology also allows the user to vary the dependence of each component of an out-
put vector w.r.t each component of an input vector by defining a coupling density factor. This is explained
using Figure 3.3

(a) original disciplinary interface (b) scaled disciplinary interface

Figure 3.2: Original/scaled disciplinary interface

(a) Coupling density for the original problem
(b) Coupling density for scaled problem

(density factor d = 0.3 / 0.6)

Figure 3.3: Effect of density factor d

3.1. SARF Methodology 25

Figure 3.3a is a matrix representation of the original disciplinary interface shown in Figure 3.2b, showing
the dependencies between individual elements of every input and output vector, placed along the horizontal
and vertical axes respectively. In case of the dependency matrix, each of the "black squares" represents an
existing dependency. Three blocks are shown, representing Discipline 1, Discipline 2, and shared variables
respectively. For the scaled MDO problem, a coupling density factor(d) is defined to alter the existing depen-
dencies between elements of the input and output vectors. Considering the "box" formed by one element of
the input space and one element of the output space to be a placeholder, the coupling density factor randomly
allocates "black squares" to a certain percentage of placeholders. As shown in Figure 3.3b, for a coupling den-
sity factor of 0.3, about thirty percent of the boxes are randomly filled. In this case, the created matrix is quite
sparse and the level of dependence between the elements of input and output vectors is low. When the cou-
pling density factor is increased to 0.6, there is a greater chance of dependence between elements of input and
output vectors. Therefore, the coupling density factor gives the user the ability to assign a particular percent-
age of dependencies between a scaled discipline’s inputs and outputs as active. This assignment is random
for each version of the scaled problem. Therefore, two versions of a scaled problem created using the same
combination of nx , ny , nc , and d have different solutions.

There are three steps in implementing the SARF methodology as shown below:

1. One-dimensional restriction

2. Scaling and Interpolation

3. Extrapolation

These steps are explained in the following subsections.

3.1.1. One-dimensional Restriction
As the name suggests, the first step in the SARF methodology[16] requires restriction of each output of each
disciplinary interface(couplings/ constraint/ objective) along a particular diagonal in design space. Consider-
ing a coupling to be a function of the formφ : Rn → Rm , where the lower and upper bounds of every dimension
in the n dimensional domain exist as: [x1, x1], [x2, x2], [x3, x3].....[xn , xn].
An interpolated function can be defined by using the lower and upper bounds of every dimension and defining
a parameter t such that :

φ(1d)(t) =φ(x1 + t(x1 −x1), x2 + t(x2 −x2),, xn + t(xn −xn)) (3.1)

Consider a two dimensional surface defined by the equation φ(x1, x2) = x3
1 −3x1x2

2 . For (x1, x2) ∈ [−4,4]2,
the generated surface is represented in Figure 3.4a. Now, the one-dimensional restricted function can be eval-
uated as follows:

φ(1d)(t) =φ(−4+ t(4− (−4)),−4+ t(4− (−4)))

=φ(−4+8t,−4+8t)

= (−4+8t)3 −3(−4+8t)(−4+8t)2

=−2(−4+8t)3

(3.2)

For t ∈ [0,1], φ(1d)(t) is shown in Figure 3.4b.

(a) φ(x1 , x2) = x3
1 −3x1x2

2

(b) 1-D restriction for φ
φ(1d)(t) =−2(−4+8t)3

Figure 3.4: one-dimensional restriction

26 3. Reproducibility Study - Scalable Analytic Replacement Function

3.1.2. Scaling and Interpolation
Following one-dimensional restriction, the second step is to scale the one-dimensional function (φ(1d)(t)) us-
ing maximum and minimum values over the uni dimensional domain, noted as mi n(φ(1d)(t)) and max(φ(1d)(t)).
The scaled function can be defined in the following manner:

φ(scaled)(t) = φ(1d)(t)−mi n(φ(1d)(t))

max(φ(1d)(t))−mi n(φ(1d)(t))
(3.3)

The original saddle surface as well as the one-dimensional function shown in Figure 3.4b, are created
out of a coarse set of points because they require the evaluation of the original discipline for each point. The
scaled functionφ(scaled)(t) is therefore further required to be approximated using a polynomial spline to form
a continuous, interpolated output φ(i nt)(t) that can be calculated inexpensively. Figure 3.5a and Figure 3.5b
shows a scaled and interpolated form(using a third order spline) of the one-dimensional example function
shown in Figure 3.4b

(a) φ(scaled)(t) (b) φ(i nt)(t)

Figure 3.5: Scaled and Interpolated Function

The above two steps explain the derivation of one-dimensional, scaled interpolated functionφ(i nt) : [0,1] →
[0,1] from a multi dimensional function φ : Rn → Rm . For the above example, the value of n and m are two
and one respectively. A second example is shown for n,m = 2,2 in the figure below:

(a) φ : R2 → R2 (b) φ(i nt) : [0,1]1 → [0,1]2

Figure 3.6: Original(φ : R2 → R2) and Interpolated Function(φ(i nt) : [0,1]1 → [0,1]2)

3.1. SARF Methodology 27

3.1.3. Extrapolation
After the calculation of φi nt , the final step is to use the interpolated function to generate the extrapolated
functions φ(ext). Using the example of the discipline shown in Figure 3.6, the extrapolation process is shown
in Figure 3.7

Figure 3.7: Extrapolation step for discipline φ of Figure 3.6

Figure 3.7 shows the extrapolated discipline created using parameter values (nx ,ny = 3,5). Both x1 and x2

receive a dimension of three, while φext has a dimension of five. The extrapolated function, in keeping with
the SARF methodology, allows the user to independently vary the sizes of the input and output vectors for
every disciplinary interface. This is achieved using two data structures namely, the input-output dependency
matrix and the component dependency table which are explained in the following two sections. The method
used to estimate the extrapolated outputs is explained thereafter.

Input-Output Dependency Matrix
The input-output dependency matrix is used to show the dependency(or lack thereof) of an output vector
component with respect to components of an input vector across a disciplinary interface. Dependency matrix
for a disciplinary interface was previously introduced in Section 3.1. An MDO problem typically contains
two or more disciplinary interfaces. By diagonally stitching the dependency matrices for every interface,
an input-output dependency matrix can be drawn for the MDO problem. An example of the dependency
matrix is shown for the Super Sonic Business Jet(SSBJ) MDO problem in Figure 3.8b[16]. This is a well known
range maximization problem modeled as a coupled system of four disciplines - Structures, Aerodynamics,
Propulsion, and Aircraft Range. The formulation of the MDO problem is given using the data flow diagram,
shown in Figure 3.8a[18]. As can be seen in the data flow diagram, there are ten design variables of which
six are shared(global) variables. Similarly, the sizes of local and coupling vectors can also be observed in
Figure 3.8a[18]. The dependencies between design variables and couplings can be looked up by analyzing the
expressions used within the individual disciplines. The problem also includes local constraints, the sizes, and
dependencies of which can be looked up from the original problem description. Using the above information,
the dependency matrix for the original model can be constructed as shown in Figure 3.8b[16]. The horizontal
axis represents the entire design space in terms of local/shared variables as well as coupling vectors. Each
row on the vertical axis represents a disciplinary output in terms of a coupling or constraint. Each square
block represents the existence of dependency between a particular component of a disciplinary output and
an input vector. The naming scheme for the inputs/outputs is simply derived by assigning numbers 1, 2, 3,
and 4 to the Structures, Aerodynamics, Propulsion, and Range disciplines respectively. The coupling from
Structures to Aerodynamics is hence named y12. As can be seen in Figure 3.8a[18], y12 = [WT ,θ] is a two
dimensional coupling vector. Correspondingly, two consecutive rows are dedicated to y12 in the dependency
matrix. The dependency matrix can also be looked at as a conjunction of four blocks, three of which represent
the Structure, Aerodynamics, and Propulsion disciplines. The fourth block represents the dependency of the
outputs of the three disciplines with respect to the shared variables. There is no dedicated block for the Range
discipline as the output is the objective itself, which cannot be represented along the input space on the x-
axis.

28 3. Reproducibility Study - Scalable Analytic Replacement Function

(a) Data flow diagram for SSBJ Problem (b) Dependency Matrix(original model)

Figure 3.8: Super Sonic Business Jet(SSBJ) MDO Problem

As can be seen in Figure 3.8b[16], the original SSBJ problem has a variable size for every input and output
vector. For instance, constraint g1 has a dimension of seven while the other output variables in the Structural
block have a dimension between one and three. Also, the distribution of dependencies between every input
and output component is different for every block. The dependency within the Propulsion block is high as
most of the blocks are filled, while the dependency for the Structural and Aerodynamic blocks are lower. As
mentioned in section 3.1, to create a family of scaled problems, a set of parameters can be defined as follows:

• density factor d to assign the level of dependency between design variables and couplings(to be applied
uniformly across each block of the problem).

• Parameters nx and ny that assign the number of components for each design and coupling variable
respectively(In the original paper, the value of nc (size of constraint vector) is considered same as nx

and therefore the same simplification is used here).

By making use of the above-mentioned parameters, the dependency matrix for the original problem can
be reconstructed to create a family of scaled MDO problems.

Figure 3.9b shows a dependency matrix with the same problem dimensions as the original problem but
an user defined coupling density factor(d = 0.4) that has been uniformly applied on the individual blocks.
Figure 3.9c shows the same dependency matrix with higher coupling density factor(d = 0.8). The dependency
matrix for the original problem is shown in Figure 3.9a for comparison.

(a) original model (b) original model(d= 0.4) (c) original model(d= 0.8)

Figure 3.9: Effect of density factor on the original SSBJ problem

3.1. SARF Methodology 29

While using parameters nx and ny to alter the dimensions of the problem, it must be ensured that a con-
sistent family of scaled problems is created. For this purpose firstly a large random dependency matrix is
generated using a specific density factor, which is then scaled down to the required dimensions. This ensures
that the distribution of dependency between input and output vectors is preserved[16]. Figure 3.10a repre-
sents the large dependency matrix for the parameters (nx , ny , d) = (15, 2, 0.5). This matrix can be scaled down
to the dimensions (nx , ny , d) = (4, 4, 0.5) as shown in Figure 3.10b. For this example(and also in the paper
by Vanaret[16]), the size of the local constraint vectors are considered to be the same as that of the design
variables. It must be noted that nx and ny are parameters that assign a particular size to each design and
coupling variable respectively, across all disciplines as seen in Figure 3.10b

(a) Large matrix(nx ,ny ,d) = (15,2,0.5) (b) Scaled matrix(nx ,ny ,d) = (4,4,0.5)

Figure 3.10: Large dependency matrix scaled to desired dimension

The exact procedure used to scale down the large dependency matrix is not discussed in the original
paper. A custom process is defined to scale down the large dependency matrix as shown in Appendix A.9. The
working of the process can be verified from Figure 3.11. Figure 3.11a represents a large dependency matrix,
wherein a bias has been applied on the structural block to keep the elements in the middle of the design space
devoid of dependencies. When scaled down to the required dimensions, the same bias is conserved as shown
in Figure 3.11b.

(a) Large matrix(biased)(nx ,ny ,d) = (15,2,0.5) (b) Scaled matrix(biased)(nx ,ny ,d) = (4,4,0.5)

Figure 3.11: Large dependency matrix(biased) scaled to desired dimension

The combined effect of the coupling density and the input/output dimension parameters is shown in

30 3. Reproducibility Study - Scalable Analytic Replacement Function

Figure 3.12. By scaling inputs and outputs independently(nx = 5, ny = 2), Figure 3.12a to 3.12c show the effect
of increasing the coupling density d on the scaled dependency matrix.

(a) (nx ,ny ,d) = (5,2,0.2) (b) (nx ,ny ,d) = (5,2,0.6) (c) (nx ,ny ,d) = (5,2,0.9)

Figure 3.12: Effect of density factor on scaled SSBJ problem

The takeaway from the format of the dependency matrix is that the scaled outputs are dependent on
randomly defined combinations of the original inputs. For example, in the sparse matrix of Figure 3.12a,
y1(0) is dependent only on x1(1)(shown in red). For the dense matrix of Figure 3.12c, y1(0) is dependent
on all possible inputs(shown in green) except x1(1). The allocation of dependencies is repeated for all the
scaled output vectors. The random distribution of dependencies can be seen as an on/off switch as far as
the dependency between any particular input and output vector element is concerned. However, over a large
number of scaled outputs, this results in the preservation of the convexity/linearity of the disciplinary outputs
w.r.t their inputs while going from the original to the scaled problem. This can also be noted in the next
section(Section 3.2, Figure 3.21), where it is seen that the scaled disciplinary outputs retain their convexity.
A direct consequence of convexity retention is that interdisciplinary sensitivities do not get affected when
any of the scaling parameters are changed. Therefore, if a parameter is defined that depends only on the
interdisciplinary sensitivities, the value of this parameter must not change for any version of the scaled MDO
problem. This is an important aspect of the SARF methodology which is utilized later in the thesis(Chapter 4
Section 4.2.4).

Component Dependency Graph
Until now, two data structures have been developed, a library containing interpolated functions for disci-
plinary outputs and an input-output dependency matrix representing the dependency of output components
on input components. Before extrapolated outputs can be calculated, a component dependency graph needs
to be defined as shown below:

Figure 3.13: Random mapping of components between extrapolated and interpolated outputs

Figure 3.13 shows the example of the extrapolation process previously used in Figure 3.7. The interpolated
discipline has a uni-dimensional input and a two dimensional output φi nt . Using parameters nx ,ny = 3,5,
the discipline is extrapolated. The extrapolated discipline has two input vectors, each of size three and a
five dimensional output φext . For constructing the component dependency graph, each extrapolated output

3.1. SARF Methodology 31

component needs to be randomly mapped to a particular interpolated output component. In the example
of Figure 3.13, the 1st , 3r d and 4th extrapolated components are mapped to the 2nd interpolated component
while the 2nd and 5th extrapolated components are mapped to the 1st interpolated component. The mapping
information is stored in the form of a dictionary as shown below:
φext : {2,1,2,2,1}
The component dependency graph is constructed by assembling the mapping information for each output
component within the MDO problem. Along with the input-output dependency matrix and the repository
of interpolated functions, the component dependency graph is used to calculate the extrapolated outputs as
shown in the next section.

Extrapolated Output
Considering a coupling vector y with original dimension m and scaled dimension ny , each of the ny compo-
nents of the extrapolated coupling vector can be evaluated in the following manner:

φ(ext)
i (x) = 1

|Si |
∑

j∈Si

φ(i nt)
ki

(x j) (3.4)

where:
x represents the design space shown along the horizontal axis of dependency matrix,
i ∈ {1,2,ny } is one of the ny components of the extrapolated output,
ki ∈ {1,2, ...m} represents the index of the original interpolated component(φi nt), mapped from every extrap-
olated component i, extracted from the component dependency graph.
Si represents the corresponding row of the dependency matrix,
|S| represents the "sum of dots" along the corresponding row i.e. the total number of dependencies for the
i th component of the extrapolated coupling.

Figure 3.14: Dependency matrix and extrapolated disciplinary interface

The above calculation is demonstrated us-
ing the earlier example of Figure 3.13 and Fig-
ure 3.6. The original discipline contains two
inputs and two outputs. For the extrapolated
discipline shown in Figure 3.13, nx and ny are
3 and 5 respectively. This translates to two
input vectors each of size three and extrapo-
lated vector φext of size five. Now, considering
the density factor to be 0.5, Figure 3.14 shows
the input-output dependency matrix and ex-
trapolated disciplinary interface for two(out
of the five) extrapolated output components,
φext

1 and φext
5 . Based on the randomly generated dependency matrix, the output vector components are de-

pendent on certain input components shown with filled squares. For calculating the values of the output
components, the component dependency mapping and the library of interpolated functions has to be called.
Based on the mapping shown in Figure 3.13, φext

1 is mapped to φi nt
2 and φext

5 is mapped to φi nt
1 . Using equa-

tion 3.4, φext
1 and φext

5 can be calculated as follows:

φext
1 = 1

3 [φi nt
2 (x1[0])+φi nt

2 (x1[1])+φi nt
2 (x2[1]]

φext
5 = 1

3 [φi nt
1 (x1[0])+φi nt

1 (x2[0])+φi nt
1 (x2[1]]

The values of the interpolated functionsφi nt
1 (t) andφi nt

2 (t) are known from the library of uni-dimensional
interpolated functions shown in Figure 3.6b.

This extrapolation procedure, when applied to constraint functions, always extrapolates the constraint
outputs between zero and one. However this leads to permanently inconsistent constraint functions. In
the SARF methodology, this problem is tackled by translating each extrapolated constraint gi ≤ 0 using a
threshold value τi ∈ [0,1] as shown below:

gi −τi < 0 (3.5)

32 3. Reproducibility Study - Scalable Analytic Replacement Function

To calculate this threshold value, it is required to define three constants µ(0,1), αi and p at run-time, each
having a random value between zero and one. These constants are explained below:

1. p determines what percentage of constraints are activated at the initial point.

2. αi determines the extent to which inactive constraints are satisfied.

3. µ(0,1) is a random value value between 0 and 1, chosen with uniform probability.

Considering g (0)
i to be the value of the constraint output at initial point, the threshold τi can be defined as

follows:

τi =
{

g (0)
i i f µ(0,1) ≤ p

g (0)
i + (1− g (0)

i)α(0)
i other wi se

(3.6)

The above definition allows a certain percentage p of constraints to be initially active while the remaining
constraints are initially satisfied but inactive.
The next section is used to show the implementation of the SARF method on the SSBJ problem.

3.2. Implementation of SARF methology on SSBJ Problem
(Refer to Appendix A and Appendix A.8 for the code and UML regarding the implementation of the SARF
methodology)

Having explained the SARF method, it is now required to implement the SARF methodology on the test
SSBJ problem which was previously introduced in section 3.1.3.1. The SSBJ(Super Sonic Business Jet) problem
is a well known MDO benchmark problem proposed by NASA in 1998[18]. It is a range maximization problem
consisting of four disciplines, Structures, Aerodynamics, Propulsion, and Performance, each defined by analyt-
ical expressions. Additionally, there are local constraints attached to Structures, Aerodynamics, and Propulsion
blocks. The numbering scheme used to denote the disciplines and couplings has been mentioned in section
3.1.3.1. The XDSM for the original SSBJ problem is shown in Figure 3.15 and Figure 3.16. The abbreviations
used in the XDSM representation are same as in Figure 3.8a.

Figure 3.15: XDSM for Original SSBJ problem(MDF-GS)

3.2. Implementation of SARF methology on SSBJ Problem 33

Figure 3.16: XDSM for Original SSBJ problem(IDF)

Within the MDF-GS implementation, the NLBGS solver is used to run MDA routines over three coupled
disciplines Structures, Aerodynamics, and Propulsion. The Performance discipline has no feedback, therefore
it is not a part of the MDA analysis. There are a total of five coupling vectors each of unitary dimension except
y12 = {T het a, WT }, which has a dimension of two. For IDF, this results in six consistency constraints.

The sub-steps of the SARF methodology can be applied sequentially to create a scaled version of the SSBJ
Problem. The dependency matrix for the original SSBJ problem is shown in Figure 3.17a. The inputs and
outputs for constraint g1 is shown in Figure 3.17b.

(a) dependency matrix for g1 constraint (b) Disciplinary interface for constraint g1 : R10 → R7

Figure 3.17: dependency matrix and disciplinary interface for constraint g1

34 3. Reproducibility Study - Scalable Analytic Replacement Function

Combining the first two steps, it is required to uni-dimensionalize, scale, and interpolate every disciplinary
interface(couplings, constraints, and objective). Considering the example of g1, which is a seven-dimensional
constraint vector attached to structure discipline, the transition is shown in Figure 3.18.

Figure 3.18: Interpolation of disciplinary interface

The above transition is followed by the generation of the dependency matrix as explained in section 3.1.3.1.
Each scaled version of the SSBJ problem is constructed using a particular value of (nx ,ny ,nc ,d). For a value
of (nx ,ny ,nc) = (2,2,2), the following flow diagram shows the effect of altering the coupling density on the N 2

diagram for the SSBJ problem(using MDF).

Figure 3.19: Coupling between y211 and y120

Figure 3.19 and Figure 3.20 show the effect of low(d = 0.18) and high(d = 0.95) coupling densities. In Figure
3.19(d = 0.18), a sparse density matrix is generated. Within that, the connective link that exists between y211

and y120 is shown using the filled square that exists at the junction of the intersecting black lines. The corre-
sponding coupling in the N 2 diagram is encircled. In Figure 3.20, a dense matrix(d = 0.95) is shown with a few
missing connections. The missing connection between y211 and y121 is shown using the empty square at the
junction of the intersecting black lines, and the corresponding lack of coupling is displayed in the N 2 diagram.

3.2. Implementation of SARF methology on SSBJ Problem 35

Figure 3.20: No coupling between y211 and y121

As explained in Section 3.1.3.2, along with the dependency matrix, a component dependency graph is also
required to be generated so as to evaluate each component of the extrapolated output according to a random
component of the original output. By considering a particular value of (nx ,ny ,nc ,d) = (5,8,5,0.5), the inter-

polated constraint g (i nt)
1 from Figure 3.18 can be extrapolated as shown in the following flow diagram(Figure

3.21):

Figure 3.21: Flow diagram for extrapolation of constraint g1,(nx ,ny ,nc ,d) = (5,8,5,0.5)

36 3. Reproducibility Study - Scalable Analytic Replacement Function

The extrapolated constraint g ext
1 has ny components. The input components for the extrapolated con-

straint can be observed in the horizontal label of the dependency matrix. There are four input vectors, x1, y21,
y31 and xshar ed , comprising of nx ,ny , ny and nx components respectively. The output vector g ext

1 comprises
of nc components. The extrapolated constraints are evaluated using three entities, the library of interpolated
constraints, the dependency matrix, and the component dependency graph. The overlapping extrapolated
constraint plots shown in the flow diagram(Figure 3.21) represent the individual contribution of some of the
input components(keeping the other components constant). Comparing the plots of interpolated and ex-
trapolated constraint(g i nt

1 and g ext
1), the convexity of interpolated and extrapolated components can be seen

to be preserved. The straight lines in the extrapolated component graph represent the missing dependency
between a particular input and output component.

3.3. Pre-processing / Optimization settings
Prior to running a critical analysis of the comparative study performed by Vanaret et.al.[16], it is required to
establish the following:

1. Define and justify the cost criterion used to compare MDF and IDF architectures.

2. Define the optimization and tolerance parameters to be used in the forthcoming analysis.

The above points are taken up in the following two subsections:

3.3.1. Cost criterion for Comparing MDF-GS and IDF Architectures
A general comparison of MDO architectures can be made by noting the total time or discipline calls. How-
ever, within the SARF methodology, expensive discipline calls are replaced by interpolated libraries using
cubic splines, which enables the testing of architectures across a large array of multiple parameters. There-
fore, instead of total time/discipline calls to compare MDF-GS and IDF architectures, the SARF methodology
proposes a cost function that factors in the major sub-steps within the two architectures that require compu-
tational effort. Owing to the difference in approaches of the MDF-GS and IDF methods, these sub-steps also
vary accordingly, but they can be categorized into two major components, linearization, and disciplinary
evaluation. An optimization approach using a gradient-based algorithm like SQP requires linearization of
objective and constraint functions that are performed at every optimizer iteration[16, 26]. This directly trans-
lates to the calculation of partial derivatives of each disciplinary coupling with respect to all components of
the design space(Vanaret et. al.[16], Eq. 3). In IDF, this step requires more calculations owing to the ad-
ditional consistency constraints and design variables. However, to fulfill the linearization of objectives and
constraints in MDF-GS, it is also required to solve a linear system at the end of every MDA iteration[16]. For
iteratively solving a linear system given by equation Ax = b, matrix A is required to be decomposed into lower
and upper triangular matrices[40]. The cost build-up for MDF-GS therefore includes the number of lower
upper factorizations within each MDA routine as well as the number of MDA analyses invoked during the
optimization process. These two factors also account for the cost of disciplinary evaluation in MDF-GS. In
case of IDF, the optimizer directly evaluates the couplings across every disciplinary interface, so the cost for
IDF includes the number of coupling evaluations over each discipline. The cost breakup for MDF-GS and IDF
approaches can be stated as follows:

C I DF = ∑
i∈di sci pl i nes

neval i + cl i n

∑
i∈di sci pl i nes

nl i ni (3.7)

CMDF−GS = cl i n

∑
i∈di sci pl i nes

nl i ni + cLU nLU + cMD AnMD A (3.8)

where: neval i represents the number of disciplinary evaluations in IDF, nl i ni represents the number of
linearizations(calculation of partial derivatives) over all disciplines, nLU and nMD A represent the number of
lower upper factorizations and the number of MDA routines respectively in MDF.

The weight factors used in the above equations are listed below:

• cl i n is the time ratio between a linearization and each disciplinary analysis.

• cLU is the time ratio between a lower upper factorization and a disciplinary analysis.

• cMD A is the time ratio between an MDA analysis and a disciplinary analysis.

3.4. Critical Analysis of Existing Results 37

3.3.2. Optimization and Tolerance Parameters
As the final preparatory step before running the comparative study, it is required to adjust the various opti-
mization and tolerance parameters to be used in OpenMDAO for the forthcoming analysis. This is shown in
Figure 3.22

Figure 3.22: Pre-processing settings for SSBJ based scaled problem

The original paper does not provide a value for the above mentioned tolerance parameters. However, the
above parameters are critical to ensure that a fair comparison can be made between MDF-GS and IDF archi-
tectures in the comparative study. Since the comparison of architectures is to be made in terms of the cost
criterion(which is representative of solution effort), it must be ensured that the final objective is the same(up
to a certain number of decimals) for both MDF-GS and IDF architectures for each scaled problem. Addition-
ally, it must be ensured that "redundant" iterations do not occur for a particular architecture. Redundant
iterations are those where optimizer iterations continue to occur without any significant changes in the ob-
jective value. The reason for extra iterations is required to be investigated such that changes can be made in
the tolerance settings and additional iterations can be clipped off. It must also be ensured that the overall
time required to create the database of scaled problems is as low as possible without compromising on the
above points.
Therefore a tuning study of optimization settings is required, before performing the comparative study of the
investigation by Vanaret et.al.[16]. The tuning process is explained in detail in Appendix B.

3.4. Critical Analysis of Existing Results
In the application part of the paper by Vanaret et. al.[16], the SARF scaling methodology was applied on
the SSBJ MDO problem to test the performance of MDF-GS and IDF architectures. Using a particular range
of problem parameters, a repository of SARF based scaled SSBJ problems was created and a comparative
analysis was carried out to check for correlations between problem parameters and performance of MDO
architectures. In this section, the objective is to repeat the comparative analysis carried out by Vanaret et.
al.[16] using the same set of parameters, make a side by side comparison of the findings with those provided
in the original paper and arrive at the motive for further investigation. The following table (Table 3.1) shows
the range of problem parameters used for the comparison.

Parameter Range of values

nx 5 - 30
ny 5 - 40
d 0.4
nc Same as nx

Table 3.1: Range of parameters used for comparison

coefficient value

cl i n 0.5
cMD A 2
cLU 2

Table 3.2: Coefficients used within cost buildup

The comparison is made using the cost criterion C defined in Section 3.3.1. The value of coefficients(time
ratios) used within the cost criterion are shown in Table 3.2. Figure 3.23 and 3.24 represent a side by side
comparison of the plots made in the original paper and the one made by the candidate using similar condi-
tions.

38 3. Reproducibility Study - Scalable Analytic Replacement Function

Two figures are used to cover the full range of parameters given in Table 3.1. It can be noticed that Nx , Ny

are used in place of nx ,ny , thereby indicating the total number of design variables and the total number of
couplings. For the SSBJ problem, it can be made out from the scaled dependency matrix (Figure 3.12), that
for uniform size of design and coupling variables, Nx = 4∗nx , Ny = 5∗ny .

(a) Original paper (b) Reproducibility study

Figure 3.23: Estimated cost for MDF-GS and IDF optimizations on the SSBJ test case with Nx ∈ [20,60] and Ny ∈ [40,200]

(a) Original paper (b) Reproducibility study

Figure 3.24: Estimated cost for MDF-GS and IDF optimizations on the SSBJ test case with Nx ∈ [80,120] and Ny ∈ [40,200]

Looking at Figure 3.23a[16] and Figure 3.24a[16], it can be observed that the sample points used for com-
parative study in the original paper do not produce a noticeable trend. For each value of Nx , there does not
seem to be any particular range of Ny that shows a preference for a particular architecture. Looking at MDF-
GS and IDF architectures individually, the overall cost of optimization does not show a gradual rise or fall with
an increase in the number of design variables(Nx). There are certain peaks/ dips in the cost criterion (for eg.
at (Nx , Ny = 80,120), (Nx , Ny = 20,120)) that are left unexplained in the paper.
The results from the reproducibility study are shown in Figure 3.23b and Figure 3.24b. Firstly, it can be seen
that the results in the reproducibility study are different from the ones obtained in the original plot. This is
because of the coupling density factor(d). Even though the same factor(d = 0.4) is used for both problems,
the solution is different because of the random method of dependency allocation used in the SARF method(as
explained in Section 3.1). An observation regarding a particular range of Nx , Ny values favoring any particular
architecture still cannot be made. However, the reproducibility study represents a more consistent trend in
the cost criterion for both MDF-GS and IDF approaches. For both architectures, there seems to be a gradual
increase in the cost criterion for each value of Nx when Ny is increased, although unexpected peaks/dips do
occur in the cost criterion at points such as Ny = 160 (across a range of Nx values).

3.5. Outcome of Critical Analysis and Further Investigation 39

It can be said that a more thorough investigation is required to plot the cost criterion vs problem size in a
more deterministic way. This can be done by including more sample points and multiple runs on each sam-
ple point in the reproducibility study. Applying multiple runs on the same (Nx , Ny) value amounts to running
different MDO problems by generating a new dependency matrix and component dependency graph at ev-
ery run. Considering a denser set of parameter values does not generate a trend on its own, but it should add
clarity to new trends that emerge out of multiple runs. By considering a denser set of Ny values within the
same lower and upper bounds(Ny ∈ [40,200]), and considering the median cost ratio of seven runs, the same
comparison is repeated and the results are plotted in Figure 3.25.

(a) Nx ∈ [20,60], Ny ∈ [40,200] (b) Nx ∈ [80,120], Ny ∈ [40,200]

Figure 3.25: Estimated cost for MDF-GS and IDF optimizations on the SSBJ test case(multiple runs, more sample points)

For making the above plots, the median cost ratio of seven runs is considered in place of the average
cost ratio because it eliminates the effect of an extreme point. Figure 3.25 shows that for the entire range
of Nx values tested, a (more) consistent rise in cost criterion with increase in Ny can be observed. More
importantly from the context of comparing MDF-GS and IDF architectures, it can be seen that at higher
values of Ny (> 140), MDF-GS looks to be the preferred architecture with consistently less cost of optimization
compared to IDF, specially at higher values of Nx . For lower overall problem size (eg. Nx = 20, Ny = 40), IDF
seems to perform slightly better compared to MDF-GS.

3.5. Outcome of Critical Analysis and Further Investigation
Applying the SARF methodology with more runs and a denser data set leads to the emergence of trends that
are not found in the original paper. Adding multiple runs accounts for the randomness of the SARF Method
and leads to certain regions of data points where one architecture seems to be faster than the other, an ob-
servation that challenges the conclusion of "no visible trend" made in the original paper. The denser data set
is like an enhancement, which adds clarity to the trends by increasing the number of runs. Therefore, per-
forming a more robust implementation of the comparative study by Vanaret. et.al[16] leads to the emergence
of patterns that connect the relative performance of MDF-GS and IDF architectures with certain ranges of
problem parameters representing the size of design and coupling variables. In other words, based on Figure
3.25a and Figure 3.25b, a prediction can be made about the relative performance of MDF-GS and IDF archi-
tecture on the scaled SSBJ problem without executing the problem. The extended reproducibility study can
be considered an example of a small scale prediction model of MDO architecture.
The extended reproducibility study can be thought of as a starting point for building a larger prediction
model, where more parameters are included in the investigation and more MDO problems are used to test
the existence of the above-mentioned patterns. The SARF methodology allows the user to vary the size of the
local constraint vector(nc) and the coupling density factor(d) but the effect of these parameters on the choice
of MDO architecture is not studied in the original paper by Vanaret et. al.[16]. Instead, the number of con-
straints is fixed to the number of design variables and only one value of density factor is tested(d = 0.4) which
is the approximate density factor of the original SSBJ problem. These parameters can be included in the
larger prediction model. The SARF methodology provides two coupling related parameters, ny , and d which
represent the number of coupling variables and the coupling density. However, as discussed in the literature

40 3. Reproducibility Study - Scalable Analytic Replacement Function

review, the coupling strength is a separate parameter, which can be estimated through sensitivity analysis of
the couplings present in the problem[15, 8]. The difference between coupling strength and coupling density
was discussed in Section 3.1.3.1. By selecting an existing method to calculate coupling strength based on lit-
erature, a parameter can be defined to assign a particular value of coupling strength for each scaled problem.
Along with internal problem parameters, it is also required to include parameters related to the optimization
environment such as the number of processor cores. This should allow the prediction model to see the ef-
fect of parallel processing on the relative performance of MDO architectures. As explained later, centralized
processes like IDF(which don’t use Multi-Disciplinary Analysis Solver) run faster when parallel processing is
utilized. For MDF, the Jacobi convergence scheme is required for parallel processing to work (as opposed to
Gauss-Seidel which was used in the reproducibility study and the original paper by Vanaret et. al.[16]), but
the speed improvements are not expected to be as vast as IDF.

The process adopted by Vanaret et.al[16] to make a two-dimensional plot for each parameter pair is not
going to work when the effect of many parameters is to be analyzed simultaneously. For instance, when
looking at the combined effect of coupling density and the number of processors, other parameters have to
be considered constant. How the "considered" features react with the "constant" ones to affect the perfor-
mance of MDF(GS/jacobi) and IDF architectures cannot be seen with a two-dimensional plot. This is where
a machine learning based analysis can be useful. The next chapter is about the construction of a generalized
prediction model, based on machine learning assisted analysis of problem parameters.

4
Prediction Model of MDO Architecture

A machine learning system works within the frame work of build, validate and test. However, employing
a blindfold approach by assigning certain parameters as features and a particular quantity as a label often
leads to an unreliable prediction model. Every potential feature to be included in a machine learning based
prediction model needs to undergo a review process so that the benefit of including such a feature can be
assessed:

1. Firstly, it should be studied whether a given feature has a tangible effect on the outcome of the predic-
tion model. A feature should not only be able to independently bias the decision of a prediction model,
but also establish a definite trend in the outcome. If a perceivable trend is not apparent, such a feature
would harm the prediction capability of the model.

2. Secondly, every selected feature should support the idea of generalizability, i.e each feature should be
repeatable to new MDO problems without compatibility issues. For instance, the coupling density
factor parameter in the SARF methodology proposes one parameter to assign the density of coupling
across all disciplines. Now, proposing features to assign individual density factors for each discipline
will generate a more accurate model, but the model may not be repeatable to a new MDO problem with
a different number of disciplines.

The SARF methodology provides four generalized parameters for creating a scaled problem as shown
below:

1. nx represents the size of each design variable

2. ny represents the size of each coupling variable

3. d represents the density of coupling

4. nc represents the size of each constraint variable

Figure 4.1: nx ,ny ,nc - Effect on scaled MDO problem

The two discipline problem in Figure 4.1 shows the
way in which the parameters nx , ny and nc define a scaled
problem. The SSBJ problem is selected as the MDO prob-
lem for the review process of problem parameters. Ini-
tially, three out of the above four features are used, while
the constraint vector size(nc) is considered to be the same
as the design vector size(nx). By assigning some initial
ranges to the above features, a repository of SSBJ based
scaled MDO problems is created. By executing this repos-
itory of scaled SSBJ problems with MDF and IDF architec-
tures, a three feature - one label database is created, where the label represents the relative cost of executing
an MDO problem with the two architectures(precisely defined in next section). Since there are only three
features, the review process can be done through a visual analysis using a three dimensional scatter plot. Fol-
lowing that, the research is extended by sequentially adding two more parameters, constraint vector size(nc)
and the number of processor cores(np). The visual analysis is used to answer the following questions related
to the implementation of each feature:

41

42 4. Prediction Model of MDO Architecture

1. What is the ideal range and sparsity that should be assigned to each feature such that the database
can be generated within a reasonable time and also the patterns generated by each feature are fully
captured?

2. What should be the mode of implementation of each feature column(categorical/numerical/ordinal)?

Once there is clarity on these questions, a normalized database of SSBJ based scaled MDO problems can
be generated and a machine learning based prediction model can be built and validated.

4.1. Visual Analysis - SSBJ problem
This section is used to perform an exploratory analysis of the contribution of each problem parameter on the
comparative performance of MDF(using gauss-seidel convergence scheme) and IDF architectures. There are
three major subsections here, the first deals with the problem size and coupling density parameters proposed
by the SARF methodology(nx ,ny ,d). This is followed by a subsection where the size of local constraints is
chosen as a separate parameter and its effect on the relative performance of MDF and IDF architectures is
analyzed. Lastly, the effect of parallel processing, i.e using multiple processor cores for MDO optimization is
analyzed(using Jacobi convergence scheme in place of NLBGS for MDF).

4.1.1. Problem size and Coupling density
To define the problem size, SARF methodology uses two parameters nx and ny , representing the size of the
design and coupling vectors respectively, and a density factor d to determine the level of dependency be-
tween disciplines. Taking a cue from the investigation performed by Vanaret et. al.[16], the size of the design
and coupling vectors can be selected such that within a reasonable time, a sufficiently large database of scaled
problems can be executed. Considering a particular value of (nx , ny , d) as a data point, seven runs are re-
quired at each data point to allow the emergence of a trend, a point previously discussed in the reproducibility
study of Section 3.4. Initially, the following range of parameters is considered as shown in table 4.1.

Parameter Range of values

nx 2 - 16
ny 2 - 16
d 0.3 - 0.7

Table 4.1: Initial range of parameters

nx ny d Cost Criterion[MDF]) Cost Criterion[IDF])

2 7 .7 158 100
2 10 .7 198 134
2 15 .7 228 154

Table 4.2: Sample Database for analysis

A random section of the generated database is shown in table 4.2. This table includes the above problem pa-
rameters and the cost criterion for MDF and IDF optimizations. For making a comparison based on the cost
criterion, it is required to non-dimensionalize the cost outputs and define a cost ratio, so that the advantage
of using one architecture over the other can be seen over a range of problem parameters. The following steps
are undertaken to define the cost ratio(R) over each data point:

1. Snip the part of the database containing all the runs for a particular data point and calculate the median
cost ratio for the data point.

2. Based on the cost definition proposed by Vanaret[16](Equation 3.7 and 3.8), take the sum of the total
cost for both MDF and IDF and divide IDF over MDF to get an initial cost ratio Ri , which could range
from zero to infinity. When greater than one, Ri signifies MDF to be faster than IDF. Between zero and
one, it signifies that IDF is faster.

3. The maximum and the minimum values of the factor Ri , over the entire test database is calculated as
max(Ri) and min(Ri).

4. Using max(Ri) and min(Ri), the cost ratio(R) is interpolated separately as shown below (and in Figure
4.2). Therefore a negative value of R indicates IDF gives a quicker solution while a positive value means
that MDF is faster.

4.1. Visual Analysis - SSBJ problem 43

R =

(Ri)∗ (Ri−1)

(max(Ri)−1) , f or Ri > 1

−(Ri)∗ (Ri−1)
(1/mi n(Ri)−1) , f or Ri < 1

Figure 4.2: Interpolation for factor R

Figure 4.3: Scatterplot - cost ratio vs (nx , ny , d)

The cost ratio R replaces the last two columns of Table 4.2 with a single label. Considering the range of
parameters shown in Table 4.1, a three dimensional scatter plot can be made as shown in Figure 4.3. Since
every "dot" represents a particular data point or a particular value of (nx , ny , d), Figure 4.3 represents a
total of (13 * 13 * 5 = 845) data-points. Every data point is run seven times for a total of 5915 runs. A viridis
colormap is used to represent the cost ratio(R) as a function of nx , ny and d , plotted along the three axes.
The maximum positive and negative values of the R is also indicated in the figure. It shows that for the dot
representing the darkest blue close to the bottom left end of the color spectrum(circled in red), IDF is faster
than MDF by about 187.4 percent while for the lightest green at the other end(circled in blue), MDF is faster
than IDF by about 235.2 percent. Two viewpoints are used, one along the nx - ny plane and the other along
an asymmetric viewpoint between nx - d plane and ny - d plane. For every value of coupling density, as the
problem size is increased, the value of the R becomes progressively positive indicating preference towards
MDF. This phenomenon is more apparent with an increment in ny which indicates the size of the coupling
variables used in the scaled problem. This suggests that for a higher number of coupling variables, MDF
might be a better option. A possible reason for this might be the large number of consistency constraints that
are required to be satisfied while running a scaled problem with IDF architecture.

When looked at the same plot from the viewpoint of increasing the coupling density, it looks like the shift
from IDF to MDF with an increase in problem size is slightly more apparent at higher coupling densities but
the effect is not highly conclusive at this stage. Given the methodology used in forming the replacement
function, it is not beneficial to use values of coupling density closer to 1.0 because it reduces the likelihood of
generating independent combinations of the components of the output[16]. Also selecting coupling density
lower than 0.3 has practical limitations in the way that density matrix becomes too sparse to generate a cor-
relation between every coupling and at least one component of the design space.

44 4. Prediction Model of MDO Architecture

Parameter Range of values

nx 16 - 24, 30, 31
ny 16 - 24, 30, 31
d 0.3 - 0.7

Table 4.3: Extended range of parameters

The above range of parameters can be extended to include
greater problem sizes. Taking into consideration the higher
wall time of optimization for greater problem sizes, both pa-
rameters related to problem size, nx and ny , are increased in
steps of two , as shown in the Table 4.3. Additionally, to ac-
count for extremely large problem sizes, two more rows and
columns, representing problem sizes (nx ,ny ∈ [30,31], [30,31])
are also included. This set of extensions leads to the creation of separate zones with varying density of data-
points as shown in Figure 4.4(x-y plane). By superimposing the data-points of Table 4.3 on the previous
set(Table 4.1), Figure 4.4 allows the user to check the continuance of the trends observed in Figure 4.3 into
higher parameter ranges.

Figure 4.4: Scatterplot - cost ratio(R) vs (nx , ny , d) (Extended parameter range)

Looking at Figure 4.4, a clear gap can be observed between the zones where MDF and IDF are preferred.
For smaller values of ny (< 5) at lower coupling densities(d), IDF seems to be the preferred architecture. At
higher values of d , preference towards IDF is restricted to very small problem sizes((nx ,ny < 5) Preference
towards MDF architecture is observed at higher values of ny , irrespective of the coupling density factor d .
Compared to the smaller parameter ranges(Figure 4.3), at all values of d , the shift from IDF to MDF is more
apparent when moving towards very high problem sizes. The minimum value of the R stays the same as in
Figure 4.3(-1.87) since it represents the left end of the spectrum that shows the best case scenario for IDF. At
the other end of the spectrum, the maximum value of the cost ratio is 2.55, which corresponds to the data-
point (nx , ny , d) = (31, 30, 0.7).

Figure 4.5: Binning cost ratios into three categories
(Extended parameter range)

Based on the above two investigations, it can be said
that an increment in any of the three parameters inves-
tigated so far leads to a shift of preference from IDF to
MDF architecture. The shift from IDF to MDF can also
be represented by a secondary plot created in Figure 4.5,
which uses a three-color representation instead of a color
bar. The purple zone indicates cost ratios that are lower
than -0.5(IDF > 50 percent faster than MDF), green indi-
cates a cost ratio between -0.5 and 0.5 while yellow indi-
cates cost ratio beyond 0.5(MDF > 50 percent faster than
IDF). Given the implementation of the SARF methodol-
ogy, since ny and d together determine the overall num-
ber of dependencies, it can be said that increasing the
number of coupling dependencies leads to MDF being

4.1. Visual Analysis - SSBJ problem 45

the more preferred architecture. An argument can be made here that the existing results are dependent on
the SARF methodology. This is especially true for the extended range plotted in Figure 4.5, which shows some
extremely high problem sizes. However, it must be noted that the nature of the original SSBJ problem resem-
bles a coupling density factor of around 0.4[16]. Also, considering the averages of the non uniform values of
nx and ny , the original SSBJ problem can be considered to be an MDO problem of small size(nx ,ny < 5,5).
The data-points that resemble these values indicate a preference for IDF. When the original SSBJ problem is
executed in OpenMDAO, the cost ratio also comes out to be negative(-1.35, discussed in more detail in Chap-
ter 5). The data-points in Figure 4.5 that represent MDF as the preferred architecture have been derived by
scaling the original SSBJ problem to much higher dimensions(nx ,ny > 15). Such high values of problem size
are not indicative of real-world MDO problems. Also, looking at Figure 4.5, there is a green zone of data points
that do not indicate a clear preference between MDF and IDF (nx ,ny ∈ [5,15], [5,15], all coupling densities).
These ranges require additional investigation using a machine learning model.

4.1.2. Constraint size
The above investigation was carried out by considering the size of disciplinary constraint vectors to be equal
to the size of the design vector(nx). A second investigation can be conducted by decoupling the sizes of the
design and the constraint vectors so that the sole effect of altering the disciplinary constraints can be studied.
A singular parameter nc is defined to uniformly assign the number of disciplinary constraints outputted by
each discipline. Instead of selecting a range of values for nc , to reduce the time of analysis, nc is added as a
parameter that takes up a value representing the relative number of constraints with respect to another fea-
ture such as nx . In this manner, a four feature database is created such that the design variables, couplings,
constraints and the density of interdisciplinary coupling can be independently represented. For this inves-
tigation, the range of earlier parameters is considered to be the same as shown in Table 4.1. Concerning the
range of nx , nc is assigned to one of [3, 10, 17], representing three levels of local constraint sizes. The database
is executed for each value of nc with MDF and IDF architectures and the results are plotted in Figure 4.6

Figure 4.6: Scatterplot - cost ratio(R) vs (nx ,ny ,d) / varying constraint sizes

Before these results are discussed, it must be noted that in the SARF methodology, every disciplinary inter-
face is represented by a child class of OpenMDAO’s E xpl i ci tComponent class, which provides the methods
to handle the inputs and output of each coupling of the discipline. The disciplinary constraints are computed
by initializing a separate E xpl i ci tComponent class. Since the classes representing the constraint outputs
are not placed within an iterative solver scheme, the constraints are not required to be evaluated within any
analysis routine and are handled only by the optimizer. Therefore varying the size of the constraint vector
is not expected to create a decisive bias between the performance of MDF and IDF architectures. However,
there is still some merit in including the constraint vector size as a feature in the prediction model as shown
below.

46 4. Prediction Model of MDO Architecture

The analysis of the trends found in Figure 4.6 is more subtle than that of Section 4.1.1. Firstly, Figure 4.6
(a) is considered. It can be seen that for a value of nc = 3, the trends observed in the scatter plot with respect
to all three axial features are similar to that of Figure 4.3. Looking at the spectrum from left to right, the shift
from IDF to MDF is visible. The maximum advantage that IDF has over MDF is also similar at 186%. However,
the highest positive value for the cost ratio is 286%, which is more than the case shown in Figure 4.3(where
nc was fixed to nx). This could because the system optimizer is not loaded with the satisfaction of a large
number of constraint variables, which allows the emergence of a wider gap between the two architectures,
solely due to the different routes taken by them for solving the interdisciplinary couplings.

Figure 4.7: Binning cost ratios into three categories for Figure 4.6(c)

Moving towards Figure 4.6 (b) and (c), for higher
values of nc , the clarity of the zones preferring MDF
and IDF architectures is much reduced. The max-
imum and minimum values of the cost ratio(R) is
also reduced in magnitude. For a value of nc =
17, as shown in Figure 4.6 (c), a large part of the
spectrum(except the lower left and upper right ex-
tremes), seems to suggest a value of R close to zero
which leads to a prediction model suggesting no dif-
ference between the performance of MDF and IDF
architectures. The plot of Figure 4.6(c) is shown with
greater clarity in Figure 4.7 by binning the cost ra-
tios into three categories(using same method as Fig-
ure 4.5). It can be seen that green portion cov-
ers the largest range of (nx ,ny) values(Cost ratioR ∈
[−0.5,0.5]). Based on the above analysis, it can be said that nc is a feature that does not affect the relative
performance of the two architectures but at certain values, it leads to an inconclusive prediction model. At
the same time, without the inclusion of this feature, the model might overestimate the advantage that one
architecture has over another. Therefore, it is relevant to include a feature related to the constraint size in the
prediction model.

4.1.3. Number of Processors
Parallel processing, i.e. usage of multiple processors, is another parameter that can be taken into account
while selecting an MDO architecture. There are some existing works in this field that discuss the benefits of
using parallel processing approaches at different "algorithmic levels" of an MDO problem like the subsystem
solver level, system optimization level and multi-point optimization. Costiner et al.[41] reckoned in their pa-
per, "Just like any complex industrial design task, an optimization can be parallelized and practically solved
only when they can be split into weakly coupled subtasks layered on several levels". This seems to suggest
that IDF should take better advantage of parallel processing. The same idea is given by Cramer et al.[31]
who, while introducing the IDF approach as a decoupled version of MDF in 1994, suggested: "IDF has the
advantage of coarse-grained parallelism naturally suited to a heterogeneous computing environment[31]."
Within this investigation, it is intended to study the merit of parallel processing as a potential feature within
the prediction model. In other words, it is required to study the effect parallel processing has on the perfor-
mance of MDF and IDF architectures. Within OpenMDAO parallel processing is implemented by defining
a Par al lelGr oup class. The components needed to be executed in parallel are then added to this class
using add_subs y stem method. In MDF, parallelism is implemented at the solver level by instantiating a
Par al lelGr oup class for the MDA solver which enables the parallel evaluation of the three coupled disci-
plines(Structure, Aerodynamics and Propulsion). The XDSM for this configuration, generated using a scaled
SSBJ problem (nx ,ny ,nc = 2,2,2) is shown in Figure 4.8, where disciplines to be evaluated in parallel are repre-
sented using a parallel group. Since parallel processing is only used within the MDA routine, only the coupled
disciplines are shown inside the parallel group while the Performance discipline and the constraints are not.
Instead of NLBGS, Non-Linear Block Jacobi(NLBJ) is used as the MDA solver because the sequential nature of
NLBGS does not lead to performance gains over single-core optimization. In the case of IDF, the subsystems
to be evaluated in parallel can be directly added to the optimizer. The XDSM for the IDF configuration is
shown in figure 4.9.

4.1. Visual Analysis - SSBJ problem 47

Figure 4.8: XDSM for scaled SSBJ problem (nx ,ny ,nc = 2,2,2)
(MDF-Jacobi)

Figure 4.9: XDSM for scaled SSBJ problem (nx ,ny ,nc = 2,2,2)
(IDF)

48 4. Prediction Model of MDO Architecture

In this form of parallel processing, for both MDF and IDF, there is a direct relation between the number of
processors and the number of computational blocks. To run an optimization process in parallel, OpenMDAO
requires the presence of Openmpi4py and Petsc4py packages, along with a working build of MPI(Message
Passing Interface). The following command can be called in the terminal, specifying the script to be run and
the number of processors to be used.

−mpi r un −n (number o f pr ocessor s) py thon scr i pt .py

In this way, parallel processing is enabled in the optimization process by specifying the number of processor
cores that are available to the optimizer. In this section, it is required to analyze the effect of varying the
number of processors on the relative performance of MDF and IDF architectures.

Modern multi-core desktop processors are usually configured to have a core count in multiples of two.
The test system for this analysis consists of a processor with four physical cores. By defining a feature called
the number of processors (np), that can take a value one of [1,2,4], the investigation can be carried out in the
form of three plots, each representing the number of processor cores(np). For np = 4, there is an adequate
number of processor cores for both MDF and IDF. However, for np ∈ [1,2], the computational blocks to ex-
ecuted in parallel are more than the available cores. In such cases, the blocks to be executed in parallel are
selected randomly by the Petsc4py library. Therefore, each setting for np is expected to have an effect on the
optimization process and the relative performance of MDF and IDF architectures.

The plot representing np = 1 is drawn to represent a basic case with a Jacobi convergence scheme. Since
there are existing studies [28] to show that block Gauss-Seidel is usually faster than block Jacobi over a variety
of convergence problems, it is important to plot this basic case so that the sole effect of altering the number
of processors can be properly studied. Also for this investigation, the same range of the basic feature values
(nx ,ny ,d) are used as shown in Table 4.1. The constraint size parameter is fixed at nc = 5 to avoid the bi-
ases incurred due to changing constraint sizes. Just as before, every data point is given seven runs to allow
the trends to emerge. It must also be noted that for this investigation, wall time ratio(Rt) is used instead of
the cost ratio(R) as the comparison parameter because the iterative counters used in the original cost crite-
rion(discussed in Chapter 3, Section 3.3.1) do not change due to the usage of multiple processors.

Figure 4.10: Scatterplot - time ratio(Rt) vs (nx ,ny ,d) / number of processors

From Figure 4.10(a), it can be observed that switching to the Jacobian iteration(NLBJ) MDA method for
MDF and using a different cost metric produces a mild difference compared to Figure 4.3 (where the same
range of feature values were tested using NLBGS iteration scheme). The maximum and minimum values of
the cost ratio are found to be nearly similar. Increasing the processor count to two(np = 2), it can be seen in
Figure 4.10(b) that there is an expansion in the zone that indicates IDF as the preferred architecture. Across
all values of coupling density, a larger range of problem sizes indicate IDF as the faster of the two architecture.
Specifically looking at lower coupling densities(d ∈ [0.3,0.4]), it seems that IDF is the preferred architecture
for the majority of the problem sizes. Increasing the processor count to four (np = 4), leads to an increment
in this trend and except for regions that represent a very high number of couplings (ny > 12,d ∈ [0.7,0.8]), the
majority of the spectrum seems to indicate IDF as the preferred architecture.
Based on the above analysis it can be concluded that allocating individual processor cores to computational

4.2. Building a Prediction model 49

blocks has a tangible effect on the preference of MDO architectures, in that increasing the number of cores
leads to greater improvement in the solution times required by IDF. But the effect has so far only been ob-
served in the context of the three basic problem parameters. How this feature interacts with constraint size as
a feature or any other feature (to be included later) can be better understood with a machine learning model.

4.2. Building a Prediction model
In the previous section, some of the parameters that could influence the performance of MDO architectures
were visually analyzed. Testing for the influence of individual parameters, a range of feasible values for each
parameter was used to construct a database within a reasonable time. For the problem size related param-
eters, it was analyzed as to within what ranges, a parameter could have an influential say on the decision of
a recommendation system, beyond which the effect would taper off. Apart from the problem size and cou-
pling density related parameters proposed by Vanaret et. al[16], two other parameters were also identified,
i.e number of constraints(nc) and the number of processors(np).
For building a machine learning assisted prediction model of MDO architecture, it is required to use a data
science based approach from the ground up. There is no specific protocol for building a supervised machine
learning model. The approach varies according to the volume and type of features used in the model, and
the overall sectioning of the data-set used to train, validate, test and deploy the machine learning model.
In the current scenario, the SSBJ MDO problem has been used so far as the standard for implementing the
reproducibility study for the SARF methodology, as well as for the visual analysis of the potential features.
Therefore the initial version of the machine learning model is created on a database of scaled SSBJ Problems.
Following this, additional MDO problems are introduced to the machine learning model for validation and
testing.
The following list shows the major steps involved in the creation and deployment of the machine learning
based prediction model:

1. Generation of a normalized data-set of features and label(Section 4.2.1).

2. Testing the fitting algorithms provided by a python based machine learning package to look for the best
possible fit(Section 4.2.2).

3. Validating the model based on the SSBJ Problem with scaled versions of three other MDO problems
from the NASA MDO test suite and testing for fit accuracy(Section 4.2.3).

4. Making possible readjustments to model parameters / adding additional features to make a better pre-
diction model(Section 4.2.4).

5. Testing the well-trained model on new MDO problems(besides SSBJ and the three validation problems)
and driving conclusions(Chapter 5).

Four of the above five points are discussed in the following sections, the final point being taken up in the
next chapter.

4.2.1. Feature Definition - Generation of a Normalized Database
The first step towards creating a machine learning model is the generation of a large database with a number
of normalized distinct feature columns and one label column. For the feature columns concerning problem
size, namely nx ,ny , based upon the visual analysis, the variable sparsity range of values is selected as shown
below:

nx ∈ {r ang e(2,16,1),r ang e(18,24,2),30} (4.1)

From 2 to 16, the values are selected in steps of one and from 18 to 24 the values are selected in steps of two,
with 30 being an extreme value. The same applies to ny . This is an example of a categorical feature column
containing a set of non-continuous values. The normalizing factor for nx and ny is selected as the total
number of disciplines. The total number of disciplines is a logical choice because the parameters allocate
the same size of design and coupling variable to each discipline. For implementing the number of constraint
variables (nc), a categorical feature is adopted based on a constraint factor fnc , fnc ∈ {0,1,2,3} which allocates
a value of nc relative to the overall range of design variables(nx) used in the database. Therefore, nc can be
defined as function of the user specified constraint factor(fnc), comprising of one of four outcomes as shown
below:

50 4. Prediction Model of MDO Architecture

nc i = mi n(nx)+ fnc ∗ (max(nx)−mi n(nx))

3
; i ∈ {0,1,2,3} (4.2)

Applying the above translation, for {mi n(nx),max(nx)} = {2,24}, the values to be entered in the constraint
feature columns are {2,9,16,24}. For non-integral values of nc i , a floor function can be applied to restrict the
outcome to only integral values. In this manner, the relative effect of the constraint variables with respect to
design variables can be better studied by the machine learning algorithm. Since effectively only four values
are assigned to the feature, there is only a moderate increase in the time required to create the database.
Further, the number of constraints entered in the feature column can be normalized with respect to the
total number of disciplines. The feature column representing the coupling density factor is already non-
dimensional. Coupling density can be seen as a numerical feature containing continuous values between
[0.3,0.7]. Finally, the number of processors can be implemented as an ordinal feature column, that takes on
a value within {.25, .5,1} representing one, two and four cores.
The label column is the outcome of every case that gets entered into the database. For the feature rows rep-
resenting np = 1, the MDF convergence scheme used is Gauss-Seidel and the cost ratio(R) is calculated using
cost criterion discussed in Section 3.3.1. For np = 2,4, the MDF convergence scheme is Jacobi and the cost
ratio is calculated using the wall time of optimization(Rt). For the scaled SSBJ problem, using the range of
values given above, the normalized data set is sequentially generated as shown in Table 4.4.

Case

Features label

Design Coupling Constraint Coupling Density Processors Cost or Wall time ratio
(nx) (ny) (nc) (d) (np) (R or Rt)

1 2/3 2/3 2/3 .3 1/4 -1.89
2 3/3 2/3 2/3 .3 1/4 -1.86
.
.
.

31740 30/3 30/3 24/3 .7 4/4 1.36

Table 4.4: Initial data-set for training(SSBJ Problem)

4.2.2. Testing Machine Learning Algorithms on SSBJ Database

Cases
Features

(5 columns)
Label

(1 column)

Training cases
(10580 cases)

Training Feature
DataFrame

Training Label
DataFrame

Test cases
(21160 cases)

Test Feature
DataFrame

Test Label
DataFrame

Table 4.5: Split the SSBJ based database
(1:2 train-test split ratio)

Within this section, the objective is to discuss the
approach of building a prediction model out of the
SSBJ based database of scaled MDO problems (Ta-
ble 4.4) using Python’s scikit-learn package. The first
step is to split the database into training and test
sets. This was previously discussed in the literature
review(Section 2.5.1). According to the train test
split ratio, a certain percentage of case rows are sep-
arated into training cases and the remaining rows
are used as test cases. The two data sets are fur-
ther divided into features and label sets. In pythonic
terms, this translates to fragmenting the data-set
into four individual Pandas DataFrames1 each rep-
resenting training features, training labels, test features and test labels respectively. This is shown in Table
4.5. 33% of the rows(both features and labels) that fall under training cases are used in training the machine
learning model and 66% of the rows(only features) are used for testing the prediction capability of the trained
model.

1https://www.geeksforgeeks.org/python-pandas-dataframe/

4.2. Building a Prediction model 51

Figure 4.11: Test method-Predicted vs Actual cost ratios

Following this, a method is defined for testing
the prediction capability of a trained machine learn-
ing model. Looking at the testing methodology pro-
posed by Secco et.al.[39](Section 2.5.1) and Loyer
et.al[21](Section 2.5.2), the method is based on a
two-dimensional plot that compares the prediction
made by the machine learning model on each test
row vs the actual prediction. An example of this plot
is shown in Figure 4.11. For a perfect prediction, all
data points should fall along the y = x line. Now,
in the paper by Secco et.al.[39], the mean square er-
ror(MSE) metric was used to measure the predictive
performance of the machine learning algorithms.
MSE can be defined as shown below:

MSE = 1

n

i=n∑
i=1

(ypr ed (i) − ytest (i))
2 (4.3)

In equation 4.3, ypr ed and ytest refers to the predicted and actual labels. The above MSE term can be consid-
ered as the objective of the minimization problem that lies at the core of the machine learning model. It can
also be used as a performance metric to measure the prediction capability of a machine learning algorithm.
However, MSE is not a non-dimensional metric and does not provide a clear understanding of the "goodness
of fit" of the model. For measuring the quality of fit in a qualitative manner, a number of non-dimensional
metrics can be used. One such metric is the Explained Variance Regression Score(EV RS)2. Unlike MSE, EVRS
takes the form of a proportion, thereby explaining the lack of fit of the model using a dimensionless factor be-
tween zero and one[37]. Considering V ar (x) to be the variance of data set x, EVRS can be defined as:

EV RS = 1− V ar (ytest − ypr ed)

V ar (ytest)
(4.4)

The above EVRS score is used to test the predictive capability of the machine learning models used in this
thesis. The following machine learning algorithms are used for building and testing the prediction model of
MDO architecture:

1. Linear Regression

2. K Nearest Neighbours

3. Decision Trees

4. Deep Neural networks

Looking at the spectrum of machine learning algorithms listed above, a hierarchy of complexity in the math-
ematical background of each algorithm can be observed. At the heart of each machine learning algorithm
lies a minimization problem. A detailed discussion of the mathematical background behind every machine
learning algorithm is beyond the scope of this thesis. Within this thesis, the understanding of each algorithm
is restricted to the model centric parameters involved in the fitting process. The purpose is to analyze the
fitting capability of various machine learning algorithms when applied to the custom data set(Table 4.4). The
fitting process for each algorithm is discussed in detail in this thesis. However, to keep the story compact,
the discussion of the first three algorithms is moved to Appendix C. In this section, only the predictive perfor-
mance of the first three algorithms on the SSBJ based database of Table 4.5 is shown. The predictive plots of
Figure 4.12 are made using the same template as the example plot shown in Figure 4.11.

2https://scikit-learn.org/stable/modules/model_evaluation.html#explained-variance-score

52 4. Prediction Model of MDO Architecture

(a) Linear Regression (b) K Nearest Neighbours (c) Decision Tree

Figure 4.12: Predictive Performance of three machine learning models on the SSBJ based database of Table 4.5

Looking at the predictive plots of Figure 4.12, the test label(ytest), plotted along the x-axis, represents
the actual label values for the entries in the test database. The predicted label(ypr ed), plotted along the y
axis, represents the corresponding label values that are predicted by the machine learning algorithms. The
prediction accuracy is also shown for each plot in terms of EVRS values. It can be seen that the prediction
accuracy increases when moving from linear regression to K Nearest Neighbours and then to Decision Trees.
The fitting process for the three algorithms can be retrieved from Appendix C. The final algorithm to be tested
is neural networks. This is discussed in detail in the following section.

Neural Networks
Neural networks are a class of machine learning algorithms that aim to mimic biological natural intelligence,
using a perceptron model, which is the digital equivalent of a biological neuron. A neuron is generally repre-
sented by biologists as an elongated cell with a complicated structure as shown in Figure 4.13a 3. From the
context of neural networks, a simplified version of the neuron can be drawn as shown in Figure 4.13b 4. A
perceptron model can be derived from the simple description of the biological neuron, comprising of three
main components, dendrites or the input terminal, a nucleus or the processing core and axon or the output
terminal. The perceptron model is shown in Figure 4.13c

(a) Biological Neuron (b) Simplified Neuron (c) Perceptron model

Figure 4.13: Derivation of Perceptron

The perceptron serves as the elementary building block for a neural network model. A neural network
model is usually represented as a web of interconnected nodes sectioned into layers. An example of a simple
neural network can be shown using a reduced version of the SSBJ database as shown in Figure 4.14a. The
first layer of nodes, referred to as the input layer, is used to feed in the feature values(nx ,ny ,d). The last layer
(shown by a singular node for regression problems), represents the output of the neural network. The layers
in the middle are used for training the model.

3https://en.wikipedia.org/wiki/Neural_circuit
4https://towardsdatascience.com/the-differences-between-artificial-and-biological-neural-networks-a8b46db828b7

4.2. Building a Prediction model 53

(a) Simplified Neural Network (b) Singular Node Representation

Figure 4.14: Neural Network - Node Representation

Figure 4.14b shows the first node of Hidden Layer 1, depicted as n1. Now, there are three inputs to this
node, namely {nx ,ny ,d}. Additionally, there are also certain weights attached to each input. The output of
the node, referred to as transfer function(

∑
n1) can be defined as:∑

n1 = nx ∗w1 +ny ∗w2 +d ∗w3 +bn1 (4.5)

where w ∈ {w1, w2, w3} are the weights applied onto each feature value and bn1 is a bias term added to the
transfer function. The output of the transfer function is then passed through an activation function5 to limit
its value. Some commonly used activation functions are ReLU(Rectified Linear Unit) and Sigmoid Function.
The output of the node is then used as an input to nodes of the following layer. The output of the final
layer, comprising of a singular node is the predicted output for the set of values{nx ,ny ,d}. Neural networks
are considered to be powerful estimation tools. Given an appropriate number of layers and nodes, a neural
network can be shown to emulate any convex function[42].
It can be seen from the above explanation that every node receives a set of weights attached to each input and
also a bias term. For the entire neural network, these weights and bias terms can be framed into individual
matrices. Now, to build a machine learning model out of a multiple layer neural network(also referred to as a
deep neural network), it is required to adjust these weights and bias values using training cases. The training
process is conducted in the following manner:

1. Initiate by feeding in rows from the training database, assigning certain random values to the weight
and bias matrix.

2. Calculate the output of the neural network and measure the error from the actual output.

3. Using two techniques called Gradient Descent and Backpropagation6, gradually reduce the error met-
ric by adding more training cases into the neural network.

The weights and biases attached to each node, therefore, act as design variables for an optimization prob-
lem at the core of the training process, which aims to minimize the error between the projected and the actual
output for training cases.

From the context of this thesis, as mentioned before, it is of our interest to understand the way certain
user-defined hyper-parameters alter the prediction capability of neural networks. Neural networks are usu-
ally considered to be very powerful estimation tools, but at the same time they involve many internal hyper-
parameters that require adjustment according to the database in question7. One method is to consider all
parameters at the same time and perform a multi-dimensional grid search, but that would make the process
too complicated. A better option is to broadly classify the parameters into two categories:

1. Parameters that alter the size of the neural network, in terms of the number of hidden layers as well as
the number of processing nodes within each layer.

2. Parameters that alter the learning rate of the deep learning algorithm.

5https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activation-functions-right/
6https://www.analyticsvidhya.com/blog/2020/01/fundamentals-deep-learning-activation-functions-when-to-use-them/
7https://machinelearningmastery.com/how-to-configure-the-number-of-layers-and-nodes-in-a-neural-network/

54 4. Prediction Model of MDO Architecture

The first step in hyper-parameter training is size optimization, i.e, to come up with a neural network with
the required number of neurons and hidden layers, that is best suited for the SSBJ based database. Shown in
Figure 4.14a, the hidden layers of a neural network provide a certain level of abstraction between the feature
and label values[43], which makes it an experimental task to narrow in on the appropriate size of the neu-
ral network that can effectively simulate a particular database. A neural network of reasonable size should
be able to learn the representations that emerge out of the selected database without over-fitting. To set-
tle on a ballpark value for the number of nodes in each hidden layer, references can be taken from existing
literature[43, 44, 45]. A recommended norm is to select the same number of nodes in each layer as the num-
ber of features in the database8. Therefore, for the SSBJ dataset with five features, as a starting point, each
hidden layer is provided with five processing nodes. As for the total number of hidden layers, a definitive
thumb rule is difficult to obtain. Based on empirical studies by Jeff Heaton9, one such thumb rule is pro-
posed as "The number of hidden neurons should be between the size of the input and output layers." This
should suggest, that for uniform hidden layers(i.e layers having the same number of nodes), the total number
of hidden layers should be no more than one. However, it must be noted that the above suggestion is meant
only for classification problems, while a specific suggestion for regression problems is not to be found in the
literature. Additionally, while proposing the above thumb rule, Heaton also stated that any such rule can only
be considered to be just a starting point for a more detailed, data set specific investigation. Therefore, consid-
ering the initial number of layers to be one and the initial number of nodes per layer to be five, a systematic
grid search is conducted across the number of layers and nodes per layer to arrive at the optimum size of the
neural network.

(a) Neural Network - Initial Size (b) Neural Network - Optimal Size

Figure 4.15: Neural Network - Grid Search Optimization

The outcome of the grid search operation is shown in Figure 4.15. Three hidden layers comprising of
different nodes can be observed. Following the selection of the ideal size of the neural network, it is now
required to adjust the hyper-parameters that control the learning rate of the neural network. There are many
hyper-parameters in this context, such as the activation function for each node, the optimizing algorithm/er-
ror metric, or the learning rate of the neural network optimizer. In the current scenario, for simplicity, two
parameters are selected that directly affect the speed and stability of the training process, namely, batch size
and epochs. Batch size refers to the number of randomized samples from the training data set that are in-
ducted into the model at one time before error gradients are estimated and model weights are updated. One
training epoch conveys that the learning algorithm has made one pass through the training data set, where
examples were separated into randomly selected “batch size” groups10. The right combination of batch size
and epoch is required to effectively control the speed and stability of training the neural network. To find
the appropriate value of the above two parameters, one method is to perform a grid search across various
epochs and batch sizes. However, given the large ranges of values of these parameters that can be found on-
line, [46, 47, 48], a systematic grid search would be too time taking. Instead, a heuristics-based approach is
applied to settle on the appropriate values for these parameters.
According to Bengio et. al.[47], batch size as a hyper-parameter impacts the training time more than it affects
the predictive capability of the neural network model. A recommended norm is to select batch sizes in the

8https://www.udemy.com/course/python-for-data-science-and-machine-learning-bootcamp/
9https://www.heatonresearch.com/2017/06/01/hidden-layers.html
10https://machinelearningmastery.com/how-to-control-the-speed-and-stability-of-training-neural-networks-with-gradient-descent-

batch-size/

4.2. Building a Prediction model 55

form of 2n , such as one made by Luschi et. al. [48], who proved using multiple data sets, that selecting a batch
size between two(21) and thirty-two(25) gets reasonable results. Other studies suggest selecting a batch size
in order of hundreds11. From the existing literature[46, 47, 48], it can be inferred that unless lower batch sizes
create excessive noise in the fitting process(in terms of the update to model weights), the batch size should
be selected as low as possible, provided that the training time does not get prohibitively large. For narrow-
ing down the appropriate batch size for the SSBJ model, firstly, the number of epochs or training cycles is
fixed (epochs = 2000). Next, an order of batch sizes is selected(in powers of two) and the fitting accuracy of
the neural network is tracked for each consecutive training cycle, or each epoch, up to the total number of
epochs. This plot is represented in in Figure 4.16.

Figure 4.16: Effect of batch size on model training

Looking at Figure 4.16, the quantity plotted along the y-axis is the validation loss, which is the mean square
error(MSE), calculated on the validation data points, i.e data points within the training data set that are not
used for the particular epoch or training cycle. Instead of a normalized metric like EVRS, scikit-learn uses MSE
as a loss function for updating weights at the end of each epoch. MSE represents the predictive performance
of the model at the end of a particular epoch or training cycle. The first few epochs(< 100) have been removed
from the plot for clarity. Looking at Figure 4.16, two primary observations can be made. Firstly, every batch
size has a certain band or range wherein its predictive accuracy lies, the highest predictive accuracy being
that of the lowest batch size,i.e batch_si ze = 8. Secondly, for the lowest batch size, the updates to the error
metric are very noisy, which is generally undesirable for stable training of the neural network[47]. Therefore
the next best, batch_si ze = 16 is chosen as the default batch size for building the neural network.

The final step in hyper-parameter tuning is to select the appropriate number of epochs. Using the size of
the neural network shown in Figure 4.15b, and a batch size of sixteen, a plot is made to track the training and
test accuracy of the neural network for a range of epoch values. This plot is shown in Figure 4.17a.

It can be seen in Figure 4.17a, that as the epochs or training cycles proceed, the error on the training and
test data set decreases until a certain point, beyond which the training error continues to decrease while the
test error begins to creep up. This is the result of overfitting due to the selection of a high number of epochs/-
training cycles. This issue of selecting the right epoch can be resolved in two ways. One way is to apply an
Early Stopping method on the training process. The method calls for real-time monitoring of the valida-
tion error as training proceeds. A Patience factor is to be defined and supplied as a keyword argument to
this method, which provides a limit on the number of epochs the training can proceed without showing any
improvement(reduction) on the validation loss. A generally accepted value for Patience is around 25. In this
manner, the right value of the epoch parameter is selected by eliminating redundant epochs. The other way to
resolve the issue of overfitting is Dropout12. Compared to Early Stopping, this is a less direct way of resolving
the issue of optimum epoch selection in the sense that it targets a reduction in the validation loss. Dropout is

11https://machinelearningmastery.com/how-to-control-the-speed-and-stability-of-training-neural-networks-with-gradient-descent-
batch-size/

12https://machinelearningmastery.com/dropout-for-regularizing-deep-neural-networks/

56 4. Prediction Model of MDO Architecture

(a) Large Epoch value (b) Effect of Dropout (c) Effect of Dropout plus Early Stopping

Figure 4.17: Selection of optimum Epoch

often used in conjunction with Early Stopping13. It is a regularizing technique for neural networks. The idea
is to randomly drop a certain percentage of nodes from a specific hidden layer of the neural network at each
epoch. The dropped nodes lose both their input and output extensions. The fact that some of the nodes can
be effectively dropped in the next epoch prevents the node units from co-adapting too much and results in
the nodes taking lesser responsibility for the inputs[49] While defining the individual layers, Dropout can be
added in as a factor for that particular layer. To keep things simple, each hidden layer is assigned the same
dropout factor. The dropout factor is usually set between 0.1 and 0.5[50]. For the current model, a dropout
factor of 0.2 works the best.
For improving the predictive accuracy of the basic neural network model shown in Figure 4.17a, both Dropout
and Early Stopping methods are consecutively applied and the result is shown in Figure 4.17b and 4.17c.
Through direct(Early Stopping) and indirect(Dropout) means, the number of effective epochs is reduced from
2000 to 182. Based on the above investigation, the final values of the hyper-parameters are now known. Apart
from the ones discussed above, there are other parameters that are not investigated, but are also required to
be supplied to the neural network model, such as the Optimizer Algorithm, Learning Rate and the Activation
Function for each node of the neural network. Suitable values for these parameters are derived from liter-
ature and shown in Table 4.6. Using the hyper-parameter values in Table 4.6, the neural network model is
built upon the SSBJ dataset of Table 4.5. Using EVRS as the normalized metric, the predictive accuracy of the
optimized neural network model can be plotted as shown in Figure 4.18. The EVRS score is found to be 0.962
which is similar to the score obtained by the Decision Tree model(Figure 4.12c).

Type hyper-parameter Value

O
p

ti
m

iz
ed

Hidden Layer Nodes {18, 12, 16}
Batch Size 16

Epochs 2000
Dropout Rate 0.2

Early Stopping Patience 25

D
ef

au
lt

Optimizer ’ADAM’1

Activation Function ’ReLU’2

Loss Function ’MSE’
Learning Rate 0.001

Table 4.6: Optimized hyper-parameters

Figure 4.18: Performance evaluation of Neural Network

Selecting the most effective Algorithm
Based on the fitting process in the above section, it can be seen that in terms of EVRS, decision trees(0.967)
and neural networks(0.962) have higher fitting accuracy compared to Linear Regression(0.588) and KNN(0.927).
To get a better sense of the comparative effectiveness of decision trees and neural networks, the performance

13https://datascience.stackexchange.com/questions/30555/regularization-combine-drop-out-with-early-stopping
2https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
1https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/

4.2. Building a Prediction model 57

of both algorithms has to be looked at from a context beyond the one provided by a regression metric such
as EVRS. To explain this, a plot is made that shows a randomly generated sample distribution of points repre-
senting tested(actual) and predicted labels. This plot is shown in Figure 4.19a.

(a) Four Classes of Predicted Space (b) Confusion Matrix

Figure 4.19: Derivation of Confusion matrix

It can be noticed from Figure 4.19a that the representative points have been divided into four quadrants
that are also numbered according to the general convention. As defined earlier, the label in use for the re-
gression analysis, i.e ypr ed along y axis and ytest along x axis, is indicative of the cost ratio of optimization
using MDF and IDF architectures. A positive cost ratio indicates a preference towards MDF while a negative
cost ratio indicates a preference towards IDF. Therefore, the points that lie in the first and third quadrants
are those that are accurately predicted by the machine learning algorithm to be having a preference towards
MDF and IDF respectively. Quadrants two and four represent an incorrect classification. Based on this plot,
a classification report, in the form of a confusion matrix14 can be tabulated shown in Figure 4.19b. Based on
this confusion matrix, the classification accuracy(η) of the algorithm used to create the Predicted space of
Figure 4.19a can be calculated as follows:

C l assi f i cati on Accur ac y(η) = nQ1 +nQ3

nQ1 +nQ2 +nQ3 +nQ4
= 27+16

27+16+5+10
= .746 (4.6)

where nQi represents the total number of points that fall in Quadrant i .

The classification accuracy metric derived above can be used to narrow down the more effective machine
learning model when the fitting capability of the models are found to be nearly identical using a regression
metric like EVRS. Using this metric, a side by side comparison of the predictive capability of neural network
and decision trees is shown in Figure 4.20

(a) Classification Accuracy(Decision Tree) (b) Classification Accuracy(Neural Network)

Figure 4.20: Comparison of Neural Network/Decision Tree

14https://www.geeksforgeeks.org/confusion-matrix-machine-learning/

58 4. Prediction Model of MDO Architecture

The EVRS metric represents the absolute prediction capability of the machine learning model(in terms of
predicting the label) while the classification accuracy metric (η) is indicative of the final consequence of each
prediction. The EVRS metric, in case of neural network model(0.962) is slightly lower than that of decision
trees(0.967). As can be seen in Figure 4.20b, this can be partly attributed to the under-prediction provided by
the neural network model for certain points where ytest > 2. However, despite this under-prediction, the final
decision of the neural network based prediction model does not change because these points lie in a zone
where the cost ratio is quite high(>2), which indicates a strong preference towards MDF. The classification
accuracy, on the other hand, is higher for the neural network based model. Looking at Figure 4.20a, lower
classification accuracy can be attributed to the higher spread of values for the red points, i.e points that have
been wrongly classified. Most of these points are found in the ranges representing ytest ∈ [−1,1]. From this
analysis the following conclusion can be drawn:

While the prediction accuracy obtained by decision trees on the SSBJ data set is higher than neural
networks, the better final outcome (of the prediction system) provided by Neural network makes it more
effective than Decision Tree.

The machine learning model created using neural network is found to be most appropriate for building the
prediction system. Until now, the model has been trained and tested only on the scaled SSBJ data set. In keep-
ing with the set of objectives laid out at the beginning of Section 4.2, it is now required to test the predictive
capability of the model on new MDO problems. This process is taken up in the following section.

4.2.3. Verify Prediction Model - Test MDO problems
In the previous section, a neural network based prediction model was created on a database of SSBJ based
scaled MDO problems, consisting of five features and one label(Table 4.4). The algorithm was trained on the
train split of the SSBJ based database and the performance was tested on the test split of the same database.
In keeping with the idea of of build, validate and test, the earlier plots(Figure 4.20b) can be seen as validate.
The prediction capability of the model now needs to be tested on new test problems. For this purpose, scaled
versions of the following MDO problems, taken from the NASA MDO test suite[17] are introduced:

1. The propane combustion MDO Problem[17, 16]

2. Design optimization of a Speed Reducer[17, 51]

3. The Heart Dipole Problem[17],15

The three MDO problems mentioned above are used quite extensively throughout the field of MDO to
benchmark MDO architectures[17, 16, 52, 53]. These problems primarily differ in their problem structure
in terms of the presence of shared/ local variables, global/local constraints and the level of interdisciplinary
coupling. Therefore, these problems resemble a challenging test for the prediction model. In this section, the
neural network based predictive model, built upon the SSBJ based database, is tested out on the databases
created using the above three MDO problems. Before applying the SSBJ based neural network model on the
test problems and analyzing the predictive performance, it is required to discuss the individual MDO prob-
lems and the changes that are required to be made to the structure of the problem, as a pre-processing step
such that the SARF based scaling process can be applied on it. The details of the test MDO problems,including
the SARF-based scaling process are discussed in Appendix D

Parameters Range

nx 2/η - 30/η
ny 2/η - 30/η
d 0.3 - 0.7

np 1/4 - 4/4
nc {2 /η , 9 /η, 16 /η, 24/η}

Table 4.7: Template for test databases

This section is used to test out the predictive performance
of the SSBJ based neural network model on scaled versions
of the three MDO problems discussed above. The database,
for each problem, is firstly required to be created. This
is done on the basis of the template shown in Table 4.7(η
stands for the normalizing factor). While building the SSBJ
based database, the normalizing factor η for the size related
parameters(nx ,ny ,nc) was selected to be the number of disci-
plines. Using the same rule, for the propane combustion prob-
lem and the speed reducer problem, the database is built by
considering the value of η to be three. For the heart dipole problem, the value of η is two. Based on the range
of values provided in Table 4.7, the databases for the three problems are constructed.

15https://www.aere.iastate.edu/bloebaum/ii-c-1-heart-dipole-problem/

4.2. Building a Prediction model 59

Following this, the neural network model, trained solely on the SSBJ based database, is tested on the three
new problems. The results of the testing process are displayed in Figure 4.21. The analysis is made only on
the basis of prediction accuracy(EVRS) and not classification accuracy(η).

(a) Predicted vs actual cost ratio
(Propane Combustion)

(b) Predicted vs actual cost ratio
(Speed Reducer)

(c) Predicted vs actual cost ratio
(Heart Dipole)

Figure 4.21: Predictions made by SSBJ based neural network model

Figure 4.21 plots the predicted vs the actual cost ratios(R) for the three scaled MDO problems. The line
(ypr ed = ytest) represents the actual values of the cost ratio(R) for the three databases of scaled problems.
The green part of the line represents the points that favour IDF(ytest < 0) and the yellow portion of the line
represents the points that favour MDF(ytest > 0). The blue dots represent the predictions made by the neural
network model trained on the SSBJ database. Looking at the predictive performance of the trained neural
network model on the three databases, a significant amount of over/under-prediction can be observed. The
observations from the above three plots are discussed below:

For the database generated using the scaled propane combustion problem (Figure 4.21a), the predicted
value of the cost ratio is lower across the majority of the values tested. The inaccuracy in this prediction is
reflected by an EVRS score of 0.712. The neural network model predicts the cost ratio to be consistently lower
than the actual value. Trained solely on the SSBJ based database, the model wrongly estimates the scaled
propane combustion problem to give faster solutions when executed using the IDF architecture. Addition-
ally, looking at the left endpoint of the line ypr ed = ytest , the extreme negative value of the actual cost ratio is
only about -1.45(circled in blue), which indicates that even in the best-case scenario, IDF has a lesser advan-
tage over MDF for the scaled propane combustion problem, as compared to the scaled SSBJ problem. The
prediction is found to be fairly accurate only at the extreme left end of the yellow line, which indicates that
for a very small percentage of data points representing a distinct advantage for MDF(ytest ∼ 3), the cost ratio
is accurately predicted by the neural network model.

The predictions made on the scaled speed reducer problem (Figure 4.21b) shows an extension of the trends
seen in Figure 4.21a. Looking at the actual cost ratios represented by the line ypr ed = ytest , the green portion
of the line is comparatively much smaller than the yellow portion, which indicates that a very small per-
centage of points are found to be representing a negative cost ratio(and therefore preferring IDF). This leads
to a significant under-prediction made by the neural model. Compared to the scaled propane combustion
problem, a higher level of under-prediction can be observed between the predicted and actual cost ratios for
ytest < 0, which is reflected in the lower EVRS score of 0.675.

The predictions observed for the scaled heart dipole problem (Figure 4.21c) are opposite to the previous two
problems. While the EVRS score of 0.724 is higher than the other two plots, the SSBJ based neural network
model makes an over-prediction on the cost ratio across the entire range of ytest values. This implies that the
model inaccurately predicts the scaled heart dipole problem, across all data points, to be optimized faster
using the MDF architecture. This over-prediction is more pronounced for the data points on the left side of
the plot. Additionally, looking at the left end of the line ypr ed = ytest , that represents the true values of the
cost ratios for the scaled heart dipole problem, the extreme negative value of ytest is about -3.8(circled in red),
which represents an overwhelming preference towards IDF. The SSBJ based neural network model is unable
to predict such extreme values.

60 4. Prediction Model of MDO Architecture

Based on the above observations, it can be concluded that the cost ratios for the scaled SSBJ problem do
not align alongside the test problems. The misalignment is emphasized by the extreme values of the cost
ratios used to train the neural network model. For the SSBJ based database, the lowest and highest values of
the cost ratios are 2.98 and -2.35 respectively. However, for the other three problems, the actual lower and
upper bounds are different. For instance, in the heart dipole problem, the lower bound on the actual cost
ratios is -3.8. This is an extreme point, a label value that lies outside the range of label values used to train
the prediction model. This label cannot be predicted by the SSBJ based neural network, unless it is retrained
on a data point with such a label value. Additionally, there is a varying degree of misalignment between the
neural network based prediction and the actual cost ratio values when going from one scaled problem to the
other. This is apparent from the EVRS factors that are calculated for the three plots. In terms of compatibility,
the scaled speed reducer problem seems to be furthest away from the SSBJ problem, followed by the scaled
propane combustion problem and the scaled heart dipole problem. This indicates that the existing set of
features is not enough to fully define a scaled MDO problem. There must be an internal feature, not used yet
for the training process, which leads to the existing incompatibility.

The process of resolving the above discussed incompatibilities can be looked at from the context of ma-
chine learning as well as MDO. This is discussed in the next section.

4.2.4. Feature Engineering - Resolve Incompatibility and Retrain model
The objective is to create a machine learning model that has high and consistent accuracy of prediction across
multiple scaled MDO problems. It must be noted that the same template has been followed to build the
training database(using scaled SSBJ MDO problem) and the test databases(using scaled versions of the three
test MDO problems). The values of five normalized features that are entered within the database are the
same for each MDO problem. In such a case it is not possible to simply re-train the existing neural network
model by appending a certain fraction of the test databases to the SSBJ based database and allowing the
neural network to train on the new data points. This leads to multi-collinearity, which indicates the presence
of duplicate entries within the database with same feature values but a different label. An example of this is
shown below:

Source nx ny d np nc Label
SSBJ 2/3 2/3 .3 2/3 2/3 -2.34

Propane Combustion 2/3 2/3 .3 2/3 2/3 -1.45

Table 4.8: Collinearity due to same feature - different label

Therefore, to make the databases compatible with each other, it is required to introduce a separate differ-
entiating feature within each database. This is the point where the background knowledge of MDO, scalable
problems and the SARF methodology has to be applied to define a factor that can, in a meaningful way,
account for the abnormalities observed in the predictive plots of Figure 4.21a to 4.21c. The following subsec-
tions are dedicated to this process.

Derive the Differentiating Feature - Coupling Strength
Within the Literature Review, it was seen that the existing literature fails to propose an all-encompassing
scalable problem that would allow the user to independently alter features related to both problem size and
coupling strength(Section 2.3.1 and Section 2.3.2). The same holds true for the SARF based scaling method.
However, despite not proposing a method(parameter) to alter the coupling strength of the problem, it was
(indirectly) claimed in the paper by Vanaret et.al.[16] that the SARF scaling method preserves the coupling
strength between the original and scaled MDO problems. A possible explanation for this was given while
deriving the dependency matrix in the previous chapter(Chapter 3, Section 3.1.3.1), where it was claimed
that the value of a parameter depending on only the interdisciplinary sensitivities does not change while
going from original to the SARF based scaled problem. If a numerical estimate of the coupling strength for
a particular problem can be obtained, then it can be used to create a differentiating feature to justify the
incompatibility between the SSBJ based database and the database of the three test MDO problems. The
feature can be added as an additional column, with each database receiving a unique value of the feature. This
should resolve the issue of multi-collinearity and pave the way for creating a combined database of multiple
MDO problems, which can then be used to train a more efficient neural network model that can differentiate

4.2. Building a Prediction model 61

between MDO problems of varying coupling strength. The process of obtaining a numerical estimate of the
coupling strength can be understood from some of the previous works in this area. The existing literature[16,
8, 27, 5, 54] is searched to look for a generic method, that can be used to estimate the coupling strength for
any given MDO problem. One such method is derived using the research performed by Chauhan et. al.[27]
as discussed in the following subsection.

Numerical Estimate of Coupling Strength
For studying the relationship between local sensitivities and convergence criteria of MDA based approaches,
Chauhan et.al[8] looked into linear block Gauss-Seidel convergence criteria. For a linearized multi disci-
plinary system comprising of n components, it is possible to create an equation representing the updated
vector of couplings at the end of the k th block Gauss–Seidel iteration as a function of the coupling values at
(k −1)th iteration and the local sensitivities of couplings with respect to each other[8 eq.15]. This equation is
reworked by Chauhan et. al.[8] to form the following equation:

∆ν(1)

∆ν(2)

...
∆ν(η)

k+1

=

I 0 · · · 0

−∂ν(2)

∂ν(1) I
... 0

−∂ν(η)

∂ν(1) · · · − ∂ν(η)

∂ν(η−1) I

−1

0 ∂ν(1)

∂ν(2) · · · ∂ν(1)

∂ν(η)

0 0
...

... . . . ∂ν(η−1)

∂ν(η)

0 0 · · · 0

︸ ︷︷ ︸

G

∆ν(1)

∆ν(2)

...
∆ν(η)

k

(4.7)
where ∆νx

∆νy refers to the local sensitivity of the coupling νy with respect to νx .
The above matrix equation directly relates the vector representing the change in coupling output values

from one Gauss-Seidel iteration to another through a transformation matrix G , referred to as the iteration
matrix. This is the multiplier that allows the linear Gauss-Seidel process to arrive at the next iteration of
∆ν values. The above matrix equation(Equation.4.7), is in the form of a standard set of linear equation b =
Ax where A represents the Iteration matrix, while b and x represent the δν values for the k th and (k +1)th

iterations respectively. Given this form, two conclusions can be made from Equation 4.7:

1. By computing the spectral radius16 of this iteration matrix G , it is possible to get an idea of the rate
of convergence of the block gauss-seidel iterative process for a particular iteration[8, 55]. The smaller
the spectral radius, the lesser the coupling strength, and hence faster the convergence of the linearized
MDA system around the iteration point[8].

2. In the absence of a relaxation strategy(like Aitkens relaxation), the spectral radius of the iteration matrix
G should be smaller than one for moving towards a better solution while computing∆νk+1 from∆νk [8].

The above two points are useful in their own way. The first gives a reason to link a certain quantifiable
parameter such as the spectral radius with the coupling strength of an MDO problem around an iteration
point. The second point gives the possible range of coupling strength values that can be used to normal-
ize the coupling strength parameter. Now, within the OpenMDAO environment, there is no direct option to
compute the iteration matrix of Equation 4.7, as OpenMDAO executes linear block gauss-seidel iterations in
a matrix-free environment17. A workaround method is to use OpenMDAO’s Direct Solver as the choice of lin-
ear solver in place of Gauss-Seidel. As opposed to an iterative solver, Direct solvers make use of the Jacobian
matrix, assembled in memory, for computing an inverse or a factorization that can be used to solve the lin-
ear system18. The Jacobian can be calculated for each solver iteration within the memory by converging the
Di r ectSol ver MDA routine once for the MDO problem. The Jacobian matrix is then separated into lower
and upper matrices to create the iteration matrix G(with the lower matrix containing the diagonal blocks).
The spectral radius of the iteration matrix G is obtained by computing its largest absolute eigenvalue. This
process does not require the execution of any MDO optimizer iterations. Therefore, coupling strength, when
computed with the above mentioned method, can still be termed as a pre-execution feature, which can be

16https://mathworld.wolfram.com/SpectralRadius.html
17https://stackoverflow.com/questions/61559186/how-to-compute-the-iteration-matrix-for-nth-nlbgs-iteration/6159963761599637
18http://openmdao.org/twodocs/versions/latest/theory_manual/total_derivs/setup_linear_solvers.html

62 4. Prediction Model of MDO Architecture

calculated for any MDO problem, without running optimizer iterations.
The above discussed methodology is implemented in the unscaled SSBJ problem. By placing a pickled counter
within the _l i near i ze method present in OpenMDAO’s Di r ectSol ver class, the spectral radius of the itera-
tion matrix(G) is calculated and stored for each iteration. Figure 4.22a shows the plot of the spectral radius vs
each Solver iteration for the unscaled SSBJ problem.

(a) Spectral Radius vs Direct Solver
Iterations(original problem)

(b) Spectral radius vs Direct Solver
Iterations(scaled problems)

(c) Wall time vs Direct Solver Iterations(original
problem)

Figure 4.22: Spectral radius of iteration matrix and wall time vs solver iterations(Original and scaled SSBJ problem)

The original SSBJ problem, when solved using the MDF-Direct Solver scheme, completes in nine itera-
tions. Upon scaling the original SSBJ problem using a range of parameters, the coupling strength(ρ) at each
direct solver iteration is recalculated and plotted as shown in Figure 4.22b. The corresponding values of the
spectral radius is in the same ballpark as that of the original SSBJ problem(Figure 4.22a). This confirms the
claim made by Vanaret et. al.[16] that the coupling strength between disciplines does not get altered from the
scaling process.
For estimating the coupling strength(ρ) of the entire problem, a weighted mean based procedure is adopted
that takes into consideration the amount of time taken by the solver to converge a particular MDA iteration. A
time-averaged method to calculate the coupling strength for a particular MDO problem is proposed as shown
below:

ρ =
∑

ti ∗ si∑
ti

(4.8)

where ti and si are the time and spectral radius values recorded at each iteration. For calculating the above
derived ρ value the total time consumed in each iteration(for the original SSBJ problem) is also measured and
plotted as shown in Figure 4.22c.

The above equation is justified using the following points:

1. Instead of considering just the spectral radius at convergence, it is required to take into account the
spectral radius obtained at individual solver iterations such that the overall effort spent in resolving the
interdisciplinary couplings can be taken into account.

2. The spectral radius represents the rate of convergence, based on the iteration matrix that is assembled
at the beginning of each Di r ectSol ver iteration. However, each solver iteration requires a certain
amount of time as shown in Figure 4.22c. The factor ti is used as weights to account for the time spent
in each Di r ectSol ver iteration.

Using the above mentioned process, the coupling strength(ρ) of the unscaled SSBJ problem is found to
be 0.422 while that of the scaled SSBJ problem is found to be in range of 0.362 - 0.483. Upon inspection it can
be seen that there are a few outliers within this range and the mean value of the scaled SSBJ problem is 0.432
which is close to the coupling strength of the unscaled problem. The above process is repeated for the three
test problems and the results are shown in Figure 4.23 and 4.24.

4.2. Building a Prediction model 63

(a) Propane Combustion Problem (b) Speed Reducer Problem (c) Heart Dipole Problem

Figure 4.23: Spectral Radius vs Direct Solver Iterations

(a) Propane Combustion Problem (b) Speed Reducer Problem (c) Heart Dipole Problem

Figure 4.24: Spectral Radius vs Direct Solver Iterations

Problem Coupling Strength (ρ)

Speed Reducer 0
Propane Combustion 0.32
SSBJ 0.422
Heart Dipole 0.568

Table 4.9: Strength of Coupling(ρ)
(test problems)

Based on the time-averaged method shown in Equation 4.8, a
numerical estimate is obtained about the coupling strength of the
SSBJ test problem as well as the three test problems and shown in
Table 4.9. For the speed reducer problem , the spectral radius of the
iteration matrix stays constant at zero throughout the direct solver
iterations(Figure 4.23b), thereby the coupling strength also becomes
zero. This can be attributed to the fact that the speed reducer prob-
lem does not involve any bi-directional couplings and relies only on
unidirectional flow of information, from the first three disciplines to the fourth discipline. This can be seen
from the XDSM representation(using MDF) for the speed reducer problem shown in Figure D.6. The Propane
combustion problem represents a moderate level of coupling strength, lower than that of the SSBJ based
problem, while the heart dipole problem shows the highest coupling strength. For verifying the obtained
values of ρ, some empirical evidence can be sought. This is discussed in the next subsection.

Verify Coupling Strength Estimation - Empirical Evidence
Problem Coupling Strength

Propane Combustion medium
Speed Reducer medium

Heart Dipole high

Table 4.10: Strength of Coupling for test
problems

In a purely empirical approach, it is required to look into the sources
that comment on the degree/strength of coupling of the MDO prob-
lems that have been used in this investigation. Considering the three
test problems transcribed from the NASA MDO test suite, a portal
can be looked at, that was created by the University of Buffalo, State
of New York19,. The portal shows a classification of the MDO prob-
lems on the basis of coupling strength, problem size and hierarchy.
It uses three classes A, B and C to represent three levels of interdisciplinary couplings, namely, low , medi um
and hi g h respectively. With regard to the MDO problems that have been implemented in this thesis, Table
4.10 shows the class assigned to each test problem. The Propane combustion problem and the Speed Reducer
problem are both assigned a medi um coupling strength, which does not help create a differentiating factor
between the two problems. The heart dipole problem has a hi g h coupling strength. A second empirical

19http://www.eng.buffalo.edu/Research/MODEL/mdotestsuite.html

64 4. Prediction Model of MDO Architecture

source can be utilized here, from the paper by Vanaret et. al.[16], which states that the SSBJ problem consists
of strongly coupled disciplines while the propane combustion problem consists of weakly coupled analytical
disciplines[16]. The information obtained from these sources aligns with the trends observed in Table 4.9.
In an indirect empirical approach, the prediction plots made using the SSBJ based neural network(Figure
4.21) can be revisited from the context of the coupling strength(ρ) estimations. The scaled Propane Com-
bustion problem(Figure 4.21a) as well as the scaled Speed Reducer problem(Figure 4.21b) seem to show a
lower preference towards the IDF architecture, while the scaled heart dipole problem(Figure 4.21c) indicates
a greater preference towards IDF, for all the tested data points. Now, based on the existing, independent re-
search regarding the impact of coupling strength[5, 6], it can be said that, as the coupling strength increases,
the preferred architecture tends to shift from MDF to IDF. Assuming the prediction plots made using the SSBJ
based neural network(Figure 4.21) to be correct, the existing studies([5, 6]) seem to validate the ranking of
coupling strength estimations(ρSpeedReducer < ρPr opaneCombusti on < ρSSB J < ρHear tDi pole)

Retrain/Verify model based on Combined Database

Source nx ny d np nc ρ Label

Sp
ee

d
R

ed
u

ce
r 2/3 2/3 0.3 2/3 2/3

0.0

-0.6
3/3 2/3 .3 2/3 2/3 -0.58

: : : : : :
30/3 30/3 0.7 30/3 24/3 2.95

P
ro

p
an

e
C

o
m

b
u

st
io

n 2/3 2/3 0.3 2/3 2/3 0.311 -1.6
3/3 2/3 .3 2/3 2/3 0.309 -1.57

: : : : : :
: : : : : :

30/3 30/3 0.7 30/3 24/3 0.347 2.88

SS
B

J

2/3 2/3 0.3 2/3 2/3 0.412 -2.35
3/3 2/3 .3 2/3 2/3 0.414 -2.32

: : : : : :
30/3 30/3 0.7 30/3 24/3 0.443 3.0

H
ea

rt
D

ip
o

le

2/2 2/2 0.3 2/2 2/2 0.561 -3.82
3/2 2/2 .3 2/2 2/2 0.559 -3.8

: : : : : :
30/2 30/2 0.7 30/2 24/2 0.591 1.88

Table 4.11: Combined database of four problems(coupling strength ρ included)

Having sorted the appropriate value of
coupling strength for each problem, a
separate feature column representing the
coupling strength ρ can be defined and
added to the four databases of scaled
problems. Following this, the four
databases can be individually appended
to create a consistent database for re-
training the neural network. The re-
sultant database is shown in Table 4.11.
Based on the combined database shown
in Table 4.11, the neural network is re-
trained, using the same procedure as be-
fore. A train test split of 1:2 is made on the
combined database, along with the same
internal parameters for fitting the neural
network model as the ones used previ-
ously(Table 4.6) and an improved or "re-
trained" neural network is built on the
train split of the combined database. The
re-trained neural network is tested on the
test split of the combined database and the improvement in the prediction is shown in Figure 4.25.

(a) Predictive Performance of original neural network
(trained without coupling strength feature)

(b) Predictive Performance of re-trained neural network
(trained with coupling strength feature)

Figure 4.25: Predictive performance of neural network on combined database

4.3. Prediction Model - Summary 65

Figure 4.25a shows the prediction on the combined database made by the neural network model, trained
only on the SSBJ problem, without the inclusion of coupling strength(ρ) as a differentiating feature. The plot
can be seen as the case with multi-collinearities(same feature combinations but different label) that was dis-
cussed in Section 4.2.4. Since the neural network model does not run when there are multi-collinearities in a
test database, the plot in Figure 4.25a is constructed by applying the SSBJ based neural network model indi-
vidually on the four problems(excluding the coupling strength feature) and superimposing the four plots on
top of each other. The EVRS value of 0.75 is calculated manually by concatenating the four individual ypr ed

and ytest arrays. Figure 4.25b shows the predictive performance of the re-trained neural network model,
trained on the train split of the combined database, with the inclusion of coupling strength as a differentiat-
ing feature. The difference in the EVRS values in the above two plots(0.968 vs 0.754) shows the improvement
obtained in the prediction ability due to the inclusion of the coupling strength feature. Therefore, the feature
gives the neural network based model the ability to differentiate between MDO problems based on the cou-
pling strength. This improves the prediction capability of the retrained model. The drawback of the retrained
model is that it requires the convergence of a single MDA routine with the Di r ectSol ver iteration scheme.
It must also be noted that Figure 4.25a is the ultimate conclusion for the SSBJ based neural network model
because a prediction model trained on the SSBJ based model is found to be inadequate when tested on a dif-
ferent set of MDO problems. Figure 4.25b shows the increment in accuracy achieved by the retrained neural
network, but it is not the final conclusion on the prediction capability of the retrained neural network. Figure
4.25b is more of a validation because the training and test sets for the retrained neural network are both ex-
tracted from the same combined database of Table 4.11. The retrained neural network is yet to be tested on
unseen MDO problems. This is taken up in the next chapter. The following section provides a summary to
this chapter and briefly explains the road ahead.

4.3. Prediction Model - Summary
In this chapter, a prediction model of MDO architecture was built by combining the idea of machine learning
and scalable problems. The well known SSBJ test problem was selected as the starting point for implementing
the SARF methodology. The scaled SSBJ problem, constructed by varying five parameters{nx ,ny ,nc ,d ,np },
was first visually analyzed to look for meaningful contribution from each parameter. Following that, a fea-
ture set was defined to build a normalized database out of the scaled SSBJ problem. A number of machine
learning algorithms were applied on the SSBJ based database. By taking into account two metrics related to
prediction accuracy, the most accurate algorithm was found to be a neural network of a certain size. Once
the neural network based prediction model was created, it had to be tested on new unseen MDO cases,
for which three MDO test problems from the NASA MDO test suite[17] were introduced and their scaling
methodology was explained(Appendix D). These problems were scaled according to the SARF methodology
to create three test databases. Upon applying the SSBJ based neural network model on the test databases,
some over/under-prediction was observed. At this stage, feature engineering was applied, based on exist-
ing literature, to define and compute a differentiating feature called coupling strength(ρ). A unique value
of coupling strength could be assigned to each MDO problem. This allowed the individual databases to be
compatible with each other, so that they could be vertically appended to create a combined database. The
downside to coupling strength calculation was that it required the convergence of a single MDA routine with
the Di r ectSol ver MDA scheme, for any version of the problem(original/scaled). A neural network based
model was then retrained on the combined database. The retrained model(Figure 4.25b), when tested onto
itself(using a train test split), was found to be having a much higher accuracy(EVRS = 0.967 vs 0.75) than the
original model(Figure 4.25a) which did not take into account the effect of coupling strength.

The re-trained model had high accuracy when tested onto the same problems on which it was built, but it
still needs to be verified on unseen MDO problems, i.e problems that have not been introduced to the neural
network model. This process is taken up in the final chapter, where new MDO problems, containing a mix
of mathematical and physical disciplines, are introduced and tested by the neural network based re-trained
prediction model, followed by conclusions on the usefulness of such a prediction model.

5
Testing and Deployment of the Prediction

Model

Based on the investigative study performed in the previous chapter, two prediction models were framed, an
original/"vanilla" model(based on SSBJ based scaled problem) that used five parameters and an improved/re-
trained model(based on scaled versions of four MDO problems) that used six parameters. This process is
summarized in the diagram below:

Figure 5.1: original("vanilla")/ re-trained model

As can be seen in Figure 5.1, the SSBJ based vanilla model was not a success. It had high accuracy when
validated using train test split, but very low accuracy when tested with new problems. The re-trained model
was constructed by considering the test problems for the SSBJ based model as training cases. The re-trained
model had high validation accuracy. It is now required to see whether the re-trained model can be used to
create a prediction on a previously unseen MDO problem.

67

68 5. Testing and Deployment of the Prediction Model

This chapter is divided into four sections. The first section deals with testing the prediction model on scaled
versions of new MDO problems. For this purpose, two new MDO problems are introduced, namely, an aircraft
based MDO problem that makes use of physical disciplines and the sellar MDO problem 1. Based on testing
the prediction model on the new problems, an instance of an MDO Advisory System is created(in form of an
input-output model / binary decision tree) and its application is shown using data points. Using the outcome
of these test problems, the empty block in the above figure can be filled.

Considering the re-trained model to be the final prediction model created in this thesis, it is also required to
see whether the prediction model can be used to make predictions on original, unscaled MDO problems. In the
second section, the original versions of all six MDO problems are drafted into the mix(four old and two new)
and the possibility of repeating the prediction on unscaled MDO problems is analyzed. This is a qualitative
analysis, based on a certain rule-based extraction of features from the original MDO problems.

In the third section, a user’s manual is provided for deploying the prediction model. In this section, all the
pre-processing steps and computations that are required to use the prediction model on a new, unscaled MDO
problem are provided sequentially.

In the final section, a summary is provided for the chapter.

5.1. Testing Scaled Problems on Re-Trained Neural Network
Two MDO problems are used for testing the re-trained neural network based prediction model. The first prob-
lem to be tested is a MATLAB based three-dimensional wing optimization MDO problem consisting of ana-
lytical disciplines. The problem is taken from the course titled AE4205 MDO for Aerospace Applications. It is
an aero structural optimization/ fuel minimization problem that makes use of two analytical tools, an aero-
dynamic solver called Q3D and a structural sizing tool called EMWET. The second problem is the Sellar MDO
problem. The Sellar problem is a common MDO problem used as a means of understanding coupled models.
It comprises of two coupled disciplines, each described by a single explicit equation. Like the test problems
used in the previous chapter, the scaling process for the two test problems is moved to appendix E.

Source nx ny d np nc ρ Label

Fuel Minimization
2/3 2/3 0.3 2/3 2/3 0.484 -2.42
3/3 2/3 0.3 2/3 2/3 0.486 -2.39
4/3 3/3 0.3 2/3 2/3 0.486 -2.38

Sellar
2/2 2/2 0.3 2/2 2/2

.562
-2.42

3/2 2/2 0.3 2/2 2/2 -2.39
4/2 3/2 0.3 2/2 2/2 -2.38

Table 5.1: Database for Scaled fuel minimization problem

Based on the scaling process, a database
is built for the scaled Fuel Minimization
problem and the scaled Sellar problem,
using the previously established tem-
plate. An excerpt from the database is
shown in Table 5.1. The current database
can be used as a test case for the re-
trained neural network based prediction
model. The re-trained neural network is
applied on the test database of Table 5.1
and the results are shown in Figure 5.2

(a) Test vs Predicted values(Fuel Minimization problem) (b) Test vs Predicted values(Sellar Problem)

Figure 5.2: Performance evaluation of re-trained prediction model on scaled problems

1http://openmdao.org/twodocs/versions/latest/basic_guide/first_mdao.html

5.2. Advisory Systems for Scaled Problems 69

When applying the re-trained model on the fuel minimization problem, the prediction is found to be
highly accurate with an EVRS score of 0.958. The classification accuracy is also quite high at 0.967, which
indicates that 96.7 % of the points are accurately predicted to be faster with a particular architecture. These
values are very similar to prediction accuracy obtained when the re-trained model is validated using a train
test split ratio. When applying the re-trained model on the Sellar problem, the prediction accuracy is slightly
lower with an EVRS and η values of 0.908 and 0.926 respectively. The outcome is still better than the SSBJ
based prediction model where the prediction accuracy(EVRS) as well as the classification accuracy with new
problems was around 75%.

5.2. Advisory Systems for Scaled Problems
Based on the above two test cases, it can be said that the re-trained prediction model, that has been trained
on the pre-execution features offered by the SARF methodology as well as a coupling strength based feature,
offers an accurate prediction on the outcome of the new test problems. At this stage, a sample of an advisory
system for the scaled test problems can be constructed as shown in Figure 5.3.

Figure 5.3: Example of Advisory system for scaled test problems

Figure 5.3 shows an example of the advisory system, built using the re-trained neural network, in the form
of an input-output interface. Two sets of inputs are considered, from the Fuel Minimization problem and the
Sellar problem. The advice is generated from the predicted cost ratios. The percentage variance between
the predicted and actual cost ratios is calculated by considering the overall range of cost ratios that can be
predicted by the neural network model. It can be observed that the percentage variance is in single digits
which makes the advisory system accurate.
Figure 5.3 shows the outcome of the neural network based prediction model using some examples, in the
form of an input-output based interface. The neural network is like a closed box, which gives a certain value
of cost ratio for a particular input. The possibility of a secondary representation for the advisory system can
also be investigated, in the form of a graph, which could enable a user to get more insight on the generated
advice, such as the parameter which has the maximum influence on the cost ratio. Additionally, through an
advisory system in the form of an easy to read graph, advice could be generated on any scaled MDO problem
without initializing the trained neural network model within scikit-learn. For this purpose, a decision tree
based prediction model is created. By considering the same combined database(Table 4.11) as the one used
to train the neural network model, a decision tree algorithm(Section C.8) can be applied to create a decision
tree based prediction model as shown in Figure 5.4.

70 5. Testing and Deployment of the Prediction Model

Figure 5.4: Decision Tree based prediction model

The decision diagram consists of decision nodes that split the database by following a certain rule. The
corresponding nodes are further split until they end in a terminal node. Each terminal node represents a
particular cost ratio for all the data points that fall under it. The process is explained in detail in Appendix C.8
where decision trees are applied on the SSBJ based scaled database. Figure 5.4 shows the original decision
tree(behind the magnifying glass) which has thousands of nodes and branches, and also a small magnified
portion showing a few terminal nodes and nearby branches. So, according to the above diagram, for points
that satisfy nx > 3.16,d > 0.55 and ny > 2.5(end node circled in blue), the value of the cost ratio is 1.286. It
can be assumed here that the splits regarding the coupling density or number of processors are made earlier
in the decision tree.

As mentioned before, the intention is to supplement the neural network based prediction model with an
easy to interpret decision diagram, which gives a rough estimate of the cost ratio for a new MDO problem.
For this, a limited version of a decision tree is trained on the combined database (Table 4.11), by restricting
the number of branches and decision nodes that are available for training the decision tree algorithm. The
decision tree is visualized in Figure 5.5

5.2. Advisory Systems for Scaled Problems 71

Figure 5.5: Decision tree based prediction model(limited branches/decision nodes)

Figure 5.6: Predictive plot of decision tree(limited
branches/decision nodes)

Figure 5.5 shows a prediction model/advisory system, cre-
ated using the decision tree algorithm. Training on the com-
bined database(Table 4.11), using a 1:2 train test split, the deci-
sion tree is allowed to expand up to only seven levels while the
total number of terminal nodes is restricted to twenty-five. The
decision tree algorithm divides the test database into twenty-
five zones(each representing a terminal node) with each zone
being assigned a particular cost ratio. This is evident from the
predictive plot of the restricted decision tree provided in Fig-
ure 5.6, which shows the predicted cost ratio(ypr ed) for each
of the data points in a particular terminal node. Compared to
the predictive plot made by the re-trained neural network on
the combined database(Figure 4.25b), two observations can be
made. Firstly, the predicted cost ratios are arranged in layers
and secondly, there is a significant spread of values(ytest or ac-
tual cost ratio) around each zone of predicted points. There-
fore, due to the limited training of the decision tree, the overall prediction accuracy is lower than that of the
neural network based prediction model(EVRS = 0.769). However, the decision tree based visualization has

72 5. Testing and Deployment of the Prediction Model

an advantage over the neural network based prediction model (Figure 5.3) because it allows the user to draw
predictions on a test data point just by observing the above graph. The predicted cost ratio for one such data
point, representing a scaled version of the propane combustion problem is also shown in Figure 5.5 (path
and terminal node highlighted in blue). Figure 5.6 also shows the set of data points that represent the same
cost ratio(circled in blue). Another observation that can be drawn from the decision tree is that the very first
split is made on the coupling strength feature(ρ) which makes it the most decisive feature in the advisory
system. The feature concerned with the number of design variables(nx) also seems to be important as it is
found higher up in the decision tree. Therefore, the decision tree based visualization gives new insights about
the database of MDO problems that is not provided by the neural network based prediction model. However,
since the prediction accuracy of the decision diagram is much lower than the neural network based predic-
tion model, the decision diagram must be considered only as a useful supplement to the re-trained neural
network. Further testing of the prediction model with new problems is performed only on the re-trained
neural network.
The above advisory system/prediction model has been tested only with scaled problems that have been con-
structed using a fixed set of features. In the next section, the re-trained neural network is used to draw pre-
dictions on original, unscaled MDO problems.

5.3. Testing Original Problems on Re-Trained Neural Network

Figure 5.7: Predict cost ratios on Original Problems

A total of six MDO problems
were introduced in this thesis.
The re-trained neural network
was trained on scaled versions
of four MDO problems and it
was tested on scaled versions
of two MDO problems. How-
ever, the prediction model is
only practically useful if it can
predict the cost ratios for any
MDO problem that is intro-
duced to the model, and not
just SARF based scaled ver-
sions of MDO problems. It is
therefore required to test the
neural network based predic-
tion model on original, unscaled MDO problems as well. For this purpose, the original versions of all six
MDO problems are introduced to the prediction model. The neural network based prediction model only
considers as input a set of feature values as explained earlier. Each of the features in the scaled problem is
created through a rule-based transformation of the corresponding features in the original problems. Now,
to test the prediction model on an original, unscaled problem, the same features have to be defined for the
original problems. The details regarding the compatibility of features are given below:

1. Features regarding the coupling density(d) and the coupling strength(ρ) can be uniquely defined for
the original problem using the same logic as for the scaled problem.

2. The feature regarding the number of processors(np) is problem independent so it can be applied to
original problems in the same manner as scaled problems.

3. However, features related to problem size i.e, the size of the design variable(nx), coupling variables(ny)
and constraint variables(nc) cannot be imported directly for the original problem. This is shown using
a disciplinary interface in Figure 5.8

5.3. Testing Original Problems on Re-Trained Neural Network 73

(a) Original Problem (b) Scaled Problem

Figure 5.8: Incompatibility in problem size(Original vs scaled Problem)

Figure 5.8 shows the incompatibility in problem sizes between original and scaled disciplines. According
to the SARF methodology, only one value is assigned to nx that accounts for the size of each design variable,
local or shared. The same value of nx applies to every discipline in the scaled problem, irrespective of the
original structure of the problem. The rule also applies to ny and nc , representing coupling and constraint
variables respectively, as shown in Figure 5.8b. This is not always true for an original MDO problem, which
might have different sizes of design and coupling vectors as shown in Figure 5.8a. Therefore a method has
to be devised such that a unique value for each problem size related feature can be logically defined or "ex-
tracted" from the original problem. For this purpose, two methods are suggested, one based on averages and
another based on a more heuristic approach. The following section deals with the two methods and their
outcome on the prediction made by the re-trained neural network

5.3.1. Test Original Problems - Average Based Feature Extraction
One method for extracting problem size related features is to consider the arithmetic mean of each type of
size related parameter. This is shown using the design and coupling space of the fuel minimization problem
in Figure 5.9.

Figure 5.9: Problem Size parameters for Fuel Minimization Problem

Figure 5.9 shows the sizes of each coupling, constraint and design vector in the original fuel minimization
problem. The values of ny ,nx and nc for the original problem can be calculated as the arithmetic mean
of the existing variables, rounded off to the nearest integer. The feature values are then used for creating
a database of original MDO problems as shown below in Table 5.2. As can be seen in the table, each of
the three problem size related features has been normalized with the number of disciplines. As mentioned
before, the process of extracting coupling strength and coupling density does not change from the scaled
problems. While creating the database of Table 5.2, the MDO problem specific features remain the same(for
every problem) while the number of processors is altered. This way, each MDO problem is represented by
three data points, each representing one, two and four processors respectively. The only exception is the
Fuel Minimization problem which has only two data points. This is because the fuel minimization problem
has been transcribed directly from the original MATLAB based implementation, which simply gives the user
the ability to use parallel processing but does not specify the number of processors. Therefore, for the fuel
minimization problem, two data points are considered, one representing the lack of parallel processing and
the other representing parallel processing via four cores.

74 5. Testing and Deployment of the Prediction Model

Case

Features label

Design Coupling Constraint Coupling Coupling Processors Cost/Wall time
Density Strength ratio

(nx) (ny) (nc) (d) (ρ) (np) (Rt)

SSBJ
3/3 2/3 4/3 0.46 0.422 1 -2.213
3/3 2/3 4/3 0.46 0.422 2 -2.124
3/3 2/3 4/3 0.46 0.422 4 -2.155

Propane
2/3 2/3 5/3 0.672 0.322 1 -0.883
2/3 2/3 5/3 0.672 0.322 2 -0.754

Combustion 2/3 2/3 5/3 0.672 0.322 4 -0.412

Speed
5/3 2/3 3/3 0.65 0 1 -0.201
5/3 2/3 3/3 0.65 0 2 -0.53

Reducer 5/3 2/3 3/3 0.65 0 4 -0.76

Heart
4/2 2/2 2/2 0.77 0.568 1 -3.403
4/2 2/2 2/2 0.77 0.568 2 -3.254

Dipole 4/2 2/2 2/2 0.77 0.568 4 -3.323
Fuel 22/3 3/3 2/3 0.8 0.487 1(no parallel) -0.513

Minimization 22/3 3/3 2/3 0.8 0.487 4(parallel) -0.726

Sellar
2/2 2/2 2/2 0.8 0.562 1 -0.163
2/2 2/2 2/2 0.8 0.562 2 -0.314
2/2 2/2 2/2 0.8 0.562 4 -0.255

Table 5.2: Database of Original Problems

Figure 5.10: Predictive plot of Original Problems
(estimated using average based feature extraction)

Once the above database is created,
the ability of the prediction model to pre-
dict the outcome(cost ratios) on these
new original problems can be tested. The
re-trained model is applied on the set
of the six original MDO problems from
Table 5.2 and the results are plotted in
Figure 5.10. ytest represents the actual
cost ratios obtained through OpenM-
DAO(MATLAB in the case of the fuel min-
imization problem). The label column
of Table 5.2 represents the ytest values.
ypr ed represents the predictions made by
the re-trained neural network. Addition-
ally, the number of processors used to ex-
ecute the problem is numbered beside
each point. A few interpretations can be
made from the predictive plot of Figure
5.10. The red line(ytest = ypr ed) still rep-
resents the total range of data points that
can be predicted by the re-trained prediction model. It can be seen that majority of the data points lie in the
"third quadrant", i.e, the points are correctly predicted to be performing better with IDF architecture, except
the points representing the speed reducer problem, which are correctly predicted to not substantially favor
any of the two architectures. This could be due to the combined effect of lower problem size(which tends to
shift preference towards IDF) and lowest coupling strength(ρ = 0)(which tends to shift the preference towards
MDF). Also, looking at the accuracy for each prediction and potential outliers, the two points representing the
fuel minimization problem(circled green) are found to be lying the furthest from the prediction line. The ac-
tual value of the cost ratios (ytest = {−0.56,−0.72}) are still within the feasible range of prediction, but the
model predicts the cost ratios to be much more negative(ypr ed = {−3.23,−3.03}). Because of the poor predic-
tion accuracy achieved on points representing the fuel minimization problem, the overall prediction accuracy

5.3. Testing Original Problems on Re-Trained Neural Network 75

also takes a hit, with the EVRS metric coming out to be 0.476. This is because the EVRS metric, computed by
considering the square of the variance values, ends up heavily penalizing the predicted data point for the fuel
minimization problem. This prediction can be improved by adopting a better approach for feature extraction
as shown in the section below.

5.3.2. Test Original Problems - Sensitivity based Feature Extraction
In order to improve the prediction accuracy of the model for the fuel minimization problem, a different
strategy can be adopted for extracting the coupling variable related parameter(ny), one that is based on the
sensitivity of coupling variables with respect to each other. The idea is to include not just the shear num-
ber(arithmetic mean) of coupling variables but the relative contribution that the variables make to the over-
all convergence of an iterative solver. For this purpose, the iteration matrix for a given MDO problem, drawn
using the Di r ectSol ver convergence scheme is revisited. The iteration matrix for the fuel minimization
problem is shown in Equation 5.1

∆y21

∆y23

∆y32

∆y13

∆y12

∆y31

k+1

=

I 0 · · · 0

−∂y23
∂y21

I
. . .

...
...

. 0

−∂y31
∂y21

· · · −∂y31
∂y12

I

−1

0 ∂y21
∂y23

· · · ∂y21
∂y31

0 0
. . .

...
...

...
. . . ∂y32

∂y31

0 0 · · · 0

︸ ︷︷ ︸

G

∆y21

∆y23

∆y32

∆y13

∆y12

∆y31

k

(5.1)

where k stands for the k th Di r ectSol ver Iteration.

Figure 5.11: Iteration Matrix(1st Direct Solver iteration)
(Fuel minimization Problem)

The fuel minimization problem con-
sists of six coupling variables as evi-
dent from the XDSM diagram shown in
Figure E.1 and the dependency matrix
shown in Figure E.4. The iteration ma-
trix shown above represents the indi-
vidual local sensitivities of the six cou-
pling vectors with respect to each other.
For vectors such as y12, that represents
the load and moment distribution over
the wing span, the sensitivity term can
be expanded to represent the individual
sensitivities of each element of the load
and moment vector with respect to other
couplings.
The overall coupling strength for an
MDO problem is calculated by averaging
out the spectral radius using the time of
individual iteration as weights as shown
in Equation 4.8. The definition of the
spectral radius(largest absolute eigen-
value) implies that the terms(individual
sensitivities) within the iteration matrix
that are substantially greater compared
to other terms, would have a much
higher effect on the convergence process of an MDA iteration. This is shown by visually representing the iter-
ation matrix for the 1st Di r ectSol ver Iteration in Figure 5.11. Figure 5.11 makes a color tone based represen-
tation of the local sensitivities of the coupling variables with respect to each other for the first Di r ectSol ver
iteration. The marked zones(six each in both lower and upper matrix) represent these individual sensitivi-

ties. Based on the color map, it can be observed that two of the coupling interactions(∂y21
∂y12

, ∂y21
∂y32

) have much
higher individual sensitivities(in terms of magnitude) compared to other coupling pairs. Therefore, it can
be argued that the overall rate of convergence for the Di r ectSol ver MDA is directed primarily by three

76 5. Testing and Deployment of the Prediction Model

couplings(y12, y21 and y32). The other coupling variables do not decisively affect the convergence process.

Considering the average of these three coupling variables, the value of ny that is extracted from the original
fuel minimization problem is six. Based on this value of ny , the prediction plot can be re-estimated, while
preserving the earlier methods used to extract the remaining features(based on average as shown in Table
5.2). The sensitivity based method is applied only on the fuel minimization method because it does not make
a difference in the ny values for the other problems. The result of the sensitivity based feature estimation is
shown in Figure 5.12.

Figure 5.12: Predictive plot of Original Problems
(re-estimated using sensitivity based feature extraction)

Looking at Figure 5.12, the improve-
ment in the predictive performance for
the fuel minimization problem as com-
pared to the earlier plot(Figure 5.10) can
be observed. From the context of de-
cision making (choice between MDF vs
IDF), the prediction model does make
the right call by predicting IDF to be
faster than MDF across the board(except
one data point belonging to the Speed
Reducer problem where the prediction
is off by a negligible margin). Addition-
ally, the prediction model also manages
to place the data points diagonally in
the right order with respect to the cou-
pling strength, with the most strongly
coupled problem(Heart Dipole) occupy-
ing the left lower end of the prediction
plot. The MDO problem with the lowest
coupling strength(Speed Reducer) stays
on the other end. The overall predictive accuracy(considering each of the original problems) can be deter-
mined using the normalized EVRS metric used before and it comes to be 0.844. This value is lower than the
prediction accuracy obtained with scaled problems, but it can be observed from the plot that the machine
learning model can predict, with significant accuracy, the outcome of the tested MDO problems. Figure 5.12
can be seen as the final outcome of the neural network based prediction model developed in this chapter.
The next section is used to verify the prediction plot of Figure 5.12 with existing studies from the literature.

5.4. Verification with Literature
Since the tested problems have also been used in the earlier comparative studies[16, 56, 6, 14, 57], the re-
sults from these studies can be used to verify the predictions made by the machine learning model(Figure
5.12). Just to recap, the ytest on the x-axis represents the actual cost ratios obtained when executing the prob-
lems with OpenMDAO, while ypr ed on the y axis represents the cost ratios predicted by the machine learning
model. The information on the cost ratios that have been obtained from literature can be also be plotted
along the y axis on top of the same figure. Figure 5.13[16, 56, 6, 14, 57] shows the source of the cost ratios
used for the verification. Using square blocks, the cost ratios obtained from literature are plotted on top of
the same predictive plot used in the previous section. From Figure 5.13 it can be seen that the cost ratios
estimated from earlier studies match the predictions made by the neural network model, except for the Sellar
problem, where the cost ratios obtained in the research by Delbecq et.al [14] are higher than what is pre-
dicted by the neural network. A second reference is added from a paper by Gray et. al.[57] which is much
closer to the predicted values. It must be noted that the earlier studies were conducted using a different set
of operating conditions, in terms of the tolerance settings used within the problems, the cost criterion used
to compare the MDO architectures and the number of processors used. Therefore, it is not an apples to ap-
ples comparison, but more of a literature based verification regarding the ballpark of predictions made by the
neural network model.

5.4. Verification with Literature 77

Figure 5.13: Verification of cost ratios with Literature

78 5. Testing and Deployment of the Prediction Model

Based on the predictive plots from Figure 5.2a, Figure 5.2b and Figure 5.13, the EVRS values for all the
estimations made using the prediction model is summarized in the table below(Table 5.3):

Problem EVRS

Scaled Problems (prediction model) 0.908 - 0.958
Original Problems (prediction model) 0.844
Original Problems (Literature Results) 0. 824

Table 5.3: EVRS values for the prediction model(all problems)

Table 5.3 implies that values of cost ratios obtained from both the prediction model and Literature are
more than eighty percent in agreement with that of the OpenMDAO/MATLAB based implementation of the
six original MDO problems. Table 5.3 can be seen as an external verification of the capabilities of the neural
network based prediction model of MDO architecture.
The next section is used to explain the steps required to deploy the prediction model

5.5. Deployment of the Prediction Model
This section is used to explain the necessary steps in deploying the prediction model on an unscaled MDO
problem. Table 5.4 shows the set of parameter values that are accepted by the prediction model and the
method to be used for calculating them for an unscaled problem:

Parameter Method of calculation

Coupling density(d) Compute from problem formulation
Coupling strength(ρ) Compute from added methods in OpenMDAO code

nx ,ny ,nc Extract from problem formulation and Di r ectSol ver Iteration matrix

Table 5.4: Estimation of parameters from Original Problems

This section is divided into four parts. In the first three parts, the computation process for the above
three sets of values is discussed using the example of the original heart dipole problem. In the final part, the
practical aspects regarding the application of the prediction model on the MDO problem are discussed using
the original heart dipole problem

5.5.1. Computation of coupling density(d)
The heart dipole problem is briefly explained below:

Figure 5.14: Original Heart Dipole problem / disciplines

As can be seen in the problem, both disciplines contain two residual equations each. The coupling out-
puts are calculated through the residual equations. There are no local design variables, only four shared

5.5. Deployment of the Prediction Model 79

design variables. Additionally, there are two outputs attached to each discipline(f1, f7), (f6, f8) which form
the constraint variables. The mathematical details of the constraints are not given in Figure 5.14(A full de-
scription of the problem is provided in Appendix D.3).

It is required to convert the input/coupling/constraint variables into a directional form such that the de-
pendency matrix can be constructed. This also requires the conversion of residuals into explicit state vari-
ables. This is shown in Figure 5.15

Figure 5.15: SARF compatible heart dipole problem/ disciplines

If the problem is already present in the SARF compatible form, then the above step can be discarded.
Following this, it is required to manually create the dependency matrix from the SARF compatible disciplines
as shown in Figure 5.16.

Figure 5.16: Dependency matrix for the SARF compatible heart dipole problem

The individual input-output blocks(resembling discipline 1, discipline 2 and shared variables) are also
shown with cyan boxes in the above dependency matrix. The coupling density factor(d) can be manually
calculated from the above dependency matrix by measuring the percentage of filled square dots within the
cyan boxes(for the above dependency matrix this comes out to be 0.75).

80 5. Testing and Deployment of the Prediction Model

5.5.2. Computation of Coupling Strength(ρ)

Figure 5.17: Accumulate iteration matrix for Heart Dipole problem

As mentioned in Section 4.2.4, for cal-
culating coupling strength for a partic-
ular MDO problem, it is required to
converge a single MDA routine using
the Di r ectSol ver convergence scheme.
This is shown for the heart dipole prob-
lem in Figure 5.17. In practicality, the
process requires the placing of two coun-
ters inside the OpenMDAO code for
accumulating the system jacobian and
storing the time for each Di r ectSol ver
iteration. Further, an additional script
has to be written to separate the Jacobian
into lower and upper triangular matri-
ces to compute the spectral radius. The
method to be added within the OpenM-
DAO code as well as the script to con-
vert the Jacobian into iteration matrix is
shown in Appendix A.7. Using this pro-
cess, for the heart dipole problem, the
coupling strength(ρ) comes to be 0.568.

5.5.3. Extraction of Problem Size related Values(nx ,ny ,nc)

Figure 5.18: Extract problem size parameters

The average based method was proposed
for extraction of nx and nc while a sensi-
tivity based method was proposed to ex-
tract ny . The values of nx and nc can
be extracted from the dependency ma-
trix as shown in Figure 5.18. The in-
put space shown along the x axis shows
the nx and ny variables, while the y axis
shows the ny and nc variables. Look-
ing at the blocks allocated to each vari-
able, the equivalent values of nx and nc

can be calculated. The example shown
in Figure 5.18, representing the heart
dipole problem, contains one shared de-
sign vector(x0) of size four, no local de-
sign vectors and two local constraint vec-
tors of size two each. Hence for the heart
dipole problem nx = 4 and nc = 2 The
value of ny is calculated by applying the
sensitivity based method on the depen-
dency matrix. Following the template
used in Section 5.3.2, the iteration matrix
is visualized which indicates the magni-
tude of local sensitivities of coupling and
constraint variables with respect to each
other for the 1st Di r ectSol ver iteration.
The blocks representing the sensitivities

of δ(y21)
δ(y12) and δ(y12)

δ(y21) with respect to each
other are shown in cyan. It can be seen that no individual sensitivity is an order of magnitude higher than the
other, therefore both coupling vectors are used to extract the value of ny . Hence, ny = 2.

5.6. Summary - Test Cases 81

5.5.4. Application of Prediction Model
Following the calculation/extraction of each parameter, the prediction model can be applied to a new origi-
nal MDO problem. Now, two prediction models have been formed in this thesis, one based on the re-trained
neural network and a second model based on decision trees. For a less accurate but quick estimation, the de-
cision tree based model can be referred. As mentioned before, the advantage of the decision tree based model
is that it’s a pre-built graph-based representation that can be used to estimate the cost ratio for any new MDO
problem without executing a trained machine learning algorithm using scikit-learn. For a more accurate pre-
diction, the re-trained neural network based model has to be used. For a new user, the neural network based
model is firstly required to be trained using the fitting parameters that were derived in Table 4.6, on the com-
bined database of Table 4.11. Following this, the neural network can make cost ratio predictions for a new
problem. The two approaches are shown in Figure 5.19

Figure 5.19: Prediction model - Two approaches

The cost ratios predicted on the original heart dipole problem by the two prediction models is shown in
Figure 5.19. For the decision tree based approach, the original decision tree, as well as the part of the tree that
concerns with the cost ratio prediction on the original heart dipole problem is shown. For the neural network
based approach, the combined database, and the fitting parameters for training the neural network is shown.
The actual cost ratio for the original heart dipole problem is -3.21, while the neural network based model
predicts the cost ratio to be -2.89. Both the predicted and actual cost ratios can be seen in Figure 5.12. The
decision tree based model gives a cost ratio of -2.537 which makes it less accurate than the neural network.
This marks the end of the deployment process. The next section is used to provide a summary of the current
chapter.

5.6. Summary - Test Cases
In this chapter, the re-trained neural network based prediction model developed in the earlier section was
tested. Firstly, two scaled test problems(Sellar problem / Fuel minimization problem) were introduced into
the prediction model’s test database and the accuracy of prediction was tested(Figure 5.2a and Figure 5.2b).
The prediction accuracy of the re-trained model in terms of EVRS was > 90%. Based on the performance of
the re-trained prediction model, a sample of an advisory system was created, in the form of an input-output
interface(Table 5.3) and in the form of a decision diagram(Figure 5.4). Following this, original versions of the

82 5. Testing and Deployment of the Prediction Model

same test problems were introduced. To test the prediction model on the original problems, a method had to
be defined for extraction of problem size related features. For extracting features from the original problems
that are compatible with the neural network based prediction model, two methods were looked at, one that
computed averages of all problem size related features, and another that used a hybrid method(based on av-
erage/sensitivity) for feature extraction. The prediction accuracy for the average based method(Figure 5.10),
in terms of EVRS, came out to be an unacceptable 0.476. This was largely due to inaccurate prediction on the
fuel minimization problem. In the second method, based on sensitivity based feature extraction(Figure 5.12),
the performance on the fuel minimization problem was found to be improved, with the EVRS value on the
overall prediction being increased to 0.844. When the same results were compared with the existing results
from the literature, a similar level of accuracy was obtained, which served as a validation of the prediction
accuracy of the neural network based prediction model. Finally, a step by step procedure for deploying the
prediction model on a test MDO problem was provided. The next chapter is used to provide conclusions and
recommendations for future work.

6
Conclusions and Recommendations

This thesis report described the development of a prediction model of MDO architecture that can recommend
the better MDO architecture between MDF(Multiple Discipline Feasible) and IDF(Individual Discipline Fea-
sible) in terms of solution cost for a given MDO problem, based on features(problem parameters) that are
extracted from the problem formulation before execution. This chapter consists of two sections - Conclu-
sions, and Recommendations. In the conclusion section, the background of the thesis is discussed briefly.
Following this, the research questions and sub-questions that were formed in the Introduction(Chapter 1)
are recalled and conclusions are given in the context of the questions. Following the conclusion, the recom-
mendations for future work related to the thesis are discussed.

6.1. Conclusion
One of the challenges in executing an MDO system is the selection of the best performing MDO architecture
in terms of computational effort, for a given MDO problem. To address this, several comparative studies have
been created, which analyze the relative performance of MDO architectures with respect to internal features
of MDO problems, such as the number of design variables and strength of interdisciplinary coupling. How-
ever, the existing research is limited in applicability, and the results obtained from an existing comparative
study or advisory system cannot be used to predict the best MDO architecture for a new MDO problem. An
inclusive prediction model, that can recommend the better MDO architecture between MDF(Multiple Disci-
pline Feasible)(using either Gauss-Seidel or Jacobi scheme) and IDF(Individual Discipline Feasible) for any
MDO problem is not found yet in literature. This formed the premise of the following research question that
was framed in the introductory chapter:

Research Question: Is it possible to create a prediction model that can recommend the better MDO architec-
ture between MDF and IDF in terms of solution cost, for a given MDO problem, solely based on features that
have been extracted from the problem formulation, without executing the problem?

The following sub-questions were formed out of the above question:

Research Sub-Question 1: What are the drawbacks of existing comparative studies of MDO architectures
in literature and how does the thesis propose to resolve them?

Research Sub-Question 2: How is the prediction model developed and validated?

Research Sub-Question 3: How is the prediction model tested on new MDO problems?

The answer to the first part of Research sub-question 1 was found in the Literature Review(Chapter 2). Scal-
able problems are specifically designed to allow the user to create a repository of MDO problems by varying
one or more internal features. In the existing studies, the solution cost of MDO architectures was compared
using scalable MDO problems. The conclusions out of such studies were given either in the form of an ontol-
ogy containing a set of rules such as "If the number of coupling variables is more than design variables, then

83

84 6. Conclusions and Recommendations

architecture X is faster than others", or in the form of graphs representing the solution cost of MDO archi-
tectures with respect to problem features. Two drawbacks were noted in the existing studies. Firstly, it was
observed that all internal problem features were not taken into account in the same study. MDO problems
which enabled the user to set the problem size(in terms of number of design/coupling/constraint variables)
did not allow the variation of coupling strength(parameter to set the sensitivity of interdisciplinary couplings
w.r.t each other) and vice versa. Secondly, the problem features were not defined in a normalized manner. A
scalable problem built using two disciplines could not be used to predict the outcome of a different problem
containing three disciplines. Due to these two drawbacks, the conclusions made in the existing comparative
studies were not applicable to new MDO problems.

The answer to the second part of Research Sub-Question 1 was found in Chapter 3. Mentioned as the fi-
nal paper in the literature review, a recent comparative study from 2017 was performed by Charlie Vanaret
et.al.[16]. An in-depth analysis of this paper was conducted in Chapter 3. Instead of proposing a new scalable
MDO problem, the paper proposed a transformation function called Scalable Analytic Replacement Func-
tion(SARF) which could be used to create a scalable version of an existing MDO problem. The methodology
allowed the user to vary four internal features(related to problem size) of a scaled MDO problem, more than
any previous study. However, upon closer inspection of the mathematical background of the SARF method,
an opportunity was discovered that could also enable the inclusion of coupling strength in the comparative
analysis, opening the possibility to resolve the first drawback mentioned above. Additionally, the problem
agnostic nature of the SARF method meant that the problem size related features could be normalized with
the number of disciplines. This presented the possibility that results obtained from a particular comparative
study could be applicable on a different MDO problem, thereby resolving the second drawback.
While the proposed method showed promise, the application part of the original paper was found to be lack-
ing in key areas. In the original comparative study, the SARF methodology was applied on the Super Sonic
Business Jet(SSBJ) MDO problem to create a repository of SSBJ based scaled MDO problems. For creating the
repository, only two problem features were considered(out of the possible four). The possibility of using cou-
pling strength as a problem feature was not investigated. Additionally, the features were not implemented in
a normalized manner either. By comparing the performance of MDF and IDF architectures on the repository
of SSBJ based scaled MDO problems, it was observed in the original paper that internal problem features did
not establish a trend in the outcome of MDO approaches. In other words, it was claimed that whatever the
MDO problem, there was no "best" architecture to solve it. However, when a more thorough repetition of the
comparative analysis was conducted in this thesis(Chapter 3) by giving more runs to each combination of
problem feature values, it was seen that a trend did exist between problem features and the performance of
MDO architectures. The reproduced plot showed the presence of certain zones(ranges of problem features)
that favored one architecture over the other, which was in contradiction with the claim made in the original
paper. This provided a motive for building a prediction model of MDO architecture based on the SARF scaling
method, by including the full set of problem features enabled by the SARF method in a normalized manner
and also adding new features that were compatible with the SARF methodology.

The second sub-question was answered via chapter 4. A set of five problem features was defined, of which
four were features offered by the SARF method while the fifth feature, related to the optimization environ-
ment, was the number of processors cores available in the optimization. Following the feature definition,
a label term called cost ratio was defined that represented the relative cost of optimization using IDF over
MDF architectures for a scaled problem. Using three features at a time, a database of SSBJ based scaled MDO
problems was built and visual analysis(in the form of a three-dimensional plot) was run to look into the con-
tribution that each feature made to the cost ratio. Based on the visual analysis the method of implementation
of each feature was decided. Following this, a database of SSBJ based MDO problems, represented by five fea-
tures and one label(cost ratio) was created. Four machine learning algorithms were applied on the database
and their fitting accuracy were tested. The algorithm with the highest fitting accuracy, an artificial neural
network containing three hidden layers was considered as the first prediction model built in the thesis. For
validating the model, a database representing scaled versions of three MDO problems was introduced and
the prediction accuracy on the new problems was tested. The result showed a significant amount of over/un-
der prediction by the neural network on the new test problems. The prediction accuracy was around 70% for
the test problems. To improve the prediction, a new feature called coupling strength was defined. The feature
to compute the coupling strength of an MDO problem required the convergence of a singular MDA routine
with the Di r ectSol ver convergence scheme. Using the new feature(along with the existing ones) and all four

6.2. Recommendations 85

MDO problems, a second neural network based prediction model, called the re-trained model, was created.

The final sub-question was answered via chapter 5, where the re-trained neural network was tested on scaled
versions of new MDO problems, of which one was an aircraft based fuel minimization problem. The pre-
diction accuracy of the re-trained model on the test problems was more than 90%. However, to draw final
conclusions about the ability of the prediction model, it also had to be tested on original(unscaled) MDO
problems. For this purpose, original versions of the existing scaled MDO problems were chosen. However,
it was first required to create a method for extracting relevant features from the original problems, so that a
database of original problems could be created in terms of the existing problem parameters. For problem
size related features, the extraction process was based on a mix of averages(for features related to design and
constraint variables) and sensitivities of coupling pairs(for feature related to coupling variables). Apart from
the problem size related features, each of the features used to build the database of scaled problems could be
interchangeably used on the original problems. Based on this hybrid approach, features were extracted from
the original MDO problems and a database of original MDO problems was created. The re-trained prediction
model was tested on the database of original problems. The prediction model was able to estimate the cost
ratio of optimization on the original MDO problems with an accuracy of 84.4 percent.

6.2. Recommendations
The following points discuss certain recommendations for future that can be made from this thesis:

• Defining optimization settings as part of feature-set
In the current investigation, certain key optimization settings such as choice of optimizer, convergence
tolerance on optimizer/solver, and tolerance on inequality/consistency constraints were considered as
constant. For training the machine learning model, it was ensured that key optimization settings are
selected such that one architecture does not get inherently favored over the other and the optimized
objective is similar for both approaches up to three decimals. For future investigations, these choices
can be assigned as features in the form of "adjustable knobs", so that the trade-off between solution
time and objective accuracy can also be brought into consideration within the prediction model.

• Introduction of more MDO problems to create a more effectively trained prediction model The cur-
rent prediction model was constructed out of six scaled MDO problems. Five out of the six features
were given a certain range and number of repetitions to create a database of scaled problems. Due
to the nature of the SARF scaling process, scaled versions of MDO problems had a coupling strength
which was close to the original problem. This limited the learning ability of the prediction model to
certain ranges of coupling strengths . This can be remedied by introducing many more MDO problems
to create a very large database of scaled problems, having a variety of coupling strengths. In keeping
with the fact that MDO problems are not found in numerous quantities in literature, a possible option
is to select an existing scalable problem that allows the user to vary the coupling strength and then
apply the SARF based scaling methodology to create a repository of MDO problems having a range of
coupling strengths.

• Usage of more complicated machine learning algorithms
In modern applications, neural networks can be used for more than predicting static labels. Convo-
lutional neural networks(CNN) are a class of machine learning algorithms used for analyzing images.
Using a convolutional neural network presents the possibility for including figures like the N 2 diagram
and iteration matrices within the training process of the prediction model. In the current state of the
prediction model, two of the features, coupling strength(ρ) and coupling density(d) require manual
computations for each MDO problem that are used for training and testing the prediction model. This
labor can be averted if the problem structure itself is used for training the prediction model. There are
existing studies that propose to generate a simulation workflow(in the form of a simplified graph) to ex-
tract relevant information out of an MDO problem’s N 2 diagram. Such graphs can be used for training
a convolutional neural network based prediction model of MDO architecture.

A
Implementation of SARF methodology on

SSBJ problem

This appendix shows the implementation of the steps within SARF methodology on the SSBJ problem. For
the demonstration, only the structural discipline is considered. The process is implemented in the form of
six classes as shown below, followed by a UML diagram.

A.1. One-dimensional restriction class

1
2 import numpy as np
3 from ssbjkadmos . u t i l s . math import polynomial_function
4
5
6
7 c l a ss StructureScaling :
8
9 def _ _ i n i t _ _ (s e l f , x_str , z , load , we, nz , wfo , wo, bounds_dict) :

10
11 s e l f . x _ s t r = x _ s t r
12 s e l f . z = z
13 s e l f . load = load
14 s e l f .we = we
15 s e l f . nz = nz
16 s e l f . wfo = wfo
17 s e l f .wo = wo
18
19 s e l f . bounds_dict = bounds_dict
20
21
22 @staticmethod
23 def y12 (x_str , z , load , w_e , n_z , w_fo , w_o, component) :
24
25 # common calculat ions
26 t = z [0] * z [5] / (np . sqrt (abs (z [5] * z [3])))
27 b = np . sqrt (abs (z [5] * z [3])) / 2.0
28 r = (1 . 0 + 2.0 * x _ s t r [0]) / (3 . 0 * (1 . 0 + x _ s t r [0]))
29
30 # calculat ions f o r s p e c i f i c components
31 i f component == 0 :
32 fo1 = polynomial_function ([x _ s t r [1]] , [1] , [. 0 0 8] , "Fo1")
33 wt_hat = load
34 ww = fo1 * (0.0051 * abs (wt_hat * n_z) ** 0.557 *

87

88 A. Implementation of SARF methodology on SSBJ problem

35 abs (z [5]) ** 0.649 * abs (z [3]) ** 0.5 * abs (z [0]) ** (−0.4)
36 * abs (1 . 0 + x _ s t r [0]) ** 0.1 * (0.1875 * abs (z [5])) ** 0.1
37 / abs (np . cos (z [4] * np . pi / 180.)))
38 wfw = 5.0 / 18.0 * abs (z [5]) * 2.0 / 3.0 * t * 42.5
39 wf = wfw + w_fo
40 wt = w_o + ww + wf + w_e
41
42 return wt
43
44 i f component == 1 :
45 theta = polynomial_function ([abs (x _ s t r [1]) , b , r , load] ,
46 [2 , 4 , 4 , 3] , [0 . 2 5] * 4 , " t w i s t ")
47
48 return theta
49
50
51 def y12_scale (s e l f , diagonal , component) :
52
53 x _ s t r = s e l f . x _ s t r
54 z = s e l f . z
55 load = s e l f . load
56 we = s e l f .we
57 nz = s e l f . nz
58 wfo = s e l f . wfo
59 wo = s e l f .wo
60
61 # calculation of interpolated values f o r each component
62 min_y_12 = s e l f . bounds_dict [’ y12_min ’] [component]
63 max_y_12 = s e l f . bounds_dict [’ y12_min ’] [component]
64
65 var = [x _ s t r [0] , x _ s t r [1] , z [0] , z [1] , z [2] , z [3] , z [4] , z [5] , load , we]
66 y_12 = []
67 for t in diagonal :
68 for j in var :
69 vars () [s t r (j)] = j [0] + t * (j [1] − j [0] [0])
70 wt = s e l f . y12 ([vars () [s t r (x _ s t r [0])] , vars () [s t r (x _ s t r [1])]] ,
71 [vars () [s t r (z [0])] , vars () [s t r (z [1])] , vars () [s t r (z [2])] , vars () [s t r (

z [3])] , vars () [s t r (z [4])] ,
72 vars () [s t r (z [5])]] , vars () [s t r (load)] , vars () [s t r (we)] , nz , wfo , wo

, component)
73 y_12 . append(wt)
74 y_12 = np . asarray (y_12)
75 y_12 = (y_12− min_y_12) / (max_y_12 − min_y_12)
76
77 return y_12
78
79
80 def y14_scale (s e l f , diagonal , component) :
81
82 return s e l f . y12_scale (diagonal , component)
83
84
85
86 @staticmethod
87 def g1 (x_str , z , load , component) :
88
89 i f component == 0 :
90 b = np . sqrt (abs (z [5] * z [3])) / 2.0
91 r = (1 . 0 + 2.0 * x _ s t r [0]) / (3 . 0 * (1 . 0 + x _ s t r [0]))
92 sigma = 5 * [0 .]

A.1. One-dimensional restriction class 89

93 sigma [0] = polynomial_function ([z [0] , load , x _ s t r [1] , b , r] , [4 , 1 , 4 , 1 , 1] ,
[0 . 1] * 5 , "sigma [1] ")

94
95 return sigma [0] / 1 . 0 9 − 1
96
97 i f component == 1 :
98 b = np . sqrt (abs (z [5] * z [3])) / 2.0
99 r = (1 . 0 + 2.0 * x _ s t r [0]) / (3 . 0 * (1 . 0 + x _ s t r [0]))

100 sigma = 5 * [0 .]
101 sigma [1] = polynomial_function ([z [0] , load , x _ s t r [1] , b , r] , [4 , 1 , 4 , 1 , 1] ,

[0 . 1 5] * 5 , "sigma [2] ")
102
103 return sigma [1] / 1 . 0 9 − 1
104
105 i f component == 2 :
106 b = np . sqrt (abs (z [5] * z [3])) / 2.0
107 r = (1 . 0 + 2.0 * x _ s t r [0]) / (3 . 0 * (1 . 0 + x _ s t r [0]))
108 sigma = 5 * [0 .]
109 sigma [2] = polynomial_function ([z [0] , load , x _ s t r [1] , b , r] , [4 , 1 , 4 , 1 , 1] ,

[0 . 2] * 5 , "sigma [3] ")
110
111 return sigma [2] / 1 . 0 9 − 1
112
113 i f component == 3 :
114 b = np . sqrt (abs (z [5] * z [3])) / 2.0
115 r = (1 . 0 + 2.0 * x _ s t r [0]) / (3 . 0 * (1 . 0 + x _ s t r [0]))
116 sigma = 5 * [0 .]
117 sigma [3] = polynomial_function ([z [0] , load , x _ s t r [1] , b , r] , [4 , 1 , 4 , 1 , 1] ,

[0 . 2 5] * 5 , "sigma [4] ")
118
119 return sigma [3] / 1 . 0 9 − 1
120
121 i f component == 4 :
122 b = np . sqrt (abs (z [5] * z [3])) / 2.0
123 r = (1 . 0 + 2.0 * x _ s t r [0]) / (3 . 0 * (1 . 0 + x _ s t r [0]))
124 sigma = 5 * [0 .]
125 sigma [4] = polynomial_function ([z [0] , load , x _ s t r [1] , b , r] , [4 , 1 , 4 , 1 , 1] ,

[0 . 3 0] * 5 , "sigma [5] ")
126
127 return sigma [4] / 1 . 0 9 − 1
128
129 i f component == 5 :
130 b = np . sqrt (abs (z [5] * z [3])) / 2.0
131 r = (1 . 0 + 2.0 * x _ s t r [0]) / (3 . 0 * (1 . 0 + x _ s t r [0]))
132 theta = polynomial_function ([abs (x _ s t r [1]) , b , r , load] , [2 , 4 , 4 , 3] , [0 . 2 5] * 4 ,

" t w i s t ")
133
134 return theta /1.04 − 1
135
136 i f component == 6 :
137 b = np . sqrt (abs (z [5] * z [3])) / 2.0
138 r = (1 . 0 + 2.0 * x _ s t r [0]) / (3 . 0 * (1 . 0 + x _ s t r [0]))
139 theta = polynomial_function ([abs (x _ s t r [1]) , b , r , load] , [2 , 4 , 4 , 3] , [0 . 2 5] * 4 ,

" t w i s t ")
140
141 return 0.96/ theta − 1
142
143
144 def g1_scale (s e l f , diagonal , component) :
145
146 x _ s t r = s e l f . x _ s t r

90 A. Implementation of SARF methodology on SSBJ problem

147 z = s e l f . z
148 load = s e l f . load
149
150 i f component == 0 :
151 min_g_1 = s e l f . bounds_dict [’g1_min ’] [component]
152 max_g_1 = s e l f . bounds_dict [’g1_max ’] [component]
153
154 var = [x _ s t r [0] , x _ s t r [1] , z [0] , z [1] , z [2] , z [3] , z [4] , z [5] , load]
155
156 g_1 = []
157
158 for t in diagonal :
159 for j in var :
160 vars () [s t r (j)] = j [0] + t * (j [1] − j [0] [0])
161 wt = s e l f . g1 ([vars () [s t r (x _ s t r [0])] , vars () [s t r (x _ s t r [1])]] ,
162 [vars () [s t r (z [0])] , vars () [s t r (z [1])] , vars () [s t r (z [2])] , vars ()

[s t r (z [3])] ,
163 vars () [s t r (z [4])] , vars () [s t r (z [5])]] , vars () [s t r (load)] ,

component)
164 g_1 . append(wt)
165 g_1 = np . asarray (min_g_1)
166 g_1 = (g_1 − min_g_1) / (max_g_1 − min_g_1)
167
168 return g_1

A.2. Interpolation class

1
2 import numpy as np
3 import pickle
4 from scipy . interpolate import interp1d
5
6 c l a ss StructureInterpolation :
7
8 def _ _ i n i t _ _ (s e l f , x) :
9 s e l f . s = StructureScaling (np . array ([[0 . 1 , 0 . 4] , [. 7 5 , 1 . 2 5]]) , np . array ([[0 . 0 3 8 ,

0 . 0 6] ,
10 [30000 , 60000] ,[1 , 1 . 3] , [4 . 5 , 8 . 5] , [4 0 , 70] , [700 ,

1000]]) ,
11 np . array ([20000 , 42000]) , np . array ([0 , 70000]) , 6 . 0 ,

2000.0 ,
12 25000.0 , { ’ y12_min ’ : [27322.03658309271 ,

1.038799370398898] ,
13 ’y12_max ’ : [156212.88815281598 , 1.0873650095198497] ,
14 ’ y14_min ’ : [27322.03658309271 , 4611.076343054285] ,
15 ’y14_max ’ : [156212.88815281598 , 7121.969142940493]})
16 s e l f . x = x
17
18 def y12_int (s e l f , component) :
19 y = []
20 for k in s e l f . x :
21 y . append(g e t a t t r (s e l f . s , ’ y12_scale ’) ([k] , component) [0])
22 return interp1d (s e l f . x , y , kind= ’ cubic ’)
23
24 def y14_int (s e l f , component) :
25 y = []
26 for k in s e l f . x :
27 y . append(g e t a t t r (s e l f . s , ’ y14_scale ’) ([k] , component) [0])
28 return interp1d (s e l f . x , y , kind= ’ cubic ’)
29

A.3. Large random matrix class 91

30 def g1_int (s e l f , component) :
31 y = []
32 for k in s e l f . x :
33 y . append(g e t a t t r (s e l f . s , ’ g1_scale ’) ([k] , component) [0])
34 return interp1d (s e l f . x , y , kind= ’ cubic ’)

A.3. Large random matrix class

1 c l a ss LargeRandomMatrix :
2 " " " The c l a s s generated the large random dependency matrix " " "
3
4 def _ _ i n i t _ _ (s e l f , nx_large , ny_large , d_large) :
5 s e l f . nx_large = nx_large
6 s e l f . ny_large = ny_large
7 s e l f . d = d_large
8
9 def submatrix_structural (s e l f) :

10 " " " Define the s t r u c t u r a l part of the dependency matrix " " "
11
12 # : a l l o c a t e the input variables and couplings
13 x = []
14 [x . append(i1) for i1 in range (s e l f . nx_large)]
15 [x . append(i2) for i2 in range (s e l f . ny_large) for _ in range (2)]
16
17 # : a l l o c a t e the output variables and couplings
18 y = []
19 [y . append(i3) for i3 in range (s e l f . ny_large) for _ in range (4)]
20 [y . append(i4) for i4 in range (s e l f . nx_large)]
21
22 # : define the s t r u c t u r a l submatrix
23 aa = np . zeros (len (x) * len (y))
24 percent = int (s e l f . d * len (aa))
25 aa [0 : percent] = 1
26 np . random . s h u f f l e (aa)
27 aa = aa . reshape (len (y) , len (x))
28
29 return aa

A.4. Scaled dependency matrix class

1
2 c l a ss ScaledDependencyMatrix :
3 " " "
4 This c l a s s c r e a t e s a component dependency matrix from a large random c l a s s with user −

defined
5 nx and ny values f o r both random and scaled −down matrix , along with the s h i f t argument f o r

s e l e c t i n g
6 the project ion s i z e
7 " " "
8
9 def _ _ i n i t _ _ (s e l f , nx_large , ny_large , d_large) :

10 s e l f . nx_large = nx_large
11 s e l f . ny_large = ny_large
12 s e l f . submatrix_structural = LargeRandomMatrix (nx_large , ny_large , d_large) .

submatrix_structural ()
13
14 def scaled_dependency_matrix (s e l f , nx_scale , ny_scale , ncon_scale) :
15 " " " Scale down the dependency matrix using a f i x e d ny value f o r the large random matrix " " "
16 nx2 = s e l f . nx_large

92 A. Implementation of SARF methodology on SSBJ problem

17 ny2 = s e l f . ny_large
18
19 # : s h i f t s i z e f o r each place in the scaled component
20 s h i f t = 1
21
22 # : scal ing down 1 s t dependency matrix
23 a1 = s e l f . submatrix_structural # : add bias f o r checking the bias
24 kx = nx2 + 2 * ny2 − s h i f t * (nx_scale + 2 * ny_scale − 1)
25 b1 = np . zeros ((4 * ny_scale + ncon_scale , nx_scale + 2 * ny_scale))
26 for i1 in range (nx_scale + 2 * ny_scale) :
27 for j 1 in range (4 * ny_scale + ncon_scale) :
28 i f j 1 in np . arange (0 , ny_scale) :
29 j2 = np . random . choice (np . arange (0 , ny2))
30 probabi l i ty = np . average (a1 [j 2] [i1 * s h i f t : i1 * s h i f t + kx])
31 b1 [j 1] [i1] = np . random . choice ([1 , 0] , p=[probabil i ty , 1 − probabi l i ty])
32 e l i f j 1 in np . arange (ny_scale , 2 * ny_scale) :
33 j2 = np . random . choice (np . arange (ny2 , 2 * ny2))
34 probabi l i ty = np . average (a1 [j 2] [i1 * s h i f t : i1 * s h i f t + kx])
35 b1 [j 1] [i1] = np . random . choice ([1 , 0] , p=[probabil i ty , 1 − probabi l i ty])
36 e l i f j 1 in np . arange (2 * ny_scale , 3 * ny_scale) :
37 j2 = np . random . choice (np . arange (2 * ny2 , 3 * ny2))
38 probabi l i ty = np . average (a1 [j 2] [i1 * s h i f t : i1 * s h i f t + kx])
39 b1 [j 1] [i1] = np . random . choice ([1 , 0] , p=[probabil i ty , 1 − probabi l i ty])
40 e l i f j 1 in np . arange (3 * ny_scale , 4 * ny_scale) :
41 j2 = np . random . choice (np . arange (3 * ny2 , 4 * ny2))
42 probabi l i ty = np . average (a1 [j 2] [i1 * s h i f t : i1 * s h i f t + kx])
43 b1 [j 1] [i1] = np . random . choice ([1 , 0] , p=[probabil i ty , 1 − probabi l i ty])
44 e l i f j 1 in np . arange (4 * ny_scale , 4 * ny_scale + ncon_scale) :
45 j2 = np . random . choice (np . arange (4 * ny2 , 4 * ny2 + nx2))
46 probabi l i ty = np . average (a1 [j 2] [i1 * s h i f t : i1 * s h i f t + kx])
47 b1 [j 1] [i1] = np . random . choice ([1 , 0] , p=[probabil i ty , 1 − probabi l i ty])
48
49
50 return b1

A.5. Component dependency graph class

1
2 c l a ss ComponentDependencyGraph :
3 " " "
4 This c l a s s c r e a t e s a component dependency matrix from a large random c l a s s with user −

defined
5 nx and ny values f o r both random and scaled −down matrix , along with the s h i f t argument f o r

s e l e c t i n g
6 the project ion s i z e
7 " " "
8
9

10 @staticmethod
11 def build_component_dependency (ny_scale , ncon_scale) :
12 " " " This method def ines the component dependency graph " " "
13
14 # : c r e a t e two d i c t i o n a r i e s f o r coupling and c o n s t r a i n t s
15 d_constraint = dict ()
16 d_coupling = dict ()
17
18 # : The o r i g i n a l number of components in each constraint
19 original_components = [7 , 2 , 2]
20
21 # : The output l a b e l s f o r c o n s t r a i n t s are l i s t e d

A.6. Extrapolation class 93

22 l a b e l s = [’ g_1 ’ , ’ y_12 ’ , ’ y_14 ’]
23
24 # : The dependency graph i s constructed f o r the c o n s t r a i n t s
25 dependency_graph = []
26 for variable in range (np . s i z e (original_components)) :
27 m, k , dependency = original_components [variable] , [] , []
28 [k . append(1 + i1) for i1 in range (m)]
29 while dependency == [] :
30 for i2 in range (ncon_scale) :
31 dependency . append(np . random . randint (1 , m + 1))
32 i f i2 == n_con − 1 and set (k) . issubset (set (dependency)) :
33 break
34 e l i f i2 == ncon_scale − 1 :
35 dependency = []
36 continue
37 dependency_graph . append(dependency)
38 j 1 = 0
39 for i3 in dependency_graph :
40 d_constraint [l a b e l s [j 1]] = i3
41 j 1 += 1
42
43 # : The o r i g i n a l number of components in each coupling output i s l i s t e d
44 original_components = [2 , 2]
45
46 # : The output l a b e l s are l i s t e d
47 l a b e l s = [’ y_12 ’ , ’ y_14 ’]
48
49 # : The dependency graph i s constructed f o r the coupling v e c t o r s
50 dependency_graph = []
51 for variable in range (np . s i z e (original_components)) :
52 m, k , dependency = original_components [variable] , [] , []
53 [k . append(1 + i1) for i1 in range (m)]
54 dependency = []
55 for i2 in range (ny_scale) :
56 dependency . append(np . random . randint (1 , m + 1))
57 dependency_graph . append(dependency)
58
59 # : The component dependency i s named as a dictionary in the format " l a b e l : component"
60 j 1 = 0
61 for i3 in dependency_graph :
62 d_coupling [l a b e l s [j 1]] = i3
63 j 1 += 1
64
65 d = d_constraint . copy ()
66 d . update (d_coupling)
67
68 return d

A.6. Extrapolation class

1 from interpolated_functions import StructureInterpolation
2 from vanaret import ScaledDependencyMatrix , ComponentDependencyGraph
3
4
5 c l a ss StructureExtrapolation :
6
7
8 def _ _ i n i t _ _ (s e l f) :
9

10 s e l f . s t r _ i n t = StructureInterpolation () # This c l a s s g i v e s component wise

94 A. Implementation of SARF methodology on SSBJ problem

interpolation f o r s t r u c t u r a l outputs
11 s e l f . dependency_matrix = ScaledDependencyMatrix (nx_large , ny_large , s t r u c t u r a l) .

scaled_dependency_matrix (nx_scale , ny_scale , ncon_scale)
12 s e l f . component_dependency = ComponentDependencyGraph () . build_component_dependency (

ny_scale , ncon_scale)
13
14
15 def y12_ext (s e l f , nx , ny , ncon , x_des) :
16 " " " This output corresponds to t o t a l weight (WT) and temperature r a t i o (theta) " " "
17
18 [c_d , a1 , output] = [s e l f . component_dependency [’ y_12 ’] , s e l f . dependency_matrix , []]
19 for i in range (ny) :
20 [sum_i , row] = [[] , a1 [2 * ny + i]]
21 sum_i . append(np .sum(row))
22 [assign , y] = [c_d [i] , []]
23 # : x_des = np . random . random_sample(4 * nx + 5 * ny) # t h i s i s an instance of the

design vector
24 [y . append(s e l f . s t r _ i n t . y12_int ([x_des [k]] , assign − 1)) for k in range (4 * nx + 5

* ny) i f row [k] == 1]
25 output . append(np .sum(y) * 1 / sum_i)
26
27 return output
28
29 def y14_ext (s e l f , nx , ny , ncon , x_des) :
30 " " " This output corresponds to t o t a l weight (WT) and f u e l weight (WF) " " "
31
32 [c_d , a1 , output] = [s e l f . component_dependency [’ y_14 ’] , s e l f . dependency_matrix , []]
33 for i in range (ny) :
34 [sum_i , row] = [[] , a1 [3 * ny + i]]
35 sum_i . append(np .sum(row))
36 [assign , y] = [c_d [i] , []]
37 # : x_des = np . random . random_sample(4 * nx + 5 * ny) # t h i s i s an instance of the

design vector
38 [y . append(s e l f . s t r _ i n t . y14_int ([x_des [k]] , assign − 1)) for k in range (4 * nx + 5

* ny) i f row [k] == 1]
39 output . append(np .sum(y) * 1 / sum_i)
40
41 return output
42
43 def g1_unscaled (s e l f , nx , ny , ncon , x_des) :
44 " " " This output corresponds to s t r u c t u r a l and temperature r a t i o c o n s t r a i n t s " " "
45
46 [c_d , a1 , output] = [s e l f . component_dependency [’ g_1 ’] , s e l f . dependency_matrix , []]
47 for i in range (ncon) :
48 [sum_i , row] = [[] , a1 [4 * ny + i]]
49 sum_i . append(np .sum(row))
50 [assign , y] = [c_d [i] , []]
51 # : x_des = np . random . random_sample(4 * nx + 5 * ny) # t h i s i s an instance of the

design vector
52 [y . append(s e l f . s t r _ i n t . g1_int ([x_des [k]] , assign − 1)) for k in range (4 * nx + 5 *

ny) i f row [k] == 1]
53 output . append(np .sum(y) * 1 / sum_i)
54
55 return output
56
57 def g1_ext (s e l f , nx , ny , ncon , x_des) :
58 " " " scal ing the c o n s t r a i n t s from violated to a c t i v e / i n a c t i v e s t a t u s " " "
59
60 # : evaluating unscaled c o n s t r a i n t s at the i n i t i a l point
61 g_1_0 = s e l f . g1_unscaled (nx , ny , ncon , . 5 * np . ones (4 * nx + 5 * ny))
62

A.7. Script to calculate coupling strength for a Problem 95

63 # : evaluating unscaled c o n s t r a i n t s :
64 g_1 = s e l f . g1_unscaled (nx , ny , ncon , x_des)
65
66 # : define the threshold "tow" to t r a n s l a t e the scaled constraint
67 # : alpha determines to what extent the i n a c t i v e c o n s t r a i n t s are s a t i s f i e d
68 tow , alpha = [] , s e l f . alpha_g1
69 [tow . append(i) i f s e l f . mu_g1[l i s t (g_1_0) . index (i)] < s e l f . p[l i s t (g_1_0) . index (i)] else

tow . append(alpha [l i s t (g_1_0) . index (i)] + (1 − alpha [l i s t (g_1_0) . index (i)]) * i)
for i in g_1_0]

70
71 # define the translated constraint
72 g_1_translated = []
73 [g_1_translated . append(g_1 [i] − tow [i]) for i in range (ncon)]
74 return g_1_translated

A.7. Script to calculate coupling strength for a Problem
To calculate the coupling strength for the MDO problem, it is required to make changes to the _l i near i ze
method of the Di r ectSol ver class within the OpenMDAO code, to accumulate the system Jacobian.

An excerpt is shown from the code representing the required changes:

1 import pickle
2 # : Three pickled f i l e s are created , each representing the
3 # : accumulated jacobian , MDA time and i t e r a t i o n counter .
4 c l a ss DirectSolver (LinearSolver) :
5
6 system = s e l f . _system ()
7 nproc = system .comm. s i z e
8
9 i f s e l f . _assembled_jac i s not None :

10 matrix = s e l f . _assembled_jac . _int_mtx . _matrix
11 with open(" matrix_accu . p" , "rb") as f :
12 matrix_accu = pickle . load (f)
13 matrix_accu . append(matrix)
14 with open(" matrix . p" , "wb") as f :
15 pickle .dump(np . array (matrix_accu) , f)
16
17 with open("time_accu . p" , "rb") as f :
18 time_accu = pickle . load (f)
19 time_accu . append(time_accu [−1] − time . time)
20 with open("time_accu . p" , "wb") as f :
21 pickle .dump(time_accu , f)
22
23 with open(" iter_counter . p" , "rb") as f :
24 iter_counter = pickle . load (f)
25 iter_counter += 1
26 with open(" iter_counter . p" , "wb") as f :
27 pickle .dump(iter_counter , f)
28 .
29 .
30 .
31 .

The coupling strength(rho) is computed by loading the pickled jacobian matrix and applying the following
script:

1 for i in np . arange (0 , len (pickle . load (" iter_counter . p" , "rb")) :
2 a = pickle . load (open(" matrix_accu . p" , "rb"))
3 a = a . toarray ()
4 l = np . dot (np . t r i l (a , k=0) , −1)
5 l = inv (l)
6 u = np . t r i u (a , k=1)

96 A. Implementation of SARF methodology on SSBJ problem

7 G = np . matmul(l , u)
8 spectral_radius = (max(abs (LA . eig (G) [0])))
9 # vars () [’ spectral_radius ’ + s t r (j)] . append (spectral_radius)

10 spectral_radius_accu . append(spectral_radius)
11
12 time_counter = pickle . load (open("time_accu . p" , "rb"))
13
14 for g in range (len (spectral_radius_accu)) :
15 spectral_radius_accu [g] = spectral_radius_accu [g] * (time_counter [g] / sum(time_counter))
16 rho = sum(spectral_radius_accu)

A.8. UML diagram for SARF method
The following UML diagram(Figure A.1)represents the six classes used in implementing the SARF methodol-
ogy:

Figure A.1: UML diagram for SARF methodology

A.9. Downscaling of Large Dependency Matrix 97

A.9. Downscaling of Large Dependency Matrix

Figure A.2: Downscaling of Large dependency matrix

Figure A.2 shows two dependency matrix rows, cor-
responding to the large dependency matrix and the
scaled dependency matrix. There are two basic pa-
rameters involved in the down-scaling process:

1. A parameter bar(b) that defines the number
of consecutive blocks from the large depen-
dency matrix row used to calculate the value
of each block of the scaled dependency ma-
trix row(For the sample representation of Fig-
ure A.2, b = 3).

2. A parameter shift(s) that defines the number
of units by which the bar(b) bracket is shifted to calculate the outcome of the following blocks of the
scaled dependency matrix.

The down-scaling process is explained below:
Firstly, the value of shift(s) is calculated using the following formula:
s = |(N

n)|odd

where N and n refer to the number of blocks present in the large and scaled dependency matrix rows respec-
tively. |x|odd refers to the greatest odd integer function.

Following this the value of bar(b) is calculated as follows:
b = N − s(n −1)
As mentioned above, the value of b comes to be 3. Using the value of bar(b) and shift(s), the value of each
block of the scaled dependency matrix can be determined. If more than fifty percent of blocks within each
bar of the large dependency matrix row have filled blocks(representing presence of a dependency), then the
corresponding block in the scaled dependency matrix row is determined to be filled. As can be seen in Figure
A.2, all but the 4th block of the scaled dependency matrix row show the existence of a dependency.

B
Optimization and Tolerance Parameters

This appendix shows the derivation of optimization and tolerance parameters performed during the repro-
ducibility study of the investigation by Vanaret et. al.[16]. Optimization settings for executing the scaled
SSBJ problem should be such that a fair comparison can be made between MDF and IDF approaches, within
a reasonable time frame. These settings are sub-categorized into three parts - optimizer/ solver tolerance,
constraint tolerances, and bounds on design variables. The following subsections are used to derive these
settings.

B.0.1. Optimizer/ Solver Tolerance
Considering default values for the optimization settings(present in OpenMDAO) shown in table B.1, the
scaled SSBJ MDO problem is run for three sets of problem parameters(nx ,ny ,d) as shown in Figure B.2. The
tolerance on consistency constraint is assigned to be the same as the default absolute tolerance on the Mul-
tiDisciplinary Analysis (MDA) solver. It must also be noted that for the entirety of this OpenMDAO based
project, the ’ScipyOptimize’ driver is used with the SLSQP optimization algorithm, while the MDA solver to
be used for the reproducibility study is the Non-Linear Block Gauss-Seidel convergence scheme(NLBGS).
Unless stated otherwise, NLBGS is the convergence scheme used for the rest of the thesis project as well.

Converger settings Default Value

Termination tolerance for Optimizer 1e-6
Absolute error tolerance for MDA Solver(NLBGS) 1e-10
Tolerance on consistency constraints same as absolute tolerance on solver

Table B.1: Default tolerance values in OpenMDAO

Final Objective MDF-GS IDF

(nx ,ny ,d) = (2, 2, .3) -0.9473793033199817 -0.9473804810309808
(nx ,ny ,d) = (5, 5, .4) -0.8312210912928233 1-0.8312312600799286
(nx ,ny ,d) = (6, 16, .7) -0.7968935027373686 -0.7969081721897459

Table B.2: Final Objective Values

Firstly, the final objective value is noted in all three cases and is found to be comparable for both archi-
tectures up to three decimals as shown in Table B.2. Following this, the convergence history for the objective
function is plotted as a function of the optimizer(driver) iterations(Figure B.1).

For each of the convergence plots in Figure B.1, it can be seen that MDF-GS results in far fewer optimizer
iterations compared to IDF, which continues for a large number of iterations, a phenomenon amplified by
higher coupling density as shown in Figure B.1c. An appropriate reason for this could be the difficulty that
the optimizer faces in satisfying the consistency constraints at convergence. A similar trend is observed while
plotting the norm of the residuals as shown in Figure B.2.

99

100 B. Optimization and Tolerance Parameters

(a) (nx ,ny ,d) = (2, 2, .3) (b) (nx ,ny ,d) = (5, 5, .4) (c) (nx ,ny ,d) = (6, 16, .7)

Figure B.1: Objective Convergence history vs optimizer iterations (default OpenMDAO settings)

(a) (nx ,ny ,d) = (2, 2, .3) (b) (nx ,ny ,d) = (5, 5, .4) (c) (nx ,ny ,d) = (6, 16, .7)

Figure B.2: Residual vs optimizer iterations(default OpenMDAO settings)

The norm of residuals plot seems to indicate that near-zero norm of residuals(on the design vector) are
achieved at about the same number of iterations for both IDF and MDF, yet IDF continues for a larger number
of iterations. It can thus be observed that the default settings lead to extra, redundant optimizer iterations
for IDF, which might bias the prediction model to recommend MDF. One way to remedy this is to reduce the
termination tolerance value for the Scipy Optimizer from 1e-6 to 1e-4. The analysis is repeated with reduced
tolerances and the convergence history and the norm of residuals are again plotted as shown in Figure B.3
and B.4.

(a) (nx ,ny ,d) = (2, 2, .3) (b) (nx ,ny ,d) = (5, 5, .4) (c) (nx ,ny ,d) = (6, 16, .7)

Figure B.3: Objective vs optimizer iterations (optimizer tolerance = 1e-4)

101

(a) (nx ,ny ,d) = (2, 2, .3) (b) (nx ,ny ,d) = (5, 5, .4) (c) (nx ,ny ,d) = (6, 16, .7)

Figure B.4: Residual vs optimizer iterations(optimizer tolerance = 1e-4))

The extra iterations for IDF, in case of reduced optimizer tolerance, is found to be much reduced, while the
final objective is still equal within three decimal places as can be seen in Figure B.3. Therefore the termination
tolerance on the optimizer is selected to be 1e-4. Based on the above observations, the converger settings to
be used in the reproducibility study are shown in Table B.3.

Converger settings Value

Termination tolerance for Optimizer 1e-4
Absolute error tolerance for MDA Solver(NLBGS) 1e-10
Tolerance on consistency constraints 1e-10

Table B.3: Converger settings for reproducibility study

B.0.2. Constraint Tolerance
The route taken to handle disciplinary constraints is quite similar for MDF and IDF architectures. In both
cases, disciplinary constraints are evaluated directly by the optimization algorithm. It is therefore not likely
that constraint tolerance values(tolcon) would have a large influence on the relative solution time of MDF
and IDF architectures. It is clear that if one or more constraints are active at the optimal(final) design point,
the value of the final objective would change when the constraint tolerance value is altered. Ideally, it would
be desirable to select a value of tolcon that does not induce any specific bias on the optimal design point
for any architecture. At the same time, the tolerance on constraint should not be so strict that it drags the
overall computational cost too high and/or create issues with driver convergence(optimizer failing to termi-
nate within the given iteration limit). The effect of constraint tolerance is investigated by running a particular
version of the scaled SSBJ problem (using a fixed dependency matrix and component dependency graph),
for a range of constraint tolerance values. Using parameters (nx , ny , d) = (15,9,0.5), a particular version of
the scaled SSBJ problem is generated. The problem is then run using MDF and IDF approaches for a range
of constraint tolerance values from 1e-3 to 1e-6. Figure B.5 shows a plot of constraint history vs optimizer
iteration for a constraint tolerance value of 1e-3.

102 B. Optimization and Tolerance Parameters

(a) MDF (b) IDF

Figure B.5: History of local constraint(tolcon = 1e −3)

The original SSBJ problem comprises of three constraint vectors g1, g2, and g3, one for each of the three cou-
pled disciplines as explained before. Within the scaled version of the problem, each of the constraint vectors is
extrapolated to nx dimensions. In Figure B.5 each row represents a particular output dimension(component). For
simplicity, just the components of g2 can be considered in the analysis because it shows a mix of active and inac-
tive constraints at the optimal design point. The following set of figures(Figure B.6 and Figure B.7) show the effect
of gradually increasing the constraint tolerance.

(a) tolcon = 1e −3 (b) tolcon = 1e −5 (c) tolcon = 1e −6

Figure B.6: History of local constraint g 2 for MDF

(a) tolcon = 1e −3 (b) tolcon = 1e −5 (c) tolcon = 1e −6

Figure B.7: History of local constraint g 2 for IDF

103

It can be seen in Figure B.6 that for MDF, while moving from left to right(increasing the tolerance strict-
ness), the plot of constraints does not show a significant change. For the three plots, the number of optimizer
iterations remain the same. Additionally, the criticality of constraints at the final design point does not seem
to be dependent on the constraint tolerance value. The constraints that seem to be active at the final itera-
tion(like g21) are the same for all three tolcon values.

In contrast, when a similar set of plots is constructed for IDF as shown in Figure B.7, a considerable varia-
tion can be observed when moving from relaxed to stricter constrained tolerances. The number of optimizer
iterations is not independent of the constraint tolerance values. Comparing Figure B.7a with Figure B.6a, for
tolcon = 1e −3, IDF seems to converge to a different optimal point altogether with fewer active constraints
compared to MDF. As tolcon is reduced, greater similarity is observed between the corresponding MDF and
IDF plots with respect to the overall history of constraints as well as activation status of constraints at the final
point. This would seem to suggest that a highly relaxed constraint tolerance value of 1e-3 is not suitable for
comparing MDF and IDF approaches over a range of parameters. In order to get a more detailed picture, it
is also required to compare the effect of tolcon on the final objective values and solution times. Figure B.8b
represents three semi logarithmic plots wherein the final objective and solution cost(calculated according to
Section 3.3.1) are plotted co-axially versus a range of constraint tolerance values from 1e-3 to 1e-9. Figure
B.8b is made for the above mentioned scaled problem ((nx ,ny ,d) = (15,9,0.5)) while Figure B.8a and Figure
B.8c represent two more scaled problems of lower and greater problem sizes.

(a) (nx , ny , d) = (5, 5, 0.3) (b) (nx , ny , d) = (15, 9, 0.5) (c) (nx , ny , d) = (17, 17, 0.7)

Figure B.8: Final Objective/ Solution cost vs tolcon

It can be seen in Figure B.8b that for tolcon = 1e−3 , the final objective values are largely different. Lower-
ing the constraint tolerance value to 1e-5, the final objective values come much closer to being within three
decimals of accuracy. The accuracy is expectedly maintained for lower tolcon values. This in agreement
with the findings discussed previously from the constraint history plots. A similar situation can be seen for
a smaller scaled problem shown in Figure B.8a. The total time of optimization in both the plots stays nearly
constant for lower values of tolcon . However, for greater problem sizes as shown in Figure B.8c, lowering the
constraint tolerance to below 1e-5 leads to a proportionately larger increase in optimization cost, which is un-
desirable for performing multiple runs. Therefore, for building the prediction model a constraint tolerance
value of 1e-5 is selected.

B.0.3. Bounds on Design Variables
In the SARF methodology, the procedure used to extrapolate each disciplinary interface ensures that every
disciplinary input and output is contained within 0 and 1(except for constraints that need to be translated
according to the rule discussed in Section 3.1.3.3). However, before deriving extrapolated outputs, it is re-
quired to create an interpolated library of disciplinary interfaces as a three-step process shown in Figure
3.18. The middle step (scaling of unidimensional outputs) requires the selection of certain lower and upper
bounds on the original design and coupling variables. The values for these bounds is initially estimated from
two sources, which include a technical report by Sobieszczanski et al. [18](Table A1) and the SSBJKADMOS
python package 1. Now, based on these bounds, it is possible to plot “representative cuts" of the SSBJ prob-
lem, wherein the individual contribution of each design variable on a dependent coupling can be assessed.

1Imco Van Gent. Ssbjkadmos. URLhttps://pypi.org/project/ssbjkadmos.

104 B. Optimization and Tolerance Parameters

Based on the dependency matrix for the original unscaled SSBJ problem shown in Figure 3.8b, it is possible
to make one hundred forty of such plots, six of which are shown in Figure B.9 and Figure B.10.

(a) (b) (c)

Figure B.9: Representative cuts of original SSBJ problem

(a) (b) (c)

Figure B.10: Representative cuts of original SSBJ problem

Looking at Figure B.9a and Figure B.10a, it can be seen that the output functions y230 = f (y121) and y240

= f (y320) are quadratic on certain ranges and constant on others. In the paper by Vanaret et al.[16], it is
mentioned that in order to avoid convergence issues with a gradient based optimizer like SQP, the bounds on
the design variables as well as couplings should be cropped to exclude the ranges where an output is constant.
The specific bounds to be used for the comparative study is however not provided in the paper. In order to
settle on an appropriate value of bounds, a manual trial and error based process can be followed. Using
the original bounds estimated from the sources mentioned before([18] and [58]), an interpolated library of
output functions is generated as shown in Figure B.11. Interpolated outputs for each of the three coupled
disciplines are shown separately.

(a) Structure outputs (b) Aerodynamics outputs (c) Propulsion outputs

Figure B.11: Interpolated library of output functions(Original Bounds)

105

(a) Structure outputs (b) Aerodynamics outputs (c) Propulsion outputs

Figure B.12: Interpolated library of output functions(Restricted Bounds)

Based on the interpolated library of outputs using original bounds(Figure B.11), a scaled SSBJ problem
can be set up and executed for a given set of parameters. Considering (nx , ny , d) = (17, 10, 0.4), Figure
B.13 shows the history of objective function for MDF and IDF architectures using original bounds. It can
be seen that the architectures converge on different final solution which is undesirable for the comparative
study. This seems to suggest that the gradient based optimization algorithm is not capable of handling the
scaled SSBJ problem wherein the coupling outputs show drastic changes in convexities across the interpo-
lation range. This problem is compounded due to selection of parameters such that the overall number of
design variables are high(for nx = 17 and ny = 10, total number of design variables = 4 * nx + 5 * ny = 118)[16].
Now, using a manual approach the bounds on the orig-
inal outputs are gradually reduced so that the inter-
polated library of output functions are restricted to
ranges where the output functions are smooth with
constant convexity throughout. Figure B.12 shows
the interpolated library of output functions for one
such combination of restricted bounds. Based on
the interpolated library of outputs using restricted
bounds(Figure B.12), the scaled SSBJ problem is ex-
ecuted for MDF and IDF approaches(keeping other
problem settings the same as that of the problem ex-
ecuted using original bounds). The history of the ob-
jective function for both architectures is again plotted
in Figure B.13.

Figure B.13: history of objective function for extended and
reduced bounds

It can be observed that in the case of restricted bounds, the final solution obtained for MDF and IDF is the
same(to within 3 decimal places). Also, the total number of optimizer iterations for both architectures is re-
duced compared to their counterparts using original bounds. Therefore, the interpolated library of outputs
shown in Figure B.12 is used for the reproducibility study.

C
Building Linear Regression, KNN and

Decision Tree based Machine Learning
Models

C.1. Linear Regression

Figure C.1: Two-feature linear regression

Multiple linear regression can be explained as an exten-
sion of a linear regression model that can accommodate
multiple predictors. An example of linear regression us-
ing two features(X1 and X2) and one label(Y) in a three-
dimensional space is shown in Figure C.1[37]. The red dots
in the space represent the output points from a test database,
while the 2-dimensional plane represents the predicted out-
put of the regression model. The vertical black lines rep-
resent the residual or the difference between the predicted
and the actual output. The predicted output can be stated
as:

ypr ed =β0 +β1 ∗X 1+β2∗X 2.

βi , i ∈ {1,2} stands for the weight attached to each predictor while β0 stand for the constant intercept.
The β values, referred to as regression coefficients or weights act as design variables for the minimization

problem at the core of the regressor model. Referred to as regression coefficients, these β values also signify
the level of relationship between the features and the response label. For every tested data point, a residual
can be calculated which is the difference between the observed value and the fitted plane.

As can be seen in the database (Table 4.4), for the current application, there are a total of five predictors,
while ytest and ypr ed refer to the actual and predicted cost ratios respectively. Using these five predictors, a
linear regressor model is defined as follows:

ypr ed =β0 +β1 ∗nx +β2 ∗ny +β3 ∗nc +β4 ∗d +β5 ∗np (C.1)

The linear regression algorithm is fitted on the normalized database of SSBJ based scaled MDO prob-
lems(Table 4.4). The output consists of the optimized constant intercept(β0) and the optimized weight val-
ues (βi , i ∈ {1,2,3,4,5}) attached to each feature. Using these values, the regressor line can be constructed as
follows:

ypr ed =−2.8+0.077∗nx +0.070∗ny +2.695∗d +0.031∗nc −0.35∗np (C.2)

Figure C.2a shows the observed vs predicted output of the above linear regression model and the calcu-
lated EVRS.

107

108 C. Building Linear Regression, KNN and Decision Tree based Machine Learning Models

(a) Label - Test vs Predicted label(cost ratios) (b) label - grouping by d (c) label - grouping by np

Figure C.2: Performance evaluation of linear regression

As can be seen in Figure C.2a, the predicted labels are found to be largely scattered around the line y = x.
The Explained Variance Regression Score(EVRS) is only 0.588 which represents a very low prediction accu-
racy. Looking at the β coefficients in Equation C.2, it can be seen that the value(magnitude) of β for the
feature representing the coupling density factor d , (β3 = 2.695) and the number of processors ((β5 =−0.35))
are much higher than the other features, which indicates that the linear model considers these two features
to be comparatively more decisive predictors for the response label compared to other features1. This de-
fies the observations made in the previous chapter(Section 4.1), where the feature concerning the number
of coupling variables (ny) was found to be having the most direct influence on the label. From a data sci-
ence perspective, this shows that a lack of compatibility exists between the observations made in the manual
exploratory data analysis and the prediction obtained from the machine learning model, thereby indicating
that more complicated machine learning techniques might be required to create a better prediction model.
Investigating the cause of the low prediction accuracy of the model, a color mapping bias is applied to the
data points on the regression model, which segregates the data points based on the coupling density factor
and the number of processors. This is shown in Figure C.2b and C.2c. It can be seen from Figure C.2b, that
the data points representing higher coupling densities are more likely to be found further away from the line
y = x compared to the data points representing lower coupling densities. A similar trend can be observed
from Figure C.2c, where the model fails to predict accurately the result of the test cases created using higher
processor cores.

C.2. KNN - K Nearest Neighbours Algorithm

Figure C.3: Cost Ratio distribution over two features

K Nearest Neighbours is a machine learning algo-
rithm that can be used to build a regression model.
Enabled by sci-kit learn’s K Nei g hbor sReg r essor
class, it works on a principle that can be explained
using a reduced version of the SSBJ based database
shown in Figure 4.4. By considering only two fea-
tures nx and ny (keeping all other features constant),
Figure C.3 shows a two dimensional plot represent-
ing the cost ratio distribution of MDF and IDF ar-
chitectures. A total of thirty random data points
{nx ,ny } are plotted for training the model. A test
point, having an unknown outcome is placed at the
point {nx ,ny } = {12,12}. The 1st training point, clos-
est to the unknown test point, is used for valida-
tion. To predict the outcome of a test point, the KNN
model relies on information from nearby elements
in the n-dimensional space. The model makes use of a user-defined parameter k which indicates the number

1https://statisticsbyjim.com/glossary/regression-coefficient/

C.2. KNN - K Nearest Neighbours Algorithm 109

of nearby training elements from which label information is to be extracted. The label value assigned to the
test point is the mean of the label values of the extracted test points. The following set of plots(Figure C.4)
show the effect of changing the k parameter on the outcome of the test point.

(a) k = 2 (b) k = 9 (c) k = 28

Figure C.4: Effect of k parameter on the test point

In each of the above figures, the training points are la-
beled according to the increasing radial distance be-
tween the test point and the training points. For three
values of k, (k ∈ {2,9,28}), a circle is used to represent
the training points that are relevant for estimating the
outcome of the training labels. Each of the training
points within the circle is considered to be an equal
contributor to the outcome of the test point. The KNN
algorithm computes the test label as the mean of the
label values of k nearest neighboring training points.
The actual value of the test point can be considered to
be close to that of the validation point. Now, if a very
low value of k is selected, as shown in Figure C.4a, the
outcome of the test point might be too dependent on
the nearest training points, leading to the possibility
of overfitting. In such circumstances, the model tends
to get fitted too accurately to the training data points,
and the prediction on new test points is much lower.
At the other end, as shown in Figure C.4c, for a very
high value of k, the prediction might be very inaccu-
rate because of the variance introduced in the model
by some of the far-off components. Because of this
trade-off between training and test error rates, it is re-
quired to find out the optimum value of the k param-
eter. The appropriate value of k varies according to
the type of data-set and can be estimated using a hit
and trial process. For the SSBJ data set, this estima-
tion is performed by varying the k value from zero to
thirty, fitting the KNN model for each value of k, and
observing the fitting accuracy for training and test data
points. The result is plotted in Figure C.5.

Figure C.5: Estimation of optimum k value for SSBJ database

Figure C.6: Performance evaluation of KNN(k = 7)

To measure the fitting accuracy, the same EVRS metric discussed before is utilized. It can be seen in Figure
C.5, that the EVRS score for the training data points exponentially increases with decreasing k value. However,
for test data points, the best fit is observed for k = 7. Using this value of k, Figure C.6 shows the performance
evaluation of the KNN regressor model, along with the EVRS score. The prediction accuracy, in this case, is
higher than linear regression.

110 C. Building Linear Regression, KNN and Decision Tree based Machine Learning Models

C.3. Decision Tree
Tree methods are a class of machine learning algorithms that
involve dividing the feature space into distinct segments ac-
cording to a set of splitting rules, which can be summarized
in the form of a binary tree[37]. Initiated by sci-kit learn’s
Deci si onTr eeReg r essor class, a decision tree consists of nodes,
representing a feature space, connected by edges. Starting with a
singular root node, the feature space is progressively divided into
distinct, non-overlapping segments, with terminal nodes being
assigned a unique label value. The method can be demonstrated
using a reduced version of the SSBJ based database. Using nx and
ny , a two feature plot can be created(considering other features to
be constant), representing the cost ratio(Rt) distribution of MDF
and IDF architectures. This distribution is shown in Figure C.7.
Following a train test split of 1:2, a third of the points are consid-
ered to be test points shown by empty circles. Figure C.7: Cost Ratio(Rt) distribution over two

features

Applying the "DecisionTreeRegressor" algorithm on this distribution, a binary tree can be generated as shown
in Figure C.8a2. Each block is referred to as a node. In order to construct the tree, a top down approach called
"recursive binary splitting" is used[37]. Starting from the top, at each node, a bifurcation of the design space
is carried out, using a predictor x, x ∈ {nx ,ny } and a cutpoint s. This leads to two separate half-planes defined
as:

R1(x, s) = {x|x < s} and R2(x, s) = {x|x > s}

The values of x and s are obtained by solving an optimization problem which aims to minimize the Residual
Sum of Squares(RSS) for the resulting tree. The RSS is calculated individually for elements belonging to both
partitions, by considering the mean label value of the training elements within each partition. Therefore at
each split, the following objective is to be minimized:

RSSspl i t =
∑

i :xi R1(j ,s)
{yi − ŷR1 }2 + ∑

i :xi R2(j ,s)
{yi − ŷR2 }2 (C.3)

where ŷR1 and ŷR2 are the mean label values within R1 and R2 respectively. It can be be seen from Figure C.8a,
that for the top most node,i.e, for the very first split, the least value of RSSspl i t is found for {x, s} = {ny ,7.5}.
Moreover , each of the nodes also provide additional information such as the "MSE" or Mean Square Error
which is the square root of the RSS within each partition, along with number of sample points and their mean
label values within each partition.

(a) Decision Tree (b) 3 terminal nodes - 3 distinct regions (c) Performance evaluation of decision tree

Figure C.8: Performance evaluation of decision tree

2Tree visualization obtained using Graphviz{https://graphviz.gitlab.io/about/}, interface to graphviz provided by pydotplus
package{https://github.com/carlos-jenkins/pydotplus}

C.3. Decision Tree 111

Figure C.8a shows three terminal nodes. Each terminal node represents a distinct region having the same
label value as shown in Figure C.8b. Figure C.8c shows the performance evaluation of the decision tree having
three terminal nodes, each assigned a unique ypr ed value. For a small decision tree as the one shown in Figure
C.8a, the prediction capability is very low. For practical applications, a decision tree typically contains hun-
dreds of branches. There are certain internal tuning parameters which can be added to a Deci si onTr eeReg r essor
class as keyword arguments to alter the learning capability of the decision tree model. Some of these parame-
ters are used to prune the size of the decision tree, while others are used to specify conditions on node splitting
such as the minimum number of sample points required to split a node, or minimum error metric(MSE) re-
quired to split a node. The parameters that are considered in this section deal with the breadth and depth
of the decision tree. More specifically, two arguments to the Deci si onTr eeReg r essor object are discussed,
namely max_depth, and max_lea f _nodes. The max_depth parameter is used to fix the maximum number
of vertical levels present in the decision tree . max_l ea f _nodes is a cap on the maximum permissible nodes
in the decision tree. Having the max_depth parameter specified, the max_lea f _nodes parameter is used
to horizontally expand the decision tree by adding more branches to each level. Both of these parameters are
used together to fix the size of the decision tree. For max_depth = 7, max_lea f _nodes = 9, Figure C.9 shows
the corresponding decision tree for the data set shown in Figure C.7

Figure C.9: Decision Tree (max_depth = 7,
max_lea f _nodes = 9)

Depending on the type of the data set in question, it is re-
quired to find the appropriate value of the above mentioned in-
ternal parameters. A decision tree that is too small will have a
low learning rate, but a decision tree that is allowed to expand
indefinitely is going to overfit the training data, resulting in poor
accuracy on test data points3. For the current case(SSBJ based
database), an effort is made to arrive at an appropriate value for
the above-mentioned tuning parameters. Firstly, using a man-
ual approach, the approximate ballpark ranges in which the op-
timum value of the depth and node related parameters lie are
found. Then, to narrow down on the exact optimum values of
the two parameters in question, a grid search is constructed,
which finds the value of max_depth and max_lea f _nodes
parameters for which EVRS is the highest. This is shown by
a surface plot in Figure C.10a. The highest EVRS score is ob-
tained for max_depth = 21 and max_lea f _nodes = 28206.
Using these values, the predictive performance of the decision
tree algorithm on the SSBJ database is plotted in Figure C.10b.
The measured EVRS score with the decision tree based machine
learning model is 0.967. The prediction accuracy of the deci-
sion tree algorithm is higher than both Linear Regression and
K-nearest Neighbour.

(a) Estimation of optimum parameters (b) Performance evaluation of Decision Tree(SSBJ data set)

Figure C.10: Decision Trees - Estimate parameters and Performance Evaluation

3https://towardsdatascience.com/how-to-tune-a-decision-tree-f03721801680

D
Test MDO problems for SSBJ based neural

network

D.1. Propane Combustion Problem
The Propane Combustion Problem is originally a set of eleven non-linear equations, involving eleven vari-
ables and two constants, that are used to represent the chemical equilibrium achieved during combustion
of propane in air[16]. The eleven variables represent the ten combustion products as well as the sum of the
products[16].

The NASA MDO test suite[17] contains an MDO version of this
problem. The MDO version is created by grouping seven of the
non linear equations into three disciplines(as residual equations).
The remaining four equations are converted into inequality con-
straints. The objective is framed as the scalar addition of the con-
straint terms[17, 16]. The eleven unknown variables are catego-
rized into six coupling variables{y0, y1, y2, y3, y4, y5, y6}, three local
design variables{x1, x2, x3} and one shared design variable{x0}[17].
The data flow diagram for the disciplines is shown in Figure D.1

Figure D.1: Data Flow Diagram

In keeping with the SARF methodology, the following changes are made to the structure of the problem:

1. Each of the residual equations (Ri (xlocal , xshar ed , y) = 0) are equivalently expressed in explicit form (y =
y(xlocal , xshar ed , y j 6=i)) [16].

2. The couplings and design variables are converted into vector form, each having a certain number of
elements

3. Couplings are re-modelled in the form of yi j where i and j represent the input and output disciplines
respectively.

The original and re-modelled disciplinary equations are represented below:

113

114 D. Test MDO problems for SSBJ based neural network

The remodelled MDO problem, based on remodelled disciplines, can be framed as follows:

Given:
x = {x1, x2, x3, x0}
y = {y12[0], y13[0], y13[1], y23[0], y23[1], y31[0], y32[0]}

Minimize:
f1(x, y)+ f2(x, y)+ f3(x, y)+ f4(x, y)

Where:
f1(x, y) = 2x0 −2x1 +x3 + y13[1]+ y12[0]+ y23[0]+2y23[1]+30
f2(x, y) =√

(y13[1], y13[0])−x2
√

(40x0/y32[0])
f3(x, y) =√

(x0, y13[1])−x3
√

(40y13[0]/y32[0])
f4(x, y) = x0

p
(x1)− y13[0](40−2x1)

√
(40/y32[0])

Subject to the following constraints:
cong 1 = { f1(x, y), f1(x, y), f1(x, y), f1(x, y)} > 0
cong 2 = {x1, x2, x3} > 0

The XDSM for the remodelled Problem (using the MDF-GS architecture) is shown in Figure D.2.

D.1. Propane Combustion Problem 115

Figure D.2: XDSM for Propane Combustion (MDF-GS)

One of the constraints, cong2 can be converted into a lower bound on the local design variables. The
other constraint vector, cong 1, is a set of four constraints that are all global. Therefore, unlike the SSBJ based
database, it is not possible to create a uniform sized local constraint vector attached to each discipline. Instead,
a separate subsystem is defined that includes the global constraints and then added to the MDO problem. The
output of this subsystem is the global constraint vector, which is scaled and normalized in the same manner as
the local constraint within the SSBJ problem. Having the scaling of constraints sorted, the SARF methodology
can be used to scale the Propane Combustion problem in the same manner as the SSBJ based problem. As ex-
plained before, there are two primary constructs for scaling the MDO Problem, i.e the dependency matrix and
the component dependency graph. By considering the following parameters, {nx ,ny ,ncon ,d} = {2,5,10,0.6}, a
scalable problem is generated at random and an instance of the two underlying constructs are presented below
in Figure D.3.

Figure D.3: dependency matrix/ Component dependency graph for Propane Combustion Problem

116 D. Test MDO problems for SSBJ based neural network

The dependency matrix for the scaled propane combustion problem consists of five specific zones (as
opposed to four for the dependency matrix of the scaled SSBJ problem), representing the three disciplines,
global constraints and the shared design variables. The component dependency graph, shown for the global
constraint discipline g , shows the randomized mapping from four original components to ten extrapolated
components.

D.2. Speed Reducer Problem

Figure D.4: Speed Reducer Gearbox

Another problem transcribed from the NASA MDO
test suite, the speed reducer problem represents the
design optimization of a simple gearbox. First pro-
posed by Jan Golinsky[59], it was originally framed
as a single discipline optimization problem aimed at
minimizing the volume of a gearbox subject to stress,
deflection and geometric constraints[59, 51, 53]. The
problem consists of seven design variables and seven
constraints. Figure D.4[51] shows the seven design
variables, that represent the dimensions of the com-
ponents within the gearbox.

Figure D.5: Data flow diagram for Speed Reducer Problem

Different MDO conversions have been proposed
for the speed reducer problem[53, 60, 61]. The one
used here was implemented by Nathan Tedford [60].
Within the MDO conversion, the structure of the orig-
inal problem is reworked to create three disciplines.
The seven original design variables are reworked into
four global design variables{x1, x2, x3, x4} and three
coupling outputs{y14, y24, y34} (each belonging to one
of three disciplines), that are used only in the objective
calculation, and not as an input for any of the other
disciplines. The seven original constraints are divided into three sets of three, two, two, and assigned as local
constraints for each discipline. The data flow diagram for the disciplines is shown in Figure D.5. In keeping
with SARF methodology, the shared variables are grouped into a vector x0 having four components. The other
aspects of the problem are already well suited for scaling according to the SARF methodology, as there are no
residual equations and the couplings are already present in the required vector notation.

The disciplinary equations are framed as follows:

Di sci pl i ne1

y14 = max

(
27

x0[0]2x0[1]
, 397.5

x0[0]2x0[1]2 , 5x0[0], 2.6
)

g1[0] = 1− y14
12x0[0] , g1[1] = 1− y14

3.6 g1[2] = 1− x0[0]x0[1]
40

Di sci pl i ne2

y24 = max

((
1.93x0[2]3

x0[0]x0[1]

)1/4
,

(
1

110

√(
745x0[2]

x0[0]x0[1]

)2 +16.9∗106

)1/3

, 2.9

)

g2[0] = 1− y24
3.9 , g2[1] = 1− 1.5y241.9

x0[2]

Di sci pl i ne3

y34 = max

((
1.93x0[3]3

x0[0]x0[1]

)1/4
,

(
1

85

√(
745x0[3]

x0[0]x0[1]

)2 +157.5∗106

)1/3

, 5

)

g3[0] = 1− y34
5.5 , g3[1] = 1− 1.1y241.9

x0[3]

D.2. Speed Reducer Problem 117

Based on the above disciplines, the MDO problem can be framed as follows:

Given:
x = {x0[0], x0[1], x0[2], x0[3]}
y = {y14, y24, y34}

Minimize:
f1(x, y)+ f2(x, y)+ f3(x, y)+ f4(x, y)

Where:
f1(x, y) = 0.7854y14x0[0]2(3.333x0[1]2 +14.9334x0[1]−43.0934)
f2(x, y) =−1.508(y2

24 + y2
34)y14

f3(x, y) = 7.477(y3
24 + y3

34)
f4(x, y) = .7854(x0[2]y2

24 +x0[3]y2
34)

Subject to the following constraints:
cong 1 = {g1[0], g1[1], g1[2]} > 0
cong 2 = {g2[0], g2[1]} > 0
cong 3 = {g3[0], g3[1]} > 0

and the following bounds on x:
0.7 < x0[0] < 0.8
17 < x0[1] < 28
7.3 < x0[2] < 8.3
7.3 < x0[3] < 8.3

The XDSM for the problem(using the MDF architecture) is shown in Figure D.6.

Figure D.6: XDSM for Speed Reducer Problem(MDF-GS)

118 D. Test MDO problems for SSBJ based neural network

Figure D.7: Dependency matrix/ Component dependency graph for Speed
Reducer Problem

Looking at Figure D.6, only shared
design variables can be observed. The
couplings are unidirectional, going from
the first three disciplines to Di sc4, which
computes the objective. Hence, the feed-
back among disciplines which is found
in other problems is missing here. The
problem is high on constraints as each
of the disciplines have a certain num-
ber of local constraints attached to them.
These features are reflected in the fram-
ing of the dependency matrix. Based
on the above-mentioned features, an in-
stance of the original and scaled depen-
dency matrices, along with an instance
of the component dependency graph (for
output g1) is represented in Figure D.7.
Looking at the original and scaled dependency matrices, the specific features of the Speed Reducer Prob-
lem can be observed. Since there is no interdisciplinary feedback, the coupling variables do not form a part
of the input space and are hence not represented along the abscissa. Additionally, the matrix is not divided
into distinct zones in this case, instead only one block, belonging to the shared variables is displayed.

D.3. Heart Dipole Problem
The final test problem looked at in this section is a standard MDO test problem called the Heart Dipole prob-
lem. Transcribed from the NASA MDO test Suite, the heart dipole problem involves the measurement of the
synthetic dipole moment of a human heart using two artificial dipoles in an electrolyte-containing disk[52].
The original problem involves the use of eight Gabor-Nelson equations and eight unknown variables to com-
pute the magnitude, directions, and locations of the two independent dipoles in the disks1.

Figure D.8: Data flow diagram for Heart Dipole Problem

An MDO conversion was provided
by Padula et. al.[17]. Consider-
ing the original Problem to be having
eight original equations { f1, f2,, f8},
and eight unknowns {x1, x2,, x8}, the
MDO problem is framed by arbitrarily
combining four of the eight equations
{ f5, f6, f7, f8} into an objective function
and dividing the remaining four equa-
tions { f1, f2, f3, f4} into residual equa-
tions for the two coupled disciplines.
Four of the eight unknowns {x1, x4, x6, x7}
are converted into global(shared) design
variables and the other four unknowns
are assigned as coupling outputs for the
two disciplines. The data flow diagram is shown in Figure D.8

The MDO problem, in its original form, contains residual equations within each discipline. In keeping
with the SARF methodology, it is required to rework the residual equations to express the coupling outputs
in explicit form. The couplings and design variables are also required to be renamed into an appropriate
nomenclature compatible with the SARF methodology.

1https://www.aere.iastate.edu/bloebaum/ii-c-1-heart-dipole-problem/

D.3. Heart Dipole Problem 119

The original and remodeled disciplines are shown below:

Based on the remodelled disciplines, the MDO problem can be framed as follows:

Given:
x = {x0[0], x0[1], x0[2], x0[3]}
y = {y12[0], y12[1], y21[0], y21[1]}

Minimize:
f5(x, y)+ f6(x, y)+ f7(x, y)+ f8(x, y)

where:
f5(x, y) = x0[0](y21[1]2 −x0[3]2)−2y21[0]y21[1]x0[3]

+ y12[0](x0[2]2 − y12[1]2)−2x0[1]x0[2]y12[1]−σC

f6(x, y) = y21[0](y21[1]2 −x0[3]2)+2x0[0]y21[1]x0[3]
+ x0[1](x0[2]2 − y12[1]2)+2y12[0]x0[2]y12[1]−σD

f7(x, y) = x0[0]y21[1](y21[1]2 −3x0[3]2)+ y21[0]x0[3](x0[3]2

- 3 y21[1]2)+ y12[0]x0[2](x0[2]2 −3y12[1]2)+x0[1]y12[1](y12[1]2 −3x0[2]2)−σE

f8(x, y) = y21[0]y21[1](y21[1]2 −3x0[3]2)−x0[0]x0[3](x0[3]2 −3y21[1]2)
+x0[1]x0[2](x0[2]2 −3y12[1]2)+ y12[0]y12[1](y12[1]2 −3x0[2]2)−σF

Subject to the following Constraints:
Cong 1 = {− f5(x, y),− f7(x, y)} > 0
Cong 2 = {− f6(x, y),− f8(x, y)} > 0

and the following bounds on the design variables:
0 < {x0[0], x0[1], x0[2], x0[3]} < 400

Looking at the disciplinary equations and the problem definition, a total of six constants can be seen. An
appropriate values for these constants can be looked up in the literature[52, 17, 62]. The final value for these
constants is taken directly from the paper by Li et. al[52]
Therefore, σmx =σmy =σA =σB =σC =σD =σE =σF = 0.1

120 D. Test MDO problems for SSBJ based neural network

The XDSM for the heart dipole MDO problem(using the MDF-GS architecture) is shown in Figure D.9.

Figure D.9: XDSM for heart dipole problem(MDF-GS)

Figure D.10: Dependency matrix/ Component dependency graph for Heart
Dipole Problem

Looking at the XDSM, the problem
can be observed to have two coupled dis-
ciplines. The input space is devoid of any
local design variables. Two coupling vec-
tors can be observed, y12 and y21, each
having originally a size of two. There are
also local constraint vectors of size two,
cong 1 and cong 2 attached to each disci-
pline. The global(shared) variable vector
contains four components. These input
and output parameters are reflected in
the dependency matrix as shown in Fig-
ure D.10 The original dependency ma-
trix shows the input and output compo-
nents of the heart dipole problem. Look-
ing at(an instance of) the scaled model, three zones of dependencies can be observed, two belonging to each
of the two disciplines and the third zone belonging to the global(shared) variables. The component depen-
dency graph is shown for the constraint vector cong 1.

E
Test MDO problems for retrained neural

network

E.1. Fuel Minimization problem using Q3D-EMWET
To frame the problem, two major analytical tools are used, namely Q3D and EMWET. Q3D is a low fidelity
aerodynamic solver that uses a combination of the Vortex Lattice Method(VLM), full/linearized potential
flow, and Boundary Layer equations to calculate the lift and drag distribution as well as pitching moment
distribution of the wing sections. The drag is composed of three components: profile drag, induced drag,
and wave drag. The load and moment distribution obtained from the Q3D solver is then entered into a struc-
tural sizing tool called EMWET that predicts the weight distribution of the wing structure. EMWET uses a
physics kernel to size components such as top and bottom panels, spar webs, and wing box, while empirical
information is used to account for the weights of high lift devices. A few wing optimization MDO problems
can be framed using these two disciplines, such as range maximization of an airplane or minimization of
the maximum take-off weight for a given set of constraints. The MDO problem to be used in this section
is titled as "Minimize the mission fuel weight of a reference airplane for a given range using a constraint
multidisciplinary approach.".

Before the MDO problem can be framed, it is required to derive the components that can uniquely define
the three-dimensional geometric structure of the wing. The wing itself is constructed using three airfoils, one
each at the root, kink, and tip sections. The airfoil sections are constructed using a parameterization method
called the Class Shape Transformation(CST) method[63]. A total of six CST coefficients are used to construct
each airfoil upper and lower sections, making it a total of thirty-six coefficients for the three airfoil sections.
These coefficients are represented by the C STW vector. Additionally, a set of design variables are used to
define the wing planform. These variables are represented with the GW vector.

Based on the above procedure, a fuel minimization MDO problem for a constant mission range can be
framed as follows:

Given: X = {GW ,C STW }

where GW = {B ,Rc ,Λ1,Λ2,λRc ,φRoot ,φK i nk ,φT i p }, C STW = {C STRoot ,C STK i nk ,C STt i p }

Minimize: W f uel (X)
W f uel (r e f)

Subject to the following constraints: g1 = V f uel (X)

.93∗Vt ank(X)
−1 <= 0, g2 = W L(X)

W L(r e f) −1 <= 0

where V f uel , Vt ank , W L and S stand for the fuel volume, tank volume, wing loading, and the wing surface
area respectively. r e f represents the reference value of the outputs. Using the MDF-GS architecture, the
XDSM of the original problem is shown in Figure E.1. It must be noted that the original problem was framed
and executed within the MATLAB environment, so the XDSM is manually generated and does not comply
with the exact template used by wr i te_xd sm method within OpenMDAO. The following section is used to
explain the scaling process for the fuel minimization problem

121

122 E. Test MDO problems for retrained neural network

E.1.1. Scaled Fuel Minimization Problem
Under the SARF methodology, the first step or the "expensive step" is the one-dimensional restriction of each
of the disciplinary outputs(couplings and constraints), which requires the repeated execution of the disci-
plines for a range of input values. Now, since the original problem(and therefore the analytical tools) from
the MDO course are based on MATLAB, it is required to run the unidimensional restriction step within a
MATLAB environment. An example of the one-dimensional restriction is shown below for the spanwise lift
distribution coupling vector(L) computed from the inviscid Q3D solver. The inviscid Q3D solver gives the
lift distribution for a set of fourteen points uniformly spaced along the half span, which are then interpo-
lated using a spline method1 into seven evenly spaced points along the half span. The dimension of the
inputs {X , Wwi ng , W f uel } are {44, 1, 1} respectively making a total of forty six-dimensional input while the
load output is a seven-dimensional vector. The corresponding load function can be stated as : L : R46 → R7.
The disciplinary interface is shown in Figure E.2a. Now, Equation 3.1 is applied on each of the seven out-
puts(considering t to be an equally spaced set of 20 values between zero and one) to create a one dimen-
sional mapping function (L1d (t)). For this purpose, the lower and upper bounds of each input are directly
estimated from the earlier MATLAB based implementation. This function is plotted in Figure E.2b. The map-
ping function can be represented as follows : L1d : [0,1] → R7. At this point, a CSV database is generated for
this mapping function, which is then imported into the OpenMDAO environment.
The second step, i.e scaling, and interpolation is executed within OpenMDAO. The database, consisting of
uni-dimensionalized outputs is imported into OpenMDAO, where the outputs are first scaled between zero
and one(Using the minimum and maximum values of the outputs) followed by interpolation using a spline
curve, which converts the mapped outputs into a continuous function. The corresponding function, shown
in Figure E.2c, can be represented as follows : Li nt : [0,1] → [0,1]7. The above two steps are repeated for the
moment coupling and the results are shown in Figure E.3

(a) Disciplinary interface for L
L : R46 → R7

(b) 1-d restriction for L
L1d : [0,1] → R7

(c) Scaled and Interpolated outputs for L
Li nt : [0,1] → [0,1]7

Figure E.2: One dimensional restriction, Scaling and Interpolation for Load Vector

(a) Disciplinary interface for M
M : R46 → R7

(b) 1-d restriction for M
M1d : [0,1] → R7

(c) Scaled and Interpolated outputs for M
M i nt : [0,1] → [0,1]7

Figure E.3: One dimensional restriction, Scaling and Interpolation for Moment Vector

1https://nl.mathworks.com/help/matlab/ref/interp1.html

E.1. Fuel Minimization problem using Q3D-EMWET 123

The final step, is the extrapolation of the one-dimensional function into ny dimensions, by constructing a
dependency matrix and a component dependency graph. The dependency matrix for the original, unscaled
problem is shown in Figure E.4

Figure E.4: Dependency matrix for original (unscaled) fuel minimization problem

The design space of the scaled fuel minimization problem can be seen along the abscissa of the de-
pendency matrix in Figure E.4. In the absence of local design variables, design space consists of shared
variables(x0G_W and x0C ST _W) which are plotted separately on the right. Under the SARF methodology, six
coupling vectors are constructed by combining the original couplings in such a way that the source and des-
tination of each coupling are unique. Based on this, the above-discussed coupling vectors (related to load
and moment distribution) from Aerodynamics to Structure discipline is named y12l oad_moment having a to-
tal of fourteen elements(7 + 7). By considering the following values of the parameters. {nx ,ny ,ncon ,d} =
{3,5,3,0.6}, an instance of the scaled dependency matrix/ component dependency graph(for the coupling
y12load_moment) is shown in Figure E.5. For simplicity, only the aerodynamics discipline has been shown.

Figure E.5: Dependency Matrix/ Component dependency graph
{nx ,ny ,ncon ,d} = {3,5,3,0.6}

Using these two components, the interpolated coupling vectors Li nt : [0,1] → [0,1]7 and M i nt : [0,1] →
[0,1]7 are extrapolated into a single coupling vector y12l oad_moment consisting of ny components.

Given that the input space(for the scaled aerodynamic discipline) consists of thirteen (nx + 2 * ny = 13)
components, and the output space consists of five(ny = 5) components, the extrapolated vector can be noted
as y12i nt

load_moment : [0,1]13 → [0,1]5. Now, in order to plot the individual contribution of each input compo-

124 E. Test MDO problems for retrained neural network

nent on the extrapolated vector y12load_moment in two dimensions, it would be required to make thirteen
plots. Figure E.6 shows two of these plots as representative cuts, showing the individual effect of y12w wi ng _0
and y12w wi ng _1 on the extrapolated vector y12load_moment .

Figure E.6: Extrapolation from Load and moment couplings to y12load_moment vector

Based on the component dependency graph, each component of the extrapolated vector y12l oad_moment

is derived from an original component(either L or M). The original components are shown in brackets on
the legend of the extrapolated components. The red components are based on extrapolation of a particular
component of the moment vector while the green components are based on the components of the load
vector. It can be seen that the linearity/convexity of the original components is preserved in the process of
extrapolation.

E.1. Fuel Minimization problem using Q3D-EMWET 125

Figure E.1: XDSM for the original Fuel minimization MDO problem(using MDF-GS scheme)

126 E. Test MDO problems for retrained neural network

Figure E.7: Spectral radius vs Solver iterations
(Scaled fuel minimization problem)

To build a scaled database, it is also required
to estimate the coupling strength of the fuel mini-
mization problem. Now, in the previous sections,
the coupling strength was calculated on both the
original, unscaled problems as well as the scaled
problems, and it was verified that the value of
the coupling strength remained in the same ball-
park when an MDO problem was scaled under the
SARF methodology. In the current scenario, only
the scaled problem is available for calculation of
coupling strength as it is directly transcribed from
a MATLAB based implementation of the original
problem. Using the same technique as shown in
Section 4.2.4.2, the numerical estimate for the cou-
pling strength is calculated for the scaled fuel min-
imization problem across a range of data points as
shown in Figure E.7. Using the time-weighted aver-
age, the coupling strength for the fuel minimization
problem comes to be 0.487.

E.1.2. Sellar Problem
The flow diagram for the Sellar problem is shown in
Figure E.8. Each discipline is defined by a single math-
ematical expression. There is bidirectional coupling
between both the disciplines, represented by y1 and
y2, each of size one. There is a single constraint vec-
tor, of size one, attached to each of the two disciplines.
Based on this flow diagram, the original and remod-
elled disciplines are shown below:

Figure E.8: Flow diagram
(Sellar Problem)

Based on the above scaled disciplines, the SARF based problem can be formed as follows:

Given:
x, z

Minimize:
x[0]2 + z[0]+ y12[0]+e−y21[0]

such that:
1− y12[0]/3.16 <= 0
y21[0]/24−1 <= 0

Looking at the scaled problem, the structure seems identical to the scaled heart dipole based problem,
therefore the process of formulating the dependency matrices and the component dependency graph are
identical. The process is not repeated here, it can be retrieved from Section D.3. The coupling strength(ρ) is
also calculated according to the same methodology as before and comes out to be 0.562.

Bibliography

[1] Kevin Bowcutt. A perspective on the future of aerospace vehicle design. 12 2003. ISBN 978-1-62410-085-
7. doi: 10.2514/6.2003-6957.

[2] Jeremy Agte, Olivier de Weck, Jaroslaw Sobieszczanski-Sobieski, Paul Arendsen, Alan Morris, and
Martin Spieck. Mdo: assessment and direction for advancement—an opinion of one international
group. Structural and Multidisciplinary Optimization, 40(1):17, 2009. ISSN 1615-1488. doi: 10.1007/
s00158-009-0381-5. URL https://doi.org/10.1007/s00158-009-0381-5.

[3] Forest Flager and John Haymaker. A comparison of multidisciplinary design, analysis and optimization
processes in the building construction and aerospace industries. 06 2007.

[4] Jaroslaw Sobieszczanski-Sobieski and Raphael Haftka. Multidisciplinary aerospace design optimization:
Survey of recent developments. Structural Optimization, 14:1–23, 08 1997. doi: 10.1007/BF01197554.

[5] James Allison, Michael Kokkolaras, and Panos Papalambros. On the impact of coupling strength on
complex system optimization for single-level formulations. (4739X):265–275, 2005. doi: 10.1115/
DETC2005-84790. URL http://dx.doi.org/10.1115/DETC2005-84790.

[6] Nathan Tedford. Comparison of mdo architectures within a universal framework. Master thesis, Univer-
sity of Toronto, North York, Toronto, 2007.

[7] Nathan P. Tedford and Joaquim R. R. A. Martins. Benchmarking multidisciplinary design opti-
mization algorithms. Optimization and Engineering, 11(1):159–183, February 2010. doi: 10.1007/
s11081-009-9082-6.

[8] Shamsheer Chauhan, John Hwang, and Joaquim R. R. A. Martins. Benchmarking Approaches for the
Multidisciplinary Analysis of Complex Systems Using a Taylor Series-Based Scalable Problem. 2017. ISBN
978-3-319-67987-7. doi: 10.1007/978-3-319-67988-4_7.

[9] Gyung-Jin Park, Yi Sang-Il, and Shin Jung-Kyu. Comparison of mdo methods with mathematical ex-
amples. Structural and Multidisciplinary Optimization, 35(5):391–402, 2008. ISSN 1615-1488. doi:
10.1007/s00158-007-0150-2. URL https://doi.org/10.1007/s00158-007-0150-2.

[10] Kevin. F. Hulme and Christina. L. Bloebaum. A simulation-based comparison of multidisciplinary de-
sign optimization solution strategies using cascade. Structural and Multidisciplinary Optimization, 19
(1):17–35, 2000. ISSN 1615-1488. doi: 10.1007/s001580050083. URL https://doi.org/10.1007/
s001580050083.

[11] Ted Long. The optimization assistant—helping engineers explore designs through collaboration. In
Proceedings of the 4th International Conference on Intelligent User Interfaces, IUI ’99, page 200, New York,
NY, USA, 1998. Association for Computing Machinery. ISBN 1581130988. doi: 10.1145/291080.291125.
URL https://doi.org/10.1145/291080.291125.

[12] Amir Mosavi. The large scale system of multiple criteria decision making; pre-processing. IFAC Proceed-
ings Volumes, 43(8):354 – 359, 2010. ISSN 1474-6670. doi: https://doi.org/10.3182/20100712-3-FR-2020.
00060. URL http://www.sciencedirect.com/science/article/pii/S1474667015334194. 12th
IFAC Symposium on Large Scale Systems: Theory and Applications.

[13] Maurice Hoogreef. Advise, formalize and integrate mdo architectures: A methodology andimplementa-
tion. Phd thesis, Delft University of Technology, Mekelweg 5, 2628 CD Delft, 2017.

[14] Scott Delbecq, Marc Budinger, and Aurélien Reysset. Benchmarking of monolithic mdo formulations
and derivative computation techniques using openmdao. Structural and Multidisciplinary Optimiza-
tion, 03 2020. doi: 10.1007/s00158-020-02521-7.

127

https://doi.org/10.1007/s00158-009-0381-5
http://dx.doi.org/10.1115/DETC2005-84790
https://doi.org/10.1007/s00158-007-0150-2
https://doi.org/10.1007/s001580050083
https://doi.org/10.1007/s001580050083
https://doi.org/10.1145/291080.291125
http://www.sciencedirect.com/science/article/pii/S1474667015334194

128 Bibliography

[15] Loïc Brevault, Mathieu Balesdent, Nicolas Bérend, and Rodolphe Le Riche. Comparison of different
global sensitivity analysis methods for aerospace vehicle optimal design. 05 2013.

[16] Charlie Vanaret, Francois Gallard, and Joaquim Martins. On the consequences of the "no free lunch"
theorem for optimization on the choice of an appropriate mdo architecture. 18th AIAA/ISSMO Multidis-
ciplinary Analysis and Optimization Conference, 2017. doi: 10.2514/6.2017-314810.2514/6.2017-3148.
URL https://doi.org/10.2514/6.2017-3148.

[17] Sharon L. Padula, Natalia. Alexandrov, and Lawrence Green. MDO test suite at NASA Langley Research
Center. Multidisciplinary Analysis Optimization Conferences. American Institute of Aeronautics and
Astronautics, 1996. doi: 10.2514/6.1996-402810.2514/6.1996-4028. URL https://doi.org/10.2514/
6.1996-4028.

[18] Jaroslaw Sobieszczanski, Jeremy S. Agte, and Robert R. Sandusky Jr. Bi-level integrated system synthesis
(bliss). Technical report, 1998.

[19] Emre Yilmaz and Brian German. A Convolutional Neural Network Approach to Training Predictors for
Airfoil Performance. AIAA AVIATION Forum. American Institute of Aeronautics and Astronautics, 2017.
doi: 10.2514/6.2017-366010.2514/6.2017-3660. URL https://doi.org/10.2514/6.2017-3660.

[20] Emre Yilmaz and Brian German. A Deep Learning Approach to an Airfoil Inverse Design Problem.
AIAA AVIATION Forum. American Institute of Aeronautics and Astronautics, 2018. doi: 10.2514/6.
2018-342010.2514/6.2018-3420. URL https://doi.org/10.2514/6.2018-3420.

[21] Jean-Loup Loyer, Elsa Henriques, Mihail Fontul, and Steve Wiseall. Comparison of machine learning
methods applied to the estimation of manufacturing cost of jet engine components. International Jour-
nal of Production Economics, 178:109 – 119, 2016. ISSN 0925-5273. doi: https://doi.org/10.1016/j.ijpe.
2016.05.006. URL http://www.sciencedirect.com/science/article/pii/S0925527316300731.

[22] Ney R. Secco and Bento S. Mattos. Artificial Neural Networks Applied to Airplane Design. AIAA SciTech
Forum. American Institute of Aeronautics and Astronautics, 2015. doi: 10.2514/6.2015-101310.2514/6.
2015-1013. URL https://doi.org/10.2514/6.2015-1013.

[23] George Sved. Structural optimization under multiple loading. International Journal of Mechanical Sci-
ences, 10(10):803–805, 1968. ISSN 0020-7403. doi: https://doi.org/10.1016/0020-7403(68)90021-0. URL
http://www.sciencedirect.com/science/article/pii/0020740368900210.

[24] Lucien. A. Schmit. Structural synthesis 1959-1969 - A decade of progress. Technical report, U. of Alabama
Press, University,Alabama, United States, 1971.

[25] Jaroslaw Sobieszczanski-Sobieski. A linear decomposition method for large optimization problems.
Blueprint for development. Technical report, NASA Langley Research Center; Hampton, VA, United
States, 1971.

[26] Joaquim R. R. A. Martins and Andrew B. Lambe. Multidisciplinary design optimization: A survey of
architectures. AIAA Journal, 51:2049–2075, 2013. doi: 10.2514/1.J051895.

[27] Shamsheer Chauhan, John Hwang, and Joaquim Martins. An automated selection algorithm for non-
linear solvers in mdo. Structural and Multidisciplinary Optimization, 58, 06 2018. doi: 10.1007/
s00158-018-2004-5.

[28] Aliyu I. Bakari. Comparison of jacobi and gauss-seidel iterative methods for the solution of systems
of linear equations. Asian Research Journal of Mathematics 8 (3), 1-7, 2018. doi: 10.9734/ARJOM/
2018/34769. URL http://www.journalrepository.org/media/journals/ARJOM_44/2018/Feb/
Bakari832017ARJOM34769.pdf.

[29] Richard Balling and Carol Wilkinson. Execution of multidisciplinary design optimization approaches on
common test problems. AIAA Journal, 35(1):178–186, 1997. ISSN 0001-1452. doi: 10.2514/2.7431. URL
https://doi.org/10.2514/2.7431.

https://doi.org/10.2514/6.2017-3148
https://doi.org/10.2514/6.1996-4028
https://doi.org/10.2514/6.1996-4028
https://doi.org/10.2514/6.2017-3660
https://doi.org/10.2514/6.2018-3420
http://www.sciencedirect.com/science/article/pii/S0925527316300731
https://doi.org/10.2514/6.2015-1013
http://www.sciencedirect.com/science/article/pii/0020740368900210
http://www.journalrepository.org/media/journals/ARJOM_44/2018/Feb/Bakari832017ARJOM34769.pdf
http://www.journalrepository.org/media/journals/ARJOM_44/2018/Feb/Bakari832017ARJOM34769.pdf
https://doi.org/10.2514/2.7431

Bibliography 129

[30] Philippe Dépincé, Benoît Guédas, and Jérôme Picard. Multidisciplinary and multiobjective optimiza-
tion: Comparison of several methods. In 7th World Congress on Structural and Multidisciplinary Opti-
mization, Seoul, South Korea, May 2007. URL https://hal.archives-ouvertes.fr/hal-00449605.
10 pages.

[31] Evin J. Cramer, John E. Dennis Jr., Paul D. Frank, Robert Michael Lewis, and Gregory R. Shubin. Problem
formulation for multidisciplinary optimization. SIAM Journal on Optimization, 4(4):754–776, 1994. ISSN
1052-6234. doi: 10.1137/0804044. URL https://doi.org/10.1137/0804044.

[32] Ravindra V. Tappeta, Somnath Nagedra, and John E. Renaud. Concurrent sub-space optimization (csso)
mdo algorithm in isight, csso in isight: validation and testing. GE Research and Development Center,
97CRD186, class, 1, 1998.

[33] Oscar Sheynin. Gauss and the Method of the Least Squares, volume 219. 1999. doi: 10.15611/sps.2014.
12.01.

[34] Takashi Isobe, Eric D. Feigelson, Michael G. Akritas, and Gutti J. Babu. Linear regression in astronomy.
Astrophysical Journal v.364, p.104, 364:104–113, November 1990. doi: 10.1086/169390. URL http://
adsabs.harvard.edu/abs/1990ApJ...364..104I.

[35] Aitzol Astigarraga, Jose Maria Martinez-Otzeta, Igor Rodriguez, Basilio Sierra, and Elena Lazkano.
Markov Text Generator for Basque Poetry. 2017. ISBN 978-3-319-64205-5. doi: 10.1007/
978-3-319-64206-2_26.

[36] Gio Wiederhold and John McCarthy. Arthur Samuel: Pioneer in Machine Learning, volume 36. 1992. doi:
10.1147/rd.363.0329.

[37] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Introduction to Statistical Learn-
ing: with Applications in R. Springer Publishing Company, Incorporated, 2014. ISBN 1461471370,
9781461471370.

[38] Takehisa Yairi, Yoshinobu Kawahara, Ryohei Fujimaki, Yoichi Sato, and Kazuo Machida. Telemetry-
mining: A machine learning approach to anomaly detection and fault diagnosis for space systems. vol-
ume 2006, pages 8 pp. – 476, 07 2006. doi: 10.1109/SMC-IT.2006.79.

[39] Ney Secco and Bento Mattos. Artificial neural networks to predict aerodynamic coefficients of trans-
port airplanes. Aircraft Engineering and Aerospace Technology, 89:211–230, 03 2017. doi: 10.1108/
AEAT-05-2014-0069.

[40] Karu Nanithi, Gajal Lakshmi, Malar Vizhi, and Sailesh Wari. A study on comparison of jacobi, gauss-
seidel and sor methods for the solution in system of linear equations. International Journal of Mathe-
matics Trends and Technology, 56:214–222, 04 2018. doi: 10.14445/22315373/IJMTT-V56P531.

[41] Florin B. Manolache and Sorin Costiner. Parallel processing approach for multidisciplinary optimization
algorithm.

[42] Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The expressive power of neural
networks: A view from the width. 09 2017.

[43] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

[44] Russell D. Reed and Robert J. Marks. Neural Smithing: Supervised Learning in Feedforward Artificial
Neural Networks. MIT Press, Cambridge, MA, USA, 1998. ISBN 0262181908.

[45] Mahesh Panchal. Approximating number of hidden layer neurons in multiple hidden layer BPNN archi-
tecture. International Journal of Computer Science and Mobile Computing, 3:455–464, 01 2014.

[46] Aditya Devarakonda, Maxim Naumov, and Michael Garland. Adabatch: Adaptive batch sizes for training
deep neural networks. CoRR, abs/1712.02029, 2017. URL http://arxiv.org/abs/1712.02029.

[47] Yoshua Bengio. Practical recommendations for gradient-based training of deep architectures. CoRR,
abs/1206.5533, 2012. URL http://arxiv.org/abs/1206.5533.

https://hal.archives-ouvertes.fr/hal-00449605
https://doi.org/10.1137/0804044
http://adsabs.harvard.edu/abs/1990ApJ...364..104I
http://adsabs.harvard.edu/abs/1990ApJ...364..104I
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://arxiv.org/abs/1712.02029
http://arxiv.org/abs/1206.5533

130 Bibliography

[48] Dominic Masters and Carlo Luschi. Revisiting small batch training for deep neural networks, 2018.

[49] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout:
A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(56):
1929–1958, 2014. URL http://jmlr.org/papers/v15/srivastava14a.html.

[50] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout:
A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15:
1929–1958, 2014. URL http://jmlr.org/papers/v15/srivastava14a.html.

[51] Ming-Hua Lin, Jung-Fa Tsai, Nian-Ze Hu, and Shu-Chuan Chang. Design optimization of a speed re-
ducer using deterministic techniques. Mathematical Problems in Engineering, 2013:1–7, 11 2013. doi:
10.1155/2013/419043.

[52] Wei Li, Mi Xiao, Yongsheng Yi, and Liang Gao. Maximum variation analysis based analytical target cas-
cading for multidisciplinary robust design optimization under interval uncertainty. Advanced Engineer-
ing Informatics, 40:81–92, 04 2019. doi: 10.1016/j.aei.2019.04.002.

[53] Shen Lu and Harrison M. Kim. A regularized inexact penalty decomposition algorithm for multidisci-
plinary design optimization problems with complementarity constraints. 2010.

[54] Christina L. Bloebaum. Coupling strength-based system reduction for complex engineering design.
Structural optimization, 10(2):113–121, Oct 1995. ISSN 1615-1488. doi: 10.1007/BF01743538. URL
https://doi.org/10.1007/BF01743538.

[55] Yousef Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied Mathematics,
second edition, 2003. doi: 10.1137/1.9780898718003. URL https://epubs.siam.org/doi/abs/10.
1137/1.9780898718003.

[56] Srinivas Kodiyalam. Evaluation of methods for multidisciplinary design optimization (mdo). Technical
report, Engineous Software, Inc. Morrisville, NC United States, NASA/CR-1998-208716, 09 1998. URL
https://ntrs.nasa.gov/citations/19990019380.

[57] Justin Gray, Kenneth T. Moore, Tristan A. Hearn, and Bret A. Naylor. Standard platform for benchmarking
multidisciplinary design analysis and optimization architectures. AIAA Journal, 51(10):2380–2394, 2013.
doi: 10.2514/1.J052160. URL https://doi.org/10.2514/1.J052160.

[58] Imco Van Gent. Ssbjkadmos. URL https://pypi.org/project/ssbjkadmos/#description.

[59] Jan Golinski. Optimal synthesis problems solved by means of nonlinear programming and random
methods. Journal of Mechanisms, 5, 09 1970. doi: 10.1016/0022-2569(70)90064-9.

[60] Nathan Tedford and Joaquim R. R. A. Martins. Comparison of mdo architectures within a universal
framework. 2006.

[61] Sumeet Parashar and Christina Bloebaum. Decision Support Tool for Multidisciplinary Design Optimiza-
tion (MDO) Using Multi-Domain Decomposition. doi: 10.2514/6.2005-2200. URL https://arc.aiaa.
org/doi/abs/10.2514/6.2005-2200.

[62] Oleg V. Gendelman, Dawei Du, and Dan Simon. Complex system optimization using biogeography-
based optimization. Hindawi Publishing Corporation, 1:10.1155/2013/456232, 12 2013. doi: https://
doi.org/10.1155/2013/456232.

[63] Erik D. Olson. Three-Dimensional Piecewise-Continuous Class-Shape Transformation of Wings. doi: 10.
2514/6.2015-3238. URL https://arc.aiaa.org/doi/abs/10.2514/6.2015-3238.

http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.1007/BF01743538
https://epubs.siam.org/doi/abs/10.1137/1.9780898718003
https://epubs.siam.org/doi/abs/10.1137/1.9780898718003
https://ntrs.nasa.gov/citations/19990019380
https://doi.org/10.2514/1.J052160
https://pypi.org/project/ssbjkadmos/#description
https://arc.aiaa.org/doi/abs/10.2514/6.2005-2200
https://arc.aiaa.org/doi/abs/10.2514/6.2005-2200
https://arc.aiaa.org/doi/abs/10.2514/6.2015-3238

	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Introduction
	Literature Review
	MDO in Aerospace - History and Outlook
	Monolithic MDO Architectures
	Benchmarking MDO architectures with Scalable Problems
	Coupling Strength
	Problem Size

	Machine Learning - History and Outlook
	Machine Learning application in Aerospace
	Drag coefficient prediction of wing configurations
	Estimation of manufacturing cost using machine learning

	Reproducibility Study - Scalable Analytic Replacement Function
	SARF Methodology
	One-dimensional Restriction
	Scaling and Interpolation
	Extrapolation
	Input-Output Dependency Matrix
	Component Dependency Graph
	Extrapolated Output

	Implementation of SARF methology on SSBJ Problem
	Pre-processing / Optimization settings
	Cost criterion for Comparing MDF-GS and IDF Architectures
	Optimization and Tolerance Parameters

	Critical Analysis of Existing Results
	Outcome of Critical Analysis and Further Investigation

	Prediction Model of MDO Architecture
	Visual Analysis - SSBJ problem
	Problem size and Coupling density
	Constraint size
	Number of Processors

	Building a Prediction model
	Feature Definition - Generation of a Normalized Database
	Testing Machine Learning Algorithms on SSBJ Database
	Neural Networks
	Selecting the most effective Algorithm

	Verify Prediction Model - Test MDO problems
	Feature Engineering - Resolve Incompatibility and Retrain model
	Derive the Differentiating Feature - Coupling Strength
	Numerical Estimate of Coupling Strength
	Verify Coupling Strength Estimation - Empirical Evidence
	Retrain/Verify model based on Combined Database

	Prediction Model - Summary

	Testing and Deployment of the Prediction Model
	Testing Scaled Problems on Re-Trained Neural Network
	Advisory Systems for Scaled Problems
	Testing Original Problems on Re-Trained Neural Network
	Test Original Problems - Average Based Feature Extraction
	Test Original Problems - Sensitivity based Feature Extraction

	Verification with Literature
	Deployment of the Prediction Model
	Computation of coupling density(d)
	Computation of Coupling Strength()
	Extraction of Problem Size related Values(nx, ny , nc)
	Application of Prediction Model

	Summary - Test Cases

	Conclusions and Recommendations
	Conclusion
	Recommendations

	Implementation of SARF methodology on SSBJ problem
	One-dimensional restriction class
	Interpolation class
	Large random matrix class
	Scaled dependency matrix class
	Component dependency graph class
	Extrapolation class
	Script to calculate coupling strength for a Problem
	UML diagram for SARF method
	Downscaling of Large Dependency Matrix

	Optimization and Tolerance Parameters
	Optimizer/ Solver Tolerance
	Constraint Tolerance
	Bounds on Design Variables

	Building Linear Regression, KNN and Decision Tree based Machine Learning Models
	Linear Regression
	KNN - K Nearest Neighbours Algorithm
	Decision Tree

	Test MDO problems for SSBJ based neural network
	Propane Combustion Problem
	Speed Reducer Problem
	Heart Dipole Problem

	Test MDO problems for retrained neural network
	Fuel Minimization problem using Q3D-EMWET
	Scaled Fuel Minimization Problem
	Sellar Problem

	Bibliography

