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A B S T R A C T

The use of optimization procedures for designing acoustic/elastic metamaterials (A/E MMs) has gained
significant interest since they enable the efficient attainment of unique functionalities often contradicting.
When it comes to vibration attenuation caused by mechanical stress waves, such as impact loads, the dynamic
properties of A/E MMs are optimized so that their wave-control ability is maximized. However, the mechanical
performance of A/E MMs during the propagation of such waves is normally not evaluated into the design
optimization stages. This may compromise not only the load-bearing capacity of MMs, but also their ability
in attenuating vibrations. To prevent such effects, we propose a design strategy that incorporates the stress
analysis in the early design phase of A/E MMs subjected to an impact load. The effective mass density
approach is applied, from which the vibration attenuation is identified at frequency ranges where the resonator
moves out-of-phase in relation to the applied excitation. Regarding to the A/E MM mechanical behavior,
maximum von Mises stress is calculated through the transient analysis of a unit cell array subjected to a
dynamic load. A Pareto front shows a trade-off behavior between the A/E MM functionalities. With that, we
emphasize the importance of incorporating the mechanical performance into the design stage of A/E MMs for
vibration attenuation of structures undergoing high impact loads, such as installation of foundations by impact
hammering. This brings A/E MMs closer to real applications involving energy filtering at specific frequencies
from transient loads, designed in an optimized and efficient way.
1. Introduction

Metamaterials (MMs) refer to architected structures exhibiting
unique effective properties that are not found in their constituent
materials. Due to such properties, MMs have been widely explored
for solving wave propagation problems. The sub-category of MMs
possessing properties for manipulating mechanical waves is named as
acoustic/elastic metamaterials (A/E MMs). These MMs are comprised
of locally resonant periodic (or non-periodic) unit cells, which retain
subwavelength frequency attenuation ranges (also known as resonant
band gaps). The dynamic interaction between the local resonators
and the propagating mechanical wave results in frequency-dependent
effective properties, such as negative mass density [1], negative bulk
modulus [2], and double negativity [3] (both mass density and bulk
modulus have negative values). As a result of that, A/E MMs have been
extensively investigated within the field of noise/vibration control [4–
8].

Regarding to the attenuation of mechanical waves induced by dy-
namic loads (such as impact loads), some works reported the use
of the dynamic effective properties of A/E MMs. For instance, Tan
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E-mail address: a.c.azevedovasconcelos@tudelft.nl (A.C. Azevedo Vasconcelos).

et al. (2014) [9] demonstrated numerically the attenuation perfor-
mance of single- and dual-resonator models during the transmission
of blast waves. Both models consisted of spring–mass systems retain-
ing the negative effective density at two distinct frequencies. An ex-
perimental validation of A/E MMs for impact wave attenuation was
presented by Khan et al. (2018) [10]. They showed a transmission
reduction at the frequency related to the resonance of an unit cell
made of aluminum and steel. The effective mass density of meta-
panels, a metamaterial-based sandwich structure, was also applied to
attenuate blast waves [11]. Although these studies have developed
A/E MM designs for impact load attenuation, a verification of their
mechanical performance is still to be demonstrated. The lack of such
analysis can result in two main drawbacks. First, the design may not
resist the impact load due to the use of thin elements and significantly
large masses to create the subwavelength resonant band gap. Second,
the deformation of such MMs can modify their dynamic effective
properties. In the works reported by Wang et al. (2014) and Bertoldi
et al. (2017) [12,13], the buckling effect was exploited to tune the band
gaps of acoustic MMs. It was highlighted that the pre-deformation of
vailable online 30 January 2025
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MMs can induce the band gap formation at different frequency ranges.
Including the mechanical performance of A/E MMs in their design
stage is crucial to retain the MM effective properties for the desired
application.

The design of A/E MMs with a desired functionality typically re-
ies on experiments or trail-and-error approaches. Depending on the
omplexity of the geometry, the required manufacturing constraints,
nd the method used to determine the A/E MM’s effective properties,
he current iterative design process can be computationally expensive

and time consuming. To avoid that, optimization techniques have
been explored to systematically design A/E MMs, i.e., by implying
he desired functionalities and respecting the imposed geometric con-
traints in the design stage. Gradient-based methods are commonly
sed to optimize A/E MMs. For instance, Oh et al. (2015) [14] con-

ducted topology optimization using the homogenization method to
aximize the operating frequency range of hyperbolic elastic MMs.
opology optimization has also been used to design acoustic MMs
labs exhibiting a prescribed negative refraction at a specific inci-
ence angle and frequency [15]. Lu et al. (2013) [16] proposed a

level-set based topology optimization to design acoustic MMs with
negative bulk modulus at specific frequencies. At the same direc-
tion, Noguchi et al. (2022) [17] designed acoustic labyrinthine MMs
with a negative refractive index by means of level-set based topology
optimization. Since gradient-based methods are not effective for non-
convex problems, suboptimal configurations (local minima) may be
found. In a worst scenario, the solution can diverge in case of the
initial design is not well selected. Furthermore, gradient-based methods
require the sensitivity of the fitness function with respect to some
design variable, which could be a challenge task for some optimization
problems. To avoid that, efforts have been devoted to design MMs
via non-gradient-based methods such as evolutionary methods; these
algorithms borrow concepts from evolutionary biology—a population
of individuals evolves over generations so as to optimize a fitness
function (it is worth noticing that evolutionary algorithms may not
guarantee a global solution, since there is no optimality criterion). To
mention some works, Dong et al. (2017) [18] introduced a topology
optimization approach to design two-dimensional single-phase elastic
MMs with double-negative effective material properties by using the
single-objective genetic algorithm (GA). Shape optimization approaches
combining effective properties and GA have also been introduced to
esign single-phase chiral elastic MMs [19]. Broadband vibration at-

tenuation of one-dimensional and two-dimensional meta-structures was
chieved via optimization procedures based on genetic algorithms [20–

23]. In the field of active metamaterials, whose properties are ac-
ively adjusted by external stimuli, genetic algorithm procedures have
een employed to achieve improved vibration suppression [24–26].

Besides that, evolutionary algorithms can take full advantage of parallel
computing—reducing significantly the computational time—, since the
fitness evaluation of all individuals is independent. Despite the signif-
icant contributions made by GA, investigations concerning the study
of vibration attenuation and mechanical performance relation in early
design stage remains still unexplored.

In this paper, we investigate the influence of integrating the me-
chanical performance into the design process of A/E MMs through
 multi-objective optimization using GA. The unit cell’s geometry is

initially parameterized, from which a vector of design variables is
defined and employed to update the two fitness functions required in
this optimization problem; the first related to the vibration attenuation
analysis, while the second evaluates the maximum stress due to an
impact load. Adequate geometric constraints are defined so that the
manufacturing of the optimized MMs is feasible. The multi-objective
optimization provides in the end a Pareto front, which shows a set of
non-dominated optimal solutions. We analyze the trade-off behavior
between mechanical and vibration attenuation performance and discuss
the importance of incorporating these features into the design stage of
A/E MMs. Through such multi-objective design optimization, the A/E
2

MM can be used for attenuating vibrations at specific frequencies of
structures undergoing high amplitude impact loads, such as founda-
tions installed in onshore or offshore environment through an impact
hammer and structures exposed to shock waves.

2. Performance indicators of acoustic/elastic metamaterials

In this section, the evaluation of the vibration attenuation and me-
chanical performance of A/E MMs is introduced. The unit cell geometry
used in this work is initially described and its dynamic features are
investigated. Finally, a strategy to determine the stresses caused by an
impact load is presented.

2.1. Unit cell model and dispersion curves

The dynamic characteristics of A/E MMs will provide informa-
tion about the vibration attenuation functionality. The characterization
starts by initially defining the unit cell design. The design steps of the
nit cell are presented in Figs. 1a and b. A square unit cell with side

length 𝑎 contains a resonator, with a mass represented by a rounded-
ertex square structure of length 2𝑅2 containing four rectangular-shape

cavities of length 𝑙𝑔 and width 𝑤𝑔 , and four identical beams with length
𝑙𝑏 and width 𝑤𝑏. The round shape of the square vertices is introduced
by a fillet with radius 𝑅𝑓

2 . The resonator is embedded in an external
rounded-vertex square frame of size 2𝑅1 containing a fillet of radius
𝑅𝑓
1 . A fillet 𝑟𝑓 was also included in the edges connecting the beams

to the external frame. The unit cell has a thin out-of-plane thickness
𝑡𝑐 , enabling the assumption of plane stress analysis. We consider an
unit cell made of Nylon, with properties Young’s modulus 𝐸𝑛 = 2 GPa,
density 𝜌𝑛 = 1150 k g∕m3, and Poisson’s ratio 𝜈𝑛 = 0.4.

Dispersion curves are commonly used to evaluate the dynamic fea-
ures of A/E MMs, since they show the relation between the wavelength
nd frequency of a wave propagating in the medium. Consequently,
and gaps can be identified as the frequency zones with no dispersion
urves, which means no wave propagation. For that purpose, here we
onsider an infinite 2D medium formed by periodically repeated unit

cells presented in Fig. 1b. The periodicity is introduced along the in-
lane boundaries of the unit cell and it is conducted by Bloch–Floquet
heorem, which states that the displacement field 𝐮 satisfies

𝐮(𝐱 + 𝐚,𝐤) = 𝐮(𝐱,𝐤) 𝑒𝑖(𝐤⋅𝐚), (1)

where 𝐱 is the position vector, 𝐚 is the lattice vector of the periodic
material, 𝐤 is the wave vector of the propagating wave, and 𝑖 =

√

−1.
Due to the periodicity of the unit cell, the vector 𝐤 is defined at the
dges of the irreducible Brillouin zone (green triangle in Fig. 1c). The

band structure is obtained by solving the following eigenvalue problem

(𝐊(𝐤) − 𝜔2𝐌)𝐮 = 𝟎, (2)

where 𝐊(𝐤) and 𝐌 are, respectively, the global stiffness and global
mass matrices, and 𝜔 is the angular frequency of the propagating wave.
To investigate the mechanism of local-resonant band gaps, the band
structure is determined for an unit cell with the following geometric
parameters: 𝑎 = 0.042 m, 𝑅1 = 0.47𝑎, 𝑅2 = 0.46𝑎, 𝑤𝑏 = 1 mm, 𝑙𝑔 = 0.07𝑎,

𝑔 = 0.1𝑎, 𝑙𝑏 = 𝑅2 − 𝑙𝑔 , 𝑅𝑓
1 = 0.85𝑅1, 𝑅

𝑓
2 = 0.85𝑅2, 𝑟𝑓 = 0.5 mm, and

𝑐 = 10 mm. The commercial software COMSOL Multiphysics is used
o calculate the band structure. The first six band modes are depicted

in the left of Fig. 1c, with abscissas 𝛤 − 𝑋 − 𝑀 − 𝛤 . A band gap
anging from 488 Hz to 556 Hz is identified (gray rectangle) and its flat
dges—or, close-to-zero group velocity—indicate that it results from
ocal resonance [4]. This can be observed from modes 𝑀1 and 𝑀2,

where the motion is mostly confined to the resonator.
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Fig. 1. (a) Steps for definition of the external frame of the unit cell and the resonator mass. Fillets 𝑅𝑓
1 and 𝑅𝑓

2 are used to create the round shape of the square’s vertices. (b)
Final design of unit cell with remaining geometric parameters. (b) Band structure and effective mass density of the initial unit cell design. The band structure shows the first six
modes of the periodic unit cell for a finite set of wavevectors 𝐤 along the IBZ (green triangle), where two band gaps are observed. The gray rectangle indicates the resonant band
gap. The inset highlights the modes (𝑀1, 𝑀2, and 𝑀3) identified at the band gap edges and the displacement field obtained by exciting harmonically the unit cell at a frequency
of 525 Hz.
Fig. 2. (a) Impact load used in the transient analysis; and (b) frequency spectrum of the corresponding load.
𝜌

2.2. Effective mass density

Under the long wavelength assumption, whereby the phase displace-
ment difference among boundaries is ignored [27], the effective mass
density of the unit cell can be determined. To that end, a harmonic
prescribed displacement is applied to the four external boundary edges
of the unit cell, and the corresponding reaction forces are evaluated by
( )
3

𝐊 − 𝜔2𝐌 𝐔 = 𝐅, (3)
where 𝜔 is the frequency of the driving excitation, and 𝐔 and 𝐅 are
the global displacement and external force vectors, respectively. The
effective mass density is then calculated by averaging the reaction force
with the acceleration, in all edges, as [28]

̄(𝜔) = − 1
𝑉

𝐹𝑏

𝜔2𝑈𝑏
, (4)

where 𝐹𝑏 and 𝑈𝑏 are the averaged reaction force and displacement in
the edges, respectively, and 𝑉 is the volume of the unit cell.
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Fig. 3. (a) Maximum von Mises stress in function of time for different maximum frequencies 𝑓𝑖. (b) Maximum von Mises stress value obtained from transient simulations for each
𝑓𝑖.
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To further understand the physics behind the effective mass density,
 harmonic prescribed displacement in the 𝑥 direction of amplitude
𝑥 = 0.1 mm is applied at the external boundaries of the unit cell
escribed in Section 2.1. The reaction forces are obtained by Eq. (3) and

replaced in Eq. (4) to determine the effective mass density. The right
urve in Fig. 1c shows the frequency as a function of the normalized
ffective mass density (EMD) �̄�∕𝜌𝑛 of the proposed unit cell. We notice

that the normalized EMD is slightly constant until 400 Hz. Close to the
resonant frequency of the unit cell, the EMD increases to an infinite
positive value and suddenly drops to an infinite negative value. After
that, the EMD increases and becomes constant again. The inset shows
the displacement field of the unit cell at 𝑓 = 525 Hz, where the EMD
is negative. At such frequency, the positive external loads induce an
ut-of-phase motion of the resonator, which prevents the wave energy
o propagate through the structure [29].

From such analysis, it is worth noticing that the negative EMD
egion starts nearby the frequency of the lower band gap’s edge. Since
he determination of the EMD is less computationally demanding than
he band structure—here it requires solving the eigenvalue problem

stated in Eq. (2) with Bloch–Floquet periodic BC for a finite set of
ectors along the IBZ (Fig. 1c)—the EMD was chosen as the method
o optimize the unit cell’s band gap.

2.3. Transmission loss diagram

We have shown that the determination of the band gap by means
f dispersion curve analysis and the effective mass density requires
ome assumptions; in the first analysis, we assume that the unit cell
s periodically repeated in a infinite domain, while in the second, the
ong wavelength assumption is used. To investigate the attenuation
erformance of the metamaterial in a finite domain, a transmission loss
iagram is numerically computed. Here, we consider a plate containing
 finite number of unit cells. The excitation is a sinusoidal horizontal
rescribed displacement 𝑢𝐼 (𝜔) of amplitude 0.1 mm, which is applied at
 point before the unit cell arrangement. The output displacement 𝑢𝑂(𝜔)
s then measured at a point after such arrangement. To reduce the effect
f reflected waves, perfectly matched layers (PML) were included at the
late ends. The transmission loss (TL) is then computed by

TL(𝜔) = 20 log10
𝑢𝑂
𝑢𝐼

, (5)

2.4. Determination of transient stress

This section introduces the finite element model used for calcu-
lating stresses induced by an impact load. Fig. 2 depicts the model,
comprising an array of identical unit cells subjected to a transient
4

l

load at the top edge, with zero displacement prescribed at the bottom
dge. The load function is represented as 𝐹 (𝑡) = 𝐹0 𝑒−𝑡∕0.0001, where
0 = 1 k N is the maximum load amplitude and 𝑡 is the time in seconds.
s systems without damping may exhibit oscillatory behavior under

mpact loads, especially high-frequency content that leads to noisy
esponses, this would require more iterations and smaller time steps,
lowing numerical convergence and increasing computational time. To
nhance the convergence, numerical damping is introduced as small
ayleigh damping coefficients, 𝛼 = 0 and 𝛽 = 1𝑒−4 (material damping
as demonstrated influence on the vibration attenuation performance,
herefore small values are also used in this work to restrict the vibration
ttenuation to the resonance effect of the unit cell [30]). The time step

𝛥𝑡 and the maximum element mesh size 𝑒𝑚𝑎𝑥 for the transient problem
re determined based on the maximum frequency to be solved, 𝑓𝑚𝑎𝑥.

Consequently, 𝛥𝑡 is set as 1∕(60𝑓𝑚𝑎𝑥), and 𝑒𝑚𝑎𝑥 is defined as 𝑐∕(6𝑓𝑚𝑎𝑥),
where 𝑐 represents the wave speed in the medium and the number 6
indicates the minimum number of finite elements per wavelength. The
end time for each transient analysis calculation is set at 0.0038 s to also
apture the response of reflected elastic waves.

From Fig. 2b, it is noticed that the energy content of the impact is
concentrated within frequencies below 10 kHz. To accurately determi-
nate the maximum frequency, Fig. 3a depicts the maximum transient
von Mises stress response for five maximum frequency values (𝑓𝑖 =
[1, 2, 3, 4, 5] kHz, where 𝑖 = 1,… , 5). Notably, selecting a maximum
frequency 𝑓𝑚𝑎𝑥 = 𝑓2 = 2 k Hz yields a favorable stress response, since
frequencies exceeding 2 k Hz provide comparable values of maximum
von Mises stress, as indicated in Fig. 3b.

3. Design optimization strategy

In this work, the performed optimization updates the unit cell de-
sign according to its geometric parameters. Due to the high complexity
of the unit cell geometry (see Fig. 1a), the geometric parameters that
contribute the most to the band gap performance are carefully selected
to constitute the design variable (DV) vector. The selection is conducted
through a parametric EMD analysis of the main resonant elements.
 parametric sweep is defined according to the possible minimum
nd maximum dimensions for each geometric feature. Since only three
arameters are used to define the external frame (𝑅1, 𝑅

𝑓
1 and 𝑟𝑓 ) they

re directly considered as DVs. It is worth to mention that the size of
he unit cell 𝑎 will remain constant, since our aim is to explore the
ossible resonator’s shape within a fixed frame.

Fig. 4 shows the relation between the band gap’s width and the
ariation of the resonator’s size 𝑅2, the beam’s width 𝑤𝑏, the cavity’s
osition 𝑙𝑔 , and the cavity’s width 𝑤𝑔 . From those parameters, the band
ap is less sensitive to the beam’s width variation, which is due to the
imited size range (the beams cannot be thinner than the manufacturing
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Fig. 4. Variation of the bandwidth and central frequency of the BG for different ranges of the resonator’s size 𝑅2 (top left), the beam’s width 𝑤𝑏 (top right), the cavity’s position
𝑙𝑔 (bottom left), and the cavity,s width 𝑤𝑔 (bottom right).
resolution nor too large to avoid contact with the resonator’s mass).
hile the increase of 𝑅2 and 𝑤𝑔 results in a decrease of the central

requency of the band gap, the opposite effect is observed when the
avity’s position increases—i.e., when the beam’s length is shorter.
rom these observations, 𝑅2 (and its fillet 𝑅𝑓

2 ), 𝑙𝑔 and 𝑤𝑔 were chosen
s design variables for further optimization.

GAs have been widely employed to solve complex optimization
problems, specially multi-modal ones containing several local minima.
Unlike classical optimization methods, which rely on deterministic
perators, GAs use stochastic operators that can explore better the
earch space to achieve the optimal solution. The algorithm works by
nitially defining a population 𝑃0 containing 𝐼0 individuals randomly
enerated [31]. Then, the algorithm starts a loop over a maximum num-
er of generations 𝐺𝑚. In each iteration, the population is evaluated
ccording to a defined objective function. The individuals containing
ower fitness values are chosen by means of a selection function to
onstitute the parent population (𝑃𝑝). The genetic operators crossover
nd mutation are applied to the individuals of 𝑃𝑝 to create the indi-
iduals of the next iteration (offspring population 𝑃𝑜). The mutation
perator makes random changes in a single individual from 𝑃𝑝, while
he crossover operator combines information of two individuals from
𝑝. The algorithm ends when one of the stopping criteria (for instance,

maximum number of generations, maximum computational time or
tolerance on the objective function) is reached.

Since in this work two independent parameters are investigated (the
egative mass density and the maximum stress), a GA-based multi-
bjective optimization strategy is used. In this case, distinct solutions
ay generate a trade-off behavior between the objectives, which means

that the improvement of one objective only occurs when compromising
the other objective. This is shown in the end of the optimization by
means of a Pareto front, which represents a set of optimal solutions in
5

the space of objective functions. From such solutions, we select the one
that is most suitable for a desired application.

The multi-objective optimization problem is then stated as,
min 𝛷 = (𝜙1(𝐝), 𝜙2(𝐝))
subjected to 17.44 mm ≤ 𝑅1 ≤ 19.74 mm,

16.60 mm ≤ 𝑅2 ≤ 19.32 mm,

4.2 mm ≤ 𝑤𝑔 ≤ 4.5 mm,

2.94 mm ≤ 𝑙𝑔 ≤ 3.94 mm,

0.1 mm ≤ 𝑟𝑓 ≤ 1 mm,

98.7 mm ≤ 𝑅𝑓
1 ≤ 107.52 mm,

96.6 mm ≤ 𝑅𝑓
2 ≤ 100.8 mm,

𝑅2 − 𝑅1 ≤ 0,

𝑅𝑓
1 − 𝑅𝑓

2 ≤ −1 mm,

(6)

where 𝐝 is the vector of design variables defined as 𝐝 = [𝑅1, 𝑅2,
𝑤𝑔 , 𝑙𝑔 , 𝑟𝑓 , 𝑅𝑓

1 , 𝑅
𝑓
2 ]. The set of geometric constraints exhibits both the

geometric bounds and the inequality constraints so that a gap of 1 mm
is kept between two parameters. The first function 𝜙1 is related to the
band gap optimization and it minimizes the ratio between the central
frequency of the band gap and its bandwidth, i.e,

𝜙1(𝐝) =
0.5(𝑓2 + 𝑓1)
𝑓2 − 𝑓1

, (7)

𝑓1 and 𝑓2 represent, respectively, the lower and upper frequencies
defining the band gap (the negative EMD region). The second objective
function is defined such as the ratio between the maximum transient
von Mises stress and the yield stress is minimized. Therefore,

𝜙 (𝐝) = 𝜎max , (8)
2 𝜎𝑦
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Fig. 5. Flowchart of the design optimization used to evaluate the trade-off behavior, which gives in the end a Pareto front with optimal solutions. On the right, it is shown a
schematic of the Pareto front evolution through generations. The inset highlights three unit cells randomly generated in the first population 𝑃0.
where 𝜎𝑦 is the yield stress of the constituent material (for Nylon
𝜎𝑦 = 71.7 MPa).

A flow chart describing each step of the multi-objective optimization
is presented in Fig. 5. The optimization problem is solved using Mat-
lab’s built-in function gamultiobj. It starts by calculating the EMD �̄� and
the maximum von Mises stress 𝜎max for each individual of the initial
population 𝑃0 via COMSOL Multiphysics. By using the GA operations,
the population evolves until it reaches the maximum number of gener-
ations or the function tolerance, from which a Pareto front is obtained
(refer to schematic on the right from Fig. 5). We select then the set of
DVs with 𝜙2 < 1 that is most suitable for a desired application.

4. Multi-objective design optimization results and discussion

In this section, the trade-off behavior will be explored by performing
the multi-objective optimization described in Section 3. Preliminary
simulations revealed that a population size of 250 effectively provides
a Pareto front with a sufficient amount of optimal solutions that will
be further verified. The optimization stops when it reaches one of the
stopping criteria; here it has been considered the maximum number of
generations, which is equal to 20, and a function tolerance of 1e−3,
which indicates the minimum change in each objective function value
that should occur between generations. The individuals constituting
the parent population are chosen by the tournament function and the
mutation children are produced by the mutation power function. The
crossover fraction used to create the next generation is set to 0.8.

Fig. 6a shows the cumulative optimal points in gray for generations
𝐺 < 20 and the optimal Pareto front in black when 𝐺 = 20. Notably,
the front depicts the trade-off between the objective functions, i.e., the
improvement of 𝜙1 only occurs with a decrease in 𝜙2 and vice-versa.
The gray area in the figure highlights the region of unfeasible designs,
where the linear regime condition is violated, as proposed by Eq. .
Three individuals on the Pareto front are identified, labeled 𝑃𝐴, 𝑃𝐵 , and
𝑃 . The individual 𝑃 indicates the case with the lowest ratio between
6

𝐶 𝐴
Table 1
Band gap features – central frequency and bandwidth – for individuals 𝑃𝐴, 𝑃𝐵 , and 𝑃𝐶
illustrated in Fig. 7.

Individual Central frequency [Hz] Bandwidth [Hz] Objective function 𝜙1

𝑃𝐴 616 105 5.867
𝑃𝐵 704 94 7.489
𝑃𝐶 643 100 6.430

the central frequency of the band gap and its bandwidth; the second
individual 𝑃𝐵 represents an unit cell containing the lowest levels of
von Mises stress; individual 𝑃𝐶 highlights the limit case, i.e, the array
formed by the optimized unit cell is near the limit of elastic regime.

The EMD curves of the three individuals are shown in Fig. 6b
with their respective band gaps highlighted in their corresponding
colors. The individual 𝑃𝐶 exhibits a band gap within ranges of [593 Hz,
693 Hz] (shaded green area), while individuals 𝑃𝐴 and 𝑃𝐵 demonstrate
band gaps within the ranges of [564 Hz, 669 Hz] (shaded red area) and
[657 Hz, 751 Hz] (shaded blue area), respectively. A comparison of the
central frequency and bandwidth of the band gaps for these three
individuals are indicated in Table 1. As expected by the obtained
objective function 𝜙1, individual 𝑃𝐴 demonstrates the best optimized
band gap, with the lowest central frequency and largest bandwidth,
followed by individuals 𝑃𝐶 and 𝑃𝐵 . Such band gaps are also identified
in the dispersion curves depicted in Fig. 7, where modes at the flat
edges delineating the band gaps (𝐴1, 𝐴2, 𝐵1, 𝐵2, 𝐶1, 𝐶2) indicate the
resonant behavior of the internal structure.

To corroborate that the optimized unit cells effectively attenuate
vibrations within the frequency ranges in the EMD curves, transmission
loss diagrams are calculated. As illustrated in Fig. 8, these diagrams
correspond to three plates, each composed of the unit cells 𝑃𝐴, 𝑃𝐵 , and
𝑃𝐶 . Across all diagrams, a discernible reduction in transmission occurs
with the band gaps identified in Figs. 6b and 7. Notably, the peaks
situated at the lower edges of the band gaps emphasize the resonance
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Fig. 6. (a) Optimal Pareto front obtained by solving the multi-objective optimization problem (black dots) and cumulative optimal solutions from previous generations (gray dots)
with uniform beams. Individuals 𝑃𝐴, 𝑃𝐵 , and 𝑃𝐶 highlights the cases with lowest 𝜙1, lowest 𝜙2, and 𝜙2 close to 1, respectively. (b) Optimized EMD for individuals 𝑃𝐴, 𝑃𝐵 , and
𝑃𝐶 with their corresponding band gaps highlighted by the shaded areas and their unit cell designs. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 7. Dispersion curves of the selected individuals (a) 𝑃𝐴, (b) 𝑃𝐵 , and (c) 𝑃𝐶 , respectively, from the Pareto front presented in Fig. 6. Complete band gaps are colored in gray.
The inset shows the deformation motion of the unit cell at the flat edges defining the band gaps. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 8. Transmission loss diagrams for metamaterial plates containing unit cells 𝑃𝐴 (left), 𝑃𝐵 (middle), and 𝑃𝐶 (right) presented in Fig. 6. The shaded areas indicate the band gap
identified by the dispersion curves in Fig. 7 and the asymmetric peaks indicate the wave attenuation due to the unit cells’ resonance. The inset shows a metamaterial plate for
determination of the transmission loss diagram. A horizontal prescribed displacement is applied at the input and the resulting horizontal displacement is measured at the output.
Perfectly matched layers are applied in the plate’s ends to reduce the wave reflection.
Fig. 9. von Mises stress field obtained in transient analysis of arrays formed by unit cells (a) 𝑃𝐴 (b) 𝑃𝐵 , and (c) 𝑃𝐶 presented in Fig. 6. The stress fields were selected at time
steps occurring the maximum von Mises stress for each array. The colormap indicates the variation of Von Mises stress with minimum and maximum values indicated by the
triangles. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
as the mechanism of attenuation, consistent with the discussion in [32].
This analysis thus demonstrates the feasibility of optimizing band gaps
through EMD calculation.

We evaluate the significance of integrating stress analysis into the
MM design process. Fig. 9 illustrates the time step corresponding to
the maximum transient von Mises stress within the arrays formed by
unit cells 𝑃𝐴, 𝑃𝐵 , and 𝑃𝐶 . In Fig. 9a, the unit cell 𝑃𝐴 comprises a large
mass linked to a slender frame through thin beams, resulting in high
stress concentration at the connection of these elements. Conversely,
Figs. 9b and c indicate maximum stress values below the yield stress of
Nylon for arrays formed by 𝑃𝐵 and 𝑃𝐶 , respectively. While traditional
optimization may provide the design of unit cell 𝑃𝐴 due to its supe-
rior attenuation performance, it would not be indicated in scenarios
involving high impact loads.
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In Fig. 4, we have shown that the band gap formation is less sen-
sitive to the variation of the beam’s width. However, the investigation
of beams with variable cross-section was not explored. To that end,
we will study the influence of non-uniform beams on the vibration
attenuation and mechanical performance of the MM. Two geometric
parameters will then define the variation of the beam’s width: 𝑤𝑏 and
𝑤∗

𝑏 ; the first parameter defines the width of the beam’s end connected
to the mass while the second defines the width of the beam’s end
connected to the external frame. The new set of design variables is then
defined as 𝐷 𝑉 3 = [𝑅1, 𝑅2, 𝑤𝑏, 𝑟𝑓 , 𝑅𝑓

1 , 𝑅
𝑓
2 , 𝑤∗

𝑏 ]. Geometric constraints
for 𝑤∗

𝑏 and 𝑤𝑏 are defined as 0.3 mm ≤ 𝑤∗
𝑏 ≤ 2 mm and 0.5 mm ≤ 𝑤𝑏 ≤

3 mm, respectively. Fig. 10 highlights the Pareto front for the entire
population after 20 generations, and the EMD for the three selected
Pareto points, where the unit cells are illustrated in Fig. 10b. Here we
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Fig. 10. (a) Optimal Pareto front obtained by solving the multi-objective optimization problem for an unit cell containing non-uniform beams. Individuals 𝑃𝐴, 𝑃𝐵 , and 𝑃𝐶 highlights
the cases with lowest 𝜙1, lowest 𝜙2, and 𝜙2 close to 1, respectively. (b) Optimized EMD for individuals 𝑃𝐴, 𝑃𝐵 , and 𝑃𝐶 with their corresponding band gaps highlighted by the
shaded areas and their unit cell designs. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 2
Band gap features – central frequency and bandwidth – for individuals 𝑃𝐴, 𝑃𝐵 , and 𝑃𝐶
illustrated in Fig. 11.

Individual Central frequency [Hz] Bandwidth [Hz] Objective function 𝜙1

𝑃𝐴 623.5 119 5.239
𝑃𝐵 713.5 87 8.201
𝑃𝐶 643 88 7.307

notice a clear distinction among the beam shape of the three points;
while point 𝑃𝐵 explores the non-uniformity of the beams to reduce
the stress concentration, point 𝑃𝐴 still shows the use of beams with
constant width to obtain the best band gap. By observing the unit cell
of point 𝑃𝐶 , we realize a combination of the two previous points—the
non-uniformity is less apparent in comparison to point 𝑃𝐵 , however,
still notorious to reduce the stress (refer to Fig. 12).

A comparison of the central frequency and bandwidth of the band
gaps for these three individuals are indicated in Table 2. As expected,
individual 𝑃𝐴 demonstrates the best optimized band gap, with the low-
est central frequency and largest bandwidth. Although, individuals 𝑃𝐵
and 𝑃𝐶 have similar bandwidth, the central frequency of individual 𝑃𝐶
is lower than 𝑃𝐵 . The band gaps delineated in Fig. 10b are also evident
in the dispersion curves depicted in Fig. 11. Interestingly, the dispersion
curve of unit cell 𝑃𝐴 depicts a negative slope, although attributed to a
shear mode of the unit cell (as indicated by 𝐴2). Additionally, the mode
shapes at the lower edges of each band gap (𝐴1, 𝐴3, 𝐵1, 𝐵2, 𝐶1, and 𝐶2)
indicate the resonant behavior inherent in the internal structure of the
unit cell.

Fig. 12 illustrates the time step corresponding to the maximum
transient von Mises stress within the arrays formed by non-uniform unit
cells 𝑃𝐴, 𝑃𝐵 , and 𝑃𝐶 . Despite unit cell 𝑃𝐴 displaying a band gap with the
lowest central frequency (as indicated in Figs. 10b and 11, the transient
analysis reveals a maximum von Mises stress of 157 MPa (Fig. 12a). This
value exceeds twice the yield stress of Nylon, while acceptable stress
levels are observed within the arrays illustrated in Figs. 12b and c.
Consequently, MMs formed by unit cells of configuration 𝑃𝐴 may be
unfeasible when subjected to high impact loads. Therefore, unit cell
9

configurations 𝑃𝐵 and 𝑃𝐶 are recommended, given their maximum von
Mises stresses of 57.8 MPa and 63.3 MPa, respectively.

As in the previous analysis, we also verify the vibration attenuation
functionality of plates formed by the unit cells containing non-uniform
beams. The transmission loss diagrams of such plates are shown in
Fig. 13. In all diagrams, it is realized a transmission attenuation at the
same frequency ranges of the band gaps identified in Figs. 10 and 11.

From the analyses of the individuals highlighted in the Pareto fronts
from Figs. 6 and 10, we can observe a certain trend in how the unit cells
are designed. When considering the solutions where the first fitness
functions 𝜙1 are dominant (points 𝑃𝐴), the unit cell is usually formed
by thin uniform beams, the frame is narrow, and the fillet at the
connection between the frame and the beams has a small radius. We
also notice that the resonator’s mass tends to fit the frame’s cavity,
i.e., the mass is maximized. For the unit cells related to the points 𝑃𝐵
(dominant solution is associated to the second fitness function 𝜙2), the
frame and the beams are thicker and non-uniform, the fillets have larger
radius, and the resonator’s mass is smaller. This explains the generation
of higher-frequency band gaps. Lastly, we notice that the unit cells as-
sociated to the points 𝑃𝐶 are a combination of the two previous points.
The beams’ width of such unit cells can slightly vary to create the low-
frequency band gap and to have a better stress distribution. Moreover,
the external frame is wide enough to ensure less deformation. Such
design aspects will guarantee the overall performance of the A/E MM
structure.

Conclusions

This paper investigates the critical role of stress analysis in the
design of impact-loaded A/E MMs, emphasizing its importance in en-
suring optimal vibration attenuation and mechanical performance at
the early design phase. Failure to evaluate structural integrity during
the design process of A/E MMs may lead to fragile designs prone
to break before achieving desired vibration attenuation. To mitigate
this risk, we proposed a design optimization strategy that integrates
stress analysis into A/E MM design to attenuate vibration induced
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Fig. 11. Dispersion curves of the selected individuals (a) 𝑃𝐴, (b) 𝑃𝐵 , and (c) 𝑃𝐶 , respectively, from the Pareto front presented in Fig. 10. Complete band gaps are colored in gray.
The inset shows the deformation motion of the unit cell at the flat edges defining the band gaps. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
Fig. 12. von Mises stress field obtained in transient analysis of arrays formed by unit cells (a) 𝑃𝐴 (b) 𝑃𝐵 , and (c) 𝑃𝐶 presented in Fig. 10. The stress fields were selected at time
steps occurring the maximum von Mises stress for each array. The colormap indicates the variation of Von Mises stress with minimum and maximum values indicated by the
triangles. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
by impact loads. Our research demonstrates that overlooking stress
analysis can yield to structurally unfeasible configurations under such
loading conditions. We concurrently obtained unit cell designs attain-
ing comparable vibration attenuation performance and enhanced load
resistance, suitable for practical applications.

By using a multi-objective optimization approach, we have gen-
erated a set of viable solutions, enabling the selection of the most
appropriate design for applications with distinct impact load ampli-
tudes. To confirm the attenuation and mechanical performance of the
10
metamaterial solutions, future work will focus on the experimental
validation through modal impact analysis – to extract the vibration
attenuation – and dropped-weight impact testing – to quantify the
stress levels. Moreover, the diverse solutions provided by our strategy
facilitate the design of graded A/E MM-based structures, significantly
expanding the range of wave attenuation. This feature holds immense
value, since impact loads are characterized by wide frequency spec-
trum. Thus, mitigating the adverse effects of impact loads across wide
frequency bands is extremely necessary. The exploration of graded A/E
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Fig. 13. Transmission loss diagrams for metamaterial plates containing unit cells 𝑃𝐴 (left), 𝑃𝐵 (middle), and 𝑃𝐶 (right) with non-uniform beams (as presented in Fig. 10). The
shaded areas indicate the band gap found by solving the EMD and the asymmetric peaks indicate the wave attenuation due to the unit cells’ resonance.
MMs for absorbing impact loads will be numerically and experimentally
onsidered in a future work. One of the challenges found in our
pproach is the computational time demanded by the evaluation of the

design variables vector. As a future work, we will combine our opti-
ization strategy with reduced order models (ROMs) that allow a fast

alculation of the dynamic properties of the metamaterial. Although
umerical damping was introduced to provide solutions with better

convergence, it is important to investigate the effect of material damp-
ing into the vibration and mechanical performances, which will be
ddressed in further studies. In essence, our proposed multi-objective
esign optimization opens new avenues for the development of A/E
Ms, enhancing their ability to filter vibration of certain frequencies

rom structures under challenging impact loading conditions, such as
oundations that are installed in onshore and offshore environment
hrough an impact hammer.
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