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Abstract

Fragments of asteroids and comets constantly encounter the Earth and Moon in their orbits, impacting
them as meteoroids. Observations of meteor showers on Earth have been studied for at least 50 years,
in order to construct accurate Solar System meteoroid models. More recently, Earth-based telescopic
observations of the light flashes produced by lunar meteoroid impacts have revealed useful in the
validation and improvement of such meteoroid models. However, Earth-based lunar observations are
restricted by weather, geometric and illumination conditions. As such, it has been proposed that a
lunar orbiter could improve the detection rate of lunar meteoroid impact flashes. Assessing which orbit
a spacecraft should fly in order to detect these flashes and improve current Earth-based observation
methods is the aim of this thesis. The study is restricted to spacecraft with the CubeSat format and its
inherent limitations, since it is also inserted in the context of the feasibility study of LUMIO and ESA’s
LUCE challenge.

A methodology of sequential orbital trade-offs was followed, taking into account acceptance criteria
based on the mission requirements and selection criteria based on the research objective. The goal
was maximize the number of meteoroid detections, during the mission lifetime, while minimizing the
mission Δ𝑉 budget. Furthermore, it was required that LUMIO observed meteoroid impacts with kinetic
energies between 10ዅዀ and 10ዅኻ kton TNT, with a CCD sensor observing in the visible spectrum.
Circular Frozen Orbits, Earth–Moon 𝐿ኼ Lyapunov, Halo, Near-Rectilinear, Vertical, Distant-Retrograde
and Low-Prograde orbits were selected as candidate orbits, based on a preliminary orbital trade-off.

In order to determine the kinetic energy range of impacts detected, two different methods were
used: the Luminous Efficiency and the Blackbody method. The methods were found to agree with
respect to the minimum kinetic energy detectable and disagree with respect to the maximum kinetic
energy, for high altitudes, while, for low altitudes, the contrary was verified. In order to determine the
total number of meteoroid detections possible from a certain orbit, the flux was assumed uniform across
the Moon surface and a coverage analysis tool was developed to determine the payload FOV-area in
the lunar nightside.

Frozen Orbits were found to not allow the detection of kinetic energies larger than 10ዅዀ kton TNT
and, so, were eliminated from the orbital design space. On the other hand, CRTBP orbits met the
meteoroid related evaluation criteria. From Lyapunov, Halo, Near-Rectilinear and Vertical Orbits it would
be possible to detect between 1000 and 10000 impacts during the mission lifetime, but detections from
some DROs could be one order of magnitude larger. Nonetheless, since transfer costs to DROs are
known to be high, a Near-Rectilinear Orbit, with a minimal Δ𝑉 budget, was chosen as the operational
orbit.

In one year, it is expected that at least 4000 meteoroid impact flashes could be detected and even-
tual mission extensions could triple that amount. Furthermore, new impacts in never before observed
kinetic energy ranges could be detected. As such, a mission like LUMIO can not only complement
Earth-based observation methods, by observing the lunar farside, but also contribute with significant
statistical information to the improvement of current Solar System meteoroid models.

xxi





1
Introduction

1.1. Context
The Earth–Moon System is a rich environment for space exploration and its study can help us deepen
our understanding of the Solar System. Fragments of asteroids and comets, that date back to plan-
etary formation times, constantly encounter the Earth and Moon in their orbits, and impact them as
meteoroids. Observations of meteor showers on Earth have been studied for at least 50 years (Ce-
plecha et al., 1998), in order to construct accurate Solar System meteoroid models. These models
can be useful in, for example, predicting the small-meteoroid flux that deteriorates space equipment
or when the next large meteoroid will impact Earth itself. As meteoroids originate from asteroids and
comets, meteroid models can also be used to understand the spatial distribution of those objects near
the Earth–Moon System.

More recently, Earth-based telescopic observations of the light flashes produced by lunar meteoroid
impacts have revealed useful in the validation and improvement of such meteoroid models. In addi-
tion, they also have many other practical applications, such as in the study of impact mechanics and
seismology (Oberst et al., 2012). Monitoring the Moon for meteoroid impact flashes allows for the ob-
servation of larger areas than those covered by traditional surveys of Earth’s upper atmosphere. Thus,
theoretically, more meteoroid impacts can be detected in shorter periods of time (Bellot Rubio et al.,
2000). However, Earth-based lunar observations are restricted by weather, geometric and illumination
conditions. As such, it has been proposed that a lunar orbiter could improve the detection rate of lunar
meteoroid impact flashes, as it would allow for longer monitoring periods. Moreover, by being closer
to the Moon’s surface, a lunar orbiter could also allow for the detection of meteoroids smaller than
millimetres (Koschny and McAuliffe, 2009).

Given this scientific opportunity, some lunar orbiter missions for meteoroid impact flashes obser-
vation have recently been proposed. In response to ESA’s call for scientific medium-sized missions,
Wieczorek et al. (2015) proposed a 350 kg spacecraft flying in an Earth–Moon 𝐿ኼ Halo orbit with an
impact flash monitoring payload. Stone et al. (2015), in response to NASA’s Small, Innovative Missions
for Planetary Exploration call for CubeSats, proposed two identical 3U CubeSats, flying orbits at 20000
km altitude, with the dual goal of both characterising the lunar surface (dayside observations) and
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2 1. Introduction

detecting impact flashes (nightside observations). In response to ESA’s Lunar Cubesats for Exploration
challenge, Topputo et al. (2016) proposed a 12U CubeSat, dedicated to lunar meteoroid impact flashes
observation, also flying in an Earth–Moon 𝐿ኼ Halo orbit. Finally, a Lunar 𝐿ኼ orbiter and 6U CubeSat by
JAXA has been selected for the Exploration Mission-1 launching in 2018. The Japanese mission’s main
goal is to demonstrate orbit control for a CubeSat in a Earth–Moon 𝐿ኼ Halo orbit, as well as detect
meteoroid impact flashes on the lunar farside (Campagnola et al., 2016).

1.2. Objective
Given the recent interest in a lunar orbiter mission for meteoroid impact flashes detection, the need
arises for a detailed study on which type of orbit a spacecraft should fly in order to detect these flashes
and improving current Earth-based observation methods. Assessing which orbit this should be is the
aim of this thesis.

Nonetheless, this thesis is also inserted in the context of the feasibility study of the Lunar Meteoroid
Impacts Observer (LUMIO). This is the Cubesat proposed by Topputo et al. (2016) in response to the
Lunar CubeSats for Exploration (LUCE) challenge. As such, the main goal of this thesis is to design the
operational orbit of LUMIO, given the LUCE challenge requirements. The study will thus be restricted
to spacecraft with the CubeSat format and its inherent limitations.

The main research question and research objective can then be formulated as follows:

Research
Question

Which is the best orbit to detect meteoroid impact flashes on the lunar surface, with
a CubeSat?

Research
Objective

The research objective is to help improve the detection of lunar meteoroid impact
flashes, with a CubeSat. This thesis contributes to the achievement of the research
objective by determining which orbit the CubeSat should fly.

1.3. Structure
This thesis is divided into 8 chapters, one of which is the Introduction here presented. The main
theoretical background, related to meteoroid impact detections, is presented in Chapter 2. The LUMIO
mission and methodology followed to design its operative orbit are presented in Chapters 3 and 4,
respectively. The main orbit types considered in the design process and a preliminary assessment
are presented in Chapter 5. Chapter 6 presents how the candidate orbits, LUMIO’s payload and the
meteoroid environment have been modelled, in order to perform a lunar meteoroid detection coverage
analysis and a more detailed orbital trade-off, which are, in turn, presented in Chapter 7. Finally, in
Chapter 8, the operative orbit chosen, the conclusion of this thesis and recommendations for future
work are presented.
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2
Lunar Meteoroid Impacts

Given the goal to determine which orbit a CubeSat should fly to detect meteoroid impact flashes,
the physical phenomena must first be understood. As such, this chapter is dedicated to presenting the
relevance of lunar meteoroid impacts, the required theoretical background and the description of the
phenomenon itself.

Section 2.1 is dedicated to the general scientific relevance of studying lunar meteoroid impacts. In
Section 2.2, the Sun-Earth-Moon dynamics that constrains the observation of lunar meteoroid impacts
is described. In Section 2.3, a summary and trade-off between the main observation and detection
methods of lunar meteoroid impacts is presented, while Section 2.4 is exclusively dedicated to the
detection method of LUMIO: detection of impact flashes. Finally, in Section 2.5, the detailed scientific
objectives of the study of lunar meteoroid impacts is presented.

2.1. Scientific Relevance
The main goal of lunar meteoroid impacts observations is related to the study of the impacting body
itself: the meteoroid. However, many other scientific opportunities can arise from such studies. Namely,
some related to the meteoroids’ parent bodies: asteroids and comets. In the following subsections,
the main scientific opportunities related to the study of lunar impacting meteoroids and their parent
bodies, Near-Earth Objects (NEOs), will be presented.

2.1.1. Near-Earth Objects
Near-Earth Objects are asteroids or comets with a perihelion of less than 1.3 AU, whose orbits encounter
the Earth’s neighbourhood. As of October 2017, the Minor Planet Centre1, a worldwide database of
asteroids and comets of the Solar System, lists more than 16,500 NEOs discovered. According to NASA’s
Near-Earth Object Program database2, it is estimated that approximately 900 of these are larger than
1 kilometre and 7500 larger than 140 metres.

Near-Earth Asteroids (NEAs) constitute the vast majority of NEOs and it is estimated that 90% of all
NEAs larger than 1 kilometre have already been discovered (Mainzer et al., 2011; Harris and D’Abramo,

1http://www.minorplanetcenter.net/ [Last accessed on: 13/10/2017]
2https://cneos.jpl.nasa.gov/ [Last accessed on: 13/10/2017]
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2015). On the other hand, Near-Earth Comets (NEC) are a small fraction of the NEO population.
Nevertheless, both types of minor bodies are remnant debris of the Solar System formation and contain
clues that are crucial to understand the composition of planets. Therefore, those asteroids and comets
that reach the Earth’s vicinity, i.e. NEOs, present a valuable opportunity to understand the Solar System.

Some NEOs also cross the Earth’s orbit, which means that there is a probability of them colliding
with Earth, with possible catastrophic consequences. Currently, it is estimated that an asteroid of
approximately 1 kilometre in diameter, capable of causing a global catastrophe, collides with Earth
every 500,000 years (Harris and D’Abramo, 2015) and an asteroid larger than 200 meters, capable of
causing a local catastrophe, collides with Earth every 100,000 years (Lissauer and de Pater, 2013). An
asteroid that passes close enough to Earth’s orbit and is large enough to cause a globally-damaging
impact, in the foreseeable future (Marsden, 1997), is known as a Potentially Hazardous Asteroid (PHA).
Monitoring PHAs to predict their orbits is essential and, in the event that a PHA is discovered to be in an
Earth-collision course, knowledge of its size, shape, mass and composition will also become essential
to determine the best way to divert its course.

2.1.2. Meteoroids
Meteoroids are small Sun orbiting fragments of asteroids and comets, whose sizes range from mi-
crometres to meters and masses from 10ዅኻ኿ to 10ኾ kilograms (Ceplecha et al., 1998). Their formation
is a consequence of asteroids colliding with each other or with other bodies, comets releasing dust
particles when close to the Sun and minor bodies shattering into individual fragments. Therefore,
understanding meteoroids and associated phenomena can be valuable for the study of asteroids and
comets themselves.

A set of meteoroids that has the same orbital motion and forms a cluster at a given orbital longitude
is called a meteoroid swarm. However, meteoroids can also travel dispersed along the same orbit, in
what is known as a meteoroid stream3. Nonetheless, since their orbits take between 10ኽ to 10኿ years
to randomise, many meteoroids still have orbits similar to their parent asteroid or comet, making it
theoretically possible to associate them with the parent body (Oberst et al., 2012).

When colliding with a planet or moon, swarms of meteoroids usually originate meteoroid showers
while streams are more associated with sporadic impacts. It is possible to estimate the likelyhood of
a detected collision to have been caused by a stream or swarm meteoroid, according to the number
of detected meteoroid collisions, in a certain time frame, and the models of already known showers
and sporadic sources (Suggs et al., 2014; Madiedo et al., 2015). On the other hand, the number of
detected impacts also helps to validate the current meteoroid distribution models. Therefore, studying
meteoroid impacts can help deepen the understanding of the spatial distribution of NEOs in the Solar
System.

The development of reliable small meteoroid’s impact flux models is also critical for the sustainable
design of spacecraft and space equipment. On the one hand, the consequences of meteoroid showers
can be mitigated by recurring to operational procedures, such as pointing the sensitive equipments
away from the main directional source of impactors. On the other hand, over the mission lifetime,
the spacecraft is also impacted by the constant flux of sporadic meteoroids, and, as such, it must be
shielded accordingly. If the meteoroid models used do not predict correctly the flux of meteoroids
that can impact a spacecraft, the result could be either an over-conservative or ineffective shielding,
affecting the mass budget and/or mission performance. (McNamara et al., 2005)

3The use of these concepts is not always consistent in literature and a swarm is many times referred to as a stream. Throughout
this thesis the nomenclature here defined and presented in Oberst et al. (2012) will be used.
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The study of a range of meteoroids even smaller, known as micrometeoroids, can also be of inter-
est for another reason. These meteoroids measure only between 10 micrometres and 2 millimetres
(Rubin and Grossman, 2010) and, together with solar wind, cause a phenomenon known as space
weathering. This phenomenon is responsible for the change of airless bodies’ optical properties, mas-
querading the true optical properties of the solid body underneath. This complicates the interpretation
of spectroscopic observations (Hemingway et al., 2015), which are essential for the determination of
the properties of an asteroid. The development of reliable meteoroid models in the micrometeoroid size
range can help deepen the understanding of such phenomena and, consequently the understanding
or airless bodies throughout the Solar System.

Finally, the impact of large meteoroids with Earth, even though meteoroids are smaller than as-
teroids or comets, can also cause severe damage. As such, it is also critical to be able to predict
these impacts, by relying on accurate meteoroid impact flux models. Furthermore, understanding the
dynamics of a meteoroid impact can be equally important, in order to establish impact mitigation and
damage control protocols. The largest event recorded in history that is attributed to a meteoroid im-
pact, known as the Tunguska event, occurred in 1908. The meteoroid explosion in Earth’s atmosphere
is estimated to have released, at least, 10 megatons of TNT (approximately 1000 times more energy
than the Hiroshima atomic bomb event). According to Brown et al. (2002) an event like this could
occur every 1,000 years. The second largest airburst event recorded, occurred just in 2013, in the
Russian city of Chelyabinsk, causing damages over a 120 km radius and at least 374 injured (Popova
et al., 2013). The fragments of the meteoroid recovered, the meteorites, amount to 4 to 6 metric tons,
which only corresponds to 0.03 to 0.05% of the original meteoroid (Popova et al., 2013).

2.2. Sun-Earth-Moon Dynamics
The Earth completes one orbital revolution about the Sun, with respect to inertial space, every 365.26
days (duration of a sidereal year, 𝑃ፄ, Wakker (2015, p.257)), intercepting several meteoroid orbits
along the way. When the Earth intercepts a certain meteoroid swarm, meteoroids collide with it and
burn in its atmosphere, giving origin to a meteor shower. Since the Moon orbits the Earth, completing
one revolution every 27.32 days with respect to inertial space (duration of a sidereal month, 𝑃ፌ, Wakker
(2015, p.257)), it will also intercept the same meteoroid swarms at approximately the same time of
the year. However, because the Moon has no significant atmosphere (Stern, 1999), the interception
originates a meteoroid shower.

Like the Earth, the Moon also rotates about its own axis, but with the same period as it completes
one revolution about the Earth, meaning that an observer on Earth always sees the same portion of
the Moon (the lunar nearside). This characteristic, in addition to the fact that a fixed observer on Earth
also moves with respect to the Moon, as the Earth rotates about its own axis, constrain the observation
of the Moon from the Earth.

Since the Moon’s orbital period relative to the Sun is 29.53 days (duration of a synodic month,
𝑆ፌ, Wakker (2015, p.257)), the illumination of the lunar nearside varies, which originates the Moon
phases. Because lunar impact flashes can only be observed on the lunar nightside and when the lunar
nearside is less than 50% illuminated (see Section 2.4.1), their detection from Earth is constrained
by this Sun–Earth–Moon dynamic. It should be noted that an observer of the lunar farside would
also be constrained by the Sun–Moon dynamic, but would see temporally opposite phases. As such,
assuming that the lunar farside would also have to be less than 50% illuminated, the observations
would occur during the opposite time of the month. Figure 2.1 depicts this phenomena, as well as the
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main directions of incoming meteoroids in the Earth–Moon system, with respect to the Sun.

The same Sun–Earth–Moon dynamic can also indirectly constrain the observation of lunar meteoroid
impacts. Firstly, the Sun, Earth and Moon’s gravity fields affect the meteoroids’ impact velocity and
constrain the observable range of impact velocities, as will be explained in Subsections 2.2.1 and 2.2.2.
Secondly, it is theorised that these dynamics can be the cause of an asymmetric meteoroid impact flux
at the Moon, which will be addressed in Subsection 2.2.3.

Figure 2.1: Moon phases and main directions of incoming meteoroids in the Earth-Moon System. North and South Toroidal
sources are perpendicular to the plane. The blue line represents the portion of the Moon’s orbit where Earth-based impact
flashes observations can be made. The green line represents the portion of the Moon’s orbit where potential lunar farside impact
flashes observations could be made, assuming a less than 50% farside illumination requirement. Based on Suggs et al. (2008).

2.2.1. Meteoroid Impact Velocity

The meteoroid impact velocity is defined as the relative velocity of the meteoroid with respect to the
impacted body. The minimum velocity of a meteoroid impact with Earth, if one neglects the gravitational
effect of the Earth and assumes the impact as a pure collision between two bodies, is equal to Earth’s
escape velocity: 11.2 km/s. On the other hand, a maximum impact velocity can occur when the
meteoroid is in a retrograde, highly eccentric (almost parabolic) orbit about the Sun, with the Earth at
its perihelion. The sum of both bodies’ velocities would give an impact velocity of 72.8 km/s (Ceplecha
et al., 1998). Since the Moon has a velocity of approximately 1 km/s with respect to Earth, the lunar
meteoroid impacts should be within the theoretical range of 10.2 – 73.8 km/s. The impact velocity of
the fastest observed meteoroid shower actually approaches this limit, with an impact velocity of 70.7
km/s at Earth and 69.9 km/s at the Moon (Suggs et al., 2014).

Contrary to meteoroid showers, the velocity of sporadic impactors is not known and different values
are assumed across the literature. Ortiz et al. (2006), Oberst et al. (2012) and Madiedo et al. (2015) use
17 km/s for Moon impacts, while Suggs et al. (2014) uses 24 km/s, which is consistent with McNamara
et al.’s meteoroid engineering model.



2.2. Sun-Earth-Moon Dynamics 9

2.2.2. Gravitational Focusing and Acceleration
When the Earth-Moon system intercepts a meteoroid swarm or stream, its gravitational force is capable
of altering the course of some of those meteoroids. This perturbation leads to one or both of the
following consequences: 1) a meteoroid that was not set to collide with the Earth or Moon, now
collides with one of the bodies, because it is pulled by their gravitational force; and 2) the velocity
of an impacting meteoroid is increased, because the meteoroid is accelerated by the Earth–Moon
gravitational force. The first phenomenon described is known as gravitational focusing and the second
as gravitational acceleration of meteoroids.

A consequence of the first phenomenon is that a larger number of meteoroids will impact one of the
bodies. As such, when it comes to computing the probability of a meteoroid colliding with the Earth or
Moon, this phenomenon is taken into account by artificially increasing the effective target area of the
body. This is defined as the surface perpendicular to the incoming direction (radiant) of a meteoroid
shower, representative of the body’s effectiveness as an impactor collector. The area increase factor is
computed as follows (Suggs et al., 2014):

𝑓ፚ፫፞ፚ = 𝐴፞፟፟/𝐴፩፡፲ = 1 + 𝑣ኼ፞፬፜/𝑣ኼ (2.1)

where 𝐴፞፟፟ is the effective cross sectional area of the target body; 𝐴፩፡፲ is the physical cross sectional
area of the target body; 𝑣፞፬፜ is the escape velocity at the target body; and 𝑣 is impactor’s velocity,
relative to the target body, before gravitational correction.

The impactor’s velocity relative to the target body, taking into account the gravitational acceleration,
is given by:

𝑣ፆፂ = √𝑣ኼ + 𝑣ኼ፞፬፜ (2.2)

and the kinetic energy increase factor is given by:

𝑓ፊፄ = 𝑣ኼፆፂ/𝑣ኼ = 1 + 𝑣ኼ፞፬፜/𝑣ኼ (2.3)

Both phenomena become negligible for high values of the incoming impactor’s velocity, but the limit
at which these phenomena can be neglected also depends on characteristics of the body itself. For
example, a sporadic impactor, which is assumed to have a speed of 20 km/s with respect to Earth and
17 km/s with respect to the Moon, is accelerated 3 km/s when approaching the Earth and only 0.15
km/s when approaching the Moon. Furthermore, the radius of the target effective area is increased
14% at the Earth and only 1% at the Moon. As such, gravitational focus and acceleration of sporadic
meteoroids can be significant for the Earth and negligible for the Moon. (Oberst et al., 2012)

2.2.3. Meteoroid Impact Flux at the Moon
Since the Earth and Moon are impacted by the same meteoroid streams and swarms, studying the
meteoroid flux at the Moon can be useful, not only to understand the meteoroid flux impacting Earth,
but also to improve the meteoroid models of the Solar System. Furthermore, understanding the me-
teoroid flux distribution at the Moon will also be critical for future Moon surface missions, as it could
help understand, for example, future lunar living areas (Rembold and Ryan, 2015).

Current estimations of the larger than 1 kilogram meteoroid flux at the Moon varies across the
literature. Brown et al.’s model estimates 1290 impacts per year, while Ortiz et al.’s model estimates
approximately 4000 impacts per year (Gudkova et al., 2011). More recent studies, such as Suggs et al.
(2014), suggest that the meteoroid impact flux at the Moon is approximately 6 × 10ዅኻኺ per m2 per
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year, for meteoroids larger than 30 grams. Assuming a lunar collecting area equal to its surface area,
3.8 × 10ኻኽm2, this gives a larger than 30 grams meteoroid flux of approximately 23000 impacts per
year.

It is also theorised that the spatial distribution of meteoroid impacts across the lunar surface has
asymmetries. As summarised in Oberst et al. (2012), it is theorised that the Moon’s nearside has
approximately 0.1% more impacts than the lunar farside, due to the Earth’s gravity field; the equatorial
flux is 10% to 20% larger than at polar regions, due to the higher number of large meteoroids in low
orbital inclinations; and the lunar leading side (also known as apex4 or western hemisphere) encounters
between 37% to 80% more impactors than the lunar trailing side (also known as antapex4 or eastern
hemisphere), due the Moon’s synchronous rotation.

Figure 2.2 presents the location, on the lunar nearside, of approximately 100 detected meteoroid
impact flashes. An apex/antapex asymmetry is clearly visible in these observations, but this observed
asymmetry might have been caused by an observational bias. The observations on the western hemi-
sphere were made mostly during the First Quarter Moon phase and the observations on the eastern
hemisphere were made mostly during the Last Quarter Moon phase (see Figure 2.1). Suggs et al.
(2014, 2008) suggests that this observed asymmetry occurs because, when observing during the Last
Quarter, it is not possible to detect impactors from apex sources (which approach from the lunar far-
side). Furthermore, Oberst et al. (2012) suggests that, since apex sources are easier to detect due
to their large velocities, it is natural that more impacts are detected during the First Quarter. As
such, observations of the lunar farside would be necessary to fully understand the lunar apex/antapex
asymmetry.

Figure 2.2: Distribution of 108 impacts observed on the lunar nearside representative of the lunar apex/antapex asymmetry.
The white rectangles represent the FOV of the telescope. From Suggs et al. (2014).

4Note that the incoming meteoroids’ apex direction depicted in Figure 2.1 is not the same as the apex direction of the Moon.
The Moon’s western hemisphere is known as the apex of the Moon, because it is the leading side of its motion with respect
to Earth, while the apex direction of incoming meteoroids is the same as the leading direction of the Earth-Moon system in its
motion about the Sun. The same can be said about the antapex direction.
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2.3. Observation and Detection
The systematic detection of meteoroid impacts with the Earth has been done, at least, since 1904,
twenty years after the first known photograph of a meteor was taken (Ceplecha et al., 1998). Since
then, numerous observations have been made, using different observation methods, such as photo-
graphic, visual, radar, infrared and infrasonic. However, these observations are acquired by monitoring
portions of the Earth’s atmosphere, while monitoring the Moon’s surface for meteoroid impacts allows
for a much larger area to be covered than these traditional methods (Ortiz et al., 2006).

When a meteoroid impacts the Moon, its elevated kinetic energy originates a seismic wave, exca-
vates a crater, accelerates ejecta particles and releases radiation. As such, any of these four phenomena
can be observed in order to detect a meteoroid impact.

2.3.1. Seismic Waves
Detecting seismic waves on the lunar surface implies placing in-situ seismic stations on the Moon’s
surface, so, at the very least, it implies being close enough to the Moon’s surface to deploy those
instruments. This was done by four of the Apollo missions, which built a network of four seismic
detectors on the Moon’s nearside, covering an area approximately equivalent to that of a triangle of
1000 km side (Oberst et al., 2012). The programme was operated from 1969 to 1977 and detected
more than 12,000 seismic events, but these observations also included quakes and non-meteoroid
impacts. In order to identify those that correspond to meteoroid impacts, it is necessary to resort to
other methods capable of providing both the time and location of the impact (Gudkova et al., 2011).

2.3.2. Craters
Craters on the Moon are usually observed using telescopes. By dating observed craters and studying
their accumulation over time, it is possible to derive the meteoroid impact flux with the Moon, dating
back to the formation of the Solar System itself. However, estimation of the current meteoroid impact
flux, using crater observations, can only be done by detecting the formation of new craters. This can
also be done using a telescope, but a recent lunar orbiter mission, the Lunar Reconnaissance Orbiter,
used time pairs of the lunar surface (i.e. before and after pictures). The downside of this detection
method is that it is time-consuming, due to the large data processing necessary (Oberst et al., 2012). It
is also not possible to associate an exact time-stamp to the meteoroid impact. Furthermore, regardless
of the detection method, observing crater formation is always done after the impact has occurred and
the final crater formed is not appropriate to directly determine certain characteristics of the meteoroid,
such as kinetic energy (Holsapple, 1993). This is because the final crater can, for example, have
resulted from the collapse of the crater formed immediately after the impact or have been modified by
the constant flux of micrometeoroid impacts (Cudnik, 2009).

2.3.3. Ejecta
The excavation of a crater also causes a burst of particles rising above the Moon’s surface. A pay-
load recently on-board a NASA lunar orbiting mission, the Lunar Atmosphere and Dust Environment
Explorer, was capable of detecting bursts of particles, generated by impacts of micrometeoroids. Sza-
lay and Horányi (2016) proved that, from the detection of these bursts of particles, it is possible to
independently determine the radiant of meteoroid showers. As such, this in-situ dust detector could be
placed above any airless body in the Solar System to characterise the orbit of meteoroids bombarding
such bodies.
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2.3.4. Radiation
The release of radiation due to a meteoroid impact can be detected through observations in the visible
(400–700 nm) or infrared domain (700 nm–1 mm). According to laboratory hyper-velocity impacts
between 2 and 65 km/s, conducted by Burchell et al. (1996), the effective temperature of a light flash
produced by an impact lies between 2000 and 6000 K (Oberst et al., 2012). As such, light flashes with
lower effective temperatures (≲3000 K) and velocities can be better detected using infrared cameras
and light flashes with higher effective temperatures (≳4000 K) and velocities can be better detected
using visible cameras.

2.3.5. Methods Comparison
The main characteristics of each observation method presented in the previous subsections are sum-
marised in the graphical trade-off of Table 2.1. From this trade-off it is clear that the detection of lunar
impact flashes is the most advantageous method: it allows for an independent detection of meteoroid
impacts, provides the most information about the impactor and allows for the monitoring of a large
Moon surface area.

Table 2.1: Trade-off between lunar meteoroid impact’s observation methods.

Observation
Type of
method

Moon
surface

covered (%)

Meteoroid impacts
detection

Meteoroid
information
obtained

red red red

Seismic waves In-situ ∼1.3% Not possible
independently

None
independently

green yellow yellow

Craters
Remote
sensing

∼100%

Formation of new craters;
if independently, with
time-consuming data

processing

Position of impact
and crater size

red green yellow

Ejecta In-situ ∼0% Burst of particles;
independent detection

Position and time
of impact

yellow green green

Radiation
Remote
sensing

up to 50%
Observation of light
flashes; independent

detection

Position and time
of impact; kinetic

energy (mass
and/or velocity)

Legend: green Good performance yellow Acceptable performance red Unacceptable performance

2.4. Meteoroid Impact Flashes
The following section is dedicated to the phenomenon of lunar meteoroid impact flashes. The obser-
vation method and detection technology will be described in Subsections 2.4.1 and 2.4.2, respectively.
Subsection 2.4.3 is dedicated to the description of the main past and present Earth-based lunar impact
flashes monitoring programs. Finally, in Subsection 2.4.4 it is explained how Earth-based observations
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of impact flashes’ apparent magnitude are related to the impactor’s kinetic energy and what the main
parameters that determine the detectability of an impactor’s light flash are.

2.4.1. The Observation Method
Light flashes at the Moon are typically observed by pointing a telescope at the nightside of the Moon
and detecting a local spike of the luminous energy observed (in the visible spectrum), which is clearly
above the background noise. The background noise is mainly composed, in the visible spectrum, by
the Earthshine, which is Earth’s reflected light on the Moon’s surface, and, in the infrared spectrum, by
thermal emissions of the Moon’s surface (Bouley et al., 2012). The observations need to take place in
the nightside of the Moon, as opposed to the dayside, because it is where high signal-to-noise ratios
can be obtained (Bellot Rubio et al., 2000).

The luminous energy spike detected is quantified recurring to the concept of apparent magnitude.
The apparent magnitude of an object quantifies the brightness of an object as seen by an observer
on Earth, with respect to the brightness of a known object. In the visible range, 4 × 10ኻኺ photons
per second per square meter reach Earth, from a star with 0 magnitude (Raab, 2002). By definition,
a difference of +1 magnitude corresponds to a reduction of brightness by a factor of 2.5. As such,
the apparent magnitude on an object in the visible spectrum can be defined as follows (Wertz, 2009,
p.578):

𝑚ፕ = 2.5 logኻኺ (
4 × 10ኻኺ
𝑝ፑ/Δ𝑡

) (2.4)

where 𝑝ፑ is the flux of photons received at the observer (photons/m2) and Δ𝑡 is observation time in
seconds. Given this definition, a larger apparent magnitude is associated with lower brightness and,
consequently, lower luminous energy. The lunar impact flashes detected from Earth-based observations
have between +5 and +10.5 apparent magnitude (Oberst et al., 2012), which correspond to very faint
signals.

Earth-based observations of lunar impact flashes are restricted to periods when the lunar nearside
is illuminated between 10%–40% or 10%–50%, according to Ortiz et al. (2006) or Suggs et al. (2008),
respectively. The upper limit restriction is due to the dayside of the Moon glaring the Field-of-View (FOV)
of the telescope. The lower limit restriction of 10% corresponds to the New Moon phase. During this
phase, the observations should be made when the Moon presents itself at low elevations in the sky
(morning or evening), but the observation periods turn out to be too short to be useful (Oberst et al.,
2012; Suggs et al., 2008). On the other hand, for a lunar orbiter, the New Moon phase should be ideal
for the observation of impact flashes, as there is no glare from sunlight in the FOV. Furthermore, when
observing from the Earth, the observations are also restricted by weather conditions at the observation
site.

2.4.2. Detection Technology
Coupled with a telescope, lunar impact flashes are typically recorded with a camera that contains a
sensor to accurately capture the luminosity of the Moon’s surface. The images recorded are then
analysed by a computer program, and those containing a light flash are selected for photometric
analysis, i.e. the determination of the apparent stellar magnitude of the flash (Suggs et al., 2014). The
limiting apparent stellar magnitude detectable is determined by the combination of the telescope and
camera chosen (Suggs et al., 2014).

Most observation programmes perform observations in the visible spectrum and use either a Charged-
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Coupled Device (CCD) or Complementary Metal-Oxide Semiconductor (CMOS) as sensor. Both sensors
are formed by an array of photo-detectors (set of capacitors) and have similar working principles: in-
coming photons partially discharge the capacitors and, at the end of the exposure time, the remaining
electrons are counted and digitized. The main difference is that the photo-detectors in a CMOS can be
individual read, while in a CCD the whole image must be read. (Berry and Burnell, 2000)

2.4.3. Earth-based Monitoring Programs
The first unambiguous lunar meteoroid impact flashes were detected during 1999’s Leonid meteoroid
showers, in the United States, and were reported by Bellot Rubio et al. (2000). The first redundant
detection of sporadic impacts was only reported six years later by Ortiz et al. (2006), in Spain. These
events gave origin to several monitoring programs across the globe, some of which will be briefly
described in this section.

One of the first lunar impact flash surveys was conducted in two observatories in Spain, between
2001 and 2004. It covered 5.8×10ዀ km2±10% of the lunar surface, and during 34 nights of observation,
Ortiz et al. (2006) reported the detection of 3 sporadic meteoroid impact flashes.

In 2006, a lunar meteoroid impact flashes observation programme conducted by NASA’s Marshall
Space Flight Center was initiated. Suggs et al. (2008) reported the ability to monitor 4.5 × 10ዀ km2

of the lunar surface, approximately 10 nights per month, but subject to weather conditions. Approxi-
mately half of the impact flashes observations occur between the Last Quarter and New Moon (0.5 to
0.1 illumination) and the other half between New Moon and First Quarter (0.1 to 0.5 illumination). The
former monitoring period occurs in the morning (waning phase) and the latter occurs in the evening
(waxing phase), covering the nearside part of the eastern and western hemisphere of Moon, respec-
tively. These periods result from the illumination conditions required by the observation method (see
Subsection 2.4.1) and the dynamics of the Earth–Moon motion with respect to the Sun (see Section
2.2). Suggs et al. (2014) reports the detection of 126 high-quality flashes (out of 240 observations,
Oberst et al. (2012)), for 266.88 hours of monitoring, over a 5 years period. The magnitude range de-
tected is between +10.42 and +5.07, which is estimated to correspond to an impactor’s kinetic energy
range between 1.67 × 10ዅ዁ and 2.31 × 10ዅኾ kton TNT.

The most recent monitoring program, ESA’s NELIOTA5, was initiated on February 2017 in Greece.
As of October 2017, 16 validated impacts have been detected over 35 hours of observations. The
programme aims to detect flashes as faint as +12 apparent visual magnitude (Bonanos et al., 2015)
and should be the first allowing the determination of the impact flash blackbody temperature, by
observing both in the visible and infrared spectrum.

2.4.4. Properties and Detectability of Impactors
For Earth-based methods, it is possible to relate the measured impact flash’s apparent stellar magnitude
with the luminous energy emitted by the impactor in the visible spectrum, 𝐸ፕ, as follows (Suggs et al.,
2014):

𝐸ፕ
𝑓𝜋𝑑ኼ = 𝑓ፕΔ𝜆Δ𝑡 (2.5)

where:

• 𝑑 is the distance between the lunar surface and the observer;

• Δ𝜆 is the bandwidth used to perform the observations;
5https://neliota.astro.noa.gr [Last accessed on: 13/08/2017]

https://neliota.astro.noa.gr
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• 𝑓ፕ is the energy flux received in that bandwidth, which is a function of the measured magnitude
and atmospheric properties;

• Δ𝑡 is the period over which the magnitude of the impact was measured, i.e. one or more exposure
times (Rembold and Ryan, 2015);

• and 𝑓 is 2 or 4 if the magnitude is measured when the light flash is still close to the lunar surface
(first frames) or in free space, respectively6

For the best kinetic energy estimation, Suggs et al. (2014) suggests that the shortest exposure time
possible should be used and, so, the magnitude should be measured using only one frame. Further-
more, preferably, one of the first frames should be used. This is because the radiation emitted by the
light flash during the firsts instances of the meteoroid impact is mainly due to the thermal emission of
the vaporised lunar soil and could be better used to determine the rate of cooling of ejecta material
(Bouley et al., 2012).

The emitted luminous energy can then be related to the kinetic energy of the meteoroid, KE, using
the luminous efficiency concept, 𝜂ፕ or 𝜂ፓ, as follows:

KE = 𝐸ፕ
𝜂ፕ
= 𝐸ፓ
𝜂ፓ

(2.6)

where 𝐸ፓ represents the luminous energy emitted by the impactor across the radiation spectrum. The
luminous efficiency is representative of how well an impactor converts its kinetic energy into the emis-
sion of radiation in the visible spectrum (𝜂ፕ) or across the radiation spectrum (𝜂ፓ). Its understanding
is a key goal of impact mechanics studies.

One of the most recent studies suggests that such a parameter is independent of the impactor’s
mass, 𝑚, and dependent on its velocity, 𝑣, according to the following relation (Swift et al., 2011):

𝜂ፕ = 1.5 ⋅ 10ዅኽexp(9.3
ኼ

𝑣 ) (2.7)

where 𝑣 is in km/s. Nonetheless, due to the uncertainty of this parameter, Bouley et al. (2012) suggests
that one should consider 𝜂ፕ ∈ [5 ⋅ 10ዅኾ, 5 ⋅ 10ዅኽ].

The kinetic energy of a meteoroid can then be related to its mass and velocity as follows:

KE = 1
2𝑚𝑣

ኼ (2.8)

From Equations 2.5–2.8, and assuming a certain velocity 𝑣 (see Section 2.2.1), the mass of the mete-
oroid can be estimated. From these equations it is also possible to conclude that:

• For a given sensor (i.e. fixed Δ𝜆, Δ𝑡 and minimum 𝑓᎘ detectable), if the observer is closer to
the lunar surface, 𝐸ፕ can be lower. As such, for the same impactor’s velocity, smaller meteoroid
masses can be detected. Furthermore, the relation between 𝐸ፕ and 𝑑 is quadratic (e.g. if 𝑑 is
reduced by a factor of 2, 𝐸ፕ can be 4 times lower);

• A meteoroid with high velocity, even if it has a small mass, can be better detected than a massive
slower meteoroid, as 𝐾𝐸 ∝ 𝑚𝑣ኼ ⟹ 𝐸ፕ ∝ 𝑚𝑣ኼ and, so, higher velocity impacts originate brighter
flashes (Bouley et al., 2012).

6This corresponds to a propagation of the emitted luminous energy over ኼ᎝ steradians or ኾ᎝ steradians, respectively
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However, Bouley et al. (2012) showed that smaller impactors, even if very fast and bright, such as
the Leonids, have short light flash durations. If the exposure time is not short enough, the background
noise can outshine these bright impact flashes, hindering their detection. Nonetheless, these types of
impacts are exceptions to the rule. In general, bright flashes are usually associated with longer light
flashes and, so, can easily be detected.

2.5. Scientific Objectives
Studying lunar meteoroid impact flashes can have several scientific applications, some of which will be
briefly described.

Impact mechanics The characterisation of the partition of energy during an impact is the main
goal of the study of impact mechanics. The understanding of the light emission process and estimation
of the luminous efficiency plays an important role in this study. This estimation is mainly done from
laboratory hyper-velocity experiments, but studying lunar impact flashes of meteoroid showers, whose
velocities are well know, can help validate the estimations made (Suggs et al., 2008). The detection
and localisation of meteoroid impacts on the lunar surface can provide essential data to seismology
studies, as it can help identify those seismic waves caused by meteoroid impacts (Oberst et al., 2012).
Furthermore, the mass estimations that result from lunar impact flashes observations can be used to
predict a crater size (Bellot Rubio et al., 2000). If these observations are combined with crater detection
techniques, those models can also be validated. Nonetheless, it is the combination of the three types
of observations - seismic waves, crater formation and impact flashes - that will lead to the complete
understanding of impact mechanics (Oberst et al., 2012).

Present-daymeteoroid impact flux The detection of meteoroid impact flashes on the Moon allows
for the estimation of the lunar meteoroid impact flux. This flux can then be scaled to estimate the
meteoroid flux on Earth, taking into account gravitational focusing and acceleration of meteoroids
(Section 2.2.2). Figure 2.3a shows the estimated meteoroid flux on Earth, from different types of
observations.

In this figure, the different size ranges detected by each type of observation method can be seen.
Deep space telescopes monitoring of NEA’s, such as LINEAR and Spacewatch, can observe meteoroids
from tens of meters to kilometres (Koschny and McAuliffe, 2009); monitoring of meteor’s fireballs on
Earth’s atmosphere, with infrared cameras, satellites or photographic observations can detect mete-
oroids from millimetres to tens of meters and as small as some grams (Koschny and McAuliffe, 2009;
Halliday et al., 1996); telescopic Earth-based observations of lunar impact flashes can detect mete-
oroids from tens of grams to a few kilogrammes and as small as centimetres (Suggs et al., 2014).
Koschny and McAuliffe (2009) estimated that a lunar orbiter at 100 km altitude could detect impact
flashes of meteoroids smaller than centimetres and as small as 10ዅኾ kg, which would help extend the
mass/size range coverage of this method and, consequently, would increase its contribution to the
validation of meteoroid models.

The current Earth-based impact flashes observations suggest that the meteoroid flux in these
smaller ranges can be larger than the model predictions. However, as can also be seen in Figure
2.3a, especially in the Ortiz et al. (2006) observations, this estimation is highly dependent on the value
of the luminous efficiency.
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Temporal and spatial distribution of lunar impacts The build up of statistical observations of
lunar impact flashes can also help understand the temporal and spatial asymmetries of meteoroid
impacts across the Moon’s surface (Section 2.2.3). Furthermore, it is possible to correlate the lunar
temporal/spatial distribution of meteoroid impacts with the distribution of meteoroids in the Solar Sys-
tem. Suggs et al. (2014), for example, independently identifies meteoroid showers by studying the
cumulative rate of meteoroids at each longitude of the Earth–Moon system with respect to the Sun, as
seen in Figure 2.3b.

(a) (b)

Figure 2.3: Lunar meteoroid impact flashes scientific applications: (a) Estimated meteoroid impact rate at Earth versus impactor’s
kinetic energy; (b) Impact flash rate in 2-degree bins of solar longitude (blue curve), with shower peak times indicated by dashed
vertical lines. From Suggs et al. (2014).
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3
Mission Definition

Given that this thesis is inserted in the context of the Lunar Meteoroid Impacts Observer feasibility
study, the following chapter is dedicated to presenting the relevant aspects of this mission to orbital
design. The mission objectives and requirements are presented in Sections 3.1 and 3.2, respectively. In
the latter section, a preliminary assessment of the main orbital design drivers is also presented. Section
3.3 is dedicated to the description of those LUMIO subsystems most important to orbital design, namely
the payload.

3.1. Mission Objectives
The Lunar Meteoroid Impacts Observer (LUMIO) is a CubeSat mission to observe, quantify, and char-
acterize lunar meteoroid impacts, by detecting their impact flashes with the lunar surface. LUMIO’s
top-level mission objectives, which are defined by ESA’s SYSNova: R&D Studies Competition for Inno-
vation - No.4 (2016), are presented in Table 3.1. The specific mission objectives defined by LUMIO’s
team are presented in Table 3.2.

Table 3.1: LUMIO top-level objectives.

ID Objective

TLO.01
To perform remote sensing of the lunar surface and measurement of astronomical
observations not achievable by past, current, or planned lunar missions.

TLO.02
To demonstrate deployment and autonomous operation of CubeSats in lunar environment,
including localization and navigation aspects.

TL0.03
To demonstrate miniaturization of optical instrumentation and associate technology in
lunar environment.

TLO.04
To perform inter-satellite link to a larger Lunar Communications Orbiter for relay of data
and for telemetry, tracking, and command.

TLO.05 To demonstrate CubeSat trajectory control capabilities in lunar environment.
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Table 3.2: LUMIO mission objectives.

ID Objective

MO.01
To conduct observations of the lunar surface in order to detect meteoroid impacts and
characterise their flux, flash magnitudes, luminous energies, and sizes.

MO.02
To complement observations achievable via ground-based assets in terms of space, time
and quality, in order to provide a better understanding of the meteoroid environment.

3.2. Requirements and Design Drivers
In this section, the LUMIO requirements relevant for its orbit design will be presented. The scientific
requirements are cited in Table 3.3 and the mission requirements are cited in Table 3.4 (Topputo et al.,
2017).

The first two science requirements are deduced from the data presented in Figure 2.3a. As one can
conclude from this plot, Earth’s meteoroid flux in the kinetic energy range of 10ዅኾ to 10ዅኻ kton TNT is
not yet characterised with observational data. Furthermore, the characterisation of the flux in kinetic
energy range of 10ዅዀ to 10ዅኾ kton TNT must be refined.

In requirement SCI.05, it is considered that the total number of observations performed by NASA’s
Marshall Space Flight Centre over the period of 5 years (see Chapter 2, Section 2.4.3) is enough to
provide statistical information on the lunar meteoroid impact flux. In fact, Suggs et al. (2014) only
considers about half of the 240 impacts detected for its statistical analysis, due to the photometric
quality of the remaining being affected by Earth’s atmosphere. As such, this requirement already
includes a 50% safety margin.

Requirement SCI.06 takes into consideration that Earth-based lunar impact flashes observation can
only be done on the lunar nearside. However, a lunar orbiter can observe the lunar farside. This will
complement, in space and time, ground-based assets (see Chapter 2, Section 2.2), as proposed in
MO.02.

Finally, the first mission requirement presented, MIS.05, has been defined by a design choice. The
last two mission requirements that define the CubeSat’s injection orbit were set by ESA’s SYSNova:
R&D Studies Competition for Innovation - No.4.

Table 3.3: LUMIO science requirements.

ID Requirement Parent ID

SCI.01
The mission shall discover new impacts on the Moon in the equivalent kinetic
energy range at Earth of 10ዅኾ to 10ዅኻ kton TNT.

MO.01

SCI.02
The mission shall refine the cumulative number of impacts on the Moon in
the equivalent kinetic energy range at Earth of 10ዅዀ to 10ዅኾ kton TNT. 

MO.01

⋯

SCI.05
The minimum number of detected impacts shall be 240 to provide statistical
information on meteoroid impacts.

MO.01

SCI.06 The mission shall perform observations of the lunar farside MO.02
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Table 3.4: LUMIO mission requirements.

ID Requirement Parent ID
⋯

MIS.05 The mission shall have a minimum lifetime of 1 year TLO.02

MIS.06
The mission shall support deployment from the Lunar Communications
Orbiter into an elliptic orbit, with periselene altitude of 200 km and aposelene
altitude smaller than 150000 km, or a 500 km-altitude circular orbit.

TLO.05

MIS.07
The mission shall support deployment from the Lunar Communications
Orbiter into a circular or elliptical orbit with inclination between 50 and 90
degrees.

TLO.05

From these requirements, three main orbital design drivers can be identified:

Altitude Imposing a detectable kinetic energy range will influence the minimum and maximum alti-
tude required, given the constraints of a certain payload (see Chapter 2, Subsection 2.4.4). The total
number of meteoroid detections over the mission lifetime is directly related to the Moon surface area
covered, i.e. the payload’s FOV-area, which is also a function of altitude. On the one hand, lower
altitudes should allow for the detection of less energetic meteoroids and, as these have higher impact
frequencies (see Figure 2.3a), more meteoroid impacts could be detectable. On the other hand, higher
altitudes allow the coverage of larger Moon surface areas and, consequently, more meteoroid impacts
could also be detectable. Therefore, science requirements SCI.01, SCI.02 and SCI.05, constrained by
payload characteristics, will all dictate the satellite’s orbital altitude trade-off.

Ground-track As stated in Chapter 2, Subsection 2.4.1, lunar meteoroid impact flashes are very faint
and can only be detected in the lunar nightside. Furthermore, science requirement SCI.06 stipulates
that the satellite must monitor the lunar farside. As such, orbit design will have to take into account if
the satellite’s ground-track allows the coverage of both the lunar farside and nigthside.

𝚫𝐕 budget Given the limitations of Cubesat’s micropropulsion systems and the need to manoeuvrer
the CubeSat from the orbit stated in requirements MIS.06 and MIS.07 to the operational orbit, the
propellant budget should be taken into account in orbital design from an early stage. The propellant
budget considered should also include the Δ𝑉 budget for stationkeeping, which is directly related to
requirement MIS.O5.

It should also be noted that requirements SCI.05 and MIS.05 might overlap. The latter imposes a
minimum lifetime of 1 year, while the former indirectly imposes the minimum cumulative observation
time. This cumulative time, in turn, depends on the nightside coverage allowed by the chosen orbit.
As such, requirement SCI.05 also imposes a requirement on the minimum mission lifetime itself.

3.3. Subsystem’s Design
LUMIO is a 12U CubeSat (2U×2U×3U), with a wet mass of approximately 24 kg. LUMIO’s only payload
is the LUMIO-Cam, which is an optical instrument that observes in the visible observation spectrum
(and a portion of the near-infrared) and is used to monitor and detect lunar meteoroid impact flashes.
The relevant characteristics of this instrument are presented in Table 3.5 and Figure 3.1. The spacecraft



24 3. Mission Definition

design, as defined in Topputo et al. (2017), is presented in Figure 3.2. LUMIO is also a Cubesat which
uses chemical propulsion to autonomously perform the transfer to the operational orbit.

Table 3.5: LUMIO-Cam parameters, taken from the chosen detector’s datasheet (Teledyne e2V CCD201-20*) and Topputo et al.
(2017).

Parameter Acronym/Symbol Value Units
Exposure time 𝑡፞፱፩ 66 ms
Field-of-View FOV 3.5 × 3.5 deg × deg

Observation spectrum [𝜆ኻ, 𝜆ኼ] 400–900 nm
Optics aperture 𝑑∅ 55 mm

Optics focal length 𝑑ፅፋ 217 mm
Optics lens reduction factor 𝜏 53.55† %

Detector frame 𝑁pixels 1024×1024 pixels×pixels
Detector pixel size 𝑑pixel 13 × 13 𝜇m × 𝜇m

Detector capacity cap(ፆ)
80000 (no gain)

electrons/pixel
730000 (with gain)

Detector Dark-Current DC 260 (at 20ºC) electrons/s/pixel
Detector Read-Out Noise 𝜎RON 43 electrons

Detector Gain G 2 –
Detector Excess Noise Factor ENF √2 –

Detector Off-chip Noise off፧ 20 ⋅ 10ዅዃ volt/√𝐻𝑧
Detector Output Amplifier Responsivity OAR 1.4 ⋅ 10ዅዀ electrons/volt

A/D bit number 𝑁bits 14 bits
* http://www.e2v.com/resources/account/download-datasheet/1491 [Last accessed on: 23/07/2017]
† Takes into account transmissivity, transparency and the light spreading across multiple pixels

Figure 3.1: LUMIO detector’s quantum efficeny. Data
points were extratted from the CCD201-20 datsheet and
a spline was fitted using MATLAB®’s function spline.

Figure 3.2: LUMIO’s configuration, with (right) and with-
out (left) external panels. From Topputo et al. (2017).

http://www.e2v.com/resources/account/download-datasheet/1491
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It should also be mentioned that the design of LUMIO was done by applying the concurrent engi-
neering method. In concurrent engineering, all subsystems (including the orbit) are designed simul-
taneously and more than one iteration might be required. The requirements and subsystem design
presented in this chapter refer only to the first iteration of the design process.
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4
Methodology

In this chapter, the orbital design methodology applied in this thesis will be explained. In Section 4.1,
the methodology steps and the experimental set-up used are introduced. Section 4.2 is dedicated to
establishing the evaluation criteria used throughout the design process.

4.1. Orbital Design
The main objective of orbital design is to determine which orbit a spacecraft should fly, in order to meet
the mission objectives, requirements and budgets. Usually, several types of orbits are assessed and a
trade-off between orbital parameters leads to a final operational orbit. In traditional (large) satellite
missions, the Δ𝑉 budget is then computed, a launcher is selected and, if needed, iterations to the
design process are made. It is also typical to assess the need for single satellite or a constellation and
its replenishment, replacement, retrieval or disposal options (Wertz, 2009, p.591).

When designing the orbit of a CubeSat, some steps of the general orbital design guide might not
apply. CubeSats, for example, usually do not have a dedicated launcher. Instead, they “piggy-back
ride” with a larger satellite mission, which drives the launcher selection process. This is the case of
LUMIO, which will be released by the Lunar Communications Orbiter into lunar orbit. CubeSats also
have restricted Δ𝑉 budgets, given their limited propulsion systems and mass. In addition, it is the main
mission that dictates the departure orbit. As such, the CubeSat is limited to those operational obits
that are accessible from the departure orbit imposed. This is why, in the present thesis, the Δ𝑉 budget
will be taken into account in the orbital trade-off from an early stage, and not just after a preferential
operational orbit has been found. For this mission, assessment of the need for a constellation is out
of the scope of orbital design, because LUMIO has already been defined as a single satellite mission
(Topputo et al., 2017).

Taking into account these considerations, the outline of the methodology used is as follows:

1. Definition of the evaluation criteria, based on requirements and research objective;

2. Establishment of the relevant orbit types for lunar remote sensing;

3. Preliminary trade-off between these orbit types, taking only into account their main characteristics
and eliminating clearly non-feasible options;
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4. First orbital trade-off, between orbital parameters of candidate orbits. In this step, only evaluation
criteria related to lunar meteoroid impacts will be considered. For that purpose a lunar meteoroid
impact flashes coverage analysis will be performed, taking into account the meteoroid flux at the
Moon and the non-illuminated lunar surface area observable by the LUMIO-Cam. Candidate orbits
that are non-feasible according to these criteria will be eliminated. The remaining – partly-feasible
orbits – move on to the next orbital trade-off;

5. Second orbital trade-off, between partly-feasible orbits. In this step, evaluation criteria related
to the Δ𝑉 budget, determined by optimising the transfer trajectory, will be taken into account.
The result of this orbital trade-off should be the chosen operational orbit or a set of preferred
operational orbits.

The experimental set-up, taking into account the described methodology, is presented in Figure
4.1. The preliminary orbit trade-off will mainly use available data from literature. The first and second
orbital trade-offs use the results obtained from custom developed computer programs, that make use of
external toolkits. The program developed for the first orbital trade-off is part of the work carried out for
this thesis and is described in detail in Chapters 6 and 7. The second orbit trade-off and development
of the associated trajectory optimisation software was carried out by LUMIO’s Mission Analysis team.
As such, a detailed description of this trade-off and corresponding tools will not be part of this thesis.
Nonetheless, the results obtained will be addressed in Chapter 8.

It should be noted that the chosen approach of performing sequential trade-offs, eliminating can-
didate orbits in between, can falsely lead to the discovery of only non-feasible operational orbits at
the last step. This can happen if, for example, the evaluation criteria and assumptions defined are
too strict with respect to the requirements. In this case, at least one iteration back to step one might
have to occur. On the other hand, eliminating candidate orbits increases the efficiency of the design
process, since it reduces the complexity and execution time of the following steps, some of which rely
on computationally heavy methods. Nonetheless, in order for this method to lead to a valid conclu-
sion on whether the research objective has been achieved, the definition of the evaluation criteria and
assumptions is critical.

Figure 4.1: Scheme of the experimental set-up used.
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4.2. Evaluation Criteria
The evaluation criteria will be divided into two types: acceptance criteria and selection criteria. The
former are defined based on the science and mission requirements (see Chapter 3, Section 3.2). The
latter are defined based on orbital performance parameters and will allow the selection of the final
orbit, from a set of candidate orbits that meet the acceptance criteria. The acceptance and selection
criteria are presented in Tables 4.1 and 4.2, respectively. The reasoning behind the definition of these
criteria will be explained in the following paragraphs.

Table 4.1: Orbit design acceptance criteria.

ID Criteria Parent ID

EC.A.01
The operational orbit shall allow the detection of meteoroids in the equivalent
kinetic energy range at Earth of 10ዅዀ to 10ዅኻ kton TNT.

SCI.01
SCI.02

EC.A.02
The operational orbit shall allow the detection of at least 240 meteoroid
impacts during the mission lifetime.

SCI.05

EC.A.03
The operational orbit shall allow the detection of at least 2 meteoroid impacts
in the in the equivalent kinetic energy range at Earth of 10ዅኾ to 10ዅኻ kton
TNT.

SCI.01

EC.A.04
The operational orbit shall allow the detection of at least 100 meteoroid
impacts in the in the equivalent kinetic energy range at Earth of 10ዅዀ to 10ዅኾ
kton TNT.

SCI.02

EC.A.05 The operational orbit shall allow monitoring of the lunar farside at night. SCI.06

EC.A.06
The operational orbit shall support a minimum mission lifetime of 1 year, with
a maximum total Δ𝑉 budget of 200 m/s.

MIS.05

EC.A.07
The operational orbit shall be accessible from the departure orbit, with a
maximum total Δ𝑉 budget of 200 m/s.

MIS.06
MIS.07

Table 4.2: Orbit design selection criteria.

ID Criteria
EC.S.01 The total number of meteoroids detected during the mission lifetime shall be maximised.
EC.S.02 The total Δ𝑉 budget shall be minimised.

Acceptance Criteria The first three acceptance criteria and EC.A.05 follow directly from their parent
science requirements. There is a need to define two separate criteria regarding SCI.01, because this
requirement affects two different orbital parameters. First, it defines a kinetic energy range to be
observed (10ዅኾ to 10ዅኻ kton TNT), which is a function of altitude, hence, the definition of EC.A.01.
Second, it implies that the cumulative observation in this range should be long enough to allow the
detection of at least 2 meteoroid impacts, hence, the definition of EC.A.03. Analogously, for requirement
SCI.02, criteria EC.A.01 and EC.A.04 were defined. In the latter, the approximate number of meteoroid
impact flashes used by Suggs et al. (2014), to estimate the lunar impact flux in this range, has been
considered reasonable for a “refinement”.

In the last two acceptance criteria, a total Δ𝑉 budget of 200 m/s as been considered reasonable
to support a minimum mission lifetime of 1 year and deployment from the Lunar Communications
Orbiter. This is based on LUMIO’s preliminary Δ𝑉 estimated in Topputo et al. (2016) for a transfer to
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an Earth-Moon L2 Halo orbit. Campagnola et al. (2016), for example, estimates a much smaller Δ𝑉 of
approximately 80 m/s for a transfer to an Earth-Moon L2 Halo orbit. However, the CubeSat EQUULEUS
is departing from an Earth-escape orbit and performing two flybys to reduce its energy, while LUMIO
is already departing from a lunar-captured state.

Selection Criteria The selection criteria presented were defined in view of the research question and
objective. As such, in order to know what is the best orbit to improve current Earth-based lunar impact
flashes observation, the selection criteria have been defined taking into account the performance of
the orbit. This performance will be assessed based on two parameters: the total number of meteoroids
detected over the mission lifetime and the total Δ𝑉 budget.

The first has been chosen because one of the main goals of lunar impact flashes monitoring is to
improve the current Solar System meteoroid models and a larger number of observations, in the same
time period, can contribute towards this goal. Moreover, if the Δ𝑉 budget for 1-year lifetime of some
of the candidate orbits turns out to be smaller than 200 m/s, selecting the one with the minimum Δ𝑉
budget can also contribute towards the same goal. This is because the stationkeeping Δ𝑉 could be
increased, allowing for a larger mission lifetime and, so, the possibility of detecting more meteoroid
impact flashes. On the other hand, a smaller Δ𝑉 budget and propellant mass can give more flexibility
to the design of other subsystems.
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5
Lunar Remote Sensing Orbits

This chapter concerns Steps 2 and 3 of the methodology presented in Chapter 4. Section 5.1 introduces
relevant concepts of orbital dynamics, regarding the Two and Three-Body Problem. The establishment
and description of the relevant orbit types for lunar remote sensing are presented in Section 5.2. Finally,
the preliminary trade-off between these orbit types, taking only into account their main characteristics,
is presented is Section 5.3.

5.1. Astrodynamics
5.1.1. Two-Body Problem
Given two bodies, 𝑖 and 𝑘, with a radially-symmetric mass density distribution, Newton’s law of grav-
itation dictates that the motion of body 𝑖, with respect to body 𝑘, when only the mutual gravitational
attractions of the two bodies are present, is given by:

dኼ𝐫
d𝑡ኼ = −

𝜇
𝑟ኽ 𝐫 with: 𝜇 = 𝐺𝑚፤ (1 +

𝑚።
𝑚፤
) (5.1)

where 𝐫 is the position of body 𝑖 in a non-rotating reference frame, centered at body 𝑘, and 𝐺 is the
gravitational constant, 6.674×10ዅኻኻ m3kg-1s-2. If 𝑚። is the mass of the spacecraft and 𝑚፤ is the mass
of the central body, then 𝑚፤ ≫ 𝑚። and 𝜇 ≈ 𝐺𝑚፤, which is known as the gravitational parameter of
body 𝑘. Equation 5.1 then represents the Restricted Two-Body Problem (TBP), as body 𝑘 suffers no
gravitational attraction from body 𝑖.

The TBP has two conservation laws: the conservation of energy (ℰ) and angular momentum (𝐇),
per unit mass of body 𝑖. From these laws, it possible to determine the analytical solution of the TBP,
which describes a conic section with one of the foci located at the origin of the reference frame (body
𝑘). The following types of orbits can be distinguished, according to the type of conic section:

• e = 0: circular

• 0<e<1: elliptical

• e=1: parabolic

• e>1: hyperbolic

31
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where 𝑒 is the eccentricity of the orbit.

5.1.2. Three-Body Problem
The Three-Body Problem concerns the study of the motion of three bodies under the influence of their
mutual gravitational attractions. If the mass of two bodies, 𝑃ኻ and 𝑃ኼ, is much larger than the mass
of the third, 𝑃ኽ, the motion of the first two is given by the solution of the TBP. Therefore, the problem
is restricted to the motion of the third body, the spacecraft, as it does not influence the motion of the
primaries. Furthermore, if the primaries move about each other in circular orbits, then the problem is
known as the Circular Restricted Three-Body Problem (CRTBP).

For the dynamic system to be time independent (autonomous), the equations of motion can be
defined in a frame that rotates with the motion of the primaries, centred at the barycentre of the
system. Furthermore, it is conventional to adimentionalise the equations by setting the primaries’
angular velocity, the distance between them and the sum of their masses equal to the unity. The
mentioned referential is presented in Figure 5.1, where 𝜇, known as the mass parameter, is defined as
𝜇 = 𝑚ኼ/(𝑚ኻ +𝑚ኼ).

Figure 5.1: CRTBP reference frame (XYZ), with OPᎳ ዆ ᎙ and OPᎴ ዆ ኻ ዅ ᎙. From Wakker (2015, p.56).

The equations of motion defined in the mentioned reference frame are (Wakker, 2015, p.59):

𝑥̈ − 2𝑦̈ = 𝑈፱
𝑦̈ − 2𝑥̈ = 𝑈፲

𝑧̈ = 𝑈፳

(5.2)

where the subscripts denote the partial derivative of the function:

𝑈(𝑥, 𝑦, 𝑧) = 1
2(𝑥

ኼ + 𝑦ኼ) + 1 − 𝜇𝑟ኻ
+ 𝜇
𝑟ኼ

(5.3)

with:
𝑟ኻ = √(𝑥 + 𝜇)ኼ + 𝑦ኼ + 𝑧ኼ

𝑟ኼ = √(𝑥 + 𝜇 − 1)ኼ + 𝑦ኼ + 𝑧ኼ
(5.4)

The CRTBP has only one integral of motion, known as the Jacobi integral, which is given by (Wakker,
2015, p.60):

𝐶 = 2(12(𝑥
ኼ + 𝑦ኼ) + 1 − 𝜇𝑟ኻ

+ 𝜇
𝑟ኼ
) − (𝑥̇ኼ + 𝑦̇ኼ + 𝑧̇ኼ) = 2𝑈 − 𝑉ኼ (5.5)
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and does not have an analytical solution. This integral only constrains the 6-dimensional phase space
to 5 dimensions, but it provides useful information about the CRTBP dynamics.

Since 𝑉ኼ = 𝑥̇ኼ + 𝑦̇ኼ + 𝑧̇ኼ ≥ 0, Equation 5.5 gives 2𝑈(𝑥, 𝑦, 𝑧) ≥ 𝐶. This means that, for a certain
initial condition and correspondent value of 𝐶, the Jacobi integral gives information about the regions
of space accessible or not to body 𝑃ኽ. The latter are known as the forbidden regions. These regions are
delimited by the surfaces of Hill, given by 2𝑈(𝑥, 𝑦, 𝑧) = 𝐶, where body 𝑃ኽ has null velocity. Figure 5.2
shows the forbidden regions in the XY-plane, for decreasing values of the Jacobi constant (𝐶). Since
the Jacobi constant is also related to the energy of the spacecraft by 𝐶 = −2(𝑉ኼ/2−𝑈) = −2𝐸, smaller
values of 𝐶 mean larger values of energy and larger accessible regions in space, as can be seen in
Figure 5.2. (Wakker, 2015, p.60-64)

Figure 5.2: Forbidden regions (striped pattern) and surfaces of Hill (outer black lines) for decreasing values of the Jacobi constant.
The Lagrangian points are denoted by ፋᑚ. From Wakker (2015, p.63).

For increasing values of energy, these forbidden regions gradually open up through the Lagrangian
points. These are equilibrium points of the dynamical system and are also known as libration points.
There are five Lagrangian points, three of which are in the X-axis (𝐿ኻ, 𝐿ኼ and 𝐿ኽ) and are known as
the collinear libration points. The remaining two (𝐿ኾ and 𝐿኿), known as the triangular libration points,
are in the XY-plane and are the third vertex of an equilateral triangle formed with the two primaries.
The Lagrangian points are also presented in Figure 5.2.

Since the Jacobi integral provides little information, the study of the phase space about the equilib-
rium points can be useful (Topputo et al., 2005). From linearising the dynamical system, the triangular
equilibrium points are found to be stable only for 𝜇 < 0.0385 (Wakker, 2015, p.74). The collinear
points’ linear analysis shows that these are unstable for any value of 𝜇. Furthermore, they are a saddle
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point (two real opposite-signed eigenvalues) and a 4D center (periodic motion given by two pairs of
imaginary eigenvalues) (Musielak and Quarles, 2014).

5.2. Orbital Geometry
This section is dedicated to the description of lunar remote sensing orbits. Only orbits that allow a
periodic or repetitive motion with respect to the Moon’s surface will be considered as lunar remote
sensing orbits. Orbits whose range to the lunar surface exceeds more than 1/3 of the Earth-Moon
distance (≈ 100000 km) will also not be the considered lunar remote sensing orbits. Three different
classes of orbits are distinguished: Keplerian; Perturbed Keplerian and Libration Point Orbits. These
classes and respective orbit types will be described in the following subsections.

5.2.1. Keplerian Orbits
The orbit a body describes in the TBP, represented by a conic section, is known as a Keplerian orbit.
Of the conic sections presented in Section 5.1.1, only circular and elliptical orbits allow the monitoring
of the central body, the Moon. Parabolic and hyperbolic orbits lead the spacecraft to escape the body’s
Sphere of Influence. Therefore, they will not be considered as lunar remote sensing orbits.

The shape, size and orientation of an elliptical orbit, with respect to a non-rotational reference frame
centred at the primary focus, do not change in the TBP (Wakker, 2015, p.260). Therefore, it is possible
to characterise the satellite’s orbit by a set of fixed parameters, known as the orbital elements. The
position and velocity of a satellite in its orbit are represented by six state variables, and so, there are
also six orbital elements, which are interchangeable with the state variables. The six orbital elements
used in this thesis are as follows (see also Figure 5.3):

• the semi-major axis (𝑎) of the ellipse that describes the orbit;

• the eccentricity (𝑒) of the ellipse that describes the orbit;

• the inclination (𝑖), which is the angle between the orbital plane and a reference plane (e.g. the
equatorial plane) or the angle between the Z-axis and 𝐇. It is measured between 0º and 180º,
in the counter-clockwise direction, when looking from the Ascending Node (AN) to the origin of
the reference frame;

• the right ascension of the ascending node (Ω), which is the angle measured along the refer-
ence plane, between the X-axis and the AN direction, from 0º to 360º in the counter-clockwise
direction;

• the argument of periapsis (𝜔), which is the angle measured along the orbital plane, between the
AN and the periapsis, from 0º to 360º, in the direction of motion of the spacecraft;

• the true anomaly (𝜃) at epoch, which is the angle measured along the orbital plane, between the
periapsis and the spacecraft, from 0º to 360º, in the direction of motion of the spacecraft, at a
certain epoch.

The first two orbital elements define the size and shape of the orbit; 𝑖 and Ω define the orientation
of the orbit plane; 𝜔 defines the orientation of the orbit within the orbital plane; and 𝜃 defines the
position of the satellite within the orbit (Wertz, 2009, p.46). Satellites with 𝑖 < 90º are said to move in
prograde orbits, while satellites with 90º< 𝑖 < 180º move in retrograde orbits.
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Figure 5.3: Orbital elements of a Keplerian elliptical orbit. From Wakker (2015, p.261).

The semi-major axis (𝑎) of a Keplerian orbit is related to the specific energy of the body (ℰ) through
the vis-viva equation (Wertz, 2009, p.40):

ℰ = 1
2𝑣

ኼ − 𝜇𝑟 = −
𝜇
2𝑎 ⇔ 𝑣 = √𝜇 (2𝑟 −

1
𝑎) (5.6)

From Equation 5.6, it can be concluded that, when the body is at the periapsis (smallest altitude, ℎ፩)
its velocity is maximum and at the apoapsis (largest altitude, ℎፚ) is minimum. Furthermore, since the
angular momentum is constant , a line joining the primary focus and the body will swipe out equal
areas in equal units of time. In terms of coverage, this means that a spacecraft on an elliptical orbit
covers for a longer period regions directly below its apoapsis and for a shorter period regions directly
below its periapsis. For circular orbits, 𝑟 = 𝑎, and so, Equation 5.6 becomes 𝑣 = √𝜇/𝑟, meaning that
the velocity in a circular orbit is constant. As such, a spacecraft in a circular orbit covers all regions
below its orbit with the same period.

The time it takes for the body to complete one revolution in its orbit, known as the orbital period
(𝑃), is given by:

𝑃 = 2𝜋√𝑎
ኽ

𝜇 (5.7)

for both elliptical and circular orbits. From Equation 5.7 it is also possible to define the mean angular
motion (𝑛) as follows:

𝑛 = 2𝜋
𝑃 = √ 𝜇𝑎ኽ (5.8)

The true anomaly of a satellite is difficult to compute, so the concept of mean anomaly (𝑀) was
introduced (Wertz, 2009, p.49). The mean anomaly is given by 𝑀 = 𝑛(𝑡 − 𝑡ኺ), where 𝑡ኺ is the time of
passage at the periapsis (Wakker, 2015, p.169). To relate 𝑀 with 𝜃, the concept of eccentric anomaly
(𝐸) is introduced. The true anomaly is related with the eccentric anomaly through the Gauss equation,
as follows (Wertz, 2009, p.49):

tan (𝐸2 ) = (
1 − 𝑒
1 + 𝑒)

ኻ/ኼ
tan (𝜃2) (5.9)
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and the eccentric anomaly relates with the mean anomaly through the Kepler equation:

𝑀 = 𝐸 − 𝑒 sin 𝐸 (5.10)

It should be noted that Equations 5.9 and 5.10 are only valid for circular and elliptic orbits.
From an orbital design perspective, when defined about the Moon, a Keplerian circular or elliptical

orbit is known as a Low Lunar Orbit (LLO) or an Elliptical Lunar Orbit (ELO), respectively (Whitley and
Martinez, 2016). These types of orbits are briefly described below.

Low Lunar Orbit A LLO has a constant low altitude with respect to the Moon’s surface and has a
short period of 𝑃 ≈ 2 hours, for ℎ = 100 km (Equation 5.7). For altitudes larger than 100 km, Earth’s
gravitational field affects the satellite’s motion in such a way that the orbit can no longer be considered
as only under the influence of the Moon’s gravity field (Abad et al., 2009; Carvalho et al., 2010).

Elliptical Lunar Orbit An ELO usually has a low altitude at the perilune and a relatively large altitude
at the apolune. This means that the distance between the satellite and the Moon’s surface can vary
significantly in one orbital revolution and so can the coverage periods of certain lunar regions.

For altitudes between 500 and 20000 km, a lunar orbiter’s motion is mainly dominated by pertur-
bations caused by the Earth’s gravity field (Ely, 2005). As such, the limit altitude for ELOs considered
in this analysis will be 10000 km (Whitley and Martinez, 2016). For altitudes larger than that, the orbit
will be considered an orbit of the CRTBP. This altitude limit also imposes a limit to the eccentricity of
ELOs, given by (Wakker, 2015, p.681):

{
𝑟፩ = 𝑎(1 − 𝑒) > 𝑅ፌ
𝑟ፚ = 𝑎(1 + 𝑒) < 10000 km

⇔ 𝑒 <
𝑟ፚ − 𝑟፩
𝑟፩ + 𝑟ፚ

= 0.74 (5.11)

where 𝑅ፌ is the radius of the Moon and 𝑟፩ and 𝑟ፚ are the radius of the periapsis and apoapsis, respec-
tively. Otherwise, the spacecraft would crash into the lunar surface when at the periapsis.

For both types of orbit, lunar surface coverage also depends on the inclination of the orbit, as larger
inclinations allow the coverage of higher latitudes. An orbit with 𝑖 = 90º, known as a polar orbit,
would allow coverage of all latitudes. Furthermore, it should be noted that, in the true Earth-Moon
environment, these orbits are perturbed and not purely Keplerian. As such, mitigation measures must
be taken into account to maintain the Keplerian properties of the orbit, as will be briefly explain in the
following subsection.

5.2.2. Perturbed Keplerian Orbits
In Subsection 5.1.1, it was assumed that the spacecraft was only under the influence of one gravitational
field, generated by a central body that had a radially symmetric mass distribution. However, other
celestial bodies, besides the central body, can also influence the motion of a satellite. These are know
as Third-Body (TB) perturbations (Russell, 2012). Furthermore, celestial bodies’ mass distribution
is not perfectly radially symmetric. As such, depending on the position of a spacecraft above the
celestial body’s surface, it will experience a different gravitational acceleration, which will cause the
spacecraft to deviate from the nominal Keplerian orbit. These are known as Non-Spherical Gravity
(NSG) perturbations (Russell, 2012). Perturbing forces, such as the TB or NSG, originate what is
known as a perturbed Keplerian orbit (Wakker, 2015, p.527).
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The equations of motion of a lunar satellite, perturbed by the NSG of the Moon and by the Earth as
a TB, can be written as (Wakker, 2015, p.32, 528, 549):

dኼ𝐫
d𝑡ኼ +

𝜇ፌ
𝑟ኽ 𝐫 = 𝑓TB − 𝐶∇𝑈NSG

𝑓TB ≡ −𝜇ፄ (
𝐫ፄ
𝑟ኽፄ
− 𝐫ፄ − 𝐫
||𝐫ፄ − 𝐫||

)

𝑈NSG ≡
𝜇ፌ
𝑟 [

ጼ

∑
፧዆ኼ

𝐽፧ (
𝑅ፌ
𝑟 )

፧
𝑃፧(sinΦ) −

ጼ

∑
፧዆ኼ

፧

∑
፦዆ኻ

𝐽፧,፦ (
𝑅ፌ
𝑟 )

፧
𝑃፧.፦(sinΦ)cos[𝑚(Λ − Λ፧,፦)]]

(5.12)
where 𝑓TB is the Third-Body perturbation force, 𝜇ፌ and 𝜇ፄ are the gravitational parameters of the
Moon and Earth, respectively, and 𝐫ፄ is the position vector of Earth, in a non-rotating Moon-centred
reference frame. 𝑈NSG is the perturbing potential of the Moon’s Non-Spherical Gravity field; 𝑟, Φ and
Λ are planetocentric coordinates, defined in a body-fixed reference frame (see Chapter 6, Subsection
6.1); 𝑃፧,፦ are associated Legendre polynomials of the first kind, of degree 𝑛 and order 𝑚; 𝐽፧,፦ and
Λ፧,፦ are the coefficients of the model; and 𝐶 is a transformation matrix from the body-fixed to inertial
Moon-centred reference frame.

These pertubations also mean that the orbital elements, presented as fixed parameters in Section
5.2.1, in reality, are not constant and vary during one orbital revolution. Therefore, if one wants to
maintain the Keplerian orbital elements of orbits such as a LLO and ELO constant, the perturbations
must be countered, usually by spending propellant.

Nonetheless, there are certain types of orbits that take advantage of the perturbed gravity field
characteristics, in such a way that their orbital elements remain approximately constant, and, so, require
very little propellant to be maintained. This stable type of orbits is known as a Frozen Orbit (FO) (Wertz,
2009, p.90). It is also possible to take advantage of the perturbed gravity field characteristics in such
a way that the orbital plane remains nearly fixed with respect to the Sun, as the Earth–Moon system
moves in its orbit (Wertz, 2009). This type of orbit is know as a Sun-Synchronous Orbit (SSO). Both
types of orbits have been discovered for the Moon and will be detailed in the paragraphs bellow.

Frozen Orbits A lunar FO is an orbit whose orbital elements remain constant, on average, during
one orbital revolution. They usually exist only for certain combinations of 𝑎, 𝑒, 𝑖 and 𝜔, which makes
their design restrict (Whitley and Martinez, 2016). However, the altitude of the satellite in a frozen
orbit is constant over each latitude, which makes the coverage pattern repetitive. Two different types
of lunar frozen orbits have been found. The first take only into account perturbations by the zonal
terms of the lunar NSG field (𝐽፧-terms) and have low altitudes (ℎ < 100 km). The second also take
into account perturbations of Earth’s gravity field and have higher altitudes (ℎ > 100 km).

Elipe and Lara (2003) numerically found two families of stable, low altitude, quasi-circular lunar
orbits, considering 7 terms of the lunar zonal harmonics. The first have inclinations between 0º and
63º (critical inclination), and the second between 73º and 86.5º. Orbits with inclinations in between
and high eccentricities were found to be unstable (see Figure 5.4, top-left plot). The argument of
periapsis for either family can be 90º or 270º and varies at most by 3º, near the critical inclination. For
other 𝜔 values, no stable frozen orbits can exist, according to the analytical study performed by Abad
et al. (2009). Furthermore, Abad et al. (2009) also demonstrated that analytically computed frozen
initial conditions, using only the 𝐽ኼ and 𝐽዁ terms, could remain periodic using a more realistic gravity
field model (up to 𝑛 = 9), if a corrector method is used. Using the averaged orbital elements as initial
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conditions can lead to a non-frozen orbit in less than one year.

Ely (2005) designed a high-altitude, lunar quasi-frozen orbit, with ℎፚ = 9382 km, 𝑒 = 0.6, 𝑖 = 63º
and𝜔 = 90º, taking into account only Earth TB perturbations. The oscillations around the average value
could reach Δ𝑒 ≈ 0.15, Δ𝑖 ≈ 4º and Δ𝜔 ≈ 20º, considering the true ephemeris of Earth. Including
the Moon’s NSG field up to 𝑛 = 50 and the Sun’s TB perturbation, in a 1 year simulation, only Δ𝜔
increased to ≈ 30º. Abad et al. (2009) later performed an analytical study for moderate altitude
orbits (100 < ℎ < 3500 km), considering both the 𝐽ኼ and 𝐽዁-terms of the Moon’s NSG and Earth TB
perturbations. The results obtained are presented in Figure 5.4. From these plots, it can be concluded
that the unstable inclination region found for lower altitudes, decreases for larger altitudes. Moreover,
for even larger altitudes, high eccentricity frozen orbits become a possibility.

Figure 5.4: Lunar frozen orbits’ averaged orbital elements: inclination, eccentricity and semi-major axis (denoted as ᎎ ዄ ፡Ꮂ)
and argument of periapsis. The constant eccentricity line denotes the eccentricity above which the satellite crashes. The four
semi-major axis presented are 1838, 2738, 3476 and 5217 km (left to right and top to bottom). Dashed lines correspond to
Ꭶ ዆ ዃኺº and solid lines to Ꭶ ዆ ኼ዁ኺº. From Abad et al. (2009).
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Sun-Synchronous Orbits A Sun-Synchronous orbit is an orbit whose line of nodes rotates in such a
way that the orbital plane orientation is fixed relative to the Sun. Figure 5.5 depicts this situation. From
this figure, one can observe that the orbital plane needs to rotate an angle 𝜃 = 2𝜙, as the Earth–Moon
system also rotates the same angle 𝜃 about the Sun. The Earth–Moon system completes one revolution
about the Sun in 𝑃ፄ = 365.26 days, so the line of nodes needs to rotate 𝜃̇ = 360º/𝑃ፄ ≈ 0.9856º/day.
Considering the duration of a sidereal month (𝑃ፌ = 27.32 days), the precession rate of the line of nodes
must equal 𝜃̇ as follows (Park and Junkins, 1994):

Ω̇ = 360
𝑃ፄ
𝑆ፌ =

360
365.26 ⋅ 27.32 = 26.9266º/sidereal month (5.13)

The natural precession of the line of nodes, taking into account the 𝐽ኼ and 𝐽ኼኼ terms of the Moon’s
NSG perturbation potential, is a function of the type: Ω̇ = 𝑓(𝑎, 𝑒, 𝑖, Ωኺ), where Ωኺ denotes the longitude
of the ascending node at time zero (Carvalho et al., 2009). Taking into account 5.13, this function
gives the following Sun-Synchronous inclination (𝑖ፒፒ) (Carvalho et al., 2009):

𝑖ፒፒ = 𝜋 − cosዅኻ (
1.327307409 ⋅ 10ዅ዁𝑎ኼ(1 − 𝑒ኼ)ኽ/ኼ

𝑛(613.573 + 67.496(−2 − 𝑒ኼ + 3𝑒ኾ) cos(2Ωኺ))
) (5.14)

The variation of 𝑖ፒፒ with 𝑎, 𝑒 and Ωኺ is depicted in Figure 5.6. From these plots, it can be concluded
that, for 𝑎 = 1838 km, lunar Sun-Synchronous orbits exist for inclinations between ≈132º and 176º,
for Ωኺ ∈ [20, 160] ∪ [200, 340]º (Carvalho et al., 2009). For this semi-major axis, the eccentricity is
restricted to 𝑒 < 0.05, otherwise the satellite would crash. For circular orbits and 𝑎 < 1838 km, the
Sun-synchronous inclination range tends towards [125, 170]º, while Ωኺ ∈ [0, 360]º. For 𝑎 > 1838 km,
Earth’s TB perturbation needs to be taken into account and Equation 5.14 no longer applies.

Figure 5.5: Sun-Synchronous orbit: the line of nodes ro-
tates an angle ᎕ ዆ ኼᎫ to maintain a relative position
between the orbital plane and the Sun. From Park and
Junkins (1994).

Figure 5.6: Sun-Synchrounous inclination. Computed with
Equation 5.14 from Carvalho et al. (2009).
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Table 5.1 summarizes the main characteristics of Keplerian and Perturbed Keplerian orbits, as pre-
sented in Subsections 5.2.1 and 5.2.2.

Table 5.1: Characteristics of Keplerian and Perturbed Keplerian lunar remote sensing orbits. The information within parentheses
denotes the conditions correspondent to interval limits.

Orbit ℎ (km) 𝑒 𝑖 (º) 𝜔 (º) 𝑃 (h)
Coverage

characteristics
Low Lunar

Orbit
< 100a,b 0 [0, 180[ – < 2 Constant altitude

Elliptical
Lunar Orbit

< 10000c

(apoapsis altitude)
< 0.74
(crash)

[0, 180[ [0, 360[
< 27

(፞ ዆ ኺ.ኻ;

፡ᑒ ዆ ኻኺኺኺኺ km)

Variable altitude;
possible to cover
more extensively
certain regions

Frozen Orbit

< 100a

(only Moon zonal
harmonics)

[0, 0.1]a,d [0, 63] ∪
[73, 86.5]*,a,d

90 or
270±3a

<2
(፞ ዆ ኺ.ኺኻ;

፡ᑒ ዆ ኻኺኺ km)a

Possibly variable
altitude, but

constant over
each latitudeb

[100, 9000]a,e

(Moon zonal
harmonics and

Earth)

[0, 0.7]†
(፡ ዆ ኽ዁ኺኺ

km)

0 or
[40, 70]a

90 or
270a

<24
(፞ ዆ ኺ.ዀ;

፡ᑒ ዆ ዃኺኺኺ km)e

Sun-
synchronous

Orbit

< 100b

(only Moon’s ፉᎴ
and ፂᎴᎴ)

< 0.05
(crash)

[125, 170]
(from Fig. 5.6)

[0, 360[ < 2

Approximately
constant altitude
and illumination

angles
a Abad et al. (2009) b Carvalho et al. (2010) c Whitley and Martinez (2016) d Elipe and Lara (2003) e Ely (2005)
* Symmetric intervals with respect to 90º also exist (Park and Junkins, 1994)
† Smaller interval for lower altitudes (Abad et al., 2009)

5.2.3. Libration Point Orbits
Given that the CRTBP does not have an analytical solution, the analytical or numerical exploration of the
dynamic phase space is a must to understand its dynamics. This has lead to the discovery of periodic
orbits in the CRTBP, about all Libration points, the Moon and Earth. If about 𝐿ኻ and 𝐿ኼ, these orbits
can serve the purpose of lunar monitoring, since these points are closer to the Moon (≈ 60,000 km)
than 𝐿ኽ, 𝐿ኾ and 𝐿኿ (> 300, 000 km). Therefore, only orbits about 𝐿ኻ and 𝐿ኼ will be considered as lunar
remote sensing orbits.

Folta et al. (2015) groups CRTBP orbits in three main categories: Libration Point Orbits, Resonant
Orbits and Moon-centred Orbits (see Figure 5.7). The first category contains orbits whose motion
revolves (mostly) about one of the Earth–Moon Libration points. The second category contains orbits
whose periods are resonant with the lunar orbital period (𝑃ፌ). These can be either interior or exterior
if they remain interior to the Moon’s orbit or cross it to higher altitudes. Finally, Moon-centred Orbits
are exterior resonant orbits that appear to orbit the Moon in the CRTBP reference frame.

It should be noted that Interior Resonant Orbits lead to very large ranges with respect to the
Moon and do not allow monitoring of the lunar farside (Requirement SCI.06), so they will not be
considered as candidate orbits. Axial and Distant Prograde orbits will also not be considered, since
their irregular shape can lead to a complex coverage pattern, with no added benefits. Therefore,
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Figure 5.7: CRTBP orbit types grouped into three main families: Libration Point Orbits (left); Moon-centred Orbits, which are
also Exterior Resonant Orbits (center) and Interior Resonant Orbits (right). The orbits are represented in the CRTBP reference
frame, centred at Earth (blue circle), and the arrows denote the direction of motion. From Folta et al. (2015).

only six types of periodic orbits that exist in the CRTBP – the Lyapunov Orbit (LO), the Halo Orbit
(HO), the Near-Rectilinear Orbit (NRO) (which are part of the Halo family), the Vertical Orbit (VO),
the Distant-Retrograde Orbit (DRO) and the Low-Prograde Orbit (LoPO) – will be considered for orbital
design. These orbits are presented in detail in the following paragraphs and Table 5.2 (at the end of
the section) summarizes their main characteristics. They will be collectively referred to as either CRTBP
orbits or Libration Point Orbits.

Compared with Keplerian orbits, these orbits can be more easily accessible from Earth, have more
favourable thermal environments, few or no lunar eclipses and infrequent Earth shadowing (Whitley
and Martinez, 2016). It should be noted, nonetheless, that, since these orbits are associated with
unstable Lagrangian points, they are all inherently unstable. In order to characterise the stability of
the orbit, the concept of stability index is introduced (𝑆). The mathematical definition is as follows
(Folta et al., 2015; Grebow et al., 2008):

𝑆 = 1
2 (|𝜈| +

1
|𝜈|) (5.15)

where 𝜈 denotes the (reciprocal) pair of eigenvalues associated with the stable/unstable subspace of
the orbit. 𝑆 > 1 indicates instability of the orbit, while 𝑆 < 1 indicates stability. Furthermore, a larger
stability index is usually associated with larger stationkeeping costs, but lower transfer costs (Grebow
et al., 2008).

Lyapunov Orbits A LO is a periodic orbit in the CRTBP XY-plane, about 𝐿ኻ or 𝐿ኼ. They are typically
characterised by the amplitude in the X-axis direction (𝐴፱). For very large 𝐴፱ amplitudes it is even
possible to observe the lunar apex and antapex. Their orbital periods range from approximately 15 to
30 days and their stability index is relatively high (𝑆 ∼ 300).

Halo Orbits A HO is also a periodic orbit about 𝐿ኻ and 𝐿ኼ, but has an out-of-plane component in the
direction of the Z-axis. The frequency of the out-of-plane motion matches the in-plane motion, giving
origin to a 3D periodic orbit1. Based on this premise, Farquhar and Kamel (1973) concluded that the
amplitude of 𝐿ኼ 3D periodic orbits, in the Y-direction (𝐴፲), would have to be larger than 32379 km,
meaning that Halo orbits are inherently large.

As with any other Libration Point Orbit, one does not have an exact analytical solution for Halo

1If the in-plane and out-plane frequencies do not match, a small-sized Lissajous quasi-periodic orbit is originated
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orbits. Analytical approximations are typically used as a first guess for their numerical computation.
Thurman and Worfolk (1996), for example, use a third-order analytical solution for Halo orbits, de-
veloped by Richardson (1980). Richardson’s first-order approximation, written in coordinates of the
CRTBP reference frame, centred at the Libration point, is given by:

𝑥 = −𝐴፱ cos(𝜆𝑡 + 𝜙)
𝑦 = 𝑘𝐴፱ sin(𝜆𝑡 + 𝜙)
𝑧 = 𝐴፳ sin(𝜈𝑡 + 𝜓)

(5.16)

where 𝜈 is forced equal to 𝜆, 𝐴፱ and 𝐴፳ are constrained by a non-linear algebraic relation and 𝜙 and 𝜓
by a linear relation.

The solutions of the CRTBP are symmetric with respect to the XY-plane. As such, if the sign of 𝑧 is
inverted, another family of orbits appears as mirror reflections of the first family, about the XY-plane
(Richardson, 1980). These two branches of Halo orbits are known as the Northern Halo family, if 𝑧 is in
phase with 𝑥, or as the Southern Halo family, if 𝑧 and 𝑥 are 180º out-of-phase (Breakwell and Brown,
1979). In the Earth–Moon 𝐿ኼ, a satellite in a Northern Halo Orbit moves in the clockwise direction, when
seen from Earth, while a satellite in a Southern Halo Orbit moves in the counter-clockwise direction, as
depicted in Figure 5.8.

Breakwell and Brown (1979) also showed that both Earth–Moon 𝐿ኻ and 𝐿ኼ Halo orbits grow larger
in size as they approach the Moon, until about halfway of the distance, but their periods (≈ 14 days)
become slightly shorter. Figure 5.8 also shows this growth of (𝐿ኼ) Halo Orbits towards the Moon.
Furthermore, these orbits are relatively stable (𝑆 ∼ 150) and have the advantage of allowing constant
Earth visibility (Farquhar, 1972).

Figure 5.8: Northern and Southern Halo Orbits about the Earth–Moon ፋᎴ. Projection onto the XZ-plane (left) and YZ-plane
(right). Southern Halo Orbits are represented by dashed lines and Northern Halo Orbits by solid lines. From Breakwell and
Brown (1979).

Near-Rectilinear Orbits A survey of Halo orbits by Breakwell and Brown (1979) showed that both
Halo families at the Earth–Moon 𝐿ኻ and 𝐿ኼ become almost rectilinear when close to the Moon. Further-
more, the 𝐿ኼ Halo Orbits become smaller in size when getting closer to the Moon, while the 𝐿ኻ Halo
Orbits increase in size, as depicted in Figure 5.9. These almost rectilinear orbits, that are part of the
Halo family, are known as Near-Rectilinear Orbits.

When very close to the Moon, they appear to be large elliptical orbits. As such, just as Halo Orbits,
they remain relatively fixed with respect to the Earth–Moon direction and are always visible from Earth.
Figure 5.10 presents four different types of NROs, according to the family of Halo Orbits that belong
to. In this figure, it is possible to observe that the different types of NRO families appear to intersect



5.2. Orbital Geometry 43

near the Moon, establishing a connection between the 𝐿ኻ and 𝐿ኼ families of Halo Orbits, phenomenon
which Howell and Breakwell (1984) called the “𝐿ኻ-𝐿ኼ bridge”.

These orbits can have a much shorter period than traditional Halo Orbits (𝑃 > 4 days) and the
stability index can also be much lower (𝑆 ∼ 1). Furthermore, it is possible to cover more extensively
certain parts of the lunar surface. For example, an 𝐿ኼ NRO orbit can be useful for the coverage of the
lunar farside and a Southern NRO for the coverage of the lunar south pole, while for an 𝐿ኻ Northern
NRO the opposite is verifiable.

Figure 5.9: Earth–Moon ፋᎳ (left) and ፋᎴ (right) Halo families becoming
almost rectilinear near the Moon. From Breakwell and Brown (1979).

Figure 5.10: Types of Earth–Moon ፋᎳ and ፋᎴ NRO
families. From Whitley et al. (2016).

Vertical Orbits A VO is also another periodic orbit about 𝐿ኻ and 𝐿ኼ that has motion component out
of the XY-plane. However, while Halo orbits have a circular shape, Vertical orbits are shaped as an
eight (see Figure 5.7). This is because they cross the X-axis twice in one orbital period. Their orbital
periods range from approximately 10 to 20 days and their stability index is in between that of Halo and
Lyapunov orbits (𝑆 ∼ 200). Given their shape, these orbits can be used to monitor both lunar poles in
one orbital revolution.

Distant-Retrograde Orbits A numerical survey of non-periodic orbits of the CRTBP by Hénon
(1970) lead to the discovery of quasi-periodic retrograde orbits at large distances from the primary
bodies (see Figure 5.7). Furthermore, these orbits have no apparent size limit, so they can even
encompass both 𝐿ኻ and 𝐿ኼ. A large sized retrograde quasi-periodic in the CRTBP is known as a Distant-
Retrograde Orbit, while a small retrograde quasi-periodic orbit can be considered as a perturbed lunar
Keplerian orbit (Ming and Shijie, 2009).

Turner (2016) studied the stability of DROs for 30 years, taking into account the Moon’s NSG and
the Sun, Venus and Jupiter’s TB perturbation. He concluded that low-altitude DROs (ℎ < 45000 km)
tend to be stable, while high-altitude DROs (ℎ > 50000 km) only tend to be stable if near-resonant
with the Moon. The resonant state can be described by the coefficient 𝑚:𝑛:𝑝, where:

• 𝑚 denotes the number of times the Moon revolves around the Earth in inertial space;

• 𝑛 denotes the number of times the spacecraft revolves around the Moon in inertial space;

• 𝑝 denotes the number of times the spacecraft revolves around the Moon in the CRTBP frame.
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It is also common to represent the resonant state using the ratio 𝑝/𝑚 = 𝑃ፌ/𝑃, since 𝑝 = 𝑚+𝑛 (Turner,
2016).

Figure 5.11 shows the regions of stable DROs, as function of the initial distance and velocity relative
to the Moon. There are two distinct regions: the first is a large region that corresponds to lower
altitudes, higher 𝑝/𝑚 ratios and a broad range of initial velocities (𝑥ኺ = [20, 50] ⋅ 10ኽ km; 𝑣፲,ኺ =
[375, 575] m/s ⟹ 𝑝/𝑚 = [3, 6]); the second is a small region that corresponds to higher altitudes and
velocities and lower 𝑝/𝑚 ratios (𝑥ኺ = [60, 80] ⋅ 10ኽ km; 𝑣፲,ኺ = [500, 575] m/s ⟹ 𝑝/𝑚 = [1.6, 2]).

There are two resonant states that could be specially interesting for the mission in question: 1:0:1
and 1:1:2. Figure 5.12 depicts the former and Figure 5.13 the latter. In the first resonant state, 𝑃ፌ = 𝑃,
and the spacecraft does not complete any revolution with respect to the Moon, in inertial space. From
Figure 5.12, one can observe that this would lead the spacecraft and the Moon to be almost always
aligned with respect to the AE-direction. In the time of the year where the incoming light direction is
from E to A (≈1 month), this would mean that the spacecraft would permanently be able to observe
the nightside of the Moon. However, Turner (2016) reports that no stable initial conditions for this type
of orbit have been found.

In the second resonant state, 𝑃ፌ = 2𝑃, and, so, the spacecraft completes one revolution with
respect to the Moon, in inertial space, and two revolutions, in the CRTBP reference frame, in one
sidereal month. From Figure 5.13, one can observe that this would lead the spacecraft to observe
twice the lunar farside and nearside. Depending on the time of the year, the incoming light direction
would either be approximately aligned with the orbit’s minor axis (left plot) or major axis (right plot). For
the first case, this means that both Earth and space-based observations could be done simultaneously
in time and, for the lunar nearside, also in space. As such, this configuration could be an opportunity to
validate the mission concept with Earth-based observation. For the second case, however, observations
would be complementary in both space and time. A similar situation should also occur for the resonant
state of 1:3:4.

Figure 5.11: Stable Distant-Retrograde Orbit resonant states
፩/፦. Function of the initial distance to the Moon (in the negative
direction of the CRTBP reference frame X-axis) and initial velocity
relative to the Moon (in the positive direction of the CRTBP ref-
erence frame Y-axis). The “Moon” and “Earth orbit” lines delimit
the region of DROs initial conditions. From Turner (2016).

Figure 5.12: Distant-Retrograde Orbit with a 1:0:1 reso-
nance, in an inertial Earth-centred reference frame. “Vehi-
cle x” is the spacecraft, “Vehicle y” is the Moon and “Cen-
tral Body” is the Earth. From Turner (2016).
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Figure 5.13: Distant-Retrograde Orbit with a 1:1:2 resonance, in an inertial, Earth-centred reference frame. The yellow circle
denotes the incoming light direction: aligned with the minor axis (left) or major axis (right). The green line represents the
portion of the Moon’s orbit where Earth-based impact flashes observations can be made and the blue line where potential lunar
DRO impact flashes observations could be made, assuming less than 50% full-disk illumination. Adapted from Turner (2016).

Low-Prograde Orbits LoPO are another family of CRTBP orbits that have been found numerically.
Their motion is prograde and can allow much smaller ranges to the Moon than DROs, hence the name.
Their orbital periods range from approximately 2 to 14 days and their stability index is comparable with
those of DROs or NROs (𝑆 ∼ 4). Given their shape (see Figure 5.7, centre plot), these orbits can be
used to cover more extensively the nearside of the Moon.

Table 5.2: Characteristics of CRTBP lunar remote sensing orbits. The information within parentheses identifies the type of information
being presented.

Orbit Geometry ℎ (10ኽ km) 𝑃 (days) 𝑆* Coverage
characteristics

Earth
Visibility

Lyapunov
Orbits

2D
[40, 78]a

(ፀᑩ ዆ ኼኺኺኺኺ
km, ፏ ዆ ኻ኿.኿

days )

𝐿ኻ:[12, 32]
𝐿ኼ:[14, 36]b

𝐿ኻ:350
𝐿ኼ:300b

Lunar nearside or
farside and

possibly lunar
apex and antapexc

Occultation
can occur

Halo Orbits
(including

NROs)
3D

𝐿ኻ:[20, 65]
𝐿ኼ:[10, 75]d

(Maximum
distance)

𝐿ኻ ∶ [7, 13]
𝐿ኼ ∶ [4, 15]d

𝐿ኻ:175
𝐿ኼ:100b

NRO:∼ 1d

Lunar nearside or
farside and

possibly north or
south pole

Always
visible

Vertical
Orbits

3D

𝐿ኻ:[50, 60]
𝐿ኼ:[50, 65]d

(Maximum
distance)

𝐿ኻ:[10, 18]
𝐿ኼ:[14, 18]b,d

𝐿ኻ:250
𝐿ኼ:200b

Lunar nearside or
farside and both

poles

Occultation
can occur

Distant-
Retrograde

Orbits
2D

[20, 50] ∪
[60, 80]e

(Initial distance
to the Moon)

[4, 16]e
(resonant state
ፏᑄ/ፏ ∈ [ኻ.ዀ, ዀ])

1b
Variable altitude;
lunar nearside

and farside

Occultation
can occur

Low-
Prograde

Orbits
2D

[38, 50]f
(Maximum

range in X-axis)
[2, 14]b 4b

Lunar nearside
covered more
extensively

Occultation
can occur

a Bernelli-Zazzera et al. (2004) b Folta et al. (2015) c Doedel et al. (2007) d Grebow et al. (2008) e Turner (2016)
f Guzzetti et al. (2016) * Average over orbit family
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5.3. Preliminary Orbital Trade-Off
The goal of the preliminary orbital trade-off is to assess and compare the main characteristics of the
candidate orbit types presented in the previous sections and eliminate clearly non-feasible options. Of
the evaluation criteria defined in Chapter 4, Section 4.2, only 5 will be taken into account: EC.A.05,
EC.A.06, EC.A.07, EC.S.01 and EC.S.02. The remaining refer to the kinetic energy range and number
of impacts detectable, which imply modelling both the impact phenomenon and payload (see Chapter
6).

Compliance with criteria will be categorised as one of the following: meets evaluation criteria; can
meet evaluation criteria during the detailed analysis, at later stages in the design process; or does not
meet the evaluation criteria. The following paragraphs detail the methodology used and the results
obtained for each orbit type, per evaluation criteria. Tables 5.3 and 5.4 (at the end of the section)
summarise the results found in a graphical trade-off between the orbit types.

Farside monitoring at night (EC�A�05) All orbital families presented in Section 5.2 have orbits
which allow the monitoring of the lunar farside, at night, at least once per synodic month. The only
type of orbit which not allow it are 𝐿ኻ Lyapunov, Halo or Vertical orbits and, thus, will no be considered.

Nightside observation time per synodic month (EC�S�01) Selection criteria EC.S.01 requires
the maximisation of the total number of impacts detected, for which detailed modelling will be required.
However, it is possible to directly relate this criteria with the total lunar nightside observation time, per
synodic month. This can more easily be estimated than the total number of meteoroid detections,
recurring to orbital dynamics, and, so, it is used to assess preliminary performance with respect to
EC.S.01.

For orbits of the CRTBP two cases can be distinguished: 𝐿ኼ orbits (LO, HO, NRO and VO) and
Moon-centred orbits (DRO, LoPO). The first, if not too close to the Moon, observe mostly the lunar
farside and opposite lunar phases than an observer on Earth. As such, assuming that less than 50%
illumination is required for impact flashes detection, these orbits can only observe 50% of the time
the lunar nightside, per synodic month. Moon-centred orbits can observe both the lunar nearside and
farside. However, as can be seen in Figure 5.13, for a resonant DRO, the sequence of lunar phases
observed by the spacecraft can be very similar to those of 𝐿ኼ orbits. As such, one can estimate that
these orbits also allow a lunar nightside observation time of ≈50%, per synodic month. An analogous
reasoning can be made for resonant LoPOs.

For Keplerian or Perturbed Keplerian orbits, two cases can also be distinguished: circular and ellip-
tical orbits. Since these orbits have smaller FOV-areas, it will be assumed that the FOV-area is either
100% or 0% illuminated, if the spacecraft is between the Sun and Moon or between the Moon and
outer-space, respectively.

For low-altitude circular orbits with a small period, the orientation of the orbital plane with respect
to the Sun does not vary much in one orbital revolution. Thus, the incoming sunlight direction can
be considered constant during one orbital revolution. This means that 50% of the orbital period the
FOV-area is 100% illuminated and the other 50% is 0% illuminated (see, for example, Figure 5.5). As
such, since 𝑃 << 𝑆ፌ, it can be extrapolated that it is possible to observe the lunar nightside ≈50% of
the time, per synodic month. This would be the best case scenario for either LLOs or circular FOs.

For elliptical orbits, a fixed incoming sunlight direction during one orbit revolution can also be
assumed, if 𝑃 is small enough. However, in an elliptical orbit, the satellite is at the apoapsis for longer
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periods than at the periapsis. Thus, the variation of the incoming sunlight direction throughout the
year must be taken into account and, so, the elliptic case is more complex.

Figure 5.14 depicts the incoming sunlight direction of a Frozen Orbit, with ℎፚ = 10000 km, 𝑖 =
0º and 𝑒 = 0.74, throughout the year. From this figure, one can conclude that the lunar nightside
observation time, per synodic month, varies throughout the year: it is maximum when the apoapsis is
directly above the lunar nightside and minimum when it is directly above the lunar dayside. Recurring
to Equations 5.9 and 5.10, it can be concluded that the spacecraft is about the periapsis (|𝜃| < 90º)
approximately 8% of the orbital period and is about the apoapsis (|𝜃| > 90º) approximately 92% of
the orbital period. As such, the nightside observation time per synodic month can range between these
two values, throughout the sidereal year.

This variation of nightside observation time per synodic month could lead to the detection of less
meteoroids, since part of the yearly meteoroid showers would most likely not be detectable. Fur-
thermore, for a large part of the year, the mission would hardly complement lunar impact flashes’
ground-based observations, as defined in Mission Objective MO.02 (see Chapter 3, Section 3.1). Ide-
ally, the incoming sunlight direction would be constant throughout the year (and the apoapsis always
above the nightside of the Moon), but there are no elliptical SSOs (see Table 5.1). As such, elliptical
orbits, including frozen elliptical orbits, will not be considered as candidate orbits.

Figure 5.14: Highly eccentric lunar Frozen Orbit and the variation of the lunar nightside observation time, throughout the sidereal
year. Drawing not to scale.

Lifetime (EC�A�06) The orbital lifetime is given by the time it takes the satellite to crash onto the
lunar surface and is typically defined for Keplerian or Perturbed Keplerian orbits. Since a mission lifetime
larger than 1 year is required, this characteristic can be useful in assessing if that requirement is met.
Nonetheless, if the natural lifetime of an orbit is smaller than 1 year, it is its maintenance Δ𝑉 that
determines the compliance with EC.A.06 (see next paragraph).

Figure 5.15 shows the orbital lifetime for LLOs, taking into account the lunar NSG (left plot), and
ELOs, taking into account Earth’s TB perturbations (right plot). From Ramanan and Adimurthy’s study
(left plot) it can be concluded that LLOs typically have an orbital lifetime smaller than 200 days, the
exception being inclinations for which the orbit is frozen. For an inclination closer to Sun-Synchronous,
𝑖 = 100º, the orbital lifetime would be ≈ 300 days. From de Almeida Prado’s study (right plot) it can be
concluded that the lifetime of ELOs can vary from 140 days, for 𝑒 = 0.45, to 1000 days, for 𝑒 = 0.01.
Furthermore, a lifetime larger than 1 year is only possible for a low-eccentricity orbit of 𝑒 < 0.15. On
the other hand, Frozen Orbits have been estimated to last more than 3 years (Elipe and Lara, 2003).
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Figure 5.15: Lifetime of lunar Keplerian orbits. Left: Low Lunar Orbit with ፡ ዆ ኻኺኺ km, taking into account two different models
of the Moon’s NSG; from Ramanan and Adimurthy (2005). Right: Elliptical Lunar Orbit with ፚ ዆ ዁ኺኺኺ km, taking into account
Earth’s TB perturbations; from de Almeida Prado (2003).

Total Δ𝑉 budget (EC�A�06, EC�A�07 and EC�S�02) The amount of propellant spend in reaching
the operational orbit and maintaining it are two quantities that should be assessed together, given that
there is only a limit for their sum: the total Δ𝑉 budget. This should be less than 200 m/s to comply
with EC.A.06 or EC.A.07 and should be the smallest possible to comply with EC.S.02. As such, the
evaluation presented in the last two columns of Tables 5.3 and 5.4 refer to the total Δ𝑉 budget. The
individual contributions of maintenance and transfer Δ𝑉 will be detailed in the following paragraphs.

Maintenance Δ𝑉 (EC�A�06) Assuming that the operational orbit is reachable with enough margin
relative to the 200 m/s Δ𝑉–limit, it is the amount of propellant spent in maintaining the orbit that dictates
if the mission can last 1 year. As such, it is mainly the maintenance Δ𝑉 that dictates compliance with
EC.A.06. The exception to this rule are Frozen Orbits, which have orbital lifetimes larger than one year
and, theoretically, do not need to be maintained recurring to propellant (Whitley and Martinez, 2016).
There are some ELOs with low eccentricities which also have orbital lifetimes larger than 1 year, but
their coverage characteristics quickly degenerate with time, and, so, maintenance is required. The
same applies to SSOs.

For highly elliptical ELOs, the stationkeeping Δ𝑉 can be larger than 300 m/s, while for SSOs and LLO
(ℎ = 100 km) can be larger than 50 m/s per year (Whitley and Martinez, 2016). For low-eccentricity
orbits no values of stationkeeping Δ𝑉 have been found in literature. Nonetheless, an estimation can
be made recurring to the right-side plot on Figure 5.15, as follows: knowing that 1) a highly elliptical
orbit has a lifetime larger than 140 days and requires 300 m/s per year; it can be estimated that 2) a
low eccentricity orbit (𝑒 ≈ 0.1), which has a lifetime of ≈350 days, should require Δ𝑉 > ኻኾኺ

ኽ኿ኺ ⋅ 300 = 120
m/s per year.

The maintenance Δ𝑉 budget for most of the CRTBP orbits has been estimated from Figure 5.16,
with the exception of VOs and LoPOs. This plot indicates, in the X-axis, a representative order of
magnitude of the stationkeeping Δ𝑉 for an LO, HO and DRO. These were computed with a long-term
strategy of 12 orbital revolutions as nominal guidance, including random errors in position, velocity and
impulsive correction manoeuvres, for an average of 500 trials. For VOs, a not optimised value of 88
m/s stationkeeping Δ𝑉 per year has been found in literature (Grebow et al., 2008), while for LoPOs no
information regarding their maintenence has been found.
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Figure 5.16: Stationkeeping costs of CRTBP orbits (X-
axis). The Y-axis refers to the transfer ጂፕ from an Earth
parking orbit, which does not apply to LUMIO. Legend:
Lyi – Lyapunov for ፋᑚ; Hi – Halo for ፋᑚ; Ai – Axial for ፋᑚ;
SPi – Short Period for ፋᑚ; DRO – Distant Retrograde Orbit.
From Folta et al. (2015).

Figure 5.17: Geometry of an inclination change maneuver
between two circular orbits with the same radius. From
Wakker (2015, p.318).

Accessibility from injection orbit (EC�A�07 ) The accessibility from the injection orbit is measured
in terms of the Δ𝑉 spent in the transfer to the operational orbit. The Δ𝑉 is evaluated as: Low, if < 200
m/s; Medium, if in between 200 and 600 m/s; or High, if > 600 m/s. For Keplerian orbits, the optimal
transfer Δ𝑉 can easily be estimated resorting the orbital dynamics knowledge of the TBP. For CRTBP
orbits, the optimal transfer Δ𝑉 needs to be computed numerically, using optimisation methods. As
such, in this preliminary trade-off, only optimal transfers between Keplerian orbits will be computed. For
CRTBP orbits, the values found in literature, most representative of LUMIO’s transfer, will be assumed.

The injection orbit can either be: (A) a circular orbit with ℎ = 500 km and 𝑖 ∈ [50, 90]º; or (B) an
elliptical orbit with ℎ፩ = 200 km, ℎፚ < 15000 km and 𝑖 ∈ [50, 90]º. So, in order to reach a Keplerian
operational orbit, it might be required to perform an inclination change manoeuvre and/or a coplanar
transfer between orbits with different altitudes and/or eccentricities.

The geometry of an inclination change between two circular orbits with the same altitude is depicted
in Figure 5.17. The change of velocity is given by (Wakker, 2015, p.317):

Δ𝑉። = 2𝑣ኻ sin (
𝑖ኼ − 𝑖ኻ
2 ) (5.17)

where 𝑣ኻ = √𝜇ፌ/𝑟ኻ denotes the velocity of the circular orbit with radius 𝑟ኻ = ℎኻ + 𝑅ፌ and 𝑖ኻ and
𝑖ኼ denote the inclination of the orbit before and after the manoeuvre, respectively. The geometry of
an optimal transfer between two circular orbits of different altitudes (Hohmann transfer) is presented
on the left-side of Figure 5.18. The total velocity change required to transfer from orbit I to III, or
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vice-versa, is given by (Wertz, 2009, p.93):

Δ𝑉፜ = |Δ𝑉ኻ + Δ𝑉ኼ| (5.18)

Δ𝑉ኻ ≡ √𝜇ፌ (√
2
𝑟፩
− 1
𝑎ፓ
−√ 1𝑟ኻ

) (5.19)

Δ𝑉ኼ ≡ √𝜇ፌ (√
1
𝑟ኼ
−√ 2𝑟ፚ

− 1
𝑎ፓ
) (5.20)

where 𝑟ፚ = 𝑟ኼ, 𝑟፩ = 𝑟ኻ and 𝑎ፓ = (𝑟ኻ+𝑟ኼ)/2 are the radius of apoapsis, periapsis and semi-major axis of
the transfer orbit (II), respectively; 𝑟ኻ = ℎኻ + 𝑅ፌ and 𝑟ኼ = ℎኼ + 𝑅ፌ are the orbital radius of the initial
and final circular orbits, respectively. Equation 5.19 can also be used to compute the transfer Δ𝑉 from
a circular orbit with radius 𝑟ኻ to elliptical orbit with semi-major axis 𝑎 = (𝑟ኻ + 𝑟ፚ)/2, as depicted on the
right-side of Figure 5.18 (from orbit I to II). The transfer between two elliptical orbits, with the same
periapsis radius (𝑟ኻ) is depicted in the same figure. For a transfer from II to III, or vice-versa, the Δ𝑉
is given by:

Δ𝑉 = |√𝜇ፌ (√
2
𝑟ኻ
− 1
𝑎ኼ
−√ 2𝑟ኻ

− 1
𝑎ኻ
)| (5.21)

where 𝑎ኻ = (𝑟ኻ+𝑟ፚ)/2 and 𝑎ኼ = (𝑟ኻ+𝑟ኼ)/2 are the semi-major axis of initial and final orbit, respectively.

Figure 5.18: Geometry of optimal coplanar transfers: between two circular orbits (left) and between a circular and elliptical orbit
or between two elliptical orbits, with the same periapsis radius (right). Adapted from Wakker (2015, p.295-296).

In order to assess the range of Δ𝑉 required for each orbital family, the following cases were studied:

• (𝐴)።዆ዃኺ →SSO: plane change from a circular injection orbit, with ℎኻ = 500 km and 𝑖ኻ = 90º, to
an SSO, with ℎኼ = 100 km and 𝑖ኼ > 125º. The limit inclination represents the best case scenario,
in terms of Δ𝑉, to reach an SSO from the injection orbit. The inclination change would have to
be carried out while still in the injection orbit (A), since this orbit is larger than the largest SSO,
and, so, 𝑣ኻ in Equation 5.17 is minimal. As such, taking just into account the inclination change
manoeuvre, the Δ𝑉 required to obtain an SSO would be > 890 m/s. Therefore, this orbit does
meet evaluation criteria EC.A.07.

• (𝐴)።዆኿ኺ →LLO, ELO or FO: plane change from a circular injection orbit, with ℎኻ = 500 km and
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𝑖ኻ = 50º, to a circular LLO, ELO or FO, with 𝑖ኼ = 0º and ℎኼ < 500 km. From Equation 5.17,
Δ𝑉። = 1.2 km/s, if the orbital manoeuvre is performed when in the injection orbit. Hence, the cost
to reach these orbits can also be high, which indicates that not all orbital inclinations are feasible.

• (𝐴) →LLO: altitude change from a circular injection orbit, with ℎኻ = 500 km to a LLO, with
ℎኼ < 100 km. The limiting altitude represents the best case scenario, in terms of Δ𝑉, to reach an
LLO from the injection orbit. From Equation 5.18, the transfer requires Δ𝑉፜ > 150 m/s. Taking
also into account the maintenance cost of at least 50 m/s, leads LLOs to not meet evaluation
criteria EC.A.07.

• (𝐴) →ELO፞ጻኺ.ኻ: altitude change from a circular injection orbit, with ℎኻ = 500 km to a low-
eccentricity ELO, with ℎ፩ = 500 km and 𝑒 > 0.1 (i.e. ℎፚ > 3581 km). The limiting eccentricity
represents the best case scenario to obtain an eccentric orbit, when departing from orbit (A).
From Equation 5.19, the transfer requires Δ𝑉 > 72 m/s. Taking also into account a maintenance
cost larger than 120m/s, this leads low-eccentricity ELOs to not meet evaluation criteria EC.A.07.

• (𝐵) →ELO፞ጺኺ.዁: altitude change from a highly eccentric injection orbit, with ℎ፩ = 200 km and
ℎፚ = 15000 km, to a highly eccentric ELO, with ℎ፩ = 200 km and ℎፚ < 10000 km. From Equation
5.21, the transfer requires Δ𝑉 > 4 m/s. However, taking into account a maintenance cost larger
than 300m/s, leads highly eccentric ELOs to not meet evaluation criteria EC.A.07.

• (𝐴) →FO: altitude change from a circular injection orbit, with ℎኻ = 500 km to a circular FO, with
ℎኼ = 1000 km. From Equation 5.18, the transfer requires Δ𝑉፜ = 142 m/s. As such, including a
40% margin for a small inclination change (≈ 2º, if at 1000 km altitude), the feasibility of circular
FOs (ℎ < 9000 km, Table 5.1) is restricted to altitudes approximately smaller than 1000 km.

Finally, it should be noted that Elliptical Frozen Orbits could be reached with low Δ𝑉 budgets (cases
(𝐴) →ELO፞ጻኺ.ኻ and (𝐵) →ELO፞ጺኺ.዁). However, as previously mentioned, these will not be considered
as candidate orbits due to the variations of the lunar nightside observation time, per synodic month,
typical for elliptical orbits.

Regarding CRTBP orbits, Halo 𝐿ኼ orbits have been found to be the most accessible. Campagnola
et al. (2016) has estimated Δ𝑉 ≈ 60 m/s, departing from an Earth-escape trajectory and performing
two lunar fly-bys. A study conducted by Pontani and Teofilatto (2013) found an optimal transfer to
a Lyapunov 𝐿ኼ orbit with Δ𝑉 = 561 m/s, using an Earth manifold to reach the cislunar space. An
additional 20 m/s would be required to reach a LoPO from a Lyapunov 𝐿ኼ orbit. Ozimek and Howell
(2010) optimised a transfer from a high-altitude Earth parking orbit to a Vertical 𝐿ኼ orbit, using low-
thrust, resulting in Δ𝑉 ≈ 600 m/s. Finally, a transfer to a DRO can cost between 600 to 1000 m/s,
departing from Earth (Ming and Shijie, 2009; Haapala et al., 2014). However, these cases are not
identical to the case of LUMIO, which departs from a lunar orbit. Therefore, none of these orbit types
can be said compliant or non-compliant with EC.A.07 and further analysis is required.

In conclusion, the candidate orbit types that move on to the detailed evaluation are:

• Circular Frozen Orbits, with ℎ ∈ [100, 1000] km and 𝑖 ∈ [50, 90]º. This range of inclinations is
chosen in order to avoid expensive plane change manoeuvres.

• CRTBP 𝐋𝟐 Orbits: Lyapunov, Halo, Near-Rectilinear and Vertical Orbits.

• CRTBP Moon-centred orbits: Distant and Low-Prograde Orbits.
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Table 5.3: Trade-off between Keplerian and Perturbed Keplerian orbit types. The information within parentheses denotes the conditions correspondent to the evaluation made and the coloured
assessment made in the last two columns refers to the total ጂፕ budget.

Total Δ𝑉 budget (EC.S.02)

Orbit
Type

Farside
monitoring at

night

Nightside observation
time per synodic

month (%)
Lifetime (days)

Maintenance Δ𝑉
(m/s per year)

Accessibility from
injection orbit

EC.A.05 EC.S.01 EC.A.06 EC.A.06 EC.A.07
green green red red red

LLO
Possible < 50 [16, 160]a > 50b Low — High

(best case scenario)
(። ጺ ዃኺº, ፡ ዆ ኻኺኺ km orbit,

NSG: ፧ ዆ ኻኺኺ)
(። ∈ [ኺ, ኽዀኺ]º, ፡ ዆ ኻኺኺ km)

(ጻ ኻ኿ኺ m/s, from circular ፡ ዆ ኿ኺኺ
km to ፡ ዆ ኻኺኺ km)

green red yellow red red

ELO
Possible [8, 92] [140; 1000]c > [120, 300]b Low — High

(function of line of nodes angle
with Sun direction; ፡ᑒ ዆ ኻኺኺኺኺ

km, ። ዆ ኺº and ፞ ዆ ኺ.዁ኾ)

(function of decreasing ፞, from
0.45 to 0; ፚ ዆ ዁ኺኺኺ km)

(። ዆ ኺº, ፞ ዆ [ኺ.ኻ, ኺ.዁ኽ],
ፚ ≈ ዁ኺኺኺ km)

(ጻ ዁ኼ m/s, from circular to
elliptical; or ጻ ኾ m/s, between

elliptic)

green green green yellow yellow

FO
Possible If circular: < 50 > 1000d 0b Low — High

(best case scenario:
low-altitude)

(፞ ዆ ኺ, ። ዆ ዁ዂº, ፡ ዆ ኻኺኺ km)
(። ዆ ኾኺº, ፞ ዆ ኺ.ዀ, ዂዂኺ × ዂዂኺኺ

km)
(ጻ ኻኾኼ m/s, from circular ፡ ዆ ኿ኺኺ

km to ፡ ዆ ኻኺኺኺ km)

green green yellow red red

SSO
Possible < 50 ≈ 300a >50b High

(። ዆ ኻኺኺº, ፡ ዆ ኻኺኺ km) (። ∈ [ኺ, ኽዀኺ]º, ፡ ዆ ኻኺኺ km)
(ጻ ዂዃኺ m/s, from ። ዆ ዃኺº to

። ዆ ኻኼ኿º, at circular ፡ ዆ ኻኺኺ km)

a Ramanan and Adimurthy (2005) b Whitley and Martinez (2016) c de Almeida Prado (2003) d Elipe and Lara (2003)

Legend: green Meets evaluation criteria yellow Can meet evaluation criteria during detailed analysis red Does not meet evaluation criteria

Accessibility Δ𝑉: Low → < 200 m/s Medium → [200, 600] m/s High → > 600 m/s
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Table 5.4: Trade-off between CRTBP orbit types. The information within parentheses denotes the conditions correspondent to the evaluation made and the coloured assessment made
in the last two columns refers to the total ጂፕ budget.

Total Δ𝑉 budget (EC.S.02)

Orbit Type
Farside monitoring at

night

Nightside observation
time per synodic

month (%)

Maintenance Δ𝑉
(m/s per year)

Accessibility from injection
orbit

EC.A.05 EC.S.01 EC.A.06 EC.A.07
green green yellow yellow

LO
Possible if 𝐿ኼ orbit < 50 [15; 18]a Mediumb

(small orbit) (ፋᎴ orbit) (኿ዀኻ m/s coming from Earth manifold)

green green yellow yellow

HO
(including

NROs)

Possible if 𝐿ኼ orbit < 50 [0; 55]a Lowc

(Halo or NROs not too close to
the Moon)

(ፋᎴ orbit, smaller for orbits closer to the
Moon)

(≈ ዀኺ m/s, departing from
Earth-escape trajectory)

green green yellow yellow

VO
Possible if 𝐿ኼ orbit < 50 ∼ 88d Low – Mediume

(small orbit) (ፋᎴ orbit, not optimised)
(≈ ዀኺኺ m/s from high-altitude Earth

parking orbit, with low-thrust engine)

green green yellow yellow

DRO
Possible < 50 [3, 5]a Medium – Highf,g

(resonant state) (large orbit)
([ዀኺኺ, ኻኺኺኺ] m/s from Earth, not

optimised)

green green yellow yellow

LoPO
Possible < 50 Unknown Mediumb

(resonant state) (≈ ኼኺ m/s from Lyapunov Orbit)

a Folta et al. (2015) b Pontani and Teofilatto (2013) c Campagnola et al. (2016) d Grebow et al. (2008) e Ozimek and Howell (2010) f Haapala et al. (2014)
g Ming and Shijie (2009)

Legend: green Meets evaluation criteria yellow Can meet evaluation criteria during detailed analysis red Does not meet evaluation criteria

Accessibility Δ𝑉: Low → < 200 m/s Medium → [200, 600] m/s High → > 600 m/s
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6
Orbit, Payload and Environment

This chapter is dedicated to introducing the models that will be used for the lunar meteoroid impact
flashes’ coverage analysis (Chapter 7), as well as how they have been implemented. First, it is necessary
to generate the candidate orbits, which have been determined from the Preliminary Orbital Trade-off
(see Chapter 5, Section 5.3). For that purpose, the astrodynamics models presented in Chapter 5 will
be used. Their implementation, validation and results obtained are discussed in Section 6.2. Second, it
is necessary to model the payload, the LUMIO-Cam, as will be presented in Section 6.3. This includes
modelling both optics and detector, in order to determine the instrument’s FOV and the ranges of signals
it can detect. Finally, it is necessary to relate the detectable signal range with the kinetic energy range
of the impactors and the instrument’s FOV-area with the total number of meteoroid impacts that can be
observed. This requires modelling both the impact phenomenon and the meteoroid flux environment,
as will be detailed in Section 6.4. The reference frames that will be used are introduced in Section 6.1.

6.1. Reference Frames
The position and velocity of a spacecraft are always determined with respect to a certain reference
frame. The classification of reference frames adopted is the same as the one defined in SPICE, a
toolkit developed by NAIF1 with a MATLAB®interface. This toolkit is used widely for Solar System
geometry computations and includes the functionality to compute transformations between all of the
reference frames presented in this section. The two main classes of reference frames defined in SPICE
are: inertial and non-inertial.

Inertial Reference Frames
An inertial reference frame is fixed with respect to the stars, as it does not rotate, and its origin has
none (or negligible) acceleration. Inertial reference frames are typically used to describe the motion
of spacecraft about a body. For example, in the TBP, an Earth-centred non-rotating reference frame
can be considered inertial when used to describe the motion of a spacecraft about the Earth, while
a Sun-centred non-rotating frame can be considered inertial when used to describe the motion of a
spacecraft (or planet) about the Sun.

1https://naif.jpl.nasa.gov/naif/ [Last accessed on: 12/08/2017]
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The Earth mean equator and equinox of J2000 reference frame (also known as the J2000 reference
frame) is a commonly used non-rotating inertial reference frame. The reference frame is defined when
centred at Earth, but its origin can be placed where most appropriate (in LUMIO’s case, it shall be the
Moon). As depicted in Figure 6.1, the XY-plane is coincident with Earth’s equatorial plane, the Z-axis is
approximately the Earth’s spin axis and the X-axis points to the First Point of Aries (or vernal equinox),
at epoch J2000 TDB2. The Y-axis completes the right-handed reference frame. The First Point of Aries
is not fixed with respect to the stars, due to the motion of the equator and ecliptic, caused by the
gravitational attraction of other bodies of the Solar System. Therefore, an epoch, the J2000 TDB, is
necessary to define the inertial reference frame. This reference frame is already implemented in the
toolkit SPICE. It will be used to integrate the TBP equations of motion and store all the orbits generated
in a Spacecraft and Planets Kernel (SPK), SPICE’s file type used to store ephemerides.

The Body Mean Equator of Date frame (BME፭Ꮂ) is another inertial reference frame, with respect
to which Keplerian orbital elements will be defined. The XY-plane is defined by the body’s (Moon)
equator of date and the +Z axis is approximately the body’s rotation axis of date. The X-axis is defined
by the intersection of the body’s equator of date with the Earth Mean Equator of J2000 and the Y-
axis completes the right-handed frame. The reference frame is used centred at the Moon and the
epoch chosen to fix it, 𝑡ኺ, is the starting date of the operational mission. This reference frame is not
implemented in SPICE, but can be defined using a Frames Kernel (FK). The FK used is the same that
was used for the lunar SMART-1 mission, and is publicly available in SPICE’s database1.

Finally, the Body-Mean Orbital Plane of Date frame (BMOP፭Ꮂ) will be used to define CRTBP orbits,
with respect to inertial space. The XY-plane is defined by the body’s orbital plane of date and the
X-axis points from the central body to the orbiting body. The component orthogonal to the X-axis of
the inertially referenced velocity of the body, with respect the central body, defines the Y-axis direction.
The Z-axis is in the direction of the body’s angular momentum vector (𝐇) and completes the right-
handed frame. If the Moon is the orbiting body and the Earth is the central body, this reference frame
is identical to the Earth-Moon CRTBP reference frame (Chapter 5, Figure 5.1), fixed at an epoch 𝑡ኺ.
Once again, the reference frame is used centred at the Moon and the epoch chosen is the starting date
of the operational mission. The FK used is adapted from a Geocentric Solar Ecliptic reference frame,
publicly available in SPICE’s website1.

As depicted in Figure 6.1, the orbital plane of the Moon is approximately 5º inclined with respect to
the ecliptic, which in turn is 23º inclined with respect to Earth’s equator. This means that the inclination
of the XY-plane of BMOP፭Ꮂ with respect to the J2000’s XY-plane varies between 18º and 28º, as the
Moon’s line of nodes precesses. The XY-plane of BME፭Ꮂ (lunar equator) is inclined with respect to the
XY-plane of BMOP፭Ꮂ (lunar orbital plane) by a constant value of approximately 7º. (Wakker, 2015,
p.412)

Non-Inertial Reference Frames
A non-inertial reference frame has an accelerated origin and/or a rotational motion with respect to the
stars. Two types of non-inertial reference frames will be briefly described: the body-fixed reference
frame and the spacecraft reference frame.

Body-Fixed Reference Frame Usually centred at a natural body, the body-fixed reference frame
rotates with the same angular velocity as the body to which it is attached. It is used to describe the
position of a spacecraft relative to the body’s surface. Two body-fixed frames defined by the Lunar

2January 1st, 2000 at 12:00:00 Barycentric Dynamical Time
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Figure 6.1: Mean equinox of J2000 reference frame. Adapted from Wakker (2015, p.411).

Geodesy and Cartography Working Group and Lunar Reconnaissance Orbiter Project (2008) will be
used.

The first, is the Moon-centred Mean Earth/Polar Axis Lunar reference frame (ME). The Z-axis is
defined as the mean lunar axis of rotation and the reference great circle passing through the poles
(i.e. the Prime Meridian) is defined by the Earth’s mean direction, which is fixed, due to the Moon
being tidally locked to the Earth. The point at which the lunar equator and the Prime Meridian intersect
is called the mean sub-Earth point. The X-axis points to the mean sub-Earth point and the Y-axis
completes the right-handed frame.

However, the actual lunar sub-Earth point varies on the lunar surface, due to the geometric lunar
libration phenomena (see Wakker, 2015, p.413). Nonetheless, this reference frame is implemented in
SPICE with a high precision lunar orientation model, and will be used to project the spacecraft’s FOV
onto the lunar surface.

The spherical coordinate system in the Mean Earth/Polar Axis Lunar reference frame is depicted in
Figure 6.2 and is given by:

• the planetocentric longitude (Λ) - angle measured along the lunar equator, between the mean
sub-Earth point and the spacecraft, from 0º to 360º, in the eastward direction;

• the planetocentric latitude (Φ) - angle measured between the lunar equatorial plane and the
spacecraft, from -90º to 90º, positive north of the equator and negative south;

• the distance between the lunar centre of mass and the spacecraft.

The second body-fixed frame is the Moon-centred Principal Axis reference frame (PA) , whose
axis are defined by the principal axes of the Moon. This reference frame would coincide with the
ME reference frame if the Moon were a truly synchronously rotating triaxial ellipsoid. The PA is also
implemented in SPICE and will be used to compute the Moon’s NSG perturbation.
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Spacecraft Reference Frame The spacecraft reference frame is a spacecraft-fixed frame which is
centred at its structure. LUMIO’s spacecraft bus reference frame has been defined as depicted in Figure
6.3. The X-axis points in the direction of the main engine. The Y-axis points normal to a side panel and
its direction will coincide with the direction of motion. The Z-axis points to the top panel, completing
the right-handed reference frame. It is also possible to define a LUMIO-Cam fixed reference frame,
with respect to the spacecraft bus frame. The instrument is mounted along the negative direction
of the spacecraft X-axis and its frame is rotated -90 degrees about spacecraft Y-axis, as depicted in
Figure 6.3. Both of these frames will be used to the define the spacecraft’s attitude and have been
implemented in SPICE using an FK. The latter will also be used to define the instrument’s FOV.

Figure 6.2: Mean Earth/Polar Axis Lunar (ME) coordi-
nate system. From the Lunar Geodesy and Cartography
Working Group and Lunar Reconnaissance Orbiter Project
(2008).

Figure 6.3: LUMIO’s Spacecraft Bus and LU-
MIO-Cam reference frame.

6.2. Orbit Generation
6.2.1. Perturbed Two-Body Problem Orbits
In order to generate the candidate Frozen Orbits (FOs), the equations of motion for a perturbed TBP
orbit (Equation 5.12) are integrated as a first order system:

𝐱̇ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑣፱
𝑣፲
𝑣፳

− 𝑥𝑟ኽ − 𝜇ፄ (
𝑥ፄ
𝑟ኽፄ
− 𝑥ፄ − 𝑥
||𝑟ፄ − 𝑟||ኽ

) − 𝐶∇፱𝑈NSG

− 𝑦𝑟ኽ − 𝜇ፄ (
𝑦ፄ
𝑟ኽፄ
− 𝑦ፄ − 𝑦
||𝑟ፄ − 𝑟||ኽ

) − 𝐶∇፲𝑈NSG

− 𝑧𝑟ኽ − 𝜇ፄ (
𝑧ፄ
𝑟ኽፄ
− 𝑧ፄ − 𝑧
||𝑟ፄ − 𝑟||ኽ

) − 𝐶∇፳𝑈NSG

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.1)

where 𝐱 = [𝑥, 𝑦, 𝑧, 𝑣፱ , 𝑣፲ , 𝑣፳]T is the state vector, 𝑟 = √𝑥ኼ + 𝑦ኼ + 𝑧ኼ and 𝑟ፄ = √𝑥ኼፄ + 𝑦ኼፄ + 𝑧ኼፄ.
In order to compute Earth’s Third-Body perturbation, the position of the Earth with respect to the
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Moon, for a certain epoch 𝑡, is computed using function cspice_spkpos of SPICE. Furthermore, the
planetary ephemerides used are the de430 (SPK–file). These are not the latest ephemerides available
in SPICE’s database, but are the ephemerides with which the lunar ME and PA references frames have
been implemented in the toolkit.

The spacecraft’s acceleration due to the Moon’s Non-Spherical Gravity is computed using a MATLAB®

user developed function (Aguiar, 2017), based on Gottlieb (1993), and will be validated against MAT-
LAB®’s own spherical harmonics function (gravitysphericalharmonic). The former has been chosen due
to its higher computational speed. Nonetheless, computing the Moon’s spherical harmonics still is the
most computationally expensive part of the Frozen Orbit’s generation code. For that reason, the model
is restricted to a low order and degree: 7. Furthermore, most lunar FOs have been computed taking
only into account zonal terms up to degree 7 (see Chapter 5, Subsection 5.2.2). Sectorial and tesseral
harmonics (𝑚 = 𝑛 ≠ 0 and 𝑚 ≠ 𝑛 ≠ 0, respectively) have also been included, because a study by
Carvalho et al. (2010) has shown that they can influence significantly the satellite’s motion, to the point
that it could collide with the lunar surface or not. The gravity model used is the GL0660B. This model
is derived in Konopliv et al. (2013), with data from the GRAIL mission, and has been made publicly
available by NASA3.

Methodology
The initial conditions to generate a frozen orbit will be computed numerically, following a method similar
to the one applied in Ely (2005). A such, in order to determine the initial eccentricity, 𝑒ኺ,frozen, of a
Frozen Orbit with semi-major axis 𝑎ኺ and inclination 𝑖ኺ, the following methodology will be followed:

1. Define 𝑁 guesses of frozen initial conditions as orbital elements, in the BME፭Ꮂ reference frame,
one for each of 𝑁 possible eccentricities 𝑒ኺ = [𝑒ኺ,ኻ, … , 𝑒ኺ,፣ , … , 𝑒ኺ,ፍ];

2. Transform the initial conditions to Cartesian coordinates, in the J2000 reference frame;

3. Adimensionalize and propagate the initial conditions for 14.5 days, in the Moon-centred J2000
reference frame, with the dynamics given by Equation 6.1;

4. Compute the osculating orbital elements, in the BME፭Ꮂ reference frame;

5. Determine the maximum (peak-to-peak) amplitude of the osculating eccentricity, for each initial
condition:

Δ𝑒፣ = max፭ (𝑒፣(𝑡)) − min፭ (𝑒፣(𝑡))

6. Determine the frozen eccentricity 𝑒ኺ that leads to the minimum Δ𝑒:

𝑒ኺ,frozen = argmin
፞Ꮂ,ᑛ

(Δ𝑒)

The frozen initial conditions found are then propagated again in the J2000 reference frame, but now
for 𝑆ፌ = 29.5 days, in order to perform the coverage analysis that will follow. The determination of
the frozen initial conditions is only done with a shorter propagation period to speed up the algorithm.
Furthermore, it should be noted that this methodology does not grantee the boundedness of 𝑖, 𝑎, 𝜔
or Ω. As such, it will be necessary to verify if the orbits found are frozen for these orbital elements.
Finally, the orbits are stored in an SPK, using the SPICE utility mkspk.exe.
3GL0660B model, version of 6/13/2013, available at: http://pds-geosciences.wustl.edu/grail/
grail-l-lgrs-5-rdr-v1/grail_1001/shadr/jggrx_0660b_sha.tab [Last accessed on: 31/05/2017]

http://pds-geosciences.wustl.edu/grail/grail-l-lgrs-5-rdr-v1/grail_1001/shadr/jggrx_0660b_sha.tab
http://pds-geosciences.wustl.edu/grail/grail-l-lgrs-5-rdr-v1/grail_1001/shadr/jggrx_0660b_sha.tab
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Verification
In order to verify the correct implementation of the MATLAB®user developed function that computes
the Moon’s Non-Spherical Gravity, MATLAB®’s gravitysphericalharmonic has been used. An orbit with
initial orbital elements 𝑎 = 1873 km, 𝑖 = 90º, 𝑒 = 0 and Ω = 𝜔 = 0º has been propagated for 1
day, taking only into account the Moon’s NSG up to degree and order 7. The final state obtained,
using each function to compute the Moon’s NSG, is presented in Table 6.1 and the osculating orbital
elements are presented in Figure 6.4. It can be concluded that the results obtained with the user
developed function do not differ significantly from MATLAB®’s function: the error in the final position
is ∼ 10ዅ኿ meters and the error in velocity ∼ 10ዅዂ meters per second. As such, the user developed
function can be considered correctly implemented. Furthermore, the user developed function’s calls
took 0.561 s, while MATLAB®’s function’s calls took 12.32 s, which proves that the former can be 95%
less computationally expensive.

Table 6.1: Validation of the spherical harmonics function used to compute the Moon’s Non-Spherical Gravity. The initial state
corresponds to a lunar orbit with orbital elements ፚ ዆ ኻዂ዁ኽ km, ። ዆ ዃኺº, ፞ ዆ ኺ and ጖ ዆ Ꭶ ዆ ኺº. The final state corresponds
to a propagation of 1 day, taking only into account the Moon’s NSG up to degree and order 7. The first digit for which the user
developed function and MATLAB®’s gravitysphericalharmonic differ is denoted in bold.

Initial State Final State
MATLAB®’s User Developed Difference

𝑥 1838 332.7398832𝟔52 332.7398832𝟕80
𝑟 𝑦 0 3.8988690527𝟎4 3.8988690527𝟓3 1.28 ⋅ 10ዅዂ

(km) 𝑧 0 1803.71220864𝟗 1803.71220864𝟕
𝑣፱ 0 −1.6098787667𝟐2 −1.6098787667𝟏9

𝑣
(km/s)

𝑣፲
1.00006955149 ⋅

10ዅኻዀ
−6.2568452594𝟑8 ⋅

10ዅኽ
−6.2568452594𝟏3 ⋅

10ዅኽ 1.15⋅10ዅኻኻ

𝑣፳ 1.633237521524 0.2926391928𝟎41 0.2926391928𝟏55
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Figure 6.4: Validation of the spherical harmonics function used to compute the Moon’s Non-Spherical Gravity. The initial orbital
elements correspond to ፚ ዆ ኻዂ዁ኽ km, ። ዆ ዃኺº, ፞ ዆ ኺ and ጖ ዆ Ꭶ ዆ ኺº. These have been propagated for 1 day, taking only into
account the Moon’s NSG up to degree and order 7.
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In order to verify the correct implementation of the Frozen Orbit generation code, a NASA software,
the General Mission Analysis Tool (GMAT), has been used. An orbit with initial orbital elements 𝑎 = 1973
km, 𝑖 = 45º, 𝑒 = 0.05, Ω = 0º and 𝜔 = 90º has been propagated for 28 days, taking into account
the Moon’s NSG up to degree and order 7 and the Earth’s TB perturbation. For the validation only, a
different lunar NSG model and body-fixed frame have been used. The lunar gravity model used was the
LP165P (Konopliv, 2001), which is already implemented in GMAT. Furthermore, the body-fixed frame
used was the IAU_MOON, which is less precise than the PA reference frame. However, GMAT does not
allow the implementation of body-fixed frames as precise as the PA reference frame.

The final state obtained with GMAT and the developed code is presented in Table 6.2. The osculating
orbital elements for the last day of propagation are presented in Figure 6.5. In Table 6.2, one should
notice that the initial conditions provided to GMAT and the MATLAB®code are not identical. This is due
to the transformations between reference frames internal to GMAT. Nonetheless, the results obtained
with the developed code do not differ significantly from those of NASA’s validated software: the error
in the final position is ∼ 1 meter and the error in velocity ∼ 10ዅኽ meters per second. As such, the
developed software can be considered correctly implemented.

Table 6.2: Validation of the Frozen Orbit generation software. The initial state corresponds to a lunar orbit with orbital elements
ፚ ዆ ኻዃ዁ኽ km, ። ዆ ኾ኿º, ፞ ዆ ኺ.ኺ኿, ጖ ዆ ኺº and Ꭶ ዆ ዃኺº. The final state corresponds to a propagation of 28 days, taking into
account the Moon’s NSG up to degree and order 7 and the Earth’s TB perturbation. The first digit for which the GMAT and the
MATLAB®developed code differ is denoted in bold.

Initial State
GMAT MATLAB Difference

𝑥 6.01663836𝟐7 ⋅ 10ዅኼ 6.01663836𝟑0 ⋅ 10ዅኼ
𝑟 (km) 𝑦 675.9372238189𝟏0 675.9372238189𝟎3 7.85 ⋅ 10ዅኻኼ

𝑧 1712.52972991303 1712.52972991303
𝑣፱ −1.672161016096 −1.672161016096

𝑣 (km/s) 𝑣፲ 1.488420487012𝟒8 ⋅ 10ዅኾ 1.488420487012𝟏8 ⋅ 10ዅኾ 3.34 ⋅ 10ዅኻ዁
𝑣፳ 𝟏.11022302462516⋅10ዅኻዀ 𝟗.52400673290954⋅10ዅኻ዁

Final State
GMAT MATLAB Difference

𝑥 478.99𝟕664837545 478.99𝟖975276827
𝑟 (km) 𝑦 600.179𝟕44592635 600.179𝟐86521803 1.39 ⋅ 10ዅኽ

𝑧 1686.79629586614 1686.79613797141
𝑣፱ −1.558217𝟕3562385 −1.558217𝟒2517637

𝑣 (km/s) 𝑣፲ 0.545172𝟐19475365 0.545172𝟔07369548 1.20 ⋅ 10ዅዀ
𝑣፳ 0.18886𝟑455197148 0.18886𝟒547571678
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Figure 6.5: Validation of the frozen orbits’ generation software with GMAT. The initial orbital elements correspond to ፚ ዆ ኻዃ዁ኽ
km, ። ዆ ኾ኿º, ፞ ዆ ኺ.ኺ኿, ጖ ዆ ኺº and Ꭶ ዆ ዃኺº. These have been propagated for 28 days, taking into account the Moon’s NSG up
to degree and order 7 and the Earth’s TB perturbation.

Results and Validation
The Frozen Orbits chosen as candidates were:

• 𝜔 = 90º or 𝜔 = 270º;

• 𝑎 between 1838 and 2738 km (100<ℎኺ<1000 km), with a step size of 100 km;

• 𝑖 between 50º and 90º, with a step size of 10º;

• Ω = 0º.

For each of these orbits, the initial guess for a frozen eccentricity ranged from 1 ⋅ 10ዅዀ to 0.06 (Abad
et al., 2009), with 𝑁 = 10 (step size ≈ 0.0067). Higher eccentricities are not tested because the
preliminary trade-off of Chapter 5 showed that circular orbits are preferred. Furthermore, a minimum
desired periapsis altitude has been set as ℎ፩ = 30 km. The starting epoch for the operational mission
has been chosen as 𝑡ኺ = 01 Jan 2020 12:00:00.000 (TDB).

Figure 6.6 shows the maximum amplitude of the osculating eccentricity and inclination, for some
of the candidate orbits. These are representative of the results obtained at the end of Step 5 of the
methodology presented. From these results it can be concluded that:

• Frozen orbits are more stable for higher altitudes, as Δ𝑒 and Δ𝑖 are lower;

• Slightly eccentric orbits are more stable than almost circular orbits, as Δ𝑒 is lower, especially for
𝑖 = 80º (bottom-left plot). However, for lower altitudes, Frozen Orbits need to be almost circular
(𝑒 < 0.027), otherwise ℎ፩ < 30 km;

• Orbits with 𝑖ኺ = 50º have Δ𝑒 < 0.01, while orbits with 𝑖ኺ = 80º have Δ𝑒 < 0.025. So, the latter
are less stable. This is due to the fact that 𝑖ኺ = 80º is approximately a critical inclination of both
low and high altitude frozen orbits (see Table 5.1);

• The inclination of the orbits can be considered frozen, as Δ𝑖 ∈ [0.5, 1.4]º.



6.2. Orbit Generation 65

2000 2200 2400 2600

a
0
 [km]

0

0.002

0.004

0.006

0.008

0.01

 e
m

ax
0
 = 270º, i

0
 = 50º

2000 2200 2400 2600

a
0
 [km]

0.4

0.6

0.8

1

1.2

1.4

 i m
ax

 [º
]

0
 = 270º, i

0
 = 50º

e
0
=1e-06

e
0
=0.00667

e
0
=0.0133

e
0
=0.02

e
0
=0.0267

e
0
=0.0333

e
0
=0.04

e
0
=0.0467

e
0
=0.0533

e
0
=0.06

2000 2200 2400 2600

a
0
 [km]

0

0.005

0.01

0.015

0.02

0.025

 e
m

ax

0
 = 270º, i

0
 = 80º

2000 2200 2400 2600

a
0
 [km]

0.4

0.6

0.8

1

1.2

1.4

 i m
ax

 [º
]

0
 = 270º, i

0
 = 80º

e
0
=1e-06

e
0
=0.00667

e
0
=0.0133

e
0
=0.02

e
0
=0.0267

e
0
=0.0333

e
0
=0.04

e
0
=0.0467

e
0
=0.0533

e
0
=0.06

Figure 6.6: Maximum amplitude of the osculating eccentricity and inclination, for ኻዂኽዂ ጾ ፚ ጾ ኼ዁ኽዂ km, Ꭶ ዆ ኼ዁ኺº and ። ዆ ኿ኺº
(top) or ። ዆ ዂኺº (bottom). The orbits have been propagated for 14.5 days and orbits whose periapsis lowers to ጺ ኽኺ km altitude
are not represented.

Figure 6.7 shows the frozen eccentricity obtained with the methodology presented, for each com-
bination of 𝑎ኺ, 𝑖ኺ and 𝜔ኺ. Figure 6.8 shows the maximum amplitude of the osculating eccentricity
and inclination for these orbits, integrated for a longer period (29.5 days). From these plots, and in
agreement with the previously stated, it can be concluded that:

• Frozen Orbits are more stable for higher altitudes, as Δ𝑒 and Δ𝑖 are lower (Figure 6.8);

• For 60º< 𝑖 < 80º and 𝜔 = 90º or 50º< 𝑖 < 70º and 𝜔 = 270º, the frozen orbits are indeed
slightly more eccentric orbits. The exception are lower altitude orbits (ℎ = 100 km), which are
almost circular (𝑒 < 0.02) due to the ℎ፩ > 30 km limit. Furthermore, for 𝑖 = 90º, Frozen Orbits
are also almost circular, for all altitudes (Figure 6.7);

• Orbits with 𝑖ኺ = 50º, 𝑖ኺ = 60º or 𝑖ኺ = 90º have Δ𝑒 < 0.015, while orbits with 70º< 𝑖 < 80º
have Δ𝑒 < 0.035. So, once again, the latter are less stable, due to the proximity to the critical
inclination (Figure 6.8);

• The inclination of the orbits can also be considered frozen for almost one month, as Δ𝑖 ∈ [0.5, 1.5]º
(Figure 6.8).
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Figure 6.7: Frozen orbits’ initial conditions obtained with the methodology presented. Orbits have been propagated for 14.5
days.
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Figure 6.8: Frozen orbits’ osculating eccentricity and inclination maximum amplitude. Orbits have been propagated for ፒᑄ ≈ ኼዃ.኿
days.

As one can observe, the order of magnitude of the bounds of Δ𝑒 and Δ𝑖 do not differ significantly
from an integration period of 14.5 to 29.5 days: the Δ𝑖 range increases from [0.5, 1.4]º to [0.5, 1.5]º
and Δ𝑒 remains < 0.025. Additionally, Figure 6.9 shows some representative Frozen Orbits, where it
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can also be verified that Δ𝑎 is bounded, while ΔΩ is not. For a Frozen Orbit with 𝜔ኺ = 90º, 𝑎ኺ = 1837
km and 𝑖ኺ = 50º, for example, it has been verified that Δ𝑎 ≈ 1 km, while ΔΩ ≈ 25º. It was also verified
that the majority of the orbits have a large Δ𝜔 over the integration period of 29.5 days. Orbits with
𝑖ኺ = 50º or 𝑖ኺ = 90º have specially large Δ𝜔, but, since these Frozen Orbits are almost circular, the
definition of the argument of periapsis loses its meaning anyhow. As such, the orbits can be considered
frozen only with respect to 𝑎, 𝑒 and 𝑖. Nonetheless, this frozen state might not hold for longer periods,
especially for the mission duration of 1 year. As such, in case one of these orbits is chosen as the
operational orbit, a refinement of the frozen orbit initial conditions is required. This can be done, for
example, using a corrector method, as mentioned in Chapter 5, Subsection 5.2.2.

Figure 6.9: Frozen orbit family represented in the BMEᑥᎲ reference frame, propagated over 29.5 days.

Figure 6.10 shows the average osculating eccentricity as a function of the average osculating incli-
nation, for two semi-major axis values. These plots can be compared directly with the plots in Figure
5.4, from Abad et al. (2009), for validation purposes. For 𝑎 = 1838 km, one can observe that Frozen
Orbits have been found in the unstable region 𝑖 ∈ [63, 73]º or 𝑖 > 86.5º (see Table 5.1) and the aver-
age eccentricities obtained are smaller than those in Abad et al. (2009). This is most likely due to the
limit imposed on the periapsis altitude, which restricted the eccentricity to almost circular. The short
propagation period can also have prevented the instability of these inclinations to manifest itself. For
𝑎 = 2738 km, low eccentricities were also expected, except for 𝑖 ≈ 60º. In fact, at least for 𝜔 = 270º,
slightly higher eccentricities were found for 𝑖 ≈ 60º. Nevertheless, these are restricted due to the
maximum eccentricity imposed of 0.06. Furthermore, Abad et al. (2009) has only found frozen orbits
with 𝜔 = 90º for 𝑖 ≈ 60º, while the methodology applied has lead to frozen orbits with 𝜔 = 90º for all
inclinations tested. Once again, the short propagation period could have prevented the instability of
orbits with 𝜔 = 90º to manifest itself. Alternatively, the lunar sectorial and tesseral spherical harmonics
terms might have stabilized the orbits, but the validation of the this hypothesises would require further
analysis.
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Figure 6.10: Frozen orbit’s average osculating eccentricity as function of the average osculating inclination, over 29.5 days, for
ፚ ዆ ኻዂ዁ኽ km (left) and ፚ ዆ ኼ዁ኽዂ km (right).

6.2.2. Circular Restricted Three-Body Problem Orbits
In order to generate the candidate CRTBP orbits, the equations of motion of the CRTBP (Equation 5.2)
are integrated as a first order system (Zhang et al., 2015):

𝐱̇ = [𝐫̇𝐯̇] = [
𝐯

𝐠(𝐫) + 𝐡(𝐯)] (6.2)

where the functions 𝐠(𝐫) and 𝐡(𝐯) are defined as follows:

𝐠(𝐫) = [
𝑥 − (1 − 𝜇)(𝑥 + 𝜇)/𝑟ኽኻ − 𝜇(𝑥 + 𝜇 − 1)/𝑟ኽኼ

𝑦 − (1 − 𝜇)𝑦/𝑟ኽኻ − 𝜇𝑦/𝑟ኽኼ
−(1 − 𝜇)𝑧/𝑟ኽኻ − 𝜇𝑧/𝑟ኽኼ

] 𝐡(𝐯) = [
2𝑣፲
−2𝑣፱
0
] (6.3)

with 𝑟ኻ = [(𝑥 + 𝜇)ኼ + 𝑦ኼ + 𝑧ኼ]ኻ/ኼ and 𝑟ኼ = [(𝑥 + 𝜇 − 1)ኼ + 𝑦ኼ + 𝑧ኼ]ኻ/ኼ.

Methodology
In order to compute the initial conditions of a CRTBP orbit, a time-varying targeting scheme is used (see
e.g. Ozimek, 2006). The goal is to iteratively adjust the initial conditions at 𝑡ኺ (𝐱፤ዄኻኺ = 𝐱፤ኺ + 𝛿𝐱ኺ), such
that certain constraints on the state are met at 𝑡፟ (e.g. 𝛿𝐱፟ = 𝐚 − 𝐱፟ = 0). The general mathematical
formula for a time-varying targeting scheme is as follows (Grebow et al., 2008):

[𝛿𝐫𝛿𝐯፟
] = [ 𝚽(𝑡ኺ, 𝑡፟)

𝐫፟̇
𝐯̇፟

] [
𝛿𝐫ኺ
𝛿𝐯ኺ

𝛿(𝑡፟ − 𝑡ኺ)
] (6.4)

where 𝛿 denotes the variation with respect to the reference and 𝚽(𝑡፟ , 𝑡ኺ) is the state transition matrix,
associated with Equation 6.2, that maps a variation at 𝑡ኺ to a variation at 𝑡፟. In order to define
constraints at 𝑡፟, the symmetric behaviour of periodic orbits can be explored (Ozimek, 2006). As such,
Equation 6.4 is adapted to the type of symmetry of the orbit. Three types of symmetry which will be
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used to determine CRTBP orbits’ initial conditions will be explained with more detail in the following
paragraphs.

2D X-axis symmetry Lyapunov, Distant-Retrograde and Low-Prograde Orbits (LO, DRO and LoPO)
are all planar orbits that are symmetric about the X-axis of the CRTBP reference frame. Given an initial
guess state:

𝐱ኺ = [ 𝑥ኺ 0 0 𝑦̇ኺ ]T

the orbit can be propagated until 𝑦 = 0 and 𝑦፟̇ < 0, as depicted in Figure 6.11 by the dashed line,
thereby providing an initial guess for half the orbital period, 𝜏. However, to obtain a symmetric orbit,
the crossing at the X-axis must be perpendicular, i.e. 𝑥̇፟ = 0. As such, a correction of the initial
conditions is required.

Figure 6.11: Targeting of a perpendicular X-axis crossing to generate a planar periodic orbit in the CRTBP, symmetric about
the X-axis. The dashed line represents the propagation of initial conditions not yet converged and the solid line represents the
desired orbit. The orbits are represented in the CRTBP reference frame, not to scale.

For that purpose, the first three state variables are fixed, i.e. 𝛿𝑥ኺ = 𝛿𝑦ኺ = 𝛿𝑥̇ኺ = 0 and, so, 𝑥ኺ
determines the size of the orbit. On the other hand, 𝑦̇ኺ is allowed to vary. As such, the corrections
that must be made to the initial state and (half) period of the orbit can be computed by solving the
following equation (Ozimek, 2006):

[ 0−𝑥̇፟
] =

⎡
⎢
⎢
⎢
⎣

𝜕𝑦
𝜕𝑦̇ኺ

𝑦̇

𝜕𝑥̇
𝜕𝑦̇ኺ

𝑥̈

⎤
⎥
⎥
⎥
⎦

[𝛿𝑦̇ኺ𝛿𝜏 ] (6.5)

The first constraint corresponds to 𝑦 = 0, which is automatically satisfied, since the propagation of
the orbit is stopped when at the X-axis. The final orbit is then obtained by propagating the corrected
initial conditions for 𝑃 = 2𝜏.

3D X-axis symmetry A Vertical Orbit is 3-Dimensional and symmetric about the X-axis of the CRTBP
reference frame. Given an initial guess state:

𝐱ኺ = [ 𝑥ኺ 0 0 0 𝑦̇ኺ 𝑧̇ኺ ]T

the orbit can be propagated until 𝑦 = 0 and 𝑧፟ > 0, providing an initial guess for one-quarter of the
orbital period, 𝜏. However, to obtain a symmetric orbit, 𝑥̇፟ = 0 and 𝑧̇፟ = 0 must be enforced at 𝑡፟.

Four state variables are fixed at 𝑡ኺ: 𝛿𝑦ኺ = 𝛿𝑧ኺ = 𝛿𝑥̇ኺ = 𝛿𝑦̇ኺ = 0 and, so, 𝑦̇ኺ determines the size
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of the orbit. On the other hand, 𝑥ኺ and 𝑧̇ኺ are allowed to vary. As such, the corrections that must be
made to the initial state and (one-quarter) period of the orbit can be computed solving the following
equation (Grebow, 2006):

[
0
−𝑥̇፟
−𝑧̇፟

] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜕𝑦
𝜕𝑥ኺ

𝜕𝑦
𝜕𝑧̇ኺ

𝑦̇

𝜕𝑥̇
𝜕𝑥ኺ

𝜕𝑥̇
𝜕𝑧̇ኺ

𝑥̈

𝜕𝑧̇
𝜕𝑥ኺ

𝜕𝑧̇
𝜕𝑧̇ኺ

𝑧̈

⎤
⎥
⎥
⎥
⎥
⎥
⎦

[
𝛿𝑥ኺ
𝛿𝑧̇ኺ
𝛿𝜏
] (6.6)

The final orbit is then obtained by propagating the corrected initial conditions for 𝑃 = 4𝜏.

3D XZ-plane symmetry Halo and Near-Rectilinear orbits are 3-Dimensional and symmetric about
the XZ-plane of the CRTBP reference frame. Given an initial guess state:

𝐱ኺ = [ 𝑥ኺ 0 𝑧ኺ 0 𝑦̇ኺ 0 ]T

the orbit can be propagated until 𝑦 = 0 and 𝑦፟̇ < 0, providing an initial guess for half orbital period,
𝜏. However, once again, to obtain a symmetric orbit, 𝑥̇፟ = 0 and 𝑧̇፟ = 0 must be enforced at 𝑡፟.

Four state variables are fixed at 𝑡ኺ: 𝛿𝑦ኺ = 𝛿𝑧ኺ = 𝛿𝑥̇ኺ = 𝛿𝑧̇ኺ = 0 and, so, 𝑧ኺ determines the size
of the orbit. On the other hand, 𝑥ኺ and 𝑦̇ኺ are allowed to vary. As such, the corrections that must be
made to the initial state and (half) period of the orbit can be computed solving the following equation
(Grebow, 2006):

[
0
−𝑥̇፟
−𝑧̇፟

] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜕𝑦
𝜕𝑥ኺ

𝜕𝑦
𝜕𝑦̇ኺ

𝑦̇

𝜕𝑥̇
𝜕𝑥ኺ

𝜕𝑥̇
𝜕𝑦̇ኺ

𝑥̈

𝜕𝑧̇
𝜕𝑥ኺ

𝜕𝑧̇
𝜕𝑦̇ኺ

𝑧̈

⎤
⎥
⎥
⎥
⎥
⎥
⎦

[
𝛿𝑥ኺ
𝛿𝑦̇ኺ
𝛿𝜏
] (6.7)

The final orbit is then obtained by propagating the corrected initial conditions for 𝑃 = 2𝜏. However,
Equation 6.7 does not converge for orbits larger with 𝐴፳ ≈ 32000 km. As such, another targeting
scheme must be employed.

Given the same initial state, only three state variables are fixed at 𝑡ኺ: 𝛿𝑦ኺ = 𝛿𝑥̇ኺ = 𝛿𝑧̇ኺ = 0 and the
size of the orbit is determined by the desired Jacobi Constant (𝐶). On the other hand, 𝑥ኺ, 𝑧ኺ and 𝑦̇ኺ
are allowed to vary. As such, the corrections that must be made to the initial state and (half) period
of the orbit can be computed solving the following equation (adapted from Topputo, 2016):

⎡
⎢
⎢
⎢
⎣

0
−𝑥̇፟
−𝑧̇፟
𝐶 − 𝐶ኺ

⎤
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜕𝑦
𝜕𝑥ኺ

𝜕𝑦
𝜕𝑧ኺ

𝜕𝑦
𝜕𝑦̇ኺ

𝑦̇

𝜕𝑥̇
𝜕𝑥ኺ

𝜕𝑥̇
𝜕𝑧ኺ

𝜕𝑥̇
𝜕𝑦̇ኺ

𝑥̈

𝜕𝑧̇
𝜕𝑥ኺ

𝜕𝑧̇
𝜕𝑧ኺ

𝜕𝑧̇
𝜕𝑦̇ኺ

𝑧̈

𝜕𝐶
𝜕𝑥ኺ

𝜕𝐶
𝜕𝑧ኺ

𝜕𝐶
𝜕𝑦̇ኺ

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝛿𝑥ኺ
𝛿𝑧ኺ
𝛿𝑦̇ኺ
𝛿𝜏

⎤
⎥
⎥
⎥
⎦

(6.8)

An orbit generated with the correction scheme of Equation 6.7 or 6.8 will be referred to as an Halo
Orbit or a Near-Rectilinear Orbit, respectively.
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It should also be noted that the method presented requires an initial guess for each candidate orbit.
Halo and Lyapunov orbits were generated with the same MATLAB®code used in Topputo (2016), which
had already implemented an analytical first guess determination procedure, based on Thurman and
Worfolk (1996). The MATLAB®code for the remaining orbits was developed, based on the one provided,
but a continuation procedure was implemented to determine the first guess. This means that the initial
guess state for each orbit 𝑗 is based on the converged initial state of the previously generated orbit
𝑗 − 1, as follows (Grebow, 2006):

𝐱፣ኺ = 𝐱፣ዅኻኺ + 𝑠 Δ𝐱ኺ (6.9)

where 𝑠 is the step size and Δ𝐱ኺ is the direction of the continuation. For a DRO, for example, the
continuation is done along the X-axis, so, Δ𝐱ኺ = [ 1, 0, 0, 0]T, and the step size is a fixed value 𝑠 = Δ𝑥ኺ.
Nonetheless, the first orbit of the family generated (𝑗 = 1) still requires a “manual” initial guess. For
NROs this initial guess comes from the last Halo Orbit generated, while for the remaining orbits the
initial guesses were taken from the literature.

Once the initial conditions of a CRTBP orbit is determined, the orbit is propagated for 𝑆ፌ=29.5 days
and, similarly to a Frozen Orbit, is stored in an SPK. In order to do so, the orbits are first transformed
to the Moon-centred BMOP፭Ꮂ fixed at 𝑡ኺ = 01 Jan 2020 12:00:00.000 (TDB), as follows:

𝐱BMOPᑥᎲ
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cos 𝑡 − sin 𝑡 0
0sin 𝑡 cos 𝑡 0

0 0 1

0
−sin 𝑡 − cos 𝑡 0
cos 𝑡 − sin 𝑡 0
0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

𝐱 (6.10)

and then to the Moon-centred J2000 frame using SPICE.

Validation and Verification
In order to validate the initial conditions determined for LO, HO, NRO and VO, data from Grebow (2006)
was used. The results obtained are presented in Tables 6.3 to 6.6. For the first three types of orbit,
the fixed variable was 𝐴፱, 𝐴፳ and 𝐶, respectively, while Grebow (2006) fixed instead values of 𝑥 and
𝑧. Nonetheless, the results obtained with the MATLAB®code do not differ significantly from Grebow’s:
the error in the final position is at most ∼ 10ዅኽ (adimensional), the error in velocity and orbital period
∼ 10ዅኾ (adimensional) and the error in the stability index ∼ 10ዅኻ. For Vertical Orbits, the fixed variable
was 𝑣፲,ኺ in both cases. Furthermore 𝑥ኺ = 1.1119 and 𝑣፳,ኺ = 0.4358 have been used as first guess,
before initiating the continuation procedure (Grebow, 2006). The results obtained is this case present
a lower error: in the final position and velocity is at most ∼ 10ዅ኿ (adimensional), in the orbital period
∼ 10ዅኾ (adimensional) and in the stability index ∼ 10ዅኽ. As such, the MATLAB®code that generates
LO, HO, NRO or VO can be considered validated.

In order to validate the initial conditions determined for DROs, data from Turner (2016) was used.
The results obtained are presented in Tables 6.7 to 6.6. The fixed variable was the initial distance
with respect to the Moon: 𝑟ኺ = 1 − 𝜇 − 𝑥ኺ. Furthermore, 𝑣፲,ኺ = 0.350 km/s has been used as
first guess, before initiating the continuation procedure (Turner, 2016). The results obtained with the
MATLAB®code do not differ significantly from Turner’s: the error in the final velocity is at most ∼ 10ዅኼ
kilometres per second and the error in the orbital period ∼ 10኿ seconds. It should be noted that Turner
(2016) integrated the orbits for 30 years, using a more precise model, including the Moon and Earth’s
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NSG and the Sun, Venus and Jupiter’s TB perturbation. As such, the MATLAB®code that generates
DROs can be considered validated.

Regarding the validation of LoPOs, no numerical data has been found in the literature, so, an
analogous validation could not be made. Table 6.8 presents the results obtained with the developed
MATLAB®code. Once again, the fixed variable was the initial distance with respect to the Moon (𝑟ኺ)
and 𝑣፲,ኺ = −0.1 km/s has been used as first guess. The orbital periods determined are in accordance
with the range presented in Table 5.2 of [2, 14] days (Folta et al., 2015). The orbits generated are also
presented in Figure 6.12. Comparing these orbits with the LoPOs generated in Guzzetti et al. (2016)
(Figure 6.13), one can conclude that the two families are very similar. As such, the MATLAB®code that
generates LoPOs will be considered validated.

Table 6.3: Validation of Lyapunov Orbits with Grebow (2006). The state variable fixed during the targeting scheme is denoted
in bold. Regarding the initial conditions fixed in MATLAB®, ፱Ꮂ corresponds to ፀᑩ ዆ ዃኻ኿ኺ km and ፀᑩ ዆ ኼኺኺኺኺ km, for orbits #1
and #2, respectively.

# 𝑥ኺ (adim) 𝑥፟ (adim) 𝑣፲,፟ (adim) 𝑃 (adim) 𝑆

MATLAB® 1 𝟏.𝟏𝟐𝟗𝟎 1.1761 −0.1226 3.3978 651.565
2 𝟏.𝟎𝟗𝟐𝟎 1.1924 −0.2505 3.5133 434.971

Grebow
1 – 𝟏.𝟏𝟕𝟔𝟐 −0.1231 3.3981 651.010
2 – 𝟏.𝟏𝟗𝟐𝟒 −0.2502 3.5128 435.772

Difference
1 – 2.95 ⋅ 10ዅ኿ −4.66 ⋅ 10ዅኾ 2.45 ⋅ 10ዅኾ −0.555
2 – −8.24 ⋅ 10ዅ኿ 3.94 ⋅ 10ዅኾ −5.88 ⋅ 10ዅኾ 0.801

Table 6.4: Validation of Halo Orbits with Grebow (2006). The state variable fixed during the targeting scheme is denoted in bold.
Regarding the initial conditions fixed in MATLAB®, ፳Ꮂ corresponds to ፀᑫ ዆ ኻኺኺኺ km and ፀᑫ ዆ ኽኺኾኺኺ km, for orbits #1 and #2,
respectively.

# 𝑧ኺ (adim) 𝑥፟ (adim) 𝑧፟ (adim) 𝑣፲,፟ (adim) 𝑃 (adim) 𝑆

MATLAB® 1 −𝟐.𝟐𝟕𝟖𝟒 ⋅ 𝟏𝟎ዅ𝟑 1.1808 3.1388 ⋅ 10ዅኽ −0.1556 3.4154 605.655
2 −𝟔.𝟓𝟑𝟕𝟏 ⋅ 𝟏𝟎ዅ𝟐 1.1652 0.1098 −0.2008 3.3065 239.519

Grebow
1 – 1.1809 𝟎 −0.1559 3.4155 606.113
2 – 1.1654 𝟎.𝟏𝟎𝟗𝟗 −0.2011 3.3066 239.574

Difference
1 – 9.91 ⋅ 10ዅ኿ −3.13 ⋅ 10ዅኽ −2.86 ⋅ 10ዅኾ 4.28 ⋅ 10ዅ኿ 0.458
2 – 1.17 ⋅ 10ዅኾ 7.12 ⋅ 10ዅ኿ −2.84 ⋅ 10ዅኾ 2.42 ⋅ 10ዅ኿ 0.055

Table 6.5: Validation of Near-Rectilinear Orbits with Grebow (2006). The variable fixed during the targeting scheme is denoted
in bold.

# 𝐶 𝑥፟ (adim) 𝑧፟ (adim) 𝑣፲,፟ (adim) 𝑃 (adim) 𝑆

MATLAB® 1 𝟑.𝟎𝟕𝟑𝟖 1.1434 0.1576 −0.2216 3.1400 76.9712
2 𝟑.𝟎𝟔𝟏𝟒 1.1350 0.1700 −0.2245 3.0625 49.5041

Grebow
1 – 1.1435 𝟎.𝟏𝟓𝟕𝟗 −0.2220 3.1393 76.6589
2 – 1.1354 𝟎.𝟏𝟔𝟗𝟗 −0.2247 3.0645 50.0298

Difference
1 – 3.09 ⋅ 10ዅ኿ 2.30 ⋅ 10ዅኾ −3.22 ⋅ 10ዅኾ −7.01 ⋅ 10ዅኾ −0.3123
2 – 3.16 ⋅ 10ዅኾ −1.62 ⋅ 10ዅኾ −1.81 ⋅ 10ዅ኿ 1.90 ⋅ 10ዅኽ 0.5256
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Table 6.6: Validation of Vertical Orbits with Grebow (2006). The state variable fixed during the targeting scheme is denoted in
bold.

# 𝑥ኺ (adim) 𝑣፲,ኺ (adim) 𝑣፳,ኺ (adim) 𝑃 (adim) 𝑆

MATLAB®

1 1.1003 −𝟎.𝟑𝟐𝟏𝟕 0.5973 5.6754 204.315
2 1.0905 −𝟎.𝟒𝟑𝟏𝟕 0.7416 6.0172 240.740
3 1.0841 −𝟎.𝟓𝟒𝟏𝟕 0.8415 6.1304 236.034
4 1.0796 −𝟎.𝟔𝟓𝟏𝟕 0.9128 6.1847 217.804

Grebow

1 1.1003 −𝟎.𝟑𝟐𝟏𝟕 0.5973 5.6753 204.308
2 1.0906 −𝟎.𝟒𝟑𝟏𝟕 0.7416 6.0172 240.742
3 1.0842 −𝟎.𝟓𝟒𝟏𝟕 0.8415 6.1305 236.038
4 1.0796 −𝟎.𝟔𝟓𝟏𝟕 0.9128 6.1848 217.809

Difference

1 −3.15 ⋅ 10ዅ኿ 0 −7.45 ⋅ 10ዅ኿ −1.03 ⋅ 10ዅኾ −6.69 ⋅ 10ዅኽ
2 1.44 ⋅ 10ዅ኿ 0 −3.51 ⋅ 10ዅ኿ −7.58 ⋅ 10ዅ዁ 2.11 ⋅ 10ዅኽ
3 4.18 ⋅ 10ዅ኿ 0 −5.82 ⋅ 10ዅ኿ 3.08 ⋅ 10ዅ኿ 4.43 ⋅ 10ዅኽ
4 −2.61 ⋅ 10ዅ኿ 0 −8.99 ⋅ 10ዅዀ 3.97 ⋅ 10ዅ኿ 4.95 ⋅ 10ዅኽ

Table 6.7: Validation of Distant-Retrograde Orbits with Turner (2016). The variable fixed during the targeting scheme is denoted
in bold. ፫Ꮂ ዆ ኻ ዅ ᎙ ዅ ፱Ꮂ denotes the initial distance with respect to the Moon.

# 𝑟ኺ (km) 𝑣፲,ኺ (km/s) 𝑃 (10ዀ s) 𝑃ፌ/𝑃 𝑆

MATLAB®

1 𝟔𝟎𝟎𝟎𝟎 0.503 1.005 2.34 1
2 𝟔𝟒𝟓𝟎𝟎 0.515 1.096 2.15 1
3 𝟔𝟗𝟓𝟎𝟎 0.529 1.194 1.97 1
4 𝟕𝟎𝟕𝟓𝟎 0.533 1.218 1.93 1
5 𝟕𝟕𝟐𝟓𝟎 0.556 1.339 1.76 1

Turner*

1 𝟔𝟎𝟎𝟎𝟎 0.498 1.028 2.3 –
2 𝟔𝟒𝟓𝟎𝟎 0.507 1.105 2.13 –
3 𝟔𝟗𝟓𝟎𝟎 0.519 1.191 2 –
4 𝟕𝟎𝟕𝟓𝟎 0.529 1.274 1.85 –
5 𝟕𝟕𝟐𝟓𝟎 0.539 1.271 1.86 –

Difference

1 0 −5.88 ⋅ 10ዅኽ 0.0222 −4.70 ⋅ 10ዅኼ –
2 0 −8.22 ⋅ 10ዅኽ 0.0088 −2.35 ⋅ 10ዅኼ –
3 0 −1.08 ⋅ 10ዅኼ −0.0033 2.34 ⋅ 10ዅኼ –
4 0 −4.78 ⋅ 10ዅኽ 0.5561 −8.74 ⋅ 10ዅኼ –
5 0 −1.71 ⋅ 10ዅኼ −0.0687 9.80 ⋅ 10ዅኼ –

* The orbital period is an average over a 30-year propagation time

Table 6.8: Validation of Low-Prograde Orbits. The variable fixed during the targeting scheme is denoted in bold. ፫Ꮂ ዆ ኻዅ᎙ዅ፱Ꮂ
denotes the initial distance with respect to the Moon.

# 𝑟ኺ (km) 𝑣፲,ኺ (km/s) 𝑟 (km) 𝑃 (days) 𝑃ፌ/𝑃 𝑆

MATLAB®

1 𝟓𝟎𝟎𝟎𝟎 −0.0974 5487 9.029 3.02 1
2 𝟒𝟕𝟎𝟎𝟎 −0.1169 7630 7.648 3.57 1
3 𝟒𝟒𝟎𝟎𝟎 −0.1417 9459 6.829 4.00 1
4 𝟒𝟏𝟎𝟎𝟎 −0.1700 11305 6.258 4.365 1
5 𝟑𝟖𝟎𝟎𝟎 −0.2019 13274 5.842 4.676 1
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Figure 6.12: Low-Prograde Orbits generated with the de-
veloped MATLAB®code, represented in the Moon-centred
CRTBP reference frame.

Figure 6.13: Low-Prograde Orbit family from Guzzetti
et al. (2016), represented in the CRTBP reference frame.

Results
The CRTBP orbits chosen as candidates were:

• Lyapunov Orbits: 𝐴፱ between 7800 and 21000 km, with a step size of 600 km;

• Halo Orbits: 𝐴፳ between 1000 and 32000 km, with a step size of 1000 km;

• Near-Rectilinear Orbits: 𝐶 between ≈ 3.0273 and ≈ 3.1068, with a step size ≈ 0.0026;

• Vertical Orbits: 𝑣፲,ኺ between −0.03 and −0.23 with a step size of 0.01;

• Distant-Retrograde Orbits: 𝑟ኺ between 20000 and 80000 km, with a step size of 2000 km;

• Low-Prograde Orbits: 𝑟ኺ between 38000 and 50000 km, with a step size of 3000 km.

The orbits have been propagated for 𝑆ፌ= 29.5 days in the CRTBP reference frame. The LO, HO,
NRO, VO and DRO family are presented in Figure 6.14. The LoPO family has already been presented
in Figure 6.12.

In order to be able to compare the characteristics of CRTBP orbits, the Jacobi Constant (𝐶), as-
sociated to the initial conditions of each orbit, will be used. Figure 6.15 shows the correspondence
between the Jacobi Constant and the fixed parameter, for each candidate orbit, except for NROs. In
general, it can be concluded that a larger (absolute) value of the fixed parameter, and thus, a larger
orbit, corresponds to a lower 𝐶.

Figures 6.16 and 6.17 show the resonance ratio and orbital period of each orbit type, as function of
𝐶. Two resonance ratios are presented: the first with respect to the sidereal month (𝑃ፌ ≈ 27 days) and
the second with respect to the synodic month (𝑆ፌ ≈ 29.5 days). From Figure 6.17 it can be concluded
that the orbital period increases with orbit size and decreasing 𝐶, except for the Halo Orbit family.
On the other hand, from Figure 6.18, one can conclude that the stability index decreases with 𝐶 and
increasing orbit size, except for DROs and LoPO which have 𝑆 = 1.
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Figure 6.17: CRTBP orbits’ period.
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Figure 6.18: CRTBP orbits’ stability index.

Figures 6.19 and 6.20 show the minimum and maximum distance and velocity with respect to the
Moon for each of the candidate orbits, as function of 𝐶. It should be noted that all CRTBP orbits,
with the exception of some DROs, have a Moon range variation of at least 10000 km, in one orbital
revolution. Furthermore, this value increases for orbits that go closer to the Moon (smaller 𝐶). In
terms of meteoroid detections, this means that orbits with smaller minimum distances to the Moon are
not necessarily better, as long observation periods at larger distances could cancel out the advantage.
LoPOs, for example, have the lowest minimum distances to the Moon (≈ 10000 km), which can be
beneficial for meteoroid detection. However, when closest to the Moon, LoPOs have the highest max-
imum velocities (≈ 1 km/s), and, so, a short observation period at this range. All other orbits have
orbital velocities smaller than ≈ 0.7 km/s and a smaller velocity variation in one orbital revolution.
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Figure 6.19: CRTBP orbits’ maximum and minimum distance
to the Moon.
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Figure 6.20: CRTBP orbits’ maximum and minmum velocity in
the CRTBP reference frame.

6.3. Payload Modelling
6.3.1. Optics
An array sensor, such as a CCD sensor, captures an image by absorbing the light that enters the
instrument through an optical system, as depicted in Figure 6.21 (left). In this figure, the plane where
the real image is projected is know the image plane or FOV and the optic or focal point represents
the aperture of a perfect optical system. The distance between the focal point and the array sensor is
known as the focal length (𝑑ፅፋ). Given a square array of side 𝑑ፂፂፃ, the FOV of the instrument is given
by:

FOV = 2 tanዅኻ ( 𝑑ፂፂፃ2𝑑ፅፋ
) (6.11)

Figure 6.21: Geometry of an array sensor (left) and respective Field-of-View projection onto the spacecraft’s sky (right). Notation
used in the text for a square array: FOV/2 = a = b (which are angles); ፝ᐺᐺᐻ/ኼ = ፱ᑒ = ፱ᑓ; ፝ᐽᑃ = FL; ᎕ᐽᑆᑍ/2 = ፋᑒ=ፋᑓ; ᎕∠=i .
From Wertz (2009, p. 354).

The spacecraft’s perspective of the instrument’s FOV is defined in a spacecraft centred sphere of
unitary radius, known as the spacecraft’s celestial sphere. As can be seen in Figure 6.21 (right), the
instrument’s FOV is distorted in the spacecraft’s celestial sphere. In fact, the straight lines that define
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the instrument’s FOV are projected onto the spacecraft’s sky as great circle arcs. As such, it is possible
to compute the length (𝜃ፅፎፕ), inner angles (𝜃∠), and area (𝐴FOV) of the projected spacecraft’s FOV
recurring to spherical geometry, as follows:

𝜃ፅፎፕ = 2 tanዅኻ [sin (
𝐹𝑂𝑉
2 ) tan (𝜋4)] (6.12)

𝜃∠ = 2 cosዅኻ [cos (
𝐹𝑂𝑉
2 ) sin (𝜋4)] (6.13)

𝐴FOV = 4𝜃∠ − 2𝜋 (6.14)

For a small FOV, 𝜃ፅፎፕ ≈FOV and 𝜃∠ ≈ 90º, so there is almost no distortion of the instrument’s FOV
projection onto the spacecraft’s sky, as it approximately maintains a squared shape. In this case,
a planar approximation is sufficient, and there is no need to use spherical geometry (Wertz, 2009,
p.305-308).

The Instantaneous Field-of-View (IFOV) of an array sensor is defined analogously to the FOV of
the instrument, but corresponds to only one pixel of the array. For a squared pixel of dimension 𝑑pixel,
Equation 6.11 can be used to compute the instrument’s IFOV in the optical axis direction. The IFOV is
usually small, so, when projected onto the spacecraft’s celestial sphere, suffers almost no distortion.
However, this assumption might not be reasonable for pixels near the sensor edges, specially when
the FOV of the instrument is large. Figure 6.21 (right) also depicts this situation. It can be observed
that the pixels at nadir maintain their squared shape, while pixels near the edges of the (large) FOV
projection are distorted.

For the case of LUMIO, 𝑑ፅፋ = 217 mm ⟹ FOV ≈ 3.5º (see Table 3.5), which leads to 𝜃ፅፎፕ ≈
3.498º and 𝜃∠ ≈ 90.05º. As such, LUMIO-Cam’s FOV will be assumed planar when projected onto
the spacecraft’s sky. Furthermore, a pixel size of 𝑑pixel = 13 𝜇m ⟹ IFOV ≈ 0.0034º ≪ FOV, so, the
projection of all pixel’s IFOV will also be considered planar.

The optical geometry of the LUMIO-Cam, as depicted in Figure 6.21 (left), was implemented in
SPICE resorting to an Instruments Kernel (IK). An IK is a SPICE file that allows the implementation of
an instrument’s FOV size, shape and orientation. These were defined in the instrument’s fixed reference
frame (see Figure 6.3) with four vectors pointing to the corners of the FOV, centred at the focal point.
The IK was then successfully validated with SPICE’s function cspice_getfov.

6.3.2. Detector

The CCD sensor collects photons emitted by the impact flash, but also some undesired signals, which
are considered as noise. As such, in order to determine if the signal of an impact flash is detectable,
the concept of Signal-to-Noise Ratio (SNR) must first be introduced.

Given the signal of the impact (𝑠impact) and the Poisson noise associated with all signals (𝜎), the
SNR is defined as follows (Raab, 2002):

SNR =
𝑠impact

𝜎 (6.15)

where 𝑠impact is measured in electrons generated in the CCD, per pixel (𝑒ዅ/𝑝𝑖𝑥𝑒𝑙), and 𝜎 is measured
in electrons root-mean-square (rms). The Poisson noise of a signal is defined as 𝜎። = √𝑠። and the total
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Poisson noise is given by (Raab, 2002):

𝜎 = √∑
።
𝜎ኼ። (6.16)

Seven noise sources will be taken into account for the computation of 𝜎:

• 𝜎impact, the noise associated with the impact flash signal itself;

• 𝜎ፌ, the Moon’s surface background noise;

• 𝜎ፂ, the cosmic background noise;

• 𝜎ፃፂ, the CCD’s internal noise, known as Dark-Current;

• 𝜎ፑፎፍ, the CCD’s Read-Out Noise;

• 𝜎ፎፂፍ, the CCD’s Off-Chip Noise;

• 𝜎ፐፍ, the A/D converter’s noise, known as Quantisation Noise.

How each of these noise sources is estimated is detailed in the following subsection.
Finally, the CCD sensor chosen also has the possibility of amplifying the incoming signals by a factor

G (gain), at the cost of an Excess Noise Factor (ENF). As such, when computing the SNR, all signals
generated in the detector, before the multiplication register (𝑠impact, 𝑠ፌ, 𝑠ፂ and 𝑠ፃፂ), must be multiplied
by 𝐺 and the corresponding noises by ENF, as follows (Topputo et al., 2017):

SNR =
G ⋅ 𝑠impact

√ENFኼ ⋅ G ⋅ (𝑠impact + 𝑠ፌ + 𝑠ፂ + 𝑠ፃፂ) + 𝜎ኼፑፎፍ + 𝜎ኼፎፂፍ + 𝜎ኼፐፍ
(6.17)

where 𝜎ኼ። = G ⋅ 𝑠።, for the impact flash, dark current and Moon and cosmic background signals.

Methodology
In order to determine the range of signals the CCD can detect, the following methodology is followed:

1. Estimation of the squared Moon’s background noise, 𝜎ኼፌ, as follows (Raab, 2002):

𝜎ኼፌ = G ⋅ 𝑠ፌ = G ⋅ 𝑒ፑፌ ⋅ 𝐴lens ⋅ 𝜏 [ 𝑒ዅ
𝑝𝑖𝑥𝑒𝑙 ] (6.18)

where 𝐴lens = 𝜋(𝑑∅/2)ኼ is the area of the optics’ lens, 𝜏 is a constant that takes into account the
lens transmissivity, transparency and the light spreading across multiple pixels; 𝑒ፑፌ is the flux
of photons received, due to the Moon’s background light emission, converted to an electron flux
and computed as follows (based on Bouley et al. (2012)):

𝑒ፑፌ =
𝑆Moon𝑡፞፱፩
2𝜋𝑑ኼ ∫

᎘Ꮄ

᎘Ꮃ
𝐿(𝜆, 𝑇ፌ)

qe(𝜆)
𝐸᎐(𝜆)

𝑑𝜆 [ 𝑒
ዅ

𝑚ኼ ] (6.19)

𝐿(𝜆, 𝑇) ≡ 𝜋 2ℎፏ𝑐ኼ

𝜆኿ [exp( ℎፏ𝑐𝜆𝑘𝑇) − 1]
[ 𝑊
𝑚ኼ 𝑛𝑚] (6.20)

𝐸᎐(𝜆) ≡
ℎ𝑐
𝜆 [ J𝛾 ] (6.21)



80 6. Orbit, Payload and Environment

where 𝜆 ∈ [𝜆ኻ, 𝜆ኼ] is the observed wavelength, 𝑇ፌ ≈ 150 K is the assumed (constant) blackbody
temperature of the Moon (Bouley et al., 2012), 𝑡፞፱፩ is the exposure time of the sensor and 𝑑 is
the distance to the impact flash. 𝐿(𝜆, 𝑇) is given by Planck’s law, qe(𝜆) [𝑒ዅ/𝛾] is the quantum
efficiency of the sensor and 𝐸᎐(𝜆) is the energy of the photon, where 𝛾 denotes the photon.
Finally, 𝑆Moon is the emitting surface of the Moon, which will be assumed equal to the Moon
surface area observed by one pixel, i.e. the IFOV-area;

2. Estimation of the squared cosmic noise, 𝜎ኼፂ, as follows (Raab, 2002):

𝜎ኼፂ = G ⋅ 𝑠ፂ = G ⋅ 𝑝ፑፂ ⋅ 𝐴lens ⋅ 𝜏 ⋅ qe [ 𝑒ዅ
𝑝𝑖𝑥𝑒𝑙 ] (6.22)

where qe ≡ [∫᎘Ꮄ᎘Ꮃ qe(𝜆)𝑑𝜆] /(𝜆ኼ − 𝜆ኻ) is the mean quantum efficiency over the observation spec-
trum and 𝑝ፑፂ is the flux of photons received at the sensor, computed as follows:

𝑝ፑፂ = 2748 ⋅ 𝑡፞፱፩ ⋅ 𝐴IFOV [ 𝛾𝑚ኼ ] (6.23)

where it was assumed that the cosmic background noise corresponds to 𝑚ፕ = +18, so, 2748
𝛾/s/m2 per square arc second are received by the sensor (Raab, 2002). 𝐴IFOV is the IFOV area
in square arc seconds;

3. Estimation of the squared dark current noise, 𝜎ኼፃፂ, as follows (Raab, 2002):

𝜎ኼፃፂ = G ⋅ 𝑠ፃፂ = G ⋅ DC ⋅ 𝑡፞፱፩ [ 𝑒ዅ
𝑝𝑖𝑥𝑒𝑙 ] (6.24)

where DC is the number of electrons generated in the sensor per second and pixel, at a certain
temperature;

4. Estimation of the Off-Chip Noise of the sensor, 𝜎ፎፂፍ, as follows (Topputo et al., 2017):

𝜎ፎፂፍ =
off፧
OAR

√
𝜋𝑁pixels

𝑡፞፱፩
(6.25)

where off፧ denotes the off-chip noise in volts per √𝐻𝑧, OAR denotes the Output Amplifier Re-
sponsivity, in electrons per volt, and 𝑁pixels denotes the total number of pixels of the sensor;

5. Estimation of Quantisation Noise noise, 𝜎ፐፍ, as follows (Topputo et al., 2017):

𝜎ፐፍ =
0.7 capፆ
2ፍbits√12

(6.26)

where cap is the detector capacity and 𝑁bits is the A/D converter number of bits;

6. Assuming that the impact flash can be detected for SNR > SNR፦።፧, the determination of the
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minimum signal detectable is made, by solving Equation 6.17 for 𝑠።፦፩ፚ፜፭ = 𝑠፦።፧, as follows:

SNR፦።፧ =
G ⋅ 𝑠min

√ENFኼ ⋅ G ⋅ 𝑠min + Noise
⟹

⟹ 𝑠፦።፧ =
(SNR፦።፧ ⋅ ENF)ኼ +√(SNR፦።፧ ⋅ ENF)ኾ + 4Noise ⋅ SNRኼ፦።፧

2G [ 𝑒ዅ
𝑝𝑖𝑥𝑒𝑙 ]

(6.27)

with:
Noise ≡ ENFኼ(𝜎ኼፌ + 𝜎ኼፂ + 𝜎ኼፃፂ) + 𝜎ኼፑፎፍ + 𝜎ኼፎፂፍ + 𝜎ኼፐፍ (6.28)

7. Determination of the maximum impact flash signal detectable, as follows:

𝑠፦ፚ፱ = cap [ 𝑒ዅ
𝑝𝑖𝑥𝑒𝑙 ] (6.29)

It should be noted that, given the estimation of 𝜎ኼፌ made in Step 1, 𝑠፦።፧ is a function of the distance
to the impact flash (𝑑). This parameter, in turn, is a function of the orbital altitude (ℎ). However, in
order to simplify the analysis that will follow, it will be assumed that the impact flash occurs at nadir,
and, so, 𝑑 = ℎ. As such, 𝑆Moon ≈ IFOV-area can be reasonably approximated by:

IFOV-area = [2ℎ tan ( IFOV
2 )]

ኼ
≡ GSDኼ (6.30)

where GSD denotes the Ground Sampling Distance.
Finally, the corresponding visual apparent magnitude detectable can be estimated from Equation

2.4, as follows:

𝑚ፕ = 2.5 log (
4 × 10ኻኺ
𝑝ፑ/Δ𝑡

) = 2.5 log (4 × 10ኻኺΔ𝑡 ⋅ 𝐴lens ⋅ 𝜏 ⋅ qe
𝑠impact

) (6.31)

where Δ𝑡 is the duration of the impact.

Validation and Verification
The validation of the methodology presented with data from the literature is not possible, due to the
particular nature of the problem. However, the implementation of each formula has been validated
against data presented in the corresponding reference sources (Raab, 2002; Bouley et al., 2012; Hard-
ing et al., 2015). Furthermore, LUMIO’s noise budget and SNR estimation was also independently
carried out by it’s payload engineer, in an analogous fashion to what has been presented in this sec-
tion. Since the results obtained in this independent analysis are in alignment with the presented in the
next subsection, the methodology will be considered validated.

It should be noted that the analysis conducted does not take into account motion blur, which should
be significant for high orbital velocities. Earthshine on the the Moon’s surface is also not taken into
account in the noise budget, but only orbits that observe the lunar nearside should be affected. Finally,
stray-light has also been neglected and the optics are assumed to be always perfectly focused.

Results
Given the payload characteristics presented in Chapter 3 (Table 3.5) and the methodology previously
described, the noise budget estimated is detailed in Table 6.9. As can be observed, the variation of
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𝜎ፌ with ℎ is not significant in the computation of the noise budget, due to the small value of 𝜎ፌ. As
such, and considering that a signal is detectable for SNR፦።፧ = 54, the range of signals detectable by
the CCD is given by:

𝑠 = [𝑠፦።፧ , 𝑠፦ፚ፱] = [290, 80000] 𝑒ዅ/𝑝𝑖𝑥𝑒𝑙

for all altitudes. From Equation 6.31, the corresponding range of impact flash apparent magnitudes
detected is:

𝑚ፕ = [+1.759,+7.891]

Table 6.9: Estimated detector’s noise budget.

Noise Value Reference
𝜎ፌ ≈ 6.9 ⋅ 10ዅኻዂ* Eqs. 6.18–6.21, 6.30
𝜎ፂ 7.5 Eqs. 6.22–6.23
𝜎ፃፂ 5.9 Eq. 6.24
𝜎ፑፎፍ 43 Table 3.5
𝜎ፎፂፍ 101 Eq. 6.25
𝜎ፐፍ 9 Eq. 6.26

Noise ≈ 12297* Eq. 6.28
* for ፡ ∈ [ኻኺኺ, ኻኺኺኺኺኺ] km

6.4. Meteoroid Environment
6.4.1. Kinetic Energy Estimation
In order to determine the kinetic energy range the LUMIO-Cam can detect from a certain orbit, two
different methods will be employed. These are the Luminous Efficiency method and the Blackbody
method. The first assumes a directly proportional relation between light emitted in the visible spectrum
and the impactor’s kinetic energy, given by the luminous efficiency coefficient. On the other hand, the
second assumes that the impact flash emits radiation as a blackbody and the emitting surface scales
with the size of the impact crater. Both methods will be detailed in the following subsections.

Luminous Efficiency method
The methodology employed in the Luminous Efficiency method is as follows:

1. Estimation of received energy flux in the visible spectrum (based on Raab, 2002):

𝐸ፑ =
𝑠impact

𝜏𝐴lens

𝐸᎐
qe

[ J
𝑚ኼ ] (6.32)

where 𝑠impact ∈ [290, 80000] 𝑒ዅ/𝑝𝑖𝑥𝑒𝑙, assuming that the impact is only detected by one pixel;
and qe and 𝐸᎐ are the mean quantum efficiency and photon energy over the sensor’s observation
spectrum, respectively;

2. Estimation of the total emitted energy in the visible spectrum:

𝐸ፕፓ = 2𝜋𝑑ኼ 𝐸ፑ [J] (6.33)

4Treshold defined in the Negotiation Meeting for the ITT 8643–Lunar Cubesats for Exploration (2017)
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where 𝑑 is the distance between the sensor and the impact flash and the radiation as been
assumed emitted into 2𝜋 steradians (Suggs et al., 2014);

3. Estimation of the meteoroid’s kinetic energy:

KE = 𝐸ፕፓ
𝜂ፕ

[J] (6.34)

where 𝜂ፕ is the luminous efficiency in the visible spectrum.

In order to use this method some parameters need to be assumed, namely 𝑑 and 𝜂ፕ. The luminous
efficiency parameter will be assumed given by the following relation (Swift et al., 2011):

𝜂ፕ = 1.5 ⋅ 10ዅኽexp(9.3
ኼ

𝑣 ) (2.7)

where 𝑣 is in km/s and within the range 𝜂ፕ ∈ [5 ⋅ 10ዅኾ, 5 ⋅ 10ዅኽ] (see Chapter 2, Subsection 2.4.4).
The distance to the impact will be assumed equal to the satellite’s altitude, meaning that the impact is
assumed to occur at nadir. Finally, the impact velocity will be assumed as 𝑣 = 17 km/s, which is the
minimum assumed velocity found in literature, for a sporadic lunar impact (Oberst et al., 2012).

The sensitivity of the model to 𝑣 and 𝜂ፕ is presented in Figure 6.22 (left plot), for a fixed altitude
of 60000 km (approximately the Earth-Moon 𝐿ኼ distance to the Moon). The minimum and maximum
detectable kinetic energy (KE፦።፧ and KE፦ፚ፱) correspond to 𝑠፦።፧ = 290 𝑒ዅ and 𝑠፦ፚ፱ = 80000 𝑒ዅ,
respectively. Furthermore, the maximum value tested of 𝑣, 24 km/s, is found in Suggs et al. (2014).
By assuming the lower bound of the impact velocity, the estimation of KE፦።፧ is the most conservative
and KE፦ፚ፱ is the least conservative, but as can be seen on the left-side plot of Figure 6.22, the model
is practically non-sensitive to the tested range of 𝑣. The largest uncertainty of the model comes instead
from the uncertainty in 𝜂ፕ. The right-side plot of Figure 6.22 shows the consequence of such sensitivity
with respect to the number of impacts detected in the satellite’s FOV. How these types of plots have
been generated will be explained in Section 6.4.2. The sensitivity of the number of impacts detected
with respect to the assumed impact velocity comes from the gravitational corrections made to the
meteoroid flux model used and not from the relation 𝜂ፕ(𝑣).
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Figure 6.22: Sensitivity of the luminous efficiency method to assumed parameters, in the estimation of the kinetic energy range
detected (left) and flux of meteoroids visible in the satellite’s FOV (right).
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Blackbody method
The methodology employed in the Blackbody method is as follows:

1. Estimation of the flux of electrons generated in the sensor Raab (2002):

𝑒ፑ =
𝑠impact

𝜏𝐴lens
[ 𝑒

ዅ

𝑚ኼ ] (6.35)

2. Estimation of the total flux of photons emitted in the visible, converted to an electron flux (based
on Bouley et al., 2012):

𝑒ፓ = Δ𝑡∫
᎘Ꮄ

᎘Ꮃ
𝐿(𝜆, 𝑇ፅ)

qe(𝜆)
𝐸᎐(𝜆)

𝑑𝜆 [ 𝑒
ዅ

𝑚ኼ ] (6.36)

where Δ𝑡 is the assumed duration of the impact, which should be smaller than the exposure time,
and 𝑇ፅ is the assumed (constant) blackbody temperature of the impact flash. 𝐿(𝜆, 𝑇ፅ) is given by
Equation 6.20 and 𝐸᎐(𝜆) by Equation 6.21;

3. Estimation of the emitting surface area, i.e the effective area of the impact flash (Bouley et al.,
2012):

𝑆 = 2𝜋𝑑ኼ 𝑒ፑ𝑒ፓ
[𝑚ኼ] (6.37)

4. Estimation of the impact’s crater diameter:

𝐷 = 2√𝑆/𝜋
𝑛crater

[𝑚] (6.38)

where 𝑛crater is the ratio between the diameter of the impact flash and respective crater, as has
been assumed in Bouley et al. (2012). Assuming that the impact is only detected by one pixel,
𝐷 should smaller than GSD.

5. Estimation of the meteoroid’s kinetic energy, from Gault’s law (Bouley et al., 2012):

KE = ( 𝐷
0.25𝜌ኺ.ኻዀ዁፩ 𝜌ዅኺ.኿፭ 𝑔ዅኺ.ኻዀ኿(sin 𝜃።)ኻ/ኽ

)
ኻ/ኺ.ኼዃ

[J] (6.39)

where 𝜌፩ and 𝜌፭ are the projectile and target densities, 𝑔 is the gravitational acceleration at the
Moon (see Appendix A) and 𝜃። is the impact angle with respect to the horizontal.

The nominal parameters assumed in this study are presented in Table 6.10. The distance to the impact
will also be assumed equal to the satellite’s altitude. Furthermore, Δ𝑡, 𝑇ፌ and 𝑛፜፫ፚ፭፞፫ are assumed
not a function of the impactor’s kinetic energy. Nonetheless, it is stipulated that there is a correlation
between Δ𝑡 and KE (Rembold and Ryan, 2015), as brighter flashes are usually longer (see Chapter 2,
Subsection 2.4.4). Additionally, the flash temperature is also assumed to be constant during the impact
flash emission.

Contrary to the former model, KE፦።፧ and KE፦ፚ፱ can vary by more than one order of magnitude,
depending on the assumed parameters. The left-side plots on Figure 6.23 demonstrate the sensitivity
of the model to three of the parameters assumed: Δ𝑡, 𝑇ፅ and 𝑛፜፫ፚ፭፞፫, for a fixed satellite altitude of
60000 km. The maximum values tested are the exposure time, for Δ𝑡, and for 𝑇ፅ and 𝑛፜፫ፚ፭፞፫ are taken
from Koschny and McAuliffe (2009) and Bouley et al. (2012), respectively. A 1𝜎–error related to the
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Table 6.10: Assumptions of the Blackbody method in estimating the observable kinetic energy range.

Parameter Symbol Value Units Reasoning

Impact duration Δ𝑡 10 ms
Lower bound of the impact flashes detected on

Earth (Bouley et al., 2012)
Flash temperature 𝑇ፅ 2700 K Within the interval mentioned in Suggs et al. (2017)

Diameter ratio 𝑛፜፫ፚ፭፞፫ 1 – Minimum ratio assumed in Bouley et al. (2012)
Projectile’s density 𝜌፩ 2000 kg/m3 From Bouley et al. (2012)

Target’s density 𝜌፭ 3000 kg/m3 From Bouley et al. (2012)
Incidence angle 𝜃። 45 deg From Bouley et al. (2012)

magnitude measured by the CCD sensor, computed as follows (Raab, 2002):

𝜎፦ᑍ = logኼ.኿ (1 +
1

SNR
) (6.40)

is also presented. This error is clearly less significant than the possible error associated with the
estimation of Δ𝑡, 𝑇ፅ or 𝑛፜፫ፚ፭፞፫.

By assuming the lower bounds of Δ𝑡, 𝑇ፅ and 𝑛፜፫ፚ፭፞፫, from the plots of Figure 6.23, it can also be
concluded that:

• the estimation of KE፦።፧ is the most conservative possible, while the estimation of KE፦ፚ፱ is the
least conservative possible;

• the estimation of the number of meteoroid impacts visible in the satellite’s FOV is the most
conservative possible;

It should be noted that, if KE፦።፧ is not the most conservative assumption, the number of meteoroids
detected in the satellite’s FOV can increase exponentially (see Section 6.4.2). Overestimating KE፦ፚ፱
does not affect as much the estimated number of meteoroid detections, because more energetic im-
pacts are less likely to occur. As such, in order to conservatively estimate the number of meteoroid
impacts detectable, also KE፦።፧ must be estimated conservatively.
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Figure 6.23: Sensitivity of the Blackbody method to assumed parameters (Table 6.10), in the estimation of the kinetic energy
range detected (left) and flux of meteoroids visible in the satellite’s FOV (right).
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Method comparison and sensitivity to position of impact
Both methods presented reasonably agree with respect to the minimum kinetic energy detectable,
given the nominal assumptions (𝑣 = 17 km/s and Table 6.10) and taking into account their respective
error margins. The first estimates that KE፦።፧ ∈ [9 ⋅ 10ዅዂ; 9 ⋅ 10ዅ዁] kton TNT (𝜂ፕ–error, see Figure
6.22), while the second estimates that KE፦።፧ ∈ [1 ⋅ 10ዅ዁; 3 ⋅ 10ዅ዁] kton TNT (1𝜎፦–error, see Figure
6.23). However, the methods can disagree by at least two orders of magnitude when it comes to the
maximum kinetic energy. The Luminous Efficiency method estimates KE፦ፚ፱ ∈ [2 ⋅ 10ዅ኿; 2 ⋅ 10ዅኾ] kton
TNT (𝜂ፕ–error, see Figure 6.22), while the Blackbody method estimates KE፦ፚ፱ ≈ 4 ⋅ 10ዅኽ kton TNT
(1𝜎፦–error, see Figure 6.23). These kinetic energy ranges translate into 1 to 8 detections per hour,
for the Luminous Efficiency method and 3 to 5 impact flashes detections per hour, for the Blackbody
method. Nonetheless, this comparison only holds for the assumption 𝑑 = ℎ = 60000 km.

The top-plots of Figure 6.24 show the variation of KE፦።፧ and KE፦ፚ፱ with ℎ = 𝑑 (𝜆።፦፩ = 0° curve), for
low altitudes (100 < ℎ < 1000 km), using the Luminous Efficiency method and the Blackbody method
(left and right-side plot, respectively). The bottom-plots of Figure 6.24 depict the same variation, but
for high altitudes (ℎ > 55000 km, limit for which the LUMIO-Cam has a full disk view of the Moon – see
Chapter 7, Subsection 7.1.1). In fact, for high altitudes the methods reasonably agree with respect to
KE፦።፧ and disagree with respect to KE፦ፚ፱, while for low altitudes the opposite is verifiable.
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Figure 6.24: Variation of the detectable minimum and maximum kinetic energy with altitude and distance to the impact, for low
(top) and high (bottom) altitudes, and the Luminous Efficiency method (left) or Blackbody method (right).
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In both figures, the 𝜆።፦፩ ≠ 0° curves represent impacts that are an angle 𝜌።፦፩ off-nadir, assuming
𝑑≠ℎ. Figure 6.25 depicts the geometry of an off-nadir impact.

Figure 6.25: Geometry of an off-nadir impact.

From this figure it can be deduced that:

1. The distance to the impact is given by:

𝑑 = √(𝑅ፌ + ℎ − 𝑎)ኼ + 𝑏ኼ (6.41)

𝑎 ≡ 𝑅ፌ cos 𝜆።፦፩ (6.42)

𝑏 ≡ 𝑅ፌ sin 𝜆።፦፩ (6.43)

2. The effective area of the lens (perpendicular to the impact direction) is given by:

𝐴lensዊ = 𝐴lens cosኼ(𝜌።፦፩) (6.44)

𝜌።፦፩ ≡ tanዅኻ (
𝑏

𝑅ፌ + ℎ − 𝑎
) (6.45)

3. The effective area of the impact is given by:

𝑆ዊ = 𝑆 cosኼ(𝜌።፦፩ + 𝜆።፦፩) (6.46)

For both methods, the 𝜆።፦፩ ≠ 0° curves are computed using 𝐴lensዊ, given by Equation 6.44, in Equations
6.32 and 6.35, instead of 𝐴lens. In Equations 6.33 and 6.36, 𝑑 is given by Equation 6.41, and not by the
satellite’s altitude. For the Blackbody method, 𝑆 in Equation 6.37 is replaced by 𝑆ዊ, as given in Equation
6.46. Finally, Equation 6.33 of the Luminous Efficiency method is multiplied by the ratio 𝐴lens/𝐴lensዊ,
given by Equation 6.44.

For low-altitudes, the 𝜆።፦፩ tested are 0.1º and 1º, which correspond to the edge of LUMIO-Cam’s
FOV-area for an altitude of 100 km and 1000 km, respectively. From the top-plots of Figure 6.24, it can
then be concluded that, for low altitudes, the assumption that the impact occurs at nadir is reasonable,
regardless of the method used. However, the same cannot be said for higher altitudes. Observing the
bottom-plots of Figure 6.24, it can be concluded that, for the Luminous Efficiency method, both KE፦።፧
and KE፦ፚ፱ would be estimated one order of magnitude higher, if the impact were assumed to occur
closer to the edge of the FOV-area. For the Blackbody method the estimations would be almost two
orders higher.
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Figures 6.26 and 6.27 show the variation of the number of impacts detectable in the instrument’s
FOV-area with respect to altitude and distance to the impact, for low and high altitudes, respectively.
The left-side plots in both figures show absolute values, while the right-side plots are normalised by
the nominal case: impacts assumed to occur at nadir (𝜆።፦፩ = 0º). For low altitudes, as expected,
the relative error with respect to the nominal case is small (less than 5% at 1000 km altitude), for
both methods. However, for high altitudes the error is ∼90%, if the impact occurs almost at the edge
of the FOV-area (𝜆።፦፩ = 70º). As such, for CRTBP orbits, the assumption that the impact occurs
at nadir is not as reasonable as it is for Frozen Orbits. Hence, for the assessment of the latter, the
impact will be assumed to occur at the midpoint between the sub-satellite point and the closest edge
of the FOV-area. For high altitudes, for example, the FOV-area is the entire full-disk of the Moon
(𝜆፦ፚ፱ ≈ 90º), so, the midpoint corresponds to 𝜆።፦፩ ≈ 45º. Nonetheless, the detectable signal range
(𝑠 = [290, 80000]𝑒ዅ/𝑝𝑖𝑥𝑒𝑙) will be assumed constant and, so, not a function of the impact’s position.
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Figure 6.26: Variation of the detectable number of impacts with altitude and distance to the impact (᎘ᑚᑞᑡ), for low altitudes
and the Luminous Efficiency method (top) or Blackbody method (bottom). The right-side plots present the same results but
normalised by the number of impacts detectable at nadir.
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Figure 6.27: Variation of the number of impacts detectable with altitude and distance to the impact (᎘ᑚᑞᑡ), for high altitudes
and the Luminous Efficiency method (top) or Blackbody method (bottom). The right-side plots present the same results but
normalised by the number of impacts detectable at nadir.

Finally, it should also be noted that, while for high altitudes both methods predict that a higher
altitude leads to less meteoroid detections, for low altitudes the methods are contradictory. Combining
Equations 6.32 to 6.34, it can be concluded that, in the Luminous Efficiency method, KE ∝ 𝑑ኼ. On
the other hand, from Equations 6.35 – 6.39, it can be concluded that, in the Blackbody method,
KE ∝ 𝑑ኻ/ኺ.ኼዃ. From the meteoroid flux used model (see Section 6.4.2), 𝑁impacts ∝ KEዅኺ.ዃ × FOVarea.
Since for low altitudes, FOVፚ፫፞ፚ , ∝ ℎኼ (see Equation 7.21) and assuming that 𝑑 = ℎ, this leads to:

Luminous Efficiency method: Nimpacts ∝ ℎኺ.ኼ (6.47)

Blackbody method: Nimpacts ∝ ℎዅኻ.ኻ (6.48)

As such, the Luminous efficiency method predicts that the number of detections increases with altitude,
while the Blackbody method predicts that it decreases. For higher altitudes (ℎ > 55000 km), the FOV-
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area is approximately constant, so:

Luminous Efficiency method: Nimpacts ∝ ℎዅኻ.ዂ (6.49)

Blackbody method: Nimpacts ∝ ℎዅኽ.ኻ (6.50)

6.4.2. Meteoroid Impact Flux Model

The meteoroid impact flux model used in the previous sections is the following (Brown et al., 2002):

logኻኺ[𝑓ፄ(≥ KEፄ)] = 0.5677 − 0.9 log10(KEፄ) [ 𝑖𝑚𝑝𝑎𝑐𝑡𝑠𝑦𝑒𝑎𝑟 ] (6.51)

where 𝑓ፄ is the cumulative number of meteoroid impacts with Earth, per year, for kinetic energies larger
than KEፄ.

In order to translate this flux at Earth into a meteoroid flux at the Moon, a gravitational correction
term must be introduced. Following the method presented in Suggs et al. (2014), due to the gravita-
tional attraction of the Earth, both the target’s collecting area and impactor’s kinetic energy increase
by a factor of (see Chapter 2, Subsection 2.2.2):

𝑓ፚ፫፞ፚ = 𝑓ፊፄ = 1 + 𝑣ኼ፞፬፜/𝑣ኼ = 1 +
11.09ኼ
17ኼ = 1.4256 (6.52)

The cumulative meteoroid impact flux at the Moon, per year, is then:

𝑓ፌ(≥ KEፌ) =
𝑓ፄ(𝑓KE ⋅ KEፌ)

𝑓area

𝑅ኼፌ
𝑅ኼፄ

[ 𝑖𝑚𝑝𝑎𝑐𝑡𝑠𝑦𝑒𝑎𝑟 ] (6.53)

where KEፌ is the kinetic energy estimation obtained from one of the two methods presented in the last
section and 𝑅ፌ and 𝑅ፄ are the radius of the Moon and Earth, respectively. Gravitational corrections
regarding the Moon have been neglected (Oberst et al., 2012).

The estimated number of meteoroid impacts in the spacecraft’s FOV, presented in Figures 6.22–6.23
and 6.26–6.27, has been computed using this model, as follows:

𝑓impacts(𝑡) =
1
2

FOVeff

4𝜋𝑅ኼፌ
[𝑓ፌ(≥ KE፦።፧) − 𝑓ፌ(≥ KE፦ፚ፱)] [ 𝑖𝑚𝑝𝑎𝑐𝑡𝑠𝑦𝑒𝑎𝑟 ] (6.54)

where FOVeff is the Moon surface area observable by the payload, not illuminated by the Sun. All results
presented in the previous section were computed assuming that the entire FOV-area was not illuminated
and, so, FOVeff = FOVarea. For high altitudes, the area was assumed equal to the Instantaneous Access
Area and for low altitudes was given by the tangent approximation (see Chapter 7, Section 7.1.1).
Furthermore, in the above formula, the number of meteoroid detections per hour has been reduced by
a factor of 50%, to take into account possible occultations by lunar mountains (Koschny and McAuliffe,
2009).

The coloured lines on the right-side plots of Figure 6.28 show the sensitivity of using Brown’s
meteoroid impact flux model (Equation 6.53) in predicting the number of meteoroid detections, with
respect to 𝑣. The black dotted lines show the sensitivity of using Grün’s interplanetary meteoroid flux
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model (Grün et al., 1985):

𝑓ፌ(≥ 𝑚) =
1
2[(2.2 ⋅ 10

ኽ𝑚ኺ.ኽኺዀ + 15)ዅኾ.ኽዂ+ (6.55)

1.3 ⋅ 10ዅዃ(𝑚 + 1 ⋅ 10ኻኻ𝑚ኼ + 1 ⋅ 10ኼ዁𝑚ኾ)ዅኺ.ኽዀ+ (6.56)

1.3 ⋅ 10ዅኻዀ(𝑚 + 1 ⋅ 10ዀ𝑚ኼ)ዅኺ.ዂ኿] (6.57)

where 𝑚 is the meteoroid mass in grams. A 1/2 constant has been introduced because the flux given
by this model is for a rotating plate with a size of the unit area, and only particles from one half sphere
can impact the surface of the Moon (Koschny and McAuliffe, 2009). Furthermore, instead of requiring a
kinetic energy estimation, this model requires a meteoroid mass. As such, the sensitivity of this model
to the impact velocity assumed comes from𝑚 = 2KE/𝑣ኼ. The minimum and maximum mass detectable
by LUMIO (𝑚፦።፧ and 𝑚፦ፚ፱, respectively) are presented on the left-side plots of Figure 6.28, assuming
a distance to the impact flash of ℎ = 60000 km.
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Figure 6.28: Sensitivity of meteoroid mass estimation to the assumed velocity impact (left) and flux of meteoroids visible in the
satellite’s FOV (right), for both the Luminous Efficiency method (top) and Blackbody method (bottom). The black dotted lines on
the right plots were computed using Grün’s interplanetary meteoroid flux model, while the coloured lines were computed using
Brown’s Earth meteoroid flux model, gravitationally corrected.
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Comparing both meteoroid detections predictions, one can conclude that Brown’s model sensitivity
to the impact velocity is less significant than Grün’s model. Furthermore, using Brown’s model, both
methods lead to a number of detections that falls (approximately) within the expected, according
to Grün’s model (at least for ℎ = 60000 km). As such, and since the science requirements have
been deduced from the plot of Figure 2.3a, for the remaining analysis, Brown’s model will be used.
Nonetheless, it should be noted that for KE>10ዅ዁ kton TNT Brown’s model may overestimate the lunar
meteoroid flux, according to Grün’s model (see Figure 6.29).

Finally, it should be noted that, by using Brown’s model, the meteoroid impact flux asymmetries
discussed in Chapter 2, Subsection 2.2.3 will not be taken into account in this study, as the flux will
be assumed uniform across the Moon’s surface. Furthermore, the flux will also be considered evenly
distributed throughout the year, meaning that peaks related to meteoroid showers, will not be taken
into account. Nonetheless, it should be noted that Brown’s model includes both the flux of sporadic
meteoroids and showers. As such, the flux presented in Figure 6.29, should be seen as an average
flux per unit area and time.

Figure 6.29: Comparison between meteoroid flux models at the Moon. The kinetic energy ranges presented are the nominal
values obtained with either the Blackbody or Luminous efficiency method and are valid for a distance to the impact flash of
60000 km.

6.4.3. Validation and Verification
In order to validate the meteoroid environment model, data from a current ESA Earth-based meteoroid
impact flashes monitoring program, NELIOTA (see Chapter 2, Subsection 2.4.3), has been used. The
programme consists of a telescope with 1.2 m diameter, capable of performing observations in the
R-band (𝜆 ∈ [520, 796] nm). Based on data provided on the programme’s website5, the exposure
time has been assumed 33 ms, the lens transmissivity 60% and the average quantum efficiency has
been computed as 53%. The programme typically detects 0.46 impacts per hour (16 impacts in 35
hours observation time), with visual magnitudes ranging from +11 to +6. Assuming that these values
correspond to the limiting capacity of the detector, it is possible to estimate the minimum and maximum
signal received at the detector from Equation 6.31. Then, it is possible to apply both kinetic energy

5https://neliota.astro.noa.gr [Last accessed on: 13/08/2017]

https://neliota.astro.noa.gr
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estimation methods and predict the total number of impacts detectable from Earth (𝑑 = ℎ = 384401
km). For that purpose, and since no information is available on the area monitored by the telescope,
the FOV-area has been assumed as 1/3 of the entire (dark) Moon disk. The results obtained are
presented in Table 6.11.

Table 6.11: Validation of the meteoroid environment model with data from the NELIOTA programme5. The range presented for
the Luminous Efficiency method corresponds to ጂ፭ ∈ [ኻኺ, ኽኽ] ms. The FOV-area has been assumed 1/3 of the entire (dark)
Moon disk.

Method KE፦።፧ (kton TNT) KE፦ፚ፱ (kton TNT) Impacts/hour
Luminous Efficiency [0.922, 3.043] ⋅ 10ዅዀ [0.922, 3.043] ⋅ 10ዅኾ [0.35, 0.12]

Blackbody 2.774 ⋅ 10ዅዀ 7.787 ⋅ 10ዅኽ 0.13

Since the results obtained, with both methods, are the same order of magnitude as the detected in
the NELIOTA programme, the methodology applied can be considered validated.
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7
Coverage Analysis

This chapter concerns Step 4 of the methodology presented in Chapter 4. The goal is to perform a
trade-off analysis of the candidate orbits, taking only into account evaluation criteria related to lunar
meteoroid impacts. For that purpose, a meteoroid impact flashes coverage analysis will be performed.
How such coverage analysis will be performed is detailed in Section 7.1. The validation of the MAT-
LAB®tool developed is presented in Section 7.2 and the results obtained are presented in Section 7.3.
Finally, the orbit trade-off is presented in Section 7.4.

7.1. Methodology
The coverage analysis that will be performed is characterised by the interaction between three main
modules, given the inputs of the Payload and Candidate Orbits modules, as depicted in the scheme of
Figure 7.1. These modules are:

• The meteoroid environment module, described in Chapter 6, Section 6.4. Given the range of
signals detectable by the payload and an altitude profile, this module can independently determine
the range of kinetic energies detectable by LUMIO, for each candidate orbit. Once this range is
known, it is possible to predict the average lunar meteoroid impact flux;

• The FOV-areamodule, which is responsible for computing the Moon surface area observable by
the LUMIO-Cam. The payload’s FOV and the position of the spacecraft are the two main inputs.
Furthermore, a certain attitude profile must also be assumed. This module is described in detail
in Section 7.1.1;

• The lunar nightside monitoring module, which is responsible for determining the fraction of
the FOV-area not illuminated by the Sun. Since lunar impact flashes can only be detected on the
lunar nightside, this module allows the determination of what will be referred to as the effective
FOV-area. This module is described in detail in Section 7.1.2.

Combining the outputs of these three modules, it is possible to determine the total number of mete-
oroids detectable by LUMIO, over the mission lifetime. How that and other meteoroid related evaluation
parameters can be computed will be explained in Section 7.1.3.
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Figure 7.1: Scheme of the coverage analysis experimental set-up.

7.1.1. Field-of-View Area
The surface area that a spacecraft’s instrument can observe, at one instant or extended period of
time, defines the coverage of the central body. There are two main concepts associated with coverage
analysis, which will be explained in detail in this section.

The first is the footprint or FOV-area of that instrument, which is the area that it can observe at
a certain instant in time. On the other hand, the Instantaneous Access Area (IAA) is the total area
that the instrument potentially could observe, if the spacecraft or instrument itself is turned. These
concepts are both depicted in Figure 7.2, and, as can be observed, the FOV-area can be much smaller
than the IAA. (Wertz, 2009, p.432-433,472-476)

Figure 7.2: Instantaneous access area and footprint definition: 3D (left) and 2D (right) representations. From Wertz (2009,
p.471,474).

The shape of the FOV-area on the central body’s surface depends on several factors, such as the
instrument’s working principle. For an array sensor, such as the LUMIO-Cam detector, each of its
straight edges projects onto the spacecraft’s sky as a great-circle arc, as depicted in Figure 7.3 (left).
Each of these great circles then project into space as a plane surface and intersects the celestial body as
a small circle. These small circles define the edges of the instrument’s FOV-area, within the spacecraft’s
IAA, as depicted in Figure 7.3 (right). In this figure, the projection of the array’s FOV onto the central
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body is clearly distorted, as the instrument is pointing off nadir. Otherwise, the array’s FOV shape
would be approximately maintained.

Figure 7.3: Projection of an array’s FOV onto the spacecraft’s sky (left) and onto the central body’s surface (right). From Wertz
(2009, p.433).

Figure 7.4 defines the main parameters required to compute the FOV-area, where:

• 𝜆 denotes the angle of a small circle of the central body, measured at the central body;

• 𝜀 denotes the elevation at the toe of the footprint;

• 𝜃ፅፎፕ denotes the Field-of-View of the array sensor projected onto the spacecraft’s sky;

• 𝜂 denotes the off-nadir angle, measured at the spacecraft from the subsatellite point to the target.

Figure 7.4: Definition of footprint parameters. From Wertz (2009, p.473).

Assuming that the centre of FOV-edges A and C (Figure 7.3) are aligned with nadir, from Figure 7.4, it
can be deduced that the footprint length (𝐿ፅ) is given by:

𝐿AC
ፅ = 𝑅ፌ(𝜆ፀ − 𝜆ፂ) ≡ 𝑅ፌΔ𝜆AC (7.1)
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where 𝜆ፀ is the central body angle at the toe of the footprint, corresponding to FOV edge A, and 𝜆ፂ
is the central body angle at the heel of the footprint, corresponding to FOV edge C. If, additionally,
the instrument’s FOV is pointing at nadir, 𝜂 = 𝜃ፅፎፕ/2. In this case, the shape of the FOV-area can be
assumed to approximate a rectangle and is given by:

FOVarea ≈ 𝐿AC
ፅ ⋅ 𝐿BD

ፅ = 𝑅ኼፌΔ𝜆ACΔ𝜆BD (7.2)

where Δ𝜆BD can be defined analogously to Δ𝜆AC. Furthermore, if the array’s FOV is squared, Δ𝜆AC =
Δ𝜆BD.

However, while this approximation is reasonable for low satellite altitudes, for higher altitudes, the
curvature of the central body’s surface must be taken into account. For a square array sensor, the
FOV-area can then take three different shapes:

1. For ℎ < ℎኻ, all FOV corners and midpoints project onto the central body surface inside the IAA.
In this case, the FOV-area has the shape depicted on the left side of Figure 7.5;

2. For ℎኻ < ℎ < ℎኼ, all FOV midpoints project onto the central body surface inside the IAA, but all
corners project outside it. In this case, the FOV-area has the shape depicted on the right side of
Figure 7.5;

3. For ℎ > ℎኼ, all FOV midpoints and corners project outside the IAA. In this case, the FOV-area is
the IAA itself.

Figure 7.5: FOV-area of an array sensor for high altitudes. On the left, all FOV corners and midpoints project onto the central
body surface inside the IAA and, on the right only the midpoints project inside the IAA.

In order to compute the FOV-area in cases 1 and 2, the reference frame depicted in Figure 7.5 is
defined, centred at the Moon. The X-axis points towards the Sub-Satellite point, the Z-axis points to
the centre of the small-circle correspondent to the projection of edge B and the Y-axis completes the
right-handed frame.

Observing the left-side of Figure 7.5, one can conclude that the FOV-area is symmetric with respect
to the XZ and XY-plane. Furthermore, the small-circles (correspondent to the projection of edges) A
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and C are circles of constant latitude and the small-circles D and B are in a plane parallel to the XZ-plane
(i.e. have a constant y-coordinate). A such, for case 1, it is possible to determine the FOV-area by
integration, as follows:

FOVarea = ∫
Ꭳᐸ

Ꭳᐺ
∫
᎕ᐹ

᎕ᐻ
𝑅ኼፌ cos𝜑 𝑑𝜃𝑑𝜑 (7.3)

with:

𝜑ፂ = −𝜑ፀ = −
Δ𝜆AC

2 (7.4)

𝜃ፃ = −𝜃ፁ = −sinዅኻ (
sin(Δ𝜆BD/2)
cos𝜑 ) (7.5)

where Equation 7.5 has been deduced solving the following system for 𝜃ፁ:

{
𝑦ፁ = 𝑅ፌ sin(Δ𝜆BD/2)
𝑦ፁ = 𝑅ፌ sin 𝜃ፁ cos𝜑

(7.6)

Observing the right-side of Figure 7.5, one can conclude that the FOV-area is given by the sum of
three parts, two of which are equal (Parts I). The area given by Part II can be computed analogously
to case 1, using Equations 7.3–7.5 and knowing Δ𝜆A’C’ and Δ𝜆B’D’. The area given by Part I is given by:

FOVI
area = ∫

Ꭳᐸ

Ꭳᐸᖤ
∫
᎕Ꮄᖤ

᎕Ꮃᖤ
𝑅ኼፌ cos𝜑 𝑑𝜃𝑑𝜑 (7.7)

with:

𝜑ፀᖤ =
Δ𝜆A’C’

2 ; 𝜑ፀ =
Δ𝜆AC

2 (7.8)

𝜃ኻᖤ = −𝜃ኼᖤ = −cosዅኻ (
cos(𝜆፦ፚ፱)
cos𝜑 ) (7.9)

where Equation 7.9 has been deduced solving the following system for 𝜃ኼᖤ:

{
𝑥ኼᖤ = 𝑅ፌ cos(𝜆፦ፚ፱)
𝑥ኼᖤ = 𝑅ፌ cos 𝜃ኼᖤ cos𝜑

(7.10)

and 𝜆፦ፚ፱ is the central angle associated with the IAA. The total FOV-area in case 2 is then given by:

FOVarea = 2FOVI
area + FOVII

area (7.11)

The IAA is defined by the effective horizon, which describes a small circle on the surface of the cen-
tral body with central angle 𝜆፦ፚ፱. This angle corresponds to a minimum elevation (𝜀፦።፧) at which the
spacecraft’s instrument can work or the minimum elevation necessary to perform a certain observation.
This concept is also depicted in Figure 7.2 (right). The IAA is given by:

IAA = 2𝜋𝑅ኼፌ [1 − cos(𝜆፦ፚ፱)] = 2𝜋𝑅ኼፌ (1 −
𝑅ፌ

𝑅ፌ + ℎ
) (7.12)

where it has been assumed that 𝜀፦።፧ = 0. For large altitudes, it can happen that the instrument’s FOV
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covers the entire IAA. Hence, in case 3, 𝜆ፀ > 𝜆፦ፚ፱, and so, FOV-area = IAA. For a given instrument
(i.e. fixed 𝜃ፅፎፕ), total IAA coverage is guaranteed when:

ℎ > 𝑅ፌ (
1

sin (𝜃ፅፎፕ/2)
− 1) ≡ ℎኼ (7.13)

As such the methodology applied in order to determine the FOV-area for each candidate orbit is as
follows:

1. Define an attitude profile for LUMIO, assumed as constant nadir pointing. Since the LUMIO-Cam
reference frame is fixed with respect to the spacecraft reference frame (see Chapter 6, Section
6.1), this can be done specifying that +Zcam points to the centre of the Moon and +Ycam points in
the direction of the orbital velocity. For that purpose, the SPICE utility prediCkt.exe is used. The
attitude profile for each orbit is then automatically stored in a C-matrix Kernel (CK). A CK is a file
that contains a transformation (usually known as the “C-matrix”) which provides time-tagged1

orientation angles for a spacecraft bus;

2. Project the instrument’s FOV corners and midpoints of each edge onto the Moon’s surface. This
can be done using SPICE’s function cspice_sincpt. The main inputs are the ephemeris of the
spacecraft, the name of the target body and the corresponding body-fixed frame. The latter has
been defined as the ME reference frame. The main output is the direction vector of the surface
intercept point (𝐫።), expressed in Cartesian coordinates, relative to the ME frame at the intercept
epoch, or a flag indicating that the point does not project onto the selected body’s surface;

3. If all FOV midpoints project onto the Moon surface, Δ𝜆CA and Δ𝜆DB can be computed, as follows:

Δ𝜆CA = atanኼ (||𝐫ፀ × 𝐫ፂ||, 𝐫ፀ ⋅ 𝐫ፂ)
Δ𝜆DB = atanኼ (||𝐫ፃ × 𝐫ፁ||, 𝐫ፃ ⋅ 𝐫ፁ)

(7.14)

where atanኼ(𝑌, 𝑋) is the four-quadrant inverse tangent and 𝐫። denotes the intersection direction
vector of the midpoint of edge 𝑖. If all FOV corners also project onto the Moon, the FOV-area can
then be computed using the approximation of Equation 7.2, for low altitudes, or Equation 7.3, for
high altitudes (case 1). Otherwise, Equation 7.11 should be used (case 2). In this case, function
cspice_sincpt can be used to determine the new intersection direction vectors, 𝐫።ᖤ . Finally, if no
midpoints or corners project onto the lunar surface (case 3), the FOV-area is given by Equation
7.12.

7.1.2. Lunar Nightside Monitoring
In order to determine the effective FOV-area (FOVeff) a different methodology is applied for TBP or
CRTBP orbits. Both are based on the determination of the Sun–Moon-Spacecraft angle (𝛽) in order to
determine the illumination conditions of the FOV-area. However, for TBP orbits it is assumed that the
FOV-area is either 100% or 0% illuminated, while for CRTBP orbits it is assumed that a fraction (𝑓dark)
of the FOV-area is non-illuminated (as has been done in Chapter 5, Section 5.3). Figure 7.6 depicts
some schematic illuminations of the FOV-area, for low or high altitudes and different angles 𝛽.

1The time-tag associated with the attitude definition of a spaceraft implies also the definition of an on-board time count,i.e. a
“spacecraft clock”. This can be done using the SPICE utility makclk.exe and a Spacecraft Clock Kernel. This kernel only needs
to be generated once for all orbits and only needs to be updated if the mission starting date (፭Ꮂ) is altered.
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Figure 7.6: Scheme of the FOV-area illumination for low and high altitudes and different Sun-Moon–Spacecraft phase angles
(ᎏ). The percentages denote the fraction of the FOV-area illuminated. Distances are not to scale.

Two-Body Problem Orbits
In order to determine the effective FOV-area, the following methodology is applied:

1. Determination of the Sun–Moon-Spacecraft angle at each epoch 𝑡, using SPICE function cspice_phaseq;

2. Determination of the effective FOV-area as follows:

FOVeff(𝑡) = {
FOVarea, if 𝛽(𝑡) ≥ 90º
0, if 𝛽(𝑡) < 90º

(7.15)

since, as can be seen in Figure 7.6, for 𝛽 > 90º the spacecraft observes the nightside of the
Moon, and for 𝛽 < 90º the dayside.

Circular Restricted Three-Body Problem Orbits
In order to determine the effective FOV-area, the following methodology is applied:

1. Determination of the Sun–Moon-Spacecraft angle at each epoch 𝑡, using SPICE function cspice_phaseq;

2. Determination of the fraction of the FOV-area non-illuminated, as follows:

𝑓dark(𝑡) =
𝛽(𝑡)
180 (7.16)

with 𝛽 ∈ [0, 180]º ;

3. Determination of the effective FOV-area as follows:

FOVeff(𝑡) = {
𝑓dark ⋅ FOVarea, if 𝛽(𝑡) ≥ 90º
0, if 𝛽(𝑡) < 90º

(7.17)

where it has been assumed that if the illumination of the FOV-area is <50% (i.e.𝑓dark<0.5 ⟺ 𝛽 <
90º), no observations can be performed and, so, the effective FOV-area is zero.
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7.1.3. Number of Meteoroid Detections
Once the effective FOV-area is known, the total number of meteoroids detected in the kinetic energy
range [KE፦።፧ ,KE፦ፚ፱], over the mission lifetime, is determined as follows:

1. Estimation of the impact flux visible in the satellite’s effective FOV-area, as function of time (see
Chapter 6, Subsection 6.4.2):

𝑓impacts(𝑡) =
1
2

FOVeff

4𝜋𝑅ኼፌ
[𝑓ፌ(≥ KE፦።፧) − 𝑓ፌ(≥ KE፦ፚ፱)] [ 𝑖𝑚𝑝𝑎𝑐𝑡𝑠𝑦𝑒𝑎𝑟 ] (6.54)

where FOVeff, KE፦።፧ and KE፦ፚ፱ are a function of time;

2. Estimation of the average impact flux visible in the satellite’s effective FOV-area, during one
synodic month (𝑆ፌ), as follows:

𝑓impacts =
1
𝑆ፌ
∫
፭Ꮂዄፒᑄ

፭Ꮂ
𝑓impacts(𝑡) 𝑑𝑡 ≈

1
𝑆ፌ

ፍᑊᑄ
∑
።዆ኻ

(𝑓impacts(𝑡።) ⋅ Δ𝑡።) =
Δ𝑡
𝑆ፌ

ፍᑊᑄ
∑
።዆ኻ

𝑓impacts(𝑡።)

⟹ 𝑓impacts =
1
𝑁ፒፌ

ፍᑊᑄ
∑
።዆ኻ

(𝑓impacts(𝑡።))

(7.18)

where 𝑁ፒፌ denotes the number of points with which an orbit has been discretized in the pe-
riod 𝑆ፌ and Δ𝑡 denotes the step size, constant for each orbit. In order to guarantee that the
coverage characteristics of an orbit are assessed properly, each orbit has been discretized with
a personalized 𝑁፫፞፯ points per revolution. As such, 𝑁ፒፌ has been determined for each orbit as
follows:

𝑁ፒፌ =
𝑆ፌ
𝑃 𝑁፫፞፯ (7.19)

3. Estimation of the total number of meteoroids detected over the mission lifetime, as follows:

𝑁impacts = 𝑓impacts ⋅ Lifetime (7.20)

where it is assumed that 𝑓impacts remains constant for the mission duration.

7.2. Verification and Validation
Figure 7.7 shows the altitude (left) and FOV-area (right) of a Frozen Orbit, computed for one orbital
revolution. From the right-side plot, it can be observed that the result obtained with the planar ap-
proximation (Equation 7.2) is the same as the obtained with Equation 7.3, which takes into account the
Moon’s curvature. As such, it can be concluded that the planar approximation suffices for low altitudes.

The results obtained are also in accordance with a rough approximation of the FOV-area, given by:

FOVarea ≈ [2ℎ tan (
𝜃ፅፎፕ
2 )]

ኼ
(7.21)

The maximum difference with respect to this approximation is ≈ 9 km2. By comparing the two plots of
Figure 7.7, it can also be concluded that the FOV-area of low altitude satellites is mainly a function of
altitude, as Equation 7.21 indicates. As such, the implementation of the method to determine FOV-area
of low altitude orbits can be considered validated.
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Figure 7.7: Altitude (left) and FOV-area (right) of a Frozen Orbit with ፚ ዆ ኼ዁ኽዂ km, ። ዆ ኿ኺº and Ꭶ ዆ ዃኺº, during one orbit
revolution.
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Figure 7.8: Frozen orbit FOV-area 2D representation, during one orbital revolution (left) and at one instant (right). Frozen Orbit
with ፚ ዆ ኼ዁ኽዂ km, ። ዆ ኿ኺº and Ꭶ ዆ ዃኺº.

Figure 7.9: Frozen orbit FOV-area 3D representation, during one orbit revolution. Frozen Orbit with ፚ ዆ ኼ዁ኽዂ km, ። ዆ ኿ኺº and
Ꭶ ዆ ዃኺº.
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Figures 7.8 and 7.9 depict a representation of a Frozen Orbit’s footprint in the Moon’s surface in
2 and 3 Dimensions, respectively. From these representations one can observe that the FOV-area is
indeed centred with the subsatellite point. As such, the spacecraft is pointing at nadir and the FOV has
been correctly projected onto the Moon’s surface. Furthermore, it is also possible to visually verify that
the planar approximation is reasonable, as the projection of the FOV midpoints fall on the approximated
FOV-area edges.

In order to validate the method applied for higher altitude orbits, a Lyapunov Orbit with 𝐴፱ = 21000
km has been used. Figures 7.10 and 7.11 (left) show the altitude and FOV-area, respectively, computed
for one synodic month. The right-side plot of Figure 7.11 depicts a warning flag which is 1 when a FOV
point projects onto the Moon surface and 0 when it does not project.
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Figure 7.10: Altitude variation of a Lyapunov orbit with ፀᑩ ዆ ኼኻኺኺኺ km during one synodic month.
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Figure 7.11: FOV-area (left) of a Lyapunov orbit with ፀᑩ ዆ ኼኻኺኺኺ km for one synodic month. The right-side plot depicts a
warning flag which is 1 when a FOV point projects onto the Moon surface and 0 when it does not project.
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This flag can be used to validate the computation of the FOV-area for the three cases presented
in Subsection 7.1.1. Given that for LUMIO, 𝜃ፅፎፕ ≈ 3.5º and its FOV cross-diagonal is ≈ 4.95º, from
Equation 7.13 it can be computed ℎኻ ≈ 38000 km and ℎኼ ≈ 55000 km. From the right-side plot of
Figure 7.11 and Figure 7.10, it can be concluded that, as expected, when ℎ > 55000 km, the FOV
midpoints and corners do not project onto the Moon surface and when ℎ < 38000 km all points do
project. Simultaneously, it can be verified, on the left-side plot of Figure 7.11, that that is when the
FOV-area is given by the IAA (case 3) or Equation 7.3 (case 1), respectively. On the other hand, when
ℎኻ < ℎ < ℎኼ, it can be verified that only the midpoints project onto the lunar surface and that this is
when the FOV-area is given by Equation 7.11 (case 2).

From Figure 7.11, it can also be verified that, for ℎ < ℎኻ, the FOV-area given by the planar ap-
proximation (Equation 7.2) is an underestimation. The maximum error of this approximation for these
altitudes is ≈ 170000 km2, for 𝑡 = 0. As such, and as expected, the planar approximation is not
appropriate for high altitudes.

Figure 7.12 depicts the FOV-area at 𝑡 = 0. In this figure, the real FOV-area is delimited by the red
small-circles and the planar approximation is represented by the square with blue lines. The black lines
represent great-circles correspondent to edges B and D. Instead of using the planar approximation, a
spherical approximation using these great-circles could also have been used to estimate the FOV-area.
Since great-circles are circles of constant longitude, this can be done by fixing 𝜃ፁ and 𝜃ፃ in Equation
7.5. Figure 7.11 also shows this approximation for ℎኻ < ℎ < ℎኼ. Despite having the same variation
with ℎ as the real FOV-area, this approximation fails by 1.21 ⋅ 10ዀ km2 close to the discontinuity at ℎኼ.
As such, it can be concluded the spherical approximation, despite being simpler, would also not have
been appropriate to accurately determine FOV-area at high altitudes.

Figure 7.12: Lyapunov orbit (ፀᑩ ዆ ኼኻኺኺኺ km) FOV-area 3D representation, when all FOV corners project onto the Moon surface.

From the left-side plot of Figure 7.11 and Figure 7.10 it is also possible to observe that, similarly
to low altitude orbits, the FOV-area for ℎ < ℎኼ is mainly a function of altitude. On the other hand, for
ℎ > ℎኼ the FOV-area is approximately constant. However, when computing the effective FOV-area, the
latter is no longer verifiable. As can be observed in Figure 7.13, the FOV-area plotted in Figure 7.11
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is reduced, proportionally to the Sun-Moon-Spacecraft angle, 𝛽. Furthermore, from Figure 7.13, it can
also be verified that, for 𝛽 < 90º, there is no effective FOV-area. This occurs approximately for half of
the synodic period (𝑡 > 15), as expected for an Earth-Moon 𝐿ኼ orbit (see Chapter 5, Section 5.3). As
such, the methodology presented in Section 7.1.2, for CRTBP orbits, can be considered validated.

0 5 10 15 20 25

time [days]

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

F
O

V
-a

re
a 

[k
m

2
]

107 Effective Field-of-View Area

0 5 10 15 20 25

time [days]

0

20

40

60

80

100

120

140

160

180

 [º
]

Sun-Moon-Spacecraft phase angle

Figure 7.13: Effective FOV-area (left) and Sun-Moon-Spacecraft angle (right) in a Lyapunov orbit with ፀᑩ ዆ ኼኻኺኺኺ km, for one
synodic month, starting at ፭Ꮂ ዆ 01 Jan 2020 12:00:00.000 (TDB).

The plots of Figure 7.14 show the variation of altitude, effective FOV-area and Sun-Moon-Spacecraft
angle of all Frozen Orbits with 𝑎ኺ = 2738 km and 𝜔ኺ = 90º. The left-side plots correspond to the first
two revolutions and the right-side plots to the last two revolutions, in one synodic month. Once again,
it can be verified that, for 𝛽 < 90º, there is no effective FOV-area. Furthermore, for 𝛽 > 90º, the
effective FOV-area is equal to the full FOV-area (cf. Figure 7.7, for 𝑖ኺ = 50º). Knowing that, for
𝑎ኺ = 2738 km, the orbital period is ≈3.5 hours, from Figure 7.14 it can also be verified that no impact
flashes observations can be made for approximately half period intervals. Since this was the expected
for circular orbits (see Chapter 5, Section 5.3), the methodology presented in Section 7.1.2 for Frozen
Orbits can be considered validated.

Comparing the 𝛽-angles for the first and last two revolutions, in the bottom plots of Figure 7.14,
it can also be observed that the periodicity of 𝛽 is not constant. Namely, all inclinations experience
an increase of the amplitude of 𝛽. Hence, if the orbits where integrated for another synodic month,
the effective FOV-area profile would most likely not be the same as the depicted in Figure 7.14. A
such, assuming that the profile 𝑓impacts(t) repeats itself every synodic month, and, so, 𝑓impacts remains
constant during the mission lifetime (see Section 7.1.3) is a rough estimation.

The same conclusion applies for CRTBP-orbits, but for a different reason. As can be seen in the
right-side plot Figure 7.13, the periodicity of 𝛽 is not completed in 29.5 days. Consequently, so is not
the periodicity of the effective FOV-area. As such, assuming that a 𝑓impacts, computed for 29.5 days,
remains constant during the mission lifetime is, once again, a rough estimation.
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Figure 7.14: Altitude (top), effective FOV-area (centre) and Sun-Moon-Spacecraft angle (bottom) of a Frozen Orbit with ፚ ዆ ኼ዁ኽዂ
km, ኿ኺº ጺ ። ጺ ዃኺº and Ꭶ ዆ ዃኺº. The left-side plots correspond to the first two revolutions and the right-side plots to the last
two revolutions, in one synodic month, starting at ፭Ꮂ ዆ 01 Jan 2020 12:00:00.000 (TDB).
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Finally, it should also be noted that, given the 𝑡ኺ chosen, 𝛽 is in phase with the FOV-area for the
presented Lyapunov orbit, but out of phase for the Frozen Orbits. Given two spacecraft with similar
FOV-area profiles, the one which is in phase with 𝛽 has a larger cumulative effective FOV-area, during
one synodic period. As such, the latter could possibly detect more meteoroid impacts. Ideally, all orbits
should be assessed under equivalent illumination conditions. However, that would require optimising
the phasing of the spacecraft in its orbit, with respect to the Sun, for each candidate orbit, which will
not be taken into account in this study.

7.3. Results
7.3.1. Field-of-View 3.5º
Figure 7.15 shows the minimum and maximum kinetic energy detectable by the LUMIO-Cam from a
Frozen Orbit, for the two methods presented in Chapter 6, Section 6.4. Only the inclinations which
allow the maximum number of detections, per semi-major axis, are presented for brevity, but the
results shown are representative of all inclinations. As expected, with both methods, KE፦።፧ and KE፦ፚ፱
increase with altitude (larger 𝑎), but the methods considerably disagree in the KE ranges detectable
for Frozen Orbits. The Luminous efficiency method estimates that KE፦።፧ ∈ [10ዅኻኽ, 10ዅዃ] kton TNT and
KE፦ፚ፱ ∈ [10ዅኻኺ, 10ዅ዁] kton TNT, while the the Blackbody method estimates that KE፦።፧ ∈ [10ዅኻዂ, 10ዅኻኼ]
kton TNT and KE፦ፚ፱ ∈ [10ዅኻኼ, 10ዅዂ] kton TNT.
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Figure 7.15: Estimated detectable kinetic energy range from Frozen Orbits, using two different methods. Only the inclination
which allows the maximum number of detections, per semi-major axis, is presented. Circles and squares represent orbits with
Ꭶ ዆ ዃኺº and Ꭶ ዆ ኼ዁ኺº, respectively.
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Figure 7.16 shows the corresponding total number of meteoroid detections during the mission life-
time. Also as expected from the analysis presented in Chapter 6, Subsection 6.4.1, the Luminous Effi-
ciency method predicts more meteoroid detections for increasing altitude, while the Blackbody method
predicts the contrary. Furthermore, due to the disagreement in the estimation of KE፦።፧, the Luminous
Efficiency method predicts the detection of much less meteoroids than the Blackbody method. The
former estimates between ≈ 4000 and 9000 meteoroid detections during the mission lifetime for a
Frozen Orbit, while the later estimates between ≈ 2 ⋅ 10ዀ and 2 ⋅ 10ዂ meteoroids during the same
period.
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Figure 7.16: Estimated total number of meteoroid detections from Frozen Orbits during the mission lifetime, using two different
kinetic energy estimation methods. Only the inclination which allows the maximum number of detections, per semi-major axis,
is presented. Circles represent orbits with Ꭶ ዆ ዃኺº and squares represent orbits with Ꭶ ዆ ኼ዁ኺº.

Oberst et al. (2011) mentions that the SPOSH camera2 would be able to detect about “1–100 flashes
in its field of view [90°] every day, [...] with magnitudes brighter than 𝑚ፕ = +7’’, from a 50 km altitude
lunar orbit. This means between 365 and 36500 impacts detections per year, or an average of 18250
impacts per year. Given that the LUMIO-cam has a FOV 16 times smaller than the SPOSH camera and
at least twice the altitude, the estimation made by the Luminous Efficiency method is more in alignment
with the presented in Oberst et al. (2011), than the Blackbody method. According to this data, the
Blackbody method overestimates the number of impacts detectable from a Frozen Orbit, by at least
two orders of magnitude. Nonetheless, in Oberst et al. (2011), it is unclear which methodology has
been applied to estimate SPOSH’s number of detections.

Figure 7.17 shows the minimum and maximum kinetic energy detectable by the LUMIO-Cam from
each of the CRTBP studied and the two kinetic energy estimation methods applied. The black lines
represent the kinetic energy requirements SCI.01 and SCI.02, defined in Chapter 3. The energies
defined at the Earth as 10ዅዀ and 10ዅኻ kton TNT have been redefined as energies at the Moon. Given
the gravitational corrector factor at the Earth, 𝑓ፊፄ = 1.42 (see Chapter 6, Subsection 6.4.2), the
energies translate to 7⋅10ዅ዁ and 7⋅10ዅኼ kton TNT at the Moon, respectively. Once again, the methods
applied disagree with respect to the kinetic energy range estimated, specially with respect to KE፦ፚ፱.
In general, the Blackbody method predicts a larger kinetic energy range, with smaller KE፦።፧ and larger
KE፦ፚ፱.

2the LUMIO-cam design is based on the SPOSH camera
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Figure 7.17: Estimated kinetic energy range detectable from CRTBP orbits, using two different methods. The black lines represent
the kinetic energy limits set in the requirements (corrected for the Moon).

Nonetheless, the difference between the two methods, for CRTBP orbits, when it comes to the
number of meteoroid detections, is not as prominent as for Frozen Orbits. Figure 7.18 shows the
corresponding total number of meteoroid detections during the mission lifetime. As can be seen in this
figure, for Lyapunov, Halo, Near-Rectilinear, Vertical and some Distant-Retrograde orbits, the number
of impacts estimated by both methods is in the same order of magnitude (between 1000 and 10000).
This is because, as already stated in Chapter 6, Subsection 6.4.1, for higher altitudes, the methods are
in agreement with respect to KE፦።፧, parameter which drives the number of meteoroid detections.

On the left-side plots of Figure 7.18, the total number of detections estimated for a satellite per-
manently at the Earth-Moon 𝐿ኼ are also presented, for validation purposes. As expected, the results
obtained for 𝐿ኼ should be the limit case for all 𝐿ኼ orbits (namely, LO, HO, NRO and VO). Furthermore,
it should be noted that, in general, having a smaller minimum distance with respect to the Moon is
beneficial. Nonetheless, and also as expected, the main exception to this rule are LoPOs, which do not
have enough cumulative observation time at the lowest altitudes (see Chapter 6, Subsection 6.2.2).
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Figure 7.18: Estimated total number of meteoroid detections from CRTBP orbits during the mission lifetime, using two different
kinetic energy estimation methods, for ᎕ᐽᑆᑍ ዆ ኽ.኿º.

Finally, it should be noted in all plots presented in this section, the Blackbody method results have,
in general, smaller error bars than the Luminous Efficiency results. However, the Blackbody method
inherently has more assumptions than the Luminous Efficiency method (see Chapter 6, Subsection
6.4.1), and the possible errors associated with those assumptions are not represented in the results
shown in this section.

7.3.2. Field-of-View 6º
At this stage of the orbital design, it was concluded that, in order to perform autonomous navigation
and attitude and orbital control in lunar orbit, it would be required to have a full-disk view of the
Moon. For a FOV of 3.5º, the required minimum altitude would be ≈ 58000 km, including a margin
for possible attitude errors. From the left-side plots of Figure 7.18, it can be concluded that the orbital
design space would be restricted to very few orbits (only some DROs and VOs). As such, it was decided
by the LUMIO team to increase the payload’s FOV to 6º × 6º and perform a second iteration of the
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satellite’s design. With this FOV, the minimum distance required to the Moon is 34902.8 km.
For 𝜃ፅፎፕ = 6º, the Frozen Orbits results presented in the previous are still valid, for orbital design

purposes. For CRTBP orbits, the new results are presented in Figures 7.19 and 7.20. Furthermore,
Figure 7.21 shows the number of impacts detections in the two kinetic energy ranges defined by
evaluation criteria EC.A.03 and EC.A.04.
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Figure 7.19: Estimated kinetic energy range detectable from CRTBP orbits, using two different methods, for ᎕ᐽᑆᑍ ዆ ዀº. The
black lines represent the kinetic energy limits set in the requirements (corrected for the Moon).
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Figure 7.20: Estimated total number of meteoroid detections from CRTBP orbits during the mission lifetime, using two different
kinetic energy estimation methods, for ᎕ᐽᑆᑍ ዆ ዀº.



116 7. Coverage Analysis

2.9 2.95 3 3.05 3.1 3.15 3.2 3.25

Jacobi Constant [-]

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

N
um

be
r 

of
 im

pa
ct

s

Luminous Efficiency method (FOV=6º)

HaloNorth
HaloSouth
NRONorth
NROSouth
Lyapunov
Vertical
DRO
LoPO

2.9 2.95 3 3.05 3.1 3.15 3.2 3.25

Jacobi Constant [-]

0

10

20

30

40

50

60

70

80

N
um

be
r 

of
 im

pa
ct

s

Luminous Effciency method (FOV=6º)

2.9 2.95 3 3.05 3.1 3.15 3.2 3.25

Jacobi Constant [-]

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

N
um

be
r 

of
 im

pa
ct

s

Blackbody method (FOV=6º)

HaloNorth
HaloSouth
NRONorth
NROSouth
Lyapunov
Vertical
DRO
LoPO

2.9 2.95 3 3.05 3.1 3.15 3.2 3.25

Jacobi Constant [-]

0

10

20

30

40

50

60

70

80

90

100

N
um

be
r 

of
 im

pa
ct

s

Blackbody method (FOV=6º)

Figure 7.21: Estimated number of meteoroid detections during the mission lifetime, in the KE ዆ [ኻኺᎽᎸ , ኻኺᎽᎶ] kton TNT (left-side
plots) and KE ዆ [ኻኺᎽᎶ , ኻኺᎽᎳ] kton TNT (right-side plots) ranges, using two different kinetic energy estimation methods.
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7.4. First Orbit Trade-Off
The first orbit trade-off takes into account evaluation criteria EC.A.01 to EC.A.04. The new requirement
regarding the full-disk view of the Moon and respective evaluation criteria, as stated in Table 7.1, will
also be taken into account.

Table 7.1: Additional LUMIO mission requirement and evaluation criteria, added during the second design iteration.

ID Requirement Parent ID
⋯

MIS.08 The mission shall have a full-disk view of the Moon at all times. TLO.02

ID Criteria Parent ID
⋯

EC.A.08 The spacecraft shall have an altitude higher than 34902.8 km at all times. MIS.08

Since two kinetic energy estimation methods have been used, two separate orbital trade-offs will
be presented. Taking into account the results presented in Figures 7.15–7.16 and 7.19–7.20, Tables
7.2 and 7.3 present a graphical orbit trade-off for the results of the Luminous Efficiency method and
Blackbody method, respectively.

Table 7.2: First orbit trade-off, given the results of the Luminous Efficiency method.

Orbit

Allows
observations in
10ዅዀ ≤ KE ≤ 10ዅኻ

kton TNT

𝑁impacts ≥ 240
𝑁impacts ≥ 2 for
KE ∈ [10ዅኾ, 10ዅኻ]

kton TNT

𝑁impacts ≥ 100 for
KE ∈ [10ዅዀ, 10ዅኾ]

kton TNT
ℎ ≥ 34902.8 km

EC.A.01 EC.A.02 EC.A.03 EC.A.04 EC.A.08
red green red red red

FO None All assessed None None None
green green green green green

LO All assessed All assessed All assessed All assessed All assessed
green green green green green

HO All assessed All assessed All assessed All assessed All assessed
green green green green green

NRO All assessed All assessed All assessed All assessed 𝐶 > 3.068
green green green green green

VO All assessed All assessed All assessed All assessed All assessed
green green green green green

DRO All assessed All assessed 𝐶 < 3.036 All assessed 𝐶 < 3.027
green green green green red

LoPO
All assessed All assessed All assessed All assessed None

Legend: green Meets evaluation criteria red Does not meet evaluation criteria
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Table 7.3: First orbit trade-off, given the results of the Blackbody method.

Orbit

Allows
observations in
10ዅዀ ≤ KE ≤ 10ዅኻ

kton TNT

𝑁impacts ≥ 240
𝑁impacts ≥ 2 for
KE ∈ [10ዅኾ, 10ዅኻ]

kton TNT

𝑁impacts ≥ 100 for
KE ∈ [10ዅዀ, 10ዅኾ]

kton TNT
ℎ ≥ 34902.8 km

EC.A.01 EC.A.02 EC.A.03 EC.A.04 EC.A.08
red green red red red

FO None All assessed None None None
green green green green green

LO All assessed All assessed All assessed All assessed All assessed
green green green green green

HO All assessed All assessed All assessed All assessed All assessed
green green green green green

NRO All assessed All assessed All assessed All assessed 𝐶 > 3.068
green green green green green

VO All assessed All assessed All assessed All assessed All assessed
green green green green green

DRO All assessed All assessed All assessed All assessed 𝐶 < 3.027
green green green green red

LoPO
All assessed All assessed All assessed All assessed None

Legend: green Meets evaluation criteria red Does not meet evaluation criteria

As can be observed in Tables 7.2 and 7.3, the two trade-offs carried out are very similar, despite two
different kinetic energy estimation methods having been used. Both methods lead to the conclusion
that Frozen Orbits meet 1 out of the 4 acceptance criteria related to meteoroid impacts, while all CRTBP
orbits assessed meet 4 out of 4. Nonetheless, it should be noted that the results obtained with the
Luminous Efficiency method led to a restriction of the DRO family in order to meet criteria EC.A.03.

Furthermore, it should also be noted that these 4 criteria are not constraining enough in such a way
that an operational orbit can be chosen or the design space significantly reduced, before the second
orbit trade-off is carried out. In fact, it is the additional criteria EC.A.08 that reduces the design space
to:

• Lyapunov orbits;

• Halo orbits;

• Near-Rectilinear Orbits, with 𝐶 > 3.068;

• Vertical Orbits;

• Distant-retrograde Orbits, with 𝐶 < 3.027.

eliminating Low-Prograde Orbits.
Taking into account selection criteria EC.S.01, which states that “the number of meteoroids detected

during the mission lifetime shall be maximised”, out of this design space, the chosen orbit would be a
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DRO. However, these orbits have a high transfer Δ𝑉 cost (see Table 5.4). As such, LUMIO’s mission
analysis team decided to focus the next orbital trade-off only on the second best orbital family, in
terms of meteoroids detections: the NRO family. Small Halo orbits and Lyapunov orbits could also
allow the detection of the same order of magnitude of meteoroids as the NROs. However, they were
not considered for the second orbit trade-off due to the large stationkeeping costs, as their large stability
index suggests (see Figure 6.18). Furthermore, the NRO family also has the advantage of allowing a
constant visibility of the spacecraft from the Earth (see Table 5.2) and an easy concept of operations,
due to having 𝑃ፌ/𝑃 ≈ 2 (see Figure 6.16). Figure 7.22 shows the detectable kinetic energy as function
of time, for all NROs, and Figure 7.23 shows the expected number of impact detections per hour.
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Figure 7.22: Detectable Kinetic energy range from NROs as function of time, using two different kinetic energy estimation
methods: the Luminous Efficiency method (top) and the Blackbody method (bottom).
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Figure 7.23: Number of expected meteoroid detections per hour, from an NRO, using two different kinetic energy estimation
methods: the Luminous Efficiency method (left) and the Blackbody method (right).
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8
Conclusion

8.1. Operative Orbit and Considerations
The second orbit trade-off was carried out by LUMIO’s Mission Analysis team. Taking into account both
transfer and stationkeeping Δ𝑉, an NRO with 𝐶 = 3.09 was found to have the minimum Δ𝑉 budget,
out of 14 orbits with 𝐶 ∈ [3.04, 3.16]. As such, an NRO with 𝐶 = 3.09 has been chosen as the operative
orbit (Topputo et al., 2017). The loss of meteoroid detections, with respect to the limit case (𝐶 = 3.068)
determined in the first orbit trade-off (Chapter 7, Section 7.4), is ≈ 1400 or ≈ 280, according to the
Blackbody or Luminous Efficiency method, respectively. Table 8.1 summarises the meteoroid detection
characteristics of the chosen orbit.

Table 8.1: Meteoroid detection characteristics of the operative orbit, a (Northern) Near-Rectilinear Orbit with ፂ ዆ ኽ.ኺዂዂዃ.

Characteristic
Luminous Efficiency

method
Blackbody Method

Meets
Requirement

KE፦።፧ [kton TNT] (3.301ዄኾ.ኺኾኻዅኼ.኿ዀ዁) ⋅ 10ዅ዁ (1.572ዄኺ.኿ዂኾዅኺ.ኾኼ኿) ⋅ 10ዅ዁ –
KE፦ፚ፱ [kton TNT] (4.242ዄ኿.ኻዃኽዅኽ.ኼዃዃ) ⋅ 10ዅኾ (3.655ዄኺ.ኺኾዀዅኺ.ኺኾ኿) ⋅ 10ዅኼ –

𝑁impacts 4219ዄኻኼኻኺኽዅኼኻዀኾ 5475ዄኻዂኺኻዅኻኽ኿኿ SCI.05
𝑁impacts for

KE ∈ [10ዅኾ, 10ዅኻ]
kton TNT

46ዄኻኽዅኾኻ 72.68ዄኺ.ኺኻዅኺ.ኺኻ SCI.01

𝑁impacts for
KE ∈ [10ዅዀ, 10ዅኾ]

kton TNT
3408ዄኻኻኼኾዅኻኾኻኽ 3147ዄኾኼ዁ዅኾኺዀ SCI.02

Impacts per hour [0.488, 1.8] [0.350, 3.4] –
𝑚፦።፧*[kg] (1.009ዄኻ.ኼኾዅኺ.዁ዂ) ⋅ 10ዅኼ (4.806ዄኻ.዁ዂዀዅኻ.ኽኺኼ) ⋅ 10ዅኽ –
𝑚፦ፚ፱*[kg] 12.97ዄኻ኿.ዂዂዅኻኺ.ኺዃ 1117ዄኻኽ.ዃኼዅኻኽ.዁኿ –

* Assumed impact velocity ፯ ዆ ኻ዁ km/s

As can be concluded from Table 8.1, the operational orbits meets science requirements SCI.01,
SCI.02 and SCI.05. Compliance with SCI.06 – observation of the lunar farside – is also met, since

121



122 8. Conclusion

the orbit is an Earth-Moon 𝐿ኼ orbit. However, it should be noted that the predicted number of new
meteoroid impacts discovered in the range [7 ⋅ 10ዅ኿, 7 ⋅ 10ዅኼ] kton TNT (i.e. Earth’s equivalent range
[10ዅኾ, 10ዅኻ] kton TNT) are all contained in the range [7 ⋅ 10ዅ኿, 4 ⋅ 10ዅኾ] or [7 ⋅ 10ዅ኿, 3.6 ⋅ 10ዅኼ] kton
TNT, according to the Luminous Efficiency or Blackbody method, respectively. Impact detections with
energies larger than 4 ⋅ 10ዅኾ or 3.6 ⋅ 10ዅኼ kton TNT can also occur, but their real magnitudes cannot be
measured with just one pixel, due to the saturation of the detector. As such, there might still be a gap
in meteoroid detections with equivalent kinetic energies at Earth of ∼ 10ዅኻ kton TNT, after the LUMIO
mission is completed. Hence, compliance with mission objective MO.02 – complement observations
achievable via ground-based assets – is only partial.

Regarding the methodology employed, one of the main purposes of the sequential trade-offs applied
was to reduce the design space in between trade-offs, as the analysis required became more complex.
The drawback of this methodology could have been a false conclusion on the feasibility of the mission,
given the evaluation criteria defined. However, since a feasible operational orbit has been found and
no major iterations back to Step 1 of the methodology presented in Chapter 4 were required, it can
be concluded that the evaluation criteria were appropriately defined. Nevertheless, the majority of
the orbits met the (meteoroid related) acceptance criteria at the end of the first orbit trade-off (see
Chapter 7, Section 7.4). As such, the reduction of the feasible design space before the second trade-off
was done recurring to selection criteria EC.S.02. This means that some candidate orbits have not been
evaluated with respect to acceptance criteria EC.A.06 and EC.A.07 (Δ𝑉 < 200 m/s), namely DROs, LOs
and VOs, some of which could potentially be feasible according to the requirements.

The choice of the final operational orbit also came from the application of the second selection crite-
ria (smallest Δ𝑉), in detriment of the first (largest number of meteoroid detections). Nonetheless, the
final Δ𝑉 budget is smaller than 200 m/s, and, so, the mission could be extended for more than the nom-
inal mission lifetime. The operational orbit has a budget of Δ𝑉 = 150 (transfer)+ 18 (maintenence) =
168 m/s. Given an additional 32 m/s, the mission lifetime could be extended for almost 2 years, which
would mean that almost 3 times as many impacts could be detected.

Regarding the research question, the orbit selected can be considered as the “best orbit to detect
meteoroid impact flashes on the lunar surface, with a CubeSat”. Nevertheless, as mentioned, some
orbits of the design space at the end of the First Orbital Trade-off have not been assessed in terms of
Δ𝑉 budget. Still, from the data presented in Table 8.1, it can be concluded that the orbit selected will
contribute to the achievement of the research objective – help improve the detection of lunar meteoroid
impact flashes, with a CubeSat.

Regarding the range of detectable kinetic energy, LUMIO detects approximately the same range as,
for example, NASA’s lunar impact flashes observation programme (see Chapter 2, Subsection 2.4.3).
As such, there is no improvement with respect to Earth-based methods in this aspect. However, the
cumulative number of meteoroid detections over the mission lifetime is at least 16 times greater than
NASA’s observation programme. Furthermore, it should be noted that the reported 240 observations
of this programme were made in a period of 5 years, while LUMIO would be able to detect 240 impacts
in approximately one month. Additionally, LUMIO would detect impact flashes on the lunar farside,
where no detections of meteoroid impacts have ever been done, and potentially provide observations
in the near to 10ዅኻ kton TNT kinetic energy range.
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8.2. Conclusion
The Earth’s neighbourhood constantly encounters the more than 15,500 Near-Earth Objects (NEOs)
currently catalogued and their respective fragments, known as meteoroids. As such, studying mete-
oroids can be valuable not only for the study of NEOs themselves, but can also serve a purpose on its
own. For example, by constructing accurate Solar System meteoroid models, it is possible to predict
the degradation of space-based equipment and instruments, and, so, create more sustainable designs.
Currently, in order to improve meteoroid models, there are some Earth-based lunar monitoring pro-
grammes for the detection of meteoroid impact flashes, which is one of the most efficient meteoroid
impact detection methods. However, Earth-based observations can only be made on the lunar nearside
and are restricted by weather conditions at the observation site, conditions to which a lunar remote
sensing mission would not be restricted to.

The goal of this thesis was to determine which orbit should the CubeSat Lunar Meteoroid Impacts
Observer (LUMIO) fly in order to better detect lunar meteoroid impact flashes, while complementing
Earth-based monitoring programmes. The main requirements were to detect meteoroid impact flashes
at the lunar farside and detect at least 240 meteoroid impacts, with Earth equivalent kinetic energies
between 10ዅዀ and 10ዅኻ kton TNT, during its one year mission lifetime, while having a restricted Δ𝑉
budget of at most 200 m/s. Furthermore, the detection of the impact flashes will be done with the
LUMIO-cam, which has a FOV of 6º×6º and includes a CCD sensor, operating in the visible spectrum.

In order to design the orbit of such a lunar remote sensing mission, a methodology of (3) sequential
orbital trade-offs was followed, taking into account acceptance criteria based on the mission require-
ments and selection criteria based on the research objective. The latter ensure the maximization of the
number of meteoroid detections, during the mission lifetime, and the minimization of the total mission
Δ𝑉 budget.

Firstly, several types of possible orbital families were identified: the Keplerian, perturbed Keplerian
or Libration point orbital families. Based on information already available in the literature, a Preliminary
(graphical) Orbital Trade-off was carried out. Out of the first two families, only circular Frozen Orbits
were selected as candidate orbits, due to their low stationkeeping budget and the possibility to monitor
the lunar nightside regularly throughout the year. From the Libration point orbital family, only Lyapunov,
Halo, Near-Rectilinear, Vertical, Distant-Retrograde and Low-Prograde orbits were selected as candidate
orbits.

Secondly, the candidate orbits, the payload and the meteoroid environment were simulated, in
order to check compliance with the meteoroid related acceptance criteria and perform the First Orbital
Trade-off. The generation of both types of orbits selected implied first the determination of precise initial
conditions. For Frozen Orbits, a computationally heavy numerical method, based on the minimisation
of the osculating eccentricity variation, was applied, while for CRTBP orbits, a time-varying targetting
scheme and a continuation procedure were followed. The MATLAB®codes developed were verified
and the results obtained were validated against those presented in the literature. Nonetheless, the
initial conditions obtained for Frozen Orbits require refinement for more precise applications, as the
propagation time used is relative short compared to the mission lifetime.

The modelling of the payload implied both the modelling of its optics and detector. The first was
implemented by defining its FOV in a SPICE’s IK file, while the second was implemented by defining
the Signal-to-Noise Ratio of the detector and, consequently, determining the minimum and maximum
signal it can detect in one pixel. The noise budget took into account the Moon’s surface background
noise, cosmic noise, dark-current, read-out noise, off-chip noise and quantisation noise, but not motion
blur, straylight, defocusing and Earthshine. It was concluded that, for a threshold SNR of 5, it should be
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possible to detect signals between 290 and 80000 electrons, which corresponds to an apparent visual
magnitude between +1.8 and +7.9.

The simulation of the meteoroid environment implied translating the signal detectable by the CCD
sensor into a kinetic energy range of impacts detected. This was done resorting to two different
methods: the Luminous Efficiency and the Blackbody method. The first assumes a directly proportional
relation between light emitted in the visible spectrum and the impactor’s kinetic energy, given an
assumed luminous efficiency coefficient. The second assumes that the impact flash emits radiation
as a blackbody and the emitting surface scales with the size of the impact crater. As such, the latter
method required the assumption of the impact duration, temperature and a crater size scaling factor,
among other parameters.

Using both methods, an approach to conservatively estimate the minimum kinetic energy was fol-
lowed, in detriment of the estimation of the maximum kinetic energy, as it is the first parameter that
mainly dictates the number of meteoroid impacts detected. The methods were found to agree with
respect to the minimum kinetic energy detectable and disagree with respect to the maximum kinetic
energy, for high altitudes. On the other hand, for low altitudes, the contrary was verified. Furthermore,
it was also found that, for high altitudes, the assumed position of the impact on the lunar surface can
significantly influence the number of detections estimated. As such, for the assessment of CRTBP or-
bits, it was assumed that the impact occurs between the edge of the FOV-area and subsatellite point,
while for Frozen Orbits, it was assumed to occur at nadir.

The detectable kinetic energy ranges estimated were used to estimate the corresponding lunar
meteoroid flux, using Brown’s meteoroid model, gravitationally corrected. The flux was assumed uni-
form across the Moon surface and spread evenly throughout the year, i.e. no temporal peaks in flux,
due to meteoroid showers, were considered. Furthermore, the meteoroid environment simulated was
successfully validated with data from ESA’s impact flash monitoring programme, NELIOTA.

Given the detectable kinetic energy range and correspondent lunar meteoroid flux, a coverage anal-
ysis tool was developed to determine the payload’s FOV-area in the lunar nightside, and, so, determine
how many impact flash detections are possible from a certain orbit. The FOV-area was computed
using SPICE’s MATLAB®toolbox and the estimation of the dark FOV-area was done resorting to the
Sun–Moon–Spacecraft angle, also computed using the same toolbox. A total number of detections
over the mission lifetime was computed, for each orbit, based on an average number of detections per
synodic month and assuming that such average applies to the entire duration of the mission lifetime.

For Frozen Orbits, the results obtained with both kinetic energy estimation methods differed by
at least three orders of magnitude. Comparing with results presented in the literature, the Luminous
Efficiency method, which estimates less meteoroid detections, appears to be more accurate than the
Blackbody method, at least for low altitudes. Nonetheless, both methods lead to the conclusion that
these orbits would not allow the detection of kinetic energies larger than 10ዅዀ kton TNT. As such,
Frozen Orbits were eliminated from the orbital design space.

For CRTBP orbits, the results obtained with both methods are in accordance and most orbits meet
the meteoroid related evaluation criteria. From Lyapunov, Halo, Near-Rectilinear and Vertical Orbits it
would be possible to detect between 1000 and 10000 impacts during the mission lifetime, but detections
from some DROs could be one order of magnitude larger. As such, from the First Orbital Trade-off,
DROs would have been the preferential operational orbits. However, transfer costs to DROs are known
to be high. Hence, the Second Orbital Trade-off, which took into account the Δ𝑉 budget, was instead
focused on the second best orbital family in terms of meteoroid detections: Near-Rectilinear Orbits.

Finally, from the Second Orbital Trade-off, it was found that an orbit with 𝐶 = 3.09 has the minimum
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Δ𝑉 budget. In one year, it is expected that at least 4000 meteoroid impact flashes could be detected
and eventual mission extensions could triple that amount. Furthermore, new impacts in never before
observed kinetic energy ranges could be detected. As such, a mission like LUMIO can not only com-
plement Earth-based observation methods, by observing the lunar farside, but also contribute with
significant statistical information to the improvement of current Solar System meteoroid models.

8.3. Recommendations for Future Work
In order to further the work carried out in this thesis, one of the main drivers should be improving some
of the assumptions made. In the Blackbody method, for example, it was assumed that, regardless of the
kinetic energy of an impact, the impact duration is the same. However, from Earth-based observations,
it has already been verified that there is a relation between impact duration and kinetic energy. As
such, in order to proceed with this method it would be advised to implement a correlation between
impact duration and kinetic energy, using the data gathered from Earth-based observations.

Otherwise, it is also possible to combine the Luminous Efficiency and Blackbody method, without
having to assume an impact flash duration. The total energy emitted in the visible spectrum can be
assumed given by:

𝐸ፕፓ = Δ𝑡 𝑆∫
᎘Ꮄ

᎘Ꮃ
𝐿(𝜆, 𝑇ፅ) 𝑑𝜆 [𝐽] (8.1)

Using Blackbody method’s Equations 6.35–6.37, Equation 8.1 can be re-written as follows:

𝐸ፕፓ = 2𝜋𝑑ኼ
𝑠impact

𝜏𝐴lens

∫᎘Ꮄ᎘Ꮃ 𝐿(𝜆, 𝑇ፅ) 𝑑𝜆

∫᎘Ꮄ᎘Ꮃ 𝐿(𝜆, 𝑇ፅ)
qe(𝜆)
𝐸᎐(𝜆)

𝑑𝜆
[𝐽] (8.2)

from which the kinetic energy of the impact can be computed, using Equation 6.34 and assuming a
certain luminous efficiency.

Nevertheless, this method still requires the estimation of an impact flash temperature, which is also
a function of kinetic energy. However, the modelling of this relation is not as straightforward as the
impact duration correlation with kinetic energy. Only recently has the first Earth-based lunar impact
flashes detection programme started measuring the magnitudes of flashes in two different bands (see
Chapter 2, Subsection 2.4.3). The raw data is publicly available at NELIOTA’s website1, but would
require processing in order to determine impact flashes’ temperatures and their correlation with kinetic
energy.

Finally, as DROs turned out to be the best orbits in terms of number of meteroid detections, it
would be useful to include Earthshine in the CCD’s noise budget. If then, DROs are still the most
advantageous for meteoroid detections, it should be confirmed with a more detailed analysis how
much Δ𝑉 budget do they require. If a CubeSat could autonomously reach a DRO, this type of orbits
could be an alternative to the operational orbit selected. Vertical orbits could also be a reasonable
alternative to the operational orbit selected, although less optimal in terms of meteoroid detections
and pending a detailed Δ𝑉 budget analysis. Furthermore, given a different mission baseline with the
intent to detect micrometeoroids, for example, Frozen Orbits could be more appropriate than NROs.
As such, these orbits should not be automatically excluded from future LUMIO-like missions’ studies,
based solely on the work here presented.

1https://neliota.astro.noa.gr [Last accessed on: 13/08/2017]

https://neliota.astro.noa.gr
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A
Constants

Table A.1 presents the constants used throughout this thesis:

Table A.1: Constants

Parameter Symbol Value Units
Earth–Moon mass parameter 𝜇 0.01215132 –

Sidereal month 𝑃ፌ 27.321661 days
Synodic month 𝑆ፌ 29.530589 days
Moon radius 𝑅ፌ 1738 km
Earth radius 𝑅ፄ 6378 km

Moon gravitational parameter 𝜇ፌ 4902.800305555400 km3s-2

Earth gravitational parameter 𝜇ፄ 398600.4418 km3s-2

Planck’s constant ℎፏ 6.626 ⋅ 10ዅኽኾ J⋅s
Speed of light 𝑐 299.792 ⋅ 10ዀ m s-1

Boltzman constant 𝑘 1.380 ⋅ 10ዅኼኽ J K-1

Moon gravitational acceleration 𝑔 1.67 m s-2

Kiloton of TNT kton TNT 4.418 ⋅ 10ኻኼ J
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