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ABSTRACT

Anticipatory action requires models that can accurately and reliably predict the impact
of natural hazards.However, impact forecasts are often underestimated when
consecutive hazards are not considered. In the Bicol region in the Philippines, typhoons
trigger 90% of landslides, causing a lot of fatalities and damage to infrastructure and
agriculture. The lack of information on past landslide events has hampered the
construction of landslide forecasting models. Currently, a machine learning (ML)
impact-based forecasting (IBF) model for typhoons is operational in the Philippines.
The model was developed by 510, an initiative of the Netherlands Red Cross. The model
predicts impact due to the high wind speeds associated with typhoons and includes the
possible impact due to landslides only via a static landslide susceptibility map. Hence,
this study focused on extending the 510 typhoon model via hybrid modeling into a
multi-hazard forecasting model for both typhoons and landslides to improve the
forecast by considering impact from typhoon-induced landslides. The implementation
of the hybrid multi-hazard impact-based forecasting model was tested on two typhoon
events in the Bicol region.

A hydrometeorological landslide IBF model was successfully created, even with the
limited data on landslide occurrences and rainfall available. The newly established
regional event duration threshold for Bicol was applied on the case study events with an
increased impact boundary of 300 km compared to the typhoon impact boundary of 100
km. The results of the hybrid multi-hazard model showed an improved impact forecast
-compared to the model considering solely static input of landslides, which
underestimated impact- in both location extent of the impact forecast and in accuracy:
the True Positives doubled, whereas the False Negatives reduced by half. The separate
landslide IBF model as an extension of the existing ML typhoon model provided
additional benefits as these models can be decoupled to optimize the performance and
reliability of both. This study resulted in the prototype of an impact-based multi-hazard
model for typhoons and landslides for the Philippines and demonstrated the
importance of considering impact from consecutive hazards.

Keywords: Landslide, typhoon, consecutive hazards, impact-based forecasting,
rainfall, machine learning, Philippines
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DEF IN I T IONS

The following definition apply to this thesis and may differ from definitions used in
other publications.

Consecutive hazards: Two or more hazards taking place in sequence within the same
region and of which the impact overlaps. The first hazard alters the vulnerability of the
region, increasing the susceptibility of the people or property for the secondary hazard,
resulting in increased impact. This thesis also considers consecutive hazards with a
triggering relation; the initial hazard causes the consecutive hazard(s) to occur (De
Ruiter et al., 2020; Gill and Malamud, 2014; King, 2021).

Coping capacity: The ability to react to and reduce impact of hazards, such as
institutions and infrastructure, the number of evacuation centres, health facilities and
travel times to those institutions (Teklesadik and Riquet, 2021; UKMO, 2018).

Data collection: The collection of data for both the hazard forecast, i. e. sensors or
satellites imagery, geographical and weather information, and impact forecast, i. e.
socio-demographic information, and exposure, coping capacity and vulnerability data.
The first component in an impact-based forecasting chain. Adapted from Zhang et al.
(2019).

Elements: In this research; factors that influence the reliability and success of an
individual component within the impact-based forecasting chain. A distinction is made
between those which are essential for a component to succeed and those affecting the
reliability of a component, the influential elements.

Event duration threshold: A type of rainfall threshold obtained from the accumulated
rainfall and duration of specific events. Event duration (ED) thresholds are one of the
most common methods to characterise a rainfall threshold for heavy rainfall events,
such as typhoons. An ED threshold is the base line (lower bound) of rainfall conditions
that will likely initiate a landslide event (Melillo et al., 2016, 2018; Zamudio and Orogo,
2021).

Exposure: The situation of people, infrastructure, buildings and other concrete human
assets located in hazard-prone areas. Exposure refers to who and what might be
affected in an area when a hazard occurs. If population and economic resources were
not exposed to a hazard, no impact would exist. Exposure is time and space dependent
(CMA and GFDDR, 2016; IFRC, 2021; WMO, 2015; Wilkinson et al., 2018).

Hazard: A hazard is defined as a hydrometeorological-based, geophysical or
human-induced element that poses a level of threat to life, property or the environment
(WMO, 2015). In this thesis, the hazard of typhoons and landslides are considered.
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Hazard forecast: The possibility of a hazard occurring in the near future (IFRC, 2021).
By the aggregation of input sources, modelling and programming techniques a
dynamic, spatially and temporally, hazard forecast can be created. A threshold is
needed to identify those areas prone to the hazard (Teklesadik and Riquet, 2021;
Wilkinson et al., 2018). The second component of the impact-based forecasting chain.

Hybrid multi-hazard impact-based forecasting model: In this research, this model
combines a machine learning impact-based forecasting model for one hazard (typhoon)
with a separate hydrometeorological impact forecasting model for a second/consecutive
hazard (landslides). Hybrid refers to the extension of the existing machine learning
model with a separate model for consecutive hazard events. The hybrid model creates a
total impact forecast of both the primary and secondary hazards. In this research,
shortened to hybrid model

Impact: The sumof the hazard, the vulnerability, coping capacity and the exposure (CMA
and GFDDR, 2016; Teklesadik et al., 2022; Teklesadik and Riquet, 2021; WMO, 2015).

𝐼𝑚𝑝𝑎𝑐𝑡 = (𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 × 𝐶𝑜𝑝𝑖𝑛𝑔 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦) + 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 + 𝐻𝑎𝑧𝑎𝑟𝑑

Impact forecast: The aim of impact-based forecasting. The impact assessment combines
the impact data from the data collection with the hazard forecast to predict the
probability of impact occurring at a location (IFRC, 2021). The impact is calculated by
summing hazard with vulnerability, coping capacity and exposure (Teklesadik and
Riquet, 2021; Wilkinson et al., 2018). The third component in an impact-based
forecasting chain.

Impact inventory: Data set containing information of the actual impact caused by a
historical hazard. This information helps to determining the impact magnitude, location
and trigger (IFRC, 2021). Impact inventories are essential to verify the methods used for
the impact forecast (UKMO, 2018; WMO, 2015).

Impact-based forecasting (IBF): A forecasting method which considers the impact a
disaster will make instead of only forecasting a hazard. It combines temporal and spatial
assessments of the hazard probability of occurrence with vulnerability, coping capacity
and exposure of people and property, to create an impact forecast. Forecasting impact
instead of hazards results in a better translation of forecasts into anticipatory action,
such that disaster risk resilience is enhanced (CMA and GFDDR, 2016; Gill and
Malamud, 2014; IFRC, 2021; UKMO, 2018; WMO, 2015; Wilkinson et al., 2018)

Impact-based forecasting chain: A chain of 5 components, which forms the
impact-based forecasting method and leads to the decision on the type and place of
early actions. Component 1 starts with collecting forecast and impact data. Component
2 creates a hazard forecast and in component 3 impact is forecasted. Component 4 sends
a warning if an impact threshold is exceeded. Component 5 ends the chain with
response of the warning into early actions. Modified from Zhang et al. (2019).
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Impact-based forecasting model: A model which applies the impact-based forecasting
method to create an impact forecast. It combines the first three components of the
impact-based forecasting chain: data collection and hazard forecast components to form
an impact forecast. Modified from Zhang et al. (2019).

Lag time: Time required to complete the data collection of an impact-based forecasting
model.

Landslide: Defined by Guzzetti et al. (2012) as The movement of a mass of rock, debris, or
earth down a slope, under the influence of gravity. In this research, landslides are confined to
landslides caused by rainfall from typhoon events.

Landslide cause: The underlying, often long term, change, event or consecutive events
that occurred which prepares the slope to become unstable and fail. The cause can relate
to longer timescales and larger spacial scales (Bogaard and Greco, 2016).

Landslide trigger: The last push (or drop of water) for a slope to become unstable. The
trigger has a smaller and shorter spatial and temporal scale than the cause of a landslide.
It can be difficult to distinguish cause from trigger (Bogaard and Greco, 2016; Bogaard
and Greco, 2018). This thesis focuses on landslides triggered by the excess rainfall from
typhoons.

Landslide inventory: Information on the landslide events in a particular area showing
the locations and runout of landslides that occurred. A landslide inventory is a data set
that may represent single or multiple events. The landslide inventory is essential in
performing any assessment on the hazard or impact (Chacón et al., 2006; Van Westen
et al., 2008). A reliable landslide inventory includes information on the location, timing,
cause, trigger, type, runout and impact of a landslide (Corominas et al., 2014; Van
Westen et al., 2006). A landslide inventory is essential for hazard or impact forecasting
(Corominas et al., 2014)

Landslide susceptibility map: Map indicating where landslides may occur. It includes
a spatial assessment of factors relating to the instability processes in order to determine
zones of landslide-prone areas without any temporal inclusion (Chacón et al., 2006).

Landslide hazard map: A map showing the probability of landslides occurrences
within a specified period of time within a given area. It includes both a spatial and
temporal event. It should ideally show the chance that a landslide forms at a particular
place and also the chance that a landslide from further up slope strikes that place
(runout) (Chacón et al., 2006).

Landslide impact map: Map showing the expected landslide impact in the affected area.
It combines the probability information from a landslide hazard map with vulnerability,
exposure and coping capacity data (Chacón et al., 2006; Teklesadik and Riquet, 2021).
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Lead time: The time between the start of an impact forecast until the occurrence of the
event that is forecasted to happen (IFRC, 2021).

Multi-hazard: Defined by WMO; (2017) as ’The selection of multiple major hazards that the
country faces, and the specific contexts where hazards may occur simultaneously, cascadingly or
cumulatively over time, and taking into account the potential interrelated effects’. In this
research, typhoons and landslides are considered as the major hazards.

Multi-hazard impact-based forecasting model: An impact-based forecasting model
applied to multiple hazards. It captures the inter-hazard relations to form a total impact
forecast for multi-hazards (WMO; 2017; Zhang et al., 2019).

Rainfall threshold: In this research an the event duration threshold is applied.

Reliability: In this thesis, reliability implies that the flow of the components within the
impact-based forecasting chain is sustained and is defined by ’The combined reliability of
each individual component of the impact-based forecasting chain’ Thirugnanam et al. (2020).
Reliability is confined to a spatial assessment and temporal reliability is not considered.

Reliable forecast: In this research, defined by the resemblance of a forecast with the
actual impact regarding its accuracy and geographical location. The accuracy is
quantified as a ratio of the number of times a forecast is true or false (by the F1 score).
The reliability concerning the location indicates the spatial correctness and geographical
extent of the forecast. The temporal component of reliability is not considered in this
research.

Typhoon: A (tropical) cyclone is a general term referring to a revolving weather
disturbance that develops in the tropics. It can be a Tropical Depression, a tropical
storm, a severe tropical storm, a typhoon or a super typhoon depending on the
maximum sustained winds near the center. Typhoons are those weather system where
the sustained winds exceed 200 km/h for 1 minute sustained wind speed (PRC, 2019;
Teklesadik and Riquet, 2021).

Typhoon-induced landslides: Landslides triggered by the excess rainfall from a
typhoon and occurring during and and shortly after typhoon events (Acosta et al., 2016;
Zamudio and Orogo, 2021). Also referred to as typhoon-triggered landslides or
rainfall-induced landslides during typhoon events.

Vulnerability: The increase in susceptibility of exposed elements by physical, social,
economic and environmental factors or processes, i. e. human beings, their livelihoods
and property, to suffer adverse effects when affected by a hazard. Vulnerability is
situation specific and interacts with the hazard to form risk. Therefore, vulnerability is
dynamic, relative and time- and space dependent (CMA and GFDDR, 2016; IFRC, 2021;
WMO, 2015; Wilkinson et al., 2018).

510 typhoon model: In this research, the machine learning impact-based forecasting
model for typhoons as constructed by 510, an initiative of the Netherlands Red Cross.
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1 I N TRODUCT ION

1.1 IMPACT- BA S ED FORECAST ING ( I B F )

Worldwide, the occurrence and impact of natural hazards is becoming more frequent
and increasingly intense (De Ruiter et al., 2020; Wilkinson et al., 2018). Forecasting
impact from natural hazards reduces damage, destruction and death. Anticipatory
action and early warning became possible when forecasting information became
available. Traditional early warning systems provide information on when and where a
hazard will occur. This type of hazard forecasting does not include the impact a hazard
will make, whereas impact-based forecasting (IBF) does (UKMO, 2018; WMO, 2015;
Wilkinson et al., 2018). IBF combines temporal and spatial assessments of the hazard
probability of occurrence with vulnerability, coping capacity and exposure of people
and property, to create an impact forecast. This is desirable as it helps to predict the
magnitude of the impact and the location of the area affected by the hazard, instead of
predicting where a hazard may occur. Disasters will only occur if a hazard coincides
with exposure and vulnerability, resulting in loss and damage. Therefore forecasting
impact provides for a better translation of forecasts into anticipatory action, such that
disaster risk resilience is enhanced (CMA and GFDDR, 2016; Gill and Malamud, 2014;
UKMO, 2018; WMO, 2015; Wilkinson et al., 2018).

The combination of the physical hazard’s likelihood, severity and impact forecast
with socio-political factors and stakeholder involvement together provides all the
information to make a decision on the anticipatory action strategy. The forecast and
decision includes an uncertainty as it is a prediction of both a natural hazard and its
impact. In the end, this decision remains a human action on which end-users must rely
(Bierens et al., 2020; Guzzetti et al., 2012; UKMO, 2018; WMO, 2015; Wilkinson et al.,
2018). Studies by Bierens et al. (2020), Van den Homberg et al. (2020), and WMO
(2015) have shown that stakeholder acceptance of the decision can be improved if the
reliability of an impact forecast is improved.

1.2 R E L IA B I L I T Y O F THE I B F CHA IN AND MODEL

IBF consists out of a chain of components, which together lead to the decision of where
and what kind of early action should be taken (Zhang et al., 2019). The IBF chain in
figure 1.1 is modified from Zhang et al. (2019) and starts with collecting forecast,
vulnerability and exposure data in component 1; to create the hazard and impact
forecasts in component 2 and 3, respectively; a warning is send (component 4) when a
certain impact threshold is exceeded; which results in response of the warning
(component 5).

1



1.3 CA S E STUDY AREA : THE B I COL REG ION IN THE PH I L I P P IN E S 2

The IBF chain functions in a sequence or continued flow in which each component to
the right depends on the components left from it. The reliability of each component
should be maximized, as subsequent components are influenced by their predecessors.
If one component does not work or is unreliable, the sequence cannot be sustained,
resulting in an overall decrease in reliability and trustworthiness of the impact forecast
and warning (Guzzetti et al., 2020; Thirugnanam et al., 2020; WMO; 2017; Zhang et al.,
2019). The reliability in this research uses the definition of Thirugnanam et al. (2020) as
’The combined reliability of each individual component of the chain’.

Figure 1.1: A schematic representation of an impact-based
forecasting chain for natural hazards indicating the successive
components. An impact-based forecasting model consists of the
first three components of the chain. Modified from Guzzetti et al.
(2020), WMO; (2017), and Zhang et al. (2019)

IBF often contains a data-driven model (Teklesadik et al., 2022; Thirugnanam et al.,
2020), represented by the first three components, which results in an impact forecast.
The aim of this model is to forecast the location and magnitude of impact as reliably as
possible. In this research, an IBF model for typhoons is assessed with the goal of
improving the reliability of the impact forecast.

1.3 CA S E STUDY AREA : THE B I COL REG ION IN THE PH I L I P P IN E S

The Philippines is a disaster-prone country and natural hazards occur frequently.
Typhoons are the most recurring hazard; around 20 typhoons come within reach of the
country and 10 make landfall each year. Typhoons, also referred to as tropical cyclones
which exceed a wind speed of 200 km/hr for 1 minute, are most common at the end of
the year during the wet season. They bring heavy amounts of rainfall, even when the
typhoon does not make landfall. Such rain events can cause or trigger landslides
(Acosta et al., 2016; PRC, 2019; Teklesadik and Riquet, 2021; Zamudio and Orogo, 2021).

In the Bicol region in the Philippines (figure B.6) typhoons occur mostly in November
and have serious impact due to the high number of inhabitants and the importance of
the agriculture sector (PRC, 2019). Landslides in Bicol happen due its proneness for
landslide hazard by the mountainous terrain, presence of active faults and its
geographical location in an area where heavy rains, storms and typhoons are frequent
(indicated in red in figure B.6). Landslides are closely related to typhoons due to their
heavy rainfall and in the Bicol region, 90% of landslides are caused by typhoons (Acosta



1.4 R E S EARCH QUE ST ION 3

et al., 2016; Start Network, 2021; Zamudio and Orogo, 2021). This research focuses on
those landslides induced by the rainfall from typhoons, either during or shortly after
landfall of the typhoon.

Figure 1.2: The Bicol region in the Philippines
(left) and its susceptibility to hazards (right),
with landslide prone areas in red. Modified
from Zamudio and Orogo (2021).

In March 2021, a landslide
study was launched in the Bicol region by
the Start Network in collaboration with
the Philippines Red Cross (PRC), the
IBF department of PRC, Humanitarian
Inclusion, PLAN, ADRA and the German
Red Cross. Their aim is to develop
a model which assesses typhoon-induced
landslides in the Bicol region. The Bicol
region was chosen due to its susceptibility
to landslides and the presence of various
cities located in landslides-prone areas
(indicated in figure B.6) (Start Network,
2021; Zamudio and Orogo, 2021).

510, an initiative of the Netherlands Red Cross, has developed and implemented a
machine learning (ML) IBF model to forecast the impact of typhoons in the Bicol region.
The model, from now on referred to as the 510 typhoon model, sends a warning to PRC
when a threshold of percentage of damaged buildings within a municipality is exceeded
(PRC, 2019). As most landslides in Bicol are triggered by typhoons (Zamudio and
Orogo, 2021), the latter two projects may be combined. Hence, the aim of this research is
to assess whether the reliability of the impact forecast of the 510 typhoon model
improves if typhoon-induced landslides are taken into account.

1.4 R E S EARCH QUE ST ION

This thesis focuses on improving the reliability of a multi-hazard IBF model for natural
hazards by assessing and expanding an existing ML model for typhoons in the
Philippines with a hydrometeorological forecasting model for typhoon-induced
landslides. The main research question of the thesis is defined as:

Can the reliability of an existing typhoon impact-based forecasting model be improved by
including the impact of typhoon-induced landslides?

The following sub-questions (SQ) are defined to answer the main research question:

1. What is the relevance of consecutive hazards?
2. What influences the reliability of a landslide hazard and impact forecast?
3. How can a landslide impact forecast be included in an existing machine learning

impact-based forecasting model for typhoons?
4. Does the reliability of an impact-based forecasting model improve when both

typhoons and typhoon-induced landslides are considered?
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This thesis results into four deliverables:

1. Assessment of the importance of consecutive hazards in impact-based forecasting
models.

2. A regional event duration rainfall threshold for landslide initiation in the Bicol
region of the Philippines.

3. A prototype of a hybrid multi-hazard impact-based forecastingmodel for typhoons
and landslides.

4. Recommendations for improvements of the hybrid multi-hazard model.

1.5 THE S I S OUTL INE

Figure 1.3: Thesis outline indicating the chapters, sections, sub-questions (SQ) and deliverables
of the research.



2 REL IABLE FORECAST S FOR LANDSL IDE S & TYPHOONS

The relevance of impact of consecutive hazards, with a focus on typhoons and
typhoon-induced landslides, is discussed. Factors of influence on the reliability of a
landslide impact forecast are assessed for the design of a landslide IBF model.

2.1 THE INCREA S ED IMPACT OF LANDSL ID E S AND TYPHOONS

Natural hazards can have inter-hazard relations when they occur within the same area
and time. A triggering relation is defined by a primary hazard causing or triggering one
or multiple secondary hazards, resulting in a cascade of hazards (Cabrera et al., 2021;
De Ruiter et al., 2020; Gill and Malamud, 2014; King, 2021). Consecutive hazards are two
or more hazards taking place in sequence within the same region and of which the
impact overlaps. The first hazard alters the vulnerability of the region, increasing the
susceptibility of people and property for the secondary hazard, resulting in increased
total impact. Primary and consecutive hazards should not be assessed independently as
impact may be underestimated (Cabrera et al., 2021; De Ruiter et al., 2020; Gill and
Malamud, 2014; King, 2021).

In this research, the two interacting hazards are typhoons and landslides. Landslides
triggered by the rainfall of a typhoon have a wider area of range than the winds from
the typhoon (IFRC, 2016a). Therefore the impact of landslides and typhoons combined
occurs on a larger spatial extent compared to the impact of solely a typhoon (De Ruiter
et al., 2020; Gill and Malamud, 2014; Segoni et al., 2018; Van Westen et al., 2006).

A typhoon alters the initiation conditions of the environment for landslides and
increases the vulnerability of the region (Cabrera et al., 2021; De Ruiter et al., 2020). Too
little time between subsequent hazards results in insufficient vulnerability recovery,
schematically shown in figure 2.1 (adapted from De Ruiter et al. (2020)). Consecutive
hazards change the vulnerability of a region from static to dynamic in magnitude and

Figure 2.1: The increased vulnerability when
considering consecutive hazards compared to single
hazards, adapted from (De Ruiter et al., 2020)

time. Exposure becomes dynamic
when measures, e. g. relocation
and evacuation, are taken during
the course of the hazard forecast
and event (De Ruiter et al., 2020;
Gill and Malamud, 2014; King,
2021). Increased vulnerability and
exposure from hazard-interactions
results in increased impact
and possibly exceeds impact when
hazards are assessed independently
(De Ruiter et al., 2020).

5



2.2 R E L IA B L E IMPACT FORECAST ING FOR LANDSL ID E S 6

Long term measures to reduce landslide hazard and impact include e. g. adaptation of
land use planning strategies. This requires continued monitoring of landslides over the
course of multiple years and involvement of various stakeholders for decision-making
(Segoni et al., 2018). Short term measures to protect people and property, e. g. building
local construction to slow down landslides, take time to be constructed. Within the
limited time available prior to the typhoon, effective early actions for landslides other
than evacuation and relocation are therefore difficult to implement. Landslide impact
forecasts provide for a suitable and applicable measure to mitigate and reduce landslide
impact (Segoni et al., 2018; TSR, 2007). The measures for landslides, thus, have another
character from the early actions appropriate for typhoons (Cabrera et al., 2021; Segoni
et al., 2018).

Due to the increased and dynamic form of vulnerability, exposure and impact;
enlarged spatial extent; and difference in early action measures possible within the lead
time, the severity of impact can be much more if a landslide occurs in combination with
a typhoon. Hence, forecasting the impact of landslides and typhoons combined can
result in a more reliable impact forecast (Cabrera et al., 2021; De Ruiter et al., 2020; Gill
and Malamud, 2014; King, 2021).

As explained above, there is a need to include consecutive hazards into existing
forecasting models (CMA and GFDDR, 2016; Cabrera et al., 2021; Georisk, 2021;
Monteverde et al., 2020; WMO; 2017; Zamudio and Orogo, 2021). In the Philippines,
where multi-hazards occur frequently, such models are required (Monteverde et al.,
2020). The construction of a reliable landslide or multi-hazard model where landslides
are included has been hampered by the lack of information on past landslide events, the
hazard and impact (Cabrera et al., 2021; Zamudio and Orogo, 2021). Expanding
forecasting models with secondary hazards can be beneficial as part of the data
collections has been done for the primary hazard (Gill and Malamud, 2014). This can
reduce lag time compared to creating two separate models. This study aims to create a
multi-hazard typhoon and landslide IBF model for the Philippines by expanding the
existing 510 typhoon model with a separate landslide model.

2.2 R E L IA B L E IMPACT FORECAST ING FOR LANDSL ID E S

A reliable forecast in this research is defined by the resemblance of a forecast regarding its
accuracy and location with the actual impact. The accuracy is quantified in a ratio of the
number of times a forecast is true or false. The location indicates the spatial correctness
and geographical extent of the forecast. A reliable impact forecast of an IBF forecasting
model is influenced by the reliability of each component (figure 1.1) and of influential
elements of these components. Understanding what elements influence the reliability of
an impact forecast helps to create reliable forecasting models, e. g. a typhoon-induced
landslide IBF model.

A literature study on the subjects of early warning chains for natural hazards and
rainfall-induced landslides, landslide hazard and impact assessments, and IBF was
performed. It resulted in the selection of reliability elements of influence on the
components of an IBF landslide model. These elements thus affect the reliability of an
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impact forecast for landslides (Cabrera et al., 2021; Guzzetti et al., 2020; Joshi et al.,
2020; Nadim and Intrieri, 2011; Segoni et al., 2018; Thirugnanam et al., 2020; UKMO,
2018; Van Westen et al., 2006; WMO; 2017; Waidyanatha, 2010; Wilkinson et al., 2018;
Zhang et al., 2019). Appendix A includes the definition of the reliability elements per
component. Essential elements are required for a component to be successful and
influential elements affect the reliability of a component. The latter are considered for
the expansion of the 510 typhoon model with a reliable landslide IBF model.

Figure 2.2: Overview of the reliability elements of an impact forecast indicating the essential and
influential elements for the components in an IBF model for landslides. Appendix A includes
the definition of the elements (Cabrera et al., 2021; Guzzetti et al., 2020; Joshi et al., 2020; Nadim
and Intrieri, 2011; Segoni et al., 2018; Thirugnanam et al., 2020; UKMO, 2018; Van Westen et al.,
2006; WMO; 2017; Waidyanatha, 2010; Wilkinson et al., 2018; Zhang et al., 2019).

Previous studies in landslide hazard and impact assessments were assessed to identify
what is required for a reliable data collection, hazard and impact forecast for landslides.
Requirements of the components and possible challenges which can be encountered link
to the influential reliability elements (printed in italic) and are explained per component.

2.2.1 Data collection for landslide IBF

A landslide hazard and impact forecast requires the input of many data sources as
described by Corominas et al. (2014), Van Westen et al. (2006), and Van Westen et al.
(2008). An essential input is a landslide inventory used for validation procedures of the
hazard and impact forecast (Cabrera et al., 2021; Van Westen et al., 2008). A reliable
landslide inventory includes information on the location, timing, cause, trigger, type,
runout and impact of a landslide (Corominas et al., 2014; Van Westen et al., 2006).
Inventories often lack data completeness as many information sources only record those
landslide events that caused substantial impact (Cabrera et al., 2021; Van Westen et al.,
2006), resulting in an underestimation of past landslide events. It can take years of
proper monitoring and data collection to create or complete inventories (Van Westen
et al., 2006). Reliable techniques to increase the quality of landslide inventories have
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been described by Guzzetti et al. (2012) and Van Westen et al. (2008). Especially the
impact caused by landslides is frequently of poor quality due to the triggering relation
of landslides with other hazards and their overlapping impact. Impact maps indicating
solely landslide damage are scarce (CMA and GFDDR, 2016; Cabrera et al., 2021; De
Ruiter et al., 2020). For the creation and validation of landslide impact forecasting
models, an inventory that is as complete as can be must be used, as stated by Corominas
et al. (2014).

Distinguishing between the cause and trigger of a landslide requires data sets relating
to triggering mechanisms, environmental factors, antecedent conditions, previous
landslides, inter-hazard relationships, the type of landslide and their difference in
(hydrometeorological) trigger (Acosta et al., 2016; Bogaard and Greco, 2018; CMA and
GFDDR, 2016; Cabrera et al., 2021; Sidle and Bogaard, 2016; Van Westen et al., 2006).
Such information often lacks in quality or completeness, but is necessary for a reliable
forecast of landslide probability and source location (Cabrera et al., 2021; Van Westen
et al., 2006).

For impact forecasts, data on vulnerability, coping capacity and exposure of elements
at risk is required (Cabrera et al., 2021; UKMO, 2018; Van Westen et al., 2006; WMO,
2015). As landslides are commonly classified as secondary hazard (Cabrera et al., 2021;
Corominas et al., 2014), the elements at risk suitable for landslides can differ from those
of the primary hazard. Appropriate indicators for the vulnerability and exposure to
landslide hazard and impact can be incomplete or missing (Corominas et al., 2014; De
Ruiter et al., 2020; Gill and Malamud, 2014; Van Westen et al., 2006).

2.2.2 Landslide hazard forecast

The hazard forecasting method used in landslide IBF models should be applicable for the
type of impact forecast (Van Westen et al., 2006), but largely depends on the available
information. Various susceptibility and hazard mapping techniques are described by
Corominas et al. (2014).

A reliable landslide hazard map should include temporal and spatial factors, i. e. a
value of the magnitude-frequency or spatially-distributed intensity characteristics.
Current hazard forecasting methods do not fully and reliably include the intensity, volume
or runout as output (Bogaard and Greco, 2018; Cabrera et al., 2021; Corominas et al.,
2014; Guzzetti et al., 2012; Sidle and Bogaard, 2016; Van Westen et al., 2014).

Obtaining a reliable value for a hazard forecasting threshold is challenging as it is requires
the calibration of data to intrinsic values and antecedent conditions which are difficult to
measure and model (Bogaard and Greco, 2018; Corominas et al., 2014) and depend on
the landslide trigger (Van Westen et al., 2006; Van Westen et al., 2008).
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2.2.3 Landslide impact forecast

The impact forecasting method depends on the output of the hazard map and end-users of
the forecast (Cabrera et al., 2021; Corominas et al., 2014). Quantitative forecasts require
values of mass, volume and runout extent, and for qualitative impact forecasts, the
hazard map should contain spatially-distributed intensities (Van Westen et al., 2006;
Van Westen et al., 2008).

Understanding hazard-impact relations in multi-hazard models is important, as
explained in section 2.1 (Corominas et al., 2014; De Ruiter et al., 2020; Gill and
Malamud, 2014; King, 2021). Reliable impact assessments should link the type of
hazard with suitable indicators for the vulnerability and exposure of the elements at
risk (De Ruiter et al., 2020; Van Westen et al., 2006; Van Westen et al., 2008).

The total uncertainty of the impact forecast is the combined uncertainty of the input
data, hazard forecast and impact forecast, as the uncertainty propagates through the
components of the IBF model (Gill and Malamud, 2014). A reliable impact forecast is
therefore influenced by the combined reliability of each component (Thirugnanam et al.,
2020).

Thus, creating an IBF model for landslides does not come without challenges. These
are mainly due to data scarcity; the difference between cause and trigger; inter-hazard
relationships of landslides; the output of hazard maps; and the type of vulnerability and
impact assessment possible depending on the available information.



3 METHOD : CREAT ION OF THE HYBR ID MODEL

This chapter describes the machine learning IBF typhoon model and its static inclusion
of landslides. The method for the creation of a prototype of a hybrid multi-hazard IBF
model consists of three steps: establishing a regional event duration threshold, hazard
and impact forecasting, and the reliability assessment.

3.1 THE 5 10 TYPHOON MODEL

The machine learning (ML) 510 typhoon model is trained on historical typhoon data to
form a relationship between the typhoon hazard and its impact. The 510 typhoon model
contains aMLmodel (grey outlined boxes in figure 3.1) and the 510 typhoonmodel (black
outlined boxes in figure 3.1). The output of the ML model in the form of a hazard-impact
curve is a source of input for the 510 typhoon model.

Figure 3.1: Overview of the 510 typhoon model. Grey boxes indicate 4 steps to create a machine
learning (ML) model. The ML model is combined with the 510 typhoon model (black outlined
boxes) to create an impact forecast by linking hazard indicators with exposure, vulnerability and
coping capacity (adjusted from Teklesadik and Riquet (2021)). The dark green box shows the
landslide component of the 510 typhoonmodel. A full size image can be found in Appendix B.2.

Numbers 1 to 4 (in grey boxes in figure 3.1) indicate four steps which result in the
creation of the ML model. Data on vulnerability, coping capacity and exposure are
collected in step 1. These impact indicators are combined with historical hazard
indicators (rainfall and wind) and actual impact data in step 2 and 3, respectively. A
hazard-impact curve is created in step 4 by relating the collected hazard and impact
indicators with the actual impact. When a typhoon enters the Philippines area of reach,

10
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hazard forecasting indicators are obtained in step 5. The hazard indicators and the ML
model are provided as input for the 510 forecasting typhoon model - a code in R - (black
outlined boxes in figure 3.1). An impact prediction is made in step 6 by comparing the
hazard characteristics of the approaching typhoon with the hazard predictors of
previous typhoons in the ML model, such that comparable impact is determined from
the hazard-impact curve. This results in an impact forecast for the approaching typhoon
in the format of a percentage of houses likely to get completely damaged (Teklesadik
et al., 2022; Teklesadik and Riquet, 2021). A detailed explanation of the ML model and
the 510 typhoon model is included in Appendix B.1.

Figure 3.2: Landslide Susceptibility
Map (LSM) of the Bicol region with
three classes of susceptibility; high
(red), medium (orange) and low
(yellow) (NOAH, 2021).

Data on consecutive hazards
of typhoons, i. e. landslides and storm surges,
is integrated in the ML model, indicated by the
dark green box in figure 3.1. The landslide input
is static and consists of a percentage of buildings
per municipality located in landslide-prone areas.
A Landslide Susceptibility Map (LSM) (figure
3.2) constructed by the Philippine Nationwide
Operational Assessment of Hazard (NOAH)
indicates three areas susceptible to landslides:
high (red), medium (orange) and low (yellow)
(Eco et al., 2015; NOAH, 2021). Appendix
B.3 provides background information on
the creation of the map and a figure of the LSM of
the Philippines. The LSM is overlain with housing
data per municipality, resulting in a percentage
of buildings per municipality located in
the three susceptibility zones. This percentage per
zone is one of the predictors in the ML model, as
indicated in figure 3.1. The 510 typhoon model can
be referred to a multi-hazard model as it considers
this static input for landslides. However, research indicated little to no influence of the
landslide predictor on the hazard-impact curve in the ML model (Teklesadik et al.,
2022). No additional or dynamic data for landslides is included in the 510 typhoon
model and therefore the impact forecast lacks the inclusion of impact from landslides.

3.2 CREAT ING A HYBR ID MODEL

Landslide hazard and impact can be integrated either in the 510 typhoon model in the
ML model or the 510 typhoon model. To create suitable landslide hazard-impact
relations in the ML model, reliable landslide inventories providing information on e. g.
previous landslide occurrences location and timing, landslide types and landslide
impact, are required. Such inventories do not exist for the Bicol region. The
hazard-impact relations created by the ML model are based on the available data and
cannot be assessed or validated due to the complexity and of machine learning (Tunkiel
et al., 2020; Wagenaar et al., 2020). Therefore, the multi-hazard IBF model is created by
extending the 510 typhoon model with a separate and simplistic IBF model for
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landslides. Thereby, the inclusion of landslides is altered from static in the ML model to
dynamic in the 510 typhoon model.

Figure 3.3: Overview of the hybrid multi-hazard IBF model in which the dark green boxes
indicate landslide components. Light grey and grey outlined boxes are not altered or used. Black
outlined variables are applied or created in the design of the hybrid model. The bright green
boxes show the step of the method and link to figure 3.4. Appendix B.2 has a full size image.

The prototype of the combined models for landslides and typhoons is referred to as
the hybrid multi-hazard (MH) IBF model, or hybrid model (figure 3.3). The 510
typhoon model, ML model and typhoon impact forecast (indicated in light grey) are
not altered during the creation of the hybrid model. A separate IBF model for landslides
is constructed (black outlined boxes in black figure 3.3) and integrated as extension of
the typhoon impact forecast to create a total impact forecast.

The landslide IBF model combines rainfall data and the LSM (available from the 510
typhoon model) with a regional event duration (ED) threshold. The ED threshold is
created in step 1 of the method (green box in figure 3.3). In step 2, a landslide hazard
and impact forecast is made and combined with the typhoon impact forecast. In the
reliability assessment in step 3, the total impact forecast of the hybrid model is
compared to the typhoon impact forecast of the 510 typhoon model and the actual
impact. The three steps of the method for the creation of the hybrid model in figure 3.4
link to those indicated in figure 3.3.

3.2.1 Step 1: Regional event duration threshold

The exceedance of a rainfall threshold by the actual rainfall indicates the onset of
landslides occurrences. In this research, a regional event duration (ED) curve is used to
determine the rainfall threshold. It is created with the automatic ”Calculation of Rainfall
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Thresholds for Landslide” occurrence (CTRL-T) (Melillo et al., 2016, 2018). The ED
approach considers the duration of a rainfall event (D) and the associated accumulated
rainfall (E) in mm. It is a suitable approach in case of landslides triggered by typhoons,
instead of other threshold methods, as typhoon events cause large amount of rainfall in
a short amount of time. The ED method has been applied in the landslide study project
of the START network in the Bicol region and in the LANDSLIP project in India, which
makes use of the CTRL-T model (Brunetti et al., 2021; Zamudio and Orogo, 2021).

Figure 3.4: Method overview showing the three steps in the creation of a hybrid multi-hazard
IBFmodel. Per step, the data collection, method and outcome is indicated. The steps correspond
to the numbers indicated in figure 3.3. A full size image can be found in Appendix B.2.

The first step of the method of CTRL-T (visualised in step 1, the first row of figure 3.4)
is the collection of data and preparation of input files. Input values are shown in table
C.2 for three file types: rain gauge locations, rainfall time series and landslide events
(Melillo et al., 2016, 2018). Per rain gauge, rainfall time series containing dates and
hourly precipitation are collected. Missing dates are included by inserting precipitation
values of 0 or 200 mm, depending on the occurrence of a typhoon at the missing date.
Precipitation of 200 mm per day is applied to account for the extreme precipitation
associated with typhoon events and validated with accumulated rainfall from previous
typhoon events, shown in Appendix B.5 (JAXA, 2021). Daily rainfall is converted to
hourly precipitation by equal distribution. This can cause inaccuracies for the selection
of the duration of a rainfall event and affects the uncertainty parameters of the ED curve,
but is applicable as the ED threshold has a daily temporal scale (Brunetti et al., 2021;
Gariano et al., 2020; Melillo et al., 2016). Landslide timing is set to 23:59 of the day of
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occurrence to include the rainfall occurring at the day of landslide onset. The spatial
range of which landslides are linked to which rain gauge, the buffer, is adjusted in the
code of CTRL-T. An increased buffer value is used if more reconstructed rainfall events
are required or in mountainous regions to improve the ED threshold accuracy.

After the input preparation, three blocks are considered in CTRL-T (step 1 of figure
3.4) (Melillo et al., 2016, 2018). Block 1 reconstructs rainfall events out of the rainfall
series by filtering the irrelevant rain events using climate parameters. In Block 2, the
landslide and rainfall events are coupled by selecting the rain gauge that measured the
specific rainfall event responsible for a landslide occurrence. This is firstly done by
selecting rainfall prior to the landslide event (antecedent rainfall). Then, rainfall
conditions responsible for a landslide and their representative rain gauges are linked.
Finally, the most likely rainfall condition for a landslide event is selected. Block 2
returns an image of the landslide event, the rain gauges related to that landslide and
information on the duration and accumulated rainfall of the rain event associated with
the landslide initiation. In the final block, event duration curves are created from the
various rainfall conditions.

The result is a set of ED curves for different probabilities in the form of the power law
in formula 3.1 and figure 3.4.

𝐸 = (𝛼 + Δ𝛼) ∗ 𝐷 (𝛾+Δ𝛾) (3.1)

where 𝐸 is the accumulated rainfall (mm), 𝛼 is the mean intercept and its
uncertainty (Δ𝛼), 𝐷 is the duration of the rainfall event (in h) and 𝛾 is the
mean slope and its uncertainty (Δ𝛾).

The power law indicates the minimum amount of accumulated rainfall (𝐸) required
for the initiation of landslides for a certain period of time (𝐷). The event duration curve
at 5% exceedance probability is selected as regional daily ED threshold. The ED curve
is only valid for durations exceeding 24h hours (Brunetti et al., 2021; Melillo et al., 2016,
2018) and is required as input for the hybrid model.

3.2.2 Step 2: Hazard and impact forecast

In step 2, a landslide and total impact forecast are created by expanding the 510 typhoon
model with a seperate landslide IBF model (figure 3.3). In the first phase of step 2
(figure 3.4), the 510 typhoon model, LSM, ED threshold and rainfall data are combined.

The accumulated rainfall, Rainfall Total (RT) for four different time ranges in relation
to typhoon landfall (figure 3.5) are defined, of which 𝑅𝑇𝑏𝑒𝑓 𝑜𝑟𝑒 and 𝑅𝑇𝑎𝑓 𝑡𝑒𝑟 can be used in
forecasting applications. 𝑅𝑇𝑎𝑓 𝑡𝑒𝑟 and 𝑅𝑇𝑡𝑜𝑡𝑎𝑙 are used as quality checks of the forecasts.

• 𝑅𝑇𝑏𝑒𝑓 𝑜𝑟𝑒 : accumulated rainfall before landfall with duration 𝐷 = 72ℎ
• 𝑅𝑇𝑎𝑓 𝑡𝑒𝑟 : accumulated rainfall after landfall with duration 𝐷 = 72ℎ
• 𝑅𝑇𝑒𝑣𝑒𝑛𝑡 : accumulated rainfall before and after landfall with duration 𝐷 = 96ℎ
• 𝑅𝑇𝑡𝑜𝑡𝑎𝑙 : accumulated rainfall over the total time range with duration 𝐷 = 144ℎ
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Figure 3.5: Accumulated rainfall (RT) for four different
time ranges in relation to typhoon landfall.

After the data collection, landslide hazard (equation 3.2) is defined by the exceedance
of the ED threshold by the accumulated rainfall (RT):

𝐿𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒 ℎ𝑎𝑧𝑎𝑟𝑑 [−] = 𝑅𝑇 > 𝐸𝐷 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (3.2)

Per municipality, a landslide hazard forecast is created for each 𝑅𝑇 within a suitable
hazard and impact boundary. The typhoon hazard and impact boundary is set to 100
km in the 510 typhoon model (Teklesadik et al., 2022). The hazard and impact
boundary for landslide and total impact was assessed as rainfall associated with
typhoons reaches further from the typhoon track compared to extreme winds. Based on
rainfall patterns using the JAXA Global Rainfall Watch and actual landslide events
(IFRC, 2016a; JAXA, 2021), the impact boundary was increased to 300 km. The impact
boundary analysis can be found in Appendix B.4.

Landslide impact (as defined by CMA and GFDDR (2016) and WMO (2015)) is
expressed in percentage of buildings per municipality likely to get damaged:

𝐿𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒 𝑖𝑚𝑝𝑎𝑐𝑡 [%] = ℎ𝑎𝑧𝑎𝑟𝑑 + 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 [%] + 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 [%] (3.3)

where the 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 and 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 are to linked the LSM, using the available
percentage of buildings in hazard-prone areas permunicipality. Two classes of
exposure are distinguished, based on the susceptibility zones of the LSM: All
for all classes and High for medium and high vulnerable zones (figure 3.2).
Landslide impact in percentage of buildings is predicted for both exposure
classes and each 𝑅𝑇:

𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝐿𝑆𝑀 > 0% (3.4)

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑎𝑙𝑙 = 𝐿𝑆𝑀 [%]ℎ𝑖𝑔ℎ + 𝐿𝑆𝑀 [%]𝑚𝑒𝑑𝑖𝑢𝑚 + 𝐿𝑆𝑀 [%]𝑙𝑜𝑤 (3.5)

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒ℎ𝑖𝑔ℎ = 𝐿𝑆𝑀 [%]ℎ𝑖𝑔ℎ + 𝐿𝑆𝑀 [%]𝑚𝑒𝑑𝑖𝑢𝑚 (3.6)

The total impact forecast of the hybrid multi-hazard IBF model combines the landslide
impact forecast of the landslide IBF model with the typhoon impact forecast as predicted
by the 510 typhoon model (figure 3.3):

𝑇𝑜𝑡𝑎𝑙 𝑖𝑚𝑝𝑎𝑐𝑡 [%] = 𝑡𝑦𝑝ℎ𝑜𝑜𝑛 𝑖𝑚𝑝𝑎𝑐𝑡 [%] + 𝑙𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒 𝑖𝑚𝑝𝑎𝑐𝑡 [%] (3.7)
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3.2.3 Step 3: Reliability assessment

In step 3, the reliability of the hazard and impact forecast is assessed by comparing the
predicted impact with the actual impact for case study typhoons (figure 3.4).

Impact inventories are created by combining the actual typhoon impact, available
from the ML model of the 510 typhoon model (box 3 in figure 3.1), with a
typhoon-specific landslide inventory. The ’Cooperative Open Online Landslide
Repository’ (COOLR) project is used as a basis to find landslide occurrences from
previous typhoons used in the ML model of the 510 typhoon model (NASA, 2021;
Teklesadik et al., 2022). The COOLR database combined with additional research
defined the case study typhoons; those with at least 3 landslides for one typhoon event
in the Bicol region: Typhoon Durian (2006) and Typhoon Sarika (2016). Appendix B.5
provides information on the typhoon tracks and landslide impact of the typhoons.

The landslide hazard and impact forecasts are compared with validated landslide
impact. Total impact forecasts are compared with both the actual impact and the
forecast of the 510 typhoon model. The latter determines whether the reliability of an
impact forecast is improved by the hybrid model compared to the impact forecast of the
510 typhoon model. The reliability of a forecast is assessed regarding the similarity of
the forecast with the actual impact in twofold:

• The geographical location of the forecast: by visually comparing the location and
extent of the forecast with the actual impact.

• The accuracy of the forecast: by statistically comparing the forecasted impact with
the actual impact using the F1 score (Chicco and Jurman, 2020; Sisters, 2020):

𝐹1 = 2𝑇𝑃
2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 (3.8)

where 𝑇𝑃 are True Positives and account for correctly forecasted impact;
𝐹𝑃 are False Positive forecasts where impact occurred, but is missed and
𝐹𝑁 are False Negatives and impact is incorrectly predicted. True
Negatives (𝑇𝑁) correctly predict no impact.

The F1-score is an accuracy measure, which does not consider TN forecasts. The True
Scale Statistics (TSS) and the Matthew’s Correlation Coefficient (MCC) are measures
which do include all types of forecasts (TP, TN, FP and FN) and give objective
performance of the hazard and impact predictions (formulas are shown in Appendix C
in section C.3). The MCC also functions well in unbalanced data sets such as those with
scarce events (Chicco and Jurman, 2020; Rawat, 2019). But, MCC and TSS do not
distinguish between the preference of stakeholders on the type of forecast, i. e. positives
or negatives. The application of the typhoon and landslide forecast in a humanitarian
context should be considered, where TPs are more important compared to TNs and
acting in vain (FPs) is preferred over not acting at all (FNs) (Chicco and Jurman, 2020;
IFRC, 2021; Rawat, 2019; Sisters, 2020; Wilkinson et al., 2018). Therefore, the F1-score is
applied as accuracy statistic in this research instead of TSS or MCC. In case of a forecast
with no TPs and of which the F1 score is zero, the MCC and TSS measures can be
assessed.



4 RE SULT S : THE HYBR ID MODEL IN THE B I COL REG ION

The hybrid multi-hazard IBF model (hybrid model) was created for the Bicol region and
tested on two typhoon events. The reliability of the forecasts of the landslide IBF model
and hybridmodelwere assessed and compared to the reliability of the 510 typhoonmodel.

4.1 A REG IONAL EVENT DURAT ION THRE SHOLD FOR THE B I COL REG ION

Figure 4.1: Rain gauge (red) and landslide
(green) locations used as input for CTRL-T.
Circles show the buffer around rain gauges.

In the Bicol region three rain gauges (Daet,
Legaspi and Virac station) with a sufficient
number of years of rainfall measurements
were available (red locations in
figure 4.1). Daily precipitation values were
obtained for the years 2006 till 2018, as these
coincided with the 59 available landslide
occurrences selected from the COOLR
project from NASA (2021) (green locations
in figure 4.1). Any alterations of the default
settings of CTRL-T for the case study area of
Bicol can be found in table C.2 in Appendix
C.1. The sensitivity value for the rain gauges
and climate parameters of this research
were based on the study of LANDSLIP in
India (Brunetti et al., 2021). The buffer value
around the rain gauges was increased from
16km (default) to 60km to account for the
low rain gauge density (light green circles).

Figure 4.2: ED threshold for Bicol in black,
compared to thresholds of Brunetti et al.
(2021).

The event duration (ED) threshold
computed for the Bicol region for the 5%
non-exceedance probability (black graph
in figure 4.2) was:

𝐸 = (0.6 ± 1.0) × 𝐷 (1.2±0.2) (4.1)

The threshold of Bicol (in
black) was compared to the thresholds
of the LANDSLIP project (in grey)
in figure 4.2 and showed a decrease in
scaling parameter α (lowered curve), but
had a similar slope parameter, γ, (dashed
line) (Brunetti et al., 2021). The decrease
in α is a result of the limited number of
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landslide occurrences and rainfall conditions, visible in Appendix C.1. The daily
resolution of rainfall data resulted in a clustering of the rainfall duration into multiples
of 24h. This decreased the number of reconstructed rainfall conditions and lowers the
threshold of Bicol compared to the study in India (Brunetti et al., 2021; Gariano et al.,
2020; Melillo et al., 2016, 2018). The ED threshold has a validity interval equal to the
duration interval of the rainfall conditions (Melillo et al., 2016). Therefore, the ED
threshold is only valid for the prediction of landslides using accumulated rainfall with
durations of multiples of 24 hours.

In Appendix C.1, ED thresholds for other non-exceedance probabilities, the
reconstructed rainfall conditions and landslide events and formulas for ED thresholds
of the LANDSLIP study can be found.

4.2 R E L IA B I L I T Y A S S E S SMENT OF THE HYBR ID MODEL IN THE B I COL REG ION

4.2.1 Actual impact of typhoons Durian and Sarika

The municipalities in which impact occurred for typhoon Durian and Sarika were
created using the typhoon impact data from the 510 typhoon model and landslide
inventories for typhoons Durian and Sarika (figure 4.3). The color shade of the
municipalities for typhoon Durian indicates the magnitude of the impact in % of
buildings completely damaged. Impact for typhoon Durian was concentrated around
the typhoon track passing over the Bicol region (figure B.8 in Appendix B) and included
a limited number of municipalities at distances further away from the track.

Figure 4.3: Municipalities in which typhoon and landslide
impact occurred for typhoons Durian and Sarika. For
typhoon Durian, color shades show the % of buildings
damaged (Fano et al., 2007;NASA, 2021). For typhoon Sarika
impact was not quantified (DSWD, 2016a,b; IFRC, 2016a,b;
NASA, 2021; PH government, 2008).
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For typhoon Sarika, landslide impact cannot be quantified as it considered impact to
buildings and additional elements at risk. The actual impact maps of Sarika indicated
only the forecasted landslide impact occurrences (referred to as FLIO), not the
magnitude of the impact. Typhoon and landslide impact combined in figure 4.3 showed
impact occurred mostly north of the track (figure B.8). In the south and in the Bicol
region, municipalities in which impact occurred were scattered and impact was mainly
caused by landslides.

It should be noted that information on landslide impact in the Philippines for specific
typhoon events is scarce (Zamudio and Orogo, 2021). The actual impact maps were used
to validate the reliability of the forecasts of the hybrid model.

4.2.2 The reliability of the landslide hazard forecast

Typhoon Durian
Four landslide events were found in the Bicol region for typhoon Durian, concentrated
around the slopes of a volcano (left image in figure 4.4). Landslide hazard forecasts
(top images) showed an overestimation in locations for hazard maps 𝑅𝑇𝑏𝑒𝑓 𝑜𝑟𝑒, 𝑅𝑇𝑒𝑣𝑒𝑛𝑡
and 𝑅𝑇𝑡𝑜𝑡𝑎𝑙 compared to the actual hazard locations. 𝑅𝑇𝑎𝑓 𝑡𝑒𝑟 showed a hazard forecasts
only in the west of Bicol. Rainfall decreased with the passing of the typhoon at 72 hours
after landfall, causing an exceedance of the ED threshold solely in the west. The forecast
of 𝑅𝑇𝑎𝑓 𝑡𝑒𝑟 was therefore less reliable as it considers accumulated rainfall at a time range
too long after typhoon landfall. Rainfall patterns can be found in Appendix C.2.

Figure 4.4: Actual and forecasted landslide hazard (FLH) maps for typhoon Durian (top) and
Sarika (below) for four types of accumulated rainfall (RT); 72h before typhoon landfall (before)
and after (after); 48h before and after landfall (event); the total rainfall 72h before and after
landfall (total).
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All hazard forecasts for typhoon Durian had a low F1 score (table 4.1) due to the large
number of False Positives (FP) and scarcity of True Positives (TPs). For 𝑅𝑇𝑏𝑒𝑓 𝑜𝑟𝑒, 𝑅𝑇𝑒𝑣𝑒𝑛𝑡
and 𝑅𝑇𝑡𝑜𝑡𝑎𝑙, all actual TP values were found, unlike 𝑅𝑇𝑎𝑓 𝑡𝑒𝑟 which missed 2 TPs,
reducing the F1 score and reliability of the hazard forecast.

Table 4.1: Accuracy statistics for hazard forecasts of typhoon Durian and Sarika for four types
of accumulated rainfall (RT); 72h before typhoon landfall (before) and after (after); 48h before
and after landfall (event); the total rainfall 72h before and after landfall (total).

Durian: 4 Landslides Sarika: 5 Landslides
𝑅𝑇𝑏𝑒𝑓 𝑜𝑟𝑒 𝑅𝑇𝑒𝑣𝑒𝑛𝑡 𝑅𝑇𝑡𝑜𝑡𝑎𝑙 𝑅𝑇𝑎𝑓 𝑡𝑒𝑟 𝑅𝑇𝑏𝑒𝑓 𝑜𝑟𝑒 𝑅𝑇𝑒𝑣𝑒𝑛𝑡 𝑅𝑇𝑡𝑜𝑡𝑎𝑙 𝑅𝑇𝑎𝑓 𝑡𝑒𝑟

TP 4 4 4 2 0 0 0 0
F1 0.069 0.0683 0.072 0.048 0 0 0 0

Typhoon Sarika
The hazard forecast of 𝑅𝑇𝑎𝑓 𝑡𝑒𝑟 for typhoon Sarika (lower images of figure 4.4) was
unreliable in geographical location, for the same reason as 𝑅𝑇𝑎𝑓 𝑡𝑒𝑟 for typhoon Durian.
Location extent was overestimated for the residual forecast maps. No correct locations
were predicted, but locations in which landslide hazard was forecasted were near actual
hazard-prone municipalities.

No TPs of the hazard forecast (table 4.1) resultied in an F1 score of zero. Accuracy
measurements of TSS andMCC (Appendix C.3), whose numerators do not depend solely
on the value of TP, were negative, indicating low reliability of the hazard forecast. 𝑅𝑇𝑎𝑓 𝑡𝑒𝑟
had less negative results due to the increase in True Negatives (TNs) and decrease in FP.

4.2.3 The reliability of the landslide impact forecast

Typhoon Durian
Landslide impact forecasts for All susceptibility classes of the LSM, referred to as All, in
the top images of figure 4.5 showed an overestimation of forecasts in location extent.
Similar and less reliable landslide impact forecast (FLI) using 𝑅𝑇𝑎𝑓 𝑡𝑒𝑟 for All and high
susceptibility classes, High, were obtained due to the less reliable hazard forecast. The
location extent of impact forecasts for High classes using 𝑅𝑇𝑏𝑒𝑓 𝑜𝑟𝑒, 𝑅𝑇𝑒𝑣𝑒𝑛𝑡 and 𝑅𝑇𝑡𝑜𝑡𝑎𝑙
deviated least from the validated impact map (left image).

Accuracy statistics for typhoon Durian (table 4.2) were close to zero and identical for
𝑅𝑇𝑏𝑒𝑓 𝑜𝑟𝑒, 𝑅𝑇𝑒𝑣𝑒𝑛𝑡 and 𝑅𝑇𝑡𝑜𝑡𝑎𝑙 using All classes, due to the scarcity of actual TPs and
overestimation of the landslide hazard. No TPs were found for the residual FLI maps.
Therefore MCC and TSS values were assessed (Appendix C.3) and were found to have
slightly negative values, indicating low reliability of the forecasts. 𝑅𝑇𝑏𝑒𝑓 𝑜𝑟𝑒 and 𝑅𝑇𝑒𝑣𝑒𝑛𝑡
showed most reliable values for MCC, TSS and F1 and can be applied for forecasting.
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Figure 4.5: Actual and forecasted landslide impact (FLI)maps for typhoonDurian for four types
of accumulated rainfall (RT); 72h before typhoon landfall (before) and after (after); 48h before
and after landfall (event); the total rainfall 72h before and after landfall (total) and for two
susceptibility classes: All (above) and High (below).

Table 4.2: Accuracy statistics for landslide impact forecasts of typhoon Durian & Sarika for four
types of accumulated rainfall (RT); 72h before typhoon landfall (before) and after (after); 48h
before and after landfall (event); the total rainfall 72h before and after landfall (total) and for
two classes of susceptibility (All and High).

All classes

Durian: 4 Landslides Sarika: 5 Landslides
𝑅𝑇𝑏𝑒𝑓 𝑜𝑟𝑒 𝑅𝑇𝑒𝑣𝑒𝑛𝑡 𝑅𝑇𝑡𝑜𝑡𝑎𝑙 𝑅𝑇𝑎𝑓 𝑡𝑒𝑟 𝑅𝑇𝑏𝑒𝑓 𝑜𝑟𝑒 𝑅𝑇𝑒𝑣𝑒𝑛𝑡 𝑅𝑇𝑡𝑜𝑡𝑎𝑙 𝑅𝑇𝑎𝑓 𝑡𝑒𝑟

TP 1 1 1 0 0 0 0 0
F1 0.028 0.028 0.028 0 0 0 0 0

High classes
𝑅𝑇𝑏𝑒𝑓 𝑜𝑟𝑒 𝑅𝑇𝑒𝑣𝑒𝑛𝑡 𝑅𝑇𝑡𝑜𝑡𝑎𝑙 𝑅𝑇𝑎𝑓 𝑡𝑒𝑟 𝑅𝑇𝑏𝑒𝑓 𝑜𝑟𝑒 𝑅𝑇𝑒𝑣𝑒𝑛𝑡 𝑅𝑇𝑡𝑜𝑡𝑎𝑙 𝑅𝑇𝑎𝑓 𝑡𝑒𝑟

TP 0 0 0 0 0 0 0 0
F1 0 0 0 0 0 0 0 0

Typhoon Sarika
Forecasts of typhoon Sarika are referred to as ’Forecasted Landslide Impact Occurrence’
(FLIO) (figure 4.6), as the actual landslide impact map indicated locations of the
municipalities in which impact occurred, not the magnitude of the impact .
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FLIOs for All classes using 𝑅𝑇𝑏𝑒𝑓 𝑜𝑟𝑒, 𝑅𝑇𝑒𝑣𝑒𝑛𝑡 and 𝑅𝑇𝑡𝑜𝑡𝑎𝑙 showed a scatter of the
forecasts regarding the location, mostly towards the outer reaches of the Bicol region
(figure 4.6). No correct locations were found, yet forecasted locations were in the
vicinity of actual landslide impact locations. All other FLIO maps showed an
underestimation of the impact and were therefore least reliable regarding location of the
forecasts.

Figure 4.6: Actual and forecasted landslide impact occurrence (FLIO) maps for typhoon Sarika
for four types of accumulated rainfall (RT); 72h before typhoon landfall (before) and after
(after); 48h before and after landfall (event); the total rainfall 72h before and after landfall (total)
and for two susceptibility classes: All (above) and High (below).

As no TPs the hazard forecast of typhoon Sarika included no TPs, the impact forecast
either was alike and had an F1 score of zero. Accuracy statistics of MCC and TSS
(Appendix C.3) were negative for all FLIO maps. For forecasting applications, landslide
impact forecasts using 𝑅𝑇𝑏𝑒𝑓 𝑜𝑟𝑒 or 𝑅𝑇𝑒𝑣𝑒𝑛𝑡 were the most reliable compared to 𝑅𝑇𝑡𝑜𝑡𝑎𝑙 and
𝑅𝑇𝑎𝑓 𝑡𝑒𝑟 with regard to the actual impact of typhoon Sarika.

4.2.4 The reliability of the landslide IBF model

The most reliable landslide hazard forecasts for both typhoon events in terms of location
were obtained by 𝑅𝑇𝑏𝑒𝑓 𝑜𝑟𝑒, 𝑅𝑇𝑒𝑣𝑒𝑛𝑡 and 𝑅𝑇𝑡𝑜𝑡𝑎𝑙, when considering all RTs. Correct
location forecasts were found only for typhoon Durian. The ED threshold was exceeded
in less municipalities for typhoon Sarika compared to typhoon Durian, due to a
decrease in accumulated rainfall at larger distance from the typhoon track.
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The reliability in location of the impact forecasts was best for 𝑅𝑇𝑏𝑒𝑓 𝑜𝑟𝑒, 𝑅𝑇𝑒𝑣𝑒𝑛𝑡 and
𝑅𝑇𝑡𝑜𝑡𝑎𝑙 of High classes for typhoon Durian. The same RT maps but for All classes for
typhoon Sarika displayed the most reliable forecasts in location. TP values were
obtained solely for typhoon Durian using 𝑅𝑇𝑏𝑒𝑓 𝑜𝑟𝑒, 𝑅𝑇𝑒𝑣𝑒𝑛𝑡 and 𝑅𝑇𝑡𝑜𝑡𝑎𝑙 of High classes.

𝑅𝑇𝑏𝑒𝑓 𝑜𝑟𝑒 and 𝑅𝑇𝑒𝑣𝑒𝑛𝑡 can be used for forecasting purposes, as both indicated most
reliable hazard and impact forecasts of the landslide IBF model.

4.2.5 The reliability of the hybrid model
The impact boundary for typhoons is exceeded in the Bicol region for typhoon Sarika.
Therefore, no total impact can be calculated.

The location extent of the forecasted total impact (FTI) of typhoon Durian (figure 4.7)
was underestimated by the hybrid model for 𝑅𝑇𝑎𝑓 𝑡𝑒𝑟 using both susceptibility classes.
Locations of these forecasts were constrained to municipalities located in the vicinity of
the typhoon track and were similar to the FTI of the 510 typhoon model (second image).
FTI using 𝑅𝑇𝑏𝑒𝑓 𝑜𝑟𝑒, 𝑅𝑇𝑒𝑣𝑒𝑛𝑡 and 𝑅𝑇𝑡𝑜𝑡𝑎𝑙 determined with All classes (bottom images)
displayed more reliable forecasts in municipalities located further away from the track.
The latter FTI were comparable to the actual total impact (left image).

Figure 4.7: Total impact maps for typhoon Durian of the validated impact; typhoon impact;
and combined landslide and typhoon impact. Two susceptibility classes (All and High) and
four types of accumulated rainfall (RT) were applied to the hybrid model; 72h before typhoon
landfall (before) and after (after); 48h before and after landfall (event); the total rainfall 72h
before and after landfall (total).

Values for TP, FP, TN, FN and all accuracy statistics (F1, TSS and MCC) for the total
impact forecasts for the hybrid and 510 typhoon models can be found in Appendix C.3.
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For each FTI of both the hybrid and the 510 typhoon model TPs were underestimated
compared to the actual TPs (table 4.3). Most reliable results regarding the number of
TPs were obtained for RTs using All classes, of which highest F1 scores were obtained by
𝑅𝑇𝑏𝑒𝑓 𝑜𝑟𝑒, 𝑅𝑇𝑒𝑣𝑒𝑛𝑡 and 𝑅𝑇𝑡𝑜𝑡𝑎𝑙 due to a reduction in FNs. Total impact as forecasted by the
510 typhoon model was identical to the impact predicted by the hybrid model using
𝑅𝑇𝑎𝑓 𝑡𝑒𝑟 for High classes. The number of TPs and F1 score indicated least reliable results
for this FTI.

Table 4.3: Accuracy statistics for the total impact maps of the typhoon impact using a machine
learning method (510 typhoon model - shortened to 510 model) and the hybrid model for two
susceptibility classes (All and High) and four types of accumulated rainfall (RT); 72h before
typhoon landfall (before) and after (after); 48h before and after landfall (event); the total rainfall
72h before and after landfall (total) and two susceptibility classes.

Durian 76 impacted municipalities

510 model Hybrid model - All classes
Total 𝑅𝑇𝑏𝑒𝑓 𝑜𝑟𝑒 𝑅𝑇𝑒𝑣𝑒𝑛𝑡 𝑅𝑇𝑡𝑜𝑡𝑎𝑙 𝑅𝑇𝑎𝑓 𝑡𝑒𝑟

TP 31 59 59 61 59
F1 0.559 0.771 0.771 0.763 0.690

510 model Hybrid model - High classes
Total 𝑅𝑇𝑏𝑒𝑓 𝑜𝑟𝑒 𝑅𝑇𝑒𝑣𝑒𝑛𝑡 𝑅𝑇𝑡𝑜𝑡𝑎𝑙 𝑅𝑇𝑎𝑓 𝑡𝑒𝑟

TP 31 38 38 38 31
F1 0.559 0.628 0.628 0.628 0.559

The total impact as forecasted by the hybrid model for All classes and all RTs showed
improved reliability compared to the 510 typhoon model impact forecast as a result of
the doubling of TPs and the reduction of FNs by half compared to the predicted impact
of the 510 typhoon model. Improved and most reliable F1 scores were found for 𝑅𝑇𝑏𝑒𝑓 𝑜𝑟𝑒,
𝑅𝑇𝑒𝑣𝑒𝑛𝑡 and 𝑅𝑇𝑡𝑜𝑡𝑎𝑙 for the hybrid model. The hybrid model can be used in forecasting
applications for the accumulated rainfall of 𝑅𝑇𝑏𝑒𝑓 𝑜𝑟𝑒 and 𝑅𝑇𝑒𝑣𝑒𝑛𝑡 for All classes. These
impact forecasts indicated improved reliability regarding both the accuracy statistics and
geographical location compared to the impact as predicted by the 510 typhoon model,
which was underestimated.



5 D I SCUS S ION : THE REL IAB I L I T Y OF THE HYBR ID MODEL

Assumptions and limitations apply to the approach used for the creation of the
landslide IBF model, the hybrid model and the reliability assessment and are linked to
the reliability elements of figure 2.2 and Appendix A. Recommendations to resolve or
improve the limitations are defined in chapter 7.

5.1 DATA COLL EC T ION

5.1.1 The 510 typhoon model and its data sources

The propagated uncertainty of all components within the 510 typhoon model for results
in a combined uncertainty of the total impact forecast in the hybrid model (De Ruiter
et al., 2020; Thirugnanam et al., 2020). Typhoon impact forecasts of <0.5% are set to a
value of 0.5% by default by the machine learning model (ML model) of the 510 typhoon
model (Teklesadik et al., 2022). It was assumed that removing values <0.5% from the
typhoon impact forecast increases its data quality.

The reliability of the typhoon impact forecast decreases if impact is <3% of damaged
buildings or if impact exceeds a 100 km range from the typhoon track (Teklesadik et al.,
2022). For typhoon Sarika no typhoon impact was forecasted for the entire Philippines
due to its low impact values of <0.5% (data quality) and location of the Bicol region
(>100 km distance from track) (spatial resolution). By creating a separate landslide IBF
model with a larger impact boundary, the limitation of the spatial extent of the
landslide and total impact forecast is avoided.

A limitation of the 510 typhoon model is the exclusion of typhoon events that do not
make landfall (data incompleteness). The extent of rainfall from passing typhoons can be
within the boundary of landslide hazard and impact, even if the typhoon does not make
landfall. Therefore, the landslide IBF model can include typhoons that do not make
landfall and has an increased impact boundary of 300 km compared to the 100k km
impact boundary of the 510 typhoon model.

The Landslide Susceptibility Map (LSM), as provided by the 510 typhoon model, was
used for in the landslide IBF model as measure for vulnerability. The LSM does not
consider intensity-frequency, volume or runout extent of landslides, which are required
for a reliable landslide hazard forecast (section 2.2) and decrease the reliability of the
LSM concerning data quality and completeness (Eco et al., 2015; Jaboyedoff and Labiouse,
2011; Luzon et al., 2016; Rabonza et al., 2016). The percentage of buildings coupled to
the susceptibility classes was assumed to be a valid quantitative measure of exposure,
yet is based on values from 2015 and should be updated in data recency.
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5.1.2 The steep and lowered event duration threshold

The event duration (ED) threshold 𝐸 = (0.6 ± 1.0) × 𝐷(1.2±0.2) of formula 4.1 showed a
reduction in scaling parameter (α) (figure 4.2) and slight increase in uncertainty in the
slope parameter (Δγ) parameter compared to the values found in the LANDSLIP
project (Appendix C.1). An increased uncertainty and underestimation of the threshold
are undesirable for IBF models as these can result in an increase in False Positives (FPs)
and reduction in reliability of the hazard and impact forecast (Gariano et al., 2020;
Piciullo et al., 2017).

The lowered ED threshold and increased uncertainty of Δγ are caused by data
incompleteness and reduced data quality of the landslide inventory and low number of rain
gauges in the Bicol region. Limited data (number of sources), the daily temporal
resolution of available rainfall series (resolution) and unsuitable climate variables (data
quality) hamper the reconstruction of enough rainfall conditions considered for
landslide initiation events. Therefore, the rainfall conditions for the Bicol region are not
very representative, reducing the reliability of the ED threshold (Brunetti et al., 2021;
Gariano et al., 2020; Melillo et al., 2016, 2018; Peres et al., 2018; Piciullo et al., 2017). To
account for the low number of reconstructed rainfall conditions, the buffer value around
rain gauges was increased to 60 km. On the other hand, Gariano et al. (2020) showed
that ED thresholds can also be lowered in case of a higher distance between landslide
and rain gauge. The trade-off between the buffer value and reconstructed rainfall
conditions is unknown.

The lack of available data in the Bicol region affected the reliability of the ED threshold.
This region was chosen due to the operational use of the 510 typhoon model and the
local project of the START network, which focuses on the creation of an ED threshold for
landslide initiation in the Bicol region (Zamudio and Orogo, 2021). The tool and
method of CTRL-T can be applied in additional regions of the Philippines for which
more landslide and rainfall information is available, e. g. in the province of Luzon.

It was assumed that missing rainfall measurements (data incompleteness) in the rainfall
series could be set to zero or 200 mm, depending on the occurrence of a typhoon event,
rather than interpolating the preceding and succeeding rainfall values. Interpolating the
rainfall measurements of nearby rain gauges was impossible, firstly because missing
dates often included various consecutive days within the rainfall series. Secondly,
rainfall series of other rain gauges lacked measurements on identical dates, possibly due
to the sudden and large amount of rainfall affecting the sensors (source resilience and -
location). Therefore, one rainfall amount was chosen and applied to all missing
measurements. The value of 200 mm of rainfall was assumed to be a large enough
amount to relate typhoon rainfall to landslide events and its exceedance was validated
by the accumulated daily rainfall of the case studies in this research (figure C.2).

The data resolution of the ED rainfall threshold of CTRL-T is at regional scale, yet is
applied for hazard forecasting at municipal level. The amount of rainfall required for
landslide initiation can differ per municipality due to antecedent and local climate
conditions (Cabrera et al., 2021; Van Westen et al., 2006; Van Westen et al., 2008). A local
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threshold ED threshold could be more appropriate considering its application scale.
However, local rainfall thresholds focus on more specific landslide events (Chung et al.,
2017), while the impact forecasts of the landslide IBF model solely indicates whether a
landslide occurred in an entire municipality. Also, IBF models using an ED threshold as
hazard forecasting method at larger scale, e. g. the entire Philippines, require the
creation of multiple regional ED thresholds. This requires performing step 1 of the
developed method (section 4.1) for each region.

5.1.3 The four values of accumulated rainfall

During the creation of the hybrid model, all four time ranges of accumulated rainfall
data (RTs) were assessed to provide understanding of the rainfall patterns during
typhoon events and the initiation of landslides in relation to typhoon landfall. For
forecasting purposes, 𝑅𝑇𝑏𝑒𝑓 𝑜𝑟𝑒 and 𝑅𝑇𝑒𝑣𝑒𝑛𝑡 can be applied and their time range relates to
the lead time of the 510 typhoon model (72h). Wind and rainfall data are collected
simultaneously for both models three days prior to typhoon landfall (TSR, 2007).
Prolonging the download of forecasted rainfall up to 24 hours after typhoon landfall
allows for the use of 𝑅𝑇𝑒𝑣𝑒𝑛𝑡 and the forecasting of landslides initiated after landfall.
Reconstructed rainfall events for landslide initiation in the Bicol region indicate a mean
duration of 96 hours (figure C.1 in Appendix C.1), which is similar to the duration of
𝑅𝑇𝑏𝑒𝑓 𝑜𝑟𝑒 and 𝑅𝑇𝑒𝑣𝑒𝑛𝑡 combined.

5.2 THE RE L IA B I L I T Y O F THE LANDSL ID E I B F MODEL

5.2.1 The landslide hazard forecast

The hazard forecasting method applied in this research is the ED threshold instead of other
rainfall related method as it is used in similar research in India (Brunetti et al., 2021)
and by the Start Network in the Bicol region (Zamudio and Orogo, 2021). Other rainfall
thresholds were not assessed e. g. thresholds based on intensity duration curves or
antecedent conditions. An alternative threshold approach is explained by Monsieurs
et al. (2019) and proposes coupling antecedent soil conditions to an existing landslide
susceptibility map. This approach might be an effective method in the Philippines
because of the existing LSM. Hazard thresholds other than rainfall can be considered,
because rainfall only may not be the most optimal landslide hazard indicator. Improved
reliability of the hazard forecast might be obtained by the exceedance of multiple
thresholds, e. g. multiple rainfall thresholds or a combination with slope stability.

The ED threshold includes an uncertainty due to the lowered curve, which could be
the reason for the overestimation of landslide hazard for both case study typhoons
(section 4.2.2). The hazard forecasts showed the suitability of the ED threshold
approach as landslide hazard forecasting method, if the ED curve’s reliability improves.

The temporal resolution of the ED threshold in the Bicol region and its application for
rainfall measures of durations for multiples of 24 hours only (Gariano et al., 2020)
should be considered for operational use. For forecasting applications, both 𝑅𝑇𝑏𝑒𝑓 𝑜𝑟𝑒 and
𝑅𝑇𝑒𝑣𝑒𝑛𝑡 are suitable. As landslides in the Bicol region are mainly triggered by the rains
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from typhoons, it is advisable to include a short time frame for the landslide hazard
forecast after the typhoon has made landfall, i. e. 𝑅𝑇𝑒𝑣𝑒𝑛𝑡 (Zamudio and Orogo, 2021).
This is consistent with the rainfall conditions established in the Bicol region using
CTRL-T and the rainfall patterns of the case study typhoons (figures 4.2 and C.2). It
does require prolonged collection of rainfall forecasts for the landslide IBF model
compared to the 510 typhoon model (PRC, 2019; TSR, 2007; Teklesadik et al., 2022).

The hazard boundary was set to 300 km from the typhoon track, based on actual
rainfall patterns and landslide inventories (figure B.7). However, rainfall patterns are
not homogeneously distributed and can be scattered within and outside of the chosen
range. Multiple indicators, e. g. a combination of both rainfall and presence of steep
slopes, and a variable impact boundary can provide for a more reliable landslide hazard
boundary compared to using a fixed value of 300 km.

5.2.2 The landslide impact forecast

In the impact forecasting method for landslides it is assumed that the LSM coupled to the
percentage of buildings in hazardous zones can be used as measure for vulnerability
and exposure. Even though the LSM was created for the assessment of buildings at risk
for landslides, the zones do not consider vulnerability indicators of buildings for
landslides. As not the ’impact’ is forecasted but rather the ’percentage of houses in
exposed zones’, the term ’landslide impact forecast’ is not completely correct. A proper
impact forecast can be created by coupling the current impact forecast with a
hazard-impact curve, similar to the curve for typhoons as constructed by the ML model
of the 510 typhoon model. Either the existing ML model of 510 can be used for a proper
landslide impact forecast, if additional vulnerability indicators of buildings appropriate
for landslides are included, or an additional landslide ML model can be created.

To couple the landslide impact with typhoon impact, the elements at risk had to be
the same. Therefore, the hazard-impact relations of the elements at risk are assumed to be
alike for typhoons and landslides. But, forecasting impact for consecutive hazards
should consider other or additional elements at risk more suitable for the secondary
hazard. Infrastructure, e. g. roads and bridges, or rural impact, e. g. crops and cattle, can
provide for a more reliable hazard-impact relation and impact forecast for landslides
(Cabrera et al., 2021; De Ruiter et al., 2020; Gill and Malamud, 2014; King, 2021).

Reliable landslide inventories are required for model validation of the the landslide
impact forecast, but information on past landslide events in the Philippines is scarce
possibly resulting in an underestimation of typhoon-specific landslide events.
Inventories in this research consist of a combination of the impact provided by the 510
typhoon model and additional landslide events. The impact of the 510 typhoon model
includes percentage of buildings destroyed in a municipality, but does not distinguish
between the cause of impact, e. g. typhoon, landslide or storm surge. The additional
landslide inventories often include landslide occurrences instead of landslide impact or
landslide impact for other elements at risk than buildings. The impact inventory of
typhoon Durian (figure 4.3) solely contained the impact inventory of the 510 typhoon
model, as no data additional landslide locations were available. The impact inventory of
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typhoon Sarika cannot be quantified as the additional landslide inventory consisted of
landslide locations instead of the number of buildings damaged by landslides.

This research is limited to the application of the landslide IBF model for two typhoon
events in the Bicol region. If an ED threshold and landslide inventory is available, the
model can be implemented for additional typhoon events within and outside of the Bicol
region to gain more understanding of the reliability of the model.

5.3 THE HYBR ID MODEL

It was assumed that the typhoon impact from the 510 typhoon model and landslide
impact from the landslide IBF model were equally important as the two were added to
obtain a total impact forecast of the hybrid model. A weighted sum of the two hazards
can provide for a more reliable method, but requires additional research for various
reasons. As a first example, landslides are often triggered by typhoons and are therefore
the secondary hazard. However, if the landslide is triggered without the typhoon
making landfall, it is the primary hazard. Secondly, landslide events are scarce and
occur in less, more scattered locations further from the track compared to the mainly
aggregated locations of the typhoon impact near the track. Thirdly, the land use of the
location of the impact should be considered. Landslides often occur in rural areas on
slopes and can cause more impact to agriculture and cattle compared to the rural
impact caused by typhoons. On the contrary, landslides happen less frequently in urban
areas and will therefore have a smaller impact compared to a typhoon. Finally, the
impact from rainfall can cause more damage than the winds from the typhoons (TSR,
2007), as it can trigger secondary hazards. Concluding, merely a sum of two weighted
components does not comprise an accurate total impact. Therefore, a more elaborate
research to establish the weights of the sum is required.

The total impact forecast considers the LSM twice: firstly as indicator for vulnerability
and exposure by the landslide IBF model and secondly as input for the ML model of the
typhoon forecast (figure 3.1). Even though the contribution of the LSM on the ML
model is little (Teklesadik et al., 2022), the reliability of the total impact forecast will be
improved if the ML model is trained without the LSM as predictor. Since, the LSM is
included in the typhoon impact forecast of the 510 typhoon model, it is in essence a total
impact forecast in itself. This does allow for a comparison of the increased reliability of
the hybrid model including a separate and dynamic input for landslide impact with the
510 ’multi-hazard’ model with static landslide input.

The aggregation of the independent impact forecasts does not consider the
inter-relations of the two hazards (De Ruiter et al., 2020; Gill and Malamud, 2014; King,
2021). By independently combining the two impact forecasts, hazard-impact relations are
excluded and total impact can be underestimated (De Ruiter et al., 2020).

The separate landslide IBF model in the hybrid model provides additional benefits
compared to an integrated landslide impact forecast within a ML model. The spatial
extent or boundary of impact can be adjusted to suit both hazards. Typhoons that do not
make landfall can be included without affecting the reliability of the typhoon impact
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forecast. The forecasting time frame for landslides can continue after typhoon landfall,
i. e. for 𝑅𝑇𝑒𝑣𝑒𝑛𝑡, after typhoon forecasting stops.

5.4 THE RE L IA B I L I T Y A S S E S SMENT

The reliability assessment provides a first insight into the improved reliability of the
forecast from the hybrid model in location and accuracy compared to the impact
forecast of the 510 typhoon model. The influence of landslide impact, and ideally other
consecutive hazards of typhoons, should be assessed for additional typhoon events in
Bicol and other regions of the Philippines.

The F1 score indicated improved reliability of the hybrid model compared to the 510
impact forecast, contrary to the subjective accuracy statistics True Scale Statistics (TSS)
and Mathews Correlation Coefficient (MCC). MCC was higher for the 510 typhoon
model (MCC numerator of 960) compared to the hybrid model (MCC numerator of
600), because of the values of the numerator of the MCC formula (Appendix C.3). TSS
is obtained by subtracting the False Positive Rate (FPR) from the True Positive Rate
(TPR). TSS is larger for the 510 typhoon model (TPR of 0.8, FPR of 0.06) compared to
the hybrid model (TPR of 0.4, FPR of 0.56) because of the difference between FPR and
TPR. Other accuracy statistics were not included, e. g. those used by Corominas et al.
(2014), Gariano et al. (2020), Guzzetti et al. (2012), and IFRC (2021). Yet these can give
additional information on the accuracy of the impact forecast. The decision on which
accuracy measure is most suitable for the reliability assessment depends on the
stakeholders involved (Sisters, 2020; Wilkinson et al., 2018).

In this research, the reliability was defined as the resemblance of the impact forecast
with the actual impact in terms of geographical location and accuracy of the forecast.
The magnitude of the impact forecast is not assessed because the impact inventories
considered not only buildings. Many other interpretations, definitions and methods of
reliability can be assessed e. g. in the studies of Guzzetti et al. (2020), Tate (2012), and
Thirugnanam et al. (2020) and may provide for additional understanding of the
performance and reliability of the hybrid model.

The reliability assessment is a local sensitivity analysis as it was performed separately
for the landslide hazard, landslide impact and total impact (Tate, 2012). A global
sensitivity analysis (GSA) (explained by Feizizadeh et al. (2015) and Tate (2012))
considers the combined influence of each component on the total impact simultaneously
and indicates the influence of the dynamic input of landslides on the total impact
forecast. GSA may be a more appropriate method considering that the reliability
depends on the combined reliability of the components (Thirugnanam et al., 2020). The
influence of the static landslide input in the 510 typhoon model can be assessed using
the GSA method described by Tunkiel et al. (2020), yet is more challenging as the 510
typhoon models uses a ML approach.
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5.4.1 Temporal reliability

A reliability assessment on elements of influence of an IBF model was performed
(section 3.2.3), but the temporal reliability (lead time) was not included. Without
enough lead time, communities are less prepared and more vulnerable for impact and
disasters. Lead time is influenced by both decision-making and the time-related
reliability elements of the IBF model, i. e. lag time and computation time. A shorter lag
time, by improving the reliability elements in the data collection phase, increases the
lead time and reliability of a forecast. A ML approach as used in the 510 typhoon model
is an effective method to reduce lag time as the exposure and vulnerability of a region
are defined ahead of time in the ML model (Thirugnanam et al., 2020).

Data collection of the 510 typhoon model and hybrid model starts five days ahead of
a typhoon event and lead time is 72 hours (PRC, 2019). The accumulated rainfall of the
landslide IBF model was consistent with the lead time of the 510 typhoon model, yet can
be altered to four or five days prior to typhoon landfall (TSR, 2007) to increase the lead
time and the implementation of early actions.Additional lead time is obtainedwhenusing
the time frame of 𝑅𝑇𝑒𝑣𝑒𝑛𝑡 as well, which considers landslide events shortly after landfall.
However, measures for landslide impact, e. g. slope stabilization, constructions to slow
down landslides and planning strategies (Cabrera et al., 2021), often require a lead time
longer than three to five days. Using landslide hazard and impact forecasts, especially in
Asia, can be an appropriate and cost-effectivemitigationmeasure to determine evacuation
strategies and reduce impact (Segoni et al., 2018; TSR, 2007). An increased lead time for
landslide impact forecasts may thus not improve the reliability of the forecast in terms
of effective measures and may even decrease the accuracy and reliability of the impact
forecast, as longer lead times increase the uncertainty of rainfall forecasts (Wilkinson et
al., 2018). The trade-off between a longer and reduced lead time depends amongst others
on the hazard forecast, the spatial scale of the impact forecast, stakeholders and their
preference of acting options e. g. ’acting in vain’ or ’low regret options’ (Thirugnanam
et al., 2020; Wilkinson et al., 2018).



6 CONCLUS ION

Impact-based forecasting (IBF) models consist of successive components: (1) the data
collection, (2) the hazard and (3) impact forecast. These influence the reliability of the
impact forecast. IBF models underestimate impact when consecutive hazards, e. g.
typhoon-triggered landslides, are not considered. Landslide and typhoon impact
combined differs from solely typhoon impact, as the combination has a more dynamic
form of vulnerability and a larger affected area. Considering the impact of both
landslides and typhoons can thus result in a more reliable impact forecast. Therefore, a
hybrid multi-hazard IBF model for typhoons and landslides (hybrid model) was
created.

A hydrometeorological IBF model to forecast landslide occurrences (landslide IBF
model) was created using a newly established regional event duration threshold for the
Bicol region. A prototype of a hybrid model was designed by expanding an existing
machine learning (ML) IBF model for typhoons from 510, an initiative of the
Netherlands Red Cross (510 typhoon model), with the landslide IBF model. Landslide
and total impact inventories were created for two case study typhoons in the Bicol
region, i. e. typhoons Durian and Sarika. The reliability of both the landslide IBF and
hybrid models was assessed with an increased impact boundary of 300 km compared to
the previous typhoon impact boundary of 100 km.

Four different time ranges of accumulated rainfall in relation to typhoon landfall and
two measures for exposure were established and examined with the landslide IBF
model. 𝑅𝑇𝑏𝑒𝑓 𝑜𝑟𝑒 (rainfall of 72 hours before landfall) and 𝑅𝑇𝑒𝑣𝑒𝑛𝑡 (rainfall of 24 hours
before and after the typhoon event) indicated the most reliable landslide hazard and
impact forecasts and can be used for forecasting impact. The results of the hybrid model
using complete exposure values and 𝑅𝑇𝑏𝑒𝑓 𝑜𝑟𝑒 and 𝑅𝑇𝑒𝑣𝑒𝑛𝑡 showed an improved impact
forecast compared to the impact predicted by the 510 typhoon model. The geographical
location and extent of impact as forecasted by the hybrid model showed increased
resemblance with the validated impact compared to the impact of the 510 typhoon
model. The accuracy of the impact forecast from the hybrid model was improved by
doubling of the True Positives and reduction of the False Negatives by half compared to
the existing typhoon model.

The separate landslide IBF model as an extension of the existing ML typhoon model
provided additional benefits as these models can be decoupled to optimize the
performance and reliability of both. The spatial extent of impact can be adjusted to suit
both hazards. Typhoons that do not make landfall can be included for landslide impact
forecasts. The forecasting time frame for landslides can include a short period of time
after typhoon landfall when forecasting of typhoon impact stops.
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The reliability of the hybrid model was mostly influenced by four elements: data
quality, data completeness, hazard and impact forecasting method. The model
validation and reliability assessment of both the landslide and hybrid model should be
performed on additional typhoon events and for additional regions for which reliable
landslide inventories are available.

This study resulted in the prototype of an impact-based multi-hazard IBF model for
typhoons and landslides for the Philippines and demonstrated the importance of
considering impact from consecutive hazards.



7 RECOMMENDAT IONS & NEXT STEP S

Recommendations for improving the landslide IBF model and hybrid multi-hazards IBF
model relate to limitations and assumptions discussed in chapter 5.

7.1 IMPROV ING THE LANDSL ID E I B F MODEL

Firstly, the landslide IBF model can be improved with a revision of the event duration
(ED) threshold by increased data availability (sections 5.1 and 5.2). Landslide data in
the Bicol region and the Philippines is scarce (Zamudio and Orogo, 2021), therefore it is
recommended to focus on upgrading existing landslide inventories. The use of satellite
data as source for the rainfall series resolves the issue of the low rain gauge density, the
missing measurements, the temporal resolution of the data and the conversion of daily
to hourly data (Gariano et al., 2020). The study of Brunetti et al. (2021) demonstrates a
method in which satellite data is used in CTRL-T. Also, satellite data collection can be
applied on a different spatial scale, both locally and on a wider basis for the entire
Philippines. This allows for a reduction of the buffer value, which increases the
reliability and eases the expansion of the ED threshold to other regions in the
Philippines. It should be noted that obtaining cloud-free satellite imagery in tropical
regions is challenging. Besides, satellite imagery does not capture variability at a local
scale. Therefore, retrospective forecasts or ’hindcasts’ can also be considered as source
of rainfall series and are often available from validation data sets of forecasting models
(Guzzetti et al., 2020; UKMO, 2018). Reliable climate values can be determined by the
method proposed by Melillo et al. (2018), in which a monthly soil water balance
(MSWB) model is used to determine the climatic variables required in CTRL-T. The
MSWB model requires monthly rainfall, -temperature, maximum field capacity and
water storage data to determine the water balance variables of a region, hence requires
additional modelling.

The landslide IBF model can be further improved by including runout from
landslides in the landslide susceptibility map (LSM). Runout can be calculated using
available models e. g. Flow-R (Horton et al., 2013), which is applied by Eco et al. (2015)
and Van Westen et al. (2014). A less-time consuming and efficient approach is the
addition of the existing ’Debris Flows and Alluvial Fans’ hazard map of NOAH (figure
B.4) to the LSM, which can be used to simulate runout locations. Part of the LSM and
debris flow map in figure 7.1 show the missed landslide impact (False Negatives) for
typhoon Durian around the Mayon Volcano. The LSM does not consider the correct
impact locations (True Positives), whereas the debris flow map does. Thus, it is
recommended to expand the LSM with the debris flow map to simulate runout extent of
landslides in a simplistic manner (NOAH, 2021) and update the percentage of buildings
coupled the LSM with the most recent data.
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Figure 7.1: Validated landslide impact for typhoonDurian (left) and forecasted landslide impact
(second) around a volcano. LS impact forecasts using the landslide susceptibility map (middle)
can be improved by combining it with the Debris flow & Alluvial Fans Hazard map (right),
(NOAH, 2021).

An improved reliability of the hazard forecast of the model can be obtained by using
multiple values for the accumulated rainfall and multiple sources of rainfall data to
reduce uncertainties in rainfall measurements and increase source resilience (Guzzetti
et al., 2020; Thirugnanam et al., 2020). The reliability of the hazard forecasting method
can be increased when additional and multiple hazard forecasting indicators, e. g. soil
moisture or slope stability, are applied to the threshold (Thirugnanam et al., 2020). It is
advised to assess other landslide hazard indicators suitable for the Philippines to
improve both the hazard forecast and impact boundary.

Finally, the reliability of the landslide IBF model can be increased if vulnerability
indicators of appropriate elements for landslides are included in the landslide impact
forecast. More appropriate elements at risk for landslides (e. g. crops, cattle, roads and
bridges) should be included in the impact forecast and can help to determine suitable
early action measures for both landslides and typhoons. A next study can create a
prototype of the landslide IBF and hybrid multi-hazard model for the rice crop
prediction model for typhoons in the Philippines of 510 of the Netherlands Red Cross
and assess landslide impact in rural areas (Van Brussel et al., 2021).

7.2 IMPROV ING THE PROTOTYP E OF THE HYBR ID MULT I -HAZARD I B F MODEL

The prototype of the multi-hazard hybrid IBF model (hybrid model) can be improved
by solving and considering the assumptions and limitations of the model, discussed in
section 5.3. Firstly, the total impact forecast should be corrected by re-training the
variables in the machine learning (ML) model of the 510 typhoon model, which resolves
the inclusion of the LSM twice. Also, the total impact forecasting method can be
improved by applying a weighted sum of the impact forecasts considered to
differentiate between the impact of typhoons, landslides and other consecutive hazards
of typhoons, e. g. floods and storm surges. Thirdly, it is recommended to include
typhoons that enter the landslide and total impact boundary but do not make landfall
for the impact forecast of consecutive hazards.
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A next study can include the expansion of this prototype of the hybrid model with
other secondary hazards of typhoons, e. g. storm surges which are currently included
via static input, similar to that of the landslide (Teklesadik and Riquet, 2021). A similar
approach as for the creation of the landslide IBF model can be used to add more
consecutive hazards.

An approach to create a ’proper’ multi-hazard impact forecasting model (section
5.2.2) can relate the current landslide impact forecast to the ML model of the 510
typhoon model. This requires either training of the variables in the of the existing ML
model with additional vulnerability indicators of buildings for landslides (Cabrera
et al., 2021; Gill and Malamud, 2014; King, 2021) or the creation of a new ML model for
landslides. This approach allows for the inclusion of landslide and typhoon
hazard-impact relations and improves the total impact forecast.

7.3 NEX T ST E P S AND FUTURE RE S EARCH

To provide substantial insights in the improved reliability of the impact forecast by the
hybrid model, more typhoon events must be assessed. The hybrid model can easily be
implemented in other regions or up-scaled to the entire Philippines to include case
studies both within and outside of the Bicol region. These reliability assessments can
include multiple accuracy statistics (e. g. F1, MCC and TSS as explained in section C.3)
to draw reliable conclusions on the performance of the hybrid model.

The assessment of typhoon events requires typhoon-specific landslide inventories,
which are scarce. It is recommended to complete existing inventories in the Philippines
both for the validation of the hybrid model and for the creation of the ED thresholds or
other landslide hazard indicators. Reliable landslide inventories can take years to
construct, therefore it is recommended to cooperate and contribute to both local and
global initiatives, e. g. LHASA (NASA, 2021). Satellite analyses, e. g. landslide detection
using QGIS or Google Earth Engine, can provide for a suitable method to complete
inventories as well (Guzzetti et al., 2012; Van Westen et al., 2008).

Lastly, it is advised to collaborate with ongoing local projects, e. g. the START network
in the Bicol region, to combine efforts and create reliable landslide and multi-hazard
forecasting models. Involving stakeholders and end-users of an IBF model improves its
reliability, implementation and response (Bierens et al., 2020; Van den Homberg et al.,
2020; WMO, 2015). For a most reliable multi-hazard IBF model, experts can provide
advice prior to the design and creation of the model. Expert-based judgement on the
reliability of IBF models and chains can provide for a method to determine on which
reliability elements modellers can focus to create the most reliable IBF model possible.
This method can be found in Appendix D.
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Figure A.1: Terms explained for the first, second and third component in the EW chain,
(Waidyanatha, 2010) (1), (Zhang et al., 2019) (2), (Wilkinson et al., 2018) (3), (WMO; 2017)
(4), (UKMO, 2018) (5), (Van Westen et al., 2006) (6), (Thirugnanam et al., 2020) (7), (Joshi
et al., 2020) (8), (Segoni et al., 2018) (9), (Nadim and Intrieri, 2011) (10), (Guzzetti et al., 2020)
(11), (WMO; 2017) (12), (Cabrera et al., 2021) (13)



B APPEND IX B : ADD I T IONAL F I L E S FOR THE METHOD

B.1 E LABORA ION ON THE 510 TYPHOON MODEL

The local Philippine weather organisation contacts 510 five days before a typhoon is
forecasted to make landfall. The Dutch team starts monitoring the typhoon forecast and
runs the machine learning (ML) 510 typhoon model. The 510 typhoon model sends a
warning when an impact threshold on damaged houses is exceeded at 72 hours before a
typhoon makes landfall. After the warning, early actions in the form of early harvesting
of crops; evacuation of livestock and assets; installation of house strengthening kits and
basic needs provision through cash for work are set in motion. Over the course of the
typhoon event, the impact forecast is updated every 24 hours. After the typhoon event,
actual hazard and impact information of the event is collected to be compared with the
forecasted impact in order to improve the ML model’s performance (PRC, 2019;
Teklesadik and Riquet, 2021).

B.1.1 The ML model

The 510 typhoon model applies a ML approach, in which the model is trained on
historical typhoon data to form a relationship between the typhoon hazard, the
vulnerability and its impact. The numbers 1 to 4 indicated in the grey boxes in figure 3.1
explain the ML approach. The ML model is created, firstly, by the collection of relevant
data, e. g. geographical data (elevation, ruggedness, slope etc); vulnerability, exposure
and coping capacity data (population density, number of households, roof types, wall
types etc) and consecutive hazard maps (landslides and storm surges). This is indicated
by the 1 in the grey box (step 1) and these variables are referred to as the predictors of the
ML model. Then, for each historical typhoon, hazard related data (wind speed, rainfall,
typhoon tracks from previous typhoons) and damage inventories are gathered such
that the model can generate a relationship between the impact of a typhoon and the
input variables (step 2 and 3). This data is combined by training the predictors and
relating the collected hazard and impact indicators with actual impact data. Step 1 to 4
combined takes place within the ML model and the outcome is the called the predictant of
the ML model (Teklesadik et al., 2022; Teklesadik and Riquet, 2021).

The predictors and predictants remain the same, but can be updated when new
historical data is available. The ML model is created in python and is used as a source of
input for the 510 typhoon model (Teklesadik et al., 2022; Teklesadik and Riquet, 2021).

B.1.2 The 510 typhoon forecasting model

Five days prior to a typhoon event, the hazard forecasting variables for an approaching
typhoon are collected (step 5).Wind speed and sustainedwindduration aswell as rainfall
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data fromexternalweather forecasts are obtained. The cumulative rainfall is calculated for
each municipality. Wind and typhoon forecasts are downloaded from various different
online directories (Teklesadik et al., 2022; Teklesadik and Riquet, 2021).

The hazard indicators and ML model are combined into the 510 forecasting typhoon
model. This is a code written in the software Rstudio. After the data collection is
completed, the hazard forecast map is created by using a wind speed parameterization
model. First, the maximum wind speed and the maximum sustained wind speed for 1
minute are considered. Wind speed parameterization uses the sustained wind speed
intensity to distinguish locations where wind speed exceeds 80 km/h. A typhoon track
forecast is obtained from weather agencies and included into the wind model. These
wind speeds are combined with the sustained wind speed, daily rainfall intensity,
accumulated rainfall and the typhoon track forecast to form the hazard forecast. Per
municipality, the distance from the forecasted typhoon track is calculated. This is done
for different predictions (ensembles) of wind speed forecasts. The parameterization
model is run for each ensemble member and the probability of a municipality being
within a reach of 50km from the forecasted typhoon tracks is determined. The outcome
is a map showing the probability of a municipality located within 50km and within the
impact boundary of 100km of the typhoon track. Within a 50km range, the forecasted
typhoon impact is more reliable compared to the 100km range. ?? (Teklesadik et al.,
2022; Teklesadik and Riquet, 2021).

The impact forecast, step 6, is created by combining the probabilistic hazard map with
the hazard-impact curve from the ML model. By comparing the hazard characteristics of
the typhoon (wind and rainfall) with the hazard predictants of previous typhoons, the
impact is assessed. It is assumed that similar hazard variables can create similar impact
when occurring in a similar region. The impact for the forecasted typhoon is calculated
and expressed in a percentage of damaged houses per municipality. If over 10% of the
houses in at least three municipalities is completely damaged, the impact threshold is
exceeded. The probability that the impact threshold is passed is calculated, resulting in
a probabilistic impact map (Teklesadik et al., 2022; Teklesadik and Riquet, 2021).

For those municipalities where impact is forecasted, the absolute number of houses
completely damaged is calculated. The probability of the hazard occurring and the
number of buildings damaged are combined in a rated risk matrix, as applicable in IBF.
The 510 typhoon model will issue a warning if high risk is forecasted for both the
probability of the hazard and the absolute impact on houses (Teklesadik et al., 2022;
Teklesadik and Riquet, 2021).

B.2 FUL L S I Z E F I GURE S
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B.3 LANDSL ID E SU SCE P T I B I L I T Y MAP

The NOAH project includes three landslide susceptibility maps (NOAH, 2021). The first
map is called the ‘Landslide Hazard Map’ and identifies the unstable slopes and landslide
extent of shallow landslides and is a combination of two maps: the ‘Landslide Hazard
Map’ and the ‘Unstable Slopes Map’. In this research, the combination of these two maps
are referred to as the Landslide susceptibility map (LSM). It is created by defining
potential rock slide zones as high susceptibility zones. These zones are overlain with a
stability index map resulting in the source areas of landslides presented in the ‘Unstable
Slopes’ map. This map is overlain with a runout map, of which the runout zones are
classified as high susceptible. This results in the creation of the final landslide
susceptibility map: the Landslide Hazard Map. The colours on the map indicate
whether an area is safe to build infrastructure in (Eco et al., 2015; Jaboyedoff and
Labiouse, 2011; Luzon et al., 2016; Rabonza et al., 2016). This map is coupled to
buildings per municipality and used as input for the 510 typhoon model to identify
areas prone to landslides. The map can be seen as a measure of vulnerability of a
location to landslides (left map in figure B.4).

A secondmap, the ‘Alluvial FansHazardMap’ showsdebris flows and their spatial extent.
It was constructed by identifying alluvial fans combined with a susceptibility map for
debris flows, which included the runout of these flow (right map in figure B.4). This map
is not included in the 510 typhoon model.

Figure B.4: NOAH Landslide susceptibility map and
Debris Flow map in the Bicol region (NOAH, 2021).

It should be noted, firstly, that the hazard maps do not include a time component to
determine the probability or likelihood of landslides. Secondly, the ‘Landslide Hazard
Map’ includes both shallow landslides induced by typhoons and structurally controlled
landslides. The thresholds which were used for these maps use a factor of safety of
slope stability rather than a rainfall threshold. On top of that, deep-seated landslides
and long run-out debris flows are not included. The ‘Alluvial Fans Hazard Map’ contains
a map of the susceptibility of debris flows only and is not accessible for free. Finally,
none of the two maps include magnitude, frequency, volume or intensities of the
landslides(Eco et al., 2015).
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B.4 IMPACT BOUNDARY ANALYS I S

Figure B.5: Rainfall from typhoon Sarika passing over the Bicol region at 48 hours before and 24
hours after typhoon landfall, (JAXA, 2021).

The impact boundary is assessed for typhoon Sarika and is related to the rainfall
extent of the typhoon, obtained from JAXA (2021). The rainfall associated with typhoon
Sarika as it passes north of the Bicol region is significant and ranges between 200 to
300km distance of the track (figure B.5). Heavy rains occur before typhoon landfall at
15-10-2016 at 21:00 and exceed the current impact range of 100km. The time range of the
JAXA rainfall patterns include 48 before typhoon landfall and 24 hours after (similar to
the rainfall threshold of 𝑅𝑇𝑒𝑣𝑒𝑛𝑡, without the last 24hours).

Figure B.6: Rainfall during landfall of typhoon
Sarika and the actual landslide and typhoon
impact, (DSWD, 2016a,b; IFRC, 2016a,b; JAXA,
2021; NASA, 2021; PH government, 2008).

The impact boundary is evaluated
using the actual landslide and typhoon
impact. The rainfall extent during landfall
considers approximately a range of
300km around the track indicated by the
black arrow on the landfall location (red
circle) in the left image of figure B.7. For
typhoon Sarika, DROMIC information
bulletins on typhoon Sarika DSWD
(2016a,b) indicated a range of heavy
rainfall associated with typhoon Sarika
of at least 250km around the track. The
typhoon and landslide impact of Sarika
(right image) in figure C.4 exceeds the
100km distance as currently set in the 510
typhoon model (left image in figure B.7.
The landslide impact is approximately
located within a geographical extent of
300km from the track (middle figure).
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Figure B.7: Hazard and impact boundary of typhoon Sarika showing the original typhoon
impact range of 100km range from the typhoon track (left), the impact boundary using a 300km
range (middle) and the validated impact (right) (DSWD, 2016a,b; IFRC, 2016a,b; NASA, 2021;
PH government, 2008) .

B.5 TY PHOONS DUR IAN AND SAR I KA

Figure B.8: Tracks of typhoon Durian
and Sarika, obtained from the ML
model of 510

Typhoon Durian made landfall in the
Bicol region on November 24 in 2006, after which
it destroyed many houses located close to the track.
Mudflows from the Mayon Volcano in the south
of Bicol were triggered by the combined effect of
the rains from the typhoon and the accumulation
of dust from a recent eruption. Many mudslides
impacted the houses located in the municipalities
lowland of the volcano (Fano et al., 2007).

Typhoon Sarika passed the Bicol region a
few days prior to its landfall on October 15th 2016.
The impact of the typhoon was not comparable
in magnitude with typhoon Durian, yet landslides
occurred in various regions located outside
the impact forecasting boundary, such as the
Bicol region (DSWD, 2016a,b; IFRC, 2016a,b; PH
government, 2008).



C APPEND IX C : ADD I T IONAL F I L E S FOR THE RE SULT S

C.1 EVENT DURAT ION THRE SHOLD

Three files are used as input for CTRL-T. In the rain gauges file, the rain gauge name, the
location of the rain gauge, its sensitivity and climate values are included. The dry and
wet parameters of the climate variables indicate the minimum number of hours between
consecutive rain events in the wet or the dry months of a region and are based on the
LANDSLIP study in India of Brunetti et al. (2021). The rainfall series for each rain gauge
in Bicol is converted to hourly resolution. 59 landslide events are included.Any alterations
of the default settings are shown in table C.2.

Table C.1: Input values for CTRL-T model altered from default settings for the Bicol region

Rain gauges Value

Time range rainfall 2006 - 2018
Number of rain gauge stations 3
Rain gauge sensitivity [mm] 0.08

Dry values [h] 24
Wet values [h] 24

Rainfall series Value

Time range rainfall 2006 - 2018
Rainfall resolution hourly

Landslides Value
Time range landslide events 2006 - 2018
Number of landslide events 59
Timing of landslide event 23:59

Code alteration Value
Buffer value [km] 60

ED rainfall thresholds of Bicol and the LANDSLIP study in India
𝐸𝐵𝑖𝑐𝑜𝑙 = (0.6 ± 1.0) × 𝐷(1.2±0.2)

𝐸𝐼𝑛𝑑𝑖𝑎−𝑟𝑔 = (7.4 ± 1.2) × 𝐷(1.1±0.06)

𝐸𝐼𝑛𝑑𝑖𝑎−𝑠𝑚 = (5.7 ± 1.6) × 𝐷(1.1±0.06)

𝐸𝐼𝑛𝑑𝑖𝑎−𝑝𝑚 = (9.5 ± 2.0) × 𝐷(1.0±0.04)

where rg corresponds to rainfall data obtained from rain gauges, sm from soil moisture
data and pm by merging satellite data with soil moisture data. The method and data sets
are explained in the study of Brunetti et al. (2021).
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Table C.2: Threshold values for various non-exceedance probabilities (NEP)
where LS above and belowdenote the number of landslide events above and below the threshold

NEP [%] α Δα γ Δγ LS above LS below

T1 0.32 ±0.6 1.22 ±0.2 45 4
T2 0.41 ±0.7 1.22 ±0.2 45 4
T5 0.59 ±1.0 1.22 ±0.2 42 7
T10 0.83 ±1.4 1.22 ±0.2 38 11
T20 1.3 ±2.1 1.22 ±0.2 31 18
T50 2.8 ±4.4 1.22 ±0.2 12 37

Figure C.1: Reconstructed landslide and rainfall conditions for the Bicol region

C.2 RA IN FAL L PAT T ERNS FOR TYPHOONS SAR I KA AND DUR IAN

Figure C.2: The 24h accumulated rainfall of typhoon Durian and
Sarika during landfall of the typhoon at the red circle, obtained
from JAXA (2021). An impact range of 300 km is indicated by the
arrow
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Figure C.3: Rainfall patterns associated with the four rainfall thresholds (before, after, event and
total) for typhoon Sarika, obtained from JAXA (2021).

Figure C.4: Rainfall patterns associated with the four rainfall thresholds (before, after, event and
total) for typhoon Durian, obtained from JAXA (2021).
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C.3 ACCURACY STAT I S T I C S FOR HAZARD AND IMPACT FORECAST S

The F1-score is an accuracy measure, which does not consider TNs. The True Scale
Statistics (TSS) or the Matthew’s Correlation Coefficient (MCC) do include all classes of
forecasts (TP, TN, FP and FN), give objective performance of the hazard and impact
forecasts and MCC also functions well in unbalanced data sets such as those with scarce
events (Chicco and Jurman, 2020; Rawat, 2019). In the case of a forecast with no TP
values, resulting in an F1 score of zero, the MCC and TSS measures were assessed.

𝐹1 = 2𝑇𝑃
2𝑇𝑃+𝐹𝑃+𝐹𝑁

𝑇𝑆𝑆 = 𝑇𝑃
𝑇𝑃+𝐹𝑁 − 𝐹𝑃

𝑇𝑁+𝐹𝑃 = 𝑇𝑃𝑅 − 𝐹𝑃𝑅

𝑀𝐶𝐶 = 𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁
√(𝑇𝑃×𝐹𝑃)+(𝑇𝑃×𝐹𝑁)+(𝑇𝑁×𝐹𝑃)+(𝑇𝑁×𝐹𝑁)

where TPR and FPR are true postive rate and false positive rates, respectively (Chicco
and Jurman, 2020; Ciavolella et al., 2016).

Hazard impact for typhoon Durian and Sarika
Accuracy statistics for F1 indicated low performance for typhoon Durian. MCC is close
to 0, indicating that the forecast was as unreliable as cossing a toin, as stated by Chicco
and Jurman (2020)t. TSS showed larger negative values compared to MCC. 𝑅𝑇𝑒𝑣𝑒𝑛𝑡
performed best for TSS and 𝑅𝑇𝑡𝑜𝑡𝑎𝑙 for MCC and F1. For typhoon Sarika, MCC and TSS
were negative indicating low performance. The most reliable accuracy statistic was
found for forecasts using 𝑅𝑇𝑎𝑓 𝑡𝑒𝑟 due to the increase in TN and decrease in FP.

Landslide hazard forecasts of both typhoons for all three accuracy statistics
performed similar and indicated low performance.

Table C.3: Accuracy statistics for hazard forecasts of typhoon Durian and Sarika

Durian Actual TP: 4 Landslides

𝑅𝑇𝑏𝑒𝑓 𝑜𝑟𝑒 𝑅𝑇𝑒𝑣𝑒𝑛𝑡 𝑅𝑇𝑡𝑜𝑡𝑎𝑙 𝑅𝑇𝑎𝑓 𝑡𝑒𝑟

TP 4 4 4 2
F1 0.069 0.0683 0.072 0.048

MCC 0.025 0.018 0.049 -0.084
TSS -0.298 -0.165 -0.599 -0.916

Sarika Actual TP: 5 Landslides

𝑅𝑇𝑏𝑒𝑓 𝑜𝑟𝑒 𝑅𝑇𝑒𝑣𝑒𝑛𝑡 𝑅𝑇𝑡𝑜𝑡𝑎𝑙 𝑅𝑇𝑎𝑓 𝑡𝑒𝑟

TP 0 0 0 0
F1 0 0 0 0

MCC -0.146 -0.137 -0.121 -0.039
TSS -0.330 -0.303 -0.255 -0.035
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Landslide impact for typhoon Durian and Sarika
The reliability of landslide impact for typhoon Durian for All classes indicated negative
values and low performance of the forecasts for F1, MCC and TSS for 𝑅𝑇𝑏𝑒𝑓 𝑜𝑟𝑒, 𝑅𝑇𝑒𝑣𝑒𝑛𝑡
and 𝑅𝑇𝑡𝑜𝑡𝑎𝑙. 𝑅𝑇𝑎𝑓 𝑡𝑒𝑟 provided a less negative value for TSS and MCC compared to the
other RTs, because of the decrease in FP. For high classes, MCC and TSS had values close
to 0 and slightly negative. 𝑅𝑇𝑏𝑒𝑓 𝑜𝑟𝑒 and 𝑅𝑇𝑒𝑣𝑒𝑛𝑡 showed most reliable values for MCC,
TSS and F1 for operation use.

For typhoon Sarika, F1 is zero, while TSS and MCC indicate both low performance.
TSS and MCC give similar results for operational use of 𝑅𝑇𝑏𝑒𝑓 𝑜𝑟𝑒 and 𝑅𝑇𝑒𝑣𝑒𝑛𝑡. For 𝑅𝑇𝑎𝑓 𝑡𝑒𝑟,
no forecasts were obtained (indicated with an empty value).

Impact forecasts for F1, MCC and TSS for both typhoons for all RTs perform alike,
except for 𝑅𝑇𝑎𝑓 𝑡𝑒𝑟, due to a reduction in FP and the dependence of F1 on TP. For
forecasting applications, landslide impact forecasts ofeither 𝑅𝑇𝑏𝑒𝑓 𝑜𝑟𝑒 and 𝑅𝑇𝑒𝑣𝑒𝑛𝑡 are the
most reliable.

Table C.4: Accuracy statistics for landslide impact forecasts of typhoon Durian & Sarika

All susceptibility classes

Durian: 4 Landslides Sarika: 5 Landslides
𝑅𝑇𝑏𝑒𝑓 𝑜𝑟𝑒 𝑅𝑇𝑒𝑣𝑒𝑛𝑡 𝑅𝑇𝑡𝑜𝑡𝑎𝑙 𝑅𝑇𝑎𝑓 𝑡𝑒𝑟 𝑅𝑇𝑏𝑒𝑓 𝑜𝑟𝑒 𝑅𝑇𝑒𝑣𝑒𝑛𝑡 𝑅𝑇𝑡𝑜𝑡𝑎𝑙 𝑅𝑇𝑎𝑓 𝑡𝑒𝑟

TP 1 1 1 0 0 0 0 0
F1 0.028 0.028 0.028 0 0 0 0 0

MCC -0.131 -0.135 -0.135 -0.096 -0.102 -0.087 -0.083 -0.029
TSS -0.350 -0.359 -0.359 -0.209 -0.192 -0.238 -0.250 -0.714

High susceptibility classes
𝑅𝑇𝑏𝑒𝑓 𝑜𝑟𝑒 𝑅𝑇𝑒𝑣𝑒𝑛𝑡 𝑅𝑇𝑡𝑜𝑡𝑎𝑙 𝑅𝑇𝑎𝑓 𝑡𝑒𝑟 𝑅𝑇𝑏𝑒𝑓 𝑜𝑟𝑒 𝑅𝑇𝑒𝑣𝑒𝑛𝑡 𝑅𝑇𝑡𝑜𝑡𝑎𝑙 𝑅𝑇𝑎𝑓 𝑡𝑒𝑟

TP 0 0 0 0 0 0 0 -
F1 0 0 0 0 0 0 0 -

MCC -0.091 -0.091 -0.091 -0.018 -0.045 -0.039 -0.042 -
TSS -0.191 -0.191 -0.191 -0.009 -0.727 -0.667 -0.700 -

Total impact for typhoon Durian
The accuracy measures TSS and MCC indicated a more reliable total impact forecast for
the 510 typhoon model compared to the hybrid model. MCC was higher for the 510
typhoon model compared to the hybrid model because of the value of the numerator:
960 for the 510 typhoon tool and 600 for the hybrid tool of 𝑅𝑇𝑏𝑒𝑓 𝑜𝑟𝑒.

TSS was larger for the 510 typhoon model compared to the hybrid model because of
the difference between the False and True Positive Rates.
FPR for the 510 typhoon model were much lower compared to the hybrid model: 0.06
and 0.56 respectively, even though TPR was larger for the hybrid model (TPR of 0.8)
compared to the 510 typhoon model (TPR of 0.4).
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Considering subjective accuracy measures i. e. TSS and MCC, the 510 typhoon model
was more reliable compared to the hybrid model. Yet the application of the typhoon and
landslide forecast in a humanitarian context should be considered, where TPs are more
important compared to TNs and acting in vain (FP) is preferred over not acting at all
(FN). Additional subjective assessments of the hybrid model can be done for additional
typhoon events both inside and outside of the Bicol region.

Table C.5: Accuracy statistics for the total impact maps using a hybrid multi-hazard model and
the typhoon impact using a machine-learning method

Durian Actual TP: 76

510 model Hybrid model - All susceptibility classes
Total 𝑅𝑇𝑏𝑒𝑓 𝑜𝑟𝑒 𝑅𝑇𝑒𝑣𝑒𝑛𝑡 𝑅𝑇𝑡𝑜𝑡𝑎𝑙 𝑅𝑇𝑎𝑓 𝑡𝑒𝑟

TP 31 59 59 61 59
TN 34 15 15 15 30
FP 2 19 19 22 19
FN 47 16 16 16 34
F1 0.559 0.771 0.771 0.763 0.690

MCC 0.350 0.234 0.234 0.208 0.236
TSS 0.342 0.228 0.228 0.198 0.247

510 model Hybrid model - High susceptibility classes
Total 𝑅𝑇𝑏𝑒𝑓 𝑜𝑟𝑒 𝑅𝑇𝑒𝑣𝑒𝑛𝑡 𝑅𝑇𝑡𝑜𝑡𝑎𝑙 𝑅𝑇𝑎𝑓 𝑡𝑒𝑟

TP 31 38 38 38 31
TN 34 31 31 31 34
FP 2 5 5 5 2
FN 47 40 40 40 47
F1 0.559 0.628 0.628 0.628 0.559

MCC 0.350 0.334 0.334 0.334 0.350
TSS 0.342 0.348 0.348 0.348 0.342



D CREAT ING AN I B F MODEL US ING EXPERT- BA SED
JUDGEMENT

Various challenges within the data collection, hazard forecasting and impact forecasting
components of an IBF model for typhoon-induced landslides have been identified in
chapter 2.2. To create the most reliable landslide IBF model from scratch (i. e. when no
existing model is available), a stakeholder assessment can be done by using a
Multi-Criteria Decision-Making Method (MuCDM) to assess the elements of influence
on the reliability. Specialists in the fields of landslide hazard and impact mapping; IBF
for landslides and other natural hazards (typhoons) can be asked to provide their
expert judgement on the influence of the elements on the reliability of each element
within each component of the IBF model (2.2). Their judgement can result in a
quantitative ranking or score of the reliability elements to determine the most influential
ones. The expert-based quantitative ranking can be used to assess the influence of a
certain element on the reliability of the components and on the total reliability of the IBF
model and chain. The outcome of this method is a list of those elements on which
stakeholders could focus during the creation of an IBF chain, such that a most reliable
IBF chain for landslides or multi-hazards is created and risk resilience is enhanced.

A method for such an expert-based analysis of the reliability elements is presented in
figure D.1 and consists out of 3 phases: data preparation, a Monte Carlo - Analytical
Hierarchy Process (MC - AHP) and the Analytical hierarchy Process (AHP). In this
Appendix, the method is explained in detail and a summary can be found in section D.3.

Figure D.1: Method for a reliability assessment on an IBF model using expert-based judgment

59



D.1 PHAS E 1 : DATA PRE PARAT ION 60

D.1 PHAS E 1 : DATA PRE PARAT ION

The data preparation phase, as shown in the left box in figure D.1, consists out of the
selection of elements which influence the reliability per component. Experts are selected
such that their skills can be applied for the reliability assessment of elements for a
landslide IBF model. The selection of elements can be performed by brainstorming with
the experts or prepared by a literature research on articles relating to landslide hazard
mapping, IBF and landslide hazard and impact assessment as visualized in figure 2.2.
The first approach is preferred, but requires meetings with experts.

D.2 PHAS E 2 : MONTE CARLO - ANALYT I CAL H I E RARCHY PROCE S S (MC - AHP)

In the second phase, a Multi-Criteria Decision-Making Method (MuCDM) is used to
rank the selected elements per component by expert judgement shown in figure D.1 and
in the first step (indicated by the green box showing a 1) in figure D.2. The Analytical
Hierarchy Process (AHP) can provide a quantitative way to perform a qualitative
analysis by expert judgement on the influence of the reliability elements (Brunelli,
2015). By combining AHP with a Monte Carlo simulation, an approach referred to as
the Monte Carlo - Analytical hierarchy Process (MC - AHP), uncertainty statistics of the
AHP outcome of the expert judgement of the rankings are obtained, such that a
sensitivity analysis of the rankings by expert judgement can be performed.

D.2.1 The Analytical hierarchy Process (AHP)

The Analytical hierarchy Process (AHP) is a Multi-Criteria Decision-Making Method
(MuCDM) which has been widely used in providing a quantitative outcome of a
qualitative analysis, such as expert judgement. Also, AHP has been applied in various
studies to assist in decision-making for landslide susceptibility mapping (Roccati et al.,
2021). The AHP approach is a suitable MuCDM for complex and technical cases where
interaction between various criteria and elements is common, as it can order these
interconnected elements into a structured ranking (Hsu and Pan, 2009; Xie et al., 2016).
Subjective expert judgements are transformed into quantitative outcomes based on
mathematical calculations using pairwise comparison. This results in a ranking of the
elements based on their influence for each reliability criteria and an overall ranking of
the influence of the element on the total goal of the AHP.

The first step in the AHP method is to provide for a goal of the analysis, which is the
assessment of the reliability per component. To assess the reliability of a component, the
reliability of each element, 𝑅𝐸, within that component is evaluated, to rank their
influence on a criteria. Therefore, criteria of importance should be determined. This
hierarchy of goal, criteria and elements is visualized in the first step in figure D.2.

After defining the hierarchy, the AHP assessment ranks the reliability elements for
each component separately. The reliability of the elements is analyzed by means of a
pairwise comparison. This allows for the experts to make judgements of the reliability of
only 2 elements for 1 criteria. The pairwise comparison therefore reduces the complex
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judgement of ranking all elements in one go to a simpler and clear comparison. The
comparison firstly determines which element (of the two) is more influential regarding
a certain criteria and secondly asks for a rating of its influence in numbers. These
numbers range from 1, equally important, to 9, extremely important. These ratings
determine the ranking of the elements and result in a percentage or quantification of
their influence on the reliability of that component. A ranking is obtained for each
component and for each element and is presented in a ratio matrix which orders the
element from most influential (highest rank) to least influential (lowest rank). The
reliability of one element for one component is combined by adding their rated
relevance of the criteria of 𝑅𝐸. (Brunelli, 2015; Feizizadeh et al., 2015; Xie et al., 2016).
The outcome of the AHP assessment is a ranking list of the influence on the reliability of
elements in one component in percentages, as shown in the second visual in figure D.2.

Comparing the elements by expert judgement is subjective and inconsistencies can
occur, i. e. when an expert contradicts him/herself. The AHP method uses a consistency
rating (CR) of the comparison matrices, which should be below 0.1 (or 10%) for an
acceptable consistency of the ranking by the experts. If the CR>0.1, the AHP model
used in this research gives the expert various options to alter their ratings of the
pairwise comparison, such that the CR<0.1 (Brunelli, 2015).

For the AHP assessment, an online software can be used (https://bpmsg.com/), which
can generate a URL link to be send to participants to perform a group AHP or individual
assessments can be done. The results of both the comparison matrices and rankings are
combined into the total result of all experts. The rankings of each element of all experts
can be aggregated into a distribution or range of rankings per element, as shown by step
3 in figure D.2.

D.2.1.1 Monte Carlo Simulation

The AHP method is based on expert judgement and is therefore subjective. This
subjectivity of the experts judgement of the reliability of elements can be referred to as
the uncertainty of its reliability (Brunelli, 2015; Feizizadeh et al., 2015). In order to
assess the probability of an expert to rank an element with a certain rating and thus the
uncertainty of the expert judgement, a Monte Carlo (MC) analysis can be done.

Firstly, the range of rankings obtained in the previous step (step 3) is used as input
samples for the MC simulation. Using AHP ranking outcomes instead of random
variables as input for an MC analysis has been performed in other research using the
Monte Carlo - Analytical Hierarchy Process approach (MC - AHP) (Feizizadeh et al.,
2015; Hsu and Pan, 2009; Xie et al., 2016). For a MC simulation, a list of random
variables within a range of a minimum and maximum value is used to generate a
probability distribution of a number with a certain uncertainty. The list of rankings
from step 3 could be used for the MC instead of a list of random variables. Then, the MC
model is run and random variables from the ranking lists are selected and the
simulation models a probability distribution of the rankings, or in other words the
probability that one element receives a certain ranking by the experts. This process is
repeated many times depending on the number of expert judgements performed



D.2 PHAS E 2 : MONTE CARLO - ANALYT I CAL H I E RARCHY PROCE S S (MC - AHP) 62

(referred to as 𝑛) and the number of input parameters, i. e. elements (𝑘). Each run, other
rankings from the input list of rankings are chosen randomly. The number of runs can
be calculated using formula D.1 (Tate, 2012):

𝑁 = 2 ∗ 𝑛(𝑘 + 1) (D.1)

Uncertainty statistics can be obtained from the results of the MC analysis, e. g.
minimum rank of the elements reliability; the maximum rank; the mean rank as well as
the variance and the standard deviation (Hsu and Pan, 2009; Xie et al., 2016). The
outcome of the MC simulation is shown in step 4 of figure D.2 and thus results in an
insight into the uncertainty of the expert judgement of the ranking percentage of the
elements. This is the final outcome of the second phase of the method, as shown in
figure D.1.

Figure D.2: Schematic representation of the steps performed in phase 2 and 3 of the reliability
assessment for an IBF model for natural hazards.

D.2.2 Phase 3: Global Sensitivity Analysis

In order to understand which elements have the largest influence on the reliability of
one component and the total reliability of the IBF model, a Global Sensitivity Analysis
(GSA) is performed in the third phase of the method (figure D.1). In a GSA, elements in
consecutive components of the IBF model can be assessed simultaneously, such that the
interaction of the elements between the components is considered. This is important,
especially in IBF models, as components depend on each other and the element’s
influence on reliability should therefore be assessed relative to the IBF model rather
than their individual influence on the total reliability of the model (Guzzetti et al., 2020;
Tate, 2012; Thirugnanam et al., 2020; Zhang et al., 2019; Zhang et al., 2015). There are
various types of GSA, such as the partial rank correlation coefficient; the
multi-parametric sensitivity analysis; Fourier amplitude sensitivity analysis (FAST) and
the Sobol’s method. The latter two methods are both variance-based sensitivity analyses
and can determine the influence of elements as a quantitative output. Variance-based
GSA can determine the sensitivity of an elements reliability rank by two means: A first
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order (linear) sensitivity index, referred to as 𝑆, gives a measure of the individual
contribution of the elements reliability on the its component. Secondly, the Total Effect
Sensitivity index (non-linear), 𝑆𝑇, measures the total contribution of one element on the
total reliability, thus taking into account the interdependence of the elements between
components. The Sobol method is widely used and is said to be more ’powerful’
compared to the FAST method if the input sampling size is not too large (Feizizadeh
et al., 2015; Zhang et al., 2015).

The Sobol method uses variance as parameter assessment for the GSA. From the
uncertainty parameters obtained from the MC-AHP of phase 2, the variance and mean
are selected. Histograms showing the ranking and the number of times an element is
ranked with a certain score from those, the mean and variance of the expert-based
rankings are selected (step 4 in figure D.2). The variance and mean of the rankings can
be used to assess the sensitivity of the expert judgement as the mean value of the
rankings represents the middle value of the range and the variance represents how
much the rankings of the experts deviate from the mean (Feizizadeh et al., 2015; Tate,
2012). The variance thus indicates how much the experts agree with each other on the
ranking score and thus on the influence of one element on the reliability.

The Sobol method decomposes the variance of the rankings into the total variance of
the components, 𝑉𝐶(𝐸) and the variance per element per component, 𝑉𝐸1−𝐶, referred to
as the partial variance. This is related to the total reliability (R) of the elements, which is
the multiplication of the reliability per component (C) of the IBF model: 𝑅𝐶1 * 𝑅𝐶2 * 𝑅𝐶3
(Thirugnanam et al., 2020),where 𝑅𝐶1 is the sumof all elementswithin a component. The
sensitivity of an element, 𝑆𝐸 is calculated by taking the fraction of the partial variance over
the variance of the component, as shown in formula D.2 and D.3, where 𝑖 is the number
of elements in a component. The sensitivity outcomes of the Sobol methods are called
the Sobol indices 𝑆 and 𝑆𝑇 (Tate, 2012; Xie et al., 2016). 𝑆 represents the the individual
sensitivity of each element and is a first-order and linear sensitivity calculation, where S
ranges between zero, indicating no influence on the reliability and 1, indicating complete
influence. It represents the sensitivity of an element to its component and thus can be
seen as the contribution of one element’s reliability on the reliability of one component.

𝑆𝐸𝑖−𝐶1 = 𝑉𝐸𝑖−𝐶1

∑𝑛
𝑖=1 𝑉𝐶1

(D.2)

𝑆𝐶1 =
𝑛

∑
𝑖=1

𝑆𝐸𝑖−𝐶1 (D.3)

Secondly, the total effect sensitivity, 𝑆𝑇, computes the influence of one element on the
reliability of the whole IBF model, as shown in formula D.4 (Tate, 2012; Zhang et al.,
2015). This is a second- or higher-order and non-linear sensitivity calculation as it takes
into account the dependence of the components on each other for the total reliability,
which is the sum of all components. The formula is included in the analysis in the second
step in figure D.2. 𝑆𝑇 thus relates to the influence and contribution of one individual
element on the entire IBF model.

𝑆𝑇𝐸𝑖−𝐶1 = 𝑉𝐸𝑖−𝐶1

∑𝑛
𝑖=1 𝑉𝐶1 ∗ ∑𝑛

𝑖=1 𝑉𝐶2 ∗ ∑𝑛
𝑖=1 𝑉𝐶3

(D.4)
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By performing a GSA on all elements for all components as shown in figure 2.2, the
proportions of the influence of the reliability of the elements are obtained, visualized as
the final step in figure D.2 and the final outcomes of the method in figure D.1 (Tate,
2012; Zhang et al., 2015).

In short, the Sobol method uses variance as parameter assessment. The uncertainty
parameters obtained from the MC-AHP of phase 2, the variance and mean are selected.
Histograms showing the ranking and the number of times an element is ranked with a
certain score from those, themean and variance of the expert-based rankings are selected,
as can be seen in step 4 in figureD.2. The variance andmean of the rankings can be used to
assess the sensitivity of the expert judgement as themean value of the rankings represents
the middle value of the range and the variance represents how much the rankings of the
experts deviate from the mean (Feizizadeh et al., 2015; Tate, 2012). The variance can thus
say something of how much the experts agree with each other on the ranking score and
thus on the influence of one element on the reliability.

D.3 SUMMARY OF METHOD

This method uses expert-based judgement to asses the contribution of the reliability of
elements on the reliability of its component and on the IBF chain as a whole. This is
done in three phases. Phase 1 represents the preparation of the data by selecting
reliability elements for the assessment and selecting experts with skills and
understanding of IBF, landslide mapping and IBF chains. The second phase starts with
an expert-judgement of ranking the elements per component using the AHP approach.
The outcome of this approach is a ranking list of elements with a quantitative score on
their reliability. Per element, the quantitative rankings are aggregated to resemble a
range of ratings of the elements. A normal distribution of the element’s ranking and the
probability of an element receiving a certain rank are obtained by a performing an
MC-AHP analysis. In phase 3, the variance of each element is selected, and the variance
for each component and for the entire chain is calculated, using the formula for
reliability: 𝑅𝐶1 * 𝑅𝐶2 * 𝑅𝐶3. A variance-based Global Sensitivity Analysis (GSA) is
performed using the Sobol approach, which assesses the influence and contribution of
one elements reliability on its component and the contribution of on element’s reliability
on the entire IBF chain’s reliability.

By assessing the influence of the elements on each component and on the entire IBF
chain, an understanding of what experts in the field would indicate as those elements
most influential for the reliability of an IBF chain for natural hazards can be obtained.
This method can be seen as an approach to use a global sensitivity analysis on expert-
judgement to determine which elements have the largest influence on the reliability of
such a chain. The outcome represents those elements on which stakeholders could focus
such that the entire IBF chain can be improved in reliability in order for a reliable IBF
model to be used and risk resilience is to be enhanced.
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