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Abstract

In human-AI agent interactions, providing clear visual or textual explanations for
the agent’s actions and decisions is crucial for ensuring successful collaboration. This
research investigates whether having the visual explanations displayed only on-demand,
instead of having them consistently shown as the baseline, has an impact on the human
supervisor’s level of confidence and satisfaction with the AI agent. Therefore, a case
study of 40 participants was conducted to explore this hypothesis and the participants
were divided into 2 groups, one interacting with the on-demand condition, and the
other with the baseline one. Through questionnaires, the participants’ capacity and
moral trust in the robot, the explainable artificial intelligence satisfaction, and the dis-
agreement rate with the robot’s decisions have been collected. Demographic data was
gathered from the participants to explore whether their background could impact the
collaboration. This data included the participants’ gender, age, education, gaming ex-
perience, risk propensity, trust propensity, and utilitarianism. The resulting statistical
analyses indicated no significant differences between the baseline and the on-demand
conditions concerning trust and explanation satisfaction. This suggests that the over-
all collaboration was not primarily impacted by the frequency of visual explanations
requested on demand. Although the results implied a high satisfaction with the inter-
action, further studies with more diverse user groups are recommended. Overall, this
research reinforces the importance of transparency in decision-making processes during
the collaboration between an AI agent and a human supervisor.

1 Introduction
Collaborations between humans and autonomous agents span various domains [1]. In

this research, their collaboration was studied concerning the firefighting domain. Even
though robots are becoming progressively self-reliant, the tasks implying moral decisions are
considered extremely sensitive [2]. Therefore, it is still advised to have human supervisors
actively involved in the process of collaboration, as they perform better in unexpected
situations [3].

The firefighting domain presents some dangerous aspects, requiring quick decision-making
and the ability to adapt to hazardous environments [4]. Robots, with their ability to per-
form repetitive tasks with high speed and having a lower safety risk than humans, present
an invaluable asset for search and rescue situations [5]. They can perform a variety of tasks,
such as navigating through smoke-filled buildings, evacuating victims, and extinguishing
fires [6, 7]. However, the involvement of human collaborators remains crucial, especially for
making decisions in situations with a high moral sensitivity, which the robots are not yet
equipped to properly handle [2].

In this collaborative process, the optimal form of interaction remains uncertain. To
better understand and meet human needs, various types of robot explanations should be
explored. As semi-autonomous robots begin to make more intricate and critical decisions,
it becomes imperative to ensure that their choices are reliable and moral. Ethical decision-
making requires actions to be justifiable with clear explanations. As such, for humans to
trust the agents, it is essential to understand the ethical frameworks they employ and to
ensure that these are applied consistently and predictably [8].

Therefore, one thing to take into consideration is whether humans respond better to
visual explanations compared to textual ones, and if visual aids should be presented only
at specific key moments during the collaboration. This research aims to explore how the
possibility of requesting additional on-demand explanations influences explanation satisfac-
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tion and the level of trust of the human supervisor in the robot. In the baseline version
of the collaboration, the visual statistics describing the rationale behind the decision are
displayed at each decision point of the robot. The on-demand explanations build on top of
the baseline, and the visuals are only displayed upon the human supervisor’s request. This
feature is particularly relevant in high-stakes environments like firefighting, where having
the right balance between information overload and understanding the rationale behind a
robot’s actions can be crucial for making appropriate informed decisions.

Exploring this research direction works towards better insights into the collaboration
between robots and human supervisors. More specifically, this research aims to identify
strategies that can enhance the collaborative efficacy between robots and human supervisors.
It represents a step further in the development of a trustworthy AI-human communication
system [9].

The main research question can be divided into subquestions to achieve structured rea-
soning and a better understanding of the specific goals of this research, while also facilitating
data collection. The subquestions derived from this topic and further explored are:

1. How do the on-demand explanations differ from the baseline explanations?

2. How often do users require on-demand explanations from the robot?

3. Does the background of the users impact how frequently they require explanations?

4. Is the frequency of the request for additional information correlated to the level of
trust in the robot?

5. Do the users still need more insight, even after receiving this extra information?

2 Background of the research

2.1 Human-Agent Teamwork
Human-agent collaboration combines the precision and speed of autonomous agents with

the capacity of humans to make morally sensitive decisions. For instance, in the firefight-
ing environment, robots can navigate through smoke-filled buildings, identify fire sources,
and locate victims to gather critical data. The human supervisor contributes to strategic
decision-making and moral judgments. This type of teamwork improves safety by allowing
robots to perform dangerous tasks and reducing the exposure of human firefighters.

Dynamic task allocation systems enable robots to adjust their tasks based on continu-
ously changing environmental conditions. However, formal analysis tools play an important
role in those systems [10]. Robots can provide real-time data and situational assessments,
to ensure that human firefighters have the necessary information to prioritize tasks effec-
tively. For example, deciding whether to first extinguish fires or evacuate victims calls for
dynamic task allocation. Combined with a time-pressure situation, this enhances the level
of implication of the human supervisor in the task, as they can make decisions themselves
and bear the responsibility for them [11].

In the context of firefighting, meaningful human control ensures that semi-autonomous
robots can effectively contribute without compromising safety or ethical standards. How-
ever, human supervisors maintain the ability to supervise and intervene at any point in the
decision process. Some studies on the traceability of meaningful human control have ob-
served a positive impact on the transparency of the semi-autonomous system [12]. Making
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the decision process of the agents accessible to human supervisors, through visual or textual
explanations has been shown to enhance trust and accountability [13].

2.2 Explainable Artificial Intelligence
Explainable AI (XAI) is essential in helping human collaborators understand AI decision-

making models [14]. In situations where life-or-death decisions need to be made quickly,
transparency and accountability provided by XAI are crucial for effective collaboration.
Understanding the precise reasoning behind the decision of an AI agent can enhance the
effectiveness of firefighting operations. When human supervisors can see that the robot’s
decisions are ethically justified, they are more likely to trust and approve these actions [8].

Previous research indicated that the level of trust in the automation process is closely
linked to its performance [15]. This trust can be significantly enhanced through XAI, which
provides clear and understandable insights into the AI agent’s decision-making process. In
morally sensitive situations, trust in the AI’s decisions is crucial for gaining human collab-
orators’ approval. Trust has a significant impact on the approval of the agent’s decisions,
especially in morally sensitive situations. Therefore, through its transparency, XAI can
provide an effective collaboration in human-AI agent teams.

Additionally, XAI enhances the effectiveness in a firefighting environment by execut-
ing and explaining complex data analyses and predictions. Ensuring transparency within
AI systems is crucial for maintaining accountability, especially in the event of errors. By
following the AI’s decision-making processes, human supervisors can identify and rectify
mistakes, ultimately improving overall safety. Robot agents can help locate and extinguish
fires considering factors such as temperature, fire spread speed, and fire intensity [7]. XAI
provides clear and understandable data, helping firefighters prioritize rescue operations and
extinguishing efforts based on solid reasoning.

However, providing explanations that are both accurate and easily understandable to
human supervisors, who may not have technical backgrounds, remains a challenge. Previous
research indicates a gap between delivering explanations to users without domain experience
and personalizing these explanations to the user’s context [16].

In this research, baseline explanations in human-robot interactions include visual graphs
at each decision point of the robot. These graphs explain the factors considered, such as
smoke spread, available time before building collapse, distance to victims, and temperature.
Building on these baseline explanations, the focus of this thesis is on-demand explanations,
which are tested to observe if they enhance trust and explanation satisfaction.

2.3 On-demand explanations
Human-agent collaboration has been approached in other works, where it has been ob-

served that personalized explanations from a robot agent improve the associated level of
trust [13]. These personalized explanations are tailored to focus on agents who use a user
model of the involved human to personalize their explanations. However, a question to
be answered is whether on-demand explanations, where humans can explicitly request ad-
ditional information, which is not shown otherwise, can improve the trust of the human
collaborator. Compared to the personalized explanations mentioned above, the on-demand
explanations focus not on the type of information, since no user model is employed here,
but on the availability of information, as they allow the human supervisor to decide when
they want to receive such additional information.
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Exploring this approach is particularly important in dynamic and high-stakes environ-
ments such as firefighting. Research indicates that visual representations significantly en-
hance situational analysis and improve the interpretability of the decision-making process
[17]. This work explores whether the supervisor’s ability to choose when to utilize visual-
izations allows for more determined and reliable decision-making processes. This capability
potentially equips human supervisors to better monitor, evaluate, and trust the robot’s
actions.

In the context of human-robot interaction, previous studies have shown that the high
quality of the interaction increases the perceived intelligence of the robot [18]. This paper
introduces an additional interaction mechanism, allowing human supervisors to request vi-
sualization of specific statistics when needed. This flexibility ensures that visual aids are
employed only when deemed necessary by the supervisor, enhancing the relevance and ef-
fectiveness of the information provided, while also reducing potential information overload
on the supervisor.

This section has discussed various types of explanations and methods to enhance human-
agent collaboration, supported by prior studies focusing on personalized agent explanations.
The following sections analyze whether providing additional information only upon hu-
man request improves the human supervisor’s trust in the robot. This investigation is
performed by implementing on-demand explanations and comparing them to the existing
baseline through a user study where participants act as human collaborators.

3 Method

3.1 Design
The design included a user study with 40 participants who were divided into two groups:

those interacting with the baseline condition of the explanations and those using the version
with the on-demand condition. The purpose of the user study was to investigate the best
means of interaction between the human supervisor and the robot agent. The responses of
the participants who interacted with the on-demand condition were compared against the
ones of those interacting with the baseline version.

3.2 Participants
To evaluate the efficacy of this approach, a user study was performed, where participants

recruited from the personal network undertook the role of the human agent collaborating
with the robot in the simulated environment. The sample size of participants based on
which the feedback is created is 40, where half of the individuals interacted with the baseline
condition and the other half with the on-demand condition. Before they participated in the
study, all members gave their informed consent, approved by the ethics committee of our
institution (ID 4002). For the considered control variables, the participant’s distribution is
as follows: for the identified gender (19 females, and 21 males), for the age (32 between 18-24
years old, 6 between 25-34 years old, 2 between 44-54 years old), for the previous education
(13 with high-school degree, 9 with some college credit, 11 with Bachelor’s degree, 6 with
Masters’s degree and 1 with PhD’s degree) and lastly for the gaming experience (10 with
no experience, 4 with little experience, 7 with moderate experience, 9 with considerable
experience, and 10 with a lot of experience).
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To evaluate the effectiveness and influence of the explanations, several tests were con-
ducted on the collected data. For this purpose, several control variables have been used,
namely the demographic and background factors that might influence the dependent vari-
ables and the participants’ responses when interacting with the robot agent. The control
variables that have been tested are gender, age, education, gaming experience, risk propen-
sity, trust propensity, and utilitarianism. The risk propensity has been measured according
to previous research [19], using a scale from 1 to 9, for the 7 questions of the questionnaire,
where 1 means total disagreement and 9 total agreement, then by calculating their mean.
The trust propensity [20] and the utilitarianism [21] have also used measuring techniques
according to previous research. A scale from 1 to 5 was used to measure the participants’
response, where 1 means strong disagreement and 5 means strong agreement, then the mean
of the results was calculated. The questionnaire details can be found in the Appendix A.

In order to examine if there was a significant difference between the participants’ gender
and the condition of the user study they took part in, a chi-square test was conducted.
No statistically significant difference between the gender distributions across the baseline
and on-demand conditions has been observed (Chi-Square Statistic (χ2): 0, p-value: 1.0,
df(degrees of freedom): 1). Therefore, the randomization process concerning gender has
been effective.

The two-sample Wilcoxon test was used for the age, education, and gaming experience
to assess whether there was a significant difference between the distributions of the two
independent samples. The results for the age (p-value = 0.01875) and for the education
(p-value = 0.004427) variables both have a p-value less than the significance level of 0.05.
This suggests a statistically significant difference in the age and education distributions
between participants in baseline and on-demand conditions, the data being not homogeneous
concerning demographic variables. For further examination of this imbalance of age and
education for the baseline and the on-demand conditions, linear regression tests were run.
The age and education were tested against each dependent variable, capacity trust (p-value
= 0.07205 for age and p-value = 0.6397 for education), moral trust (p-value = 0.4383 and p-
value = 0.6494), xai satisfaction (p-value = 0.2082 and p-value = 0.5854), and disagreement
rate (p-value = 0.571 and p-value = 0.1201). Therefore, age and education are not significant
predictors for the dependent variables. For the gaming experience, the results using the
two-sample Wilcoxon test (p-value = 0.8897) show that there is no statistically significant
difference between the conditions.

For the remaining control variables, the independent samples t-test is used if the data
assumptions are met and if the data is normally distributed. Otherwise, the two-sample
Wilcoxon test is used. For the risk propensity variable, the Wilcoxon test has been used and
resulted in p-value = 0.001461. For a deeper investigation of this imbalance, linear regression
tests were run. This resulted in p-value = 0.9204 for capacity trust, p-value = 0.1877 for
moral trust, p-value = 0.9565 for xai satisfaction, and p-value = 0.03554 for disagreement
rate. Therefore, risk propensity is not a significant predictor for the capacity and moral trust
dependent variables, but it is for disagreement rate. For the trust propensity, no significant
differences between distributions were found when running the independent samples t-test
(p-value = 0.2855). In the case of utilitarianism, no significant differences have been found
either when running the Wilcoxon test (p-value = 0.2335).
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3.3 Hardware and Software
The experiment was conducted on a commercial local machine to launch the two-dimensional

simulation of the firefighting environment. The MATRX tool (Human-Agent Teaming Rapid
Experimentation Software) was employed to create and manage this environment. Qualtrics
1 was used to obtain participation consent from the participants and to collect pre- and post-
interaction data through surveys. This platform facilitated efficient and standardized data
collection and ensured that participants’ consent was properly recorded. Excel files were
used to log the data obtained from the participants and to keep track of the values for each
variable. For data analysis, RStudio was utilized to perform various statistical tests for the
data analysis.

3.4 Environment
Within the simulated 2D firefighting environment (see Figure 1), the collaboration be-

tween a robot and a human agent has already been established using a semi-autonomous
robot interacting with a human supervisor. The two agents collaborate during critical
decision-making points within the environment. This environment consists of 14 distinct
areas, each potentially containing victims needing evacuation, fires to be extinguished, sub-
stantial amounts of spreading smoke, and fallen debris during the extinguishing process.
There are 11 victims in total who need to be transported to the designated drop zone.

To help prioritization during the decision-making, victims are colored based on their
condition: critically injured victims are marked in red, while mildly injured victims are
marked in yellow. During the rescue phase, the robot is capable of transporting mildly
injured victims to the drop zone, as depicted by the list of victims on the right side of
Figure 1. Firefighters can also be summoned to the environment to locate fire sources or
rescue critically injured victims.

Figure 1: Firefighting virtual environment

1https://tudelft.eu.qualtrics.com/
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3.5 Task
The objective of the task in which the human supervisor and the robot collaborate is to

evacuate the victims and deliver them to the designated drop zone within the time frame.
There are six situational features to take into consideration during the task: the resistance
to collapse, the temperature, the number of victims, the spread of the smoke, the fire source
location, and the distance between the victim and the fire source. They can be observed in
Figure 4, at the top of the screen. The first one estimates the time limit on this task before
the building collapses. The second represents the temperature in each area and during the
decision-making process, and it is compared to a pre-established safety threshold. The next
one represents the number of victims that have been rescued out of the total number of
victims. This is followed by a representation of the spreading of the smoke, which can either
be at a slow, normal, or fast pace. This value is updated according to each area where fire
and smoke are found. The next one represents the fire source location, which can be labeled
either as unknown or as found. At the beginning of the task, it is considered to be unknown.
Next, there is the distance between the victim and the fire source, and it can be labeled
either as small or large. This, too, is considered unknown at the beginning of the task and
it is further refined when the robot finds victims that are critically injured.

There are four types of decision-making situations that the robot might face. Firstly,
the choice of either employing the offensive or the defensive deployment tactic. The first
tactic focuses on searching for victims and evacuating them, while the second one focuses
on finding fires and extinguishing them. The decision consists of either continuing with the
current tactic or switching to the alternative one. Secondly, the robot can be faced with
the decision of either evacuating a mildly injured victim or extinguishing the fire in the
area first. The guidelines in the robot’s implementation indicate to first extinguish unless
the smoke is spreading at a fast pace and the source of the fire has not yet been found.
If the human supervisor makes the decision, the choice of first evacuating the victim can
be expressed by pressing the ’Evacuate’ button at the bottom of the screen represented in
Figure 4. Otherwise, the ’Extinguish’ button can be pressed. Thirdly, a decision can consist
of either sending in firefighters to locate the fire source if the situation is considered safe
enough or choosing not to send them. In the case where the human makes the decision,
the firefighter can be sent by pressing the ’Fire fighter’ button at the bottom of the screen
represented in Figure 4. Otherwise, the ’Continue’ button can be pressed. Finally, the robot
can not evacuate the critically injured victim on its own, so a decision needs to be made
on whether to send firefighters to rescue the victim, or to wait until the conditions for the
firefighters to intervene no longer pose a high risk. The rescue task is chosen by pressing
the ’Fire fighter’ button, otherwise, the ’Continue’ button can be pressed.

When interacting with the on-demand condition, the human supervisors also have the
option to press the ’Extra info’ button, which can be observed at the bottom of Figure
4. This displays the additional information, represented by a graph visualization of the
situational features.

On both the baseline and the on-demand conditions, the robot automatically decides in
situations that fall below a certain threshold of predicted moral sensitivity. However, human
collaborators can intervene and allocate the decision-making to themselves, by pressing the
’Allocate to me’ button presented at the bottom of Figure 4. When the moral sensitivity
exceeds the threshold, the human supervisor is asked to take over, making the final decisions
based on the robot’s assessments. They can also re-allocate the decision-making to the robot
if they choose to, by pressing the ’Allocate to robot’ button.
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3.6 Agent Types
The collaboration included two types of agents, the semi-autonomous robot, called Bru-

tus, and the human supervisor. Each participant in the user study undertook the role of
the human agent.

The robot was able to perform tasks such as evacuating mildly injured victims and deliv-
ering them to the drop zone, extinguishing fires, removing possibly fallen debris, searching
the rooms for victims or fires, keeping track of the rescued victims and of the areas that
have not yet been searched and report the tasks and the decision-making outlines to the
human supervisor. However, Brutus can not deliver the critically injured victims on its own.
Those victims can only be delivered by a firefighter AI agent. The robot and the human
agent can communicate through the chat box presented in Figure 4, and the human agents
can respond during decision-making stages by using the designed buttons.

The robot can perform dynamic task allocation by adjusting the tasks and decisions
based on the interventions of the human, it can offer data analysis to the supervisor, and it
can handle the execution of moral decisions.

3.7 Explanation generation
During the interaction between the robot agent and the human, the explanation gener-

ation reveals the underlying reasons behind the informed decisions of the robot agent.
At each action point during the firefighting simulation, the robot agent generates reports

to be sent to the human supervisor. These reports can either detail the robot’s current action
or highlight morally sensitive situations requiring immediate decisions.

This research examines both the baseline and on-demand conditions. In the baseline
condition, visual explanations are automatically presented to the human supervisor at every
decision point, as shown in Figure 2. These visual graphs include baseline moral sensitivity
and situational features such as the fire source location, smoke spread speed, and the number
of people needing evacuation from the robot’s current location.

The on-demand condition, in contrast, focuses on flexibility and responsiveness rather
than constant transparency. In this condition, graph visualizations are displayed only when
explicitly requested by the human supervisor, as illustrated in Figure 3. The rationale
behind removing the constant visual explanations and offering them on demand is to reduce
information overload and allow humans to focus on the current task and request more
detailed information themselves. This way, we can investigate how the level of trust and
satisfaction of the user are influenced by the on-demand explanations. This approach aims to
determine if the graphs enhance the understanding of the robot’s decision-making rationale
and whether they should be displayed continuously or only when needed. This ensures that
detailed and possibly overwhelming visual information is only shown on demand, thereby
offering comprehensive data while avoiding the overburden of information.

3.8 Measures
This research measures the following dependent variables: capacity trust, moral trust,

explanation satisfaction, and disagreement rate. They were measured in the questionnaire
the participants were presented with after interacting with the platform.

The capacity and the moral trust were measured using the multi-dimensional measure
of the trust survey [22]. The participants’ trust scores were measured using a scale from 0
to 7, where 0 indicated complete disagreement with the given statement about trust, and 7
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Figure 2: Baseline Condition Figure 3: On-demand condition

Figure 4: Human-Agent collaboration interface

indicated complete agreement. Additionally, there was an option labeled ’does not fit,’ which
participants could select if they felt a particular attribute was not applicable for describing
the robot. Each type of trust was assessed with 8 questions, and the final trust score for
each type was calculated by calculating the mean of the responses.

The explainable satisfaction was measured through similar approaches as those used
in previous research on user satisfaction in human-AI agent interactions [5]. Participants’
scores were calculated using a scale from 1 to 5, where 1 indicated strong disagreement with
the presented statement and 5 indicated strong agreement. The participants responded to
8 statements and then their final satisfaction was calculated by taking the mean of their
responses.

The disagreement rate was automatically logged at the end of the collaboration, by
taking into consideration the number of reallocations to the human supervisor or robot.

3.9 Procedure
Before being introduced to the interface, participants completed a questionnaire de-

signed to assess their risk propensity, trust propensity, and utilitarianism opinions. They
first interacted with a trial version of the application to familiarize themselves with the
platform. Following this, they proceeded with the experimental version and then, lastly,
they completed an additional predefined questionnaire based on their experience as human
supervisors.
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Their feedback, which is integrated into the results section, focuses on their interactions
with the robot. Responses to the questionnaire were logged using Qualtrics. Objective data
regarding participants’ interactions with the interface were automatically recorded upon
task completion.

The task was deemed successful after the 40 participants tested the experimental version
of the application in the user study. This feature served as a measure for analyzing the
trust of the human supervisor in the robot. Each user study session lasted approximately
40 minutes and was conducted either in person or online.

4 Results
Various tests were performed on the gathered data to assess the effectiveness and impact

of the explanations. This section presents the tests performed on the dependent variables:
moral trust, capacity trust, XAI satisfaction, and disagreement rate, to investigate potential
differences based on the on-demand explanations. The collected data is divided into two
groups: one from participants who interacted with the baseline condition and the other from
those who experienced the on-demand condition.

The independent samples t-test was used if the data assumptions were met. Otherwise,
the two-sample Wilcoxon test was used. The significance level of the p-value against which
the tests were run is 0.05. The Shapiro-Wilk test was performed on each dependent variable.
If at least for one of the conditions, baseline or on-demand, the p-value was lower than 0.05,
a Wilcoxon test was run. Conversely, if for both of the conditions, the p-value was equal to
or greater than 0.05, an F-test to compare variances for the two conditions, followed by a
t-test was performed.

For the capacity trust the mean was higher for the on-demand condition (mean = 5.661)
than for the baseline (mean = 5.378), indicating a slightly higher score for the on-demand
explanations. The standard deviation (sd) was similar (sd = 0.7553725) for on-demand
and (sd = 0.8090469) for the baseline. The F-test to compare variances yielded a p-value
of 0.7678, following the assumption of equal variances for the subsequent t-test. The two-
sample t-test resulted in a p-value of 0.2604 and 38 degrees of freedom (df). The 38 degrees
of freedom suggest a large sample size for analyzing differences between the conditions.
This is calculated by subtracting 2 from the total number of data collections across the two
groups. The sample size was 40, therefore the degrees of freedom were 38. The degrees of
freedom impact the t-distribution and therefore the value for determining the significance.

For moral trust, the Wilcoxon test was performed and resulted in W = 171.5 and p-
value = 0.8036. The mean moral trust score in the on-demand condition (mean = 5.782632)
is higher compared to the baseline condition (mean = 5.314737). The standard deviation
in the baseline condition is larger (sd = 1.698893) than in the on-demand condition (sd =
0.9135209), so there is a larger variability in the scores gathered from the baseline condition.

For XAI satisfaction, the Wilcoxon test resulted in W = 174.5 and p-value = 0.4978.
The mean XAI satisfaction score in the on-demand condition (mean = 3.9975) is higher
compared to the baseline condition (mean = 3.888). The standard deviation in the baseline
condition is smaller (sd = 0.5570184) than in the on-demand condition (sd = 0.6894458),
so scores obtained from the on-demand condition vary more.

For the disagreement rate, the Wilcoxon test resulted in W = 153.5 and p-value = 0.183.
The mean disagreement rate score in the on-demand condition (mean = 0.1055) is higher
compared to the baseline condition (mean = 0.06). The standard deviation in the baseline
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condition is smaller (sd = 0.08991224) than in the on-demand condition (sd = 0.1263027),
but they can be considered fairly similar.

For all of the dependent variables, since the p-value obtained exceeds the significance
threshold of 0.05, it indicates that there are no statistically significant differences between
the baseline and on-demand conditions.

To compare the data distributions for the baseline and the on-demand condition, the
box plot from Figure 5 is used to visualize it. The line inside the box represents the median
value of the data when sorted in ascending order. The box represents the interquartile range
and the whiskers extending from the boxes suggest how much the data varies in the upper
and lower quartile. The individual points represented above or below the whiskers are the
data outliers.

Figure 5: Data distribution in baseline VS on-demand.

For the on-demand condition, additional tests have been performed to assess the over-
all satisfaction of the participants. This aimed to investigate the correlation between the
number of times the participants asked to be provided with additional visual graphs dur-
ing decision-making and their overall satisfaction. The most noteworthy results have been
obtained for capacity trust (r = 0.27 and p = 0.2542) and for moral trust (r = 0.27 and
p = 0.2571), where there is a weak positive correlation, but not a significant one. Those
results can be observed in the plot from Figure 8. The r value suggests a slight inclination
toward higher trust when on-demand explanations are required more often. For the XAI
satisfaction (r = 0.06 and p = 0.8074) and the disagreement rate (r = -0.08 and p = p =
0.7518), the results show that the dependent variables do not correlate with the number of
requests for additional information. The p-values have been compared to the 0.05 signif-
icance level, where a value larger than 0.05 indicates that the results are not statistically
significant. The correlation coefficient, r, measures the strength of the correlation between
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the measured variables.
To observe if there is any correlation between the background of the participant and the

frequency of the request for an on-demand explanation, additional correlation tests were run
for the control variables risk propensity, trust propensity, and utilitarianism. For the risk
propensity, the results (r = -0.13 and p = 0.5800) indicate that the frequency of additional
information requests slightly decreases as risk propensity increases. For the trust propensity
(r = 0.07 and p = p = 0.7670) and the utilitarianism (r = 0.25 and p = 0.2972), the results
indicate that the frequency of additional information requests slightly increases when these
control variables increase. However, for all of these control variables, the relationship is not
statistically significant, because of the p-value being higher than 0.05, and could be due to
random chance. All of the correlation analysis plots for both the dependent and the control
variables can be observed in Appendix A. In general, there was a low request for additional
information, with the mean value of this request being 3.5.

Figure 6: Correlation with capacity trust Figure 7: Correlation with moral trust

Figure 8: Correlation between dependent variables and the number of times the on-demand
explanations are required

5 Responsible Research
In order to ensure the ethical standards of the research, multiple steps were taken con-

cerning the anonymity of the data, the reproducibility of the method, the use of the results,
and the availability of the code source.

To begin with, the data collected from the participants was anonymized to protect their
confidentiality. Their privacy was respected by securely storing their responses and not
linking them to specific participants. Responses were collected and stored using Qualitrics
and the study reported only summarized data and results obtained based on the participants’
feedback.

The methods employed in conducting this research were thoroughly documented to fa-
cilitate reproducibility. This transparency aims to make the research more approachable
to the readers, enabling them to replicate it and verify the results. Moreover, this ensures
that the research can become a foundation for future studies. Descriptions of the study,
the implemented code base, the interface the participants interact with, the questionnaires,
and the data analysis have been reported. The use of established tests for the data analysis
and the scaling concerning the control variables contributes to the reproducibility of the
research.
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The participants had no prior knowledge of the experiment, a measure taken to prevent
biases. Before participating in the study, they gave their informed consent, approved by the
ethics committee of our institutions (ID 4002). They were informed about the purpose of
the study, the data collection methods, the procedure, and the means of respecting their
privacy. The selection bias was avoided by reporting all the data gathered from participants
in the analysis process.

Guided by those principles, the research ensures that the methods were transparently
described and that the results are reliable and utilizable in future research.

6 Discussion
The results indicate there are no statistically significant differences when comparing the

dependent variables in the baseline and the on-demand conditions. In this section, the
possible reasons behind this will be further explored.

The high mean values in both conditions for the capacity trust, the moral trust, and
the XAI satisfaction imply that participants generally trusted and were satisfied with the
explanations of the robot, regardless of the condition type. The collected feedback for the
dependent variables had a high score. The low disagreement rates in both conditions suggest
that participants’ agreement with the robot’s decisions, can be considered consistently high.
The low standard deviations indicate that the responses of the participants were consistent
in both conditions.

Concerning moral trust, XAI satisfaction, and disagreement rate, a Wilcoxon test has
been used on the data, their high p-values indicate a high likelihood that the differences
between the conditions occurred randomly. The lack of significance could be explained by
the consistently high scores for trust and satisfaction, making it harder to assess potential
diversity.

Previously referenced research shows that personalized explanations have a positive im-
pact on the trust of the human supervisor [13]. The personalized explanations mentioned in
this research involve the agents who use a user model of the human to personalize their ex-
planations. The on-demand explanations are also personalized, allowing human supervisors
to ask for additional information on demand.

As has been previously mentioned, the interaction quality increases the satisfaction of
the supervisor with the capabilities of the robot [18]. Therefore, the high scores on both the
baseline and the on-demand condition could suggest that the baseline version has already
been implemented in a manner that enhances trust and satisfaction. As a result, the quality
of the interaction might not have been significantly changed by adding the possibility of
requesting the visual graphs only on demand. This can be further explored by introducing
an expanded variation on the types of additional explanations and varying complexity. On
the other hand, the baseline explanation can be modified for future research and one without
visual explanations might have resulted in statistically significant differences.

Moreover, the visual explanations might have created an information overload, dimin-
ishing the level of attention that the participants paid to the graphic explanations. Trans-
parency of the decision-making process has been shown to enhance trust and accountability
[13]. This might serve as an explanation as to why the scores were high in both conditions
and there were no statistically significant differences observed. Both conditions offered tex-
tual and visual explanations, even though for the on-demand condition the visual ones were
displayed only on request, so they were both using a transparent approach.
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Although additional tests were conducted to assess whether the background of the users
could be linked to the frequency of the requests for on-demand explanations, no significant
correlations have been found. This suggests that the participant’s characteristics did not
impact the request for more information. Therefore, for future studies, a more diverse
list of participants could help identify whether specific groups could benefit more from the
additional explanations.

The results highlight that the general trust and satisfaction with the explanations of the
robot was high among the participants. The participants seem to collaborate well in the
context of dynamic task allocation systems. It has been previously discussed that the use of
formal analysis tools [10], enables a smooth collaboration. For this research, this dynamic
task allocation enables robots to adjust their tasks and explanations based on changing
environmental conditions and human interventions. This can be related to the high score
of capacity trust. The satisfaction with the robot’s dynamic decisions and explanations can
be observed by analyzing the low scores obtained when measuring the disagreement rate
variable. However, this type of additional explanation does not significantly contribute to
the level of trust and satisfaction.

7 Limitations and Future Work
One limitation of this research is the low diversity in the background of participants,

which was particularly impactful during the data analysis process. While performing the
Wilcoxon tests on the age and education control variables, significant differences in their
distributions were observed between the baseline and on-demand conditions. A linear re-
gression analysis was conducted to verify that these variables were not significant predictors
of the dependent variables. However, it is recommended that future research include more
participants to balance these differences better and enhance the robustness of the findings.

The same issue applies to the risk propensity control variable. Its p-value was lower
than 0.05 in the linear regression analysis with the disagreement rate as the dependent
variable, indicating statistical significance. Future studies should include a larger number
of participants to validate these results and explore the impact of risk propensity further.

Another point to consider, based on participant feedback, is the need to improve the
predictability of the robot’s actions. Participants reported feeling the need to take over
decision-making because they were unaware of what the robot agent was planning to do at
decision points. Enhancing the system to announce the robot’s intended actions in advance
could address this issue.

Additionally, many participants found the timeframe to complete the tasks in the virtual
environment too short, affecting the completeness variable. The timing was inaccurate, with
virtual minutes passing at a different rate than real minutes. This issue could be mitigated
by extending the timeframe and ensuring it aligns more closely with real-world timing.

Finally, the threshold determining whether the robot or the human supervisor makes
decisions can be adjusted. As human trust in the robot increases, the threshold can be set
higher, allowing the robot to make more decisions autonomously.

8 Conclusion
This research shows that having the visual explanations displayed only upon the human

supervisor’s request (on-demand explanations) compared to having them consistently shown
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(baseline explanations) did not result in a statistically significant difference in human trust
and explainable AI satisfaction with the firefighting robot. The lack of correlation between
the frequency of demanding additional information (3.5 on average) and the scores of the
dependent variables is an indicator that the participants did not rely on visual reports to
base their judgments. Overall, the participants’ level of confidence in the robot’s actions
and decisions, as well as their satisfaction with the AI was consistently high, while their
disagreement rate was regularly low.

The background of the participants did not significantly impact the dependent variables.
However, to improve the balance across control variables such as age, education, and risk
propensity, conducting more diverse user studies is recommended. Furthermore, participants
reported that receiving additional information from the robot agent, particularly regarding
its planned actions in morally sensitive situations, would be a beneficial improvement. Al-
together, this research highlights the importance of the transparency and communication of
the robot’s decision-making process for enhancing the human-AI agent collaboration.
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A Appendix

A.1 Correlation analysis
Here are presented more figures describing the correlation analysis.

Figure 9: Correlation between extra info and moral trust

A.2 Questionnaire before interaction with platform
Here are presented the questions that were part of the questionnaire.

A.3 Questionnaire after interaction with platform
Here are presented more details about the questionnaire shown after the interaction with

the platform.
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Figure 10: Correlation between extra info and capacity trust

Figure 11: Correlation between extra info and XAI satisfaction
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Figure 12: Correlation between extra info and disagreement rate

Figure 13: Correlation between extra info and utilitarianism
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Figure 14: Correlation between extra info and risk propensity

Figure 15: Correlation between extra info and trust propensity
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Figure 16: Gender and age
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Figure 17: Education and gaming experience
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Figure 18: Risk propensity
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Figure 19: Trust propensity
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Figure 20: Utilitarianism
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Figure 21: Condition of the experiment, 1 for baseline, 5 for on-demand
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Figure 22: Capacity trust and moral trust
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Figure 23: XAI satisfaction

28


