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Abstract. This paper presents a weighted least squares
approach to retrieve aerosol layer height from top-of-
atmosphere reflectance measurements in the oxygen A band
(758–770 nm) over bright surfaces. A property of the mea-
surement error covariance matrix is discussed, due to which
photons travelling from the surface are given a higher prefer-
ence over photons that scatter back from the aerosol layer.
This is a potential source of biases in the estimation of
aerosol properties over land, which can be mitigated by re-
visiting the design of the measurement error covariance ma-
trix. The alternative proposed in this paper, which we call
the dynamic scaling method, introduces a scene-dependent
and wavelength-dependent modification in the measurement
signal-to-noise ratio in order to influence this matrix. This
method is generally applicable to other retrieval algorithms
using weighted least squares. To test this method, synthetic
experiments are done in addition to application to GOME-2A
and GOME-2B measurements of the oxygen A band over the
August 2010 Russian wildfires and the October 2017 Portu-
gal wildfire plume over western Europe.

1 Introduction

Algorithms that estimate properties of atmospheric species
from satellite measurements of top-of-atmosphere (TOA)
radiance (including spectral signatures of gases) in plane-
tary atmospheres typically employ an inverse method based

on least squares. When retrieving terrestrial properties, this
approach requires spectrally resolved measurements of the
TOA Earth radiance, solar irradiance and a forward model
as the minimal base ingredients with which the state vector
parameters can be retrieved (which are also model parame-
ters). The goal of the least squares approach is to minimize
a cost function, which aims to reduce discrepancies between
the forward model and the measurement by iteratively ma-
nipulating state vector parameters. Upon minimization, the
iterative scheme converges to a solution that, in principle,
best describes the forward model’s representation of the mea-
surement.

Many atmospheric retrieval algorithms employ a weighted
least squares estimation (WLSE) method modified to include
a priori information on the state vector. An example of such
an inverse method set-up is optimal estimation (OE; Rodgers,
2000), which is an attractive method particularly because of
its efficacy in providing a posteriori error statistics on the
retrieved parameter. The KNMI aerosol layer height (ALH)
retrieval algorithm uses an inverse method based on OE and
exploits the spectral structure of the near-infrared spectrum
of the top-of-atmosphere radiance between 758 and 770 nm,
where photons travelling through the Earth’s atmosphere pre-
dominantly get absorbed by molecular oxygen. Oxygen is a
well-mixed gas and the spectral structure of its absorption
lines is pressure-dependent (Min and Harrison, 2004). The
further the light in the oxygen A band passes through the at-
mosphere, the more it gets absorbed until it interacts with
scattering species (such as clouds and aerosols) and scatters
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back to the TOA. It is this feature of the oxygen A band
that has made it an attractive wavelength region for retriev-
ing aerosol information (Gabella et al., 1999; Corradini and
Cervino, 2006; Pelletier et al., 2008; Hollstein and Fischer,
2014; Sanghavi et al., 2012; Frankenberg et al., 2012; Wang
et al., 2012; Sanders and de Haan, 2013; Sanders et al., 2015;
Sanders and de Haan, 2016). The algorithm is operational
for the TROPOspheric Monitoring Instrument (TROPOMI)
on board the Sentinel-5 Precursor (S5P) mission (Veefkind
et al., 2012) and is also a part of the Sentinel-4 (S4) and
Sentinel-5 (S5) missions (Ingmann et al., 2012) under the
Copernicus satellite programme of the European Union.

Due to the large spectral variability in absorption within
the oxygen A band, the measured TOA radiance and the mea-
surement noise have a high dynamic range. The minimization
of the propagation of measurement noise to the final retrieval
solution should be a critical component of any retrieval al-
gorithm. In WLSE, this is accomplished by the inverse mea-
surement error covariance matrix, which ranks the measure-
ment on each detector pixel using the information available
on the measurement noise. Due to the extent of the dynamic
range of the measurement noise in the oxygen A band, this
ranking matrix becomes a primary controlling entity; if the
measurement noise is very large, the inverse noise variance
is very low, which results in a lower rank to the measured
signal from that specific detector pixel.

Since the measured signal is scene dependent, the spec-
tral rank of each detector pixel is also scene dependent. This
has special consequences over bright surfaces, where the dy-
namic range of the measured signal is much larger than over
dark surfaces. Due to this, photons at wavelengths where
the oxygen A band has a lower absorption cross section are
less absorbed (subsequently travelling further into the atmo-
sphere) and have a much larger representation in the WLSE
method. A consequence of this, reported by Nanda et al.
(2018), is that the retrieved ALH values are inaccurate for
measurements over land.

In order to account for unknown instrument and model
errors, Sanders et al. (2015) multiply the measurement er-
ror from L1b by two for their GOME-2 case studies and by
10 in SCIAMACHY case studies for retrieving ALH over
ocean and land. They observe that increasing the measure-
ment noise results in an increase in the number of retrieval
convergences without significantly decreasing the accuracy
of the retrieved ALH for the already converged solutions.
The method utilized by Sanders et al. (2015) does not change
the shape of the noise spectrum since it is multiplied by
a constant. This paper investigates a vector-based weighing
scheme (we call it the dynamic scaling method, as opposed to
the formal approach which is unscaled OE), which dynami-
cally varies from scene to scene and changes the shape of the
noise spectrum itself. The objective of the dynamic scaling
method is to influence the inverse measurement error covari-
ance matrix in its ranking of the instrument’s detector pixels
in its spectral dimension in order to maximize sensitivity to

the ALH. The study discussed in this paper is a part of a
series of papers discussing the ALH retrieval algorithm de-
veloped at the KNMI (Sanders and de Haan, 2013; Sanders
et al., 2015; Sanders and de Haan, 2016; Nanda et al., 2018).

The retrieval algorithm is described in Sect 2, which pro-
vides a description of the forward model and the formalism
of OE. The incompatibility of retrieving aerosol properties
from oxygen A band measurements with the formal design
of the measurement error covariance matrix are briefly dis-
cussed in the same section (Sect. 2) before a full descrip-
tion of the proposed method in Sect 3 and a demonstra-
tion in a synthetic environment in Sect 4 are given. This
method is applied to real data in Sect 5. The Russian wild-
fires in August 2010, which were discussed by Nanda et al.
(2018), are revisited to compare the two approaches. The
data are derived from the GOME-2A (Global Ozone Mon-
itoring Experiment on board the MetOp-A platform of the
European Organisation for the Exploitation of Meteorolog-
ical Satellites, EUMETSAT) instrument and validated with
a co-located CALIPSO (Cloud-Aerosol Lidar and Infrared
Pathfinder Satellite Observation of the National Aeronau-
tics and Space Administration, NASA) overpass. The dy-
namic scaling method is further applied to the Portugal fire
plumes over western Europe on 17 October 2017 using data
from the GOME-2B instrument, with validation from the
ground-based European Meteorological Services Network
(EUMETNET, Alexander et al., 2016) ceilometer network in
the Netherlands and Germany, along with radiosonde mea-
surements of the relative humidity profile and the back tra-
jectory of the aerosol plumes. This demonstration is followed
by the conclusion in Sect. 6.

2 The ALH retrieval algorithm

The algorithm is comprised of a forward model and an in-
verse method. The forward model uses a radiative transfer
model described by de Haan et al. (1987) to calculate the
top-of-atmosphere (TOA) Earth radiance (I ) in the oxygen A
band. This is done by propagating incoming solar irradiance
(E0) in the oxygen A band through the Earth’s atmosphere,
which is described by an atmospheric model. Finally, this
model is fitted to the measured spectrum to retrieve the pri-
mary unknown ALH while fitting the aerosol optical thick-
ness (AOT). For more details, the reader may refer to Sanders
et al. (2015).

2.1 The forward model

The atmospheric model describes the interaction of photons
with various components of the Earth’s atmosphere that ei-
ther absorb photons or scatter them in different directions.
The oxygen absorption cross sections are derived from the
NASA Jet Propulsion Laboratory database, and first-order
line mixing and collision-induced absorption between O2-
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O2 and O2-N2 are defined from Tran et al. (2006) and Tran
and Hartmann (2008). The scattering species in the atmo-
sphere include gases and molecules that follow Rayleigh-
scattering principles, aerosols, clouds and the surface. At
present, the algorithm assumes cloud-free scenes, since the
presence of clouds can result in large biases in the retrieved
ALH (Sanders et al., 2015; Sanders and de Haan, 2016).
Aerosols are modelled as a single layer with a fixed thick-
ness of 50 hPa. ALH is defined as the medium pressure of
the aerosol layer, converted to a height above the ground. The
aerosol layer has a constant aerosol extinction coefficient and
a fixed aerosol single-scattering albedo (ω). Scattering by
aerosols is described by a Henyey–Greenstein phase function
(Henyey and Greenstein, 1941) with an anisotropy factor g
of 0.7. This choice is motivated by the model’s simplicity in
describing scattering, which facilitates faster radiative trans-
fer calculations than a more complex Mie-scattering model.
Currently, the surface is modelled as Lambertian.

The radiative transfer calculations are done line by line
within the wavelength range of 758–770 nm, which requires
a large computational effort for a single retrieval per itera-
tion. In order to reduce computational time per iteration, po-
larization is ignored. This is a viable step, since the Rayleigh-
scattering cross section is very low in the near-infrared re-
gion. Because of the low Rayleigh-scattering cross section
in the near-infrared, Rotational Raman-scattering can also be
ignored.

The solar irradiance and Earth radiance are convolved with
an instrument spectral response function (ISRF) fISRF(λ−

λi) to simulate a spectrum observed by a satellite instrument.
The TOA reflectance (R) is computed as

yi = R(λi)=
π

µ0

∫
fISRF(λ− λi)I (λ)dλ∫
fISRF(λ− λi)E0(λ)dλ

, (1)

where µ0 is the cosine of the solar zenith angle θ0, and the
subscript i is the index of the spectral channel. For a more
in-depth description of the forward model, please refer to
Sanders et al. (2015). All synthetic spectra presented in this
paper are from a hypothetical instrument with a Gaussian
ISRF and a spectral resolution (FWHM) of 0.11 nm over-
sampled by a factor of 3. These specifications are very sim-
ilar to the Sentinel-4 Ultraviolet Visible and Near infrared
(UVN) instrument. The sensitivity analyses conducted in this
paper may also be applicable to instruments with a lower
spectral resolution. Further on in this paper, experiments are
conducted with measured spectra from the GOME-2A and B
instruments, which have a lower spectral resolution than the
S4 UVN instrument.

2.2 The formal ALH inverse method

OE is a maximum a posteriori (MAP) estimator designed to
find a solution for unknowns x in the classic inverse problem
described in Eq. (2) as

y = F(x,b)+ ε, (2)

where y is the vector of measurements (in this case, re-
flectance in the oxygen A band as a function of spectral chan-
nel index), F(x,b) is the aforementioned forward model with
the state vector x and other model parameters b, and ε repre-
sents the measurement noise (at each spectral point). The OE
method, being a MAP estimator, requires the knowledge of
a priori errors in the estimation parameters. These errors are
represented by the a priori error covariance matrix Sa and the
measurement noise covariance matrix Sε . Because measure-
ment noise is considered uncorrelated, Sε is diagonal. Sa is
also considered diagonal since the state vector elements are
assumed to be uncorrelated. The inverse method propagates
these errors into the a posteriori error covariance matrix Ŝ
following Eq. (3):

Ŝ=
(

KT S−1
ε K+S−1

a

)−1
, (3)

with K as the Jacobian or the matrix of partial derivatives
of F(x,b) with respect to the state vector parameters x at
the retrieval solution. Since the forward model is non-linear,
a Gauss–Newton method is employed to minimize the cost
function (Eq. 4) towards a zero gradient:

χ2
= [y−F(x,b)]T S−1

ε [y−F(x,b)]

+ (x− xa)
T S−1

a (x− xa), (4)

with xa as the a priori state vector. The update to the state
vector xn+1 for iteration n is provided in Eq. (5):

xn+1 = xa+ (KT
n S−1

ε Kn+S−1
a )−1KT

n S−1
ε

[y−F(xn,b)+Kn(xn− xa)], (5)

where Kn is the Jacobian at the nth iteration and xn is the
state vector at the nth iteration. The retrieval is said to con-
verge to a solution when the state vector update is lower than
the expected precision. The matrix Sε plays a very impor-
tant role in the WLSE framework by essentially ranking each
spectral point based on the absolute measurement error in or-
der to reduce the effect of measurement noise in the retrieved
parameter. This is done by the S−1

ε matrix, which assigns a
relatively higher value for spectral points with a lower noise
covariance and vice versa. The spectral points with a higher
S−1
ε value essentially have an overall stronger influence in

the WLSE. The design of this WLSE framework makes the
retrieval solution intrinsically dependent on the quality of the
S−1
ε matrix. This matrix will always rank higher those spec-

tral points that represent photons less absorbed by oxygen,
i.e. those which travel through the atmosphere more easily,
as the relative error at these spectral points is low. Because
aerosols are weak scatterers of light, a large fraction of pho-
tons pass through the aerosol layer and interact with the sur-
face before returning to the detector.

A spectrometer’s detector pixel (in the spectral dimension)
that contains a higher concentration of oxygen absorption
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Figure 1. (a, b) Modifying vector MAs/zaer as a function of wavelength λ. The solar zenith angle is 45◦, the viewing zenith angle is 20◦

and the relative azimuth angle is 0◦. The aerosol optical thickness (τ ) is 0.5 at 760 nm over a surface with an albedo of 0.2 (a, c, e) and
0.3 (b, d, f) at 760 nm. The height of the aerosol layer is 900 hPa with a pressure thickness of 200 hPa. The aerosol single-scattering albedo
is 0.95 and the aerosol scattering is described by a Henyey–Greenstein phase function with an asymmetry factor of 0.7. The red dashed
line represents the modification threshold value T , which has been set at the 20th percentile of MAs/zaer in this example. (c, d) Modifying
function MAs/τ , Eq. (8) as a function of wavelength. (e, f) The blue line represents the unscaled SNR, whereas the green line represents the
modified SNR according to Eq. (7).

lines receives less number of photons, in comparison to spec-
tral points that contain fewer or no absorption lines. As a re-
sult of this, the relative error at these spectral points is larger,
resulting in a lower signal-to-noise ratio (SNR). The expres-
sion of noise in the Sε matrix at each spectral point is hence
dependent on the average absorption line strength within a
spectral point. When the surface becomes brighter (e.g. over
land), the number of photons travelling from the surface to
the detector increases heterogeneously, depending on many
contributing factors such as oxygen absorption line strength,
AOT, ALH and other atmospheric properties. In principle,
however, the increase in signal for detector pixels with low
oxygen absorption cross section is much higher than that for
detector pixels with a high oxygen absorption cross section.

This will be reflected in the Sε matrix, which will (for exam-
ple) rank measurements in the continuum higher than those
in the deepest part of the absorption band.

If the information on ALH is derived from absorption by
oxygen, this design of the S−1

ε matrix does not encourage an
accurate ALH retrieval. From a WLSE standpoint, the conse-
quences of an increase in the number of photons in the TOA
reflectance that travel to the surface can be quite significant,
some of which are reported in Fig. 7 of Nanda et al. (2018).
A possible avenue through which the S−1

ε matrix can be im-
proved involves its dynamical manipulation. The manipula-
tion proposed in this paper has been termed the dynamic scal-
ing method. The next section elucidates this method with
a comparative analysis against the formal inverse method,

Atmos. Meas. Tech., 11, 3263–3280, 2018 www.atmos-meas-tech.net/11/3263/2018/
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Figure 2. Biases in retrieved zaer (in hPa) from synthetic measurements (2000 in total for each experiment) discussed in Sect. 4. The top
row represents zaer biases in the presence of a model error in the thickness of the aerosol layer. The bottom row represents zaer biases in the
presence of a model error in As. (a, c) Probability distribution function ϕ of retrieval biases. Blue line represents results from the dynamic
scaling method, and the red line represents those for the formal approach. (b, d) 2-D density plot showing the distribution of biases (density
ranges from high in red to low in blue). The x axis represents biases from the dynamic scaling method, whereas the y axis represents biases
from the formal approach.

henceforth called the formal approach, and is presented fur-
ther on in this paper.

3 The dynamic scaling method

The dynamic scaling method identifies favourable spectral
points for ALH retrieval by first identifying spectral points
that are the least favourable. The noise is increased at these
unfavourable points while keeping the noise at the other
points unchanged. These favourable and unfavourable spec-
tral points are identified using a class of vectors known as
modifying vectors (with the symbol M and length equal to
the number of spectral points).

To identify the unfavourable spectral points at which the
measurement noise is to be modified, a modifying vector
MAs/zaer is proposed as

MAs/zaer(λi)=
KAs(λi)

Kzaer(λi)
[hPa], (6)

where KAs(λi) is the derivative of the TOA reflectance with
respect to surface reflectance at the ith index of the spectral
point on the detector, and Kzaer(λi) is the same for zaer. In
principle, the ratio of KAs and Kzaer is used as an identifica-
tion tool since our primary retrieval parameter is zaer, which
reduces its information as As increases. This opposing na-
ture is discussed by Nanda et al. (2018) (Figs. 3 and 4 in

www.atmos-meas-tech.net/11/3263/2018/ Atmos. Meas. Tech., 11, 3263–3280, 2018
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Table 1. Input parameters for synthetic experiments.

Name Value/remarks

Atmospheric parameters
As 0.01–0.4 @ 760 nm (Lambertian)
τ 1.0–5.0 @ 550 nm (or, 0.60–3.0 @ 760 nm)
zaer 600.0–900.0 hPa
ω 0.95
g 0.7
Ångström exponent (Å) 1.5
Temperature–pressure profile midlatitude summer

Instrument parameters
Slit function FWHM 0.11 nm
Spectral oversampling factor 3
Slit function shape Gaussian

Solar-satellite geometry parameters
θ (viewing zenith angle) 0–70◦

θ0 0–70◦

φ−φ0 (relative azimuth angle) φ = 180◦, φ0 varied between 0 and 360◦

their paper), where they show an anti-correlation in the sen-
sitivity of τ and zaer in the atmospheric path contribution and
surface contribution to the TOA reflectance. A large value in
MAs/zaer(λi) represents spectral points in the measurement
with more sensitivity to As than to zaer. The motivation for
choosing derivatives as the means for modification is also
partly motivated from the fact that they are scene-dependent
parameters, which makes each modification unique to the
scene.

Spectral points with a MAs/zaer(λi) higher than a specific
threshold value should have a limited representation in the
estimation – these are the unfavourable spectral points. We
define this threshold as the modifying threshold (T ), which
is the 20th percentile value of MAs/zaer . The threshold value
set in our method has been chosen in a way to avoid scal-
ing the deeper parts of the R and P branches in the A band.
The choice of thresholding remains configurable to the user
of this method, based on their requirements – in our case
we have chosen to use a static rule for deciding the value of
T , but this could also be made dynamic. An example of the
shape of MAs/zaer is provided in Fig. 1 (top row).

The reason for increasing the noise at specific un-
favourable spectral points is to increase the value of Sε at
these points. With a higher Sε value, the S−1

ε value will be
lower, and hence that spectral point will have a lower weight
in the estimation. In principle, this is equivalent to artificially
increasing noise of measurements that contain less sensitivity
to ALH. To do this, the modified SNR (denoted by SNRM)
is defined as

SNRM(λi)=

{
SNR(λi) if MAs/zaer(λi) < T
SNR(λi)/MAs/τ (λi) otherwise,

(7)

where MAs/τ (λi) (belonging to the class of modifying vec-
tors) is defined as the ratio between the derivative of the TOA
reflectance with respect to the surface (KAs(λi)) and with re-
spect to AOT (τ ) at 760 nm (Kτ (λi))

MAs/τ (λi)=
KAs(λi)

Kτ (λi)
[−]. (8)

The choice of modifying the SNR based on MAs/τ arises
from the fact that the amount of contribution by the aerosol
layer to the TOA reflectance depends on its optical thickness.
In this case, we are interested in how much this contribution
fares against the contribution from the surface. Information
on both of these contributions can be inferred from the ratio
of KAs and Kτ , which have comparatively similar shapes. If
the measurement of a spectral pixel i is more sensitive to As,
MAs/τ (λi) will be larger, and hence the noise at i will be
increased, following Eq. (7).

To run a retrieval using the dynamic scaling method, the
derivatives of the reflectance with respect to As, zaer and τ at
760 nm are calculated first, followed by the modification of
SNR according to Eq. (7). The state vector parameters τ and
zaer are then estimated using SNRM. Users of this method
may choose to scale the measurement error covariance ma-
trix at each iteration, since the derivatives change at each it-
eration. Nevertheless, we have chosen to do it semi-statically
since the measurement error covariance matrix is a static ma-
trix throughout every iteration.

Examples of modifying vectors and SNRM are provided
in Fig. 1 (bottom row), which shows the robustness of the
method in scaling the SNR for different surfaces. The spec-
tra generated in the figure represents two scenes with iden-
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tical atmospheric parameters, solar and satellite geometries,
but different As. MAs/zaer , T and MAs/τ for different sur-
faces are different – this is important, since overscaling the
SNR can force the retrieval to rank the measurements of pho-
tons travelling from the upper parts of the atmosphere higher
while ignoring those from the lower parts of the atmosphere.
This is why the modifying vector MAs/τ is chosen as a dy-
namically scene-dependent parameter (according to Eq. 8),
such that the scaling is large when As is large (Fig. 1, mid
row). In the next section, the dynamic scaling method is
demonstrated and compared to the formal approach (which
is the unscaled OE method) for synthetically generated spec-
tra.

4 Sensitivity analyses

To demonstrate the dynamic scaling method, synthetic spec-
tra are generated for randomly varying values in zaer, τ , solar-
satellite geometry (θ , θ0 and φ−φ0), and As, while keeping
other parameters constant. Noise is not added to the synthetic
spectra. This method of randomly generating model parame-
ters for generating synthetic spectra gives a broad picture of
the method’s behaviour. Table 1 provides a brief overview of
the input model parameters chosen to generate these spectra.
An error is introduced in the forward model during retrieval,
and the bias in zaer (defined as retrieved – true) is used to as-
sess the retrieval. The a priori zaer and τ are set at 825 hPa and
true τ , respectively. While there are many possible sources of
errors, this paper presents two kinds of errors: (a) error in the
thickness of the aerosol layer, and (b) error in the surface
albedo database. A reason for limiting the retrieval experi-
ment scope to these two errors in the atmospheric part of the
forward model is due to the fact that they are one of the more
common contributors to retrieval biases. In real cases, aerosol
layers may not be concentrated in a single layer of 50 hPa
thickness, and the true surface albedo may vary significantly
(to the order of 10 % relative errors) from a monthly database
of Lambertian equivalent reflectivity (LER) values depend-
ing on many parameters. In total, 2000 synthetic spectra are
generated for each synthetic experiment and the parameters
zaer and τ are estimated using both the formal approach and
the dynamic scaling method to be compared side by side. The
results from analysing biases in retrieved zaer are plotted in
Fig. 2. Although the dynamic scaling method is specifically
designed for land, retrievals over surfaces with a low As (less
than 0.1) are also included.

Figure 3. MODIS Terra images of the two test cases. (a) MODIS
RGB composite on 08:50 UTC, 8 August 2010 of the 2010 Rus-
sian wildfires. The white line represents an approximation of
CALIPSO’s ground track. (b) Portugal wildfire plume observed
by MODIS Terra on 11:00 UTC over western Europe on 17 Oc-
tober 2017. Blue dots represent 12 ceilometer locations.

4.1 Error in aerosol layer thickness

The synthetic spectra generated assume an aerosol layer
thickness (pthick) of 100 hPa, whereas the retrieval forward
model assumes a 50 hPa thickness. For simplicity, a PDF (de-
noted by ϕ) of the biases of retrieved zaer is calculated, the
peak of which represents the value of maximum frequency
of occurrence, and the full-width at half maximum, which
represents the spread.

In comparison with the formal approach (Fig. 2a), the peak
of ϕ for the dynamic scaling method is closer to 0 hPa and

www.atmos-meas-tech.net/11/3263/2018/ Atmos. Meas. Tech., 11, 3263–3280, 2018
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Table 2. Results of the retrieval accuracy of zaer from sensitivity analyses, split into two classes of As. The number of successful retrievals
are reported in the “retrieved” column. Columns with the heading A are the locations of the peak of ϕ, representing the zaer bias value with
the highest frequency of occurrence. Those with B are the full-width at half maximum of ϕ, representing the spread of zaer biases.

Formal approach Dynamic scaling method
Experiment As Total spectra Retrieved A (hPa) B (hPa) Retrieved A (hPa) B (hPa)

pthick error
≤ 0.1 453 453 8.70 22.31 453 8.70 20.04
> 0.1 1547 1473 8.70 48.62 1446 3.34 38.76

2000 1926 8.70 44.18 1899 4.70 35.56

As error
≤ 0.1 451 451 −2.00 17.84 451 −2.00 14.36
> 0.1 1549 1335 −2.00 178.27 1408 −3.34 96.07

2000 1786 −2.00 150.64 1859 −3.34 81.85

has a larger magnitude (Table 2). The retrieval biases for
As ≤ 0.1 and above 0.1 are indicative of the robustness of the
dynamic scaling method in its scaling of the SNR (Table 2,
pthick bias row). For As ≤ 0.1, the retrieval biases from both
dynamic scaling and formal approach are almost identical.
Splitting the results to τ ≤ 2.0 and τ > 2.0, it is observed that
the dynamic scaling method reduces retrieval biases of zaer
by 40 % relative to those from the formal approach for high
aerosol loads and about 11.5 % for low aerosol loads. This
is because a scene containing low aerosols allow for more
interactions between photons and the surface, which results
in ALH retrievals being biased closer to the surface. The dy-
namic scaling method ameliorates this behaviour by reduc-
ing the sensitivity of the retrieval algorithm to these photons.
The formal approach retrieves 27 more pixels than the dy-
namic scaling method for As > 0.1. An observation to note
is that there are instances where even the dynamic scaling
method can result in large retrieval biases (Fig. 2b). Gener-
ally, however, the dynamic scaling method is shown to reduce
retrieval biases in the presence of model errors in the aerosol
layer thickness.

4.2 Error in surface albedo database

To generate errors in surface albedo, randomly varying rel-
ative errors (with respect to the true surface albedo in the
synthetic spectra) ranging between −10 and 10 % were in-
troduced to the retrieval forward model. The results heav-
ily favour the dynamic scaling method, which shows a sig-
nificant improvement in retrieval behaviour over the formal
method. The dynamic scaling method retrieves 73 more pix-
els than the formal approach (Table 2, As error row) while
also having a much smaller spread of retrieval biases around
the peak (Fig. 2c). ForAs ≤ 0.1, the dynamic scaling method
and the formal approach are almost identical, with the dy-
namic scaling method having a smaller spread. For As > 0.1,
however, the dynamic scaling method improves the spread of
the retrieval biases significantly. The mean biases for the dy-
namic scaling approach are slightly larger than those for the
formal approach, and the spread of retrieval biases in Fig. 2d

indicates that the dynamic scaling method does not necessar-
ily improve retrieval biases for all cases. However, the dy-
namic scaling method improves convergence from 89.3 to
92.3 % and reduces bias for 86.4 % of the cases.

The analysis of retrieval biases from the synthetic sensi-
tivity analyses are very encouraging for the dynamic scaling
method. The method has shown significant improvements for
As > 0.1 (at 760 nm) in the presence of two very relevant
model errors. The fact that the dynamic scaling method is
almost identical to the formal approach for As ≤ 0.1 reaf-
firms the design of the modifying vector MAs/τ , which is
intended to modify the SNR only if the modification is neces-
sary. A similar split of results for τ ≤ 2.0 and τ > 2.0 reveals
that the dynamic scaling method is almost similar to the for-
mal approach for low values of τ , and only results in signif-
icant improvements if the scene contains sufficient aerosols.
Relative to zaer biases from the formal approach, the biases
from the dynamic scaling are reduced by 53 % for τ > 2.0
and are practically the same for τ ≤ 2.0. The success of the
dynamic scaling method in a synthetic environment also con-
firms the fact that the design of the S−1

ε plays an important
role in the biases of the retrieved zaer. The next section ap-
plies the dynamic scaling method to measured spectra from
GOME-2A and GOME-2B instruments over aerosol plumes
from forest fire events in Europe.

5 Application to GOME-2 data

The GOME-2 instrument is a part of an operational mission
by the European Organization for the Exploitation of Me-
teorological Satellites (EUMETSAT) to monitor trace gases
and aerosols in the atmosphere. It is a spectrometer with
an across-track scanning mirror that projects the TOA Earth
radiance and solar irradiance through a prism on a grating
to get information in the ultraviolet, visible and the near-
infrared regions of the electromagnetic spectrum. In the oxy-
gen A band, the spectral sampling interval is typically about
0.20 nm and the FWHM is 0.50 nm (Munro et al., 2016). The
GOME-2 instrument is designed to have a footprint size of
80km× 40km in the oxygen A band. The instrument also

Atmos. Meas. Tech., 11, 3263–3280, 2018 www.atmos-meas-tech.net/11/3263/2018/



S. Nanda et al.: A weighted least squares approach to retrieve aerosol layer height 3271

Figure 4. Results from processing 85 GOME-2A pixels over Russia on 8 August 2010 using the formal approach and the dynamic scaling
method. Empty GOME-2A pixels with a white border represent non-convergences. (a) Fitted τ at 760 nm from the formal approach. (b) Re-
trieved zaer from the formal approach. (c) Fitted τ at 760 nm from the dynamic scaling method. (d) Retrieved zaer from the dynamic scaling
method. The background image for all plots is a subset of the MODIS Terra image in Fig. 3a.

measures the linear polarization of Earth radiance, which is
important for correcting the measured signal to calculate the
reflectance accurately.

In this section, measured spectra from the GOME-2A in-
strument on board the Metop-A satellite over Russian wild-
fires on 8 August 2010 (Fig. 3a) and the Portuguese fire
plume are used with the GOME-2B instrument on board the
MetOp-B satellite on 17 October 2017 over western Europe
(Fig. 3b). The formal OE method is compared to the dynamic
scaling method by using space-based and ground-based vali-
dation data. The noise spectrum is derived from the GOME-
2 level 1-b product, which is a combination of the system-

atic and random error components of the measurements (EU-
METSAT, 2014).

Auxiliary information required for these retrievals are me-
teorological data, surface albedo, and a priori values for
the optimal estimation (Table 3). The meteorological data
required are temperature–pressure profiles and the surface
pressure, derived from the ERA-Interim database from Dee
et al. (2011). These meteorological parameters are avail-
able on regular space (1◦× 1◦ spatial resolution) and time
grids, and require interpolation to the satellite pixel’s coordi-
nates and time of record. This interpolation is done using the
nearest-neighbour algorithm. The surface albedo database is
derived from Tilstra et al. (2017) version 2.1, which has a res-

www.atmos-meas-tech.net/11/3263/2018/ Atmos. Meas. Tech., 11, 3263–3280, 2018



3272 S. Nanda et al.: A weighted least squares approach to retrieve aerosol layer height

Figure 5. Histograms of fitted aerosol optical thickness (τ , left column) and aerosol layer height (zaer, right column) from GOME-2A and
GOME-2B pixels. Histograms in red are retrievals from the formal approach and the histograms in blue are results from the dynamic scaling
method. (a) Fitted τ from the GOME-2A pixels over the 8 August 2010 wildfire plume over Russian. (b) Retrieved zaer from the GOME-2A
pixels over the 8 August 2010 wildfire plume over Russian. (c) Fitted τ from the GOME-2B pixels over the 17 October 2017 wildfire plume
over western Europe. (d) Retrieved zaer from the GOME-2B pixels over the 17 October 2017 wildfire plume over western Europe. The axes
are adjusted for each plot.

olution of 0.25◦×0.25◦, derived from the GOME-2A instru-
ment. The surface LER is chosen as the median of all LER
database pixels intersecting the GOME-2 instrument pixel at
wavelengths 758 and 772 nm with linear interpolation used
for calculating LER values at intermediate wavelengths. Al-
gorithm settings are detailed in Table 3. The test cases chosen
in this paper are relatively cloud-free but not fully.

For validation, atmospheric lidar data from satellite and
ground-based instruments are chosen. For the 2010 Rus-
sian wildfires, the lidar-attenuated backscatter at 1064 nm
from the CALIOP instrument (Cloud-Aerosol LIdar with Or-
thogonal Polarization) are used on board NASA’s CALIPSO
(Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Ob-

servations) mission. These data have a very good represen-
tation of the scattering ability of clouds and aerosols in the
atmosphere at a vertical resolution of 60 m and a horizon-
tal resolution of 5 km. For the 2010 Russian wildfires, the
CALIPSO overpass is at 10:45 UTC. All GOME-2A pixels
co-located within a 100 km vicinity of a CALIOP profile are
considered for validation. For the 17 October 2017 Portu-
gal fire plume over western Europe, ground-based ceilome-
ter data are used for validation (Table 4). These ceilometers
are a part of the ALC (Automated Lidars and Ceilometers)
network of the E-PROFILE observation programme in the
framework of the European Meteorological Services Net-
work (EUMETNET). The parameter used for validation is
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Table 3. Input data and algorithm set-up for retrieving aerosol properties from GOME-2 measurements in the oxygen A band.

Parameter Source Remarks

Radiance and irradiance GOME-2A/GOME-2B 3 min granules
SNR measured spectrum GOME-2A/GOME-2B

operational level-1b product
3 min granules

Solar and satellite geometry GOME-2A/GOME-2B level 1-b data 3 min granules
Surface albedo As Tilstra et al. (2017) GOME-2A LER at

0.25◦× 0.25◦ grid at 758 and 772 nm
Temperature–pressure profile ERA-Interim nearest-neighbour interpolated
Aerosol optical thickness τ state vector element, a priori= 0.8
Aerosol layer height hmid (km) state vector element, a priori= 800 hPa
Aerosol single-scattering albedo ω fixed at 0.95
Aerosol phase function P(θ) Henyey–Greenstein model with

anisotropy factor g of 0.7
Cloud mask none
Validation (Russian wildfires in 2010) CALIOP lidar profiles 5km× 5km total attenuated backscatter

at 1064 nm
Validation (Portugal fires in 2017) Alexander et al. (2016) ground-based ceilometer network

Figure 6. GOME-2A-derived aerosol layer heights co-located within 100 km to the CALIPSO ground track (using great circle distance),
plotted over attenuated backscatter (β) of the CALIOP lidar at 1064 nm. The blue and black markers in white squares represent converged
ALH from the formal approach and the dynamic scaling method, respectively.

the uncalibrated raw backscatter profile, since the paper fo-
cuses on qualitatively assessing the aerosol height retrievals
with the lidar backscatter profiles. Lidar profiles within an
hour of the satellite instrument overpass time are averaged
into a single averaged profile in order to reduce noise. These
lidars have a vertical range of approximately 15 m and record
data at a very high temporal resolution, nominally every 6 s
(Alexander et al., 2016). Although CALIOP data is avail-
able for the plume over western Europe for October 2017,

CALIPSO does not have as good a co-location (both spa-
tially and temporally) in comparison to the ceilometers.

5.1 Russian wildfires on 8 August 2010

The wildfire plumes in and around Moscow on 8 Au-
gust 2010 are chosen as the test case for the dynamic scaling
method. Anti-cyclonic conditions on this day meant that the
region of interest was predominantly cloud-free. This case
is the same as analysed in Nanda et al. (2018) (but with a
smaller pixel selection to only focus on the plumes), with
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Table 4. Ceilometer stations in western Europe used for validating
the retrieved zaer from GOME-2B for plumes from the 17 October
2017 Portugal wildfires.

Name Institute Coordinates GOME-2B
overpass time

Hoogeveen KNMI 52.74◦ 6.59◦ 09:31:10 UTC
Bonn DWD 50.74◦ 7.19◦ 09:31:51 UTC
Luegde DWD 51.86◦ 9.27◦ 09:31:18 UTC
Putbus DWD 54.36◦ 13.47◦ 09:30:21 UTC
Luebeck DWD 53.81◦ 10.71◦ 09:30:40 UTC
De Bilt KNMI 52.09◦ 5.17◦ 09:31:21 UTC
Barth DWD 54.34◦ 12.71◦ 09:30:25 UTC
Elpersbuettel DWD 54.06◦ 9.01◦ 09:30:41 UTC
Soltau DWD 52.95◦ 9.80◦ 09:30:56 UTC
Aachen DWD 50.79◦ 6.03◦ 09:31:43 UTC
Hamburg DWD 53.65◦ 10.10◦ 09:30:56 UTC
Braunschweig DWD 52.29◦ 10.44◦ 09:31:05 UTC

the exception that the study presented in the current paper
uses a more recent version of the surface LER product from
Tilstra et al. (2017) with a larger amount of GOME-2A data
incorporated into its creation. The inclusion of this more re-
cent LER database has slightly improved the results from the
formal approach but not significantly. A MODIS Terra image
taken over the region on the same day (Fig. 3a) shows that the
plume, although thick, is non-homogeneously distributed in
the scene, since the sources of fire are very close to the region
of interest described in the test case. There are 85 GOME-2A
pixels over the primary biomass burning plume that are con-
sidered for retrieving AOT and ALH. During the iterations,
if the inverse method estimates non-physical state vector val-
ues (such as an aerosol layer below the surface and a negative
AOT or a cloud-like optical thickness) twice in a row, the re-
trieval is stopped and is said to have failed to converge. The
algorithm also provides an upper cap of 12 iterations, beyond
which the retrieval is also labelled to have failed to converge.

On applying the formal ALH retrieval approach, 49 pix-
els converge and 36 pixels do not converge to a solution
(Fig. 4a and b). The fitted AOT values are in excess of 6.0
in many cases – on average, the fitted AOT is 5.34 with a
SD of 1.87 (Fig. 5a, red). These values are too high – the
AErosol RObotic NETwork (AERONET) station in Moscow
observed, on the same day, values between 1.0 at 870 nm and
1.5 at 675 nm between 09:00 and 10:00 UTC, whereas our
retrieval estimates an AOT of 6.60 at 760 nm over Moscow
using dynamic scaling. The distribution of fitted τ appears
to be spatially inconsistent with the aerosol plume observed
by MODIS Terra (Fig. 4a). The formal approach misses the
primary biomass burning aerosol plume. The average re-
trieved height of the plume is 0.5 km above the ground, with
a SD of 0.15 km (Fig. 5b, red histogram). Realistically, one
can expect aerosols this close to the surface, especially if
the boundary layer captures much of the pollution. How-

ever, aerosol-corrected boundary layer height modelled by
Péré et al. (2014) for the same day over Moscow shows
that the atmospheric boundary layer is approximately around
1.5–2.0 km altitude. Comparing the retrieval to co-located
CALIPSO data in Fig. 6 (blue markers), there are aerosols
observed up to 4 km altitude, possibly in a multi-layered
structure. Based on the CALIPSO observations and the mod-
elled height of the atmospheric boundary layer, the retrieved
ALH seems to be biased low in the atmosphere; thus it is too
close to the surface. These results are summarized in Table 5.

Applying the dynamic scaling method to the same sce-
nario, we observe an increase in the number of convergences
to 78 pixels out of the 85 chosen (60 % increase compared to
the formal approach), as shown in Fig. 4c and d. The fitted
AOT is approximately 4.82, with a SD of 2.04 (Fig. 5a, blue
histogram). While these fitted AOT values are still high in the
scene, the spatial distribution is consistent with the biomass
burning plume seen by MODIS (Fig. 4c). The retrieved ALH
is, on average, 1.37 km, with a SD of 0.367 km (Fig. 5b, blue
histogram). Looking at CALIPSO data, this value appears
to be more realistic for the biomass burning plume (Fig. 6,
black markers), as the aerosol particles are located farther
away from the surface.

5.2 Portugal fire plume over western Europe on
17 October 2017

The October 2017 Portugal wildfires began in the third week
of October. On 16 October, the hurricane Ophelia made land-
fall over Ireland as a midlatitude cyclone. Due to the cyclonic
conditions the forest fire aerosol plumes were pulled from
Portugal into western Europe along with Saharan desert dust
(CAMS, 2017), which was observed the next day (Fig. 3b).
The aerosol plumes from these fires are different from the
aerosol plumes observed in the 2010 Russian wildfires, pri-
marily because our region of interest is farther away from the
fires; the plume over western Europe appears to be more ho-
mogeneous. The GOME-2B overpass on 17 October 2017 is
approximately around 09:30 UTC, and the MODIS image in
Fig. 3b is approximately around 11:00 UTC. Although some
of these GOME-2B pixels may be cloud contaminated, our
retrieval assumes cloud-free conditions. This assumption can
result in large values in retrieved aerosol heights and fitted
optical thicknesses. 206 GOME-2B pixels are chosen for this
study. On average, the LER of this scene from the 2017 fires
is 0.15 at 760 nm, whereas that for the 2010 fires is 0.19; see
Table 5.

Out of the 206 pixels, 161 pixels converge to a solution
from the formal approach (Fig. 7a and b). The fitted τ at
760 nm is on average 2.31, with a SD of 1.69 (Fig. 5c, red his-
togram). Typical fitted τ over the plume seems to be around
3.0, which is too high a value for this case, since it disagrees
with AERONET measurements, which show AOT values ap-
proximately between 2.0 and 1.0 at 675 and 870 nm over
Lille during the GOME-2B overpass time. The retrieved zaer
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Table 5. Retrieval results from GOME-2 experiments. Columns marked with A, B, C and D are mean retrieved zaer (km), SD of retrieved
zaer (km), mean fitted τ and SD of the fitted τ , respectively. ntotal represents the total number of pixels in the scene, and nret represents the
number of retrieved pixels. As avg represents the average surface albedo of the scene.

Formal approach Dynamic scaling method
Case ntotal As avg nret A (km) B (km) C [–] D [–] nret A (km) B (km) C [–] D [–]

2010 Russian wildfires 85 0.19 49 0.5 0.15 5.34 1.87 78 1.37 0.367 4.82 2.04
2017 Portugal wildfires 206 0.15 161 2.66 1.85 2.31 1.69 173 3.35 1.75 2.22 1.83

Figure 7. Results from processing 206 GOME-2B pixels over western Europe using the formal approach and the dynamic scaling method.
Empty GOME-2B pixels with a white border represent non-convergences. (a) Fitted τ at 760 nm from the formal approach. (b) Retrieved
zaer from the formal approach. (c) Fitted τ at 760 nm from the dynamic scaling method. (d) Retrieved zaer from the dynamic scaling method.
The background image is a subset of the MODIS Terra image in Fig. 3b.

is, on average, approximately 2.66 km from the ground with
a SD of 1.85 km (Fig. 5d, red histogram). Many of the pixels
that do not converge seem to be cloudy (the bottom corner of
the GOME-2B pixels, Fig. 7a). The dynamic scaling method
increases the number of convergences to 173 pixels (Fig. 7c
and d). On average, this method retrieves an ALH of 3.35 km,
with a SD of 1.75 km (Fig. 5d, blue histogram). The average

AOT at 760 nm fitted is 2.22 with a SD of 1.83 (Fig. 5c, blue
histogram).

Comparing the retrieved zaer is to profiles from a ground-
based ceilometer in De Bilt, the Netherlands (Fig. 8a, black
profile), the first observation is that the dynamic scaling
method seems to retrieve a height that is more representa-
tive of the top of the aerosol layer, whereas the formal ap-
proach retrieves a more realistic aerosol height that is more or
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less at the centroid of the elevated layer’s profile. It is, how-
ever, important to note that pulses from ceilometers are weak
and tend to get attenuated beyond the bottom of the aerosol
layer. Because of this, layers above these can appear as weak
backscatter even though they may not be. A radiosonde pro-
file of the relative humidity reveals the presence of an atmo-
spheric layer that extends well beyond the altitude range from
where the lidar backscatter becomes progressively weaker.
This profile also shows the presence of a layer at the 200–
400 hPa pressure levels, coinciding with a weak attenuated
backscattered signal observed by the ceilometer in the same
atmospheric level. A look into back trajectories, calculated
using the TRAJKS model described in Stohl et al. (2001),
shows that the pressure levels between 800 and 600 hPa (at
De Bilt) likely contains aerosols carried from Portugal to De
Bilt (Fig. 8b). The back trajectory of air mass at 250 hPa also
passes through this peninsula but may not contain biomass
burning aerosols since the layer at this atmospheric level does
not mix with the lower level (according to the TRAJKS cal-
culations). Following this, we have compared the retrieved
zaer from both methods to backscatter profiles from other
ceilometer stations, reported in Fig. 9. In general, while both
the dynamic scaling method and the formal approach retrieve
zaer values that fall within the aerosol plumes, the dynamic
scaling method retrieves heights that are slightly greater. This
has to do with our conclusions from Fig. 8.

The LER of a scene tells us which surface is brighter. In
this case, the surface in the 2010 Russian fires was brighter
than that in the 2017 western Europe case. The values of the
modifying vectors MAs/zaer and MAs/τ over the two dif-
ferent scenes, however, can tell us the influence of the sur-
face on the measurements itself, since these parameters are
a direct comparison of the sensitivity of the measurement to
aerosol properties and surface albedo. On average, MAs/zaer

and MAs/τ in the 2010 Russian wildfires are much larger
in comparison to the same for the 2017 Portugal fire plume
over western Europe (Fig. 10). This suggests that backscatter
from the surface for the 2010 Russian wildfires plays a bigger
role in the measurements observed by the GOME-2 instru-
ment. The dynamic scaling method is hence effectively able
to apply a wavelength-dependent scaling of the SNR by re-
lying on scene-dependent parameters. If the modifying vec-
tor MAs/τ is very low, aerosol properties retrieved from the
dynamic scaling method will be approximately equal to the
same from the formal approach. This is an example of the
robustness of the method – the SNR should only be scaled
when there is a need for it to be scaled.

6 Conclusions

Inversion algorithms that retrieve aerosol properties from
spectral measurements in the oxygen A band (between 758
and 770 nm) can face a lot of trouble over land. This is pri-
marily because of the location of oxygen A band beyond

Figure 8. (a) Radiosonde profile of relative humidity (blue), plot-
ted alongside an averaged raw attenuated backscatter profile (black)
from the ceilometer at De Bilt, the Netherlands. Both profiles
are approximately around 13:00 UTC. The red and blue dashed
lines represent retrieved aerosol layer height using the formal ap-
proach and the dynamic scaling method, respectively. The red- and
blue-shaded boxes represent the aerosol layer from the respective
retrieval methods. (b) Back trajectories calculated for 17 Octo-
ber 2017 at 13:00 UTC with the end point at De Bilt, and the sources
going back to 3 days.

the red edge, a wavelength region that diminishes the abil-
ity of vegetation to absorb solar radiation as wavelength in-
creases. This is especially the case when retrieving aerosol
layer height using optimal estimation and radiative transfer
models, as observed from Nanda et al. (2018); Sanders and
de Haan (2016) and Sanders et al. (2015).

The optimal estimation framework, an application of the
weighted least squares technique, is designed to rank data
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Figure 9. Validation of the retrieved aerosol layer height over western Europe from ceilometers located in the Netherlands and Germany
from the CEILONET and DWD networks. The black lines represent averaged ceilometer profiles of acquisitions 1 h before and after the
GOME-2B overpass over each location (600 profiles). The profiles are uncalibrated raw attenuated backscatter β as a function of lidar range
(km). The grey-shaded region represents the SD of the profiles used to create the averaged profile. The red and blue dashed line represents
retrieved aerosol layer height using the formal approach and the dynamic scaling method, respectively. The red- and blue-shaded boxes
represent the aerosol layer from the respective retrieval methods.

points (in this case, spectral points in the measured TOA ra-
diance and solar irradiance) higher when the SNR is higher,
in order to reduce the influence of measurement error in the
final retrieved solution. In the oxygen A band, these spec-
tral points coincide with weak oxygen absorption cross sec-
tions, since low absorption equates to a high number of pho-

tons that can traverse through the atmospheric medium. Over
oceans, due to its low albedo the number of photons that
travel back from the surface are few. The signal recorded by
satellites from an ocean scene hence predominantly arises
from scattering and absorption by atmospheric species (in
this case, aerosols). Over land, however, the number of pho-

www.atmos-meas-tech.net/11/3263/2018/ Atmos. Meas. Tech., 11, 3263–3280, 2018



3278 S. Nanda et al.: A weighted least squares approach to retrieve aerosol layer height

Figure 10. A comparison of the calculated matrices in the dynamic scaling method for all chosen GOME-2 pixels as a function of wavelength
calculated for (a) the 2010 Russian wildfires and (b) the 2017 Portugal wildfires. The black dotted line is the averaged modifying vector
MAs/zaer (Eq. 6) and the blue line is the averaged modifying vector MAs/τ (Eq. 8) for all GOME-2 pixels chosen in each scene. The y axis
on the left is the range of values for MAs/zaer and that on the right is for MAs/τ . The red line is the averaged modifying threshold T , which
is set at the 20th percentile of MAs/zaer .

tons that travel back from the surface increase dramatically.
Due to this, the optimal estimation framework ranks spec-
tral points representing photons that have travelled back from
the surface higher than those from aerosol layers. This is the
primary error source when it comes to biases in aerosol re-
trievals from oxygen A band measurements over land.

This paper introduces the dynamic scaling method, which
is designed to retrieve ALH over bright surfaces from oxy-
gen A band measurements. The core principle of this pro-
posed improvement is the wavelength-dependent modifica-
tion of the measurement error covariance matrix by the sub-
sequent wavelength-dependent modification of the signal-to-
noise ratio of the measured spectrum, in order to reduce its
preference towards photons that interact with the surface.
The modification uses the scene-dependent Jacobian matrix,
which makes it robust. The dynamic scaling method is com-
pared with a formal optimal estimation approach by retriev-
ing ALH and AOT from synthetically generated spectra with
randomly varied model parameters and model errors (that is,
the forward models for simulation and retrieval have differ-
ent model parameters). The results from the synthetic exper-
iments generally favour the dynamic scaling method, which
shows a significant improvement in the accuracy of retrieved
ALH in the presence of errors in the assumed aerosol geo-
metric thickness and the surface albedo (up to 10 % relative
errors) in the model.

The dynamic scaling method is also demonstrated for real
spectra by using GOME-2A and GOME-2B oxygen A band
measurements of two separate wildfire incidences in Eu-
rope, one being the 8 August 2010 Russian wildfires and the
other being the more recent 17 October 2017 Portugal wild-
fires. In the case of the 2010 Russian wildfires, the formal
optimal estimation retrieval approach produces few conver-
gences and misses out the primary biomass burning aerosol

plume (as observed from a MODIS Terra image). The fitted
AOT are unrealistically high and spatially inconsistent with
the aerosol plume observed by MODIS Terra. Co-located
CALIOP lidar profiles show that the retrieved ALH is bi-
ased low in the atmosphere, closer to the surface. The dy-
namic scaling method, on the other hand, increases the num-
ber of converged pixels by 60 % in comparison to the for-
mal approach. The fitted AOT is still too high, but the spatial
distribution of the AOT compared to same observed in the
MODIS Terra image is consistent. The retrieved ALHs are
also more realistic, as they are positioned close to the cen-
troid of the CALIOP-backscatter-profile-describing aerosols.
For the Portugal wildfire plume on 17 October 2017 over
western Europe, the dynamic scaling method does not in-
crease the number of convergences significantly. The dy-
namic scaling method retrieves ALHs that are only slightly
higher and fits AOTs at values are slightly lower in com-
parison to those from the formal approach. The retrieved
heights from both methods are compared to lidar profiles
from the EUMETNET ACL network of ceilometers. The
comparison shows that both methods retrieved heights that
are within the profiles that could be associated with aerosol
layers. Analysing a radiosonde profile of the relative humid-
ity and calculated back trajectories, it is observed that the
ceilometer profiles miss higher aerosol layers due to attenu-
ation of the signal at lower atmospheric levels. This explains
why the retrieved heights from the dynamic scaling method
are slightly higher than the same from the formal approach.

In general, the dynamic scaling method improves the num-
ber of converged pixels. Between the two discussed cases,
the dynamic scaling method provides a better improvement
in the 2010 Russian wildfires case. This is primarily because
the method is scene dependent. An important driver that de-
termines the improvement of retrievals is the level at which
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the surface influences the TOA reflectance, which is jointly
influenced by two parameters – the surface albedo and the
AOT. The average surface albedo of the scene for the 2010
Russian wildfires was observed to be brighter than the same
for the 2017 Portugal wildfires. This is a possible explanation
for the differences in the performance of the dynamic scaling
method for the two cases.

The fitted AOT is systematically lower for the dynamic
scaling method in comparison to the formal approach. A part
of this can be attributed to the reduction in the influence of
spectral points in the measurement with a larger influence
from the surface albedo. While this is expected, the method
does not necessarily make the fitted AOT more realistic. It
may well be the influence of assumptions in aerosol prop-
erties such as aerosol single-scattering albedo and the phase
function. It could, however, also be that the method does not
fully remove the influence of surface in the measured top-of-
atmosphere reflectance signal. In any case, the dynamic scal-
ing method improves the representation of the fitted AOT of
the MODIS Terra observed smoke plume.

The dynamic scaling method is designed to modify the
signal-to-noise ratio to an extent that is necessary and suf-
ficient to reduce the influence that photons travelling from
the surface back to the detector have on the weighted least
squares estimate of aerosol properties. Using the Jacobian
to dictate the preference of weight least squares for spec-
tral points in the measurement makes the dynamic scal-
ing method a robust, generally applicable retrieval set-up.
Results from this paper are applicable to other algorithms
using weighted least squares techniques to retrieve atmo-
spheric properties from measurements of top-of-atmosphere
reflectance in the oxygen A band over bright surfaces.
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