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ABSTRACT: Thermochemical heat-storage applications, based
on the reversible endo-/exothermic hydration reaction of salts, are
intensively investigated to search for compact heat-storage devices.
To achieve a truly valuable storage system, progressively complex
salts are investigated. For these salts, the equilibrium temperature
and pressure conditions are not always easy to predict. However,
these conditions are crucial for the design of thermochemical heat-
storage systems. A biased grand-canonical Monte Carlo (GCMC)
tool is developed, enabling the study of equilibrium conditions at
the molecular level. The GCMC algorithm is combined with
reactive force field molecular dynamics (ReaxFF), which allows bond formation within the simulation. The Weeks−Chandler−
Andersen (WCA) potential is used to scan multiple trial positions for the GCMC algorithm at a small cost. The most promising trial
positions can be selected for recomputation with the more expensive ReaxFF. The developed WCA−ReaxFF−GCMC tool was used
to study the hydration of MgCl2·nH2O. The simulation results show a good agreement with experimental and thermodynamic
equilibriums for multiple hydration levels. The hydration shows that water, present at the surface of crystalline salt, deforms the
surface layers and promotes further hydration of these deformed layers. Additionally, the WCA−ReaxFF−GCMC algorithm can be
used to study other, non-TCM-related, reactive sorption processes.

1. INTRODUCTION

Energy-storage systems are a vital link in the sustainable energy
infrastructure. Thermochemical energy storage can fulfill this
essential link regarding thermal applications and is therefore
widely studied.1−5 Thermochemical energy storage is compel-
ling because it can realize a relatively high thermal energy-
storage density and no thermal losses occur during storage.2

The concept relies on a reversible endo-/exothermic chemical
reaction between a sorbate (A) and a sorbent (B)

F+ +A B AB heat

When there is a surplus of (thermal) energy, heat is used to
separate material ABvia an endothermic reactioninto
components A and B. These components are stored separately,
and no energy dissipates during storage. In times of a lack in
(thermal) energy, components A and B are combined and
reactvia an exothermic reactionback to AB, releasing heat.
The operation of the thermochemical energy storage is
dictated by the given equilibrium conditions of the reaction
as described by thermodynamics.6,7

Ideal thermochemical materials (TCMs) for such storage
require high reaction energies between the sorbate and
sorbent, stability over many storage cycles, and a reaction
equilibrium around desired operating temperatures and partial
pressures of the sorbate. Salt hydrates are promising TCMs8−10

for applications in the built environment because of the high
sorption energy of water vapor and dehydration conditions,
which are reachable by built environment climate systems.
Their endo-/exothermic reversible chemical reaction of
(de)hydration is described by

F· · + −a b a bsalt H O(s) salt H O(s) ( )H O(g)2 2 2 (1)

Most common salts in their pure form suffer from drawbacks
regarding their application as TCM.8−10 For example,
undesired irreversible side reactions which degrade the storage
capacity;11,12 slow kinetics, and low thermal conductivities,13

which decrease thermal in- and output power; a metastable
zone around the equilibrium conditions;6,7 or the occurrence
of undesired melting or deliquescence of the salts, which forms
blocking agglomerates in the storage system. Deliquescence is
the phenomenon of a water-soluble substance that absorbs so
much water vapor from the atmosphere that the substance will
dissolve in its own absorbed water. These drawbacks lower the
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stability and cyclability of the TCM and, thereby, the storage
system.
Recently, much research focuses on enhancing pure salts to

overcome the previously mentioned drawbacks, for example, a
mixture of multiple salts,14 double salts,15,16 encapsulation,17

composites,18 impregnation of salts in porous materials,19 or
doping of pure salts.16,20,21 For most common salts, the
equilibrium conditions can be estimated from thermodynamic
tables.22,23 However, due to the increased complexity of
interacting elements that influence the equilibrium conditions
or missing thermodynamic tables for new enhanced salts, the
reaction equilibrium description becomes increasingly complex
compared to pure salts. As a result, the equilibrium cannot
always be described by simple thermodynamic rules without
assumptions or educated guesses for unknown model
parameters.
Molecular modeling could act as a solution; it can predict

many material properties for these new complex TCMs. In this
regard, quantum mechanical (QM) methods, such as density
functional theory (DFT), were used before to investigate
chemical bonding between a new combination of sorbate and
sorbent regarding heat-storage systems16 or to predict
equilibrium conditions for gas-phase systems.24 However,
due to the high computational cost of QM simulations, it is
limited to a relatively small number of atoms over a short time
period. On a larger scale, force field-based molecular dynamics
(MD) is a powerful method, which is computationally much
cheaper and therefore applicable to much larger systems over a
much longer time. However, when standard classical force
fields are used, the ability to model bond breaking and
formation like in DFT is lost. Thereby, the study of TCMs
including reactions is not possible. This gap between quantum
mechanical methods and MD, in terms of modeling bond
formation and the required computational cost, is bridged by
reactive force fields (ReaxFF).25−27 ReaxFF is able to model
bond breaking and formation but only at a slightly higher
computational cost than nonreactive MD with classical force
fields. As a result, ReaxFF has been used before to study
dynamic properties such as hydrolysis, diffusion, and
dehydration of TCMs.12,13,28 Despite the lower computational
cost, ReaxFF is still not used to study hydration, deliquescence,
or equilibrium conditions of TCMs. These phenomena are
related to rare events and/or high energy barriers, and the MD
time scale is too short to overcome these barriers.
Molecular Monte Carlo (MC) methods are closely related

to MD. However, where MD uses time integration methods to
sample the phase space, MC is a stochastic approach to relate
statistical properties to a mechanical property.29 Because MC
does not depend on the dynamical method of time integration,
these high energy barriers and rare events can be circumvented
by smart MC algorithms.
Herein, we introduce an advanced grand-canonical MC

(GCMC) model which is able to predict the chemical
equilibrium at a given temperature and pressure between a
sorbate and sorbent.30 Moreover, it can reveal changes in the
reaction equilibrium of salts upon chemical or physical
enhancement. With the GCMC algorithm, molecules within
a simulated system are exchanged with an infinite large
reservoir at a constant chemical potential. These exchanges are
accepted according to acceptance rules that enclose the phase
space of the system. Consequently, for a large number of
molecule exchanges, the system’s chemical potential will
equilibrate with the reservoir’s chemical potential. In this

way, a relation is established between the reservoir with an
imposed pressure and temperature and the number of
molecules in the system. This makes GCMC practically
preferable to study sorption over time-dependent MD
simulations that are hindered by a limited computationally
available time regarding processes with high energy barriers
like diffusion in confined regions.
MC in combination with reactive systems has been applied

before, for example, reaction ensemble MC.31 However, for
such a system, the reaction product should be known. This is
not the case for ReaxFF MD, where the reaction will follow
from the dynamics, given the required chemical environment.
The combination between GCMC and ReaxFF has been
introduced by Senftle et al.32−34 It has been used in catalytic
studies of oxidation,32,34,35 hydrogenation,32 and carbona-
tion.32 Islam et al.36 used the same method for battery
applications and studied lithium insertion in α-sulfur. Jung et
al.37 developed a ReaxFF grand-canonical MD (GCMD)
combination, which performed GCMC trial moves at
predefined intervals in ReaxFF-MD. These authors showed
its applicability to gas-phase water formation from oxygen and
hydrogen molecules on platinum catalysts. All the previous
studies either focus on the gas-phase abovementioned
surfaces34,37 or on bulk system interactions with monatomic
sorbents.32,33,35,36 When considering the gas phase, insertions
are still practically feasible due to a large amount of available
voids. However, in dense bulk materials, GCMC insertion of
molecules becomes cumbersome due to the high possibility of
overlapping atoms when random insertions are performed.
Insertions that result in overlapping atoms will be rejected due
to the corresponding high energy, and these low acceptance
probabilities make the system hard to reach equilibrium. To
avoid overlaps between atoms, advanced GCMC algorithms
are successfully developed30,38−41 for dense systems, where a
bias is used to prevent overlaps. In the existing ReaxFF-GCMC
combination, molecular insertions have been increased using a
forward bias that performs energy minimization after each
insertion. Accordingly, this bias has to be counterbalanced to
avoid unrealistic overloading. Senftle et al.32 compensated the
bias by reducing the accessible volume.
To study the hydration of MgCl2·nH2O, non-monatomic

gasH2Omolecules need to be inserted. To counterbalance
energy minimization for an inserted H2O molecule, via an
assumed reduced volume, would be increasingly ambiguous for
a molecule compared to atomic insertion. In this work, a novel
ReaxFF−GCMC combination is developed with an alternative
biasing scheme to increase its insertion efficiency. To avoid
excessive energy calculations with ReaxFF for unrealistic
overlapping insertions, first, k trial insertions are performed
with a computationally cheap short-range Weeks−Chandler−
Andersen (WCA)42 interaction potential. From these cheaply
calculated insertion trials, realistic insertions without hardcore
overlaps can be selected for recalculation with ReaxFF. Thus,
this bias favors insertions that are more likely to be accepted,
and as a result, equilibrium can be reached for dense systems.
Because the number of trial positions (k) and their
corresponding energies are exactly known, this bias is exactly
known and can be counterbalanced in the acceptance rules of
the GCMC algorithm.
The article is organized as follows. In Section 2, the GCMC

algorithms are validated and accordingly used to study and
discuss the hydration of MgCl2·nH2O. In Section 3,
conclusions are drawn concerning the algorithm and its future
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potential use to study equilibrium conditions. In Section 4, the
basic GCMC algorithm is explained. Furthermore, the biased
WCA−ReaxFF−GCMC algorithms are explained, which
improve the insertion of molecules, together with the WCA
and ReaxFF potentials.

2. RESULTS AND DISCUSSION

In Sections 2.1 and 2.2, the biased GCMC algorithms are
tested and validated. In Sections 2.3 and 2.4, the WCA−
ReaxFF−GCMC algorithm is used to study MgCl2·nH2O
hydration. Images to visualize MgCl2·nH2O hydration are
created with iRASPA.43

2.1. WCA−GCMC Validation. To test and validate the
WCA−ReaxFF combination with the GCMC algorithm, the
hydration of a MgCl2 crystal with an artificial cavity was
studied for different numbers of k trial positions.
In Figure 1, the resulting loading of H2O is shown. These

systems were simulated at a given temperature of 300 K and a
vapor pressure of 12 mbar. The simulation with k = 1 is
considered as a reference system, where it represents the
conventional (unbiased) GCMC algorithm with k = 1. The
computational times required for the other simulations were
normalized to this k = 1 reference. This reference system took
5.6 h for 30,000 MC moves, initially including 288 Mg/Cl
atoms, with single-core MC moves (insertion/deletion) energy
calculations and 8-core ReaxFF−MD (translation) calcula-
tions, on a Haswell (Intel Xeon Processor E5-2690 v3) node.
From Figure 1, the gain by the WCA bias is clear. The k = 1
reference is loading much slower than the other structures and
does not load more than 28 H2O water molecules over the
entire simulation, where the other systems (k = 5, k = 10, k =
20, and k = 40) already reach a similar loading at ca. 5−7% of
the computational time. Furthermore, with multiple k trial
positions, the final loading is much higher. The k = 40 test
even reaches a loading of 44 water molecules, at only 121% of
the time of the k = 1 simulation. It is doubtful if the reference k
= 1 case would ever reach such a loading within acceptable

computational time, where it was not successful for the last
∼40% of the time to insert another water molecule. In the
Supporting Information, we show for a simple system, a
rarefied system where hardcore overlap is hardly present for
insertion, that the number of k-trial positions does not change
the final equilibrium. The insets of Figure 1 represent the
systems at the indicated times. After approximately 5% of the
time, the first successful insertion of a H2O molecule outside
the initial cavity occurred. Before this point, hydration only
happened in the cavity. This indicates that the initial bulk
MgCl2 layers are too densely packed to accept a H2O
molecule, and the created H2O water layer in the cavity is
needed to deform the densely packed layers and create a
disordered region of salt and water. This phenomenon is more
extensively discussed in Section 2.4.

2.2. Gaussian Preference Validation. To increase the
loading of H2O molecules near the MgCl2·nH2O spherical
clusters, a Gaussian selection preference is used. This
preference gives a higher selection probability for inserted
H2O molecules near the center of the box compared the outer
vacuum region. In our systems, this center region is important
because we use MgCl2·nH2O spherical clusters that are
positioned at the center of the simulation box. This algorithm
was first validated with an empty box at 400 K at 1 atm. These
results are shown in the Supporting Information. It shows that
more insertion trial moves were selected near the center.
Furthermore, the Gaussian preference selection bias for the
center of the box, does not change the total loading of the box,
where it correctly predicts a H2O vapor density close to the
NIST ref 44 value.
In Figure 2, the Gaussian preference is tested for a MgCl2

spherical cluster in the center of the simulation box. It is shown
that when the Gaussian distribution is used to increase loading
in the center of the box, near the MgCl2 spherical cluster, a
marginal gain is achieved when the amount of water molecules
is still low and as a consequence, the MgCl2 spherical cluster is
relatively small. However, if the amplitude of the Gaussian

Figure 1. Loading of MgCl2 cavities, with k trial positions, normalized to the total required simulation time for k = 1. The insets are the structures
at the indicated times.
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distribution a is set high, it has a contrary effect. This is also
the case when the Gaussian preference method is used without
the WCA−GCMC algorithm since the possibility of atomic
overlap is much higher in the center of the box. Due to the
small gain with relatively small clusters, which could already
provide relevant information regarding the hydration of MgCl2,
the remaining calculations are performed including this
Gaussian bias.
2.3. Hydration of MgCl2·6H2O Clusters. The motivation

of this work was to develop a tool that can provide insights into
the hydration mechanism of complex (new) materials for
thermochemical heat-storage applications and predict equili-
brium conditions at a given pressure and temperature.
Therefore, the deliquescence equilibrium and behavior are
studied by means of a spherical MgCl2·6H2O cluster of
approximately 50 Å. In terms of hygroscopic salts as TCMs,
this deliquescence could seriously affect the performance of the
storage system. The experimental deliquescence equilibrium45

line for MgCl2 is given by the black solid line in Figure 4.
Under conditions below this deliquescence line, solid MgCl2·
nH2O crystals occur, with n = 6 as the highest hydrated close
to the deliquescence equilibrium. Under conditions above this
deliquescence line, MgCl2 in an aqueous solution occurs.
In the GCMC simulation, the MgCl2·6H2O spherical cluster

is placed at the center of a vacuum box and hydrated at vapor
pressures of 6, 12, and 50 mbar, which are pressures around
design conditions for thermochemical heat-storage systems
with domestic applications.8 In Figure 3, (de)hydration trends
from the WCA−ReaxFF−GCMC algorithm are shown for the
12 mbar systems. Upward triangles red▲ represent increasing
trends (hydration), and downward triangles blue▼ represent
decreasing trends (dehydration). Black ● are given for stable
trends (nondehydrating and nonhydrating). The results for the
6 and 50 mbar vapor pressures are given in the Supporting
Information. These obtained trend symbols are plotted in
Figure 4 and show a close match with the experimental
deliquescence equilibrium,45 where the MgCl2·6H2O spherical
cluster hydrates above the experimental equilibrium line and
dehydrates under conditions below this line. The WCA−
ReaxFF−GCMC results, given in Figure 4, predict a slightly
higher equilibrium temperature (∼10 K) at lower vapor
pressure. However, one must note that for the GCMC systems,
steps of 10 K are used and it would be ambiguous to determine

hydration or dehydration with smaller temperature steps
(Figure 3). Furthermore, a higher equilibrium temperature is
expected for microparticles, since they have a higher solubility
than the bulk material.46 This is described by the Ostwald−
Freundlich equation and caused by the relatively large factor of
the surface energy for microparticles compared to the bulk
material. As a result, a shift of the equilibrium curve to higher
temperatures/lower vapor pressure will be present.

2.4. Hydration of MgCl2·nH2O Clusters. Thermochem-
ical heat-storage systems for domestic heating are typically
studied at a vapor pressure of 12 mbar, over a temperature
range from 300 to 500 K.8 In this sense, the MgCl2·nH2O
clusters are studied under these conditions. Since the GCMC
algorithm is computationally demanding, multiple starting
structures are used at different relevant hydration levels (n = 0,
2, and 6), making the prediction of equilibrated hydration
levels easier to estimate. These results are given in Figure 5.
The corresponding estimated equilibrium hydration levels are
compared with theoretical values, predicted by thermody-
namics, in Figure 6. The computed equilibrium curves from

Figure 2. Gaussian preference test for a MgCl2 spherical cluster at 300
K with a (kcal/mol) as the height of the Gaussian distribution.

Figure 3.WCA−ReaxFF−GCMC results for a MgCl2·6H2O spherical
cluster at p = 12 mbar, with k = 20 trial positions and a = 5 kcal/mol,
where n on the y-axis represents the hydration level (MgCl2·nH2O)
and the number of MC moves is given on the x-axis.

Figure 4. MgCl2·6H2O deliquescence equilibrium, black solid line
from experimental reference,45 and symbols of GCMC prediction
(red▲ = hydration, ● stable, and blue▼ = dehydration) as shown in
Figure 3 and in the Supporting Information.
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thermodynamics, in which the left-hand side of chemical
reaction eq 1 is in equilibrium with the right-hand side, are
described by the thermodynamic relation7

= −Δ −Δi
k
jjjj

y
{
zzzz

i
k
jjjj

y
{
zzzzp p

S
R

H
RT

exp expeq
0

0 0

(2)

in which ΔH0 and ΔS0 are the reaction enthalpy and entropy,
respectively, per mole of water under standard conditions for
the different components on the left-hand side and right-hand
side of equilibrium 1. R is the universal gas constant, p0 is the
standard pressure, and peq is the resulting vapor equilibrium
pressure at a given temperature T. The exponential term in this
equation makes the direct prediction of the equilibrium from

entropy and enthalpy calculations (e.g., with DFT) hard, since
small energy deviations can result in large equilibrium
deviations. In Figure 6, the equilibrium curves are given for
MgCl2·nH2O (n = 0, 1, 2, 4, and 6), in which ΔH0 and ΔS0 are
taken from the NBS tables.47

From Section 2.3, it was already shown that at 300 K and 12
mbar, MgCl2 would go to a higher hydration than the
hexahydrate (n = 6). In Figure 5, this is observed for all
simulated systems at different initial hydration settings (n = 6,
2, and 0). However, after 300,000 MC moves, the systems
which started at a hydration level n of 0 and 2 are still far from
equilibrium. At 340 K, an estimated hydration level between 2
and 4 appears; from the thermodynamic values, the
tetrahydrate (n = 4) crystalline structure is expected. At 380
and 400 K, the GCMC simulations equilibrate approximately
around a hydration level of 2, where the thermodynamic
dihydrate (n = 2) can be found between 369 and 390 K, from
eq 2, at the given vapor pressure. At 500 K, the GCMC
algorithm predicts a hydration level of 1, where the
thermodynamic rules indicate anhydrous MgCl2 (n = 0).
The deviations between the results from the GCMC algorithm
and the calculated equilibrium lines from thermodynamic
values (eq 2) can be explained by the use of disordered
microparticles (23−50 Å) in the simulations, versus the used
crystalline bulk thermodynamic values (H0, S0). This also
indicates that it would require a much higher temperature to
obtain a completely dry microparticle, compared to the bulk
material.
From Section 2.1, it was shown that the water layer on top

of the salt crystal breaks the crystal itself and forms a
disordered structure. This effect reappears in the hydration of
the MgCl2 clusters, where the added water creates a disordered
MgCl2·nH2O cluster that allows further hydration within the
created voids of the disordered structure. This is according to
the hypothesized theory of a two-step hydration process by
Sögütoglu et al.6,7 in which the complete hydration process of a
salt is described by two distinctive steps; step (1) water
adsorption from the atmosphere to a wetting layer on the
surface of the salt and accordingly dissolution of ions; step (2)
nucleation into the crystal of the final hydrate. This second
step, the nucleation of a crystal, is a rare event which occurs on
time scales far beyond MD time scales.48 Hence, this second
step is not reached by or observed in the GCMC hydration
modeling. Due to the absence of nucleation in crystalline
structures, smooth transitions are expected from the GCMC
simulations, compared to the distinctive zones from
thermodynamic calculations. To visualize the hydration, two
movies of the MgCl2 cluster, at 300 K and 12 mbar vapor
pressure, are added to the Supporting Information. One movie
shows the hydration of the particle from the first MC cycle
until 250,000 cycles. The second movie shows a section at the
center of the same particle in the yz plane, from the first MC
cycle until 90,000 cycles. The initial wetting on the surface
from the particle, the disordered development of the initial
crystalline starting structures, and loading within the particle
can be observed from these movies.

3. CONCLUSIONS
The motivation of this work was to develop a molecular
modeling tool that can be used to study the hydration of salt
hydrates for thermochemical storage applications. In this sense,
an efficient ReaxFF−GCMC model has been designed and
implemented with a force field for MgCl2·nH2O.

13 To increase

Figure 5. Hydration of MgCl2·nH2O clusters at different temperatures
(different colored lines) and different initial hydration levels (n = 0, 2,
and 6) and a vapor pressure of 12 mbar. The insets visualize the
highest hydrated cluster at 300 K with the initial MgCl2·6H2O cluster
and the lowest hydrated structure at 500 K with the initial MgCl2
clusters.

Figure 6. Phase diagram of MgCl2·nH2O n = 0, 1, 2, 4, and 6, red
lines are computed equilibrium lines by eq 1 and NBS
thermodynamic values47 and the gray line is the experimental
MgCl2·6H2O equilibrium line.45 Blue crosses represent GCMC
simulation conditions (T, p) of Figure 5 and are given with the
estimated water loading from the simulations. The black solid circles
are the estimated MgCl2·6H2O deliquescence equilibrium from Figure
4. The dotted line is the water saturation equilibrium line. The values
of the data points are given in the Supporting Information.
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accepted water loading in dense salt hydrate structures, the
ReaxFF−GCMC was combined with two forward bias
methodologies, namely, scanning of k insertion trials with
the computationally cheap WCA potential and Gaussian
preference selection of trials near the salt hydrate cluster.
The WCA forward bias significantly increased the speed of the
ReaxFF−GCMC algorithm, where it reached a much higher
loading in a substantially shorter time. The Gaussian
preference selection near the salt hydrate cluster showed a
minor improvement, for relatively small clusters.
The biased WCA−ReaxFF−GCMC algorithm was used to

study the hydration of MgCl2·nH2O microparticles. The
predicted results are in good agreement with the experimental
deliquescence line of MgCl2·6H2O, for a vapor pressure range
from 6 to 50 mbar. Furthermore, different hydration levels
were found over the temperature range from 300 to 500 K,
from the deliquescence phase to the monohydrate (n = 1),
respectively. The trend of the different predicted hydration
levels is in agreement with thermodynamically computed
values. However, with a slight deviation which can be
attributed to the use of microparticles compared to the
thermodynamic values based on bulk crystalline hydrates. The
studied hydrated structures are found to be in a disordered
state, where nucleation to a given hydrated crystalline structure
is beyond the time scale of MD.48

From the hydration process, observed from the WCA−
ReaxFF−GCMC simulations, it was shown that H2O
molecules first load on the surface of the salt. The presence
of water at the surface creates a disordered MgCl2 region;
consequently, H2O molecules are also loaded within the salt
itself. This fluidized nucleation process is according to the two-
step hydration process formulated by Sögütoglu et al.6,7

The given results from the biased ReaxFF−GCMC
algorithm validate the potential of the method for future
studies. For example, to use it for complex TCM (e.g.,
encapsulated, impregnated, double, doped, or mixed salts) for
which thermodynamic values are not available in the literature.
Additionally, not only the hydration of TCMs can be studied
but also other sorption processes (e.g., oxidation, hydration,
and carbonation) that involve larger sorbate gas molecules and
dense sorbent material.

4. METHODOLOGY

4.1. GCMC. To study molecular properties, one could use
statistical thermodynamic rules combined with an ensemble of

atomic positions. The ensemble must contain all relevant states
of a system and thereby resemble its entire phase space. MD
can obtain such an ensemble, in which successive molecular
states are sampled by trajectories over time via integration of
Newton’s laws. Alternatively, one could sample relevant states
using MC methods, in which the states are generated
according to the imposed probability distribution. Contrary
to MD, states in MC are not sampled over time. This is the
strength of MC, where one is not limited by time and/or slow
diffusion to pass high energy barriers. For practical efficiency,
new states in the MC ensemble are generated from the
previous statesgenerating a Markov Chainby performing
trial moves which are accepted or rejected based on the
probability of finding the system in a certain state and the
probability of attempting the trial move.29,49

The GCMC algorithm is the most commonly used method
to predict sorption phase equilibria with numerical modeling.
The algorithm relies on three basic trial moves that are
successively and randomly selected: translation of molecules,
insertion of molecules, and deletion of molecules. The first
one, translation (thermalization) of molecules, can be a
rotation, translation, sampling the inner degrees of a molecule,
or a combination of these. To improve efficient sampling of
translational moves for complex systems, multiple advanced
MC algorithms are proposed, for example, the AVBMC
method.50 In this work, due to practical ReaxFF implementa-
tions, we choose to perform a short MD simulation in the
canonical ensemble. With this approach, the reaction will
follow from the dynamics when the system is in the required
chemical environment. The second one, the insertion trial
move, is the insertion of a molecule within the system at a
random location and random orientation. The inserted
molecule is an “ideal” gas molecule taken from an infinite
large reservoir.29,38,49 The trial move is accepted with
probability

β
β=

+
− Δ −

Ä

Ç

ÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑ
fV

N
E Eacc min 1,

( 1)
exp( ( ))ins ig

(3)

in which β is the reciprocal of the thermodynamic temperature
1/kBT with kB as the Boltzmann constant and T as the absolute
temperature and f is the gas-phase fugacity computed from the
pressure by the Peng−Robinson equation of state.51 The
critical temperature of 647.3 K, a critical pressure of 221.2 bar,
and an acentric factor of 0.344 were used for water.52 However,

Figure 7. Visualization of the GCMC algorithm, including the newly developed biased algorithm given in blue. The conventional basic GCMC
moves are (1) translations, (2) insertions, and (3) deletions.
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under the given conditions encountered in this work, fugacity
and pressure are nearly identical as the pressure is low, V is the
volume of the simulation box, Eig is the intramolecular energy
of the isolated molecule, and ΔE is the change in energy of the
system. The change in energy of the system is given by ΔE =
Enew − Eold where Enew is the energy of the new state of the
system and Eold is the energy of the old state of the system. The
third trial move of the GCMC algorithm is the deletion of a
randomly selected molecule from the system. This trial move is
accepted according to

β
β= − Δ +
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Ç

ÅÅÅÅÅÅÅÅÅÅ
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N
exp( ( ))del ig
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in which ΔE = Enew − Eold, and with Eig as the intramolecular
energy of the molecule in the conformation as in the system.
Visualization of the GCMC algorithm is presented in Figure 7,
in which the blue area is the newly developed biased algorithm
as explained in the following sections.
4.2. Biased ReaxFF−GCMC. In the GCMC algorithm,

new trial configurations are created based on old states and the
corresponding acceptance rules (eqs 3 and 4). These rules are
created based on the detailed balance condition29 and it is key
that the probability of creating the trial move from the old
configuration to the new configuration is equal to the reverse
way. Consequently, the insertion of a new molecule should be
done at a random location and with a random orientation. This
works well for inserting and deleting relatively small molecules
in systems that contain many voids (e.g., MOFs53,54 and
zeolites55). However, this will be difficult for dense systems
with very little suitable locations to achieve successful
insertions. When the used interaction potential to compute
the new energy is an expensive calculation, this could lead to
very long computational times before equilibrium is reached.
Hence, it makes sense to bias the position of inserted
molecules toward more feasible positions.
4.2.1. WCA−ReaxFF−GCMC. We developed an advanced

ReaxFF−GCMC method to avoid many unnecessary calcu-
lations with the ReaxFF formalism. In the case of an insertion
trial move, our advanced ReaxFF−GCMC method first
generates k trial positions that are evaluated with a computa-
tionally cheap WCA interaction potential (EWCA). The details
of WCA interaction potential are explained in Section 4.3.2.
Accordingly, from these k trials, one trial position is selected
proportional to its normalized Rosenbluth factor29,38,56

β
=

[− ]
P

E

W

exp
i

i

n

bias,

(5)

in which Pi is the probability of selecting trial i. Ebias,i is the
energy given by the computationally cheap WCA interaction
potential (Ebias,i = EWCA,i) for trial position i in the new
configuration, which is normalized with the total Rosenbluth
weight

∑ β= [− ]
=

W Eexpn
j

k

j
1

bias,
(6)

The energy of the selected trial position (ki) is recalculated
with the more expensive ReaxFF formalism. Due to the applied
forward bias in selecting promising trials, the acceptance
probability changes to
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where ERxFF is the energy difference between the new and old
configurations by ReaxFF. For the deletion of a molecule from
the system, the Rosenbluth weight of the old configuration has
to be computed, which is done by performing k − 1 random
insertion trial positions, and the kth position is the old
configuration itself

∑β β= − + [− ]
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−

W E Eexp( ) expi
j
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jo bias,
1

1

bias,
(8)

in which Ebias,i is the energy of the kth position, the selected
molecule for deletion, computed by the cheap WCA
interaction potential. The modified acceptance rule is given by
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In the Supporting Information, it is shown that eqs 7 and 9
obey the detailed balance condition.

4.2.2. WCA−ReaxFF−GCMC, with Center Preference. To
study the hydration of MgCl2, an anhydrous MgCl2 spherical
cluster is placed in the center of a larger simulation box. This
allows hydration on all the different surfaces of the anhydrous
cluster. Since the cluster is placed in an empty simulation box,
the possibility of sampling the empty space around the cluster
is large compared to the dense region in and around the MgCl2
cluster. To increase selection of promising trial positions near
the MgCl2 cluster, an extra biasing potential is applied in the
form of a Gaussian energy distribution with its center at the
center of the cluster, as illustrated in Figure 8.
This added Gaussian energy distribution is described by
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in which a is the height of the Gaussian distribution (in [kcal/
mol], the same energy units as EReaxFF and EWCA), c is the width
of the distribution, xi, yi, and zi are the coordinates of the trial
position, and xc, yc, and zc are the center of the cluster. The
energy term EGauss is added to the energy of the WCA
interaction potential (Ebias = EWCA + EGauss). This modification
results in the fact that if a successful trial is found in the center
of the cluster, the probability of selecting this one for insertion
is higher than a successful trial position further away from the
center of the simulation box.

4.3. Force Fields. As explained in the previous section, k
trial insertions are performed for each GCMC trial move with
a relatively cheap WCA potential followed by the more
expensive ReaxFF calculation.

4.3.1. ReaxFF. ReaxFF MD25−27 enables simulations
including reactions. The ReaxFF interaction potential is a
summation of different energy contributions
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The terms EvdW and ECoul are the noncovalent bonded van
der Waals and Coulomb terms, respectively. The Ebond term
accounts for the covalently bonded atoms. The terms Eval, Etors,
Epen, Eunder, Eover, and Econj describe the valence and torsion
contributions, “penalty” energies, under- and over-coordina-
tion, and conjugated systems, respectively. Eothers can include
other terms for specific systems, such as H bonds or extra
dispersion interactions.57 The bond order (BO) between
atoms is described by a summation of empirical relations for
the BOij

σ, BOij
π, and BOij

ππ bond, which depend on the distance
rij between the atoms i and j.25
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in which r0
σ, r0

π, and r0
ππ are the bond radii for the σ, π, and ππ

bond, respectively. The pbo values are fitted parameters to
experimental or first-principles results. Each BOij term has a
maximum value of 1, and when all BOs contribute, BO could
add up to 3. The empirical BO approach of ReaxFF enables us
to model bond breaking and formation without expensive
quantum mechanical calculation.

To study the hydration of MgCl2 hydrates, we used the
ReaxFF force field developed by Pathak et al.12,13 in
combination with the long-range corrected H2O ReaxFF
force field.57 This force field was not explicitly trained to
recreate the phase diagram of the salt; however, a transferable
force field for TCM application should be able to recreate it.
Furthermore, the MgCl2 force field has proved itself useful for
multiple hydration levels MgCl·nH2O (n = 0, 1, 2, 4, and 6),
and the H2O force field is able to accurately capture both
condensed and vapor phase under saturation conditions.57

4.3.2. WCA Potential. Prior to the ReaxFF insertion, k
computationally inexpensive WCA potential trial insertions are
computed. This WCA42 interaction potential is relatively cheap
because it only considers short-range repulsive interactions. In
this way, hard overlaps between atoms are avoided. The WCA
interaction potential is described by
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with ϵ and σ as characteristic energy and distance parameters,
respectively.
In this work, we used the WCA parameters, as given in

Table 1, combined with the Lorentz−Berthelot (LB) mixing

rules between different elements. Careful determination of the
WCA σ and ϵ parameters is key to use the WCA bias
effectively. If these parameters are too large, promising small
voids in the dense MgCl2 structure will never be selected.
However, when they are too small, many unrealistic insertions
with overlapping atoms can still be selected, and the algorithm
becomes ineffective again. The parameter σ corresponds to the
atomic/molecule size. For the H2O molecule, only the oxygen
atom was considered in the WCA potential, with a diameter
(σ) corresponding to the radial distribution function (RDF)
O−O distance for liquid water obtained by the ReaxFF force
field. Thereby, the oxygen in the WCA calculation resembles
the diameter of a H2O molecule in liquid, and excessive WCA
interaction calculations with twice as much H atoms are
avoided. The magnesium and chlorine parameters were chosen
such that the O−Mg and O−Cl repulsive part closely matches
the repulsive distance of the ReaxFF force field. In the
Supporting Information, the resulting O−O interaction
potential is compared with the ReaxFF RDF, and the O−Mg
and O−Cl interaction potentials are compared with the
ReaxFF interaction energy.

■ ASSOCIATED CONTENT
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MgCl2 cluster hydration (MP4)
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Figure 8. Example of preference selection by a Gaussian energy
distribution. The x-axis is the relative x coordinate within Lx box size,
the energy from the Gaussian distribution is in blue on the left y-axis,
and in red on the right y-axis is the proportional selection probability
from the Gaussian bias energy.

Table 1. WCA Parameters

element ϵ/[kcal/mol] σ [Å]

O 0.1 2.3
Mg 0.1 0.8
Cl 0.1 3
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