
Teleoperated online
Learning from Demonstration

in a partly unknown environment

MSc. Thesis

using a semi-autonomous care robot

Floris Meccanici

Te
ch

ni
sc

he
Un

ive
rs
ite

it
De

lft

Teleoperated online
Learning from

Demonstration in a
partly unknown
environment

using a semi-autonomous care robot
by

F. Meccanici
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Thursday February 18, 2021 at 13:00.

Student number: 4225201
Project duration: September 1, 2020 – February 18, 2021
Thesis committee: Prof. dr. ir. D. Abbink, TU Delft, supervisor

Dr. ir. L. Peternel, TU Delft, supervisor
Dr. ir. C. Heemskerk, Heemskerk Innovative Technology, supervisor
Ir. D. Karageorgos, Heemskerk Innovative Technology, supervisor

This thesis is confidential and cannot be made public until February 18, 2021.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

The general approach in creating motions for a pick-and-place task is to use a path planner, which relies
on a completely known environment to create a collision free motion that reaches the goal pose. During
my internship at Heemskerk Innovative Technology I worked on automating a pick-and-place task on a care
robot and found out that when the environment is partly unknown due to inaccurate object detection, the
path planner can fail even a very basic task like reaching for a box, either due to a goal deviation or because
collisions occur with an unforeseen obstacle:

Incorrect goal position Unforeseen obstacle

This problem triggered my research in using Learning from Demonstration to teach the robot a trajectory
model that takes into account these unknown parts of the environment, and that allows to adapt this model
when the reaching motion fails. In my literature research I investigated different methods to create and adapt
such model, in which I found that these methods mainly focus on physically moving the end effector and
that literature was missing on using teleoperation. In my thesis I filled this gap by developing a teleoperated
method for creating and adapting a trajectory model on a care robot.

I want to thank my supervisors from the TU Delft, Luka Peternel and David Abbink for their critical point of
view and thorough feedback, as well as their positivity and enthusiasm which motivated me to continue and
finish my work. Furthermore I would like to thank my supervisors Dimitrios Karageorgos, Cock Heemskerk
and all others at HIT for their valuable input, support and optimism, which helped me a lot to finish my work.
I had a great time, learned a lot and am grateful that I had the opportunity to graduate at HIT.

F. Meccanici
Delft, February 2021

i

Contents

1 Scientific paper 1
A Conditioned-ProbabilisticMovement Primitives 18

A.1 Implementation . 18
A.2 Evaluation . 21

B Online learning 25
B.1 2D example . 25
B.2 Robot simulation environment . 28
B.3 Current vs. next time step adaptation . 34
B.4 Shifted initial position . 35
B.5 Dynamic Movement Primitives . 35
B.6 Slow adaptation . 37

C Initial demonstrations: Interactive coupling/decoupling 38
D Data pre-processing 40

D.1 Dynamic Time Warping . 40
D.2 Resampling . 43
D.3 Trajectories relative to object and model input . 43

E Human factors experiment 46
E.1 Pipeline . 46
E.2 Success criteria . 47
E.3 Normally distributed metric evaluation . 48
E.4 Counterbalancing. 48
E.5 Participants background information . 48
E.6 Training . 48
E.7 Pilot. 49
E.8 Graphical User Interface (GUI) . 49
E.9 Dishwasher model . 51
E.10 Trained initial model . 51
E.11 NASA-TLX . 63
E.12 Methods implementation . 64
E.13 Additional results . 66

Bibliography 68
Glossary 69

ii

1
Scientific paper

1

Teleoperated online Learning from Demonstration in a partly unknown
environment using a semi-autonomous care robot

Floris Meccanici1,2

Supervised by: Luka Peternel1, Dimitrios Karageorgos2, David Abbink1, Cock Heemskerk2

Abstract— The general approach to generate collision free
motion in a constraint environment is to use path planners,
which demand a known environment and potentially fail
otherwise. Learning from Demonstration (LfD) can be used
instead to teach the robot unknown parts of the environment,
such as a goal deviation or an unforeseen obstacle. The general
approach is to train a model offline and expect it to perform
well afterwards. Problems arise however when the model is
trained insufficiently or unknown variations have occurred in
the environment, which demand for refinement of the model.
In online learning the operator is allowed to refine a predicted
trajectory during execution time, where the state-of-the-art
methods focus on kinaesthetic teaching. The contribution of this
research is the development of a teleoperated online learning
method, where the operator can make refinements by moving a
haptic stylus (Phantom Omni) in the desired direction. By doing
this, a force is felt proportional to the magnitude of refinement.
After creating such a refined trajectory, it is used to update a
condition dependent probabilistic trajectory model. The proof
of concept was shown on a 2D example and on a simulated robot
that shows that we can adapt an initial model when unknown
variations occur and that the method is able to deal with
different object positions and initial end effector poses. To show
if other people can use the method, a human factors experiment
is performed, comparing the developed method against three
other methods on how much time it takes to successfully adapt
a model (refinement time) and on the perceived workload. Two
different parameters are varied, which are the teaching device
(stylus or keyboard) and the learning mechanism (online or
offline). The expectation was that both online with stylus has the
lowest refinement time and workload, but the results show that
only online has a significant improvement over offline methods
(p = 7.94 × 10−12 and p = 0.000512 respectively). This is
explained by the fact that only small corrections have to be
made and in a maximum of three degrees of freedom (DoFs). No
significant difference was found between keyboard and stylus
(p = 0.755 and p = 0.302 respectively). An explanation for
this is that this is task, person and implementation dependent.
The recommendations are to evaluate the proof of concept
on the real robot and to extend the method with orientation
refinement, such that more complex tasks can also be dealt
with. We hypothesize that with these tasks the combination of
online with stylus does perform the best.

I. INTRODUCTION

The amount of people over 65 years old in the US only
has increased from 3.1 million in 1900 to 56 million in
2020, and is expected to increase to 88.5 million by 2050,
constituting 20% of the US population [1]. With such an

1Cognitive Robotics departments, Faculty of Mechanical, Maritime
and Materials Engineering, Delft University of Technology, Mekelweg 2,
2628CD Delft, The Netherlands

2Heemskerk Innovative Technology B.V., Mijnbouwstraat 120, 2628RX
Delft, The Netherlands

increasingly aging society, the need for health care is rising
[2]. To account for this need, more people need to work
within the health care sector, increasing the health care cost
and when this demand is not filled, the quality of care will
decrease. To fill this gap, Heemskerk Innovative Technology
(HIT) build a care robot, which is aimed to alleviate the
workload of the care workers by performing Activity of
Daily Living (ADL) tasks. This increases the quality of care
by enabling for more client centered care while improving
client autonomy, since 83% of US care-home residents need
assistance with three to six basic ADLs [2]. Examples of such
ADL tasks are preparing meals, table laying/clearing and
loading/unloading the dishwasher [3]. Currently the robot is
able to perform ADL tasks via teleoperation, which requires
constant human attention, thus imposing high workload on
the operator. Additionally when multiple robots are deployed,
multiple operators are needed to control them. These factors
limit the economic feasibility and practical usefulness of the
robot. The solution for this is to increase the autonomy of
the robot and since a large part of ADL tasks consist of pick-
and-placing, the focus of this research was on a sub-task of
this: reaching motions.

A. Problem definition
The general approach of solving pick-and-place tasks is to

detect objects, determine the goal pose and plan a collision
free path towards this goal [4]. Problems arise however with
motion planning in uncertain and unstructured environments
[5], where only partial knowledge of the surroundings is
available. Motion planners assume that the environment is
perfectly known and that it remains static [4], which is vio-
lated when partial knowledge of the environment is available,
for example due to sensor inaccuracies or an unforeseen ob-
stacle. Within such partially unknown environments, motion
planners can fail [5], as illustrated in Fig. 1.

Fig. 1. Left: Goal deviation due to sensor inaccuracies, Right: Unforeseen
obstacle

Learning from Demonstration (LfD) or imitation learning
can be used instead to teach these unknown parts of the

1

environment to the robot by relying on the presence of a
human operator [5]. Trajectory-level LfD is used to teach a
low level policy or mapping function between states and cor-
responding actions [6], where the state in this application is
environmental information and the action is the end effector
motion of the robot. Trajectory-level LfD can be divided into
probabilistic and deterministic learning [6]. In deterministic
learning, such as Dynamic Movement Primitives (DMP)
[7], the demonstrations are modeled using a second order
differential equation with input the goal position and output
the end effector position/orientation. Due to this determin-
istic modeling only one demonstration is needed, and it is
guaranteed to converge towards the goal position. However
no generalizations can be made towards other environmental
inputs than the goal position, such as object or obstacle
geometry information and the goal position has to be known
beforehand. Also, because no variance is encoded in the
demonstrations, constraints in the environment will not be
generalized correctly, of which an illustration is depicted in
the top images of Fig. 2.

Fig. 2. Top and bottom images show deterministic and probabilistic
encoding respectively

In probabilistic learning on the other hand, a probability
distribution is build from the demonstrations. This does
allow for encoding the variance of the demonstrations, and
thus enables the generalization of environmental constraints,
of which an illustration is depicted in the bottom images of
Fig. 2. The disadvantage is that to achieve the encoding of
the variance, multiple demonstrations are needed. Moreover
the probability distribution can be conditioned on any
known environmental state, for example the object position,
weight or size and positions and orientations of obstacles
in the workspace [8]. Since we want to generalize towards
known environmental variations as much as possible and
to generalize unknown constraints in the environment,
probabilistic learning is better suited than deterministic
learning.

The general LfD approach is to train a model offline
and expect it to perform well afterwards. Problems arise
however when the trained model is incorrect, either due
to insufficient training or unknown variations that have
occured in the environment. This demands for methods that
are able to refine the initially trained model, of which the
state-of-the-art can be divided into online [8][9][10][11] and

active learning [5][12]. In online learning the operator is
able to refine the motion during execution time, while active
learning uses an uncertainty measurement to query the
operator for a new demonstration. Since we want to adapt
the model towards unknown changes in the environment,
and since active learning needs to encode the environment
to determine the uncertainty in the prediction, these methods
are not suited.
In online learning the operator has the role to intervene
when the model needs to be adapted, and is therefore
better suited in an unknown environment. State-of-the-art
online learning methods mainly use kinaesthetic teaching
(physically moving the end effector) to refine the motion
[8][9][11], and teleoperation is limited to [10].

Teleoperated online learning is preferred because it
does not require an operator to be constantly physically
present, improves the safety of the operator and allows for
teaching multiple robots simultaneously. In [10] the variance
of the previous demonstrations is used to determine the
arbitrage function between automation and the human, also
called the level of automation. When the amount of previous
demonstrations is high, the amount of motion adaptation
the human can perform is low. Since we want to always
be able to quickly adapt the motion to deal with unknown
parts of the environment, this method is less suited. In [9]
and [11] the stiffness of the end effector is dependent on the
external forces applied by the operator, and therefore allows
for quick adaptation of the executed trajectory. However
applying external forces is not possible in a teleoperated
setting, and therefore these methods are not suited. An
alternative solution is performed in [8], where the end
effector has a constant low stiffness, which always allows
for quick adaptation of the motion. A teleoperated online
learning technique that allows for quick adaptation of the
executed predicted motion to account for changes in the
environment using teleoperation is not present in the current
literature.

This research was aimed to close this gap by providing the
following contributions:

1) Development of a Learning from Demonstration (LfD)
framework for a care robot, which uses the detected
object as input and the end effector trajectory as output,
thus providing a semi-autonomous solution.

2) A teleoperated online learning method that can quickly
adapt the executed predicted motion using a haptic
stylus (Phantom Omni).

3) A proof of concept analysis of the developed method
in 2D and using a robot simulation environment on
different object positions and initial poses, in addition
to a human factors experiment to show how other
people perform using the developed method compared
to a baseline.

2

II. METHOD DESIGN

To achieve teleoperated online learning, a general LfD
framework is build using Probabilistic Movement Prim-
itives (ProMP). Regular ProMP [13][14] is extended by
conditioning on an external state variable ~s as described
in [8] and [13], which will be called conditioned-ProMP
throughout the rest of this research. After an initial model
is trained offline using conditioned-ProMP, predictions are
refined online and the model is updated using the online
learning framework. Instead of kinaesthetic teaching as was
done in [8], a novel teleoperated method is used to adapt
the motion. An overview of the implemented method in this
research is depicted in Fig. 3.

Probabilistic
Model

Prediction

A) Conditioned-ProMP

Update

Refinement

Initial demonstrations

B) Teleoperated online learning

+Execute

Fig. 3. Overview of the implemented framework. Initial demonstrations are
used to train a model offline using conditioned-ProMP. This model generates
a prediction, which is adapted online using the teleoperated refinement
mechanism, after which it is used to update the model.

A. Conditioned-ProMP

ProMP is a locally weighted learning method [15], which
means that each demonstrated trajectory ~τM (Cartesian po-
sition and orientation in quaternions, see Appendix C for
the details of creating the initial demonstrations) is mod-
eled using a linear combination of N amount of weights
wM,N multiplied by a corresponding basis function φN . The
demonstrated trajectories are sampled using T time steps,
and are approximated via N number of basis functions:

~τM = Φ~wM + ~ε (1)

=

φ1(1)wM,1 + φ2(1)wM,2 + . . .+ φN (1)wM,N

φ1(2)wM,1 + φ2(2)wM,2 + . . .+ φN (2)wM,N

...
φ1(T)wM,1 + φ2(T)wM,2 + . . .+ φN (T)wM,N

+ ~ε,

where Φ is the basis function matrix:

Φ =

φ1(1) φ2(1) . . . φN (1)
φ1(2) φ2(2) . . . φN (2)

...
...

. . .
...

φ1(T) φ2(T) . . . φN (T)

 , (2)

wM are the weights and ~ε is a vector with length T
containing zero mean independently identically distributed
Gaussian noise which means that ~ε ∼ N (0, σ2IT×T) [16].
Fig. 4 visualizes such trajectory modeling using locally
weighted learning where Gaussian basis functions are used,
but any other function can also be used.

0
1

0 1 2 3 4

0 1 2

ac
tiv

at
io
n

0

1

0 1 2 3 4 5 6 7 8 9 10

5

6 8 9 10

2

-1
-2

.5

0
1
2

-1
-2

0 1 2 3 6 7 8 100
1
2

-1
-2

3 54 7

54 9

Fig. 4. Illustration of the local linear model process. On the left images the
Gaussian basis functions and the corresponding weights are depicted. On
the right images, a visualization of ΦwM is shown. The crosses correspond
to the color coded Gaussian basis function at a certain time step multiplied
by a weight. For example the first red cross φ1(1)wM,1 = 0.5 · 2 = 1.0.
When multiple crosses are present at one time step, they are added. For
example at t = 7, φ3(7)wM,3 is added to φ4(7)wM,4. Doing this for
each time step results in the local linear model of ~τM as depicted in the
bottom right graph.

Using the Φ matrix and the demonstrated trajectory ~τM ,
we can compute the weight vector from Equation (1) using
ordinary least squares:

~wM = (ΦTΦ)−1ΦT~τM (3)

= [wM,1, wM,2, . . . , wM,N]T

For each trajectory ~τM a weight vector ~wM is derived and
stacked along a matrix:

W =
[
~w1 ~w2 . . . ~wM

]
(4)

The mean ~µ~w and covariance Σ~w of this matrix along
the horizontal axis can be determined and used to build a
probability distribution, which is assumed to be a Gaussian
with mean ~µ~w and variance Σ~w:

P (~w) = N (~µ~w,Σ~w) (5)

After a probability distribution over the weights is de-
termined, the weights are conditioned on an external state
variable ~s, as described in [13]. In this application, ~s is the
object position that we are trying to reach, which is extracted
using an Aruco marker detection algorithm [17]. This means
the joint probability is modeled between ~w and ~s, thus the
probability that both ~w and ~s occur. It is assumed that the
joint probability distribution is normally distributed:

P (~w ∩ ~s) = N (~µjoint,Σjoint) (6)

where ~µjoint =

[
~µ~w
~µ~s

]
, Σjoint =

[
Σ~w~w Σ~w~s

Σ~s~w Σ~s~s

]

This enables conditioning the weights ~w on the object
position ~s by computing the following conditional probability
distribution:

P (~w|~s) = N (~µ~w|~s,Σ~w|~s) (7)

Due to the properties of a multivariate conditional distribu-
tion [18], the conditional mean vector and covariance matrix

3

are described by Equation (8) and Equation (9).

~µ~w|~s = ~µ~w + Σ~w~sΣ
−1
~s~s (~s− ~µ~s), (8)

Σ~w|~s = Σ~w~w − Σ~w~sΣ
−1
~s~s Σ~s~w (9)

In order to prevent the matrix Σ~s~s becoming singular, a small
amount of noise Σn = 0.03 · I is added [19]:

Σ~s~s = Σ~s~s + Σn (10)

After that the following conditional probability distribution
can be constructed:

p(~τ |~s) = N (~µ~τ |~s,Σ~τ |~s) (11)

The basis function matrix Φ, which is the linear mapping be-
tween ~w and ~τ , can be used to transform ~µ~w|~s and Σ~w|~s using
Equation (1). Since the distribution of ε ∼ N (0, σ2IT×T),
~µ~ε = 0 and the mean vector and covariance matrix of the
conditional distribution P (~τ |~s) are given by:

~µ~τ |~s = Φ~µ~w|~s (12)

Σ~τ |~s = σ2IT×T + ΦΣ~w|~sΦ
T (13)

This ~µ~τ |~s represents the generalized trajectory, which is
dependent on the object position ~s. In addition Σ~τ |~s denotes
the covariance, or uncertainty in the prediction.

B. Teleoperated online learning

To conveniently adapt the executed predicted end effec-
tor motion online via teleoperation, both visual and haptic
feedback are provided to the operator, which are explained
throughout the rest of this section. The online learning frame-
work starts with an initial model that produces a prediction
~τd, which is converted to joint positions ~ur using the inverse
kinematics of the robot as can be seen in Fig. 5 [20].

robothuman

inverse
kinematics

+

Fig. 5. Online learning framework, adapted from [8]

When executing these joint positions, the controller pro-
duces the trajectory ~τr and the teleoperator is able to adapt
this trajectory, resulting in ~τhr. To do this, the operator moves
the master device in the desired adaptation direction and
while doing so the operator feels a force proportional to
the magnitude of the refinement. This haptic feedback is
determined by a spring damper system, which relates the
normalized master position to the magnitude and direction
of the force feedback in the master device:

~Fmaster = −Kfb(K · ~pmaster +D · ~̇pmaster), (14)

where K and D are diagonal matrices containing the stiffness
and damping coefficients in x, y and z direction, where
kxx = kyy = kzz = k = 50N/m and dxx = dyy = dzz =
d = 2Ns/m which are empirically determined. Furthermore
~pmaster is the current master position relative to the initial
master position, ~̇pmaster is the time derivative of ~pmaster and
Kfb is the force feedback scaling factor which is set to 1.
When the human decides to intervene the currently executed
prediction, he/she moves the master device into the desired
refinement direction. This means that the operator is able to
adapt the position commands from the reference trajectory,
of which an illustration is depicted in Fig. 6.

Initial position Move upwards Initial position

base

current next

Fig. 6. Illustration of how the operator can apply a correction to the
executed trajectory. The green and red dots represent the master and slave
position respectively. When the master and slave are on the same position,
the dot has a brown color. The white dot represents the reference trajectory,
where the executed trajectory converges to if the operator does not apply
any input.

In Fig. 6 it can be seen that the position at the next time
step is adapted, rather than the current time step. This future
adaptation is similar to the usage of the look-ahead path
error for determining haptic guidance forces, as this was
found to result in stable vehicle behavior [21][22]. In this
research this principle is used the other way around, where
the current master position is used to influence the executed
trajectory at the next time step. Since each executed
trajectory has a fixed amount of n = 75 datapoints and the
total time is empirically fixed to T = 20, the look-ahead
time is fixed to 0.133s, similar to what was chosen in [22].
Both position adaptation of the current and future time step
have been implemented and it was empirically confirmed
that adapting the position of future time steps results in less
overshoot and thus more stable behavior (see Appendix B for
the implementation details of adapting the current time step).

To achieve this adaptation of the executed trajectory
(red dot in Fig. 6), the position vector of step i+ 1 relative
to step i is calculated, respectively called the next frame
and current frame:

current~pnext =current Rbase(
base~pnext −base ~pcurrent)

(15)

where ~p = [x, y, z]T and currentRbase = I3×3
The master position is normalized such that the zero

position is approximately in the middle of the workspace,
which can be seen in Fig. 6. Therefore to get the position
of the human intervention (green dot in Fig. 6) combined
with the reference position, we need to add this normalized
master position current~pmaster to current~pnext:

current~pnext,new =current ~pnext +current ~pmaster (16)

4

The end effector position expressed in base frame is then
send to the inverse kinematics of the robot:

base~pnext,new =base ~pcurrent +base Rcurrent(
current~pnext,new)

(17)

After the operator creates ~τhr, which is basically
base~pnext,new at every time step, the prediction ~τd is updated
using:

~τ new
d = ~τ old

d + α(~τhr − ~τ old
d), (18)

where α ∈ [0, 1] indicates how much the difference between
~τhr and ~τ old

d will change ~τ old
d . This value can be adapted

based on the confidence of the operator in its refinement,
but in this application α is set to 1 as done in [8]. This loop
continues until some measure of success is reached (operator
is satisfied in [8]) such that ~τhr = ~τ old

d and ~τ new
d = ~τ old

d ,
resulting in no update.

Visual feedback is provided through the wrist and
head camera view, and additionally the point cloud of
the environment is shown, enabling visualization of the
prediction (~τ old

d) and refined trajectory (~τ new
d) with respect

to the environment as can be seen in Fig. 7.

Fig. 7. Left: Wrist and head camera view, Right: Point cloud and visual-
ization of trajectories. Green: Refined trajectory, Red: Predicted trajectory.

After refining the trajectory using Equation (18), ~τ new
d is

used to update the conditioned probability distribution. First
~wM is calculated from ~τ new

d using Equation (3), after which
a vector ~x is created by appending ~s to ~wM : ~x = [~wTM , ~s

T].
~x is then used with Welford’s method for updating the mean
and covariance incrementally, which means one data sample
is used [8][23]. This method is able to quickly update the
mean and covariance, without having to store all previous
data. Such Welford update step for one incoming data point
~x is given as:

~µnew = ~µold +
1

M
(~x− ~µold) (19)

Ψnew = Ψold +
(M − 1)

M
(~x− ~µold)T (~x− ~µold) (20)

with Σ =
Ψ

M − 1
,

and a comparison between regularly calculating the covari-
ance and Welford’s method can be found in Appendix B.

C. Data pre-processing

The raw data generated for the initial demonstrations and
~τhr/~τ

old
d are processed before being input to the conditioned-

ProMP model. The first step is to align the demonstrations

with the same condition using Dynamic Time Warping
(DTW). Subsequently the trajectories are resampled to con-
tain 10 datapoints, after which the trajectories are converted
to be relative to the object position instead of the base
frame. This allows to generalize towards different initial end
effector poses in addition to different object positions. An
overview of these steps is depicted in Fig. 8, and will be
discussed in more detail in the sections below. In the online
learning procedure, both ~τhr and ~τ old

d are aligned using DTW,
resampled and converted to be relative to the object position.

datapoint [-]

po
si

tio
n

[m
]

0 200 400

-0.2

0.0

0.2

0.4

0.6

DTW

datapoint [-]

po
si

tio
n

[m
]

0 200 400

-0.2

0.0

0.2

0.4

0.6

Resample

-0.3

-0.2

-0.1

0.0

0.1

0.0 2.5 5.0 7.5

datapoint [-]

po
si

tio
n

[m
]

Relative

-1.2

-1.1

-1.0

-0.9

-0.8

0.0 2.5 5.0 7.5

datapoint [-]

po
si

tio
n

[m
]

Fig. 8. Overview of the demonstration data pre-processing steps

1) Initial demonstrations: These are not performed at
equal speed, so to compare the demonstrations with similar
conditions, they have to be aligned in time. To achieve this,
DTW is used which determines similarities between two time
series, and is able to align them using an optimal warping
path [24][25]. To illustrate the need for such alignment, an
example is shown in Fig. 9.

DTW

No DTW

po
si

tio
n

[m
]

-0.3

-0.2

-0.1

0.0

0 200 400 600

po
si

tio
n

[m
]

-0.4

-0.2

0.0

0.2

0 200 400 600

0.4

0.6

datapoint [-]

datapoint [-]

po
si

tio
n

[m
]

-0.4

-0.2

0.0

0.2

0 200 400 600

0.4

0.6

datapoint [-]

Fig. 9. A comparison between using Dynamic Time Warping to align two
trajectories, and just resampling the trajectories to have the same amount
of datapoints

The implementation of DTW is done using the FASTDTW
algorithm [26][27], which details are shown in Appendix
D. First the difference in condition is calculated between
each demonstrated trajectory, and if this difference is below
a threshold (0.01m) they are assumed to have the same
condition. This results in a difference matrix, which is used in
combination with the threshold to determine the trajectories
with the same condition:

d11 d12 . . . d1M
d21 d22 . . . d2M

...
...

. . .
...

dM1 dM2 . . . dMM

 (21)

5

base

object

ee(t)

ee(t=0)

= -

Original

Demonstrations Predictions

 = 0.8

 = 0.9

0.70

0.65

0.60

0.55

0.65

0.60

0.55

0.50

 = 0.9

 = 0.8

Demonstrations

 = 8

 = 9

0.70

0.65

0.60

0.55

 = 8

 = 9

0.70

0.65

0.60

0.55
Predictions

 x10

Fig. 10. Steps taken to convert the demonstration to be relative to the
object position. Green arrow: trajectory relative to the object, Purple arrow:
object position relative to the end effector at t = 0, which is multiplied by
10 and used as input to the model. An illustration of why this is needed is
depicted in the right image.

When multiple trajectories are demonstrated for the same
condition, we need to select two demonstrations for align-
ment since DTW is only able to compare two time-series
[28]. This is done by using the distance value returned
after applying the DTW algorithm. Each demonstration is
compared with the other demonstrations, and the sum of the
distances is calculated:

distance(i) =
M∑

j=1

FASTDTW(i, j) ∀i ∈ {1, 2, . . .M}

(22)

The trajectory with the lowest sum distance is chosen as the
reference trajectory [28]. This trajectory is assumed to be the
most similar to the other trajectories for this condition, thus
in terms of similarity it represent the demonstrations for this
condition the best. The reference trajectory and the trajectory
most similar to the reference are the only trajectories used
for alignment using DTW.
Subsequently the trajectories are resampled to contain n =
10 datapoints after which they are transformed to be relative
to the object position. This n is empirically determined to
be a trade-off between overfitting the demonstrations and
not capturing important environmental features. To make the
trajectory relative to the object position, the following vector
is created as function of time:

object~pee(t) =object Rbase(
base~pee(t)−base ~pobject) (23)

where objectRbase = I3×3

The vectors base~pee(t), base~pobject and base~pee,object(t) are
represented by the red, blue and green arrow depicted in
Fig. 10. The purple vector ee~pobject(0) is multiplied by 10,
after which it is used as input ~s to the conditioned-ProMP
model and the need for this multiplication is depicted in
Fig. 10. When a prediction is made it is relative to the object
position, so to execute it we assume a static object and add
base~pobject to object~pee(t) to get base~pee(t).

2) Online learning: In order compute Equation (18), ~τ old
d

and ~τhr need to be equal in length. This is not the case
in general, for example when the trajectory needs to stop
earlier to not kick over the object. This is why a resampling

method is needed, for which (spherical) linear interpolation
is used [29]. Either ~τ old

d or ~τhr is upsampled to match the
trajectory with the maximum size. Problems arise however
when subtracting these two trajectories after resampling,
since increasing the amount of samples will ”stretch” the
trajectory. An illustration of this problem is depicted in the
left image of Fig. 11. This means that these trajectories
cannot be subtracted directly after resampling, and we need
a method that aligns these trajectories. To accomplish this,
again Dynamic Time Warping (DTW) is used [24]. A high
level illustration of how DTW is used here is shown in
Fig. 11, but for more details Appendix B should be consulted.

datapoint

po
si

tio
n

datapoint

po
si

tio
n

refined

predicted

sample plot against datapoints

upsample plot again

Fig. 11. Left: Illustration of the problem arising when resampling either the
predicted or the refined trajectory. Right: Illustration of how Dynamic Time
Warping aligns the predicted (red) and refined (dashed green) trajectory.

An overview of the complete framework, including the
creation of the initial model and the refinement loop, is
depicted in Algorithm 1.

III. EXPERIMENTAL METHODS

To demonstrate the proof of concept of the developed
teleoperated online learning method, we performed an exper-
iment on a 2D setup, not related to the care robot and similar
to what was done in [8]. Furthermore the proof of concept
is demonstrated in a 3D robot simulation environment for
different object positions and initial poses, after which a
human factors experiment is performed to compare the
developed method against three other baseline methods. The
conditioned-ProMP model in itself has also been evaluated
on basic theoretical examples to evaluate its functionality, of
which details are shown in Appendix A.

A. 2D example

This setup consists of a particle that has constant velocity
in x-direction, and the goal is to let this particle move
through two viapoints as depicted in Fig. 12. Instead of
the object position, ~s is defined as the y-coordinates of the
two viapoints. The x-coordinates are fixed at x1 = 2.0 and
x2 = 3.6 and the y-coordinates y1 and y2 are varied between
-10, 0 and 10, which results in 9 different possible situations
[8]. An initial model is trained to reach the viapoints at
~s = [0, 0] as can be seen in Fig. 12. When executing
a prediction, the green particle moves along the red line,
while the operator can apply a position command in y-
direction by moving the stylus upwards (positive position)

6

Algorithm 1: Online learning of conditioned-ProMP

1 for each object position do
2 create initial raw demonstrations
3 determine the two most similar demonstrations and

use these for DTW (Equation (22))
4 resample to 10 datapoints
5 convert demonstrations to be relative to ~s

(Equation (23))
6 end
7 Initialize µjoint and Σjoint using these demonstrations

(Equation (6))
start refinement loop:

8 for each condition ~s do
9 determine ~µ~w|~s and Σ~w|~s (Equation (8) and

Equation (9))
10 determine ~µ~τ |~s and Σ~τ |~s (Equation (12) and

Equation (13))
11 ~τd = ~µ~τ |~s
12 while prediction is not successful do
13 compute joint position commands ~ur from ~τd
14 robot executes ~τr and the teleoperator is

allowed to refine this trajectory → ~τhr
15 apply DTW to ~τd and ~τhr
16 ~τ new

d = ~τ old
d + α(~τhr − ~τ old

d) (Equation (18))
17 end
18 ~wM = (ΦTΦ)−1ΦT~τ new

d (Equation (3))
19 ~x = [~wTM , ~s

T]
20 use ~x to update ~µjoint and Σjoint using Welford

(Equation (19) and Equation (20))
21 end

and downwards (negative position):

yi = β · ~pmaster,z (24)

where ~pmaster,z is the master position in z-direction (same
as in Equation (14)), multiplied by a factor β = 10. This
is a different approach compared to [8], where the operator
can apply y-acceleration commands using a keyboard. But
because in our method the refined trajectory for the robot
end effector is generated by giving position commands, we
chose to also do this in the 2D example. The initial prediction
~τ old

d and ~τ new
d are depicted as red and green 2D trajectories

respectively.

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

Fig. 12. Setup used in the 2D example, the blue circles and red line
represent the viapoints and predicted trajectory respectively. Left: Initial
model trained at ~s = [0, 0], which fails to reach the viapoints. Right:
Refinement created using teleoperation, depicted as a green line

To determine the performance of the predictions, the mean

square error

MSE =
1

2

(
(~τd(2.0)− y1)2 + (~τd(3.6)− y2)2

)
(25)

between the viapoint and prediction y-coordinates is
calculated as function of the amount of observed conditions
[8]. The initial amount of observed conditions is 1 at
~s = [0, 0] and after observing each of the 9 conditions,
all the conditions are evaluated again for their MSE. Then
additional generalizations are performed on ~s = [±20, ±20],
~s = [±15, ± 15] and ~s = [±5, ± 5].

Another analysis is performed by placing an obstacle
in the 2D environment after an initial model is trained for
three conditions (see Appendix B). The lower left corner
of the obstacle is placed at x = 0.5 and the prediction will
collide with it, as can be seen in Fig. 13. This model is
again adapted, but with the additional goal of avoiding the
obstacle after which the generalizations of the model are
evaluated.

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

Fig. 13. Prediction and refinement with an obstacle, the red and green
trajectory are the prediction and refinement respectively.

B. Robot simulation environment

In a 3D simulation environment two different scenarios
are considered: a table and dishwasher scene (see Fig. 14).
In both scenarios an object is placed inside the scene, that
needs to be reached without collision with the environment
and without kicking the object over: the success criteria (see
Appendix E for the details).

Fig. 14. 3D environments used for the analysis of the developed method.
Left: Table environment, Right: Dishwasher environment

In the table and dishwasher environment, different exper-
iments are performed, of which the properties are depicted
in Table I.

Initial trajectories Total conditions Condition type Setup
3 9 Object position Table
2 4 Object position Dishwasher (b2)
6 12 Initial EE pose Dishwasher (b1)

TABLE I
ROBOT SIMULATION PROOF OF CONCEPT EXPERIMENTAL PROPERTIES,

SEE APPENDIX B FOR THE INITIAL MODEL EVALUATIONS.

7

The amount of initial trajectories was empirically
determined to generate predictions that do not have a
shifted initial pose. When only one or two conditions were
initially demonstrated (as was done in the 2D example), the
model has to extrapolate and the initial pose is shifted (see
Appendix B for details). For each condition the prediction
is evaluated on the success criteria and if these are not
satisfied, the prediction is refined using the developed
method. It is analyzed for how many conditions refinements
were necessary until the model is able to generate successful
predictions for all of them.

In the dishwasher environment two analyses have been
performed. In the first analysis, an initial model is trained to
reach the object in basket position b1 without collision with
the dishwasher and without kicking the object over. After
training the initial model, the basket is pulled outwards
(basket position b2), the generated predictions will fail and
adaptation of the model is needed, which is illustrated in
Fig. 15. The second analysis is done with basket position
b1 on the capability to handle different initial end effector
poses.

Fig. 15. Left: Basket position b1 (correct prediction), Right: Basket position
b2 (incorrect prediction, refinement needed)

C. Human factors experiment

The goal of this experiment is to show that in addition
to the proof of concept, other people are also able to use
the developed method. This is done by comparing it against
three other methods that can adapt a trained model, which
are analyzed on how much time it takes to successfully
(success criteria met) adapt a model (refinement time) and
on the perceived workload by the operators, evaluated using
NASA TLX [30] (see Appendix E for the GUI). After the
experiment each participant is asked which method they
liked the most and why. The experimental pipeline depicted
in Fig. 16 shows the complete experiment workflow and the
physical setup, which will be further explained throughout
this section.

The same pulled out basket (b2) experimental setup is
used as in the proof of concept experiment, but each
participant is going to adapt the model for only one object
position (base~o1 =

[
0.8 0.05 0.7

]
) and the end effector

always starts at the same initial pose. Three identical
initial models are adapted for each of the four methods per
participant. For each model the operator has eight attempts
to update the model, and per update 10 refinement attempts.
As can be seen in Fig. 16, a refinement is defined as the

Start time

Model

Successful?

Yes

No
Adapt Successful?

No

Yes

Next model

Object
detection

object position

predicted trajectory

refined trajectory Update
model

Go to initial
pose

8 update attempts10 refinement attempts

3 models in total

Text

Execute

Human
adaptation

+
refined trajectory

Online

Human
demonstration

Offline

OR

OR

predicted trajectory
OR

refined trajectory

predicted trajectory refined trajectory

1 object position in total

Stop time

Text

Learning mechanism Teaching device

GUI

KEYBOARD

NASA
TLX

STYLUS

Fig. 16. Top: Experiment pipeline, where the purple block indicates
where the human interaction takes place. This interaction is done with four
methods, combining online and offline with a haptic stylus and the keyboard.
In the online methods, the operator can choose between refining the current
prediction or the previous refinement. Bottom: Experimental setup

creation of an adaptation of the prediction (or previous
refinement). If the operator failed to adapt the model within
these attempts, we continue with the next model and exclude
this participant from the refinement time hypotheses testing.

Since state-of-the-art LfD methods focus on offline learning
[31][32][33][34], this learning mechanism is chosen as the
first baseline condition. The second condition that is varied
is the teaching mechanism, for which the state-of-the-art
literature uses either kinaesthetic teaching [8][5][11][9][35],
teleoperation [31][32][33][34][10], shadowing [36], and
although not well represented in scientific literature, the
teach pendant is frequently used by operators to program
industrial robots [37]. Because the robot in this application
does not have a gravity compensation mode, kinaesthetic
teaching is not possible and cannot be used as a baseline.
The teleoperated methods either already use the Phantom
Omni [31][34], the Haption Virtuose 6D [10] or use the
other arm of a Baxter robot [32]. Since the Haption Virtuose
6D only has the addition of torque feedback, thus is not a
significantly different device, this is not chosen as a baseline.
Using another arm is not relevant for this application and
the Phantom Omni is already used. Furthermore shadowing
requires sensors to be placed on the human to extract
the state of the human, which requires a complex setup
and is thus infeasible. Because a representation of a teach

8

pendant is feasible to build, is a completely different
teaching device than the Phantom Omni and is frequently
used in industry, this teaching method is chosen as a baseline.

Such teach pendant is used to specify waypoints by
moving the end effector using a set of buttons, after which
they are being interpolated to generate a demonstration. A
representation of the teach pendant is implemented using
a keyboard, where the operator can adapt both position
and orientation in x, y and z direction using the keys
as shown in Fig. 17. Storing waypoints and interpolating
between them is done by pressing the space and enter button
respectively, as depicted in Fig. 17.

The combination of offline learning with the haptic
stylus (OffStyl) and the keyboard (OffKey) is selected as
baseline, in addition to online learning with the keyboard
(OnKey). These methods are compared to the developed
method in this research, which will be abbreviated by
OnStyl.

Fig. 17. Left: Teach pendant, Right: Implemented representation of the
teach pendant using a keyboard

OffKey is the representation of the teach pendant, so with
both position and orientation teaching in an offline setting.
In OnKey, the same developed online learning framework
is used, except the x, y and z keys are used to make
corrections to the motion instead of the stylus. This also
means that no force feedback is provided to the operator.
When using OffStyl, the motion is continuously tracked,
but the operator is allowed to interactively couple/decouple
the master from the slave (see Appendix C). The reason for
choosing this is because in the state-of-the-art kineasthetic
online teaching methods [9][8][11], and the research
on teleoperated online teaching [10], the motion is also
continuously tracked. After teaching a trajectory, instead
of using a Welford update step, the matrix containing the
weights of all the present trajectories W as depicted in
Equation (4), is extended and the mean and covariance are
recalculated. In the online methods, the success criteria
are evaluated while doing the online refinement, whereas
in the offline methods the refined trajectory is evaluated
after creation by executing it again. In the refinement
time calculations only the time spend actually creating the
refined motion is recorded, as shown by start and stop
time in Fig. 16. Before starting each method, the operator
is trained in generating successful refinements to ensure
approximate steady state behavior over the participants (see
Appendix E). Because for a valid statistical evaluation of the

refinement time, all the models for each method need to be
adapted, the participant was excluded from the hypothesis
test for the refinement time if training for one or more
methods has failed. This is the same as when a participant
failed to adapt one or more models for one or more methods.

The expectation is that the combination of online with
stylus has the lowest refinement time and workload. To
statistically evaluate this, a one sided t-test is performed,
using null and alternative hypotheses:

H0,1 : µstylus > µkeyboard, H1,1 : µstylus < µkeyboard,

H0,2 : µonline > µoffline, H1,2 : µonline < µoffline,

where median µ = µrefinement time

H0,3 : µstylus > µkeyboard, H1,3 : µstylus < µkeyboard,

H0,4 : µonline > µoffline, H1,4 : µonline < µoffline,

where median µ = µworkload

The null hypotheses H0,i are used to test if the median
refinement time and workload using the stylus is higher
than using the keyboard and online is higher than offline.
The alternative hypotheses H1,i are defined as the opposite,
namely the median refinement time and workload are lower
for the stylus compared to the keyboard and online is lower
than offline.

Because both the refinement time and the workload
data are not normally distributed, Wilcoxon signed rank-test
is used instead of a one sided t-test [38][39] (see Appendix
E). Furthermore the order effects of presenting the different
methods have been counterbalanced using a balanced Latin
Square experimental design [40] (see Appendix E). When a
participant failed the training or failed to adapt a model, the
group this participant belonged to is repeated to ensure this
counterbalancing. It should be noted that since the workload
of the failed participants was included in the statistics, these
are not properly counterbalanced due to some groups being
repeated more than others.

18 participants have been gathered for this experiment,
which have filled in a questionnaire with a small amount
of information before starting the experiment: their gender,
field of work, left or right handedness, gaming (WASD)
and teleoperation experience (see Appendix E for this
information and the GUI). Before the experiment, the
participants signed a consent form and the research is
approved by the Human Research Ethics Committee of
Delft University of Technology.

IV. RESULTS

A. 2D example

From Fig. 18 and Fig. 19 it can be seen that after observing
and adapting the prediction of four conditions, the MSE was
zero for all the upcoming conditions. When evaluating the
predictions for every condition, including the conditions from

9

-20 to +20 and -5 to +5, they show that the viapoints are
successfully reached, of which details the can be found in
Appendix B.

1 2 3 4 5 6 7 8 9
Observed conditions [-]

0

20

40

60

80

100

M
SE

 [-
]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

Fig. 18. Top: MSE as function of the amount of observed conditions,
Bottom: prediction and refinement for each of these conditions

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

Fig. 19. Successful generalizations across other conditions

When adapting an initially trained model with an obstacle,
it can be seen in Fig. 20 that for each of the nine conditions
the prediction needs to be adapted. After updating the model
for these nine conditions, each of them was again checked
and confirmed to avoid the obstacle (see Appendix B for the
details). Furthermore generalizations towards conditions -20
to 20 and -5 to 5 are evaluated, of which the results are also
shown in Appendix B. For each condition except [-20, 20]
and [0, 20] as shown in Fig. 21, the obstacle is successfully
avoided while reaching the viapoints.

B. Robot simulation environment

The results of the table scene are depicted in Fig. 22,
where it can be seen that for object positions [0.7, -0.2,
0.9] and [0.6, -0.2, 0.9] refinements were needed. After
performing a second iteration across all object positions, each
prediction was successful (details in Appendix B).

For the dishwasher scene with a fixed object position the
results are depicted in Fig. 23, where refinements were only
necessary for the first two object positions, after which the
model was able to make correct predictions for the other two.
Again after a second iteration over all object positions, the
model was able to generate successful predictions across all
four object positions (see Appendix B).

The results for the different initial poses are depicted in
Fig. 24, where it can be seen that only for the first two
initial poses refinements where needed. After that the model
was able to generalize towards the other four initial poses,

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

Fig. 20. When an obstacle is present, the initially trained model had to
be adapted for nine conditions. The red and green line depict the predicted
and refined trajectory respectively.

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

Fig. 21. Generalizations that failed in avoiding the obstacle, which are the
conditions [0, -20] and [-20, -20] in the left and right figure respectively.

Fig. 22. Refinement loop performed on each of the other object positions.
From left to right and up to down the object positions are: [0.8, 0.0, 0.9],
[0.7, 0.2, 0.9], [0.7, 0.0, 0.9], [0.7, -0.2, 0.9], [0.6, 0.2, 0.9] and [0.6, -0.2,
0.9]. For the 4th and 6th object position refinements were needed as the
object was kicked over and not reached (see Appendix B).

Fig. 23. Refinement loop performed on each object position inside
the dishwasher with basket position b2. From left to right and top to
bottom, the object positions are base[0.8, 0.2, 0.9], base[0.8, 0.1, 0.9],
base[0.8, 0.0, 0.9] and base[0.8,−0.1, 0.9]. Refinement were only needed
for the first two object positions, after which the environmental constraint
is generalized towards the other two object positions.

and after iterating again over all the 12 initial poses, each
prediction passes the success criteria (see Appendix B for
the details).

10

Methods Wilcoxon

OnStyl OnKey OffStyl OffKey Online > Offline Stylus > Keyboard

Refinement time [s] M 89.76 97.03 336.82 314.45 p = 7.94 × 10−12 p = 0.755
25 55.55 58.47 241.28 153.73 t = 113.0 t = 1437

N = 36 75 153.22 144.17 498.24 574.90

Workload [0-100] M 36.0 39.0 47.5 48.5 p = 0.000512 p = 0.302
25 25.0 31.0 27.0 21.0 t = 1872.0 t = 3112.5

N = 54 75 45.0 48.0 59.0 60.0
TABLE II

THE TABLE SHOWS THE MEDIAN (M), FIRST QUARTILE (25), THIRD QUARTILE (75) AND THE RESULTS OF THE WILCOXON HYPOTHESIS TESTS

WHERE SIGNIFICANCY (p 6 0.01) IS INDICATED IN BOLD.

Fig. 24. First iteration of the refinement procedure across 6 different initial
poses that are previously unobserved. Only for the first two initial poses
refinements where needed, after which all predictions satisfied the success
criteria.

C. Human factors experiment

Out of 18 participants six of them failed either in the
training or to adapt a model in one of the methods, of which
an overview is depicted in Table III. This means that in total
18 - 6 = 12 participants are used for the data analysis of the
refinement time hypothesis, thus per method 36 models are
evaluated.

Methods

OnStyl OnKey OffStyl OffKey
Adapting Model 1

Group 1 Model 2
Training 5 13

Adapting Model 1 10
Group 2 Model 2 10

Training 10

Adapting Model 1 3, 7, 11
Group 3 Model 2 11

Training

TABLE III
PARTICIPANTS THAT FAILED AT ADAPTING A MODEL OR DURING THE

TRAINING. GROUP 4 AND MODEL 3 HAVE BEEN OMITTED SINCE NO

PARTICIPANT FAILED WITH THESE.

In Table II the median (M), first quartile (25) and third
quartile (75) of the refinement time and workload are
reported. The distribution of this data and the refinement
time per model per method are depicted Fig. 26.

The relationship of the background information of the
participants on the refinement time and workload is
visualized in Fig. 25. Only the most interesting results
have been reported here and for the other background
information results Appendix E should be consulted. Note
that no Wilcoxon signed rank test can be performed on any
background parameter except the gaming experience, since
the sample sizes are not equal. The p-value of the workload
being higher for participants with high gaming experience
is 0.048, which means that with a confidence level of 0.05
these participants experience lower workload for all the
methods compared to having low game experience. For the
refinement time the p-value is 0.189, and hence there is no
significant difference in having high or low game experience
on the refinement time.

The results of which method the participants liked the most
is depicted in Fig. 27, and the details of their explanations
have been reported in Table IV.

Methods

OnStyl OnKey OffStyl OffKey

Pros Intuitive Easy Intuitive Set waypoints accurately
Low effort Zero effort Big motion Not rushed

Good for small corrections Less sensitive than Om More accurate than Om
Fast Only 2DoF

Spatial awareness easy

Cons Less control Wrong button easily pressed Demo easily messed up High mental effort
Rushed Rushed High spatial awareness needed Orientation hard

TABLE IV
REPORTED ADVANTAGES AND DISADVANTAGES OF THE METHODS

OnStyl
OnKey

OffStyl
OffKey

0
1
2
3
4
5
6
7
8

Am
ou

nt
 o

f p
ar

tic
ip

an
ts

 [-
]

Fig. 27. Which method was liked the most

11

OnKey
OffKey

OffStyl
OnStyl

0

20

40

60

80

100

W
or

kl
oa

d
[0

-1
00

]

NT (N=5)
T (N=13)

OnKey
OffKey

OffStyl
OnStyl

0

500

1000

1500

2000

2500

Re
fin

em
en

t t
im

e
[s

]

NT (N=9)
T (N=27)

Field of work/study

OnKey
OffKey

OffStyl
OnStyl

0

20

40

60

80

100

W
or

kl
oa

d
[0

-1
00

]

Y (N=16)
O (N=2)

OnKey
OffKey

OffStyl
OnStyl

0

500

1000

1500

2000

2500

Re
fin

em
en

t t
im

e
[s

]

Y (N=33)
O (N=3)

Age

OnStyl
OffKey

OnKey
OffStyl

0

20

40

60

80

100

W
or

kl
oa

d
[0

-1
00

]

L (N=9)
H (N=9)

OnStyl
OffKey

OnKey
OffStyl

0

500

1000

1500

2000

2500

Re
fin

em
en

t t
im

e
[s

]

L (N=18)
H (N=18)

Gaming experience

Fig. 25. Effects of field of work/study (Technical/Non-Technical), age (Young/Old), and game experience (Low/High) on the refinement time and workload.

online offline
p = 0.000512

20

40

60

80

W
or

kl
oa

d
[0

-1
00

]

stylus keyboard
p = 0.302

20

40

60

80

W
or

kl
oa

d
[0

-1
00

]

online offline
p = 7.94e-12

0

1000

2000

Re
fin

em
en

t t
im

e
[s

] stylus
keyboard

stylus keyboard
p = 0.755

0

1000

2000

Re
fin

em
en

t t
im

e
[s

] online
offline

OffKey
OnKey

OnStyl
OffStyl

0

500

1000

1500

2000

2500

Re
fin

em
en

t t
im

e
[s

] model
1
2
3

Fig. 26. Top: Visualization of the data from Table II, Bottom: Refinement
time per model, where the blue, orange and green color represent model 1,
2 and 3 respectively.

V. DISCUSSION

A. 2D example

It was shown that after adapting predictions for four
different conditions, the model was able to generalize
correctly towards all of them. Compared to [8], where after
only three conditions the model successfully generalized,
one more condition was needed in this experiment. This
can be explained by the fact that in [8] they started with a
model with less initial demonstrations, which means that
the model is more quickly adapted. It could also mean
that when using position commands to generate a refined
trajectory, it is harder to exactly go through the center of
the viapoints compared to using acceleration commands [8].
This can also be because in [8] when no input is given, the
acceleration remains constant. While in this research, the

operator has to manually keep the particle at a constant y
position, so constantly applying an input.

Analyzing the 2D problem with an obstacle in Fig. 20 and
in Fig. 21 it can be seen that for all conditions the prediction
needs to be adapted to have successful generalizations for
all considered conditions except [0, -20] and [-20, 20]. An
explanation for the need of adapting for nine conditions
instead of four is that three trajectories are used to train
the initial model instead of one. This makes it slower to
change the mean of the conditioned-ProMP model (~µ~τ |~s
from Equation (13)), thus more refined trajectories need
to be fed into the model. A solution to this is to either
start with a smaller initial model, feed the same refined
trajectory multiple times into the model or allow for the
forgetting of older data. To achieve the latter, a forgetting
factor can be used when adapting the model, for example
using a Recursive Least Squares (RLS) update of the
covariance matrix [41][42]. This leads to another problem
called catastrophic forgetting, which means that even if the
older data was still useful to solving the problem, it is still
forgotten [43]. To solve this problem, continual learning
algorithms could be researched [44][45].

B. Robot simulation environment

The robot simulation proof of concept experiments show
that the developed method is able to adapt an initially trained
model to acccount for unknown variations: goal deviation
and an unforeseen obstacle. The method was able to do this
by updating the model for both different object positions
and initial end effector poses. It should be noted that the
amount of conditions to refine is dependent on the amount
of initial trajectories used to train the initial model and how
exaggerated the motion is, as more trajectories and exagger-
ated motion both result in less updates needed to change the
mean of the distribution (same as in the 2D example). An
illustration of what happens when an initial model is trained
with more trajectories, and when no exaggerated motion is
used to update the model, is depicted in Appendix B.

12

Furthermore in the table and dishwasher scenarios no
refinement was needed in the orientation of the end effector.
When the task demands more constraint motion, it is
necessary to also adapt the orientation of the prediction for
example when an unforeseen obstacle forces the object to
be reached from the side instead of from above. With the
current developed method this is not possible, because the
haptic stylus lacks torque feedback. This could be improved
by using a different haptic device, such as the Haption
Virtuose 6D [10]. In future work it would be interesting to
analyze the refinement method with orientation extension
for different environments.

To be practically feasible, correct predictions are necessary
for all possible start poses and object poses. In this research
a subset of all conditions is analyzed, and in future work
it would be useful to do a more thorough analysis of the
generalization capabilities of the method. The framework
could then also be extended by incorporating different
inputs to the conditioned-ProMP model, such as geometry
information of the object/obstacle extracted using the RGBD
camera. This method was not evaluated on the real robot,
but to prove its value in reaching an object in real life
partially unknown environments, further studies should be
conducted. Another addition to the method could be to first
optimize the position of the base of the robot with respect to
the environment [46], as we want the arm to always be able
to reach the object, which is in the current setup not the case.

To decrease the workload experienced by the operator,
different visual cues could be investigated, for example
using virtual reality to show the predicted and refined
trajectory. Another example could be to show how the
current refined trajectory will develop itself if the operator
lets go of the master device, of which an illustration is
depicted in Fig. 28. Or the current end effector position can
be projected onto the nearest surface to gain better depth
feedback.

visualize

= refinement

= prediction

= current pose

Fig. 28. Visual cue to show how the refined trajectory will develop itself
when the operator stops refining

Other features to investigate are the ability to navigate
through the trajectory and refine only the parts that the
operator finds necessary. This way not the whole trajectory
has to be executed, potentially reducing the experienced
workload.

C. Human factors experiment

The hypotheses test results show that for both refinement
time and workload, the median of online methods is
significantly lower with confidence level of 0.01, since the

p-values are 7.94 × 10−12 and 0.000512 respectively. This
means that H0,2 and H0,4 are both rejected, thus the online
methods have lower median refinement time and workload
compared to the offline methods. Furthermore there is no
significant difference in the median refinement time and
workload using the keyboard or stylus, where the p-values
are 0.755 and 0.302 respectively. This means that we cannot
conclude on whether the keyboard or stylus contributes to
lower median refinement time and/or workload.

The main explanation for the significance in refinement
time and workload in favor of the online methods is that
with online methods the operator only performs small
adjustments to the executed trajectory instead of completely
teaching a new one. This means that online methods are
inherently faster in creating a single refinement as these
are bounded by the execution time of the trajectory, and a
lower amount of input from the operator is needed, possibly
resulting in a lower workload. When the former statement
is true, it is expected that there is a lower refinement time
variability in the online compared to offline methods, which
is confirmed by comparing the first and third quartile of
the online and offline methods from Table II and Fig. 26.
In addition to a lower input magnitude, a maximum of
3DoF can be perturbed in the online methods, which are
the position of the end effector in x, y and z direction.
In offline methods the orientation is added to the input (6
DoF’s), which gives the operator more control over the end
effector but has a higher potential of creating confusion
and unintentionally perturbing DoF’s. These statements are
confirmed when looking at the opinion of the participants
in Fig. 27, where the offline methods can be found ”big
motion” and ”accurate” but also require ”high mental
awareness” and ”high mental effort” for some participants.
This indicates that although some participants found that
the higher control contributed to accurately creating the
demonstration they intended, but it also imposes higher
workload and refinement time on other participants due to
this possibility.

Another influence on the refinement time is the demonstrated
strategy, which tended to change within and between the
methods. The within change can be explained by assessing
the bottom image of Fig. 26, where the refinement time
decreases as function of the model number. This gives an
indication that either the operator has a constant strategy in
its mind and is figuring out how to translate this strategy to
a demonstration using the specific method, or the strategy
changes and the operator is figuring out what strategy works
best. Since the offline methods have a higher slope in the
medians of the refinement time compared to online methods
and the method exposure is partially counterbalanced, it
seems more reasonable that the participants had a more or
less constant strategy but had more trouble using the offline
methods to convey this strategy. This suggests that more
training is needed using offline methods.

13

An explanation for finding no significance in using
the stylus or the keyboard in both refinement time and
workload, could be because the intuitiveness of the interface
is person dependent. Some people reported OnKey to be
easy, less sensitive than OnStyl and preferred the limited
DoF’s, while others easily pressed the wrong buttons and
found it hard to figure out the axes. Another explanation
could be because for most participants, the strategy used was
pulling the arm backwards to avoid the basket. To achieve
this, only one DoF has to be used and sometimes two to
correct the height. This is achieved easily via the OnKey
method by pressing the appropriate key, whereas using
the OnStyl method easily all three DoFs are perturbed.
When it is not intuitive how to use the stylus, easily
multiple unintended DoF’s will be perturbed using OnStyl,
whereas using OnKey only one DoF will simultaneously
be wrongly perturbed. When using OffStyl the six DoFs
of the stylus are continuously tracked, which makes it
even easier to perturb incorrect dimensions. Since in the
OffKey method the motion is not continuously tracked,
wrongly perturbed motion can be easily corrected. Another
explanation for finding no significant difference between
using the stylus and keyboard is that there is a difference in
the implementation of the offline methods. In OffKey the
participants can take its time, as it does not matter what is
done in between the waypoints as long as the waypoints are
correctly specified. OffStyl on the other hand continuously
tracks the demonstrated motion, and when the operator
makes a small mistake this can translate in an unsuccessful
demonstration more easily. Therefore, as recommendation,
OffStyl could be implemented similar to the teach pendant,
where the operator can specify waypoints and interpolate
between them. This is expected to show different statistical
results in favor of the stylus, since the definition of offline
will be more similar between the stylus and the keyboard
implementation. Another difference between these methods
is the result of the interpolation of the demonstration,
because in OffStyl the motion is continuously tracked.
Since the demonstration is interpolated to contain n = 75
datapoints, if the operator spends a relatively longer time
at the start than the end, a lower amount of points will be
placed at the beginning. This can translate to jumps in the
demonstration that the operator did not intended and can
lead to execution failures. This can be solved by defining
more interpolation points of which a comparison is depicted
in Fig. 29.

Fig. 29. Result of using different interpolation points, on the left and right
image 75 and 500 interpolation points are chosen respectively

The same amount of interpolation points (n = 75) are
present in the other methods, but in the online methods

the operators tended to stick with the executed trajectory
and does not spend more time at the end than the start. In
OffKey, most participants placed an equal amount of points
at the beginning and end. If significantly more points are
placed at the end, the same behavior will present itself,
but people did not have a tendency to do this. When a
higher amount of interpolation points had been chosen, the
difference between the stylus and the keyboard might be
more pronounced.

Another finding was that people with low spatial awareness
have the most trouble with the offline methods and especially
OffStyl because the motion is continuously tracked. These
people also had problems figuring out the orientation of the
gripper using OffKey. This suggests that people with less
spatial awareness should use an online rather than an offline
method, or that more training is needed for offline methods.

From the median values in Fig. 25 it can be seen that there
is an indication the young people with technical background
and high game experience have lower refinement time
and workload than the opposite. Although the influence of
field of work and age cannot be evaluated statistically, the
data suggests that we need young people with a technical
background to use the developed method. In addition the
p-value of 0.048 for the workload in favor of high game
experience can statistically confirm (α = 0.05) that we need
people with high game experience to use the method. In the
refinement time, the influence of these parameters is less
obvious, and the p-value of 0.189 for the game experience
also shows that no statistical significance is found between
low/high game experience on the refinement time.

What can be seen from the failed participants in Table III is
that three participants from group 3 failed adapting model
1, 2 or both. This is interesting because these participants
started with OffStyl (see Appendix E for the method
sequence per group), and could indicate that this method
needs more training than the other methods. As can be seen
in Appendix E, the median training time for the offline is
higher compared to the online methods. In combination with
the relative interaction time being lower for offline than
online, this could lead to insufficient training. Since Table III
shows that this is mostly the case with OffStyl, this could
mean that OffStyl is harder to use than OffKey. Moreover
participant 10 failed at both the methods involving the
stylus, and this participant noted having trouble with using
the device itself. Participant 13 tried to grasp the object
from the side and had trouble figuring out the orientation to
achieve this.

VI. CONCLUSION

This research presented a framework containing a
conditioned-ProMP model which was shown to generate
condition dependent trajectories in both a 2D problem,
with via points as condition, and using the robot with the
relative object position as condition. It was demonstrated that

14

the teleoperated online learning method allows humans to
adapt an initially trained conditioned-ProMP model to deal
with unknown variations: goal deviation and an unforeseen
obstacle. The proof of concept is evaluated on a 2D prob-
lem and in a simulated table and dishwasher environment,
where different object positions and initial end effector poses
are considered. The human factors experiment showed that
online methods perform significantly better on refinement
time (time to successfully adapt one model) and workload
compared to offline methods. The main explanation for this
is that online methods require less magnitude and less DoF
inputs from the operator. No significant difference was found
between using the stylus and the keyboard, of which the main
explanation is that this is task, person and implementation
dependent. Moreover the participants subjectively liked my
method the most because it is intuitive, requires low effort
and is good for making small corrections. The main recom-
mendations are to evaluate the proof of concept on the real
robot and to extend the method with orientation refinement
such that more complex tasks, where more DoFs need to be
refined, can also be dealt with. The expectation is then that
the combination of the stylus and online does perform the
best.

REFERENCES

[1] W. J. S. P. DCSW and K. W. D. DSW, “Future trends
in health and health care: Implications for social work
practice in an aging society,” Social Work in Health
Care, vol. 52, no. 10, pp. 959–986, 2013, PMID:
24255978. DOI: 10 . 1080 / 00981389 . 2013 .
834028. eprint: https://doi.org/10.1080/
00981389 . 2013 . 834028. [Online]. Available:
https://doi.org/10.1080/00981389.
2013.834028.

[2] C. T. Kovner, M. Mezey, and C. Harrington, “Who
cares for older adults? workforce implications of an
aging society,” Health affairs, vol. 21, no. 5, pp. 78–
89, 2002.

[3] E. v. d. V. Kees van Hee Michiel van Osch, Meer-
waarde van robotica in de zorg, 2015.

[4] M. Rana, M. Mukadam, S. R. Ahmadzadeh, S. Cher-
nova, and B. Boots, “Towards robust skill general-
ization: Unifying learning from demonstration and
motion planning,” in Intelligent robots and systems,
2018.

[5] G. Maeda, M. Ewerton, T. Osa, B. Busch, and J. Pe-
ters, “Active incremental learning of robot movement
primitives,” 2017.

[6] B. D. Argall, S. Chernova, M. Veloso, and B. Brown-
ing, “A survey of robot learning from demonstration,”
Robotics and autonomous systems, vol. 57, no. 5,
pp. 469–483, 2009.

[7] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pas-
tor, and S. Schaal, “Dynamical movement primitives:
Learning attractor models for motor behaviors,” Neu-
ral computation, vol. 25, no. 2, pp. 328–373, 2013.

[8] M. Ewerton, G. Maeda, G. Kollegger, J. Wiemeyer,
and J. Peters, “Incremental imitation learning of
context-dependent motor skills,” in 2016 IEEE-RAS
16th International Conference on Humanoid Robots
(Humanoids), IEEE, 2016, pp. 351–358.

[9] M. Saveriano, S.-i. An, and D. Lee, “Incremental
kinesthetic teaching of end-effector and null-space
motion primitives,” in 2015 IEEE International Con-
ference on Robotics and Automation (ICRA), IEEE,
2015, pp. 3570–3575.

[10] F. Abi-Farraj, T. Osa, N. P. J. Peters, G. Neumann,
and P. R. Giordano, “A learning-based shared control
architecture for interactive task execution,” in 2017
IEEE International Conference on Robotics and Au-
tomation (ICRA), IEEE, 2017, pp. 329–335.

[11] F. Dimeas and Z. Doulgeri, “Progressive automation
of repetitive tasks involving both translation and rota-
tion,” in International Conference on Robotics in Alpe-
Adria Danube Region, Springer, 2018, pp. 53–62.

[12] A. Conkey and T. Hermans, “Active learning of
probabilistic movement primitives,” ArXiv preprint
arXiv:1907.00277, 2019.

[13] A. Paraschos, C. Daniel, J. Peters, and G. Neumann,
“Using probabilistic movement primitives in robotics,”
Autonomous Robots, vol. 42, no. 3, pp. 529–551, 2018.

[14] F. team, Python implementation of probabilistic motor
primitives including a ros overlay. 2016. [Online].
Available: https : / / github . com / baxter -
flowers/promplib.

[15] C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally
weighted learning,” in Lazy learning, Springer, 1997,
pp. 11–73.

[16] A. Clauset, “A brief primer on probability distribu-
tions,” in Santa Fe Institute, 2011.

[17] P. Robotics, Software package and ros wrappers of
the aruco augmented reality marker detector library,
2017. [Online]. Available: https : / / github .
com/pal-robotics/aruco_ros.

[18] E. C. o. S. PennState, 6.1 - conditional distributions
— stat 505, https://online.stat.psu.edu/
stat505/lesson/6/6.1.

[19] L. Peternel and J. Babič, “Learning of compliant
human–robot interaction using full-body haptic inter-
face,” Advanced Robotics, vol. 27, no. 13, pp. 1003–
1012, 2013.

[20] H. Tomé, L. Marchionni, and A. R. Tsouroukdissian,
“Whole body control using robust & online hierarchi-
cal quadratic optimization,” in IROS14 International
Conference on Intelligent Robots and Systems, 2014,
pp. 14–18.

[21] M. Mulder, D. A. Abbink, and E. R. Boer, “The effect
of haptic guidance on curve negotiation behavior of
young, experienced drivers,” in 2008 IEEE Interna-
tional Conference on Systems, Man and Cybernetics,
IEEE, 2008, pp. 804–809.

[22] H. Boessenkool, D. A. Abbink, C. J. Heemskerk, and
F. C. van der Helm, “Haptic shared control improves

15

tele-operated task performance towards performance
in direct control,” in 2011 IEEE World Haptics Con-
ference, IEEE, 2011, pp. 433–438.

[23] B. Welford, “Note on a method for calculating cor-
rected sums of squares and products,” Technometrics,
vol. 4, no. 3, pp. 419–420, 1962.

[24] D. J. Berndt and J. Clifford, “Using dynamic time
warping to find patterns in time series.,” in KDD
workshop, Seattle, WA, vol. 10, 1994, pp. 359–370.

[25] M. P. Nemitz, R. J. Marcotte, M. E. Sayed, G.
Ferrer, A. O. Hero, E. Olson, and A. A. Stokes,
“Multi-functional sensing for swarm robots using
time sequence classification: Hoverbot, an example,”
Frontiers in Robotics and AI, vol. 5, p. 55, 2018,
ISSN: 2296-9144. DOI: 10.3389/frobt.2018.
00055. [Online]. Available: https : / / www .
frontiersin . org / article / 10 . 3389 /
frobt.2018.00055.

[26] slaypni, A python implementation of fastdtw, 2019.
[Online]. Available: https : / / github . com /
slaypni/fastdtw.

[27] S. Salvador and P. Chan, “Toward accurate dynamic
time warping in linear time and space,” Intelligent
Data Analysis, vol. 11, no. 5, pp. 561–580, 2007.

[28] M. Kyrarini, M. A. Haseeb, D. Ristić-Durrant, and
A. Gräser, “Robot learning of industrial assembly task
via human demonstrations,” Autonomous Robots, vol.
43, no. 1, pp. 239–257, 2019.

[29] V. E. Kremer, “Quaternions and slerp,” Embots. dfki.
de/doc/seminar ca/Kremer Quaternions. pdf, 2008.

[30] S. G. Hart and L. E. Staveland, “Development of
nasa-tlx (task load index): Results of empirical and
theoretical research,” Human mental workload, vol. 1,
no. 3, pp. 139–183, 1988.

[31] A. Pervez, A. Ali, J.-H. Ryu, and D. Lee, “Novel
learning from demonstration approach for repetitive
teleoperation tasks,” in 2017 IEEE World Haptics
Conference (WHC), IEEE, 2017, pp. 60–65.

[32] I. Havoutis and S. Calinon, “Learning from demon-
stration for semi-autonomous teleoperation,” Au-
tonomous Robots, vol. 43, no. 3, pp. 713–726, 2019.

[33] A. K. Tanwani and S. Calinon, “Learning robot manip-
ulation tasks with task-parameterized semitied hidden
semi-markov model,” IEEE Robotics and Automation
Letters, vol. 1, no. 1, pp. 235–242, 2016.

[34] B. Akgun and K. Subramanian, “Robot learning from
demonstration: Kinesthetic teaching vs. teleoperation,”
Unpublished manuscript, 2011.

[35] J. Hoyos, F. Prieto, G. Alenyà, and C. Torras, “In-
cremental learning of skills in a task-parameterized
gaussian mixture model,” Journal of Intelligent &
Robotic Systems, vol. 82, no. 1, pp. 81–99, 2016.

[36] S. Calinon and A. Billard, “Incremental learning of
gestures by imitation in a humanoid robot,” in Pro-
ceedings of the ACM/IEEE international conference
on Human-robot interaction, ACM, 2007, pp. 255–
262.

[37] R. Buchner, N. Mirnig, A. Weiss, and M. Tscheligi,
Evaluating in real life robotic environment: Bringing
together research and practice, Undetermined. DOI:
10.1109/ROMAN.2012.6343817.

[38] T. K. Kim and J. H. Park, “More about the basic
assumptions of t-test: Normality and sample size,”
Korean journal of anesthesiology, vol. 72, no. 4,
p. 331, 2019.

[39] R. Woolson, “Wilcoxon signed-rank test,” Wiley ency-
clopedia of clinical trials, pp. 1–3, 2007.

[40] Counterbalanced measures design - counterbalanc-
ing test groups, https://explorable.com/
counterbalanced- measures- design, (Ac-
cessed on 10/08/2020).

[41] A. Vahidi, A. Stefanopoulou, and H. Peng, “Re-
cursive least squares with forgetting for online es-
timation of vehicle mass and road grade: Theory
and experiments,” Vehicle System Dynamics, vol.
43, no. 1, pp. 31–55, 2005. DOI: 10 . 1080 /
00423110412331290446. eprint: https : / /
doi.org/10.1080/00423110412331290446.
[Online]. Available: https : / / doi . org / 10 .
1080/00423110412331290446.

[42] C. Paleologu, J. Benesty, and S. Ciochina, “A robust
variable forgetting factor recursive least-squares algo-
rithm for system identification,” IEEE Signal Process-
ing Letters, vol. 15, pp. 597–600, 2008.

[43] A. Robins, “Catastrophic forgetting, rehearsal and
pseudorehearsal,” Connection Science, vol. 7, no. 2,
pp. 123–146, 1995.

[44] T. Lesort, Continual learning: Tackling catastrophic
forgetting in deep neural networks with replay pro-
cesses, 2020. arXiv: 2007.00487 [cs.LG].

[45] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and
S. Wermter, “Continual lifelong learning with neu-
ral networks: A review,” Neural Networks, vol. 113,
pp. 54–71, 2019, ISSN: 0893-6080. DOI: https :
// doi. org/10 .1016 /j. neunet. 2019 .
01 . 012. [Online]. Available: http : / / www .
sciencedirect . com / science / article /
pii/S0893608019300231.

[46] K. Sirks, “Which position do i pick, if i don’t know
how to do the task?: A model to predict advantageous
base poses for semi-autonomous robots.,” 2018.

16

A
Conditioned-Probabilistic Movement

Primitives

This section explains the theory and implemented extension of regular Probabilistic Movement Primitives
(ProMP) including an evaluation of the implementation. The implementation is done in Python and a ROS
wrapper is written around it to be able to interact with the model from other nodes (adding demonstrations,
making predictions, resetting the model etc.).

Implementation
A first attempt was performed using an open source package which is an implementation of contextual
ProMP [1]. Problems arised however when using this implementation, because it behaved unexpectedly.
To show this behavior, a model was build using 6 demonstrations in the XZ plane. 3 out of these 6 trajectories
are demonstrated with xob j ect = 0.78 and the other 3 out of 6 are demonstrated with xob j ect = 0.94m (see
Figure A.1 and Figure A.2).

Figure A.1: Demonstrations performed for xob j ect =
0.78m

Figure A.2: Demonstrations performed for xob j ect =
0.94m

Figure A.3: Mean and variance of the demonstrations

When performing a prediction at xob j ect = 0.91m it is expected that at the last datapoint yee ≈ 0.8, however
when the prediction is inspected in Figure A.4 it can be seen that yee ≈ 0.48 instead. Therefore we proceeded
to test this implementation on a basic theoretical problem: linear functions.

18

A.1. Implementation 19

Figure A.4: Prediction at xob j ect = 0.91m

5 different input/output pairs were used to train the ProMP model from [1]. The input has dimension 1
and the output is a linear function, of which an illustration is depicted in left image of Figure A.5. Further-
more when making a prediction at input = 1.0, it is expected that the output starts at 1.0 and stops at 2.0
within timestep 0 until 1.0. Instead the linear output starts at 0.0 and stops at 1.0, which can be seen in the
right image of Figure A.5. This is incorrect, and further investigation of the code showed that this is because
"conditioning" is implemented as a via point at the last datapoint. This means that when the trajectory is
"conditioned" on 1.0, it actually means that the last datapoint of the trajectory has to go through 1.0. This is
not what we want, since the condition is not necessarily the goal position of the end effector. Hence we want
to make the input/output coupling with an arbitrary input, and do not force it to go through this input.

Figure A.5: Left: Input/Output pairs put into the model for evaluation, Right: Prediction with input = 1.0

A.1. Implementation 20

Conditioning
To achieve this, [2] was used as a code base, since this was also used by [1]. This basis is extended using [3].
Each demonstration~τM is resampled to contain n amount of datapoints, after that~τM =~yM is added to the Y
matrix vertically:

Y = [
~y1 ~y2 ~yM

]
(A.1)

Then ~w is constructed, after which ~wM is added to the W matrix. The condition ~s of demonstration M is
stacked vertically in the S matrix:

S = [
~s1 ~s2 ~sM

]
(A.2)

After that the cross covariance matrix Σ j oi nt is determined by computing the covariance between W and
C using NUMPY.COV or Welford’s online update method. Σw w , Σsw , Σw s and Σss are determined as follows:

Σw w =Σ j oi nt [1 : N , 1 : N] (A.3)

Σsw =Σ j oi nt [N :, 1 : N] (A.4)

Σw s =Σ j oi nt [1 : N , N :] (A.5)

Σsw =Σ j oi nt [N :, N :] (A.6)

Furthermore~µ~w and~µ~s are determined by calculating the mean over W and C respectively using NUMPY.MEAN

or using Welford’s online update method. These vectors are concatenated to get the total mean vector~µ j oi nt .
When making a prediction, these means vectors and covariance matrices are used to create the mean predic-
tion according to the context~µ~τ|s . This is done by creating a new function GENERATETRAJECTORY(CONDITION),
which contents are based on what is discussed in the conditioned-ProMP section of the paper.

Listing A.1: Python function used to generate a trajectory according to a certain condition

1 def generateTrajectory (condition) :
2 noise = np . eye (s e l f . sigma_cc . shape [0]) * s e l f . sigma
3
4 mu_w_given_s = s e l f .mean_w +
5 np . dot (np . dot (s e l f . sigma_ws , np . l i n a l g . inv (s e l f . sigma_ss + noise)) , condition − s e l f . mean_s)
6
7 sigma_w_given_s = s e l f . sigma_ww −
8 np . dot (np . dot (s e l f . sigma_ws , np . l i n a l g . inv (s e l f . sigma_ss + noise)) , s e l f . sigma_sw)
9

10 mu_traj_given_s = np . dot (s e l f . Phi . T , mu_w_given_s)
11
12 sigma_traj_given_s = np . dot (s e l f . sigma ** 2 , np . eye (s e l f . num_samples)) +
13 np . dot (np . dot (s e l f . Phi . T , sigma_w_given_s) , s e l f . Phi)
14
15 return mu_traj_given_s

Line 2 represents the noise term:

Σ~s~s =Σ~s~s +Σn (A.7)

Line 4/5 and 7/8 represent the mean and covariance over the weights given a certain condition:

~µ~w |~s =~µ~w +Σ~w~sΣ−1
~s~s (~s −~µ~s), (A.8)

Σ~w |~s =Σ~w ~w −Σ~w~sΣ−1
~s~s Σ~s~w (A.9)

Line 10 represents the trajectory given a certain condition, and is thus used as output of the function:

~µ~τ|~s =Φ~µ~w |~s (A.10)

(A.11)

Line 12/13 represents the uncertainty in the prediction:

Σ~τ|~s =σ2IT×T +ΦΣ~w |~sΦT (A.12)

A.2. Evaluation 21

Evaluation
Evaluations are performed on this conditioned-ProMP implementation on basic 2D theoretical problems to
evaluate its core functionality. These problems consist of a linear, non-linear, multiple input and multiple
output model. After that a quick evaluation of the conditioned ProMP model is performed on the robot
simulation environment.

Single context
A linear problem was constructed, which means that the demonstrations provided are linear functions of the
form:

y[i] = ax +b[i] (A.13)

= 1x +b[i], where b = [1,2 . . .5] (A.14)

Where the b value is varied across the demonstrations from 1 till 5, and a is kept at the constant value of 1.~s is
one dimensional and is set to the corresponding value of b. Both the linear output functions as~s are plotted
on the left in Figure A.6. When we generalize towards~s = 1, it is expected that the output will be of the form
y = x +1, being a linear function starting at 1 and ending at 2. Assessing the right figure in Figure A.6, it can
be seen that this is indeed the case.

Figure A.6: Left: Demonstrations provided, Right: Prediction with condition/context = 1.0

Linear problem: 3D context
This single input single output linear model is extended by providing a 3 dimensional input vector, which
is equal to [b,b,b], thus having the same value for each dimension per demonstration. These demonstra-
tions are depicted in Figure A.7. When generalizing towards~s = [1.0,1.0,1.0] it can be seen that the correct
trajectory is generated.

Figure A.7: Demonstrations used in the linear
theoretical problem

Figure A.8: Prediction with condition/context = 1.0

A.2. Evaluation 22

Linear problem: 3D output
Further evaluation of the model is done by providing single input multiple output demonstrations, as can be
seen in Figure A.9. Again in Figure A.10 each of the demonstrated output is correctly generalized at~s = 1.0.

Figure A.9: 3D demonstrations used to build the
probabilistic model

Figure A.10: Prediction with context = 1.0

Non-linear problem: sine waves
In addition to a linear problem, a non-linear model has been evaluated, using sine functions. These functions
are generated using the following equation:

y[i] = sin(ax +b[i]) (A.15)

= sin(10x +b[i]), where b = [1,2 . . .5] (A.16)

The condition corresponding to the trajectory is again equal to b, and these demonstrations are depicted
in Figure A.11. When generalizing towards~s = 1.0, it can be seen in Figure A.12 that the correct sine function
is predicted. Hence it can be concluded that the built extension of PROMPLIB to condition the trajectory on

Figure A.11: Demonstrations used in the non-linear
theoretical problem

Figure A.12: Prediction with context = 1.0

an input works for basic examples, and can further be evaluated on more complex problems.

Robot simulation environment
In order to evaluate conditioned ProMP on the simulated real world, a general model has been build, which
is evaluated in different planes. Demonstrations have been provided for different initial poses as well as dif-
ferent object positions. The raw demonstrations of the end effector position and orientation are depicted in
Figure A.13, after which they are resampled to contain only 10 datapoints, shown in Figure A.14. Note that in
Figure A.14, only the first and last quaternion datapoint are interpolated, since in [4] this was experienced to
be good enough. In this application the opposite was true, since the orientation of the gripper as function of
time is crucial to successfully avoid collision with the environment. Therefore in later versions, the complete
quaternion trajectories are taken into acount when resampling. After downsampling the trajectories, they

A.2. Evaluation 23

Figure A.13: Raw demonstrations used to evaluate the model

Figure A.14: Downsampled raw demonstrations to 10 datapoints

are converted to be relative to the object position. After that the reference trajectory is determined for each
condition, and this trajectory is aligned with the trajectory most similar to the reference using DTW. When
there is only one trajectory per condition, this DTW step is not executed. This is the final data preprocessing
step before the trajectories are used as input to the conditional ProMP model. An illustration of this data is
shown in Figure A.15.

Figure A.15: Relative and aligned trajectories used as input to the probabilistic model

Using this model, the generalization towards different object positions have been evaluated. An illustra-
tion of such generalization in different planes is depicted in Figure A.16 in addition to different initial end
effector poses.

A.2. Evaluation 24

object position 1 object position 2 object position 3

object position 1
object position 2

Figure A.16: Generalizations towards different object position in one plane

B
Online learning

This section shows the evaluations performed on the complete online learning framework, both on a 2D
problem and on the simulated environment of the robot.

2D example
Reaching viapoints
After adapting the initial model for 4 different conditions, each condition is reevaluated on the performance
of reaching the viapoints, of which the results are depicted in Figure B.1.

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

Figure B.1: Reevaluation of the adapted model for each condition, where it can be seen that for each condition the viapoints are
successfully reached

Additionally an evaluation has been performed on the generalization capabilities of the adapted model
that reaches the viapoints for all 9 conditions, of which an illustration is depicted in Figure B.2. In this illus-
tration it can be seen that the conditions are varied from -20 to +20 and from -5 to +5, and that the trajectory
successfully reaches each condition.

25

B.1. 2D example 26

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

Figure B.2: Generalizations performed on previously unseen viapoints, varying from -20 to +20 and -5 to +5.

Avoiding obstacle
In Figure B.3 the demonstrations used to train the initial model are depicted. After adapting the initial model

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

Figure B.3: Demonstrations used to train the initial model for the 2D problem with an obstacle. The conditions are [10, 10], [10, -10] and
[-10, 0] respectively.

to avoid the obstacle, each condition is reevaluated on the performance of avoiding this obstacle while still
reaching the viapoints, which is depicted in Figure B.4.

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

Figure B.4: Reevaluation of the adapted model for each condition, where it can be seen that for each condition the trajectory does not
collide with the obstacle

Furthermore in Figure B.5 generalizations have been performed on previously unseen conditions, where
it can be seen that for all conditions except [-20, -20] and [0, -20], the obstacle is successfully avoided while
reaching the viapoints.

B.1. 2D example 27

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

0 2 4
x position [-]

20
10

0
10
20

y
po

sit
io

n
[-]

Figure B.5: Generalizations performed on previously unseen conditions, varying from -20 to +20 and -5 to +5.

Graphical User Interface
A GUI was build to control the workflow of this experiment, of which an illustration is depicted in Figure B.6.

Figure B.6: GUI build to control the workflow of the 2D experiment. The current position of the refined trajectory is shown as well as the
predicted trajectory.

B.2. Robot simulation environment 28

Robot simulation environment
Furthermore the online learning framework has been evaluated on the simulated real world, where the pre-
dicted trajectory is refined such that it is successfully able to reach the object and avoid an obstacle. The plots
have been generated using a build GUI, which is also used to debug the whole system (Figure B.7)

Figure B.7: GUI used to generate the plots in 3D and to debug the whole system

Furthermore the DTW step is evaluated, of which an illustration is depicted in Figure B.8. Here it can be
seen that the prediction and refinement have successfully been aligned, such that we can subtract them.

Figure B.8: Brown/Green is the z position of the prediction and refinement, Red/Blue is the x position and Purple/Yellow is the y
position

B.2. Robot simulation environment 29

Table analysis: Initial model

Figure B.9: Initial demonstrations for the table environment that satisfy the success criteria, for object positions base [0.6, 0.0, 0.9],
base [0.8, 0.2, 0.9] and base [0.8,−0.2, 0.9] respectively, and the initial pose is fixed at base [0.37, -0.14, 0.88, 0.99, 0, 0.15, 0.030].

Table analysis: Second iteration
After adapting the initially trained model, each object position is evaluated again on the success criteria. In
Figure B.10 it can be seen that for each object position, the object is successfully reached without kicking it
over and without collision with the table. Hence the adaptation has been successful.

Figure B.10: Iterating a second time over the adapted model, where it can be seen that for each object position the object is reached
without kicking it over and without collision with the table.

B.2. Robot simulation environment 30

Dishwasher analysis 1: Initial model evaluation
The initial model trained on the dishwasher for basket position b1 has been evaluated on all 4 object posi-
tions. The initial demonstrations are depicted in Figure B.11, and the generalizations across the other two
conditions are shown in Figure B.12.

Figure B.11: Initial demonstrations used to train the model. Left: object position [0.8, 0.2, 0.9], Right: object position [0.8, -0.1, 0.9]

Figure B.12: Generalizations across the other two object positions of this trained model. Left: object position [0.8, 0.0, 0.9], Right: object
position [0.8, 0.1, 0.9]

B.2. Robot simulation environment 31

Dishwasher analysis 1: Second iteration
After adapting the model for basket position b2, the adapted model is evaluated again on each of the 4 object
positions. In Figure B.13 this second evaluation is depicted, where it can be seen that the model generates
predictions that meet the success criteria for each of the 4 object positions.

Figure B.13: Evaluations of the predictions for all object positions on the success criteria. Here it can be seen that for each object
position the object is reached without kicking it over and without collision with the environment.

Dishwasher analysis 2: Initial model

Figure B.14: Demonstrations used to train an initial model for different initial poses for basket position b1, where the final state of the
trajectory is shown to be able to see that it satisfies the success criteria. The object position is fixed at base [0.1, 0.8, 0.9].

B.2. Robot simulation environment 32

Dishwasher analysis 2: Second iteration
After adapting the model, the initial poses where the initial model was trained on are evaluated a second
time, of which an illustration is shown in Figure B.15. Here it can be seen that these predictions still satisfy
the success criteria, and we did not negatively influence these predictions by adapting the model for the other
initial poses.

Figure B.15: Second iteration of the demonstrations that were used to train the initial model, after adapting the model. As can be seen,
the predictions for these initial poses still satisfy the success criteria.

The second iteration over the other initial poses is depicted in Figure B.16. Here it can be seen that the
first two predictions (top left and top middle) are successfully adapted. The rest of the predictions are the
same as in the paper.

Figure B.16: Second iteration over the initial poses that were used to adapt the model. Only the top left and top middle are different
from what was shown in the paper, since these are the predictions where refinements were needed.

Welford vs. Normal
When normally adding a demonstration to the conditioned-ProMP model, the weight vector ~wM used to
model the demonstration~τM is appended to the weight matrix:

W = [
~w1 ~w2 . . . ~wM

]
(B.1)

After that using their corresponding conditions, the conditional probability distribution parameters~µ~τ|~s and
Σ~w |~s are recalculated using this added demonstration~τM .

B.2. Robot simulation environment 33

When using Welford’s method, the conditional mean and covariance is changed incrementally. This means
that one data point is used to update the mean and covariance, rather than using all the previous data (batch).

~µnew =~µol d + 1

M
(~x −~µol d) (B.2)

Ψnew =Ψol d + (M −1)

M
(~x −~µol d)T (~x −~µol d) (B.3)

with Σ= Ψ

M −1

A comparison between both the normal and implemented Welford computation of the conditional mean and
covariance is depicted in Figure B.17. From these graphs it can be seen that small differences are present in
both the mean and covariance, but these were experienced to be non-problematic in this application.

Figure B.17: Left: Computation of mean and covariance using the normal computation, right: Updating mean and covariance using
Welford

B.3. Current vs. next time step adaptation 34

Current vs. next time step adaptation
A high level overview of the difference in implementation of adapting the next and the current time step is
depicted in Figure B.18.

Initial position Move upwards Initial position Initial position Move upwards Initial position

Figure B.18: Left: Adaptation of the next time step, Right: Adaptation of the current time step. The green and red dots represent the
master and slave position respectively, and when they are on the same position, the dot is indicated as a brown color. The white dot

represents the reference trajectory, where the executed trajectory converges to if the operator does not apply any input.

The difference in the vectors used to calculate the adaptation is visualized in Figure B.19. As described in
the paper, adaptation of the next time step is done by calculating the position vector of step i +1 w.r.t. step i ,
respectively called the next frame and cur r ent frame:

cur r ent~pnext =cur r ent Rbase (base~pnext −base ~pcur r ent) (B.4)

where ~p = [x, y, z]T and cur r ent Rbase = I3×3

The master device position is normalized such that the zero position is approximately in the middle of the
workspace, which can be seen in Figure B.18. Therefore to get the position of the human intervention (green
dot in Figure B.18) combined with the executed position, we need to add this normalized master position
cur r ent~pmaster to cur r ent~pnext :

cur r ent~pnext ,new =cur r ent ~pnext +cur r ent ~pmaster (B.5)

The end effector position expressed in base frame is then send to the inverse kinematics of the robot:

base~pnext ,new =base ~pcur r ent +base Rcur r ent
cur r ent~pnext ,new (B.6)

When adapting the current time step on the other hand, we directly change the value of base~pcur r ent , by
adding to it the master position base~pmaster :

base~pcur r ent ,new =base ~pcur r ent +base Rcur r ent
cur r ent~pmaster (B.7)

where base Rcur r ent = I3×3 (B.8)

base

current next

base

current

Figure B.19: Visualization of the vectors used to calculate the adaptation of the executed trajectory

B.4. Shifted initial position 35

Shifted initial position
When too little initial demonstrations were used to train the model, it has to extrapolate too much when either
the object position or the initial pose is significantly different from the initial demonstrations. An illustration
of what happens in this situation is depicted in Figure B.20, where it can be seen that the initial position of
the prediction is shifted. This problem is prevented by using using enough initial demonstrations for different
conditions.

Figure B.20: Illustration of what happens when making predictions for a new object position when too little initial demonstrations are
used to train the model.

Dynamic Movement Primitives
Before using ProMP, the online learning procedure was evaluated using Dynamic Movement Primitives (DMP),
since a working ROS package was available [5]. In DMP, a trajectory demonstration is modeled using a second
order point attractor differential equation:

ÿ =αy (βy (g − y)− ẏ)+ f , (B.9)

where ~y is the end effector state, ~g is the goal state, and α and β are gain terms. In order for the system to be
easily solvable and generalizable, a relatively simple additional dynamic system is defined:

ẋ =−αx x, (B.10)

which is used for a definition of the forcing function:

f (x, g) =
∑N

i=1ψi wi

ΣN
i=1ψi

~x(g − y0), (B.11)

where the x(g − y0) (y0 is the intial position) term is necessary to be able to ensure convergence of the forc-
ing term to zero, spatially and temporally scaling of the trajectory. The convergence of the forcing term to
zero when time goes to infinity is necessary because the canonical system does also converge to zero. This
means that the trajectory can take any form, but will always return to the goal point when time goes to infinity.

Zooming in on the ψi function from Equation (B.11), it can be seen that it represents a Gaussian centered
at ci and variance hi :

ψi = exp(−hi (x − ci)2), (B.12)

where wi are the weights given to each of the Gaussians ψi , resulting in the forcing function being a set of
Gaussians that are activated as the canonical system converges to the target. An illustration of this process is
shown in Figure B.21, where different weights are given to each Gaussian. Due to these different weights, the
trajectory can be shaped according to the demonstrated trajectory.

These weights are calculated using a regression method, which minimizes the difference between the de-
sired trajectory acceleration ÿ and the acceleration of the base point attractor differential equation depicted
in Equation (B.9):

B.5. Dynamic Movement Primitives 36

Figure B.21: Illustration of the generation of the forcing function, source: [6]

Figure B.22: Prediction made using DMP, where the goal position is hardcoded

~fd = ~̈y −αy (βy (~g −~y)− ẏ) (B.13)∑N
i=1ψi wi

ΣN
i=1ψi

~x(g − y0) = ~̈y −αy (βy (~g −~y)− ẏ) (B.14)

Now we can rewrite this set of equations in matrix form:

~ψ~w

ΣN
i=1ψi

~x(g − y0) = ~̈y −αy (βy (~g −~y)− ẏ) (B.15)

X~w = ~f (B.16)

Here X and ~f are defined as:

X =

ψ1∑N

i=1ψi
x1 . . . ψN∑N

i=1ψi
x1

.
ψ1∑N

i=1ψi
xT . . . ψN∑N

i=1ψi
xT

 , ~f = ~̈y −αy (βy (~g −~y)− ẏ) (B.17)

The linear equation depicted in Equation (B.16) is solved in the state-of-the-art DMP literature via ei-
ther Locally Weighted Regression (LWR), Locally Weighted Projection Regression (LWPR) or Receptive Field
Weighted Regression (RFWR). Where LWR is a batch learning method and RFWR and LWPR are based on LWR
to also allow incremental updates of the parameters, which are the most commonly used incremental regres-
sion techniques [7].

Two predictions using DMP are depicted in Figure B.22, where the goal pose ~g is hardcoded. This goal pose
can also be extracted using an object detection module, but this always requires the object to be completely
known, and DMP will fail otherwise.

B.6. Slow adaptation 37

Slow adaptation

prediction 1

prediction 2

refinem
ent

Single update Multiple updates

refinem
ent

pre
dict

ions

Generalization 1 Generalization 2

obstacle

object object

object
object

obstacle

obstacle obstacle

Figure B.23: Illustration of the amount of updates needed when an initial model is trained with more trajectories. Here the model needs
to be updated ≈ 11 times with the same refined trajectory in order to change the prediction to avoid the obstacle

C
Initial demonstrations: Interactive

coupling/decoupling

The demonstration data used as input to the model are the Cartesian end effector position and the orientation

in quaternions, thus ~y = [
x y z qx q y qz qw

]T
ee and the condition is the object position relative

to the end effector at t = 0: ~s = [
x y z

]T
ob j ect , multiplied by a factor 10. To conveniently provide the initial

demonstrations using the 7 degrees of freedom (DoF) manipulator of the care robot, the Phantom Omni was
used as teaching device, of which an illustration is depicted in Figure C.1. This device is used to control the
end effector position and orientation (6DoF), and the whole body controller (WBC) uses an optimization
algorithm to determine the joint positions (7DoF) [8].

Figure C.1: Phantom Omni device used
to generate the initial demonstrations

On the real robot, the master and slave are directly coupled, and force feedback moves the master device
to the scaled current slave position. This means that the master and slave will always be aligned. However
in simulation the force feedback did not work, which means that this alignment does not happen automat-
ically. This results in the slave jumping to the scaled master position when the master is coupled, which
produces undesirable behavior due to large overshoots. This made it challenging to properly create initial
demonstrations, which is why an interactive coupling/decoupling mechanism was implemented where the
slave remains at its current position when the master is coupled.

This mechanism is achieved by storing the slave pose when the decoupling button is pressed denoted by
B LS (Lockframe Slave expressed in Base frame), after which the master device is decoupled from the end ef-
fector. When the master device is coupled again, the current master pose is stored as B LM (Lockframe Master
expressed in Base frame). To then translate the current master position to the slave position, the relative cur-
rent position w.r.t. B LM is calculated by subtracting B C M (Currentframe Master expressed in Base frame) by
B LM . Then to get the current slave position B C M is added to B LS to get B C S (Currentframe Slave expressed
in Base frame). An overview of the vector algebra applied to achieve this is depicted in Figure C.2.

38

39

B

LS

B

LS

LM

B

LS

LM

current master position

LS

LM

B

=

=

-

+

coupled coupled
coupled

coupled

coupled
decoupled decoupled

coupled

Coupled Decouple Couple and move master

Apply mapping

Vector algebra

current master position

current slave position

Figure C.2: On the left the vector algebra used to couple/decouple the end effector is depicted. On the right a high level description of
this mechanism is shown

D
Data pre-processing

The raw demonstration data, position and orientation, are pre-processed before being input to the condi-
tioned ProMP model. First the raw data is aligned in time using Dynamic Time Warping (DTW), after which
they are resampled and converted to be relative to the object position. The setup used to evaluate the pre-
processing in the dishwasher scene, where trajectories for one object position are being demonstrated. Two
demonstrations are being performed going around the left and right side of the basket respectively. The third
demonstration is going straight forward. Trajectory 1, 2, 3 are the blue, orange and green trajectory respec-
tively.

Figure D.1: Raw demonstration data. Blue/orange/green: demonstrations that go around the left side, right side and straight
respectively

Dynamic Time Warping
Since the raw demonstrations are not performed at the same speed, they are first aligned in time, which is
done using Dynamic Time Warping (DTW) [9]. This method calculates a distance matrix to find the best
alignment between two time series, which is called the warping path. Suppose we have two time series X =
[x1, x2, . . . , xm] and Y = [y1, y2, . . . , yn], the distance matrix is computed using Equation (D.1).

D(i , j) = di st ance(i , j)+min
(
D(i −1, j),D(i , j −1),D(i −1, j −1)

)
, (D.1)

where di st ance(i , j) = |X [i]−Y [j]|

40

D.1. Dynamic Time Warping 41

Suppose X = [1,2,4,3] and Y = [1,1,2,4], then the distance matrix is computed as shown in Table D.1.

4 4 2 0 1
2 1 0 2 3
1 0 1 4 6
1 0 1 4 6

1 2 4 3

Table D.1: Distance matrix, horizontal axis is X and vertical axis is Y . The warping path is shown in bold.

The warping path is then calculated by choosing the path with the minimal distance:

minD(W), where D(W) =
L∑

k=1
di st ance(wki , wk j) (D.2)

Which in this example is equal to D = 1+0+0+0+0 = 1 as shown bolded in Table D.1. The optimal warping
path has a length of 5. The following mapping is applied (X [i],Y [j]): (1, 1), (1, 1), (2, 2), (4, 4), (4, 3). This
means that X and Y are warped onto an array with length of 5, resulting in the following arrays:

X = [1,1,2,4,4] (D.3)

Y = [1,1,2,4,3] (D.4)

An additional illustration of this algorithm is depicted in Figure D.2, which is adopted from [10].

Figure D.2: Illustration of how the DTW algorithm works [10]. In A) the distance matrix is computed where each entry equals to the
Euclidean distance between the datapoints from signal 1 and 2. In B) the warping path is depicted inside the distance matrix, and in C)

the warping path states which datapoints of signal 1 align with which datapoints from signal 2.

To determine the optimal warping path and the corresponding distance value the FASTDTW algorithm is
used [11], which is an implementation of [12].

Since only the trajectories with similar condition need to be aligned, the differences in condition between
the demonstrations are calculated. If this difference is below a threshold of 0.01m, it is assumed that their
condition is similar, hence they will aligned using DTW. These differences in condition are depicted in Equa-
tion (D.5), where N trajectories are being compared.

d11 d12 . . . d1N

d21 d22 . . . d2N
...

...
. . .

...
dN 1 dN 2 . . . dN N

 (D.5)

When applying this to the example data as depicted in Figure D.1, the difference matrix becomes as shown
in Equation (D.6). As expected, each of these three demonstrations have the same condition.

D.1. Dynamic Time Warping 42

Cdi f f er ence =
 0 0.002290 0.009600 0.009600

0.002290 0 0.01096
0.009600 0.01096 0

 (D.6)

Since DTW is only capable of aligning two time series, it is not possible to align more than two demonstra-
tions per condition. When this is the case, a reference trajectory is determined which has the lowest distance
[13]. The distance is determined as shown in Equation (D.7) [13].

di st ance(i) =
N∑

j=1
DTW(i , j),∀i ∈ 1,2, . . . N (D.7)

The trajectory with the second lowest distance is compared to the reference trajectory using DTW, while the
other demonstrations are not used [13]. The distance of the example demonstrations in Figure D.1 are:

di st ances = [1868,1348,1778] (D.8)

This means that trajectory 2 (orange in Figure D.1) is the reference trajectory and trajectory 3 (green in Fig-
ure D.1) is the most similar to the reference. Therefore trajectory 2 and 3 are being used for alignment using
DTW, of which the result is shown in Figure D.3.

Figure D.3: Aligned demonstrations using DTW.

To better show why DTW is necessary, another dataset is used of 2 trajectory demonstrations. The raw
data is shown in Figure D.4, where it can be seen that the demonstrations are similar but they have different
speeds. When they are resampled to 780 datapoints, it can be seen in Figure D.5 that they are not well aligned.

Figure D.4: Raw demonstration data to show why DTW is necessary

When instead DTW is used, of which the result is shown in Figure D.6, the demonstrations are better aligned.
Nonetheless the trajectories also have 780 datapoints, which is the same as in Figure D.4.

D.2. Resampling 43

Figure D.5: Result of resampling the demonstrations from Figure D.4 to 780 datapoints

Figure D.6: Result of applying DTW to the demonstrations from Figure D.4

Resampling
After applying DTW, the trajectories are resampled to 10 datapoints, which is the amount which the ProMP
model will be trained on. This amount is a trade-off between overfitting on the specific motion of the trajec-
tories and between generalizing important motion. Too much datapoints will result in unimportant motion
to be generalized, while too little datapoints result in important information to not be encoded.

Figure D.7: Result of resampling the aligned trajectories from Figure D.3 to 10 datapoints

Trajectories relative to object and model input
The last data pre-processing step is to make the demonstrations relative to the object position and to de-
termine the object position relative to the end effector at the first datapoint. This is necessary to be able
to generalize the motion when the starting pose of the end effector is different. The first data point of the
demonstration is used to determine the object position with respect to the end effector frame, which is de-
noted by the purple vector in Figure D.8. Furthermore the end effector motion relative to the object position
is calculated by subtracting base ee(t) by base ob j ect (t), denoted by the red and purple vector in Figure D.8
respectively.

D.3. Trajectories relative to object and model input 44

base

object

ee(t)

ee(t=0)

= -

Figure D.8: Illustration of how the demonstrations are transformed to be relative to the object. Blue: object relative to base, red: end
effector at time step t relative to base frame, green: end effector at time step t relative to object and purple: object relative to end

effector frame at time step t = 0

In the demonstrations depicted in Figure D.3, the object position with respect to the base frame was ap-
proximately [0.024m, 0.911m, 0.558m]. The result of applying the transformation to the trajectories to make
them relative to the object position is depicted in Figure D.9.

Figure D.9: Demonstrations transformed to be relative to the object position

D.3. Trajectories relative to object and model input 45

Model input
The input or condition used is ee~pob j ect at t = 0, but this is multiplied by a factor of 10. This was experienced
to have better prediction results. An illustration of this is shown in Figure D.10, where in the left images the
demonstrations are shown and the right images show the predictions. In the images above, the input is not
multiplied by 10 while the images below are. When no multiplication by 10 is done, it can be seen in the top
right image that the predictions are not correct, as they should be further apart. When the input is multiplied
by 10, the predictions are correct, as seen in the bottom right image.

Original

Demonstrations Predictions

 = 0.8

 = 0.9

0.70

0.65

0.60

0.55

0.65

0.60

0.55

0.50

 = 0.9

 = 0.8

Demonstrations

 = 8

 = 9

0.70

0.65

0.60

0.55

 = 8

 = 9

0.70

0.65

0.60

0.55
Predictions

 x10

Figure D.10: Illustration of why the input is multiplied by 10 before being input to the ProMP model. The left images show the
demonstrations input to the model, while the right images show the predictions using the same inputs as the demonstrations

E
Human factors experiment

This section shows the details of the performed human factors experiment.

Pipeline
The complete experimental pipeline is depicted in Figure E.1.

Start time

Model

Successful?

Yes

No
Adapt Successful?

No

Yes

Next model

Object
detection

object position

predicted trajectory

refined trajectory Update
model

Go to initial
pose

8 update attempts10 refinement attempts

3 models in total

Text

Execute

Human
adaptation

+
refined trajectory

Online

Human
demonstration

Offline

OR

OR

predicted trajectory
OR

refined trajectory

predicted trajectory refined trajectory

1 object position in total

Stop time

Text

Learning mechanism Teaching device

Figure E.1: Complete experimental pipeline

46

E.2. Success criteria 47

Success criteria
The object is reached if the center of the object coordinate frame is within the ellipsoid drawn inside the
gripper (see Figure E.3 for this ellipsoid). This means that the vector between the center of the ellipsoid and
the object coordinate frame, ~pob j ect , should be smaller than or on the boundary of the ellipsoid. To calculate
this, the ellipsoid equation is used, in which the x, y and z coordinates of ~pob j ect are substituted, and if this
is smaller or equal to 1 the object is defined as reached (see Figure E.2).

x2

a2 + y2

b2 + z2

c2 É 1

Figure E.2: Definition used for when the object is reached. The x, y and z coordinates of ~pob j ect are substituted in the ellipsoid
equation, where a, b and c are the radii of the ellipsoid in these dimensions. If the substituted equation is smaller than or equal to 1,

~pob j ect is within or on the ellipsoid boundary and the object is defined as reached

Furthermore the object is kicked over if the difference between the initial and the current x, y and z
coordinates of the object are larger than a certain threshold:

(|x0 −x1| or |y0 − y1| or |z0 − z1|) > thr eshol d

The collision detection algorithm of the simulator is used to determine the collision between the robot and
the environment, where self and floor collision have not been taken into account. Visual feedback is provided
when these conditions are satisfied, of which an illustration is shown in Figure E.3.

Figure E.3: Red/green ellipsoid within gripper: Object (not) reached, red/green box around object: object (not) kicked over, "collision"
coordinate frame shows where collision has occurs

E.3. Normally distributed metric evaluation 48

Normally distributed metric evaluation

0 250500750
1000

0
10
20

Omni

0
1000

2000
0

20
40

Keyboard

0 250 500 750
1000

0
20
40

Online

0
1000

2000
0

20

Offline
20 40 60 80

0
2
4
6

Omni

20 40 60 80
0
2
4
6

Keyboard

20 40 60 80
0
5

10
Online

20 40 60 80
0
2
4
6

Offline

Figure E.4: Distributions of refinement time and workload, depicted in the left and right graphs respectively. They are separated on
teaching (stylus or keyboard) and learning mechanism (online or offline).

Counterbalancing

Method 1 Method 2 Method 3 Method 4
Group 1 OnStyl OnKey OffKey OffStyl
Group 2 OnKey OffStyl OnStyl OffKey
Group 3 OffStyl OffKey OnKey OnStyl
Group 4 OffKey OnStyl OffStyl OnKey

Table E.1: Balanced Latin Square experiment design

Participants background information

Non-technical Technical
0

10

Pa
rti

cip
an

ts
 [-

] Field of work

None 1h 10h 1d 10w More
0

5

Pa
rti

cip
an

ts
 [-

] Game (WASD) experience

None 1h 10h 1d 10w More
0

10

Pa
rti

cip
an

ts
 [-

] Teleoperation experience

Left Right
0

10

Pa
rti

cip
an

ts
 [-

] Left/right handed

Female Male
0

10

Pa
rti

cip
an

ts
 [-

] Gender

20 30 40 50
0

5

Pa
rti

cip
an

ts
 [-

] Age

Figure E.5: Background information of the participants

Training
The operator keeps creating refinements, until the moving average of the successes over the past 4 refine-
ments is larger than 50%. This means that if 2/4 successful refinements are created, the real experiment is
started. If the operator did not succeed within 30min, the experiment for this method is not started as this
method is assumed to be not workable for this participant. The distribution of the training time over the par-
ticipants that passed the training is depicted in Figure E.6, because the training time of the participants that
failed was not stored.

E.7. Pilot 49

OnOm
OffOm

OnKey
OffKey

0
200
400
600
800

1000
1200
1400

Tr
ai

ni
ng

 ti
m

e
[s

]

Figure E.6: Training time of participants that succeeded the training, shown per method.

Pilot
The evaluated metrics are the refinement time and workload. To be able to calculate the refinement time,
every model for each method has to be successfully adapted. If this is not the case, the model is not refined
and the refinement time metric cannot be calculated. This means that the experiment has to be easy enough,
such that people are able to accomplish this. A pilot experiment was done on 5 participants, of which the
amount of successfully adapted models have been evaluated. In Figure E.7 it can be seen that for none of
the methods, all participants were able to successfully adapt all 3 models. Thus it was concluded that the
experiment in this form was too difficult.

Figure E.7: Left: Amount of successfully adapted models per method in the pilot (max 15 models per method). Right: Amount of
successfully adapted models per method in the final (easier) experiment (max 18 models per method)

Changes have been made to the dishwasher position, which was placed further away from the robot.
In this way the prediction required less adaptation to avoid the pulled out basket. Moreover in the online
methods, it was made easier to create a large refinement and the allowed refinement and update attempts
were increased (4 to 8 and 5 to 10 respectively). The amount of adapted models in the final experiment are
also shown in Figure E.7. It can be seen that for Offline + Omni, still some models are not successfully adapted
and can thus not be used in the statistics for the refinement time.

Graphical User Interface (GUI)
Two GUIs have been build, one that is shown to the operator during the experiment, and one to fill in the
background information before the experiment. The interface has 7 important regions to consider for the
participant:

1. The camera view of the robot. Top is the head camera and bottom is the wrist camera.

2. Point cloud of the dishwasher, with the robot model, the predicted and refined trajectory and the failure
detection visualization.

E.8. Graphical User Interface (GUI) 50

Figure E.8: Graphical User Interface shown to the operator during the experiment

3. Traffic light: Red = You should not do anything, Green = You should do something

4. Text giving details about the state of the experiment

5. How much refinements are used (max 10 per update)

6. How much updates are used (max 8 per object position)

7. Successfulness of trajectory displayed in text

8. Instructions on how to generate a trajectory using the current method

Another GUI has been build to evaluate the background information of the participants before the exper-
iment, of which an illustration is depicted in Figure E.9.

Figure E.9: GUI build to fill in background information of the participants before the experiment

E.9. Dishwasher model 51

Dishwasher model
The dishwasher model was downloaded from [14] and the baskets were adjusted to prevent the physics sim-
ulator becoming unstable when the arm touches the basket. This is done by making a solid basket in Solid-
Works, and applying a texture of a fence over the basket in Blender. Furthermore the door was removed, such
that the robot can more easily reach the object within the basket. And transparency was applied, such that
it visually resembled a real basket (this did not work in the older version of Gazebo, which has to be used to
control the robot). After that the model was converted to a Universal Robot Description File (URDF) such
that it can be used within the simulation environment of the robot.

Figure E.10: Left: Original dishwasher model with instable basket/gripper collisions, Right: Solid basket with applied texture, which has
more stable collisions

Additionally a ROS controller [15] was build such that the upper basket can be controlled, but this was not
used in the end since having multiple robots in the same environment causes the simulator to fail. Instead a
second simulator world was build with a dishwasher that has different basket position.

Figure E.11: ROS controller of upper basket, left: basket closed, right: basket open

Trained initial model
An initial model was trained on a dishwasher with upper basket x position 1.7 (w.r.t the base link of the
dishwasher). It was trained on two object positions, which vary only in the y-direction w.r.t the base frame:
base pob j ect 1 = [0.9177, 0.2592, 0.5621] and base pob j ect 2 = [0.0247, 0.9271, 0.5546]. This was experienced to
be a good trade-off between being robust against small changes in the object position, and a model that can
easily be adapted (small amount of initial trajectories make it easier to change the mean of all the demon-
strations). The raw demonstrations for these two object positions are depicted in Figure E.12, where it can be
seen that the main difference is present in the y-coordinate of the trajectories.

E.10. Trained initial model 52

Figure E.12: Raw data generated using the Phantom Omni

These raw demonstrations are resampled, such that they contain only 10 datapoints. This is empirically
determined to be a good trade-off between overfitting and generalization capabilities. Large amount of data
points will result in overfitting the demonstrations, while low amount of data will result in bad generalization
of environmental constraints. An illustration of these resampled trajectories is depicted in Figure E.13.

Figure E.13: Resampled trajectories to contain only 10 datapoints

Since no multiple trajectories per condition have been demonstrated, DTW is not necessary and this step
is skipped. The last step is to transform the coordinates of the trajectories to be relative to object posi-
tion. The result of this step is shown in Figure E.14. The trajectories in Figure E.14 are fed into the model

Figure E.14: Trajectories tranformed to be with respect to the object instead of the base frame

with their corresponding condition. The condition is the object w.r.t the end effector at t = 0, which is
condi t i on 1 = [0.3886,0.1700,0.1010] and condi t i on 2 = [0.3971,−0.0543,0.0913]. An evaluation of the ini-
tial model on different object positions across the y-direction is depicted in Figure E.15. Here it can be seen
that the constraint of the basket is successfully generalized.

31/08/2020

Participant Instructions
Today, you are going to teach a care robot how to reach an object inside a dishwasher. This robot is
trained to reach these objects for a certain basket position (left picture). In the experiment the basket
is pulled outwards (right picture) and the trajectory the model generates is expected to fail, thus we
need to adapt the model.

This adaptation will be done in simulation, of which the complete setup looks like this:

.1

31/08/2020

Experiment pipeline
The experiment consists of 3 phases:

1) Model generates prediction

2) You refine prediction

3) Model is updated with refined prediction

Phase 2 is where you as operator come into play. As soon as the model is not able to generate a
successful prediction, you as operator are asked to refine this prediction. This is done using 4
different methods. After you have created a successful refinement, the model is updated with this.
Hint: The model uses averaging to generate trajectories, so to adapt the model more quickly, you can
update the model with an exaggerated motion (see image below).

A rough pipeline is shown below, which will be repeated for each of the 4 methods.

If you did not succeed within 5 refinement attempts → Go to next model.

If you did not succeed within 4 updates → Go to next model.

.2

31/08/2020

The complete pipeline is shown below:

The experiment will approximately take ~2.5 hours, where the 4 methods are being evaluated on
their performance in adapting models.

 Training phase: Score 50% (2/4 successful refinement), ~10min per method
 Experiment: 4 methods, ~30min per method

When is a trajectory successful?
1) Object reached (center of object frame should be inside red ellipsoid), 2) object not kicked over, 3)
no collision

.3

Object not reached (red ellipsoid)
Object not kicked over (green box)

Object reached (green ellipsoid)
Object kicked over (red box)

Collision

31/08/2020

User interface
The user interface consists of a couple of important regions:

The user interface has 7 important regions to consider.

1. The camera view of the robot. Top is the head camera and bottom is the wrist camera.
2. Point cloud of the dishwasher, with the robot model, the predicted and refined trajectory and

the failure detection visualization (details follow).
3. Traffic light: Red = You should not do anything, Green = You should do something
4. Text giving details about the state of the experiment
5. How much refinements are used (max 5 per update)
6. How much updates are used (max 4 per object position)
7. Successfulness of trajectory displayed in text
8. Instructions on how to generate a trajectory using the current method

.4

31/08/2020

Methods
Making a refined trajectory (see flowchart) is done using 4 different methods. 2 of them are online
and 2 are offline methods. In online methods, the predicted trajectory is adapted during execution
time:

When the model prediction was unsuccessful (see flowchart), you can chose between refining the
previous refinement or the initial prediction. This choice is based upon which trajectory you think will
have the highest potential to be successful.

In offline methods you teach a trajectory from scratch:

Human adaptation/demonstration is done using either a keyboard or the Geomagic Touch.

.5

31/08/2020

Keyboard + Offline teaching:

The keyboard is used to specify and interpolate waypoints. You can adapt both the position and
orientation of the gripper in X, Y and Z direction. This is done using the keys shown in the left image
below, which letters will be placed on the real keyboard. The colors represent the axis of
rotation/translation as indicated in the right image.

If you want to store a waypoint, you press the spacebar. Note: At least 3 waypoints need to be
specified for the interpolation to work properly. After specifying all the waypoints as you like, you
press the enter button to interpolate the waypoints.

This interpolation is then the refined trajectory and checked for successfulness and if this is true, it is
used to update the model.

.6

31/08/2020

Keyboard + Online teaching:

This time you adapt the position of predicted motion during execution time using the +-X, +-Y, +-Z
keys on the keyboard. To stop refining, you need to press the space bar.

Omni + Offline teaching

A completely new trajectory is taught using the Geomagic Touch. Both position and orientation can
be demonstrated by moving/rotating the stylus. To start/stop the teaching, the space bar should be
pressed. To couple/decouple the device with the end effector, the grey/white button should be
pressed.

When the model prediction is unsuccessful (see flowchart) you start teaching by pressing the space
bar.

.7

31/08/2020

Omni + Online teaching

During execution time you adapt the position of the motion using the Geomagic Touch. Force
feedback is provided that gives you a feel for how much you are deviating from the predicted
trajectory. To stop the teaching, the space bar should be pressed.

NASA-TLX
After the complete experiment you are asked to answer questions about each of the 4 methods you
used. This will give an indication of the perceived workload of the method.

Instructions: Rating scales

You are requested to rate each method based on six different criteria (shown below). This is done
inside a GUI:

.8

31/08/2020

Instructions: Sources of workload evaluation

Furthermore you will be presented with a series of pairs of rating scale titles (for example Effort vs.
Performance) and asked to choose which of the two was more important to your experience of
workload in the task that you just performed.

.9

31/08/2020

Additional material

Complete online teaching pipeline

Complete offline teaching pipeline

.10

E.11. NASA-TLX 63

Figure E.15: Evaluation of the initial model on different object positions varied across the y-direction

NASA-TLX
The workload was determined using the NASA task load index (NASA-TLX). To conveniently determine this
during the experiment, a graphical user interface was implemented depicted in Figure E.16. This user inter-
face imitates the original NASA-TLX rating sheet and sources of workload comparison cards, which are shown
in Figure E.16. In the left side of the GUI (see Figure E.16), the weighted rating sheet is implemented, while on
the right sheet the sources of workload comparisons are depicted. Before calculating the workload, a check is
done on how many times each source of workload occurs, which have to be equal to 15 [16]. Then to calculate
the workload, the ratings per source of workload from the rating sheet are multiplied with how many times
this source was chosen in the comparison cards (weight). This adjusted rating (weight * rating) is summed
over all the sources of workload and divided by 15 to get the total workload (see [16] for more details).

Figure E.16: Left: Original NASA-TLX [16], right: NASA-TLX graphical user interface the participants had to fill in after each method

E.12. Methods implementation 64

Methods implementation
OffStyl
The light grey and dark grey button of the Phantom Omni are respectively used to couple and decouple the
end effector. Furthermore the space bar is used to start and stop the recording of the trajectory. Both the
position and orientation of the end effector are recorded, in addition to the total execution time T . After
creating a refined trajectory, it is resampled to contain only 10 datapoints. Then the refined trajectory is
executed, which means it is interpolated to contain n = 75 datapoints. This number is empirically determined
to generate trajectories without jumps. The time step per datapoint is then calculated by d t = T

n .

OffKey
The space bar is used to specify waypoints (EE position and orientation), after which the enter button can be
pressed to interpolate between these waypoints. To interpolate the position, quadratic spline interpolation is
used, whereas the orientation is interpolated using spherical linear interpolation (SLERP). To achieve these
interpolations SCIPY is used [17].

Furthermore a "teach loop" records the input from the operator and translates this to end effector (EE) mo-
tion. When the operator presses a translation or rotation button, the current EE position and orientation is
stored and a tiny amount is added. For the translation, each button press adds 0.013m in the corresponding
direction. For the rotation part, the operator can control the rotation around the x, y and z axis of the end ef-
fector. This means that by pressing a rotation button, the a new orientation will be stored, which adds 0.1rad
around the corresponding axis to the current EE orientation. To convert this to quaternions, which the Whole
Body Controller (WBC) [8] expects, the QUATERNIONROTATION(AXIS, ANGLE) is written:

Listing E.1: Python function used to convert an axis and angle to quaternions

1 def quaternionRotation (axis , angle) :
2 w = np . cos (angle /2)
3 i f axis == ’ x ’ :
4 x = np . sin (angle /2)
5 e l i f axis == ’ y ’ :
6 y = np . sin (angle /2)
7 e l i f axis == ’ z ’ :
8 z = np . sin (angle /2)
9

10 return Quaternion (w, x , y , z) . normalised

The new translation and rotation (in quaternions) are being send to the WBC using the ROS interface.

E.12. Methods implementation 65

Quadratic spline interpolation
Quadratic spline interpolation works by fitting a spline between two consecutive data points, which are given
by the following equations.

f (x) = a1x2 +b1x + c1, x0 É x É x1

= a2x2 +b2x + c2, x1 É x É x2

...

= an x2 +bn x + cn , xn−1 É x É xn (E.1)

Filling in xn−1 and xn in each of these equations gives 2n amount of equations:

a1x2
0 +b1x0 + c1 = f (x0)

a1x2
1 +b1x1 + c1 = f (x1)

...

a1x2
1 +b1x1 + c1 = f (x1)

a1x2
2 +b1x2 + c1 = f (x2)

...

an x2
n−1 +bn xn−1 + cn = f (xn−1)

an x2
n +bn xn + cn = f (xn) (E.2)

Furthermore the derivates of two quadratic splines are equal at x = xn , therefore the following equations can
be derived:

2a1x1 +b1 −2a2x1 −b2 = 0 (E.3)

2a2x2 +b2 −2a3x2 −b3 = 0 (E.4)

... (E.5)

2an−1xn−1 +bn−1 −2an xn−1 −bn = 0 (E.6)

This are n−1 amount of equations, which totals to 2n+(n−1) = 3n−1 amount of equations and 3n unknowns.
The last equation to make the system of equations solvable is the assumption that the first spline is linear,
which means a1 = 0. An illustration of the splines and their derivatives are depicted in Figure E.17.

Figure E.17: Quadratic spline interpolation [18], left: Spline equations, right: Derivatives of these splines

E.13. Additional results 66

Additional results
In Figure E.18 the amount of successfully adapted models per method are depicted, before and after exclud-
ing the 6 participants that failed to adapt at least 1 model for a method. After excluding them, we have the
same amount of adapted models per method.

OnOm
OnKey

OffOm
OffKey

0

10

20

30

40

50

OnOm
OnKey

OffOm
OffKey

0
5

10
15
20
25
30
35

Figure E.18: The left and right images show the amount of adapted models before and after excluding the participants. We see that
some participants failed at certain methods, which have to be completely excluded from the refinement time hypothesis test.

The result of teleoperation experience, gender and handedness on the refinement time and workload are
depicted in Figure E.19. Table E.2 shows game/teleoperation experience and field of work and the corre-
sponding refinement time and workload values.

OnKey
OnOm

OffOm
OffKey

0

20

40

60

80

100

W
or

kl
oa

d
[0

-1
00

]

L (N=16)
H (N=2)

OnKey
OnOm

OffOm
OffKey

0

500

1000

1500

2000

2500

Re
fin

em
en

t t
im

e
[s

]

L (N=33)
H (N=3)

Teleoperation experience

OnKey
OnOm

OffOm
OffKey

0

20

40

60

80

100

W
or

kl
oa

d
[0

-1
00

]

F (N=4)
M (N=14)

OnKey
OnOm

OffOm
OffKey

0

500

1000

1500

2000

2500

Re
fin

em
en

t t
im

e
[s

]

F (N=12)
M (N=24)

Gender

OnKey
OnOm

OffOm
OffKey

0

20

40

60

80

100

W
or

kl
oa

d
[0

-1
00

]

R (N=15)
L (N=3)

OnKey
OnOm

OffOm
OffKey

0

500

1000

1500

2000

2500
Re

fin
em

en
t t

im
e

[s
]

R (N=30)
L (N=6)

Handedness

Figure E.19: Influence of teleoperation experience (High/Low), gender (Male/Female) and handedness (Right/Left) on the refinement
time and workload.

0 5 10 15 20
Refinements [-]

0
5

10
15
20

Oc
cu

re
nc

e
[-] OnOm

1 2 3 4 5 6 7 8
Refinements [-]

0
5

10
15
20

Oc
cu

re
nc

e
[-] OnKey

1 2 3 4 5 6
Refinements [-]

0
5

10
15
20

Oc
cu

re
nc

e
[-] OffOm

123456789
Refinements [-]

0
5

10
15
20

Oc
cu

re
nc

e
[-] OffKey

12345678
Updates [-]

0
5

10

Oc
cu

re
nc

e
[-] OnOm

1 2 3 4 5
Updates [-]

0
5

10

Oc
cu

re
nc

e
[-] OnKey

1 2 3 4 5
Updates [-]

0
5

10

Oc
cu

re
nc

e OffOm

1 2 3 4 5
Updates [-]

0
5

10
15

Oc
cu

re
nc

e
[-] OffKey

Figure E.20: Number of updates and refinements needed to successfully update one model, displayed per method.

E.13. Additional results 67

Gaming experience Teleoperation experience Field of study/work

L (N = 21) H (N = 15) L (N = 33) H (N = 3) T (N = 27) NT (N = 9)

M 129.40 55.87 96.62 54.58 82.50 126.01
RT [s] 25 76.40 51.80 55.91 41.08 53.97 76.40

75 167.07 89.56 148.77 156.11 144.50 167.07
OnStyl

L (N = 30) H (N = 24) L (N = 48) H (N = 6) T (N = 39) NT (N = 15)

M 32.5 42.5 36.0 34.0 34.0 38.0
WL [0-100] 25 25.0 30.5 26.5 23.0 25.0 31.0

75 45.0 46.5 46.5 45.0 45.0 42.0

L (N = 21) H (N = 15) L (N = 33) H (N = 3) T (N = 27) NT (N = 9)

M 101.59 75.49 101.59 69.57 84.05 141.71
RT [s] 25 55.65 62.13 55.65 67.21 57.53 94.27

75 149.50 119.70 149.50 84.68 126.78 149.50
OnKey

L (N = 30) H (N = 24) L (N = 48) H (N = 6) T (N = 39) NT (N = 15)

M 34.0 40.0 36.5 52.0 34.0 40.0
WL [0-100] 25 31.0 35.75 29.75 48.0 31.0 39.0

75 50.0 45.75 41.25 56.0 45.0 50.0

L (N = 21) H (N = 15) L (N = 33) H (N = 3) T (N = 27) NT (N = 9)

M 385.71 320.83 336.59 425.88 336.58 385.71
RT [s] 25 204.93 264.35 204.93 373.36 229.17 301.89

75 591.06 441.20 487.30 478.95 506.08 487.30
OffStyl

L (N = 30) H (N = 24) L (N = 48) H (N = 6) T (N = 39) NT (N = 15)

M 49.0 39.5 47.5 43.0 40.0 53.0
WL [0-100] 25 40.0 27.0 29.25 27.0 27.0 52.0

75 54.0 61.25 55.5 59.0 59.0 54.0

L (N = 21) H (N = 15) L (N = 33) H (N = 3) T (N = 27) NT (N = 9)

M 335.98 278.49 320.78 278.49 252.38 590.66
RT [s] 25 137.14 174.66 148.37 225.82 142.76 308.11

75 608.28 397.00 590.66 424.08 392.66 866.16
OffKey

L (N = 30) H (N = 24) L (N = 48) H (N = 6) T (N = 39) NT (N = 15)

M 51.5 44.0 48.5 40.0 39.0 67.0
WL [0-100] 25 37.0 20.75 33.0 20.0 21.0 67.0

75 67.0 54.0 59.5 60.0 50.0 80.0

Table E.2: Refinement time (RT) and workload (WL) of the different methods as function of the field of work, gaming and teleoperation
experience. Field of work is either technical (T) or non-technical (NT), gaming and teleoperation experience is either low (L) or high (H).

Bibliography

[1] trojan03, Python implementation of probabilistic motor primitives including a ros overlay. 2016. [On-
line]. Available: https://github.com/baxter-flowers/promplib.

[2] F. team, Python implementation of contextual probabilistic motor primitives, 2018. [Online]. Available:
https://github.com/trojan03/contextual-promp.

[3] M. Ewerton, G. Maeda, G. Kollegger, J. Wiemeyer, and J. Peters, “Incremental imitation learning of
context-dependent motor skills”, in 2016 IEEE-RAS 16th International Conference on Humanoid Robots
(Humanoids), IEEE, 2016, pp. 351–358.

[4] G. Maeda, M. Ewerton, T. Osa, B. Busch, and J. Peters, “Active incremental learning of robot movement
primitives”, 2017.

[5] sniekum, This ros package is a general, robot-agnostic implementation of dynamic movement primitives
(dmps). 2016. [Online]. Available: https://github.com/sniekum/dmp.

[6] Blog explaining dmps. [Online]. Available: https://studywolf.wordpress.com/2013/11/16/
dynamic-movement-primitives-part-1-the-basics/.

[7] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of robot learning from demonstration”,
Robotics and autonomous systems, vol. 57, no. 5, pp. 469–483, 2009.

[8] H. Tomé, L. Marchionni, and A. R. Tsouroukdissian, “Whole body control using robust & online hierar-
chical quadratic optimization”, in IROS14 International Conference on Intelligent Robots and Systems,
2014, pp. 14–18.

[9] D. J. Berndt and J. Clifford, “Using dynamic time warping to find patterns in time series.”, in KDD
workshop, Seattle, WA, vol. 10, 1994, pp. 359–370.

[10] M. P. Nemitz, R. J. Marcotte, M. E. Sayed, G. Ferrer, A. O. Hero, E. Olson, and A. A. Stokes, “Multi-
functional sensing for swarm robots using time sequence classification: Hoverbot, an example”, Fron-
tiers in Robotics and AI, vol. 5, p. 55, 2018, ISSN: 2296-9144. DOI: 10.3389/frobt.2018.00055. [On-
line]. Available: https://www.frontiersin.org/article/10.3389/frobt.2018.00055.

[11] slaypni, A python implementation of fastdtw, 2019. [Online]. Available: https://github.com/slaypni/
fastdtw.

[12] S. Salvador and P. Chan, “Toward accurate dynamic time warping in linear time and space”, Intelligent
Data Analysis, vol. 11, no. 5, pp. 561–580, 2007.

[13] M. Kyrarini, M. A. Haseeb, D. Ristić-Durrant, and A. Gräser, “Robot learning of industrial assembly task
via human demonstrations”, Autonomous Robots, vol. 43, no. 1, pp. 239–257, 2019.

[14] M. Kameric, Dishwasher cad model, https://grabcad.com/library/dishwasher-4, 2015.

[15] S. Chitta, E. Marder-Eppstein, W. Meeussen, V. Pradeep, A. R. Tsouroukdissian, J. Bohren, D. Coleman,
B. Magyar, G. Raiola, M. Lüdtke, et al., “Ros_control: A generic and simple control framework for ros”,
2017.

[16] NASA, Nasa task load index instruction manual, https://humansystems.arc.nasa.gov/groups/
TLX/downloads/TLX_pappen_manual.pdf, (Accessed on 10/06/2020).

[17] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peter-
son, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde,
J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pe-
dregosa, P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0: fundamental algorithms for scientific
computing in python”, Nature Methods, vol. 17, pp. 261–272, 2020. DOI: 10.1038/s41592-019-0686-
2.

[18] Spline interpolation method, http://mathforcollege.com/nm/mws/gen/05inp/mws_gen_inp_
ppt_spline.pdf, (Accessed on 10/12/2020), Autar Kaw, Jai Paul.

68

https://github.com/baxter-flowers/promplib
https://github.com/trojan03/contextual-promp
https://github.com/sniekum/dmp
https://studywolf.wordpress.com/2013/11/16/dynamic-movement-primitives-part-1-the-basics/
https://studywolf.wordpress.com/2013/11/16/dynamic-movement-primitives-part-1-the-basics/
http://dx.doi.org/10.3389/frobt.2018.00055
https://www.frontiersin.org/article/10.3389/frobt.2018.00055
https://github.com/slaypni/fastdtw
https://github.com/slaypni/fastdtw
https://grabcad.com/library/dishwasher-4
https://humansystems.arc.nasa.gov/groups/TLX/downloads/TLX_pappen_manual.pdf
https://humansystems.arc.nasa.gov/groups/TLX/downloads/TLX_pappen_manual.pdf
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1038/s41592-019-0686-2
http://mathforcollege.com/nm/mws/gen/05inp/mws_gen_inp_ppt_spline.pdf
http://mathforcollege.com/nm/mws/gen/05inp/mws_gen_inp_ppt_spline.pdf

Glossary

DMP Dynamic Movement Primitive. 35, 36

DTW Dynamic Time Warping. 22, 28, 40, 41, 42, 43, 52

GUI Graphical User Interface. ii, 49, 50

LWPR Linearly Weighted Projection Regression. 36

LWR Linearly Weighted Regression. 36

ProMP Probabilistic Movement Primitive. 18, 19, 20, 22, 32, 40, 43, 45

RFWR Receptive Field Weighted Regression. 36

69

	Scientific paper
	Conditioned-Probabilistic Movement Primitives
	Implementation
	Evaluation

	Online learning
	2D example
	Robot simulation environment
	Current vs. next time step adaptation
	Shifted initial position
	Dynamic Movement Primitives
	Slow adaptation

	Initial demonstrations: Interactive coupling/decoupling
	Data pre-processing
	Dynamic Time Warping
	Resampling
	Trajectories relative to object and model input

	Human factors experiment
	Pipeline
	Success criteria
	Normally distributed metric evaluation
	Counterbalancing
	Participants background information
	Training
	Pilot
	Graphical User Interface (GUI)
	Dishwasher model
	Trained initial model
	NASA-TLX
	Methods implementation
	Additional results

	Bibliography
	Glossary

