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ABSTRACT 1 
Automated vehicles and driving assistance systems such as Adaptive Cruise Control (ACC) are expected to 2 

reduce traffic congestion, accidents and levels of emissions. Field Operational Tests have found that drivers 3 

may prefer to deactivate ACC in dense traffic flow conditions and before changing lanes. Despite the 4 

potential effects of these control transitions on traffic flow efficiency and safety, most mathematical models 5 

evaluating the impact of ACC do not adequately represent this process.  6 

This research aims to identify the main factors influencing drivers’ choice to resume manual 7 

control. A mixed logit model that predicts the choice to deactivate the system or overrule it by pressing the 8 

gas pedal was estimated. The dataset was collected in an on-road experiment in which twenty-three 9 

participants drove a research vehicle equipped with full-range ACC on a 35.5-km freeway in Munich 10 

during peak hours. 11 

The results reveal that drivers are more likely to deactivate the ACC and resume manual control 12 

when approaching a slower leader, when expecting vehicles cutting in, when driving above the ACC target 13 

speed, and before exiting the freeway. Drivers are more likely to overrule the ACC system by pressing the 14 

gas pedal a few seconds after the system has been activated, and when the vehicle decelerates. Everything 15 

else being equal, some drivers have higher probabilities to resume manual control. We conclude that a novel 16 

conceptual framework linking ACC system settings, driver behavior characteristics, driver characteristics 17 

and environmental factors is needed to model driver behavior in control transitions between ACC and 18 

manual driving.  19 

 20 

 21 

Keywords: Control transitions, Adaptive Cruise Control, on-road experiment, driver behavior, choice 22 

model. 23 

  24 
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INTRODUCTION 1 
Automated vehicles and driving assistance systems can contribute to reduce congestion, accidents, and 2 
levels of emissions. Automated vehicles may increase roadway capacity, improve traffic flow stability, and 3 
speed up the outflow from a queue (1). The functionalities of automated systems are gradually introduced 4 
into the market, such as in the case of Adaptive Cruise Control (ACC). The ACC is designed to maintain a 5 
desired speed and time headway, therefore influencing substantially the performance of the driving task. 6 
The impact of ACC systems on driving behavior has been extensively analyzed since the 1990s, primarily 7 
in driving simulator experiments. FOTs have shown potential safety benefits of ACC systems which are 8 
inactive at low speeds when they are activated: drivers maintain larger time headways (2-5), follow the 9 
leader twice as long as in manual driving (4), and prepare lane changes in advance to refrain from 10 
interactions with slower vehicles (2). A possible explanation for these behavioral adaptations is that, when 11 
the ACC is active, drivers do not manually control the vehicle (1).  12 

These findings, however, might be biased by the circumstances in which the system is engaged 13 
(e.g., medium-high speeds, medium-light traffic and non-critical conditions). In certain traffic situations, 14 
drivers may prefer to deactivate the system and resume manual control, or the system deactivates because 15 
of its functioning limitations. These transitions between automation and manual driving are called control 16 
transitions (6) and may have a significant impact on traffic flow efficiency (7) and safety. The 17 
characteristics of the ACC, the road, traffic flow, and the drivers affect the initiation of these transitions (8). 18 
Field Operational Tests have shown that dense traffic conditions (4; 9) and maneuvers such as lane 19 
changing may influence drivers’ decision to disengage ACC systems that are inactive at low speeds. 20 
Recently, these functioning limitations have been overcome by the introduction of full-range ACC systems 21 
that can operate in stop-and-go conditions. Full-range ACC has been shown to positively impact traffic 22 
flow efficiency (10). To quantify this effect at varying penetration rates, mathematical models of manually 23 
driven and automated vehicles should be developed and implemented into microscopic traffic simulation 24 
models. However, most current car-following and lane changing models do not account for these control 25 
transitions. A few microscopic traffic flow models (11; 12) have implemented deterministic decision rules 26 
for transferring control between ACC and manual driving, ignoring heterogeneity between and within 27 
drivers in the decision-making process. Thus, the impacts on traffic flow predicted by these models could 28 
be misleading.  29 

This research explores the factors which influence transitions from full-range ACC to manual 30 

control. A mixed logit model for this transition choice is estimated using a dataset collected in a controlled 31 

on-road experiment. The paper is structured as follows. The next section discusses potential reasons for 32 

control transitions and limitations of existing models for these transitions. This section is followed by a 33 

description of the controlled on-road experiment. Next, the model specification and the estimation results 34 

are presented. The last section discusses the main factors influencing transitions to manual control and 35 

directions for future research. 36 

LITERATURE REVIEW 37 
In this section, we review available behavioral theories and models for control transitions between ACC 38 

and manual driving, based on on-road studies in real traffic (for a review of data collection methods, refer to 39 

(13)). Notably, transitions of control between ACC and manual driving in safety-critical situations and 40 

automation failures have also been investigated in driving simulator experiments with a high degree of 41 

controllability (for a review, refer to (7)). 42 
Control transitions can be initiated by the driver voluntarily or by the automated system because 43 

of its own functioning limitations. Lu and De Winter (6) proposed a classification of transitions of control 44 
based on who (driver or automation) initiates the transition and who is in control afterwards. Therefore, 45 
transitions are defined as Driver Initiated Driver in Control (DIDC) when drivers deactivate the system, 46 
Driver Initiated Automation in Control (DIAC) when drivers activate it, and Automation Initiated Driver in 47 
Control (AIDC) when the system disengages because of its functioning limitations. The circumstances in 48 
which these transitions occur appear to be strongly related to the characteristics of the driver support 49 
system. Several FOTs (2; 4; 9; 14) have investigated driving behavior with ACC systems that are inactive at 50 
speeds below 30 km/h and have limited decelerations capabilities. DIAC transitions may occur for comfort 51 
reasons (15; 16) in non-critical and non-dense traffic situations (e.g., after entering the freeway (2)). DIDC 52 
transitions by braking have been primarily related to safety indicators such as time to collision. Xiong and 53 
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Boyle (14) classified events in which ACC decelerates automatically into near-crash, conflict and low-risk 1 
cases based on time to collision and distance headway rate. They found that drivers were more likely to 2 
resume control by braking in near-crashes (56%) and conflicts (42%), compared to low-risk situations 3 
(7%). However, drivers can also resume manual control in situations that ACC is able to manage when the 4 
response of the system does not match their expectations (17). Viti et al. (9) found that most ACC 5 
deactivations occurred in non-critical situations: in their study, 65-70% of the deactivations were initiated 6 
by braking lightly, 20–25% without braking, and only 5-10% by braking hard. They concluded that drivers 7 
transfer to manual control to maintain a constant speed in medium–dense traffic conditions. Other studies 8 
(15; 16) proposed that further reasons to initiate DIDC transitions include preparation to changing lanes, 9 
anticipation of vehicles merging into the lane, and avoiding overtaking slower vehicles on the left lanes. 10 
AIDC transitions occur when the system fails (e.g., the sensors malfunction) or when the required control 11 
exceeds the system limits (e.g., hard braking is needed).  12 

However, control transitions with full-range ACC systems might be initiated in different 13 
situations. In a controlled field experiment, Pereira et al. (18) found that DIDC transitions occurred when 14 
the vehicle exited the freeway (51% of the deactivations), approached a moving vehicle (13%) and changed 15 
lane (13%), and when the leader changed lanes or a vehicle cut in (22%). They also suggested that DIDC 16 
transitions by pressing the gas pedal can be seen as a compensation strategy to increase the complexity of a 17 
situation considered to be too simple. This study did not find significant learning effects related to control 18 
transition behavior over the duration of the experiment. 19 

To date, few microscopic traffic flow models have accounted for the possibility of control 20 

transitions between ACC and manual driving. Van Arem et al. (11) developed a microscopic traffic 21 

simulation model (MIXIC) in which drivers activated and deactivated the ACC. DIDC are initiated when 22 

the situation requires hard braking, when the vehicle approaches a considerably slower leader and when 23 

changing lanes. DIAC are initiated when the current acceleration is in the range -0.5 to 0.5 m/s
2
,
 
and when 24 

the current distance headway allows to synchronize the speed with a deceleration equal to -1 m/s
2
. Based on 25 

this model and empirical findings by (9; 15; 16), Klunder et al. (12) proposed a microscopic traffic 26 

simulation model (ITS Modeler) in which DIDC are initiated when the absolute value of the difference 27 

between the desired acceleration and the ACC acceleration is larger than 3.5 m/s
2
, and the relative speed 28 

between the leader on the left lane and the subject vehicle is larger than 3.0 m/s. AIDC transitions occur 29 

when the desired speed or acceleration are outside the range supported by the system (30 to 160 km/h, and 30 

-3 to +3 m/s
2
). Drivers are assumed to activate the system (DIAC) after it has been inactive for at least 5 s 31 

and when both the speed and the acceleration are within the ranges of 36 to 160 km/h, and 0 to 3 m/s
2
. The 32 

main limitation of these models is that the decisions rules are deterministic: heterogeneity between and 33 

within drivers in the decision-making process is ignored.  34 

Xiong and Boyle (14) estimated a logistic regression model to predict the probability that drivers 35 

would brake to initiate a DIDC transition as they closed in on a leader. They included variables that describe 36 

the situation and characteristics of the driver in their model. They found that drivers are more likely to 37 

intervene in non-highways environments, at lower speeds, and with short gap settings. In addition, 38 

middle-aged drivers are more likely to resume manual control than young drivers. However, this model 39 

only handles transitions in a narrowly defined set of situations.  40 

In summary, to date, limited efforts have been made to study and model control transitions in a 41 

way that would be suitable for implementation in microscopic traffic simulation models. In this paper, we 42 

present a mixed logit model predicting the probability of DIDC transitions, both deactivation (by braking or 43 

using the on-off button) and overruling (by pressing the gas pedal) of ACC system.  44 

  45 
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DATA COLLECTION 1 
A controlled on-road experiment was conducted using a BMW 5 Series research vehicle equipped with a 2 

standard version of full-range ACC. The experiment took place on the section of the A99 freeway in 3 

Munich shown in Figure 1(a, b). The experiment consisted of a single 46-km long drive using different 4 

freeway facilities (basic sections, on- and off-ramps) in varying traffic densities. In light traffic conditions, 5 

speed limits were not enforced in most of the mainline. In medium-dense traffic conditions, a variable speed 6 

limit system recommended a certain speed (120, 100, 80, 60, or 40 km/h) based on real traffic information. 7 

The freeway sections were mostly separated 6-lanes. The test route was preset in the navigation system. 8 

Participants were instructed to try the ACC system and select their preferred gap setting in the first freeway 9 

segment. In the rest 35.5 km of the route, they were asked to drive as they would do in real life, regulating the 10 

desired speed setting at any time and using the ACC system as they thought it was appropriate. 11 

(a) (b) 12 

FIGURE 1 Map (19) (a) and picture (b) of the test route on the A99 in Munich. 13 

ACC system specifications 14 
The ACC system used in the experiment controls the speed in the range between 0 and 210 km/h, and the 15 

time headway at speeds above 30 km/h. Drivers can select one of the following desired time headways: 1.0, 16 

1.4, 1.8, and 2.2 s. The ACC supports an acceleration range between –3 m/s
2
 and +3 m/s

2
, and the response 17 

sensitivity cannot be customized in terms of acceleration characteristics. When the radar (120 m range) 18 

does not detect any leader, the system maintains the desired speed as a conventional cruise control system. 19 

Figure 2 shows the three states the system can be in (Inactive, Active, Active and accelerate) and the 20 

transitions between them.  21 

 22 

FIGURE 2 ACC system specifications. White boxes represent system states in which drivers are in 23 

control and light blue boxes states in which ACC is in control. Solid arrows denote driver initiated 24 

control transitions between ACC system states and dashed arrows state transitions. Light blue solid 25 

arrows define driver initiated automation in control transitions (DIAC), blue solid arrows driver 26 

initiated driver in control transitions (DIDC). 27 
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When the system is Inactive, it can be activated by pressing the on/off button, the desired speed setting 1 

switch, or the resume button. When the system is Active, it can be deactivated by pressing the on/off button 2 

or by braking (to Inactive), and temporary overruled by pressing the gas pedal (to Active and accelerate). 3 

When the gas pedal is released, the system transfers back to Active. 4 

Participants and data collection  5 
Twenty-three participants (15 males, 8 females) were recruited among BMW employees who were not 6 
involved in the development of the system. Their age ranged between 25 and 51 years old (M = 31.57, SD = 7 
6.73), and their driving experience between 3 and 33 years (M = 13.04, SD = 7.16). Six participants had no 8 
experience with ACC, nine were used to drive with ACC less than once a month and eight more often than 9 
once a month. Participants received written instructions on the general scope of the research, the ACC 10 
system specifications, and the potential safety risks. Notably, the precise aim of the experiment (i.e., 11 
investigating driving behavior in control transitions) was not disclosed and a written informed consent was 12 
signed.  13 

The experiment was conducted during morning and evening peak hours (7-9 am, 4-6 pm, 6-8 pm) 14 
from June, 29

th
 to July, 9

th
 2015. Participants were assigned to one of the above-mentioned time slots and 15 

drove between 45 and 90 minutes depending on the traffic conditions. The instrumented vehicle recorded 16 
the ACC system settings and state, GPS position, speed, acceleration, leader distance headway (from radar), 17 
and leader speed and acceleration (from radar). The data were synchronized and recorded at a frequency of 18 
50 Hz (e.g., speed and acceleration of the subject vehicle), 15 Hz (e.g., distance headway), and 1 Hz (GPS 19 
position). 20 

DATA ANALYSIS 21 
The data collected on the 35.5 km of the experiment for the 23 drivers were analyzed to understand the 22 

conditions in which control transitions occurred most often. This paper focuses on control transitions in 23 

cases that did not involve lane changes (within a time window of 10 seconds before and 10 seconds after the 24 

transition). The data were reduced to 1 Hz resolution, resulting in 31,165 observations.  25 
Overall, the ACC system was Active in 83.8% of the observations, Active and accelerate in 3.4%, 26 

and Inactive in 12.8%. A leader was detected by the radar (120 m range) in 89.6% of the observations. In this 27 
paper, we analyze 23,568 1-s observations in which the ACC system is Active and a leader is detected. 28 
Among these, the number of observations for each driver ranges from 334 to 1936 (M=1025, SD = 467). 55 29 
observations (0.23%) were immediately followed by a DIDC authority transition to Inactive (deactivations), 30 
106 (0.45%) by a DIDC transition to Active and accelerate (overruling), and 23,407 (99.3%) by no 31 
transitions. Transitions initiated by the system are not analyzed. Drivers transferred to Inactive from 0 to 7 32 
times (M=2.39, SD=1.83), and to Active and accelerate from 0 to 30 times (M=7.00, SD=5.88). 33 

In Figure 3, to explore the circumstances in which the control transitions were initiated, we compare 34 
the empirical cumulative distribution functions of the driver behavior characteristics when no transitions 35 
occurred, when the system was deactivated and when it was overruled. Table 1 presents the mean and the 36 
standard deviations of these variables and results of two-sample Kolmogorov-Smirnov tests on the similarity 37 
of the distributions among the three groups. Figure 3(a) shows that most transitions were initiated few 38 
seconds after the ACC had been activated. Notably, 48.1% of the transitions to Active and accelerate 39 
occurred up to 7 seconds after the activation. The distributions of time after last activation differed 40 
significantly between the three groups. Figure 3(b) indicates that most transitions were initiated at speeds 41 
between 80 and 130 km/h and, within this interval, transitions to Active and accelerate were more frequent at 42 
higher speeds. The distributions of speed differed significantly between the three groups. Figure 3(c) shows 43 
that 76.1% of the transitions to Active and accelerate occurred when the vehicle decelerated. Figure 3(d) 44 
illustrates that 86.3% of the deactivations occurred when the actual time headway was larger than that one set 45 
in the ACC. Figure 3(e) shows that 7.3% of the deactivations and 11.3% of the overruling actions occurred 46 
when the speed was higher than the target speed set in the ACC. Figure 3(f) suggests that, on average, 47 
deactivations were associated with larger distance headways. Figure 3(g) shows that 80.0% of the 48 
deactivations and 65.1 % of the overruling actions occurred when the speed of the subject was higher than 49 
the speed of the leader. The distributions of relative speed differed significantly between transitions to 50 
Inactive and the other two groups. Figure 3(h) indicates that 72.7% of the deactivations happened when the 51 
subject vehicle accelerated more than the leader. The distributions of relative acceleration differed 52 
significantly between the three groups. In addition, cut-in maneuvers were detected comparing the distance 53 
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headway from radar to the distance headway calculated using the speed and the acceleration of the subject 1 
vehicle and the leader in the previous observation. When this difference was larger than 7 m, we assumed 2 
that the distance headway reduction was caused by a new vehicle cutting in. We conclude that the driver 3 
behavior characteristics of the subject vehicle and the leader may influence significantly the choice to 4 
resume manual control. 5 

Freeway sections of increased lane changing, merging and weaving were associated with more 6 
frequent control transitions (Table 1). Deactivations occurred more often when drivers were on the freeway 7 
mainline close to an on-ramp and in the segment between the first exit sing and the exit (1600 m). Drivers 8 
overruled the system more often in proximity to on-ramps and between ramps placed at a distance shorter 9 
than 600 m, which might cause disturbances to traffic flow (20).  10 

Significant differences in transferring control were also associated with drivers with different 11 
characteristics (Table 1). Females and drivers with 13 to 33 years of driving experience (31 to 50 years old) 12 
overruled the system less often. Drivers inexperienced with ADAS transferred control less often and drivers 13 
medium experienced with ADAS resumed control more often. 14 

15 
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 1 

 2 

 3 

FIGURE 3 Empirical cumulative distribution functions of the driver behavior characteristics when 4 

the system is maintained Active (blue), and when transitions to Inactive (red) and to Active and 5 

accelerate (green) are initiated. The variables plotted are listed as follows: (a) time after last 6 

activation, (b) speed, (c) acceleration, (d) target time headway – time headway, (e) target speed – 7 

speed, (f) distance headway, (g) relative speed, and (h) relative acceleration.   8 
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TABLE 1 Statistics on the driver behavior characteristics, road sections, and driver characteristics 1 

when the system is maintained Active (A) and when control transitions are initiated to Inactive (I) 2 

and to Active and accelerate (AAc); (*) p-value>0.05  3 

Driver behavior characteristics 

  Mean and standard deviation 
Two-sample Kolmogorov- 

Smirnov test: p-value 

Variables Description A I AAc A vs. I A vs. AAc I vs. AAc 

Time after last 

activation  

Time after the ACC has been 

activated in s 

152  

(155) 

76.0 

(83.2) 

50.3 

(128) 
4.73·10

-5
 9.04·10

-27
 8.64·10

-5
 

Speed  
Speed of the subject vehicle 

in km/h 

72.8 

(37.9) 

94.8 

(40.9) 

86.5 

(36.9) 
0.00112 4.91·10

-5
 0.0486 

Acceleration 
Acceleration of the subject 

vehicle in m/s
2
 

-0.00254 

(0.390) 

-0.0491 

(0.549) 

-0.272 

(0.462) 
0.432 (*) 2.01·10

-10
 0.00320 

Target time 

headway – 

time headway  

Difference between the target 

time headway set in the ACC 

and the time headway (front 

bumper to rear bumper) in s 

-0.364 

(0.561) 

-0.574 

(0.758) 

-0.160 

(0.780) 
0.192 (*) 1.79·10

-11
 0.000110 

Target speed 

– speed  

Difference between the target 

speed set in the ACC and the 

subject vehicle speed in km/h 

25.6 

(25.0) 

16.2 

(22.2) 

20.2 

(24.9) 
0.239 (*) 0.00655 0.464(*) 

Distance 

headway  

Distance headway (front 

bumper to rear bumper) in m 

36.7 

(22.9) 

49.8 

(27.5) 

39.1 

(23.1) 
0.00935 0.147(*) 0.0335 

Relative speed  

Difference between the leader 

speed and the subject vehicle 

speed in km/h 

-0.810 

(5.72) 

-7.84 

(11.8) 

-1.04 

(6.33) 
2.86·10

-8
 0.0902(*) 0.000230 

Relative 

acceleration  

Difference between the leader 

acceleration and the subject 

vehicle acceleration in m/s
2
 

0.0138 

(0.375) 

-0.250 

(0.645) 

0.228 

(0.479) 
2.84·10

-7
 0.000555 1.13·10

-7
 

Road sections 

  Observations and percentages per group 

Variables Description A I AAc 

On-ramps Freeway mainline close to an on-ramp 3608 (15.4%) 16 (29.1%) 26 (24.5%) 

Off-ramps Freeway mainline close to an off-ramp 274 (1.2%) 3 (5.5%) 1 (0.9%) 

Between ramps  Freeway mainline between ramps closer than 600 m 987 (4.2%) 3 (5.5%) 10 (9.4%) 

Exits 
Freeway mainline between the first exit sing and the 

exit (1600 m) 
1934 (8.3%) 11 (20.0%) 3 (2.8%) 

Total 23407 (100%) 55 (100%) 106 (100%) 

Driver characteristics 

 Observations and percentages per group Chi-square test 

Variables A I AAc df χ p-value 

Gender    2 9.49 0.009 

Males (n=15) 15707 (67.1%) 36 (65.5%) 86 (81.1%)    

Females (n=8) 7700 (32.9%) 19 (34.5%) 20 (18.9%)    

Driving Experience    2 14.4 0.0007 

3-12 years (n=16) 16347 (71.6%) 38 (76.0%) 86 (88.7%)    

13-33 years (n=7) 6493 (28.4%) 12 (24.0%) 11 (11.3%)    

Experience with ADAS    4 14.9 0.005 

Inexperienced (n=6) 6246 (26.7%) 10 (18.2%) 15 (14.2 %)    

Medium experienced (n=9) 7905 (33.8%) 22 (40.0%) 51 (48.1%)    

Experienced (n=8) 9256 (39.5%) 23 (41.8%) 40 (37.7%)    

  4 
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CHOICE MODEL FOR TRANSITIONS TO MANUAL CONTROL 1 
A discrete choice model was developed for the decision to maintain the system Active, to transfer to 2 

Inactive (by pressing the brake pedal or the on-off button) or to Active and accelerate (by pressing the gas 3 

pedal). Since these transitions are intentionally initiated by the drivers, we assumed that only one transition 4 

may occur within a 1-s interval, a value similar to the mean reaction time between the detection of a 5 

stimulus and the application of the response available in literature (21). The choices are modelled for this 6 

time interval and are associated with the driver behavior characteristics registered at the beginning of the 7 

interval. Repeated observations of multiple time intervals (panel data) are available for each driver. To 8 

predict the probabilities of transition choices capturing this panel dimension, we estimated a mixed logit 9 

model introducing a driver-specific error term 𝜗𝑛 assumed to be normally distributed over the sample (21). 10 

This driver-specific error term captures unobserved preferences which affect all choices made by the 11 

individual driver over time (i.e., the alternative specific constants differ between drivers). Below, we 12 

present the final specification, selected based on statistical significance. The utility functions for remaining 13 

Active (A), transition to Inactive (I), and transition to Active and accelerate (AAc) for driver n at time t are 14 

given by equations (1-3):  15 

𝑈𝑛
𝐴(𝑡) =  0 + 𝜀𝑛

𝐴(𝑡)                                                                                                                                                (1) 

𝑈𝑛
𝐼 (𝑡) =  𝛼 𝐼 + 𝛽𝑇𝑖𝑚𝑒𝐴𝑐𝑡

𝐼  ∙ log(𝑇𝑖𝑚𝑒𝐴𝑐𝑡(𝑡)) + 𝛽𝑆𝑝𝑒𝑒𝑑 ∙ 𝑆𝑝𝑒𝑒𝑑(𝑡) 

+ 𝛽𝐿𝑜𝑤𝑇𝑎𝑟𝑆𝑝𝑒𝑒𝑑 ∙ 𝐿𝑜𝑤𝑇𝑎𝑟𝑆𝑝𝑒𝑒𝑑(𝑡) +  𝛽𝑇𝐻𝑊30
𝐼 ∙ 𝑇𝐻𝑊30(𝑡) +  𝛽𝑅𝑒𝑙𝑆𝑝𝑒𝑒𝑑

𝐼 ∙ 𝑅𝑒𝑙𝑆𝑝𝑒𝑒𝑑(𝑡)  

+  𝛽𝑅𝑒𝑙𝐴𝑐𝑐
𝐼 ∙ 𝑅𝑒𝑙𝐴𝑐𝑐(𝑡) +  𝛽𝐴𝑛𝑡𝐶𝑢𝑡𝐼𝑛3

𝐼 ∙ 𝐴𝑛𝑡𝐶𝑢𝑡𝐼𝑛3(𝑡) +  𝛽𝑂𝑛𝑅𝑎𝑚𝑝 ∙ 𝑂𝑛𝑅𝑎𝑚𝑝(𝑡) 

+𝛽𝐸𝑥𝑖𝑡
𝐼 ∙ 𝐸𝑥𝑖𝑡(𝑡) + 𝛾𝑛 ∙ 𝜗𝑛  + 𝜀𝑛

𝐼 (𝑡)                                                                                                       (2) 

𝑈𝑛
𝐴𝐴𝑐(𝑡) =   𝛼 𝐴𝐴𝑐 +  𝛽𝑇𝑖𝑚𝑒𝐴𝑐𝑡

𝐴𝐴𝑐 ∙ log(𝑇𝑖𝑚𝑒𝐴𝑐𝑡(𝑡)) +  𝛽𝑆𝑝𝑒𝑒𝑑 ∙ 𝑆𝑝𝑒𝑒𝑑(𝑡) 

  + 𝛽𝐿𝑜𝑤𝑇𝑎𝑟𝑆𝑝𝑒𝑒𝑑 ∙ 𝐿𝑜𝑤𝑇𝑎𝑟𝑆𝑝𝑒𝑒𝑑(𝑡) +  𝛽𝐴𝑐𝑐−
𝐴𝐴𝑐 ∙ 𝐴𝑐𝑐𝑁𝑒𝑔(𝑡) +  𝛽𝐴𝑐𝑐+

𝐴𝐴𝑐 ∙ 𝐴𝑐𝑐𝑃𝑜𝑠(𝑡) 

+  𝛽𝑅𝑒𝑙𝑆𝑝𝑒𝑒𝑑
𝐴𝐴𝑐 ∙ 𝑅𝑒𝑙𝑆𝑝𝑒𝑒𝑑(𝑡)  +  𝛽𝐶𝑢𝑡𝐼𝑛

𝐴𝐴𝑐 ∙ 𝐶𝑢𝑡𝐼𝑛(𝑡) + 𝛽𝑂𝑛𝑅𝑎𝑚𝑝 ∙ 𝑂𝑛𝑅𝑎𝑚𝑝(𝑡)  

+𝛽𝐹𝑒𝑚𝑎𝑙𝑒
𝐴𝐴𝑐 ∙ 𝐹𝑒𝑚𝑎𝑙𝑒𝑛 + 𝛽𝐸𝑥𝑝𝐷𝑟𝑖𝑣

𝐴𝐴𝑐 ∙ 𝐸𝑥𝑝𝐷𝑟𝑖𝑣𝑖𝑛𝑔𝑛 + 𝛾𝑛 ∙ 𝜗𝑛 +   𝜀𝑛
𝐴𝐴𝑐(𝑡)                                      (3) 

where 𝛼 𝐼 and 𝛼 𝐴𝐴𝑐 are alternative specific constants, 𝛽 𝐼 and 𝛽 𝐴𝐴𝑐 are vectors of parameters associated 16 

with the explanatory variables listed in Table 2, 𝛾𝑛 is the parameter associated with the individual specific 17 

error term 𝜗𝑛~𝑁(0,1), and 𝜀𝑛
𝐴(𝑡),  𝜀𝑛

𝐼 (𝑡) and 𝜀𝑛
𝐴𝐴𝑐(𝑡) are i.i.d. Gumbel – distributed error terms. 18 

The model was estimated using the ‘mlogit’ package (22) in R. The log likelihood values, the 19 

goodness of fit indicators and the estimation results are presented in Table 2. Most parameters associated 20 

with the explanatory variables in the utility functions are statistically significant at the 95% confidence 21 

level. The variables associated with transition-specific parameters had a significantly different impact on 22 

transitions to Inactive and to Active and accelerate. Both alternative specific constants are negative and 23 

large in magnitude, indicating that drivers are more likely to keep the system active than to transfer to 24 

manual control. Everything else being equal, drivers are more likely to overrule than to deactivate the 25 

system. The probability that drivers would resume manual control is highest in the first few seconds after 26 

the system has been activated. The logarithmic transformation is consistent with the empirical distribution 27 

function of time presented in Figure 3(a) and resulted in a significant better fit than a linear specification. 28 

This effect is stronger for overruling than for deactivating the system. Analyzing the driver behavior 29 

characteristics of the subject vehicle, we note that drivers are more likely to resume manual control at 30 

higher speeds. In addition, they are more likely to intervene when their speed is higher than the target speed 31 

set in the ACC and this probability increases for larger differences. Speeds lower than the target speed had 32 
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non-significant effects on transitions. Drivers are more likely to overrule the system when the ACC 1 

acceleration is low. The time headway and the target time headway set in the ACC did not influence 2 

significantly the choice to overrule the system. Drivers are more likely to deactivate when the time headway 3 

is short for speeds higher than 30 km/h. The time headway at speeds lower than 30 km/h, the target time 4 

headway set in the ACC and the ACC acceleration did not have a significant effect on deactivations. 5 

Interestingly, the driver behavior characteristics of the leader have a different effect on overruling and 6 

deactivating. Drivers are more likely to deactivate when they are faster (negative relative speed) and 7 

accelerate more (negative relative acceleration) than the leader and to overrule when they are slower 8 

(positive relative speed). Relative accelerations had a non-significant effect on choices to overrule. Drivers 9 

are more likely to deactivate the system when they expect that a vehicle will cut in during the next 3 s 10 

(proactive behavior) and to overrule after a vehicle has cut in (reactive behavior). We selected this 11 

specification based on statistical significance, assuming that drivers are able to anticipate traffic conditions 12 

up to 3 s downstream (without any error in their predictions) and can be influenced by events occurred in 13 

the previous 10 s.  14 

Road locations influenced significantly the choices to transfer control. Drivers are more likely to 15 

deactivate the system close to on-ramps, between two ramps (closer than 600 m), and before exiting the 16 

freeway. The latter is consistent with previous findings (18). Drivers are more likely to overrule close to 17 

on-ramps and between two ramps. Proximity to exits did not influence significantly the decision to overrule 18 

the system. Proximity to off-ramps had a non-significant effect on transitions.  19 

Notably, driver characteristics have a significant effect on transition choices. Female drivers and 20 

experienced drivers are less likely to overrule the system. However, these driver characteristics did not 21 

influence significantly deactivations. In addition, experience with ADAS did not impact significantly the 22 

transition choices. We assumed that the driver specific error terms for overruling and deactivating the ACC 23 

are equal because these terms were strongly correlated (r = 0.905), suggesting that drivers who deactivate 24 

more frequently also overrule more frequently. The effects of these terms on the transitions were 25 

non-significantly different, meaning that the variability between drivers in deactivating and overruling is 26 

similar (i.e., the alternative specific constants have equal variance). 27 

To illustrate the impact of changes in the explanatory variables on the choice probabilities, we 28 

calculated the choice probability ratio between a baseline observation and observations in which only one 29 

variable was changed while keeping all the other variables fixed. In the baseline observation (choice 30 

probability ratio equal to 1), the driver was assumed to be a male with 13 years of driving experience. The 31 

actual speed was assumed to be equal to 89.3 km/h and lower than the target speed, the acceleration -0.195 32 

m/s
2
, the time headway 1.79 s, the relative speed -3.37 km/h, and the relative acceleration 0.0648 m/s

2
. In 33 

addition, we assumed that the ACC system had been activated for 59 s and the observation was not 34 

influenced by ramps, exits or cut-in maneuvers. These values were chosen based on the average conditions 35 

of the observed control transitions. The results are shown in Figure 4 (ratio variables) and Table 3 (ordinal 36 

and nominal variables). All results are consistent with previous discussions. Comparing the plots in Figure 37 

4, we observe that the time after activation, the acceleration (negative), the difference between target speed 38 

and actual speed (negative) and the driver specific error term (positive) have a stronger impact on the 39 

decision of overruling the system. The difference between target speed and actual speed (negative), the 40 

relative speed (negative), the relative acceleration (negative) and the driver specific error term (positive) are 41 

the variables which influence most the decision of deactivating the system. In Table 3, we note that the 42 

probability of deactivations is strongly influenced by the number of vehicles which are expected to cut in in 43 

the next three seconds. 44 

  45 
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TABLE 2 Statistics and estimation results of the mixed logit model; (*) 0.05 <p-value <0.10 1 

Statistics  

Number of parameters K associated with explanatory variables 17 

Number of alternative specific constants 2 

Number of drivers  23 

Number of observations 23,568 

Constant log likelihood ℒ(𝑐) -1067 

Final log likelihood ℒ(𝛽̂) -816 

Adjusted likelihood ratio index (rho-bar-squared) 𝜌̅2 = 1 − 
(ℒ(𝛽̂)− Κ)

ℒ(𝑐)
 0.219  

Variable Description Parameters Estimate T-test  

- Alternative specific constant 𝛼 𝐼 -6.52 -11.5  

- Alternative specific constant 𝛼 𝐴𝐴𝑐  -3.01 -7.29  

TimeAct  Time after the ACC has been activated in s 𝛽𝑇𝑖𝑚𝑒𝐴𝑐𝑡
𝐼  -0.197 -1.79 * 

TimeAct  Time after the ACC has been activated in s 𝛽𝑇𝑖𝑚𝑒𝐴𝑐𝑡
𝐴𝐴𝑐  -0.742 -11.7  

Speed Speed of the subject vehicle in km/h 𝛽𝑆𝑝𝑒𝑒𝑑  0.00710 2.83  

LowTarSpeed 
Difference between the target speed set in the ACC 

and the speed of the subject vehicle when the former 

is relatively lower in km/h 

𝛽𝑇𝑎𝑟𝑆𝑝𝑒𝑒𝑑− -0.0272 -2.00  

AccNeg 
Acceleration of the subject vehicle in m/s

2
 when this 

value is negative 
𝛽𝐴𝑐𝑐−

𝐴𝐴𝑐  -1.52 -5.62  

AccPos 
Acceleration of the subject vehicle in m/s

2
 when this 

value is positive 
𝛽𝐴𝑐𝑐+

𝐴𝐴𝑐  -3.79 -3.33  

THW30 
Time headway (front bumper to rear bumper) in s 

when the speed is higher than 30 km/h 
𝛽𝑇𝐻𝑊30

𝐼  -0.375 -2.06  

RelSpeed 
Relative speed (i.e., leader speed – subject vehicle 

speed) in km/h 
𝛽𝑅𝑒𝑙𝑆𝑝𝑒𝑒𝑑

𝐼  -0.109 -7.19  

RelSpeed 
Relative speed (i.e., leader speed – subject vehicle 

speed) in km/h 
𝛽𝑅𝑒𝑙𝑆𝑝𝑒𝑒𝑑

𝐴𝐴𝑐  0.0560 3.26  

RelAcc 
Relative acceleration (i.e., leader acceleration – 

subject vehicle acceleration) in m/s
2
 

𝛽𝑅𝑒𝑙𝐴𝑐𝑐
𝐼  -1.31 -5.33  

AntCutIn3 
Number of vehicles that will cut in in the following 

three seconds 
𝛽𝐴𝑛𝑡𝐶𝑢𝑡𝐼𝑛3

𝐼  1.77 6.60  

CutIn 
Dummy variable equal to 1 when a vehicle cuts in in 

front of the subject  
𝛽𝐶𝑢𝑡𝐼𝑛

𝐴𝐴𝑐  1.05 1.94 * 

OnRamp 
Dummy variable equal to 1 when the drivers are in the 

mainline close to an on-ramp, or between two ramps 

closer than 600 m (20) 

𝛽𝑂𝑛𝑅𝑎𝑚𝑝 0.573 3.00  

Exit 
Dummy variable equal to 1 when the distance to the 

closest exit is shorter than 1600 m (first exit sing) 
𝛽𝐸𝑥𝑖𝑡

𝐼  1.90 4.84  

Female Dummy variable denoting female drivers 𝛽𝐹𝑒𝑚𝑎𝑙𝑒
𝐴𝐴𝑐  -1.03 -3.61  

ExpDriving Years of driving experience 𝛽𝐸𝑥𝑝𝐷𝑟𝑖𝑣
𝐴𝐴𝑐  -0.0460 -2.84  

𝜗𝑛 Individual specific error term 𝛾𝑛  0.869 6.68  

  2 
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FIGURE 4 Effect of the explanatory variables and driver specific error term on choice probability 4 

ratio (probability predicted divided by probability baseline observation) of keeping ACC active 5 

(blue), transferring to Inactive (red), transferring to Active and accelerate (green). The variables 6 

plotted are listed as follows: (a) time after last activation, (b) speed, (c) acceleration, (d) target speed – 7 

speed, (e) time headway, (f) distance headway, (g) relative speed, (h) relative acceleration, and (i) 8 

driver specific error term 𝜸𝒏 .  9 
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TABLE 3 Effect of the explanatory variables (ordinal and nominal) on choice probability ratio 1 

(probability predicted divided by probability baseline observation) of keeping ACC active (A), 2 

transferring to Inactive (I), and transferring to Active and accelerate (AAc).  3 

 4 
Variables A I AAc 

CutIn 0.9969 0.9969 2.840 

AntCutIn3 = 1 0.9976 5.873 0.9976 

AntCutIn3 = 2 0.9834 34.08 0.9834 

AntCutIn3 = 3 0.9075 185.1 0.9075 

OnRamp 0.9983 1.771 1.771 

Exit 0.9971 6.674 0.9971 

Female 1.001 1.001 0.3588 

 5 

DISCUSSION AND CONCLUSIONS 6 
The aim of this paper was to identify the factors that influence drivers’ decision to initiate a control 7 

transition between ACC and manual driving, which may have a significant impact on traffic flow efficiency 8 

(7) and safety. To gain empirical insight into the decision-making process, we estimated a mixed logit model 9 

with panel data collected in an on-road study. In this model, we found that drivers are more likely to 10 

deactivate the system when approaching a slower leader, when driving above the ACC target speed, when 11 

expecting vehicles cutting in the following 3 s, and before exiting the freeway. Drivers are more likely to 12 

overrule the ACC by pressing the gas pedal a few seconds after the system has been activated, when the 13 

vehicle decelerates, and when driving above the ACC target speed. 14 

We conclude that drivers deactivate the system when the speed and acceleration of the leader are 15 

lower than their (unobservable) desired speed and acceleration. This condition happens when the leader is 16 

slower than the subject vehicle and the ACC system automatically decreases the speed to synchronize 17 

(similar to findings in (14; 18)). The desired speed and acceleration might be influenced by environmental 18 

conditions which cause disturbances to traffic flow such as proximity to ramps and exits. In addition, 19 

drivers deactivate to anticipate cut-ins in the following few seconds, questioning whether the system will be 20 

able to handle a potential safety-critical situation. Drivers press the gas pedal when the ACC acceleration is 21 

lower than their desired acceleration, which is influenced by the functioning of the system (e.g., how long 22 

the system has been active) and by environmental conditions (e.g., proximity to ramps). In general, drivers 23 

transfer to manual control more often when driving above the ACC target speed (which has been reached by 24 

pressing the gas pedal in the previous observations), meaning that the target speed does not correspond to 25 

the desired speed anymore. Notably, some drivers (positive driver specific error term) are more likely to 26 

deactivate and to overrule the system than others. Further research is needed to determine the origin of this 27 

effect, which may be linked to personality traits and driving styles. 28 

The generalizability of the results presented is subject to certain limitations. For instance, the 29 

participants were not a sample representative of the driver population in terms of age, gender, employment 30 

status and experience with ADAS. Being limited to 23 participants who drove the test route only once, this 31 

study gained little insight into the factors explaining heterogeneity between drivers. Moreover, the results 32 

presented are related to the characteristics of the ACC system tested and cannot be generalized to other 33 

technologies. Finally, the effect of the average traffic conditions (mean speed and flow from point-based 34 

loop detectors) and of the variable speed limits were not accounted for in the choice model, assuming that 35 

data at the individual vehicle level (driver behavior characteristics of the subject vehicle and of the direct 36 

leader) are more informative predictors of the decision-making process.  37 

The key implication of this study is that, to assess the effects of ACC on traffic flow including 38 

control transitions, we need a conceptual framework that links ACC system settings, driver behavior 39 

characteristics, driver characteristics and environmental factors. Future research will focus on the 40 

mathematical formulation of this novel framework and on the model calibration using the dataset available. 41 

The final model can be implemented into a microscopic simulation to assess the effects on control transitions 42 

on traffic flow. 43 
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