
Forensic
Statistics
Multivariate trace comparison
J.L.F Göbbels

Te
ch

ni
sc

he
Un

ive
rs
ite

it
De

lft





Forensic Statistics
Multivariate trace comparison

by

J.L.F Göbbels
To obtain the degree of Bachelor of Science

at Delft University of Technology,
To be defended publicly on 18 July, 2019 at 14:00.

Student ID: 4596498
Project duration: April, 2019 – July, 2019
Thesis committee: Dr. J. Söhl, TU Delft, supervisor

Dr. W. M. Ruszel, TU Delft
Drs. E. M. van Elderen, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/




Abstract
In today’s complex, modern world, where more data and knowledge is available then ever be-
fore, consensus over approaches in statistics is far away. To understand what this means for
forensic statistics, both the frequentist and Bayesian approach are considered in quantifying
evidence. Classical frequentist approaches are elaborated according to an example of knife
data, where both univariate and multivariate approaches are applied. As an alternative to
the previous methods, the likelihood ratio is introduced. To arrive at a unified framework
for calculating likelihood ratios, the European Union funded a project to calculate likelihood
ratios using a software package with a user friendly interface called SAILR. Calculating the
likelihood ratio is mostly done by using feature based models. A feature based model used by
SAILR will be elaborated according to a glass comparison example. When the feature based
model is illustrated, an extension on the model will be given using a non-parametric func-
tion. The discussed models will be elaborated and applied on test data from and international
drugs comparison project using SAILR. As an alternative to feature based models, a score
based model is introduced and compared to the previous drugs comparison results of the
feature based model.
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1
Introduction

Only in 2017, the governmental crime lab for the state of Georgia in America confirmed 145
false positives for drugs comparison results in their state. One of these innocent suspects
was a 19-year old Villa Rica teenager. After a $2 disposable drugs kit used by the police at
that time mistook cleaning supplies in his car for XTC, it took over 18 months for a felony
drug arrest to be dropped against him. Unfortunately, the damage at that point has already
been done [33].

The comparison of forensic evidence can become mathematically very complex for forensic
statisticians, who have a long history in applying complex statistical models to forensic ev-
idence. Therefore it comes to no surprise that for court officials, who often have little to
no mathematical background, interpreting the forensic findings can be hard or even mis-
leading. Incorrect interpretation of statistical conclusions can even lead to legal aberration
as in the case of the Villa Rica teenager, where court officials had little knowledge of the
significance from the used drugs kit. In overcoming the misinterpretations, first consensus
among forensic statisticians needs to be found. To harmonize the statistical models and soft-
ware available, the European Union funded a project aimed at constructing a user friendly
software package to calculate likelihood ratios. This unified framework is called SAILR, Soft-
ware for Analysis and Implementation of Likelihood Ratios. To overcome misinterpretation
in court, SAILR is provided with an option to convert the likelihood ratio to a verbal equiv-
alent. Equipped with the SAILR software, different methods for calculating the likelihood
ratio can be applied to drugs data made available by courtesy of The Netherlands Forensic
Institute (NFI). By providing data under test for a known case, the relative value of the differ-
ent methods can be compared. Using this test data, we can validate the different methods
available.

Thesis outline
This research starts with formally outlining the hypotheses of the defense and the prose-
cution. In Chapter 2, both the common source and specific source problem are outlined.
Chapter 3 evaluates the two commonly used schools of thoughts in forensic statistics: The
frequentist point of view and the Bayesian approach. In Chapter 3, different frequentist ap-
proaches will be applied on an example of knife data. The properties of the available methods
will be discussed and objections against these methods will be outlined. Whereas commonly
only univariate data is considered, in this we will use multivariate data on eight different
features. After these approaches and their properties are discussed, an introduction to like-
lihood ratios will be given using Bayes theorem. This ratio is then converted to a verbal
likelihood ratio.
The likelihood ratio remains the basis for the final Chapters 6, 7 and 8. In Chapter 6, a
basis for the feature based two-level model is made on the example of glass data. In forensic
statistics, these two levels are known as the within source variation and the between source
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2 1. Introduction

variation. In Chapter 6, we assume a normal distribution for both levels. In Chapter 7, drugs
tablet data from the NFI is applied. In this section, the two-level normal-normal model will
be compared to the two-level normal-KDE model, where a kernel density estimate for the
between source variation is applied instead of a normal density function. The results of both
methods will be compared using data from a collaborative European project for evaluating
amphetamines. Finally, in Chapter 8 an introduction to a relative new approach of calculat-
ing likelihood ratios is considered, using score based likelihood ratios.
While both feature based and score based models are elaborated frequently in forensic jour-
nals, they are almost never compared to each other. Therefore the same drugs data will be
applied on both the score based and feature based models to compare both methods with
each other by means of drugs comparison results.

In most forensic statistics report, only one method of evaluating evidence is elaborated ex-
tensively. This can be either one of the two feature based model or a specific score based
model. This thesis however tries to capture both of the feature based models. In addition a
frequency model, where only discrete data is available, is elaborated. Furthermore different
score and distribution functions are elaborated using a score based model. Finally this thesis
evaluates simple frequentist methods.
Because we will omit most of the mathematical derivations, this thesis can be seen as a large
summary of all available methods in forensic statistics up to now, which can be used for in-
stance by judges with undergraduate statistics knowledge who want to now more about the
available methods in forensic statistics. To make all these methods more illustrative to the
reader, real forensic data is applied to all methods. This provides the opportunity to compare
the different models, which is done in Chapter 7 and 8.



2
Forensic comparison problem

After evidence is found at a crime scene, this evidence needs to be analyzed by a large variety
of experts to reach a final verdict. Forensic evidence in general can be hard to interpret
for court officials, luckily they are never directly asked to do so and therefore we can split
experts into two different groups [27]: forensic experts, such as forensic statisticians and
legal expert, such as judges, jurors and other court officials. Legal experts should evaluate
all available evidence after it is quantified and combine this to reach a final verdict, whereas
forensic experts are needed to actually quantify the evidence. In this section, the beginning
of the forensic process is set up by quantifying the evidence found at the crime scene, where
we formulate the hypotheses the forensic expert wants to evaluate.

2.1. Source problems
A forensic statistician takes part in the juristic process by taking into consideration two
competing hypotheses, these two hypotheses are stated by:

• Hp : Hypothesis of the prosecution.

• Hd : Hypothesis of the defense.

In general, the hypothesis the prosecutor will claim to be correct will be something along
the lines of "guilty" whereas the hypothesis of the defense will claim "innocent". In forensic
statistics almost all problems can be split into two major comparison problems: the common
source problem and the specific source problem.

2.1.1. Common source problem
Assume two fingerprints are found at a crime scene and we are interested in the question
whether these two fingerprints originate from the same, unknown source. Answering this
question could give answer to the question whether there are multiple suspects involved in
a crime scene. The two unknown fingerprints are called eu1 and eu2 , these two sources of
evidence can be linked to the following two competing hypotheses:

• Hp : The two sources eu1 and eu2 originate from the same unknown source.

• Hd : The two sources eu1 and eu2 originate from different unknown sources.

Because we do not know where the both sources originate from, we call the originating source
unknown, so we are only interested in the question whether the two sources of evidence
originate from the same unknown source.

2.1.2. Specific source problem
Suppose that a fingerprint is found at a crime scene. Furthermore a specific suspect is
arrested and fingerprints of this suspect are taken. We call the fingerprint found at the

3



4 2. Forensic comparison problem

crime scene eu and the fingerprint of the suspect es, the two competing hypotheses are stated
as follow:

• Hp : The unknown source eu originates from the same specific source es.

• Hd : The unknown source eu does not originate from the same specific source es.

In this type of source problems, the unknown source of evidence found at the crime scene
(eu) is referred to as the control source and the specific source taken from the suspect is
referred to as the recovered source (es ). This framework of hypothesis setups can be used
multiple times in case multiple fingerprints are found at the crime scene, but also in case
multiple suspects are accused of committing the crime, therefore the hypotheses can easily
be broadened to a multivariable case. In this research we will only look at common source
problems.



3
Frequentist and Bayesian thinking

Statistics is one of the mathematical disciplines that reaches beyond plain mathematics, it
is both directly and indirectly used in a large variety of scientific disciplines such as physical
science, biological science, health science and of course forensic science. Given that statis-
tics is used in so many different areas of mathematics, it does not come to much surprise
that there are many different opinions on how statistics should be done. In forensic science,
uniform definitions and guidelines are more than ever needed to come to legitimate conclu-
sion which can rely on approval from the rest of the forensic statistics community.

In this section, we will take a closer look at the two most applied schools of thought, namely
Bayesian and frequentist methods, where a definition of how they define probability will be
sketched. The outline will turn out to be of importance for the rest of this thesis outline,
where a closer look will be taken at applications for both schools of thought.

3.1. Probability
The definition of probability is defined as [12]:

"a quantity between 0 and 1 that represents the chance of an event occurring.
Probability may sometimes be expressed as percentages, or as odds, without loss
of information. A probability may also be used to express the belief that an event
will occur. Such probabilities are often referred to as ’subjective’."

This definition gives insight to both the Bayesian and the frequentist approach of probability,
whereas the definition "degree of belief" only applies on the Bayesian approach. The Bayesian
method can therefore be considered subjective whereas the frequentist method can be seen
as objective.

3.1.1. Frequentists
From a frequentist point of view towards probability, predictions should be made on the
underlying truth of the experiments, only based on the data of the current event. As L.
Pekelis wrote [3], frequentist arguments resemble the type of logic lawyers use in court. Tests
where the differences in mean for the control variable and recovered variable are compared
are typical examples of frequentist approaches. Take for example t-tests [3]. Because no
prior experiment is taken into account, there cannot be any discussion over these prior data,
therefore frequentist methods are commonly referred to as being more objective.

3.1.2. Bayesian
From a Bayesian point of view however, past knowledge of similar experiments is taken into
account. The past knowledge, know as a prior, can be combined with the current experiment
to draw a conclusion, known as the posterior. A typical Bayesian approach commonly follows
the following guidelines [3];

5



6 3. Frequentist and Bayesian thinking

1. Define the prior distribution that incorporates your subjective beliefs about a parameter.

2. Gather data

3. Update your prior distribution to obtain a posterior distribution. This posterior distri-
bution represents an updated belief about the parameters after having seen the data.

4. Analyze the posterior distribution and draw conclusions from it.

Looking back at the definition of probability, the Bayesian approach of probability can be
seen as a degree of belief that an even will occur, or more common in forensic statistics, the
degree of belief that an event has occurred under certain circumstances. Because we take a
prior into account, there can be discussion over this prior between different forensic experts,
which makes the Bayesian approach subjected to discussion. the Bayesian decision frame is
however still one of the most used methods in forensic statistics.

3.1.3. Parameter distinction
The best way to distinguish both methods is by looking at how both methods define the rel-
evant parameters of a random variable [31]. The Bayesian approach treats parameters as
being random variables whereas from a frequentist point of view, the parameters are not
seen as random but as fixed variables, whose value is unknown. Because in the Bayesian
approach, the parameters are treated as random variables, distributions can be assigned to
them, where they can be updated by using the prior distributions. Therefore in the Bayesian
view, a probability is assigned to a hypothesis. However from the frequentist point of view
there does not exist any distribution regarding the parameters, therefore the hypothesis is
tested without being assigned to a probability. The frequentist approach can be seen as a
method where you want to know, given all possible sets of data that you could possibly ob-
serve, which parameter setting best represents the actual outcomes [3]. Because, as stated
before, the parameters are unknown but fixed variables, the data will be the random variable
which we can take expectations over. In the Bayesian approach, the parameters are ran-
dom variables substituted to a distribution. This view of looking at probability is taught at
most undergraduate statistics courses, where for example random variable X is distributed
according to a normal distribution X ∼ N (µ,σ2). The question of interest is, given the data,
what the best parameter setting is, which can be seen as a weighted average based on the
prior values.

3.2. Parameter setting
To make the parameter distinction in 3.1.3 more precise, consider a simple situation of ob-
serving a random variable X , which is constructed as having probability density function
f (x|θ) with θ being the unknown parameter, carrying relevant information of the population
of study. For example in the case of a normal distribution, this becomes the mean and stan-
dard deviation and the density function will be f (x|µ,σ) in this case. To approach inferential
statistics about θ, which is the process of using data analysis to deduce properties of an un-
derlying probability distribution [24], frequentist scientists consider parameter θ as a fixed
but unknown number, where no probability statements can be made over. For a Bayesian
scientist, θ is subject to many people’s uncertainties. Fundamental in the Bayesian methods,
is that all uncertainties must be described by probability distributions, where they provide a
measure of personal degrees of belief in the occurrence of an event.

Frequentist think of probability in terms of a long-run relative frequency in which events
occur under repeated observation, this way of thinking about probability makes it hard to
think of probability as a single event, for example the probability that a certain suspect
committed a crime at a certain time.
In contrast, the Bayesian method represents probability as a degree of belief in the assertion
that the event will happen. Now it is simple to think of probability as a singular event. Bayes
theorem specifies the way to do this.
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Theorem 3.1 (Bayes Theorem). Let A and B be two events where P(A) > 0 and P(B) > 0. Then

P(B |A) = P(A|B)P(B)

P(A)
. (3.1)

The uncertainty about a population parameter θ can be modeled by a probability distribution
π(θ), called the prior distribution, this distribution captures the available data before the ob-
servations. Note that in most circumstances, the interpretation of the population parameter
θ depends on the hypothesis and therefore can be seen as θp and θd .
The parameter θ is treated as random variable in order to describe personal uncertainty about
its true value. In Bayesian analysis, parameters are treated as random, whereas observed
data x are treated as fixed. Inference is based on the posterior distribution π(θ|x). Making
use of Bayes theorem, the distribution on θ conditional on x becomes:

π(θ|x) = f (x|θ)π(θ)

f (x)
, (3.2)

This way, Bayes theorem updates the initial information on the parameters θ by using the
data in the observation x where f (x|θ) is the likelihood function, and f (x) is the marginal
distribution x.
Frequentists on the other side, treat data as random, even after observation. Data is seen
as a repeatable random sample. Among frequentists, the parameter is considered as a fixed
unknown constant to which no probability function can be assigned, since it is not random.





4
Hypothesis testing

Statistical inference can be seen as the process of using a "sample" of data to make a state-
ment about a "population" [11]. The meaning of "sample" and "population" differ per context.
In statistics, a sample is mostly referred to as a measurement taken from a larger population.
In forensic statistics, in contrast to general statistics, the samples are the pieces of evidence
left at the crime scene and therefore we are not free to choose them. In this section, different
frequentist methods will be discussed including range tests, p-values and significant levels.
Their application will be discussed in general statistics and their pro’s and contra’s in foren-
sic statistics will be underlined.

We will make the theory described more precise by considering a data set consisting of mul-
tiple measurements on seven chemical elements of a certain knife. This dataset has been
made available by the department of chemical and physical traces by courtesy of Peter Zoon
of the NFI. The dataset has been adapted for experimental usage but originate from real data.

4.1. Knife data
The data comparison problem can be seen as a common source problem. We will compare
ten different measurements of one knife to one measurement from another knife. Here seven
different features indicated by A−G will be compared;

• eu1 : ten measurements on one knife.

• eu2 : one measurement on one knife.

The first unknown source eu1 will be denoted as the control data, which will be indicated X
from now on. The second unknown source eu2 will be denoted as the recovered data and
indicated Y . Spectrum two to eleven are provided by the NFI, the data can be structured
using tables;

9



10 4. Hypothesis testing

Table 4.1: Measurements on the control data

measurement item measurement A B C D E F G

Spectrum_2 1 1 0.59 0.00 13.77 0.65 84.65 0.34 0.00
Spectrum_3 1 2 0.57 0.00 13.28 0.62 85.17 0.35 0.00
Spectrum_4 1 3 0.59 0.00 14.37 0.68 84.07 0.29 0.00
Spectrum_5 1 4 0.57 0.00 13.37 0.64 85.17 0.26 0.00
Spectrum_6 1 5 0.52 0.00 14.29 0.68 84.26 0.25 0.00
Spectrum_7 1 6 0.55 0.00 13.93 0.64 84.61 0.27 0.00
Spectrum_8 1 7 0.57 0.00 13.90 0.55 84.67 0.30 0.00
Spectrum_9 1 8 0.60 0.00 13.41 0.60 85.06 0.33 0.00
Spectrum_10 1 9 0.58 0.00 13.34 0.73 85.06 0.28 0.00
Spectrum_11 1 10 0.57 0.00 14.03 0.71 84.38 0.31 0.00

Table 4.2: Measurements on the recovered data

measurement item measurement A B C D E F G

Spectrum_100 3 1 0.55 0.00 14.98 0.60 83.44 0.43 0.00

4.2. Range tests
By observing the range of the control measurements, a comparison can be made with the
results of the recovered measurement. This easy type of hypothesis testing is the basic step
in forensic hypothesis testing.

4.2.1. Minimum maximum range tests
Range tests can be seen as a class of tests which compare statistical properties of every
feature in the recovered data to the same statistical properties of the same measurements
in the control data. The range set of an observation is defined as the interval of the lowest
observed value to the highest observed value.
The simplest range test compares the recovered measurement to the control measurements
range. If one of the recovered measurements falls outside the control range, it is assumed
not to be originating from the control source. In case of the knife data, we see that feature
C (14.98) in the recovered data falls above the maximum of the control data range (14.37).
Furthermore, also features E and F fall outside the recovered range (83.44 below minimum
84.07 and 0.43 above maximum 0.35 respectively).
The simple method of range tests unfortunately does not give any insight into the strength
of the evidence and is very susceptible for outlying measurements, therefore it can rather be
seen as a simple warm up for more advanced testing methods, but should nevertheless not
be ignored. The method however is understandable for people with a limited mathematical
background and is easily extended to a multivariate test for multiple features.

4.2.2. Two sigma and three sigma tests
The minimum maximum range test compares the recovered measurement to an interval
based on the minimum and maximum value of the control data. An outlying high or low
value in the control measurements can disturb the interval. To overcome this flaw, an inter-
val can be made based on the standard deviation. We take x to be the mean and σx to be the
standard deviation of the control data. Both (x−2σx , x+2σx ) and (x−3σx , x+3σx ) can be taken
for the confidence interval, which are called the 2σ and 3σ measurement. While 2σ intervals
can detect small shifts from the mean, the false exclusion rate is far too high [12]. This false
exclusion rate is measured in terms of the type I error:

Definition 4.1 (Type I error). A type I error occurs when the null hypothesis (H0) is true, but
is rejected. This is referred to as false exclusion.
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Let p be the number of features tested, the probability of declaring at least one measurement
from the recovered data to be from a different source than the control data while actually
being from the same source is defined as [12]:

P = 1− (1−α)p

Where α is 0.05 or 0.003 depending on whether respectively a 2σ or 3σ significance level is
applied. This is because of the fact that if X is a normally distributed random variable with
mean µ,

P(µ−2σ≤ X ≤µ+2σ) ≈ 0.95,

P(µ−3σ≤ X ≤µ+3σ) ≈ 0.997.

For seven different features, we would obtain seven different confidence intervals. In general
if one of the features of the recovered measurement falls outside the range of measurements
from the control data, we are not able to confirm a statement about the common source of
both measurements. A possible alternative to multivariate confidence intervals are confi-
dence ellipsoids. This method is in practice almost never used [12]. Note that in this ap-
proach, as well as other frequentist methods, the hypothesis with respect to the alternative
hypothesis is not considered. Furthermore, for small evidence sizes, as common in forensic
statistics, the statistical properties can be adversely affected, for instance because of outlying
data points.

4.3. Hypothesis tests
To formally test a hypothesis, better tests than range tests need to be provided. It is of
importance to introduce the power and significance of a test, which can be used for the
validation of a hypothesis test. furthermore we will introduce two well-known quantities in
statistics: p-values and confidence intervals.

4.3.1. P-values
One of the basic concepts in statistics is the notion of p-values [11]. The idea of p-values is
based on first constructing an appropriate test statistic. The test statistic should be a good
summary of what you are interested in and the distribution of the statistic when the null
hypothesis is true should be known. The p-value is defined as:

Definition 4.2. The probability under the assumption of no effect or no difference (null hy-
pothesis), of obtaining a result equal to or more extreme than what was actually observed.

The "p" stands for probability and measures how likely it is that any observed difference
between groups is due to chance. The test statistic X is compared to the observed X0 specified
by the particular case. Put simple we might see a small p-value as a measure of evidence
against the null hypothesis. A large p-value will however never be a measure confirming the
null hypothesis. What can be seen as a measure against the null hypothesis depends on the
situation. If we reject the null hypothesis when the test statistic is significantly larger than
the observed statistic, this is called a right-tailed probability. If we take X0 to be the value of
the test statistic here, we can write the p-value formally as:

P =P(X ≥ X0
∣∣H0 true).

This is an example of a one-tailed probability. When we replace the "≥" sign by a "≤" sign, we
would obtain a left-tailed probability. A third option is by looking at the two-tailed probability,
where no direction in the alternative hypothesis is given. In this case we look for an extreme
value:

P =P(|X | ≥ X0
∣∣H0 true).
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4.3.2. Significance and power of a test
With respect to the previous mentioned type I error, a start can be made with defining what
could be seen as large and small values. The significance of the test will be denoted as α,
representing the probability of making a type I error that the forensic scientist is willing to
accept, which is therefore subjective. In most situations in statistics, p-values less than 0.01
or 0.05 are considered to be small. In forensic statistics, this level is considered too high and
we prefer a level of α≤ 0.01. The level of α= 0.01 can roughly be interpreted as less than a one
in hundred chance of making a type I error. If a p-value is smaller than the significance level
α, the test is said to be significant at the α level.
Decreasing the value of α indicates that we would make fewer false exclusions, however this
is not without repercussion. Lowering the significance level α increases the probability of a
type II error, which is defined as:

Definition 4.3 (Type II error). The probability of accepting the null hypothesis when in fact the
alternative hypothesis is true.

The type II error will be denoted β and is known as the probability of false acceptance or false
inclusion. The quantity 1−β is called the power of the test and the quantity α is called the
significance level of the test. When we would decrease the significance level α, the number of
false positives will drop. Altogether this means decreasing the significance level (α) of a test,
decreases the power of the test (1−β).

4.3.3. One- and two- sample t-test
An example of using p-values can be found in two sample t-tests. T-tests can be used in
testing whether a control sample and a recovered sample originate from the same distribution
with same parameters. Conclusions are drawn by taking into account that if two random
variables originate from the same distribution, they are indistinguishable and may have a
common source. The null hypothesis becomes Hp and the alternative hypothesis becomes
Hd . Differences in the sample means are compared to the differences we would expect to have
by random chance alone. The idea is based on the probability statement about the true, but
unknown differences of the means for the both sources where the samples originate from.
Let nx be the number of measurements on the control variables given by xi , i = 1, ...,nx and let
ny be the number of measurement from the recovered sample given by y j , j = 1, ...,ny . Both the
control sample and the recovered sample are assumed to originate from a normal distribution
with mean µx , µy and standard deviation σx , σy respectively. This is indicated as xi ∼ N (µx ,σx )
and y j ∼ N (µy ,σy ). The two sample t-test formally tests whether the distribution means are
equal given σx =σy =σ. Therefore the null hypothesis becomes:

Hp :µx =µy or Hp :µx −µy = 0. (4.1)

The alternative hypothesis is given by

Hd :µx 6=µy or Hd :µc −µr 6= 0. (4.2)

the test statistic is now given by

T0 = x − y√
( 1

ny
+ 1

nx
)

(nx−1)s2
x+(ny−1)s2

y

nx+ny−2

, (4.3)

with sample means x and y and sample standard deviations sc and sr . The significance of the
test is now found by comparing the test statistic T0 to the distribution considering the null
hypothesis is true. The null hypothesis is given by a t-distribution, which is characterized by
the degrees of freedom. In the case of a two sample t-test, the degrees of freedom are given
by d f = nx +ny −2. The p-value is now given by

P =P(|X | ≥ X0
∣∣H0 true). (4.4)
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This means for a prescribed significance level α, we reject the null hypothesis for feature k if

|xk − yk | > tnx−ny−2(α)

√
sx

nx
+ sy

ny
. (4.5)

In the case of only one measurement on the recovered sample Y , the only measurement on
the control sample becomes the mean and the standard deviation will be zero. If we still want
to do a t-test, as is the case for the knives example, we need to switch to a one sample t-test.
The test statistic becomes

t = x −µ
sxp
nx

, (4.6)

the total degrees of freedom become d f = nx +ny −2 = nx +1−2 = nx −1, note that the degrees
of freedom represent the sample size and therefore in some sense the amount of evidence
available [12]. We remove feature B and G because all values in both the recovered and
control measurements are zero and therefore will return a p-value of zero. The following
p-values are found now:

Table 4.3: P-values for knife data

feature t P-value
A 2.9091 0.01734
C 103.96 3.577e-15
D 5.9526 2.147e-4
E 673.72 2.2e-16
F -23.264 2.384e-9

For feature D for example, we can state that on average we will encounter a result like this
215 times in one million and therefore probably has not occurred by random chance alone.
Before officially rejecting the null hypothesis it must be below the prescribed significance
level α. We can make a bridge to the sigma range tests by interpreting the t-statistic as the
number of standard deviations that we will be off the mean when the null hypothesis is true.

4.3.4. Multivariate t-tests
The t-test is designed as a univariate test statistic and therefore we will find one p-value for
every of the seven features. Different methods are available for taking into account multiple
features, this can be either by still performing multiple tests but using correction, or using
a multivariate test which takes possible correlation into account. We will take a look at both
these methods where we will use Hotellings T 2 test for multivariate testing.

Hotellings two sample T 2 statistic is defined as

T 2 = nx ny

nx +ny
(x−y)T S−1

k (x−y), (4.7)

where Sk is an estimate for the pooled covariance matrix,

Sk =
∑nx

j=1 (xj −x)(xj −x)T +∑ny

j=1 (yj −y)(yj −y)T

nx +ny −2
(4.8)

and

T 2 ∼ F(p,nx+ny−2). (4.9)

We reject the null hypothesis if

T 2 ≥ T 2
(1−α,p,nx+ny−2). (4.10)
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The Hotellings T 2 statistic can also be used for a one sample T 2 statistic, which we will do
to calculate the p-value of the knife data. To calculate the multivariate p-value, we need to
remove features B and G because they make the pooled covariance matrix non-invertible. We
find the following:

Table 4.4: Hotellings T 2 for knife data

features T 2 P-value
ACDEF 57.477 8.132e-4

Statistical hypothesis testing is based on rejecting the null hypothesis if the p-value of the
observed data under the null hypothesis is low. If multiple hypotheses are tested, the chance
of a rare event increases, and therefore, the likelihood of incorrectly rejecting a null hypothesis
(i.e., making a type I error) increases [31]. If we use the convention of a p-value of 0.05, the
case of p comparisons as in the example,

αFW = 1− (1−αpc )p ,

where p is equal to the number of comparisons performed and αpc is equal to the specified
per contrast error rate, which is taken to be 0.05. Without any correction, αFW = 1−(1−αpc )p =
1− (1−0.05)3 = 0.143, which makes the probability of erroneously rejecting the null hypothesis
(type I error) at least once amongst the family of analyses equal to 14.3%. To avoid this
phenomenon, a Bonferroni correction can be used:

Definition 4.4. Let H1, . . . , Hm be a family of hypotheses and p1, . . . , pm their corresponding p-
values. Let m be the total number of null hypotheses and m0 the number of true null hypotheses.
The familywise error rate (FWER) is the probability of rejecting at least one true Hi , that is, of
making at least one type I error. The Bonferroni correction rejects the null hypothesis for each
pi ≤ α

m , thereby controlling the FWER at ≤α .

Assume the within-source variability is constant and the degrees of freedom are equal to
N −m −2, the means xk and yk are significantly different at the 100α/p% level in a two-sided
t-test if

|xk − yk | > t(nx+ny−2)(
α

2p
)sk

√
1

nx
+ 1

ny
. (4.11)

Here sk is the pooled within-group standard deviation within group k. Pooled standard de-
viations need to be taken because the sample can (and in general will) consist of different
numbers of measurements.
Although p-values are commonly used in statistics, they are also largely criticized [31], mostly
over their incorrect interpretation, therefore it is important to emphasize what the p-value is
not [35]:

• The p-value is not the probability that the null hypothesis is true, or the probability
that the alternative hypothesis is false.

• The p-value is not the probability that the observed effects were produced by random
chance alone.

The p-value gives the probability of observing test statistic by random chance alone and
therefore if this probability is very low, either that the null hypothesis is true and a highly
improbable event has occurred or that the null hypothesis is false.

Another point of criticism on p-values is the "fall-of-the-cliff effect" pointed out by Ken Small-
don. The points here is the fact that at a rejection level of 0.05, when a p-value of 0.049 is
obtained, the null hypothesis will be rejected whereas it will not be rejected when observing
a p-value of 0.051. This reasoning is hard to explain to court officials and an alternative is
therefore to provide confidence intervals.
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4.4. Confidence intervals
A confidence interval is equivalent with a significance level for a hypothesis test. A confi-
dence level is mostly stated as a percentage, such as a 95% confidence interval. Statements
considering a confidence interval are stated as: "We are 100(1-α)% confident that the inter-
val contains the true value or parameter of interest". Note that this idea relies on repeated
sampling of an infinite population, which is the core thought of the frequentist approach.
A confidence interval is not a statement of probability and this is also one of the points of
criticism from the Bayesian scientists. Incorrect statements of the confidence interval are for
example:

• "There is a α% chance the true value is in my interval"

• "α% of all data measurements in the population fall within the interval"

for a parameter estimation of θ, denoted θ̂, the confidence interval will look like

θ̂± zαse(θ̂)

Where se(θ̂) is the standard error of the estimate and zα is a multiplier depending on the
chosen interval.
A α% confidence interval for the difference in mean will look like

x − y = t∗d f

(
1− α

2

)
se(x − y),

under the assumption that the samples originate from population with the same variance,
the standard error is defined by

se(x − y) =
√√√√( 1

ny
+ 1

nx

) (nx −1)s2
x + (ny −1)s2

y

nx +ny −2

with the degrees of freedom equal to

d f = nx +ny −2.

For the case when the assumption of same variance is dropped, the standard error becomes

se(x − y) =
√√√√ s2

x

nx
+ s2

y

ny

with

d f =
( sx

nx
+ sy

ny
)2

( (
s2
x

nx
)2

nx−1 + (
s2

y
ny

)2

ny−1

) .

in general for a two sided tail test, if a 100(1-α)% confidence interval contains the hypoth-
esized value of interest, the associated p-value from a hypothesis test will be greater than
α. Although confidence intervals are mostly used as an alternative to p-values because they
should be easier to understand, research under both undergraduates and master students
showed no significant difference in the understanding of the both sources [21]. Therefore a
new method in forensic statistics using Bayes theorem (see def. 3.1) tries to capture both
hypotheses using a likelihood ratio.





5
Likelihood ratios

Evidence found at a crime scene can be summarized using multiple statistical approaches.
A major objection against the frequentist methods in Chapter 3 is that only one hypothesis is
taken into account. To make sure both the hypothesis of the prosecution and the defense are
taken into account, a generally accepted method in forensic statistics is making use of likeli-
hood ratios. By making use of likelihood ratio P(Hp |e,I )

P(Hd |e,I ) , the hypothesis of both the prosecutor
and the defender are considered. Here e is the available evidence and I is the background
material.

In this chapter, first of all Bayes theorem, as stated in Section 3.1 will be applied to this
likelihood ratio in section 5.1 to construct a Bayesian decision framework. The likelihood
ratio will be made suitable for both a Bayesian and a frequentist way of doing calculations,
which will turn out to be of great importance when doing calculations as is detailed in Sections
6 and 7. Finally, the likelihood ratios will be converted to verbal language in the same form
the ENFSI translates the likelihood ratios.

5.1. Applying Bayes theorem
The likelihood ratio to consider is noted as P(Hp |e,I )

P(Hd |e,I ) . From now on we will refer to this as the
posterior odds. This odd is posterior in the sense that the evidence e is already given. Using
Bayes theorem, the posterior odd will be converted to a prior odd. From a frequentist point
of view, no priors should be considered, in this setting only the likelihood ratio is considered.

P(Hp |e, I )

P(Hd |e, I )
= P(e, I |Hp )P(Hp )

P(e, I )

P(e, I )

P(e, I |Hd )P(Hd )
= P(e|Hp , I )

P(e, I |Hd , I )

P(I |Hp )

P(I |Hd )

P(Hp )

P(Hd )
. (5.1)

In general, the background information I is omitted for ease of notation [2]. The likelihood
ratio can now be split into two parts, the value of evidence and the prior probability, the
following equation summarizes this:

P(Hp |e)

P(Hd |e)︸ ︷︷ ︸
posterior odds

= P(e|Hp )

P(e|Hd )︸ ︷︷ ︸
value of
evidence

P(Hp )

P(Hd )︸ ︷︷ ︸
prior odds

, (5.2)

Given this equation, we are able to say more about the roles of both the forensic expert and
the judge. The posterior ratio is split into two parts, the prior probability and the value of
evidence, which is a likelihood ratio. The forensic expert is concerned with determining the
value of evidence. The legal expert is concerned with the prior odds, which are subjective
and should not be analyzed by the forensic expert.

17
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5.2. Verbal likelihood ratio
The likelihood ratio indicates how many times more probable the evidence is given that the
prosecution hypothesis is true compared to the defense hypothesis. This ratio turns out to be
hard to interpret for court officials. An example of false interpretation is the boomer ang e f f ect ,
where weak evidence supporting the hypothesis of the prosecutor is wrongly interpreted as
evidence supporting the hypothesis of the defence. To overcome misinterpretations among
court officials, sometimes only verbal likelihood ratios are given. In 2014, the NFI suggested
a verbal likelihood framework to translate numerical values to verbal likelihood ratio scales.

Likelihood ratio (LR) Verbal LR scale
1-2 The forensic findings do not support Hd over Hp

2-10 The forensic findings provide weak support for
Hp rather than for Hd

10-100 The forensic findings provide moderate sup-
port for Hp rather than for Hd

100-1,000 The forensic findings provide moderate strong
support for Hp rather than for Hd

1,000-10,000 The forensic findings provide strong support
for Hp rather than for Hd

10,000-1,000,000 The forensic findings provide very strong sup-
port for Hp rather than for Hd

>1,000,000 The forensic findings provide extremely strong
support for Hp rather than for Hd

Table 5.1: ENFSI verbal likelihood

The inverse of the scale is used as support for Hd over Hp . Formulating LRs verbally tries to
make forensic statistics more objective and easier to interpret for court officials. It was first
introduced by Evett [17] and worked out in more detail by Nordgaard [27].

5.3. SAILR software
To calculate LRs in a uniform way, the ENFSI has set a unified software framework to calcu-
late LRs, called SAILR; Software for Analysis and Implementation of Likelihood Ratios, this
program calculates LRs in a frequentist way, which can be done both feature based (Chapter
7 and 6) or score based (Chapter 8.2). The SAILR software has a user-friendly graphical in-
terface that calculates the likelihood ratios given the chosen model and specifications. The
model provides validation histograms and is equipped with a verbal LR scale in both English
(option called ENFSI), Swedish and Dutch. At the time of writing SAILR 1.3.0 is available
upon request, further versions are still in development.
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Hierarchical model on forensic glass

Non-biological forensic evidence is generally referred to as trace evidence, such as paint, fibers
or glass but also impressions of fingerprints or shoe marks fall into this broad category. Glass
evidence forms one of the most largely used trace evidences in forensic statistics and besides
the complex field of DNA, is the part of evidence interference that makes most use of statistics.
Glass evidence interpretation can be used on a large spread of glass traces. Of course we can
think of a classic example of a glass window being broken during a burglary, but also broken
windscreen glass or broken bottles that arise during the flight from a crime scene can be
used for this type of trace evidence. In this chapter a start will be made with describing the
Bayesian hierarchical random effect model used in forensic statistics. This model has been
applied on forensic sources for the first time by Lindsey in 1977 on the refractive index of
glass and therefore we will start the outline of the hierarchical model using this foundation
in forensic statistics. In this chapter, only the variance estimation models will be described
without applying the model on real glass evidence samples. In Chapter 7 however, the model
will be applied for comparison of MDMA tablets.

6.1. Techniques in glass comparison
To compare both our control and recovered sample, we need to quantify our evidence. Evi-
dence can be either discrete such as color or continuous properties such as thickness and
density of chemical components. The two most used methods for comparison are refractive
index (RI) and elemental analysis. The elemental analysis suffers from two major shortcom-
ings. First of all it is very slow, second of all, it is destructive, which in the case of a very small
recovered sample becomes a major drawback for this type of evidence analysis. Because of
these two large drawbacks, RI will be used more often in practice. The RI of a material is a
dimensionless number that describes how fast light propagates through the material, which
depends on the density of the material [30].

6.1.1. Test outline
Suppose that at the crime scene, the forensic experts have taken a sample of size nx control
fragments on remaining glass, while the forensic laboratory has recovered ny fragments from
the suspect’s clothing. For each of the fragments, a RI measurement has been performed,
which gives x1, x2, . . . , xnx measurements on the control sample and y1, y2, . . . , yny measurements
on the recovered sample. For now we have taken one measurement on each source, but we
could have taken multiple measurements on one source. Performing multiple measurements
on the recovered source can be difficult because the glass fragments recovered from the
suspect’s clothing will be very small in general. In reality, also the number of measurements
on the control sources will be limited because of technical or financial limitations.
Even if the control and recovered samples have the same origin, there will be a difference in
the set of measurements for the two samples because of variation between the fragments, due
to internal variation and variability in the measurement techniques. It is crucial to determine

19
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whether the variation between the sources is due to internal variation and variability of the
measurement techniques or that the variation is caused because the samples originate from
different sources.
To test whether the mean µx of the samples of the control variable and the mean µy of the
recovered sample are equal, we construct hypothesis H0 : µc −µr = 0. Now we can start with
defining the random effect model, which is a feature based model.

6.2. Random effect model
To test the stated null hypotheses, the two competing hypotheses are determined by paramet-
ric models for the data up to the point of a finite dimensional vector space for the indexing
parameter θ. The SAILR program offers the possibility to make use of a non-parametric ker-
nel density estimations (KDE), which will be discussed in chapter 7. If a distinction between
two different glass components must be made, which is a common source problem, it is
important to decide in advance which discriminatory elements in glass we are going to use
to detect similarities between the two fragments of glass. For a univariate comparison, the
previous mentioned RI can be used [30]. For a multivariate comparison, p different relevant
features can be taken for each of the elements. These features will consist of the proportion
of certain chemicals in the glass fragments.

6.2.1. Between and within source variation
In the random effect model, we take into account background data. By using background
data, an estimate for the between source variation can bemade. Within each of the m different
sources, ni different measurements are made, therefore the background data (of course also
consisting of the same p features) becomes;

Zij =


zi j 1

zi j 2
...

zi j p

 i = 1, . . . ,m; j = 1, . . . ,ni . (6.1)

with zi• =
ni∑

j=1

1

ni
zij (6.2)

and z•• = 1

m

m∑
i=1

1

ni

ni∑
j=1

zij. (6.3)

Note that zi• is a matrix consisting of the means from all i sources for all p feature and z••
is a vector consisting of the overall means for all p features The same matrix and vector can
be constructed for X and Y. With respect to the background data Z, the random effect model
assumes two sources of variation; first of all, the within-source variation, this is the variance
within source i over measurements ni . Secondly, the between-source variation, this is the
variation over all measurements. For the within-source variation, it is reasonable to assume
the variation is only caused because of noise and therefore taken to be normally distributed.
The between-source variation can be either normally distributed or estimated with a kernel
density estimate.

6.3. Glass variation
Back to the glass example, consider m different sources with ni measurements per source i .
For example m windows with ni measurements per window. The total number of measure-
ments is now equal to N = ∑m

i=1 ni . For each of the fragments, a certain number of ratios of
chemical elements is tested, denoted by p. Consider for example Calcium (Ca), Potassium (K),
Silicon (Si) and Iron (Fe). We can now look at the log ratios of Ca/K, Ca/Si and Ca/Fe. The
choice for these three ratios is based on expertise of forensic experts, who argue that these
three ratios are the most discriminatory. The choice for the natural logarithm ensures that
the analysis is not relying on which of the two elements is chosen to be the denominator and
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which to be the nominator. The natural logarithm furthermore reduces positive skewness
and makes the data more likely to be normally distributed, which is a requirement for the
within-source variation.

6.3.1. Within-source
The mean vector within source i is denoted by θi and the matrix of within-source covariance
is denoted by Σ. We now have that Zij given θi and Σ, is normally distributed, so:

(Zij|θi ,Σ) ∼N (θi ,Σ), i = 1, . . . ,m; j = 1, . . . ,ni .

6.3.2. Between-source
The general mean vector between all sources is denoted by µ and the between-source co-
variance matrix is denoted by T . The distribution of mean vector within source i , θi, can
be expressed in terms of the between source variation. For now this variation is taken to
be normal, but with SAILR we could also use a kernel density estimation (KDE). Assuming
normality for the between-source variation gives:

(θi|µ,T ) ∼ N (µ,T ), i = 1, . . . ,m. (6.4)

The distribution of the measurements on the control and recovered data, X and Y, are also
taken to be normal, conditional on the source. This gives rise to the distribution of X and Y
being normal with means θx and θy and covariance matrix Dx = n−1

x Σ and D y = n−1
y Σ, following:

(X••|θx ,Dx ) ∼N (θx ,Dx ) (6.5)
(Y••|θy ,D y ) ∼N (θy ,D y ). (6.6)

Because of the previous assumption of between-source normality,

(X••|µ,T,Dx ) ∼N (µ,T +Dx ) (6.7)
(Y••|µ,T,D y ) ∼N (µ,T +D y ). (6.8)

6.4. Variance estimation
When modelling hierarchical simple random effects, the analysis of variance technique is
commonly used to estimate the within source covariance matrix Σ and between source co-
variance matrix T . The estimations are based on the background information using the
following identity [22]

m∑
i=1

ni∑
j=1

(Zij −Z••)(Zij −Z••)T =
m∑

i=1

ni∑
j=1

(Zij −Zi•)(Zij −Zi•)T +
m∑

i=1
ni (Zi•−Z••)(Zi•−Z••)T (6.9)

The left-hand side here is called the total sum of squares (T SS). The two terms on the right
hand side are called the within group sums of squares (SSW ) and between group sums of
squares (SSB ). The expectation of SSW can found to be [22]:

E(SSW ) =Σ(N −m) (6.10)

with N the total number of observations and m the number of sources. An estimate for the
within source covariance matrix becomes

Σ̂=
∑m

i=1

∑ni
j=1(Zij −Zi•)(Zij −Zi•)T

N −m
(6.11)

For the estimate of the between source covariance matrix, we take µ= z•• = 1
m

∑m
i=1

1
ni

∑ni
j=1 Zi j =

1
m

∑m
i=1 Z̄i•. This is an unweighted mean because every sources is given equal weight. For ease
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of notation, Z̄•• will be denoted Z̄ and Z̄i• will be denoted Z̄i . The estimation of T now becomes;

E(SSB ) =
m∑

i=1
ni {E(Z̄iZ̄i

T )−E(Z̄iZ̄
T )−E(Z̄Z̄i

T )+E(Z̄Z̄T )}

where E(Z̄iZ̄i
T ) =Cov(Z̄i, Z̄i)+E(Z̄i)E(Z̄i) = n−1

i Σ̂+ T̂ +µµT

E(Z̄iZ̄
T ) =Cov(Z̄i, Z̄)+E(Z̄)E(Z̄i) =Cov(Z̄i,

1

m

m∑
i=1

Z̄i•)+µµT

with Cov(Z̄i,
1

m

m∑
i=1

Z̄i•) =Cov(Z̄i,
ni

m
Z̄i ) = ni

m
Cov(Z̄i, Z̄i)

by independence of Z̄i and Z̄i
T

= ni

N
(T +n−1

i Σ)+µµT

E(Z̄Z̄T ) =Cov(Z̄, Z̄)+E(Z̄)E(Z̄) =Cov(
1

m

m∑
j=1

Z̄j•,
1

m

m∑
j=1

Z̄j•)+µµT

=
m∑

j=1

(n j

N
)2(T +n−1

j Σ
)
+µµT

which comes down to

E(SSW ) =
m∑

i=1
ni

{
n−1

i Σ+T +µµT −2(
ni

N
(T +n−1

i Σ+µµT )+
m∑

j=1

n j

N
(T +n−1

j Σ)+µµT
}

(6.12)

=
m∑

i=1
ni

{
Σ(n−1
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ni
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+

m∑
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+
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i
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)
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such that

T̂ =
∑m

i=1 ni (Zi −Z)(Zi −Z)T − Σ̂(m −2
∑m

i=1
ni
N +∑m

i=1
ni
N )

N −2
∑m

i=1
n2

i
N +N

∑m
i=1

n2
i

N 2

(6.13)

=
∑m

i=1 ni (Zi −Z)(Zi −Z)T − Σ̂(m −1)

N −2
∑m

i=1
n2

i
N +N

∑m
i=1

n2
i

N 2

.

Now denote

MSw = 1

m

m∑
i=1

ki∑
j=1

1

ni −1
(Zij − Z̄i•)(Zij − Z̄i•)T = Σ̂, (6.14)

MSb = 1

m −1

m∑
i=1

1

ni
(Z̄i•− Z̄••)(Z̄i•− Z̄••)T. (6.15)

Which gives

= (m −1)MSb − (m −1)MSw

N −2
∑m

i=1
n2

i
N +N

∑m
i=1

n2
i

N 2

(6.16)

= (m −1)MSb − (m −1)MSw

N −
∑m

i=1 n2
i

N

= MSb −MSw

κ
with κ= 1

m −1

(
N −

∑m
i=1 n2

i

N

)
. (6.17)

The maximum likelihood estimate for the population variance T is now estimated. This matrix
is equal to the between-batch variance of the background data and is corrected for random
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error i.e. noise, which is called the within-batch variance. Summarizing for the between
source variance matrix T we find,

T̂ = MSb −MSw

κ

with MSw = 1

m

m∑
i=1

ki∑
j=1

1

ni −1
(Zij − Z̄i•)(Zij − Z̄i•)T

MSb = 1

m −1

m∑
i=1

1

ni
(Z̄i•− Z̄••)(Z̄i•− Z̄••)T

κ= 1

m −1

( m∑
i=1

−
∑m

i=1 n2
i∑m

i=1 ni

)
Now that we have defined both variances, we are able to construct the hierarchical random
effects model, in forensic statistics commonly referred to as two-level normal-normal model.
Let zi j denote a p-dimensional vector of measurements on the j th component from the i th

source for i = 1, . . . ,m; j = 1,2, . . . ,ni . The simple random effect model is given by

Zi j =µa +ai +wi j , (6.18)

where ai
i i d∼ Nk (0, Σ̂) and wi j =i i d∼ Nk (0, T̂ ) are independent of each other. This model can be

seen as a combination of multivariate normal random vectors. Therefore Zi j follows a simple
random effect model. The vector Zi• now has distribution:

Zi•
i i d∼ Nk (µa ,ΣC ) (6.19)

Σc =


Σ̂+ T̂ T̂ . . . T̂

T̂ Σ̂+ T̂
. . .

...
...

. . . . . . T̂
T̂ . . . T̂ Σ̂+ T̂

 (6.20)

Returning to the control and recovered data we have:

• X: Control data measurements with

– X =


x11 . . . xnx 1

x12
. . . xnx 2

...
. . .

...
x1p . . . xnx p


– Xj = [x j 1, x j 2, . . . , x j p ]
with x j the p measurements on measurement j

– summary θ̂x = x̄ = 1
nx

∑nx
j=1 x j

• Y: Recovered data measurements with

– Y =


y11 . . . yny 1

y12
. . . yny 2

...
. . .

...
y1p . . . yny p


– Yj = [y j 1, y j 2, . . . , y j p ]
with y j the p measurements on measurement j

– summary θ̂ = ȳ = 1
ny

∑ny

j=1 y j
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6.4.1. Rewriting the likelihood ratio
Making use of continuous data provides more difficulty in the model. Recall the likelihood
ratio in (5.2):

LR = P(e|Hp )

P(e|Hd )
.

A classical model in forensic comparison often uses distance measures between the charac-
teristics of the compared items in the evidence e, these two characteristics are the control
item and the recovered item, this way we can split the evidence e into the characteristics X
and the characteristics of Y . The score based models define the distance between the differ-
ent features and then implement the distance scores into a function, which will be done in
chapter 8.2. For the feature based models, the summary statistics will be compared, which
will be done by rewriting the likelihood ratio

LR = P(X ,Y |Hp )

P(X ,Y |Hd )
= P(X |Hp )

P(X |Hd )
∗ P(Y |X , Hp )

P(Y |X , Hd )
. (6.21)

This likelihood ratio can be rewritten by making use of the fact that the probability of ob-
serving the characteristics of X does not depend on the hypothesis and therefore P(X |Hp )

P(X |Hd ) = 1.
Under the hypothesis of the defense, X and Y originate from different sources and therefore
the two samples will be independent of each other. Conditioning on one of these gives no
further information, therefore P(Y |X , Hd ) =P(Y |Hd ). Applying this we find;

LR = P(X ,Y |Hp )

P(X ,Y |Hd )
= P(X |Hp )

P(X |Hd )
∗ P(Y |X , Hp )

P(Y |X , Hd )
= P(Y |X , Hp )

P(Y |Hd )
. (6.22)

In the case of continuous characteristics, which is the case when we perform measurements
instead of discrete counts, the probabilities in both the denominator and nominator are re-
placed by probability density functions. Here f (x, y) is the joint density function and f (x) and
f (y) are marginal distribution functions,

LR = f (y |x, Hp )

f y |Hd
. (6.23)

To make this applicable for the available data, the averages x and y are taken for every batch.
Moreover to make the likelihood ratio multivariate, averaged vectors x̄ and ȳ are used. A two
level random effect model is now used to account for both the within and between source
variation. This model is often referred to as a two-level normal-normal model because it
models two levels of variation; the variation within each batch and the variation between
different batches, assuming normality for both of the variations.
The general model now becomes

LR = f (ȳ|x̄, Hp )

f (ȳ|Hd )
=

∫
f (ȳ|x̄, Hp )dθθθ∫
f (ȳ|Hd )dθθθ

(6.24)

In this equation θθθ represents the parameters of each batch, which in the case of a normal dis-
tribution are the batch mean and the batch standard deviation. Because we use continuous
data we can integrate over the probability density functions.

6.5. Two-level normal-normal model
To apply the two-level normal-normal model, we first look at the univariate case before con-
sidering the multivariate equivalent.

6.5.1. Two-level normal-normal univariate
Remember that the characteristics of items in X and Y are normally distributed within their
source. We start with the univariate case where we only look at one feature, so p = 1:

Xi ∼ N (θX ,σ2
X ) Yi ∼ N (θY ,σ2

Y )
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The measurements will now only vary due to random effect. The variances of each batch
are assumed to be known, whereas the means are assumed to follow a normal distribution,
which is to say the batch means follow a normal prior;

p(θi ) ∼ N (µ0,τ2
0)

For the posterior distribution, the prior is updated by making use of the distribution of the
mean x̄, a Bayesian construction framework is applied [19]:

p(θ|x̄) ∼ N (µn ,τ2
n)

with µn =
µ0
τ0

+ nx
σ2 x̄

1
τ2

0
+ nx

σ2

and τ2
n = τ2

0σ
2

σ2 +nxτ
2
0

When applying the posterior and prior distribution to the likelihood ratio of (6.24) with mean
ȳ of the recovered measurements the following likelihood ratio is obtained,

LR =
∫

f (ȳ |x̄, Hp )dθ∫
f (ȳ |Hd )dθ

=
∫

f (ȳ |θ, Hp )p(θ|x̄, Hp )dθ∫
f (ȳ |θ, Hd )p(θ|Hd )dθ

(6.25)

=
1p

2πun
exp

{
− (y−µn )2

2u2
n

}
1p

2πu0
exp

{
− (y−µ0)2

2u2
0

} = u0

un
exp

{
1

2

( (ȳ −µ0)2

u2
0

− (ȳ −µn)2

u2
n

)}

with u2
0 = τ2

0 +
σ2

y

ny

and u2
n = τ2

n +
σ2

y

ny
.

The first term in the exponent measures rarity and therefore the likelihood ratio should be-
come large when the rarity is large. The second term discounts for random error effect and
therefore the likelihood ratio becomes small when there is a large random error.

6.5.2. two-level normal-normal multivariate
To analyze all p features, a multivariate model is considered, the likelihood ratio is con-
structed the same way as before:

LR = f (Y|X, Hp )

f (Y|Hp )
= f ({yd , yth , . . . , yw }|{xd , xth , . . . , xw }, Hp )

f ({yd , yth , . . . , yw }|Hd )
(6.26)

The likelihood ratio is now calculated using multivariate distributions for the measurements
within the batch hence X ∼ N (θ,Σ), X ∼ (θ,Σ), and multivariate normal distribution for the
batch means (θi |Σ) ∼N (µ0,T0). Without going into detail, the likelihood ratio is now given by;

LR = |U0|1/2

|Un|1/2
exp[

1

2
((ȳ−µ0)T U0

−1(ȳ−µ0)− (ȳ−µn)T Un
−1(y−µn))] (6.27)

with U0 = T0 +n−1
y Σy (6.28)

Un = Tn +n−1
y Σy (6.29)

µn = T0(T0 +n−1
x Σx)−1x̄+n−1

x (T0 +n−1
x Σx)−1µ0 (6.30)

Tn = T0 −T0(T0 −n−1
x Σx)−1T0. (6.31)
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CHAMP drugs project

The illegal production of MDMA tablets (3,4-methyleendioxymethamfetamine) [16] remains
a major problem to the Dutch government and its citizens. A report from the European
Monitoring Center for Drugs and Drug Addiction (EWD) from 2017 stated that the drug
production of MDMA tablets, commonly referred to as Ectasy (XTC), is centered around the
Netherlands and Belgium. The Dutch general prosecutor revealed that in 2017, seventeen
MDMA-labs and twelve tableting locations have been coiled [25]. To overcome the problem of
international confidential information exchange, The European Network of Forensic Science
Institutes (ENFSI) was founded in 1995 with the purpose of improving the mutual exchange
of information in the field of forensic science.
The CHAMP project (Collaborative Harmonization of Methods for Profiling of Amphetamine
Type Stimulants) is a collaborative ENFSI project between multiple forensic institutes aimed
at finding a uniformmethod of testing amphetamines. In this chapter, measurements on XTC
tablets will be considered using the feature based measurement methods in SAILR. In Section
7.1, an outline of the available data and an outline of the SAILR interface will be provided.
The data will be applied in Section 7.2 on the hierarchical model described in Chapter 6 on
three different models; one for discrete data only and two for continuous data.
My profound gratitude goes to the NFI for providing me with data samples from the CHAMP
project and access to the SAILR packages.

7.1. Comparison
In a comparison model, control data X and recovered data Y are compared with each other, if
recovered data Y is assumed not to originate from control data X, it is assumed to originate
from background data Z. In this setting, hypotheses are formulated the following way:

• Hp : X and Y originate from the same source.

• Hd : X and Y originate from different sources, hence Y originates from the background
data Z.

Using the SAILR packages, every source in the recovered data Y is independently compared
to every control source in X using the same background dataset Z. If X consist of mx different
sources and Y consist on my different sources, SAILR will return mx ×my different likelihood
ratios comparing all different sources. All measurements in X, Y and Z consist of p different
features with k = 1, . . . , p. In the case of the CHAMP project, four different features will be mea-
sured: diameter, thickness, weight and purity. Note that the first three feature are physical
features whereas the last one is a chemical feature.

In the case of the considered XTC comparison example, the control data consists of just
one source, the number of measurements on this source is a matter of choice from the
investigator. The number of measurements on the recovered data is determined by what is
available and the investigator therefore has little choice.

27
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Just as in the glass example (Chapter 6), background data will exist of multiple measure-
ments on multiple sources. The number of different sources is denoted by m, where each
source has ni repeated measurements.

7.1.1. SAILR visualization
For the illustrative purpose of this theory, the CHAMP data is analyzed. First of all the control
data is analyzed. Measurements from CHAMP batch 9 are taken, found in Champ_4X9.txt
provided by the NFI. The visualization tool implemented in SAILR returns;

Figure 7.1: SAILR visualization of control data

In red, the raw data is given, in yellow the number of features, measurements and sources
is given. SAILR furthermore summarizes properties as mean, standard error, minimum and
maximum in a clear table for each of the p features. In total 42 measurements on the same
batch are taken.

For the recovered samples, Champ_4Y.txt is analyzed.

Figure 7.2: SAILR visualization of recovered data

Here the same four features are considered on ten different measurements. The recovered
data is constructed as;

• Five samples from batch 9

• One sample from batch 1

• One sample from batch 7

• One sample from batch 12

• Two different random samples from the street samples batch Z

Constructing the recovered measurements this way provides insight in the strength of the test
results. For the five samples from batch 9 it is likely that their likelihood ratios will be high.
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Samples six, seven and eight originate from different batches and therefore their likelihood
ratio is expected to be low. Finally the last two samples originate from an unknown back-
ground batch and therefore no prior assumptions can be made. Because all measurements
in the recovered measurements are from a different source, a standard error is meaningless
and not applicable.

Finally Champ_4Z_street.txt is taken for the background information. This large back-
ground information set combines data from different research institutes. In total this set
consists of 494 measurements on 160 different sources.

Figure 7.3: SAILR visualization of background data

In Figure 7.3, part of the control data is shown. We see that in this part i = 44 and n44 = 4,
because there are 4 measurements on this source.

7.2. Hierarchical random effect model
We will now apply three feature based models. First, a relatively simple example where only
discrete data is available will be considered. Secondly we apply the constructed model from
Chapter 6 and finally we will adapt the two-level normal-normal model to a two-level normal-
KDE model, where we drop the assumption of a normal distribution for the between source
variation and fit a non-parametric kernel density estimator.

7.3. Frequencies model for discrete data
In the event when only discrete data is available, a frequency model can be used for con-
structing a likelihood ratio. Likelihood ratios only exist when both the control variable X and
recovered variable Y are single measurements, so a single XTC tablet cannot be measured to
be both red and blue for example. Of course both X and Y can consist of multiple sources
and therefore we again obtain mx ×my . For the denominator, f (y |x, Hp ) = 1 because under Hp

it is assumed that x and y have exactly the same measurements because there is no within
source variation. For the nominator, assuming that x and y do not originate from the same
source, we take the relative frequency of observing equivalence given all measurements in
the background data. Using background sample Z and equation (6.22) we find:

LR = f (y |x, I , Hp )

f (y |I , Hd )
= 1

f (y |I , Hd )
= 1

PZ
nZ PX

= nZ PX

PZ
,

PZ =
m∑

i=1

ki∑
j=1

1{zi , j =y} number of measurements background Z equal to Y,

PX = 1{X=Y } =
{

1 if X and Y are equal,
0 otherwise.

Note that his method will never turn into a negative likelihood. For an example of this method
we are not able to use the CHAMP data because this consists of continuous features only,
therefore we use NFI datasets X_NFI7.txt, Y_NFI7.txt and Z_NFI7.txt Selecting the fre-
quencies method returns 4 likelihood ratios.
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Control item Recovered item LR comparison result
1 1 93.0
2 1 0
1 2 0
2 2 15.5

Using ENFSI scale, we find that there is moderate strong support for control sources 1 and
2 to match recovered source 1 and 2 respectively, whereas for control source 1 and 2 there
is extremely strong support not to have come from the same source.
Making use of continuous data provides more difficulty in the model.

7.4. Two-level normal-normal model
In the case of XTC tablets comparison, we first need to specify what we will take to be the
type, items and characteristics. We will use the data described in Section 7.1.1.

• Type; different batches

• Item; different tablets

• Characteristics; different measurements

Furthermore we will take p = 4 different measurements. We can specify the three types of
data into;

• Control data X: For one control batch X , nx measurements are taken. In this illustrative
example, 42 different measurement were made on Batch 1 of the CHAMP data, therefore,
with nx = 42 we have

xj = (x j 1, . . . , x j p )T ; j = 1, . . . ,42; p = 1, . . . ,4.

• Recovered (or questioned) data Y: For the recovered data Y , ten different samples are
constructed from different batches as constructed above, of course in practice you do
not know where the samples originate from.

yi = (yi 1, . . . , yi p )T ; i = 1, . . . ,10; p = 1, . . . ,4.

• Background (or reference) data Z: ni different measurements are taken on m different
batches on the background data, or general population. m = 160 different batches are
used with ni measurements per batch, running from 2 to 6 different measurements in
the batch. We denote the total number of measurements by N .

zij = (zi j 1, . . . , zi j p )T ; i = 1, . . . ,160; ki = 1, . . . ,ni p = 1, . . . ,4.

Once again we denote the average of the background data within Batch i by

zi• =
ni∑

j=1

1

ni
zij (7.1)

and we take for the overall mean between all batch

z•• = 1

m

m∑
i=1

ni∑
j=1

zij. (7.2)

Using the constructed method in Chapter 6 now returns ten different likelihood ratios; one
for every source in the recovered data.
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Table 7.1: Likelihood ratios of ten recovered items from Batch 9 of the CHAMP project, according to a two-level
normal-normal model

comparison result LR Verbal LR
Recovered: nr=1 529.758 Moderately strong support for Hp rather than for Hd
Recovered: nr=2 470.881 Moderately strong support for Hp rather than for Hd
Recovered: nr=3 1.066e+03 Strong support for Hp rather than for Hd
Recovered: nr=4 673.769 Moderately strong support for Hp rather than for Hd
Recovered: nr=5 538.985 Moderately strong support for Hp rather than for Hd
Recovered: nr=6 0.000e+00 Extremely strong support for Hd rather than for Hp
Recovered: nr=7 1.482e-66 Extremely strong support for Hd rather than for Hp
Recovered: nr=8 4.037e-57 Extremely strong support for Hd rather than for Hp
Recovered: nr=9 6.439e-18 Extremely strong support for Hd rather than for Hp
Recovered: nr=10 0.048 Moderately strong support for Hd rather than for Hp

The first five likelihood ratios are high. This is exactly what we expected because the recov-
ered measurements are chosen to be from the control measurements. The following three
likelihood ratios are very low, which is also in line with what we expected. Finally we observe
that the last two likelihood ratios are very low, nothing is yet to conclude from this data. The
two-level normal-normal model seems to perform quite well.

7.5. Two-level normal-KDE
Assuming a normal distribution for the within source variation (within the batches), is proven
to be a valid assumption. A normal distribution for the between source variation (between
the batch means) in practice often is not a valid assumption. The introduction of "super
tablets", which are tablets with an extraordinary high level of MDMA disrupts the normal-
ity assumption between different sources. To make measurements more accurate, non-
parametric statistics can be used. We will try to fit a kernel density estimation for the means.

7.5.1. Two-level normal-KDE univariate
The probability distribution is estimated by making use of the background means Z1, . . . , Zm.
a Gaussian kernel will be fit here for the m different sources in Z . The principle of non-
parametric fitting is based on smoothing a histogram that would be obtained when the data
would be shown with an empirical distribution which assigns mass size 1

m to each Zi . The
mass is now smoothed using a kernel function K and bandwidth h. By definition the kernel
function is stated as;

f (θ) = 1

m

m∑
i=1

1

h
K

(θ−Zi

h

)
. (7.3)

The choice of a normal (Gaussian) kernel means;

K (w) = 1p
2π

exp
{
− 1

2
w2

}
. (7.4)

The bandwidth parameter h scales the kernel K , it can therefore be seen as a smoothing
parameter. When we choose a large bandwidth, the mass will be spread around the data
point more extensively. A large bandwidth gives a over smoothed estimate whereas a small
bandwidth gives an under smoothed estimate. Estimating the optimal bandwidth is done by
minimizing the mean integrated squared error (MISE) elaborated by Silverman in 1986 [29].
The optimal bandwidth h is then given by

hopt =
{ 4

(p +2)m

} 1
p+4

. (7.5)

We will refer to hopt as h from now on. Al together this gives final KDE;

f̂ (θ) = 1

mh

m∑
i=1

1p
(2π)

exp
{
− 1

2h2 (θ− z̄i )2
}

. (7.6)
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We will not go into detail how the likelihood is obtained. Note that the idea is based on fact
that in the numerator, under Hd , independence between X and Y is assumed and therefore
can be split into two parts.

LR = m
(σ2

y /ny +h2)1/2

(σ2
y /ny +τ2

h)1/2
∗

∑m
i=1 exp(−ai /2)exp(−1/2[(ȳ −µhi )2/(σ2

y /ny +τ2
h)])∑m

i=1 exp(−ai /2)
∑m

i=1 exp(−bi /2)
(7.7)

with µhi =
z̄i
h2 + nx x̄

σ2
x

1
h2 + nx

σ2
x

, τ2
h = h2σ2

x

σ2
x +nx h2

ai = (x̄ − z̄i )2

σ2
x /nx +h2

and bi = (ȳ − z̄i )2

σ2
y /ny +h2

7.5.2. Two-level normal-KDE multivariate
When we consider the multivariate case with p = 4 different features, the likelihood ratios
becomes

LR = f (y|x, Hp )

f (y|Hd )
. (7.8)

The likelihood ratio uses a Gaussian kernel. The same optimal bandwidth h is applied now.
According to Bolck this gives [16]:

m
|Uhn |−

1
2
∑m

i=1

(
exp

{
− 1

2

(
x−zi

)t
(Uhx )−1

(
x−zi

)}
exp

{
− 1

2

(
y−µhi

)t
(Uhn)−1

(
y−µhi

)})
|Uh0|−

1
2

(∑m
i=1 exp

{
− 1

2

(
x−zi

)t
(Uhx )−1

(
x−zi

)})(∑m
i=1 exp

{
− 1

2

(
y−zi

)t
(Uh0)−1

(
y−zi

)})
.

(7.9)

with µn = T0
(
T0 +n−1

x Σx
)−1

x+n−1
x Σx

(
T0 +n−1

x Σx
)−1

µ0

Tn = T0 −T0
(
T0 +n−1

x Σx
)−1

T0

U0 = T0 +n−1
y Σy and Un = Tn +n−1

y Σy

(7.10)

Applying the same dataset as in Section 7.4 gives

Table 7.2: Likelihood ratios of ten recovered items from Batch 9 of the CHAMP project, according to a two-level
normal-normal model

comparison result LR Verbal LR
Recovered: nr=1 546.152 Moderately strong support for Hp rather than for Hd
Recovered: nr=2 689.456 Moderately strong support for Hp rather than for Hd
Recovered: nr=3 1.050e+03 Strong support for Hp rather than for Hd
Recovered: nr=4 617.528 Moderately strong support for Hp rather than for Hd
Recovered: nr=5 748.179 Moderately strong support for Hp rather than for Hd
Recovered: nr=6 0.000e+00 Extremely strong support for Hd rather than for Hp
Recovered: nr=7 1.466e-66 Extremely strong support for Hd rather than for Hp
Recovered: nr=8 1.385e-57 Extremely strong support for Hd rather than for Hp
Recovered: nr=9 1.146e-17 Extremely strong support for Hd rather than for Hp
Recovered: nr=10 0.032 Moderate support for Hd rather than for Hp

The results of Table 7.2 are almost identically to the results of Table 7.1. We observe that the
first five likelihood ratios are slightly higher whereas the following three likelihood ratios are
slightly lower. This indicates that the two-level normal-KDE model performs slightly better
than the two-level normal-normal model. Note that the verbal LR are still equivalent.
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Score based likelihood ratios

Besides the feature based models, a new approach is in development, which is called the
score based model. This method overcomes some of the flaws of feature based models such
as the large computational effort required for this type of models. The model is however not
yet very accurate and there are many score and distribution functions available, which makes
it hard to arrive at a uniform model.

8.1. Score function
To calculate a likelihood ratio by using a score based model, first of all a score function needs
to be chosen. This score function represents a distance or similarity between the recovered
data Y and the control data X. The score function is denoted by δ(x,y) and we will take a
look at some of the 11 different score functions that SAILR provides. After the score function
has been chosen and determined, the density function needs to be chosen to compare the
distances. In the likelihood ratio, the scores using the within source distribution are com-
pared with the scores using the between source distribution. Note that both distributions
use the same function but adjusted to different settings, which can be both parametric or
non-parametric. For the within source distribution, every measurement in the background
population Z is compared to every measurement within its source, whereas the between
source distribution compares background population Z with measurements in other sources.

For multiple measurements on one item, the average will be taken. For multiple sources,
different likelihood ratios will be calculated per source, resulting in mx x my likelihood ratios.
The likelihood is then calculated by;

LR = fwi thi n(d(x̄, ȳ))

fbet ween(d(x̄, ȳ))
(8.1)

with ȳ =
ny∑
j=1

yj (8.2)

and x̄ =
nx∑
j=1

xj. (8.3)

8.2. Distances and scores
In total SAILR provides 11 different distance functions, we will take a look at three of them.
The number of features is given by p = 4.

• Euclidean: The simplest distance measure is the Euclidean measure, this measure is
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defined by

δ(X ,Y ) =
√√√√ p∑

i=1
(Xi −Yi )2. (8.4)

Because of its simplicity, the score performs problematic as soon as the data introduces
difficulties. For example, if the multivariate data is not equally scaled and different
units are used, the distance is no longer trustworthy.

• Bray-Curtis Distance: This score is often used with count data, it might perform bad
for non-count data which can contain negative values. However for the CHAMP data,
there are no negative values so this score is worth trying. The score is given by

δ(X ,Y ) =
∑p

i=1 |xi − yi |∑p
i=1 |xi + yi |

. (8.5)

• Canberra distance: Finally we will take a look at the Canberra distance, the distance is
proven to perform well in certain forensic continuous comparison problems and there-
fore applied to the CHAMP data [34]. The distance is defined by

δ(X ,Y ) =
p∑

i=1

|xi − yi |
|xi |+ |yi |

. (8.6)

For the distribution function, three options are available, first the already encountered kernel
density estimate and furthermore two parametric functions: Gamma and Weibull.

8.3. Comparison
For every score function with measurements X,Y and Z, we consider the two hypothesis Hp

and Hd . For hypothesis Hp , the evidence e is the score between X and Y assuming the mea-
surements originate from the same source. Because the measurements originate from the
same source, we can assume the evidence e originates from a within source variation score
ew . For hypothesis Hd , the score between X and Y must come from the between source vari-
ation because X and Y are assumed to originate from different sources.

The following procedure will be executed to arrive at a final score:
First, all within scores ew under hypothesis Hp are compared. Compared in this case means
that we calculate the distance functions that were chosen. For every source i = 1, . . . ,m, ni

different measurements are available, ki = 1, . . . ,ni . For every source i , we first compare mea-
surement ki = 1 to measurements ki = 2, . . . ,ni . Next we compare measurement j = 2 to mea-
surements j = 3, . . . ,n until finally we only compare measurement j = ni−1 to j = ni . This results
in (ni −1)+ (ni −2)+·· ·+2+1 = 1

2 ni (ni −1) different measurements per source i and because this
is constructed for every source m we finally have 1

2

∑m
i=1 ni (ni −1) different within source mea-

surements under Hp .

Under Hd , the scores of X and Y are compared assuming between source variation. It is as-
sumed the samples originate from different sources and therefore there is no within source
variation between them. For every source i , the first measurement ki = 1 is compared to
all measurements from other sources. For measurement one in source one this results in∑m

j=2 n j measurements. We will do this for every measurement in source one, which are in to-
tal ni

∑m
j=2 n j measurements. For another source i with ni measurements, this means we will

conduct ni
∑m

j=1, j 6=i n j measurements for source i . In total this will lead to 1
2

∑m
i=1 ni

∑m
j=1, j 6=i n j

different scores under the between source variation, taking account for double counts.

Now that we have found nw different ew scores and nb different eb scores, we are able to
compute nw likelihood ratios under Hp and nb different likelihood ratios under Hd . To get
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from all these scores to a likelihood ratio, we calculate the numerator P(ew |Hp ), which is the
probability of finding a within score ew in an ew distribution. For the denominator P(ew |Hd ),
we calculate the probability of finding the same ew score in an eb distribution. The probability
is calculated using the distribution function, which in our case will be chosen to be the kernel
density estimate. This returns likelihood ratio

LR = P(ew |Hp )

P(ew |Hd )
. (8.7)

8.4. CHAMP data comparison
Using the three different distribution functions and three different score functions in Section
8.2, we can calculate nine arrays of ten different likelihood ratios. Just as in Chapter 7, using
SAILR we find;

Table 8.1: Likelihood ratios for different score and distribution functions

Euclidean Bray-Curtis Canberra

KDE

1 12.208 13.847 20.165
2 2.688 5.495 32.280
3 5.060 12.016 30.175
4 2.601 5.008 25.076
5 6.165 15.624 32.547
6 0.002 0.020 7.312e-25
7 0.010 0.014 0.012
8 3.106 4.534 0.067
9 0.706 0.500 5.210e-15
10 0.674 0.394 0.150

Gamma

1 8.882 12.873 27.251
2 2.923 5.350 92.798
3 5.863 10.840 73.705
4 2.820 4.975 43.845
5 7.328 15.277 95.631
6 5.118e-4 6.937e-4 9.926e-6
7 0.005 0.002 0.003
8 3.421 4.602 0.048
9 0.687 0.619 7.012e-5
10 0.653 0.392 0.100

Weibull

1 7.287 10.572 14.210
2 2.688 4.952 32.468
3 5.060 9.147 27.945
4 2.601 4.642 19.747
5 6.165 12.187 33.105
6 0.002 0.002 6.732e-5
7 0.010 0.004 0.007
8 3.106 4.331 0.081
9 0.706 0.687 3.099e-4
10 0.674 0.449 0.153

Alarming in the data is that all three distributions using Euclidean and Bray-Curtis distance
give a likelihood ratio > 1 for Batch 8 (which originates from Batch 12). We know likeli-
hood ratio eight compares samples from different batches (Section 7.1.1) and therefore the
likelihood ratio should be below one. Note furthermore that the Canberra distance performs
significantly better compared to the other measures; likelihood ratios one until five are higher
and ratios six until eight are lower for all distribution functions compared to the Euclidean
and Bray-Curtis distance.
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When we compare the score based functions to the feature based functions, we observe that
the feature based functions perform significantly better. Feature based models compare the
probability of observing the evidence given that the control and recovered samples come from
the same source or come from different sources. In contrast, score based models compare
the probability of observing pairwise similarity between the control and recovered samples
given that they originate from the same source with the probability of pairwise similarity
given that the samples come from different sources. [1]
A big advantage for score based models is that they reduce multivariate information to a
univariate distance which in the case of a lot of different features can be a major improvement
in computational time. Furthermore, covariance estimation between sources is possible with
only few samples available. Shortcomings of the method are that the values of the likelihood
ratio are based on pairwise scores rather than the similarity and rarity of the features as is
the case for feature based models. Given that the method has many advantages definitely
makes it worth doing more research on, for example on different score functions.



9
Conclusion

To qualify evidence, we have seen that hypotheses can be tested using classical statistical in-
ference methods such as P-values, confidence intervals and both univariate and multivariate
t-tests. Since these tests do not consider background information or qualify the value of evi-
dence, the result of these test is not suited to be presented in court. The inference methods
can however still be used for pre-laboratory research meaning that when we find very strong
evidence against the prosecution hypothesis, it might not be worthwhile to complete further
statistical analysis which can save both money and time. A generally accepted method for
qualifying the value of evidence can be found in the form of likelihood ratios. We have seen,
using test data from a known case of illicit drugs, that both the two-level normal-normal and
two-level normal-KDE model perform very well in quantifying the evidence, where the two-
level normal-KDE model performs a little better. As a final comparison measure, score-based
methods have been evaluated. We have compared multiple score functions with all avail-
able distribution functions to conclude that score-based likelihood ratios do not yet meet the
standards for forensic statistics.

Recommendations and future development
• Although the tests described in Chapter 3 might be too simplistic to present in court,
possibilities to broaden the test to a non-parametric estimation function can still be
discovered. This could possibly lead to new methods for forensic evidence comparison.

• In Chapter 6, both the RI and comparison on multiple chemical features are considered.
Because the RI method is both technically and financially more attractive, this method
is preferred over the multiple feature comparison. Using test data we could compare
both methods and determine if the RI provides representative likelihood ratios.

• In this research only the comparison method in SAILR was elaborated. SAILR does
however provide a possibility for discrimination between two background samples and a
validation method for one background sample. These two operations can be evaluated
with the same data as used in this report.

• The score-based comparison models can reduce computational time enormously. Using
the current distance functions available, the score-base models do not yet meet the
standards for forensic statistics. In future development, score functions can be further
explored and implemented in SAILR packages.

• The methods used for validating the comparison methods were only based on looking
for a likelihood ratio as high as possible for equivalent evidence sources and as low as
possible for different evidence sources. There are however significantly better methods to
compare the forensic evidence. Two of these methods are Tippett plots and the Empirical
cross-entropy. Both methods are relatively new, but their results yet are positive and
definitely worth doing more research on.
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