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Abstract

Despite the relevance of the road infrastructure, the mechanisms governing the

mechanical properties of asphalt concrete pavements, are currently not sufficiently

understood. Many empirical models of different complexity are proposed in the

literature; however, (i) they all have below high (R2 ≤0.85) predictive accuracy; (ii)

they are inflexible; and (iii) their prediction uncertainty is seldom quantified.

This M.Sc. thesis aspires to overcome these three major challenges. It focuses on

the prediction of three important mechanical properties of asphalt mixes: stiffness,

resistance to permanent deformation, and indirect tensile strength (ITS).

The used data are part of the NL-Lab project and represent six road work

projects for asphalt concrete bottom and intermediate layers. The number of data

points available for the three properties ranges from 100 to 400. Two approaches

are used to predict the functional properties: multiple linear regression (MLR),

and a machine learning technique: gradient boosting (GB). For both approaches

the root-mean-square error is used as loss function and 5-fold cross-validation is

applied to ensure a balanced fit.

It is demonstrated on the NL-Lab dataset that (i) GB can achieve high and very

high predictive accuracy; (ii) it is sufficiently flexible to capture complex non-linear

relationships; and (iii) its prediction uncertainty is low and can be estimated at

the same computational cost as fitting a GB model. The predictive accuracy of the

GB model significantly outperforms that of the MLR. For example, for stiffness:

R2
GB = 0.96 vs. R2

MLR = 0.62, and for ITS: R2
GB = 0.82 vs. R2

MLR = 0.72. It is shown

that the average standard deviation of the prediction uncertainty of the GB model

is less than half than that of the MLR model. Based on the completed analyses

GB is strongly recommended over MLR for modelling asphalt concrete functional

properties.

xiii



To the author’s knowledge this work is the first application of GB to model

asphalt concrete functional properties and the first that developed high and very

high predictive accuracy models for these properties. The results are promising and

encouraging further research into this subject.



Mathematical notation

A consistent mathematical notation is used throughout this thesis and it is hereby

presented.

Vectors are denoted by lowercase bold letters such as x, and all vectors are

assumed to be column vectors. Matrices are denoted by uppercase bold letters such

as X. The number of rows of a matrix is N, and the number of columns is D. n is

used as looping variable for the rows in a matrix and i for the columns, so that xn,i

is the value in the nth row and ith column of the matrix X. The transpose of a matrix

or vector is denoted with a superscript ᵀ, so that xᵀ is a row vector.

In the machine learning and statistical framework the above mathematical no-

tation is applied the following way: {(x1, y), (x2, y), . . . , (xN , y)} denotes a data

set composed of N data points (xn, yn). xn is a vector of D explanatory variables

(also called independent variables, predictors, or features): [xn,1, xn,2, . . . , xn,D] cor-

responding to the nth data point. yn is a scalar response variable (also called

dependent variable or predicted variable) corresponding to the nth data point. In

this thesis we deal only with data points where xn ∈ RD and yn ∈ R1.

1



1 | Introduction

This introductory chapter provides the motivation of the thesis, formulates the research

questions, and outlines the adopted approach to answer them. Additionally, the organization

and the scope of the thesis are presented.

1.1 Motivation

The road network plays a fundamental role in the social and economic development

of all countries (Ivanova & Masarova, 2013). It is particularly true in case of the

Netherlands, where the importance of the road network can hardly be overstated

given its density and the intensity of traffic it carries (World Data Atlas, 2011).

Despite the relevance of the road infrastructure, the mechanisms governing the

mechanical properties of asphalt concrete1 pavements, which covers the majority of

the paved roads (EAPA & NAPA, 2009), are currently not sufficiently understood.

Many empirical models of different complexity are proposed in the literature;

however, (i) they all have below high2 (R2 ≤0.85) predictive accuracy; (ii) they are

inflexible; and (iii) their prediction uncertainty is seldom quantified (a detailed

analysis and arguments for these claims are presented in Section 2.2).

This M.Sc. thesis aspires to overcome these three major challenges. It focuses on

the prediction of three important mechanical properties of asphalt mixes: stiffness,

resistance to permanent deformation, and water sensitivity. In this thesis these

properties are referred to as functional properties, following the Dutch standard’s

nomenclature (CROW, 2010).

1For brevity asphalt concrete is referred to as asphalt as well throughout this thesis.
2The italicized adjectives of predictive accuracy are to be interpreted as described in Table G.1. For

clarity, this notation and interpretation is used throughout the thesis.

2
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If successful, more accurate models could reduce the number of required labora-

tory tests and in combination with a quantified prediction uncertainty they could

lead to more economic and reliable design, hence hold the potential for significant

economical and time saving.

1.2 Research question

The literature is awash with attempts to establish models for asphalt functional

properties. Without exception, all the models – the author is aware of – fail to

deliver a high or better predictive accuracy (R2>0.85), see for example Droogers

(2018). Those which have a good predictive accuracy, are typically performing poorly

on new data sets, even if they are refitted to the new data, i.e. they are inflexible.

Almost all the attempts are fully empirical (data-driven) as no first principle based

theories are available to guide the analyst. These works use classical statistical

approaches: most commonly fitting linear and non-linear empirical models to

experimental data. These attempts with limited success and the recent success

of machine learning approaches in similar situations, i.e. no first principle based

theories, constitute the basis of the initial working hypothesis of this thesis: machine

learning regression might be successfully applied to derive the first high predictive

accuracy models for asphalt functional properties. As machine learning is a broad

field with dozens of methods and their hundreds of variants, after a brief outlook

to the general literature Chapter 2), gradient boosting regression is identified as one

of the most promising machine learning regression approaches. Hence the the two

main research questions of the thesis:

1. Can gradient boosting regression (GB) be used to derive high predictive

accuracy models for the functional properties of asphalt concrete (AC)?

2. How do gradient boosting models compare with the currently commonplace

multiple linear regression (ML) models?
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To assess the goodness of a model not only its predictive accuracy should

be considered but also its accompanying uncertainty, its applicability, and its

limitations. For these reasons the following sub questions are considered:

• What is the prediction uncertainty of the GB and ML models?

• What is the scope of applicability and what are the limitations of the fitted

models?

Our current understanding of pavement performance is limited. For example,

it is known that many factors influence the functional properties of asphalt mixes,

but it is not clear yet to what extent and what is their relative importance. This

knowledge gap leads to the sub questions:

• Which are the most relevant explanatory variables for each fitted predictive

GB model?

• Are there explanatory variables which are relevant for all the GB models?

1.3 Approach

A data-driven approach is adopted to answer to the main research question and

its sub questions. This approach is chosen because of the little theory available in

the field. Two regression techniques are used to fit the predictive models: multiple

linear regression and gradient boosting regression. These belong to the field of

classic statistics and machine learning respectively. The details of these techniques

can be found in Section 3.1. 5-fold cross validation is used for both techniques and

the final models are obtained averaging the results of the cross-validation. The

uncertainties of the fitted models are then quantified and the results are compared.

The main steps of this approach are the following:

• data pre-processing;



1.4. Scope and limitations 5

• fitting the regression models via multiple linear regression and gradient

boosting regression.

• estimation of the prediction uncertainties of the models;

• comparison of the models.

1.4 Scope and limitations

To answer the above presented research questions, a database with data of asphalt

concrete mixtures applied in the Netherlands was used. The database contains

numerical and nominal variables (e.g. the mixing and compacting technique). The

database is not intended to be representative of the entire Dutch road network

composition and of all the mixing and compaction methods available. The database

is analysed in detail in Chapter 4. The data was collected during the NL-Lab

project that is a joint project between Rijkswaterstaat, TNO, the Delft University of

technology, six contractors, and the province of Gelderland.

The predictive models derived in this work concern stiffness, resistance to

permanent deformation, and indirect tensile strength of the asphalt mixtures. The

definition of a predictive model for fatigue resistance is outside the scope of this

research because of the limited data available. Solely multiple linear regression

and gradient boosting regression are used for finding functional relationships. A

purely data-driven approach is used for the analysis, i.e. no engineering or physical

knowledge is incorporated into the models, for example via priors or custom loss

functions.

1.5 Contributions

This work advances the current state of knowledge in pavement engineering with

the following contributions:
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• Derivation of predictive models that take into account the mixing and com-

paction technique.

• Derivation of predictive models for stiffness, resistance to permanent defor-

mation, and indirect tensile strength using gradient boosting.

• Quantifying the model prediction uncertainty for stiffness, resistance to per-

manent deformation, and indirect tensile strength.

• Derivation of the first high predictive accuracy models for stiffness, resistance

to permanent deformation, and indirect tensile strength. Demonstration that

gradient boosting significantly outperforms the currently applied multiple

linear regression in terms of prediction accuracy and flexibility.

To the author’s knowledge all of these contributions are novel and appear the first

time in the open literature. In Chapter 2 the current state of the art is reviewed to

demonstrate the novelty of the above contributions.

1.6 Structure of the thesis

Seven chapters constitute the main body of this M.Sc. thesis. The introductory

chapter includes the motivation of the study, the research question that is addressed

in the study, the approach, the scope and limitations. A review of the relevant

literature is presented in Chapter 2, it covers the available predictive models and the

application of machine learning techniques in pavement engineering. The adopted

methodology is explained in the third chapter, including multiple linear regression,

the main characteristics of gradient boosting, the handling of uncertainties, and

the Dutch functional method. Chapter 4 contains the description of the NL-Lab

project and the of the content of the NL-Lab database. The fifth chapter contains a

preliminary analysis of the NL-Lab database. In chapter 6, the NL-Lab database is

tested on two already existing models for asphalt stiffness, then three regression

models for asphalt stiffness, resistance to permanent deformation and for indirect
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tensile strength are fit, and the uncertainties estimated. A comparison between

the models is also performed. This is done to demonstrate the feasibility and

utility of the proposed methodology, and to answer the main research question.

Finally, in the last chapter, the conclusions are drawn with an answer to the research

questions (Section 7.1 and 7.2), and recommendations (Section 7.3) and suggestions

(Section 7.4) for an extension of the project are given.



2 | Literature review

This chapter provides literature reviews on three topics: (i) a description of the functional

properties and the most widely used predictive models for asphalt functional properties,

including their assumptions and limitations; (ii) uncertainty quantification in pavement

engineering; and (ii) some applications of gradient boosting in pavement engineering.

2.1 Predictive models for asphalt mix functional properties

The definition of predictive models for asphalt mixes is a challenge undertaken

by many since the second half of the 20thcentury. Even though many models are

already available their accuracy is not always satisfactory. An overview of these

models, developed by different institutions and countries, is hereby presented.

2.1.1 Stiffness

The elastic modulus E [MPa] of an asphalt mix is one of the parameters that con-

tributes to its stiffness. Being asphalt a visco-elastic material, the stiffness modulus

varies with the temperature and the loading frequency. The elastic modulus at 20°C

and 8 Hz is commonly used and it will be used in this thesis as indicator of the

asphalt stiffness. To determine the elastic modulus of an asphalt mix four point

bending test can be performed on prismatic specimens. The European standard

(CEN, 2018b) describes in detail the testing procedure. Starting from 1977 with the

Shell Nomograph, multiple stiffness models for asphalt mixes were derived and the

state of the art is well presented in Droogers (2018); Zhang et al. (2018a). The models

listed in Droogers (2018) are (i) fully empirical (e.g. Witczak and Jacobs models); or

(ii) a combination of an empirical and a first-principle-based approach (e.g Hirsch

model). Droogers (2018) proposes a multiple linear regression model which belongs

8



2.1. Predictive models for asphalt mix functional properties 9

to the second category of models, because of the considerations made during the

selection of the parameters. This model has a good predictive accuracy (R2 = 0.80)

on the data set on which it was fit and it uses only a few explanatory variables

(binder stiffness, volume air void, volume bitumen).

2.1.2 Fatigue resistance

During their service life pavements experience a high number of load repetitions.

In turn the asphalt layers are subjected to stress fluctuation. One of the methods

to determine the fatigue resistance of asphalt concrete mixes under bending forces

is via the four point bending test. Other testing methods and the description of

the testing procedures can be found in CEN (2018a). The fatigue resistance is

commonly expressed as the constant amplitude strain level, ε, that is required to

experience 50 % stiffness reduction (compared to the initial stiffness) under 106 load

repetitions. This strain value is obtained by interpolating between the results of

multiple prismatic specimens, the recommended number of specimens according

to the Dutch regulations (CROW, 2010) is eighteen. The strain at 106 repetitions is

usually indicated with the symbol: ε6
[ µm

m

]
.

Fatigue cracks are one of the major reasons of the failure for asphalt concrete

pavements (Huang, 1993). Being able to predict the fatigue resistance is therefore

of great importance, however it is a challenging task due to the complexity of the

phenomenon. Moreover the testing procedure is costly and time consuming. The

most influential parameters affecting the fatigue resistance were investigated and

a predictive model was fit following a data-driven approach (Fattah et al., 2016).

From the research the bitumen content seems to have a strong effect on the fatigue

resistance of asphalt mixes.

2.1.3 Resistance to permanent deformation

Permanent deformation of pavements is a non-reversible phenomenon that can

significantly affect the service life of pavements. The resistance to permanent
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deformation can be tested via the dynamic triaxial test. The test is performed on

cylindrical samples. The description of the testing procedures can be found in CEN

(2016). The resistance to permanent deformation can be defined via the creep rate

fc

[
µε

cycle · 106
]
. The slope of the cumulative strain–load cycles function at its linear

part is the creep rate fc. A complete description of the phenomenon, the testing

methodology according to the European standard, and the predictive model defined

by the Mechanistic- Empirical Pavement Design Guide (MEPDG1) can be found in

Seleridis (2016).

2.1.4 Water sensitivity

The fourth considered functional property is water sensitivity. Water sensitivity is

a primary cause of distress in asphalt pavements. If the binding strength between

the aggregates and the bitumen weakens in the presence of water, the asphalt

mix can be considered susceptible to water and it is prone to a pavement distress

called stripping (Halim & Ramani, 2016). According to NEN-EN 12697-12, it can be

measured by the indirect tensile strength ratio (ITSR), which is defined as follows:

ITSR =
ITSWet

ITSDry
· 100, (2.1)

where:
ITSWet average indirect tensile strength of the conditioned samples.

ITSDry average indirect tensile strength of the unconditioned samples.

The indirect tensile strength ratio is calculated as the ratio of the indirect tensile

strength and direct tensile strength. The indirect tensile strength is obtained by

testing a conditioned sample (soaked in water for 24 hours), while the indirect

tensile strength is based on an unconditioned sample. The higher the ratio the less

the asphalt mix is susceptible to the moisture level.

The indirect tensile strength is usually expressed in MPa. In the MEPDG, a

formula to predict the indirect tensile strength is presented (of State Highway &

1MPEDG is the commonly used abbreviation for the U.S. pavement design method.



2.2. Estimation of uncertainty in pavement engineering 11

executive committee, 2008). Seleridis (2016) describes the background of the formula

and proposes a methodology to use the MEPDG predictive model to compute the

indirect tensile strength ratio (Seleridis, 2016). In this thesis a model is fit to predict

the indirect tensile strength of asphalt mixes and a method to compute the indirect

tensile strength ratio is proposed.

2.2 Estimation of uncertainty in pavement engineering

Pavements’ performance is usually variable. The inhomogeneity of the materials,

the inconsistent construction methods and equipment, and the conditions of the

surrounding environment are among the main causes of this variability (Liu, 2015;

Zhang et al., 2018b). Studies were carried out to quantify the variability in mix

composition (Fang et al., 2018; Liu, 2015) and the effect of parameters such, elastic

modulus, and layer thickness on the expected fatigue life (Valle & Thom, 2015). To

indicate the extent of the variability, the latter results in a 70 % uncertainty range of

64–558 % of the mean fatigue (P(0.64 · fmean < f < 5.58 · fmean) = 0.70).

A general consensus exists in stating that the variability in pavements materials

and construction has a strong influence on the performance of the pavements;

however, according to the author’s knowledge, none of the predictive models

present in literature quantifies the uncertainties. As a consequence, the lack of

quantification makes these models incomplete. The uncertainties of all the predictive

models in this thesis are quantified.

2.3 Application of gradient boosting in pavement engineer-

ing

The interest in big data and the application of artificial intelligence has been sharply

increasing in the last two decades. The reason for this is the significant improvement

of computational power and the development of cheap and accurate sensors, which
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allow the collection of enormous amount of data. The field of civil engineering did

not remain unaffected by this “data revolution” and many applications are being

tested (Chen et al., 2015; Peng et al., 2017; Ziolkowski & Niedostatkiewicz, 2019).

It is not possible to make a complete overview of studies where gradient

boosting (GB) is being applied in civil engineering. In the available literature, to the

knowledge of the author, gradient boosting was used in pavement engineering only

in two cases: (Gong et al., 2019; Mousa et al., 2019).

In the first study the authors developed a classification model for pavement ser-

vice life on the base of field-condition data and using seven explanatory categorical

variables. The authors of the paper consider their model satisfactory according to

sensitivity, accuracy, and specificity indices.

In the second study, regression models were proposed to predict two types of

fatigue cracking. The results were compared with those predicted by the MPEDG

transfer functions. The comparison was made using the R2 value and the gradient

boosting models significantly outperformed the MPEDG transfer function. For

alligator cracking predictions the R2 on the test dataset was equal to 0.671 for the

GB model and to 0.103 for the MPEDG transfer function. For longitudinal cracking

the GB model scored a R2 of 0.784 against a R2 = 0.0455 for the MPEDG transfer

function. Nevertheless, the GB models resulted over-fitted, thus showing one of the

risks of the technique if the hyper-parameters of the model are not properly tuned2.

Both studies were published in June 2019 which demonstrates of the increasing

interest of the pavement research community in machine learning and in particular

in gradient boosting applications.

A good example of the application of gradient boosting, avoiding overfitting

of the model, is Yang et al. (2017). In their work, the authors derive a reliable and

accurate model to predict short-term traffic volume on freeways. The reliability of

the model is checked via cross-validation. In this thesis the same cross-validation

technique is used and the relative importance of the explanatory variables in the

2A detailed description of the gradient boosting technique can be found in Section 3.1.2.
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model is extracted as suggested in Yang et al. (2017).

It is important to outline that none of the above presented work has estimated

the uncertainties of the models they fit. In the current work a methodology to

quantify the uncertainties of the model will be tested and the results discussed.



3 | Methods and tools

In this chapter the methodology adopted for this thesis is presented. It is divided into three

main sections: (i) regression analysis; (ii) uncertainty quantification; and (iii) the Dutch

functional method.

3.1 Regression analysis

Regression analysis is the tool that has been used to establish relationships among

the variables present in the NL-Lab database. The goal of regression analysis is to

estimate the relationship between parameters from the data available (see Figure 3.1).

On the x-axis the explanatory variable is generally represented, while the y-axis is

the response variable.
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Figure 3.1: Schematic representation of the goal of regression analysis.

In general, regression is an ensemble of techniques which belong to different

fields such as statistics and machine learning. In both fields the main components

of the regression method are the same and they are listed as follows:

• a database;

14
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• a mathematical model;

• a goodness-of-fit measure to evaluate predictive accuracy of the model;

• a fitting strategy to fit the mathematical model. Often the fitting strategy

maximizes the measure of goodness-of-fit.

The mathematical model, the goodness-of-fit measure, and the fitting strategy

depend on the approach used, while the database is independent of the approach.

Defining and fitting the mathematical model should strike a balance between

(Everitt, 2002):

• overfit;

• underfit.

Overfitting usually arises when the model f̂ does not recognize the noise of the

data set and fits it. It can happen for really flexible models (Hernández-Lobato,

2010). In contrast, when the model is not flexible enough to capture the “real” trend

of the real function f , f̂ under-fits the data. The challenge is to find a balanced

fit. An illustrative visual example of overfit, underfit, and balanced fit is shown

in Figure 3.2. A common practice to find a balanced fit is to split the database in

two sets: a training set and a testing set. The training set is usually 70-80 % of

the entire data set and the remaining data form the testing set. To get the best

possible fit cross-validation can be performed (Kohavi, 1995). Although a 10-fold

cross-validation is generally used (McLachlan et al., 2005), in this work 5-fold

cross-validation has been performed because of the computational cost.
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Figure 3.2: 1D example of overfitting, underfitting and balanced fitting.

A commonly used measure of goodness-of-fit is the coefficient of determination,

typically denoted as R2. It expresses the percentage of variance in the response

variable y explained by the explanatory variable x. The coefficient of determination

is defined in Equation 3.1.

R2 = 1− SSres

SStot
, (3.1)

where:
R2 coefficient of determination;

SSres sum of the squared residuals;

SStot sum of squares.

SSres and SStot are obtained via Equation 3.2 and 3.3.

SSres =
N

∑
n=1

(yn − f̂n)
2 =

N

∑
n

e2
n, (3.2)

where:
n loop variable, it runs over the data points;

xn nth element of the vector x;

yn value of the response variable at xn;

f̂n prediction value of the model f̂ in xn;

en residual of the nth point;

N total number of data points.
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SStot =
N

∑
n=1

(yn − ȳ)2, (3.3)

where:

ȳ mean value of response variable y.

R2 can assume values ranging between −∞ and 1. R2 is negative if a horizontal

line (hyperplane) passing through ȳ approximates the data better than the predictive

model. It is important to mention that to assess the quality of a model, R2 may

not be sufficient. A clear example is the Anscombe‘s quartet (Anscombe, 1973)

(Figure 3.3) which is an ensemble of four data sets that can be described with the

same metrics and approximated by a single linear regression line, with the same R2

(Table 3.1). Visualizing the data and the fitted model is generally a recommended

practice to avoid trivial mistakes.
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Figure 3.3: Visualization of the Anscombe’s quartet.

Even if the problems handled by regression analysis in the fields of statistics
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Table 3.1: Properties and relative accuracy of the Anscombe‘s quartet. Adapted from Anscombe

(1973).

Property Value Accuracy [%]

Mean of xn 9 Exact

Sample variance of xn 11 Exact

Mean of yn 7.50 to the 2nd decimal

Sample variance of yn 4.125 ±0.003

Correlation between xn and yn 0.816 to the 3rd decimal

Linear regression line yn = 3.00 + 0.500 · xn to the 2nd and 3rd decimal, re-

spectively

R2 0.67 to the 2nd decimal

and machine learning are similar, some differences between the two approaches

need to be outlined.

The most important difference is the goal (at the risk of oversimplification): while

in statistics drawing the population inference from samples and the understanding

of the system are of primary relevance, in machine learning achieving the highest

possible predictive accuracy is the main driving principle.

The quantification of uncertainties is another relevant difference especially in

engineering applications. While in statistics uncertainty is embedded into the model

(via a data-generating model), in machine learning additional steps of the user are

required to estimate it (more details regarding the estimation of uncertainties can

be found in Section 3.2).

Statistical regression is more effective in problems with a limited number of

variables and relative simple functions to model, in contrast machine learning

achieves better results with complex problems where thousands of data points and

hundreds of variables are handled. Moreover, machine learning is able to capture

complicated nonlinear interactions.

In this thesis, statistical multiple linear regression and gradient boosting, a
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machine learning technique, are applied. In the following subsections (3.1.1-3.1.3)

the two approaches are thoroughly explained and compared.

Multiple linear regression was chosen because it is a technique simple to use

and to interpret. It is commonly used in engineering practice and in the pavement

field (e.g. Jacobs and Drooger models, mentioned in Section 2.1.1).

Gradient boosting was selected for the following reasons:

• good reported performance in the literature (Dabiri & Abbas, 2018; Dias et al.,

2018; Yang et al., 2017) and gradient boosting algorithms won several Kaggle1

competitions (Kashnitsky, 2019);

• gradient boosting algorithms can be run on personal computers, without the

need of relatively powerful computers;

• high interpretability of the fit models compared to other machine learning

algorithms such and neural networks.

3.1.1 Multiple linear regression

Multiple linear regression models the linear dependency between explanatory

variables (x = x1, x2, ..., xD) and a response variable (y) via a linear equation. In

fitting the model the following assumptions are made:

• homoscedasticity: it means that the variance of the response variable along

the explanatory variables is constant;

• normal distribution of the residuals;

• no or little multicollinearity.

The problem of multicollinearity arises when two or more explanatory variables are

strongly related via a linear relationship (Bager et al., 2017). Multicollinearity does

not affect the predictive accuracy of the model, but if multicollinearity is present the

1Kaggle is a data scientists community where the users can participate in data science challenges.
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standard error of the fitted coefficients increases (Daoud, 2017). It means that the

estimates are less accurate. Various methods are proposed to detect multicollinearity

in regression problems as the condition number method and the variance inflation

factor method (Bager et al., 2017).

The linear regression model can be written as follows:

y = a +
D

∑
i=1

bi · xi + ε, (3.4)

where:
a intercept with the y-axis;

bi slope of the line in the ith dimension;

ε model uncertainty. It follows a normal distribution: ε ∼ N (µ = 0, σ2).

The parameters of the model which need to be estimated are ai and b. For

the parameter estimation a closed-form solution is available. The most common

estimation technique is the ordinary least square error which minimizes the sum of

the squared errors. The error is defined as the difference between the observed data

and the one predicted via the linear model (Figure 3.4).
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Figure 3.4: Graphic representation of the error in a 1D linear model.

In linear regression not only numerical but also categorical variables can be

handled using a technique called one-hot-encoding (Potdar et al., 2017). Assuming

that a categorical value has n different possible values, to perform a linear regression

the categorical variable it is transformed into n− 1 numerical variables. These new

variables will be equal to 1 if the value applies to a specific datum, 0 otherwise. If

all the new variables are equal to 0, the categorical value is set to its mode. This

method works in a satisfactory way for categorical variables with few levels, when

the number of these increases the complexity of the linear model does the same and

it is not desirable.

To further illustrate the concept, the categorical variable "mixing technique"

in the NL-Lab database can assume three different values with "asphalt plant" as

its mode Table 3.2. In this case, two new variables namely "planetary mixer" and

"forced action mixer" would be created. To apply the model to samples mixed in the

asphalt plant the value of the explanatory variables "planetary mixer" and "forced

action mixer" would be equal to 0 (Table 3.3).
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Table 3.2: Example of a database

with the categorical variable "Mix-

ing technique".

ID Mixing technique

A Planetary mixer

B Asphalt plant

C Forced action mixer

D Asphalt plant

Table 3.3: Example of a database with the categorical

variable "Mixing technique" after the application of one-

hot encoding.

ID Planetary mixer Forced action mixer

A 1 0

B 0 0

C 0 1

D 0 0

Multiple linear regression is a simple and easy-to-interpret approach. For these

reasons it is widely used, not only in engineering, but also in other disciplines like

biology, economics, and in the social sciences. In multiple linear regression the user

has to select which explanatory variables to consider in the model and an iterative

procedure is needed before finding the best combination of variables.

It is noted that this procedure may become burdensome for data sets with a

high number of independent variables especially for cases where little or no theory

is available to justify the variables selection. In this work a “forward” method is

followed to fit the linear models. It means that starting with an empty equation, the

predictive parameter with the highest correlation is firstly inserted. After that, the

other predictive parameters that contribute the most to the accuracy of the model

are added until the predictive accuracy does not increase anymore in a significant

way. Of course, the highest predictive accuracy is achieved when all the available

explanatory variables are part of the model. This is usually avoided and the model

is fit following the parsimony principle that is using models which contain nothing

more than the necessary for the modeling (Hawkins, 2004).

Another relevant drawback of multiple linear regression is that most problems

are not linear with respect to the explanatory variables; therefore, it holds the risk

of underfitting the data. In this case the only solution possible is to adopt a model

able to capture non-linear trends. A working example of multiple linear regression
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is presented in Appendix A.

3.1.2 Gradient boosting

Boosting is one of the methods used in machine learning applications to perform

regression analysis. It was developed since 1990 by Robert Schapire (Schapire, 1990)

who was investigating whether a strong learner can be obtained by combining many

weak learners. The question was raised in 1988 by Kearns and Valiant (Kearns &

Valiant, 1994, 1988). A weak learner is defined as a predictor whose performance is

only slightly better than a random guess. In this case, a weak learner is represented

by a decision tree.

Decision trees are used in the field of computer science to derive predictive

models and they have a flowchart-like structure. The response variable is predicted

via a recursive partitioning of the data set (root node of the tree). After the first

partition of the input space into sub-regions, the splitting continues. Each time

the sub-regions are split, a decision node (or internal node) is created in the tree.

When a sub-region is not furthermore partitioned it represents a final node of

the tree (commonly called as the leaf of the tree). To each leaf corresponds a

response variable value or a function. In this thesis, only decision trees with

constant values at the final nodes are used. Binary trees are generally used in

boosting applications; it means that every time the data set is divided in two parts.

A graphical representation of a binary decision tree is shown in Figure 3.5.
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Figure 3.5: Structure of a decision tree.

A decision tree can be mathematically expressed according to Equation 3.5.

h (x) =
L

∑
j=1

bj · 1Rj , (3.5)

where:
h(x) decision tree function;

L total number of leaves;

Rj jth disjoint region of the tree;

bj constant assigned to the region Rj;

1Rj indicator function in the region Rj.

The indicator function is defined as follows:

1A(x) =


0, if x /∈ A,

1, if x ∈ A.
(3.6)

where:

A mathematical set.
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To build a strong learner, the boosting technique fits multiple decision trees in

series (i.e. one tree after another). The first tree is fit on the initial database, after

the fit the residuals are computed as follows:

en = yn − fn, (3.7)

where:
en residual of the nth point;

yn value of the response variable for the nth point;

fn predicted value of the response variable for the nth point. The value is

predicted by the first tree.

Once all the residuals are computed a new tree is fit using the residual as the

response variable, while the explanatory variables are unchanged. The residuals of

the second tree are then calculated and the procedure continues until a stopping

criterion is met. In this thesis, the number of trees to be fit is used as stopping

criterion. A schematic representation of the boosting method is be visualised in

Figure 3.6.

A lot of iterations 
(default =1k)

Residuals of iteration 0 Residuals of iteration 1 Residuals of iteration 2

Residuals of iteration 3Residuals of iteration n

Figure 3.6: A series of decision trees.
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The above procedure is called the training process and is regulated by the model

hyper-parameters (DeepAi, 2019). These determine the structure of the model and

how the model is trained. The hyper-parameters are set before the training process.

Setting appropriate values for the hyper-parameters can improve the predictive

accuracy of the model. Some of the most influential hyper-parameters are:

• the number of iterations: numbers of trees fit. Usually the number is ≥ 1000;

• the tree depth which indicates how many split, and consequently leaves, the

trees have. The recommended value for the depth is in the range 6 - 10, which

corresponds to 26 - 210 leaves;

• the learning rate which indicates the rate at which the error is corrected from

one tree to the next one; it is a value between 0 and 1. A small learning

rate prevents overfitting, but needs a higher number of iterations to avoid

underfitting;

• the minimum number of samples per leaves.

In this thesis the minimum number of samples per leaves is set to 1 for all the

models.

Gradient boosting is a gradient descent2 algorithm which can be summarized

by the following steps (Friedman, 2000):

2Gradient descent is a optimization algorithm that uses the gradient of the objective function to find

its minimum (Ng, 2018).
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1. Create an initial model F0, represented by a single decision tree:

F0(x) = argmin
γ

N

∑
i=1

L(yn, γ)

where:

N number of coupled input variables {(xn, yn)}N
n=1;

L(yn, γ) differentiable loss function.

2. for m=1 to M:

(a) Compute the residuals:

rn, m = −
[

∂L(yn, F(xn))

∂F(xn)

]
F(x)=Fm−1(x)

(b) Fit a tree hm(x) to the a training set defined as follows: {(xn, rn,m}N
n=1.

(c) Solve the optimization problem:

γm = argmin
γ

N

∑
n=1

L(yn, Fm−1(xn)) + γhm(xn)

(d) Update the model:

Fm(x) = Fm−1(x) + γmhm(x)

3. Fit the final model FM(x).

Multiple open-source libraries have been developed in the last years like scikit-

learn, xgboost, lightGBM, h2o.ai and CatBoost. CatBoost (Yandex, 2019a) is one of

the most recently developed libraries, it does not only outperform the other common

gradient boosting packages (Dorogush et al., 2017; Yandex, 2019a) even before the

tuning of the hyper parameters, but it is able to handle categorical variables without

requiring a burdensome pre-processing (Dorogush et al., 2018, 2017; Yandex, 2019a).

CatBoost uses oblivious trees when fitting the models. Oblivious trees are
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symmetric binary decision trees which at each level are split according to the same

variable. It means that a tree of depth k has 2k leaves and that the dataset is regressed

on k explanatory variables. The CatBoost library is available via Python and R APIs,

and it is highly customizable.

For regression problems the default loss function in CatBoost is the root mean

square error (RMSE) defined as follows:

RMSE =
2

√
∑N

n=1 (yn − fn)2

N
(3.8)

The data are split following an optimization strategy; in case of regression trees

many splitting criteria are available. The one used in the current work is based on

the root mean square error. The algorithm looks for the split which minimizes the

splitting statistic. To make it clearer: the algorithm chooses the split for which the

sum of the root mean square error of the two new sub-regions is minimized.

To each leaf of a decision tree corresponds a constant value of the response

variable. It means that a gradient boosting predictive model is a step function. In

Figure 3.7 an example is shown. In this case the function to be approximated by

gradient boosting is a parabola (in black), the 20 training points are plotted in red,

and the gradient boosting function is plotted in light blue. A working example of

gradient boosting regression is presented in Appendix A.
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Figure 3.7: Example of gradient boosting application.

3.1.3 Comparison of the two methods

The main characteristics of the two techniques above described (Section 3.1.1 and

3.1.2) are summarized in the following overview table (Table 3.4).

Table 3.4: Overview of MLR and GB.

Multiple linear regression Gradient boosting regression

Origin Mathematics Computer science

Goal Population inference and under-

standing of the system

High predictive accuracy

Data modelling Stochastic Deterministic

Favourite problems Simple Complex, non linear

Uncertainties Already part of the model Not part of the model

Complexity Low High

Flexibility Low (a single hyperplane) High (universal approximator)
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3.2 Uncertainty estimation

3.2.1 General observations

The estimation of the uncertainties is of utmost importance for all engineering

applications. Two main sources of uncertainty can be considered:

• model uncertainty: mismatch between the model and reality. It is stemming

from the mismatch between the mathematical representation used in the

model and reality; and the variables which are not considered in the model;

• sampling uncertainty: uncertainty stemming from finite sample size, i.e. if

the sampling (experiment) was repeated and model was fitted to the data the

estimated model parameters would be slightly different.

Uncertainty quantification is a common practice in statistics but seldom considered

in pavement engineering (Section 2.2). In statistics the typical way to communicate

uncertainties is to represent them via confidence intervals. The confidence level in

this work is set to 95 %.

3.2.2 Multiple linear regression

In statistics, the uncertainties are already part of the model, while in machine

learning additional steps are required.

As presented in Section 3.1.1, for a multiple linear regression model the model

uncertainty (the term ε) is considered constant along the entire support. It is usually

computed as the standard deviation of the residuals, which corresponds to the

maximum likelihood estimate. The standard deviation of the residuals is defined

as:

σ =

√
∑N

n=1(yn − fn)2

N − k− 1
, (3.9)

where:
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yn value of the response variable in the nth point;

fn predicted value of the response variable in the nth point;

N sample size (i.e. number of points in the database);

k number of explanatory variables in the model;

N − k− 1 degrees of freedom of the model.

The uncertainties are not only related to the error term ε (model uncertainty)

but to the estimated parameters a and bi (sampling uncertainty) as well.

Considering both source of uncertainties, the confidence interval for unseen

observations3 is computed as follows (Jost, 2019):

yn, lwr yn, upr = fn ± tα/2, N−k−1 ·
√

σ2(1 + xᵀn(XᵀX)−1xn), (3.10)

where:
yn, lwr , yn, upr lower and upper boundary of the prediction interval for the nth

point;

fn response variable estimate for the nth point;

tα/2, N−k−1 t-score for a confidence level of 100− α and N − k− 1 degrees of

freedom;

α significance level; α = 1− confidence level;

σ standard deviation, computed according to Equation 3.9;

xn column vector containing the values of the explanatory variables

in the nth point;

X matrix containing all the the data points and the corresponding

values of the explanatory variables.

In Figure 3.8 the 70 % and 95 % confidence intervals are displayed for the same

regression line. In the figure the black line represents the ground truth function and

3A confidence interval for unseen observations is also called prediction interval.
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the red points are the observations which are used to fit the linear regression model

(light blue line). The linear regression model estimates the ground truth.

0 0.25 0.50 0.75 1

4

8

12

16

Re
sp

on
se

 v
ar

ia
bl

e 
y

level: 0.7

0 0.25 0.50 0.75 1
Explanatory variable x

level: 0.95

Figure 3.8: 70 % and 95 % level confidence intervals for a 1-D linear regression model.

3.2.3 Gradient boosting regression

In gradient boosting the uncertainties are not par of the model, but additional steps

can be performed to estimate the uncertainties.

Quantile regression (Koenker, 2005) is one of the methods used to quantify the

uncertainties of the model in machine learning applications. In quantile regression

the explanatory variables are related to specific quantiles of the response variable.

To build a 95 % prediction interval, the predictions of the 0.025 percentile are used

as lower boundary and the predictions of the 0.975 percentile as upper boundary.

The approach proposed by Qucit (2018) is followed. The main concept is to consider

the squared residuals of the model (Equation 3.2) and fit a gradient boosting model

on them, using the input data as explanatory variables. The absolute value of the

residuals is considered as an estimate of the standard deviation of the model. After

estimating the standard deviation, the lower and upper boundary for the confidence
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interval can be calculated assuming that the residuals are normally distributed. The

upper and lower boundary for each section of the step-wise function are:

yn, lwr, yn, upr = fn ± tα · σn, (3.11)

where:
yn, lwr , yn, upr lower and upper boundary of the prediction interval for the nth

point;

fn the response variable estimated by the gradient boosting model

for the nth point;

tα/2, N−k−1 t-score for a confidence level of 100− α and N − k− 1 degrees of

freedom;

α significance level; α = 1− confidence level;

σn estimate of the standard deviation for the nth point.

As can be observed in Equation 3.11, the uncertainty of the model is not constant

along the support of the function but varies along it (because σi varies). The

method is implemented in Python and tested by the author of the current research.

Figure 3.9 shows the 70 % and 95 % confidence intervals for the GB model shown

in Figure 3.7. The light blue line is the model estimate based on the available

observations (red points) and the black line is the ground truth.
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Figure 3.9: 70 % and 95 % level confidence intervals for a 1-D gradient boosting model.

3.3 Dutch functional requirements

Since 2008 the Netherlands has adopted a functional design method for asphalt,

following the introduction of the European standards for asphalt concrete mixtures

(EN 13108). The Netherlands thus abandoned the old Marshall design method,

which mainly based on the mixture composition, for a new fundamental approach.

This prescribes a range of allowed values for five properties: stiffness, fatigue

resistance, resistance to permanent deformation, water sensitivity, and air void

content (CROW, 2010).

Different values are specified according to the layer type and the traffic category.

Five types of asphalt layer are distinguished and listed, with their abbreviation, as

follows:

• surface layers (“deklagen”), DL;

• intermediate layers (“tussenlagen”), TL;

• intermediate layers used as a temporary top layer (“tussenlagen als tijdelijke
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deklaag”), TDL;

• intermediate layers applied under a cover layer of very open asphalt concrete

(“tussenlagen toegepast onder een deeklag van zeer open asfaltbeton”), TLZ;

• base layers (“onderlagen”), OL.

The traffic categories are four and are defined according to the expected truck

traffic intensity (“vrachtauto-intensiteit”) and the trucks average speed. Table 3.5

shows the characteristics of the four classes. An example of the given requirements

Table 3.5: Characteristics of the four traffic classes. Adapted from CROW (2015).

Category Intensity VA Velocity [km/h] Type

IB VA > 250 v ≤ 15 Slow lane

A VA ≤ 50 ND Bike path and residential area

B 50 < VA ≤ 2500 ND Neighborhood road, motorway and

provincial road

C VA > 2500 ND Motorway and provincial road

ND: Not Defined

is displayed in Table 3.6. The current standard procedure in the Netherlands

Table 3.6: Functional requirements for the base layer (OL). Adapted from CROW (2015).

OL-IB OL-A OL-B OL-C

Minimum air void. Vmin [%] 2.0 2.0 2.0 2.0

Maximum air void. Vmax [%] 7.0 7.0 7.0 7.0

Minimum indirect tensile strength ratio. ITSRmin [%] 70 70 70 70

Minimum stiffness. Smin [MPa] 7000 45000 55000 7000

Maximum stiffness. Smax [MPa] 14000 11000 14000 14000

Maximum creep rate. fc

[
µε

cycle · 106
]

0.2 1.4 0.8 1.4

Minimum strain after 106 cycles. ε6 [ µm
m ] 90 100 80 90

for fulfilling the functional requirements is that the contractors test their asphalt
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mixes in the laboratory and determine a target density for each asphalt mix. The

target density is such that the asphalt mix meets the (above presented) functional

requirements. Then the contractor aims to replicate the same density in the field

and it is assumed that if the target density is reached in the field then the functional

requirements are also met. This procedure is based on the assumptions that there

is a strong relationship between the asphalt mix density and the mix’s functional

properties. This hypothesis is tested in Section 5.2 on the NL-Lab data.



4 | Data under study

A detailed description of the data under study is provided in this chapter, which is divided in

three main sections: (i) general description of the NL-Lab project; (ii) data collection process;

and (iii) mix properties.

4.1 The NL-Lab project

Because of the importance of the road network in the Netherlands, the high cost of its

maintenance and the increasing variability of the system caused by the introduction

of new materials, climate change, and traffic composition, in 2012, Rijkswaterstraat,

TNO, TU Delft, five contractors and the province of of Gelderland has started the

NL-Lab project. The name stands for “Nederlands Langjarige Asfalt Bemonstering”

(the Netherlands Long-term Asphalt Sampling). The main purpose of the project is

to create a reference framework for the Dutch pavements’ performance using the

Dutch roads as a living lab. One of the goal is to identify patterns between mix

properties and pavement performance (Erkens et al., 2017).

4.2 Data collection

Data from six different road project are included in the NL-Lab project. For the sake

of simplicity in this thesis the six road projects will be referred to as works. The

mixes related to each work have been mixed and compacted under three different

scenarios (from now on called phases):

• phase I: the sample was mixed and compacted in the lab;

• phase II: the sample was mixed in the asphalt plant and compacted in the lab;

37
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• phase III: the sample was mixed in the asphalt plant and compacted in the

field.

Phase II represents the intermediate state between the laboratory and the field

procedure. The distinction between phases was made with the aim to understand

the role exerted by the mixing and compaction techniques on the asphalt mix

performance. For certain works and phases (see Table 4.1) a second mix with

the same properties was produced and tested. To distinguish the results of the

two productions the results are labelled as "Lab1" and "Lab2". Their compaction

technique can be the same or different. A complete description is provided in

Section 4.3.6.

Table 4.1: List of works and phases tested twice.

Work Phase

1 I

1 II

1 III

2 I

6 II

Currently, data were collected at the moment of construction (year 0) and 2 years

after for work 1, 3, and 4. Only data at year 0 are available for the other works.

For each work and phase the following tests were performed:

• air void test;

• four point bending test to determine the stiffness and the fatigue resistance;

• triaxial test to determine the resistance to permanent deformation;

• indirect tension test to determine the water sensitivity.

The number of data points currently available for each functional property,

phase, and work are shown in Appendix B.
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To identify a particular subset of data the following notation is used in this

study:

work i.j.k_year m,

where:
i road work number (from 1 to 6);

j phase (from 1 to 3);

k lab (1 or 2);

m year (0 or 2).

The NL-Lab research program is currently in fieri and the data set will be

widened in the coming years.

4.3 Data pre-processing

Before proceeding with the regression analysis, the content of the NL-Lab database

has been analyzed to have a better understanding of the mixes considered in the

project and the techniques used for mixing and compacting.

All six designs are hot mix asphalts (HMA) and they have a percentage of

reclaimed asphalt pavement (RAP) between 50 % (work 1 and 6) and 65 % (work 3).

All the mixes are meant to be used as base or intermediate layer. The intended layer

type and the traffic class is shown in Table 4.2.

Table 4.2: Layer type and traffic class per work.

Work Layer type Traffic class

1 OL A

2 OL IB

3 TL A

4 OL C

5 TLZ C

6 OL IB
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4.3.1 Granulometry

The aggregates are one of the two main constituents of asphalt mixes, together with

bitumen. The gradation of the aggregates in an asphalt mix significantly effects the

final functional properties of the mix (Brown et al., 2009). The most widely used

graphical representation of the volumetric aggregates distribution is the gradation

curve, which is useful for quickly assessing the grading of a mix or to compare

multiple mixes. The abscissa displays the diameter of the sieves used in the sieving

test, while the y-coordinate shows the percentage of material passing through the

corresponding sieve size. The x-axis is usually in a logarithmic scale, while the

y-axis is represented in an arithmetic scale. In Figure 4.1 the gradation curve of the

six works is displayed. The relative difference in granulometry between work from

1 to 5 is negligible1, and between these and work 6 is considerable.
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Figure 4.1: Gradation curve of the six works analyzed in the NL-Lab project.

1The italicized adjectives of relative difference are to be interpreted as described in Table G.2. For

clarity, this notation and interpretation is used throughout the thesis.
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All the six mixes are classified as C-22. It means that the biggest sieve size

where the percentage of aggregates passing is less than 100 % is 22 mm. Before the

introduction of the European standards, the Dutch standard used to specify the

allowed granulometry distribution per mix type (CROW, 2005). A lower and upper

value of aggregates passing (in percentage) were given for specific sieve sizes. In

Figure 4.2 it is shown the lower and upper boundaries of a C-22 mix as specified

in CROW (2005). A comparison between them and the granulometry of the six

NL-Lab mix can be observed in Figure 4.3.
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Figure 4.2: Lower and upper limit of a C-22 HMA according to CROW (2005).
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Figure 4.3: Gradation curve of the six mixes analyzed in the NL-Lab project and the C-22 mix limits.

All the NL-Lab works are within the boundaries drafted by CROW (2005), only

work 6 is slightly outside. It has a higher percentage of aggregates passing through

the sieves with size 16.0 mm and 11.2 mm. From Figure 4.3 it is also clear that the

variability in granulometry allowed in CROW (2005) was much larger than the one

present in the NL-Lab database.

In Figure 4.4 the Fuller and Thompson method (Papagiannakis & Masad, 2008) has

been adopted. According to it the maximum level of compaction for the aggregates

is reached when the granulometry follows the equation:

P = 100 · (d/Daggr)
p, (4.1)

where:
P percentage of aggregate passing the sieve size d;

d sieve size;

Daggr maximum aggregate size;

p empirical value.

The dashed line represents the Fuller and Thompson curve with p = 0.45, as

suggested by the Federal Highway Administration (FHWA) (Brown et al., 2009).
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Figure 4.4: Gradation curve of the six mixes analyzed in the NL-Lab project and Fuller-Thompson

curve.

As can be observed from Figure 4.4, the six mixes have a similar gradation curve

and all of them can considered as "well-graded" mixes. To make a more precise

comparison between the mixes the aggregates have been divided in three groups:

• stone: particles retained by the sieve larger than 2 mm. In this case d = 5.6

mm;

• sand: particles passing through sieves larger than 2 mm, but retained by the

one with 2 mm openings,

• filler: particles passing the 2 mm sieve.

A ternary diagram (Figure 4.5) shows the mass distribution of the aggregates

for each work and the corresponding values are reported in Table 4.3.
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Figure 4.5: Mass distribution of the aggregates per work.

Table 4.3: Mass percentage of aggregates per work.

Work Filler [%] Sand [%] Stone [%]

1 6.09 35.09 58.82

2 6.50 37.97 55.50

3 6.91 37.37 55.73

4 6.80 37.35 55.85

5 6.13 38.53 55.33

6 5.70 28.90 65.40

The mixes corresponding to work 1, 2, 3, 4, 5 can be considered to have the same

granulometry. Even the biggest difference, which is the sand content between work

1 and 5, is negligible (3.5 %). Work 6 has a higher content of stones than the other

mixes (around 10% higher).

Therefore, the variability in granulometry is overall negligible. This will affect
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the fitting of the predictive models because many parameters related to the granu-

lometry experience only a very limited range of values in the NL-Lab database.

4.3.2 Bitumen

Bitumen is the other fundamental constituents in asphalt mixes. Bitumen is the

left-over of crude-oil distillation. As for the aggregates, the chemical and mechanical

properties of bitumen are decisive for the performance of the asphalt mix. Bitumen

content, penetration grade and shear modulus are the most relevant parameters.

An overview of these properties is displayed in Table 4.4. The values shown

refer to the average value per mix. A distinction between the characteristics of the

fresh and of the reclaimed binder would be necessary given the reclaimed asphalt

content of the NL-Lab mixes (between 50 and 65 %). Because these data are not

available for all the six works, the author decided to leave them out from the data

overview. The shear modulus G at 8 Hz was obtained after processing the results of

the dynamic shear rheometer (DSR) test. The description of the DSR technique is

outside the scope of this work, but it can be found in Pavia Systems, Inc. (2012).

The relative difference in bitumen content ranges from negligible (between work

1, 2, and 4) to considerable (between work 5 and 6). Polymer modified bitumen

(PMB) was used in work 6 and in work 2.2 and 2.3. Work 6 has the hardest bitumen

(Pen = 12.25 · 10−1mm), while work 5 the softest (Pen = 47.00 · 10−1mm).

4.3.3 Mix composition in mass

An analysis of the mix composition as a whole is also performed. In Figure 4.6 the

average mass distribution of the six mixes is displayed. The corresponding values

and the filler-bitumen ratio can be found in Table 4.5.

Work 6 and 2 have the lowest filler-bitumen ratio content (1.25) while work 4

and 5 have the highest (1.57). The filler-bitumen ratio is an important parameter

for pavement performance. It is one influential factor in the fatigue life and in the

resistance to permanent deformation (do Vale et al., 2016). The recommended value
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Table 4.4: Bitumen properties per work.

Work Bitumen content “in” [%] Penetration grade [10−1mm] G [MPa]

1 4.23 26.49 14.2

2 4.35 19.08 17.5

3 4.60 21.02 11.7

4 4.27 25.00 11.0

5 3.86 47.00 11.4

6 4.94 12.25 38.9 1

1 Data from work 6.1.1 and 6.2.2 are not available.

Table 4.5: Mass composition and filler-bitumen ratio per work.

Work Stone [%] Sand [%] Filler [%] Bitumen [%] Filler
Bitumen

1 56.40 33.65 5.84 4.10 1.42

2 53.16 36.37 6.26 4.21 1.25

3 53.25 35.70 6.60 4.45 1.48

4 53.53 35.80 6.52 4.15 1.57

5 53.25 37.09 5.90 3.75 1.57

6 60.02 29.92 6.13 4.92 1.25

for HMA is between 1.2 and 1.5 (Tayh, 2013).

4.3.4 Mix composition in volume

To obtain the mix composition in volume from the mass composition, the mix

components need to be divided by their respective density. Each volume is then

divided for the total volume and the results is multiplied by 100 to obtain the

volume composition. Because the density of each component per work is not given,

some standard values were used (Table 4.6). For this reason the volume composition

(Table 4.7) shows the same proportion between components as the mass composition

(Table 4.5).
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Figure 4.6: Mass distribution of the mix components per work.

Table 4.6: Density of each mix component.

Component Density
[

kg
m3

]
Stone 2700

Sand 2700

Filler 2500

Bitumen 1030

4.3.5 Mixing methods

The data collected in the NL-Lab project can be divided in three different phases;

phase II and III are mixed in the asphalt plant, while phase I in the laboratory with

two different devices. The machinery used in phase I is summarized in Table 4.8

and 4.9. The first table refers to the mixing methods used for prismatic specimens2,

2Prismatic specimens are used to determine stiffness and fatigue resistance.



48 Chapter 4. Data under study

Table 4.7: Volume composition per work.

Work Stone [%] Sand [%] Filler [%] Bitumen [%]

1 52.66 31.41 5.89 10.04

2 49.53 33.88 6.30 10.29

3 49.42 33.13 6.62 10.83

4 49.92 33.38 6.56 10.14

5 49.97 34.81 5.99 9.22

6 55.35 26.66 6.10 11.89

while the second table refers to the cylindrical specimens3. In Table 4.8 and 4.9 the

notation introduced in Section 4.2 is used.

Table 4.8: Mixing methods for phase I for prismatic specimens.

Mixing method Work

Forced action mixer 1.1.1, 2.1.1, 2.1.2, 3.1.1, 4.1.1, 5.1.1, 6.1.1

Planetary mixer 1.1.2

The planetary mix was used only in work 1.1.2 for the realization of prismatic

beams. This is not ideal for the fitting of predictive models which take into account

the mixing procedure. A more homogeneous distribution of mixing techniques is

desirable to reduce possible errors due to the measurements.

Table 4.9: Mixing methods for phase I for cylindrical specimens.

Mixing method Work

Forced action mixer 2.1.1, 2.1.2, 3.1.1, 4.1.1, 5.1.1

Planetary mixer 1.1.1, 1.1.2, 6.1.1

3Cylindrical specimens are used to determine the water sensitivity and the resistance to permanent

deformation.
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4.3.6 Compaction methods

Samples belonging to phase III are compacted in the field by means of field rollers,

while samples from phase I and II are compacted in the laboratory via different

methods, displayed in Table 4.10 and 4.11. The first table refers to the compaction

methods used for prismatic specimens, while the second table refers to the cylin-

drical specimens. In Table 4.10 and 4.11 the notation introduced in Section 4.2 is

used.

Table 4.10: Compaction methods for phase I and I I for the realization of prismatic specimens.

Compaction method Work

Segment compactor 1.1.1, 1.2.1, 2.1.1, 2.2.1, 5.1.1, 5.2.1, 6.2.1

Mini roller 1.1.2, 1.2.2, 4.1.1, 4.2.1

Hand roller 2.1.2, 2.2.2

Shear box 3.1.1, 3.2.1

The hand roller and the shear box compaction methods were used only for

one mix, respectively work 2 and 3 for prismatic beams. The number of mixes

compacted with the hand roller and the shear box should be increased in order to

have a more homogeneous data set.

Table 4.11: Compaction methods for phase I and I I for the realization of cylindrical specimens.

Compaction method Work

Segment compactor 5.2

Gyrator compactor 1.1.1, 1.1.2, 1.2.1, 1.2.2, 2.1, 2.2, 3.1, 3.2, 4.1, 4.2, 5.1, 6.1

Not known 6.2

The segment compactor was used solely for work 5.2 for cylindrical specimens.

As for the prismatic samples, this is not ideal and more mixes compacted via the

segment compactor would be needed.
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Many factors can influence the compaction process in the field (phase III), e.g.

compaction temperature of the mix, type of equipment, and weather conditions.

It should be noted that none of these variables was recorded during the NL-Lab

project. Nevertheless, these data are necessary for a more accurate study on the

effects of the compaction process and to model the variability of performance in the

field.

The combination of mixing and compaction methods in the NL-Lab database

for prismatic and cylindrical specimens is shown in the chord diagrams (Figure 4.7

and 4.8) presented below. To be able to fit accurate predictive models for each

combination of mixing-compaction techniques, at least two different mixes should

be tested. From Figure 4.7 and 4.8 the combinations which would require additional

tests are identified and listed in Table 4.12.

Table 4.12: Combination of compaction and mixing techniques requiring additional tests.

Prismatic specimens Cylindrical

Asphalt plant - Shear box Asphalt plant - Segment compactor

Asphalt plant - Mini roller

Forced action mixer - Shear box

Forced action mixer - Mini roller

Forced action mixer - Hand roller

Planetary mixer - Mini roller
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Figure 4.7: Combination of mixing and compaction methods for prismatic specimens.
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4.3.7 Density

Three types of densities can be defined for an asphalt mix:

• target density, ρtarget;

• maximum density, ρmax;

• achieved density, ρachieved.

Target density

The contractors have the freedom to choose the procedure to follow to define the

target density of their mix (Section 3.3). This means that the target densities of each

work (Table 4.13) are defined via different procedures.

Table 4.13: Target density per work.

Work Target density
[

kg
m3

]
1 2370

2 2375

3 2360

4 2386

5 2380

6 2390

Maximum density

The maximum density of an asphalt mix is reached when the air void is equal to

0 %. Once the maximum density (ρmax) and the target density (ρtarget) are known,

it is possible to compute the target air void percentage (VAtarget) according to the

following expression:

VAtarget = 100 · (1−
ρtarget

ρmax
). (4.2)
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The target level of compaction (Lctarget) of each mix is nothing else than:

Lctarget = 100−VAtarget =
ρtarget

ρmax
. (4.3)

An example, related to work 1, is shown in Table 4.14. The complete table for the

six work can be found in Appendix C.

Table 4.14: Target density, maximum density and target ari voide content per each subset of work 1.

Work Phase Lab ρtarget

[
kg
m3

]
ρmax

[
kg
m3

]
VAtarget [%]

1

1
1

2370

2491 4.857

2 2492 4.896

2
1 2479 4.397

2 2480 4.435

3
1 2483 4.551

2 2484 4.589

Achieved density

The achieved density is the density of the actual asphalt sample. One of the biggest

challenge for the contractors is to reach closer to the target density, hence the target

compaction level. Under-compaction and over-compaction might strongly influence

the performance of the asphalt mix. The various samples in the database have

different densities (Table 4.13) and hence different compaction levels. The deviation

from the target level of compaction is defined as follows:

Lcdev = Lcachieved − Lctarget, (4.4)

where:
Lcdev deviation from the target level of compaction [%];

Lcachieved achieved level of compaction [%].

If Lcdev is bigger than 0, the mix is over-compacted, otherwise under-compacted.
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The distribution of the deviation from the target compaction level for all the data

points is shown in Figure 4.9, while in Figure 4.10-4.12 it is separated per phase,

work, and work and phase together. In the figures the vertical dashed line indicates

the target level of compaction (0 deviation from the target level of compaction).
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Figure 4.9: Deviation from the target compaction level.
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Figure 4.10: Deviation from the target compaction level per phase.
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Figure 4.11: Deviation from the target compaction level per work.
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Figure 4.12: Deviation from the target compaction level per work and phase.

From Figure 4.9 it is clear that on average the samples are slightly over-

compacted. The average deviation from the target level of compaction is +0.6 %.

The maximum and minimum deviation are respectively: +3.69 and −2.53 %. Con-

sidering Figure 4.10 it is evident that the over-compaction is common in all the

phases. Phase I has the smallest deviation from the target level of compaction,

while phase III has the highest. This is probably due to the mixing and compaction

methods. Work 1, 2, 3, and 6 result over-compacted, while work 5 is clearly under-

compacted. Work 4 is the one where the best compaction level is achieved.

The analysis of the content of the NL-Lab database leads to some intermediate

considerations:

• the six asphalt mixes in the database have a very similar granulometry;

• the six asphalt mixes in the database have a similar bitumen content;
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• the mixing and compaction techniques are inhomogeneously represented in

the database;

• the procedure to define the target density of the six mixes is unknown and

might differs from one mix to the other;

• the samples are overall slightly over compacted.

After investigating the content of the NL-Lab database a preliminary analysis of

the functional properties is performed in the next chapter.
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In this chapter a preliminary analysis of the NL-Lab database is performed. First the asphalt

functional properties and their relationship with the mix density are investigated and then

the Dutch functional requirements are checked.

5.1 Functional properties

In this section the four functional properties of the NL-Lab database will be analysed.

Their relationship with the mix properties, mixing and compaction methods is

investigated, with a particular focus on the achieved mix density.

5.1.1 Stiffness

The elastic modulus values are obtained after performing the standard four point

bending test. A total of 388 data-points was collected during the NL-Lab project.

In Figure 5.1 the stiffness of the samples is plotted against their respective density.

As expected, increasing the density also the stiffness of the mix raises. To better

understand what is happening among the different works in Figure 5.2 the data

are separated per work where different colors refer to the different phases. For all

the works the expected trend applies, even though the slope of the regression line

varies substantially. The value for the slope in work 6 (a = 112.94) is 97 % higher

than in work 2 (a = 3.67). In work 2, the low value of the slope is due to the values

of phase III which for a relatively high density have stiffness values in the same

range of the other two phases that have a lower density (ρmean, I−I I = 2389kg/m3).

The value of the slope of work six is much higher than the other works: overall,

for a small variation in density (52.7 kg/m3) there is a huge difference in stiffness

(9949.5 MPa). The reason of this variation is not clear.

58
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The coefficient of determination R2 for a simple linear model, such as :

S = a + b · ρachieved + ε, (5.1)

is equal to 0.43, so R2 is poor. The variables in the model are:

S asphalt stiffness [MPa];

ρachieved asphatl density [kg/m3].

Reduction of the database

On the basis of the previously data analysed, a reduction of the total database is

proposed. The following removals are made:

• work 2 and work 6 because of the presence of polymer modified bitumen;

• work 3 phase I and phase II which were compacted with the shear box. This

method is not among the allowed methods according to EN 13108;

• data collected in year 2. This removal is made because the aging is expected

to have some effects on the functional properties which a simple linear model

would not be able to capture.

After the reduction, the number of data-points in the database is more than halved

passing from 388 to 177 data-points.

In Figure 5.3 the the stiffness and the density of the reduced database are plotted

with the corresponding regression line. In this case R2 is equal to 0.65.

R2 is also computed for other explanatory variables for both databases. The

results of the four most influential ones are shown in Table 5.1. It can be observed

that with the reduction of the data-points R2 increases largely.
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Figure 5.1: Relationship between stiffness and density for the full database.
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Figure 5.2: Relationship between stiffness and density per work.
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Figure 5.3: Relationship between stiffness and density for the reduced database.

Table 5.1: R2 values for the full and reduced database regarding stiffness prediction.

Explanatory variable Full database Reduced database

Density 0.43 0.65

Penetration grade 0.37 0.52

Bitumen content 0.43 0.45

Compaction technique 0.15 0.41

5.1.2 Fatigue resistance

The fatigue resistance is expressed via the ε6 value which is the strain corresponding

to 106 load repetitions. Only one value of ε6 is available for each subset of data

(work i.j.k_year m1) for a total of 26 data-points. In Figure 5.4 the values of ε6 are

plotted against the average density of each subset. The R2 between the two variables

1i: work, j: phase, k: lab, m: year.
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is equal to 0.45. Given the exiguous number of data-points, no further analysis is

performed and no regression model is fit for the fatigue resistance.
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Figure 5.4: Relationship between ε6 and density for the full database.

5.1.3 Resistance to permanent deformation

The same analysis performed for the stiffness were repeated for the resistance to

permanent deformation which is measured via the creep rate fc (Section 2.1). A

total of 107 tri-axial tests were performed.

Also for the cylindrical samples a reduced database is defined for comparison.

The same reductions as for the stiffness database were carried except for work 3

phase II and III. These samples are not compacted by the shear box but by the

gyrator compactor, hence there is no reason for removing them.

Figure 5.5 and 5.6 show the relationship between the creep rate fc and the

density. In the first figure the data points are colored per work, while in the second

figure the data are divided per work, and colored by phase as in the stiffness

section. The expected trend is that with an increase of the mix density the creep
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rate decreases (Garba, 2002). This is observable in Figure 5.5, but only in work 3, 5,

6 of Figure 5.6: for the other works the slope of the regression line is positive.

The relationship between the creep rate and the explanatory variables available

in the NL-Lab data set is investigated for the full database (107 data points) and

for the reduced database (62 data points) (Table 5.2). The results are poor for all the

explanatory variables in both databases.
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Figure 5.5: Relationship between creep rate fc and density for the full database.
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Figure 5.6: Relationship between creep rate fc and density per work.

Table 5.2: R2 values for the full and reduced database regarding the creep rate prediction.

Explanatory variable Full database Reduced database

Density 0.01 0.10

Penetration grade 0.004 0.02

Bitumen content 0.05 0.08

G 0.02 0.17

Filler 0.04 0.002

Filler-bitumen ratio 0.10 0.05

Sand 0.02 0.11

Stone 0.03 0.1

Mixing technique 0.08 0.03

Compaction technique 0.16 0.25
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5.1.4 Water sensitivity

The indirect tensile strength of a total of 177 samples (85 conditioned, 89 uncondi-

tioned) was tested via the monotonic indirect tensile test. The results are followingly

analysed.

Indirect tensile strength unconditioned, ITSDry

In Figure 5.7 and 5.8 the indirect tensile strength of the unconditioned samples is

plotted against the respective density. In the first plot the coloring indicates the

work, while in the second the phase. R2 is equal to 0.49 for the entire data set. The

expected trend is a positive slope as in Figure 5.7. All the works show the same

trend except for work 2.
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Figure 5.7: Relationship between indirect tensile strength dry and density for the full database.
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Figure 5.8: Relationship between indirect tensile strength dry and density per work.

Indirect tensile strength conditioned, ITSWet

The same plots shown for the unconditioned indirect tensile strength are done for

the conditioned samples (Figure 5.9 and 5.10). Also in this case the expected slope

of the regression is positive. It can be observed that the full data set as a whole

(Figure 5.9) follows the expected behaviour. The corresponding R2 is equal to 0.55.

In this case not only work 2 but also work 3 have an opposite trend.

The reduced database is obtained by applying the same criteria used for the

permanent deformation database. The relationship between indirect tensile strength

(unconditioned and conditioned samples) for the reduced database (52 and 51

data points) is shown in Figure 5.11; the respective R2 is equal to 0.12 and 0.33.

This means that, in this case, the reduction of the database does not improve the

correlation between the indirect tensile strength and the mix density. This can be

due to a reduction in variability of the explanatory variables: reducing the database,

the range of variation of certain explanatory variables might also be reduced.
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An overview of the R2 values for the unconditioned and conditioned indirect

tensile strength samples for both databases is shown in Table 5.3. Also in this case

the reduction of the database does not lead to any improvement. It is interesting

that for the full database, once again, the density, the bitumen properties and

the granulometry are the properties with higher R2, even given the limitations

in variability of the database. As compared to the stiffness and the resistance to

permanent deformation, the mixing and compaction techniques score poorly for

the indirect tensile strength.
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Figure 5.9: Relationship between indirect tensile strength wet and density for the full database.
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Figure 5.10: Relationship between indirect tensile strength wet and density per work.
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Figure 5.11: Relationship between indirect tensile strength and density for the reduced database,

divided between unconditioned (left) and conditioned (right) samples.

Table 5.3: R2 values for the full and reduced database regarding the indirect tensile strength prediction.

Explanatory variable Full Database Reduced database

ITSDry ITSWet ITSDry ITSWet

Density 0.49 0.55 0.12 0.33

Penetration grade 0.47 0.59 0.03 0.18

Bitumen content 0.29 0.43 0.68 0.11

G 0.37 0.44 ~0 0.04

Filler 0.04 0.01 ~0 0.01

Filler-bitumen ratio 0.12 0.25 0.01 0.15

Sand 0.23 0.40 0.16 0.40

Stone 0.18 0.34 0.14 0.40

Mixing technique 0.08 0.03 0.10 0.06

Compaction technique 0.16 0.25 0.13 0.22
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Indirect tensile strength ratio

The indirect tensile strength ratio is computed and plotted against the average

density of the unconditioned sample (Figure 5.12). The number of data points

available is equal to 22. Because of this, a predictive model for the indirect tensile

strength ratio can not be fit. On the contrary, a model to predict the indirect tensile

strength will be derived. The detailed procedure is explained in Section 6.3.
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Figure 5.12: Relationship between ITSR and density for the full database.

5.2 Dutch functional requirements

In this section the Dutch functional requirements of each functional property are

compared to the available data. Particular attention is devoted to the density of the

samples. The goal is to check if a range of densities can be found that fulfills all the

functional requirements. This range of densities is addressed as allowed density and

is denoted by ρallowed.

In Figure 5.13 the stiffness values are plotted against the sample density and
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grouped based on the mix type requirements. On each facet of the plot the mix

types are printed. The black horizontal lines define the range of allowed values for

each subgroup. All the regression lines are fully inside the permitted range and

all the data-points are acceptable, except few points belonging to work 6 and work

3. The data outside the range are not part of the reduced database (Section 5.1.1).

Considering solely the regression lines no range of allowed densities can be defined.
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Figure 5.13: Relationship between stiffness and density per mix stiffness requirements. The black

lines indicate the stiffness minimum and maximum value according to CROW (2015) and the grey

area indicates the allowed stiffness values.

The collected fatigue resistance data are too few and scattered to draw a bound-

ary for the allowed density. For completeness, Figure 5.14 shows the data-points

grouped based on the mix requirement for the fatigue resistance. It is clear that

no further analysis can be performed: the three regression lines have completely

different trends and for the mix "TLZ-C" (ε6,min = 80) only three points are available.

However, it is still possible to observe that all the data-points meet the requirement

of the fatigue resistance ( ε6 ≥ ε6,min) except for three points of work 1.
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Figure 5.14: Relationship between the fatigue resistance and density per mix requirement. The black

lines indicate the fatigue minimum value according to CROW (2015) and the grey area indicates the

allowed fatigue values.

The same approach adopted for the stiffness and the fatigue resistance is applied

to the resistance to permanent deformation and to the water sensitivity (Figure 5.15

and 5.16). Also for these properties no allowed densities can be derived. The

coefficient of determination between the creep rate fc and the density is poor (R2=

0.001 for the full database) as shown in Section 5.1. Moreover, two of the three

regression lines are fully inside the allowed range while one ( fc, max = 0.2) is entirely

outside.
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Figure 5.15: Relationship between resistance to permanent deformation and density per mix require-

ment. The black lines indicate the fc maximum value according to CROW (2015) and the grey area

indicates the allowed fc values.

Only a limited number of data points are available for the indirect tensile

strength ratio an no information regarding the allowed density can be derived for

this functional property. The data are split in two groups according to the minimum

allowed indirect tensile strength ratio Figure 5.16. The first regression line is fully

inside of the allowed region and no allowed density can be defined. Only work 5

has a ITSRmin of 0.8, hence only three data points are available. Because of that,

even if a density > 2360kg/m3 would be recommended this boundary should be

discarded because of the limited number of data to which the regression line is

fitted.
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Figure 5.16: Relationship between ITSR and density per mix requirement.The black lines indicate the

ITS minimum value according to CROW (2015) and the grey area indicates the allowed ITSR values.

It is clear from this analysis that an allowed density can not be defined following

the proposed methodology. The reason is twofold:

• the number of available data points is limited and the density of the sample

varies in a relative small range (between 2317 and 2469 [kg/m3]);

• the functional requirements in the Dutch standard (CROW, 2015) seem to be

not restrictive enough.

A different approach should be used in order to define an allowed range of

densities.
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In this chapter the results regarding the asphalt mix predictive models are presented. It is

divided into four sections: (i) fit of the stiffness predictive models; (ii) fit of the resistance

to permanent deformation models; (iii) fit of the indirect tensile strength models; and (iv)

overview of the results. The full fitting procedure is explained in detail in the stiffness section

(Section 6.1), while in the other sections (Section 6.2-6.3) only the results are presented and

interpreted.

6.1 Stiffness predictive model

Before proceeding with the fitting of the stiffness predictive models the Jacobs and

Droogers models (Section 2.1.1) are tested on the NL-Lab database. The reason for

performing this additional analysis is many-fold:

• both models were fitted on Dutch data;

• both models used multiple linear regression;

• both models have a good predictive accuracy.

The goal of this analysis is to prove the inflexibility of the existing models.

6.1.1 Testing existing models

The models proposed by Jacobs and by Droogers are presented below:

Jacobs : S = −52.3 · Pen + 1219.9 ·
Vg

Vb
− 698.1 ·Va + 4344.3, (6.1)

where:

75
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S asphalt stiffness [MPa];

Pen bitumen penetration grade [10−1 mm];

Vg volume percentage of aggregates content [%];

Vb volume percentage of bitumen content [%];

Va volume percentage of air void content [%].

The Jacobs model was already tested on the full database used by Droogers

resulting with a good predictive accuracy (R2 = 0.79 before fit, R2 = 0.81 after fit)

(Droogers, 2018).

Droogers : S = 24.131 · Sbit − 1113.6 ·Va − 826.35 ·Vb, (6.2)

where:
S stiffness [MPa];

Sbit bitumen stiffness [MPa];

Vb volume bitumen content [%];

Va volume air void content [%].

The predictive accuracy of the Droogers model is R2 = 0.85 on his full data set

(Droogers, 2018).

The two models have been tested on the NL-Lab database with the same

coefficients proposed by Jacobs and Droogers, and after refitting the coefficients.

Both models perform poorly in either case. The predicted-measured plots and the

correspondent R2 are shown in Figure 6.1 and 6.2. The results show the serious

inflexibility of the MLR model.
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Figure 6.1: Predicted-measured values for the Jacobs stiffness model with the refitted (left) and

original (right) coefficients.
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Figure 6.2: Predicted-measured values for the Droogers stiffness model with the refitted (left) and

original (right) coefficients.

6.1.2 Multiple linear regression

In this thesis, the following procedure was used to fit multiple linear models:

1. 10 % of the data is used as test database;

2. 5-fold cross-validation is performed on the remaining data points, with 80 %

of the data used as training data set, the remaining 20 % is the validation

database;

3. averaging the 5 models to obtain the final one;

4. estimation of the uncertainties on the predictions of the averaged model.

The chosen multiple linear regression model for stiffness predictions is fit on the

full database and its equation is displayed in Equation 6.3. The categorical variable
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are handled as described in Section 3.1.1 and the values of all the coefficients can be

found in Table 6.1.

S = a + b · ρachieved + c · Pen + d · Filler + e ·mixing + f · compacting + ε, (6.3)

where:
S asphalt stiffness [MPa];

ρachieved asphalt density [kg/m3];

Pen penetration grade of the bitumen [mm];

Filler filler percentage of the aggregates [%];

Mixing mixing technique. It is a categorical value;

Compacting compacting technique. It is a categorical value.

5-fold cross-validation was performed to avoid overfitting, as explained in

Section 3.1.1. The values predicted by the model for each iteration of the cross-

validation are plotted against the measured value in Figure 6.3. In case of a perfect

prediction the points would be located on the black straight line. It is visible that

the model is not over-fitted on the training database (20 % of the data) because the

vertical shift of each data-point is small among the five iterations.
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Figure 6.3: Predicted-measured values for the 5 iterations of the cross-validation for the stiffness

linear predictive model.

The predictive accuracy of the model is poor with a R2 of 0.62 on the test subset.

The model uncertainty is significant with a standard deviation σε = 982.40 MPa for

the ε term. To have a better understanding of the uncertainty level, we can compute

to which percentage of the stiffness range the standard deviation σ corresponds to

(Equation 6.4).

Pσ,S,lin =
σ

Smax − Smin
=

982.4
17866.47− 6318

= 8.51 %, (6.4)

where:
Pσ, S,lin Percentage of the stiffness equal to the standard deviation of the error

term ε for the multiple linear regression model;

Smax maximum value registered for the stiffness in the database;

Smin minimum value registered for the stiffness in the database.

As comparison, the same model was also fit on the reduced database, defined in
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Section 5.1.1. The value of the goodness-of-fit increases to 0.89 on the test subset

and σε drastically decreases to 417.89 MPa. A comparison of the cross-validation

results is displayed in Figure 6.4. Figure 6.5 shows the predicted values of the

averaged stiffness models against the measured values. In red the points belonging

to the test subset are plotted. The R2 value for all the points part of the database (in

black) and for the test subset (in red) is displayed on the plot.

Under the assumptions of no or little multicollinearity, the relationship between

the response variable, in this case the stiffness, and the numerical explanatory

variables can be plotted. To do this, one selected numerical variable varies between

its minimum and the maximum registered values in the database, while the other

variables are set to their median value for the numerical variables and to their mode

for the categorical variables. Being the uncertainties estimated, the 95% confidence

interval is also plotted for both models (Figure 6.6-6.8).
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Figure 6.4: Comparison between the cross-validation results for the stiffness linear model fitted on

the full and the reduced database.
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Figure 6.5: Predicted-measured values for the averaged stiffness linear predictive model fitted on the

full and the reduced database.
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Figure 6.6: Comparison between stiffness predictions for models fitted on the full and reduced

database varying the density. The predicted stiffness is plotted with a 95 % confidence level.
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Figure 6.7: Comparison between stiffness predictions for models fitted on the full and reduced

database varying the penetration grade. The predicted stiffness is plotted with a 95 % confidence

level.
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Figure 6.8: Comparison between stiffness predictions for models fitted on the full and reduced

database varying the filler content. The predicted stiffness is plotted with a 95 % confidence level.

Table 6.1: Coefficients of the stiffness linear model.

Coefficient Explanatory variable Value

a Intercept -83812.4

b ρachieved 36.0

c Pen -53.1

d Filler 1315.0

Mixing - Asphalt plant 0

Mixing - Planetary mixer -225.8e

Mixing - Forced action -1134.5

f

Compacting - Field roller 0

Compacting - Mini roller 443.4

Compacting - Hand roller 1407.7

Compacting - Shear box -683.2

Compacting - Segment compactor 1986.5
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6.1.3 Gradient boosting regression

Given the characteristics of the gradient boosting method (Section 3.1.3), the full

database was utilized to fit the regression model. In this case, the parsimony

principle (Hawkins, 2004) is not applied and the number of variables of the model

does not have any limitations. Among the many variables available, a selection

was made to include those which might have an influence on the stiffness (e.g. the

volume of the specimens tested was left out). The final selection of parameters is

listed below with the corresponding unit of measure used.

• phase (c) [-];

• year [-];

• modified bitumen (c) [-];

• mixing technique (c) [-];

• compacting technique (c) [-];

• asphalt density [kg/m3];

• bitumen content [%];

• bitumen shear modulus [MPa];

• bitumen penetration grade

[10−1mm];

• reclaimed asphalt content [%];

• percentage of aggregates passing at

the sieve size of 22.4 mm [%];

• percentage of aggregates passing at

the sieve size of 16 mm [%];

• percentage of aggregates passing at

the sieve size of 11.2 mm [%];

• percentage of aggregates passing at

the sieve size of 8 mm [%];

• percentage of aggregates passing at

the sieve size of 5.6 mm [%];

• percentage of aggregates passing at

the sieve size of 2 mm [%];

• filler content [%];

The parameters followed by "(c)" are categorical variables, the rest is numerical.

The same above-listed parameters are also used to fit the other gradient boosting

models presented in the following sections (Section 6.2 and section 6.3). In this

research, the following procedure was used to fit GB models:
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1. 10 % of the data is used as test database;

2. 5-fold cross-validation is performed on the remaining data points, with 80 %

of the data used as training data set, the remaining 20 % is the validation

database;

3. tuning of the hyper-parameters until the goodness-of-fit measure is in the

same range for each iteration of the cross-validation (±5 %);

4. averaging the 5 models to obtain the final one;

5. estimation of the uncertainties on the predictions of the averaged model.

Figure 6.9 and Figure 6.10 show the prediction of the model against the measured

stiffness values for the five iterations of the cross-validation and for the averaged

model, which has a R2 of 0.97 on the full database. On the test subset R2 is still very

high with a value of 0.96.

As explained in section 3.2 the standard deviation σ is not constant. In order

to provide numerical information regarding the model uncertainties, the average

standard deviation of the model is computed and it is equal to σGB, stiff = 345.27

[MPa]. As for the linear model, it is possible to compute the percentage of the

stiffness correspondent to the standard deviation which is:

Pœ, S, GB = 2.9 %

An iterative procedure was followed to find the best combination of hyper-

parameters. The final setting is displayed in Table 6.2. The parameters which are

not mentioned are set to default value of the CatBoost library (Yandex, 2019b). It

is also possible to extract the importance of each variable of the model, these are

normalized to sum up to 100 and are shown in Figure 6.11. The importance of the

variables is computed according to Yandex (2019c).



6.1. Stiffness predictive model 87

6000 9000 12000 15000
Measured value [MPa]

6000

9000

12000

15000

P
re
d
ic
te
d
 v

al
u
e 

[M
P
a]

iterations

1

2

3

4

5

Figure 6.9: Predicted-measured values for the 5 iterations of the cross-validation for the stiffness GB

predictive model.
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Figure 6.10: Predicted-measured values for the averaged stiffness GB predictive model.
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Table 6.2: Setting of gradient boosting regression for the stiffness model

Hyper-parameter Value

Iterations 2000

Tree depth 8

Learning ratio 0.7
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Figure 6.11: Normalized importance of the variables in the GB stiffness model.

The asphalt density is the most influential explanatory variable in the GB stiffness

model with a high normalized importance of 17.1, followed by the penetration grade

with a score of 11.5. The percentage passing at the 5.6 mm sieve, the filler and

the bitumen content and the compaction technique have a moderate importance

(between 5 and 10), while all the other explanatory variables have a small importance

(<5).
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Explanatory variables reduction

Other two GB stiffness predictive models are fitted using a reduced number of

explanatory variables. The explanatory variables used in the two models, Sred, 1 and

Sred, 2 are listed in Table 6.3.

Table 6.3: Explanatory variables used in the GB stiffness models Sred, 1 and Sred, 2.

Sred, 1 Sred, 2

asphalt density asphalt density

penetration grade penetration grade

filler content filler content

mixing technique (c) bitumen content

compacting technique (c)

The model Sred, 1 uses the same explanatory variables of the MLR model shown

in Section 6.1.2, while Sred, 2 uses four of the five most important explanatory

variables of the first fitted GB model (Figure 6.11). The same fitting procedure

followed before is applied and the predicted-measured plot for both models is

shown in Figure 6.12 and 6.13. Both models have a very high predictive accuracy

on the test subset (R2 = 0.96). The predictive accuracy of the model is therefore

not affected by the reduction in explanatory variables. In Figure 6.14 and 6.15 the

normalized importance of the explanatory variables is displayed.
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Figure 6.12: Predicted-measured values for the averaged Sred, 1 model.
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Figure 6.13: Predicted-measured values for the averaged Sred, 2 model.
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Figure 6.14: Normalized importance of the variables in the Sred, 1 model.
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Figure 6.15: Normalized importance of the variables in the Sred, 2 model.
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The mixing and compacting technique have a small importance (< 5) in the

Sred, 1 model. The penetration grade is the most important explanatory variable with

an importance > 60. The importance of the penetration grade increased substantially

from the initial stiffness GB model. In the Sred, 2 model the importance of the four

explanatory variables is more evenly distributed than in the Sred, 1 model. The

most important explanatory variable is the density (> 30), followed by the bitumen

content (> 25), the penetration grade (> 25) and the filler content (> 10). In light of

these results a parametric study of the gradient boosting models is recommended.

6.1.4 Comparison

The difference in predictive accuracy between the GB and the linear model is large.

Gradient boosting model has a higher predictive accuracy (R2 = 0.96) than the

linear one (R2 = 0.62), being able to capture non-linear trends and because of the

higher numbers of explanatory variables used. A plot comparing the linear model

and the gradient boosting model is created, following the method used for plotting

Figure 6.6, and it is displayed in Figure 6.16. In each subplot one of the explanatory

variables varies while the other variables are fixed at their median (mode) value. In

case of explanatory variables which are not part of the linear model (e.g. bitumen

content) the linear model predicts, obviously, a constant value.

It is observable that the two models follow similar trends, but the GB model has

a significantly narrower confidence interval for all the variables.
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Figure 6.16: Relationship between stiffness and the independent variables for the linear (blue) and

GB (red) model.

6.2 Resistance to permanent deformation predictive model

6.2.1 Multiple linear regression

As analysed in Section 5.1, the coefficients of determination between the resistance to

permanent deformation fc and the mix properties via a linear relationship (Table 5.2)

are poor for either the full and the reduced database (Table 5.2). For this reason, a

model was fitted only to the full database (107 data points) and it is presented in
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Equation 6.5.

fc = a + b · ρachieved + c · G + d · C_11.2 + e ·mixing + f · compacting + ε, (6.5)

where:
ρachieved asphalt density [kg/m3];

G shear modulus of the bitumen at 8 Hz [MPa];

C_11.2 percentage of aggregates passing at the sieve measuring 11.2 mm

[%];

Mixing mixing technique, a categorical variable;

Compacting compacting technique, a categorical variable.

The model has a moderate R2 of 0.67 on the test subset. σε is equal to 0.11 µε
cycle

and it corresponds to the 11.7 % of the creep rate range.

These characteristics of the model already suggest its unsatisfactory quality.

Moreover, observing the results of the cross-validation in Figure 6.17 it is clear that

the models are susceptible to the variation in the training data set.
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Figure 6.17: Predicted-measured values for the 5 iterations of the cross-validation for for the resistance

to permanent deformation linear predictive model.

Figure 6.18 shows the predicted values of the averaged resistance to permanent

deformation model against the measured values. The points of the test subset are

plotted in red. The R2 values for all the points of the database (in black) and for the

test subset (in red) are displayed on the plot.
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Figure 6.18: Predicted-measured values for the averaged resistance to permanent deformation linear

predictive model.

In Table 6.4 the coefficients of the model presented in Equation 6.5 are displayed.

Table 6.4: Coefficients of the resistance to permanent deformation linear model.

Coefficient Explanatory variable Value

a Intercept 2.3

b ρachieved −2.2 · 10−3

c G −2.9 · 10−9

d C_11.2 3.9 · 10−2

Mixing - Asphalt plant 0

Mixing - Planetary mixer −5.8 · 10−2e

Mixing - Forced action −0.1

f

Compacting - Field roller 0

Compacting - Gyrator compactor −6.4 · 10−2

Compacting - Segment compactor 2.4 · 10−1
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6.2.2 Gradient boosting regression

The gradient boosting model for resistance to permanent deformation has an high

predictive accuracy, with R2 = 0.86 on the test subset. Figure 6.19 and 6.20 show

the results of the cross-validation and the averaged model. As for the linear case,

the fitted model is susceptible to the variation of the training set. One of the causes

of this phenomenon is the limited number of data available. Nevertheless, the

quality of the model should be improved via the averaging process. The average

value of the standard deviation is equal to σGB, fc = 0.04
[

µε
cycle · 106

]
. In Table 6.5

the hyper-parameters value are listed. The importance of the variable of the model

is shown in Figure 6.21.
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Figure 6.19: Predicted-measured values for the 5 iterations of the cross-validation for the resistance to

permanent deformation GB predictive model.
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Figure 6.20: Predicted-measured values for the averaged resistance to permanent deformation GB

predictive model.

Table 6.5: Hyper-parameters setting of gradient boosting regression for the resistance to permanent

deformation model.

Hyper-parameter Value

Iterations 6000

Tree depth 6

Learning ratio 0.03
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Figure 6.21: Normalized importance of the variables in the GB resistance to permanent deformation

model.

The penetration grade and the percentage of aggregates passing at the 11.2 mm

sieve are the two explanatory variables with the highest importance (> 14). Also

the bitumen shear modulus has a high importance (12.4). The asphalt density and

the bitumen content have an intermediate importance (between 5 and 10), while all

the other variables have a small importance (< 5).

6.2.3 Comparison

the difference in predictive accuracy of the two models is large. Gradient boosting

has an R2 of 0.86 while for the linear model R2 = 0.67. In Figure 6.22 the comparison

of the two models along different explanatory variables is shown.
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Figure 6.22: Relationship between the creep rate fc and the independent variables for the linear (blue)

and GB (red) model.

The linear model presents steep slopes for the mix density and for the C_11.2,

while in the GB model, even if these parameters have certainly an influence on the

creep rate, the trend is smoother. A very similar behaviour between the models

is registered for the bitumen shear modulus G. For the other variables, the linear

model assumes a constant value because these are not included in the model.

Even though these variables are part of the GB models it is noticeable that only

few of them, like the bitumen content and the penetration grade, make the creep

rate prediction to vary (and not significantly). What is remarkable is that for all

explanatory variables the 95% confidence interval of the linear model is larger than

the GB one.
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6.3 Indirect tensile strength predictive model

6.3.1 Multiple linear regression

Considering the data available, the author decided to fit a linear model to predict

the indirect tensile strength instead of fitting a model for the indirect tensile strength

ratio which is the parameter used in the Dutch functional requirements (CROW,

2015). A categorical variable which differentiates between unconditioned and

conditioned samples is added to the model to allow the calculation of the indirect

tensile strength ratio (Equation 2.1). The ITS model was fitted on the full database

for the same reason of the resistance to permanent deformation model. The fitted

model is shown in Equation 6.6 and the values of the coefficients are reported in

Table 6.6. The results of the cross-validation are displayed in Figure 6.23.
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Figure 6.23: Predicted-measured values for the 5 iterations of the cross-validation for the indirect

tensile strength linear predictive model.
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From the figure above-presented it is clear that also the ITS model is susceptible

to the training data set. This is an issue common to models fitted on relative small-

databases. The model has a R2 = 0.72 on the test subset and a σ = 0.36 MPa which

is the 10.8 % of the indirect tensile strength variation in the database. Figure 6.24

shows the predicted values of the averaged indirect tensile strength model against

the measured values. The points belonging to the test subset are plotted in red. The

R2 value for all the points part of the database (in black) and for the test subset (in

red) is displayed on the plot.
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Figure 6.24: Predicted-measured values for the averaged ITS linear predictive model.

ITS = a + b · ρachieved + c · Bitumen + d · C_11.2 + e · Type + ε, (6.6)

where:
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ρachieved asphalt density [kg/m3];

Bitumen bitumen content [%];

C_11.2 percentage of aggregates passing at the sieve measuring 11.2 mm [%];

Type type of the sample, unconditioned or conditioned. It is a categorical

variable.

Table 6.6: Coefficients of the ITS linear model

Coefficient Explanatory variable Value

a Intercept −20.9

b ρachieved −9.2 · 10−3

c Bitumen 9.9 · 10−1

d C_11.2 3.1 · 10−2

Type - Unconditioned 0
e

Type - Conditioned 2.5 · 10−1

6.3.2 Gradient boosting regression

The model fit via gradient boosting has as explanatory variables the same listed

for the stiffness and used for the resistance to permanent deformation models with

the addition of the categorical variable “Type" (“unconditioned\conditioned") for

the reasons above-mentioned. The results of the cross-validation and of the model

averaging are displayed in Figure 6.25 and 6.26. Also in the case of gradient boosting

the predicted values of the five models present a significant vertical shift. As for the

resistance to permanent deformation, averaging the model the problem is partially

reduced, as can be observed in Figure 6.26. The predictive accuracy of the model

is good. It is equal to R2 = 0.82 on the test subset and the average value of the

standard deviation is: σGB,ITS = 0.16 MPa. The setting of the hyper-parameters can

be found in Table 6.7. The normalized importance of the explanatory variables of

the model is displayed in Figure 6.27.
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Figure 6.25: Predicted-measured values for the 5 iterations of the cross-validation for the indirect

tensile strength GB predictive model.
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Figure 6.26: Predicted-measured values for the averaged indirect tensile strength GB predictive model.
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Table 6.7: Hyper-parameters setting of gradient boosting regression for the indirect tensile strength

model.

Hyper-parameter Value

Iterations 4000

Tree depth 6

Learning ratio 0.03
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Figure 6.27: Normalized importance of the variables in the GB ITS model.

None of the explanatory variables in the ITS model has a high importance (> 10),

but the first ten explanatory variables have a moderate importance (between 5 and

10). The others have a small importance. It is interesting that among the first six

explanatory variables, four are related to the aggregates size (C_8, C_2, C_11.2,

C_16).
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6.3.3 Comparison

The difference in predictive accuracy between the GB and the linear model is

considerable. Figure 6.28 shows the predicted indirect tensile strength against the

various explanatory variables for the two models.
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Figure 6.28: Relationship between the ITS and the independent variables for the linear (blue) and GB

(red) model.

In this case, the linear model has a steeper trend than the GB model for what

concerns the mix density and the bitumen content. The trend described by the GB

model for the C_11.2 variable is not monotonic: the slope is positive until a value

77 % and then it becomes negative. For this variable the GB model is in any case

inside the confidence interval of the linear model. For the other variables not part
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of the linear models the same considerations made for the resistance to permanent

deformation model apply.

6.4 Overview of the results

To compare the different models an overview table is made where the predictive

accuracy, the uncertainty level expressed as percentage of the range of the response

variable, and the number of data points used to fit the model are listed (Table 6.8).

Observing the overview table, it is clear that the GB models outperform the linear

Table 6.8: Overview of the fitted models.

Model
Stiffness

Resistance to

permanent deformation
Indirect tensile strength

Linear GB Linear GB Linear GB

R2 0.79 0.97 0.67 0.92 0.69 0.88

R2
test 0.62 0.96 0.67 0.86 0.72 0.82

P [%] 8.5 2.9 (a) 11.7 4.3 (a) 10.8 4.8 (a)

Data points 388 388 107 107 175 175

(a): The uncertainty percentage is computed using the averaged standard deviation.

ones for what concerns predictive accuracy. All the GB stiffness model have a very

high predictive accuracy (R2
stiff, GB, test = 0.96) and the other two models have a high

and good predictive accuracy (R2
fc, GB, test

= 0.86 and R2
ITS, GB, test = 0.82) on the test

database. The difference in predictive accuracy between the GB models can be

attributed to three main factors:

• Number of data points available. The models are fitted on different number

of data points;

• Small variability in the database for influential explanatory variables;

• Possible lack of influential variables in the database, e.g.temperature of com-
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paction for phase III.

The linear models performs poorly (R2
stiff, lin, test = 0.62) and moderately (R2

fc, lin, test
= 0.67

and R2
ITS, lin, test = 0.72).

Regarding the level of uncertainty, it is not possible to compare numerically the

linear models with the GB models; the reason is that the uncertainties are defined in

a different way for the two models. Nevertheless, observing Figure 6.16, Figure 6.22

and Figure 6.28, it is undeniable that the confidence interval of the GB models is

narrower than the confidence interval of the linear model. However, the uncertainty

level can be compared if the linear and the GB models are considered separately. In

this case, the linear and the GB stiffness models are the ones with the lowest level of

uncertainty, 8.51 % for the linear and 2.9 % for the GB model. This fact is expected

because the stiffness predictive models are the best performing models and they

are fitted on the highest number of data points.

It is questionable what is the scope of applicability of the above presented

models. Following a data-driven approach, extrapolation is highly advised against.

For multidimensional models defining interpolation and extrapolation is not trivial,

therefore a criterion to assess if interpolation or extrapolation is performed should

be chosen before applying a model. The moderate number of data available for the

resistance to permanent deformation and indirect tensile strength results in the fact

that the two models are susceptible to the training subset, as shown in Figure 6.17,

Figure 6.19, Figure 6.23, Figure 6.25. The stiffness model is the most reliable being

fitted on a larger database, nevertheless the range of applicability is still limited,

given the little variability of some of the explanatory variables.
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In this chapter the conclusions of this work and the recommendations for further analyses are

presented. The chapter is divided into three sections: (i) answers to main research questions;

(ii) answers to sub research questions; and (iii) recommendations for further analyses.

7.1 Answers to main research questions

The main research questions (Section 1.2) and answers are listed below.

Q: Can gradient boosting regression be used to derive high predictive accuracy

models for the functional properties of asphalt concrete?

A: The answer is yes for the stiffness and resistance to permanent deformation

functional properties, and no for the indirect tensile strength. The fitted stiffness

models have a very high predictive accuracy (R2 = 0.96) on the test data set and

the resistance to permanent deformation model has a high predictive accuracy

(R2 = 0.86) on the test data set of the NL-Lab database. Although the predictive

accuracy for the ITS model is only good (R2 = 0.82), in the opinion of the author,

the results of the other functional properties suggest that gradient boosting can be

used to derive high predictive accuracy models for all three functional properties of

asphalt concrete. The reasons for not achieving high predictive accuracy for the ITS

model can be many-fold:

• non-optimum value of the hyper-parameters;

• limited number of data points;

• limited variability in the explanatory variables;

• lack of influential explanatory variables in the database.

109
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These considerations emphasizes the importance of the database used for training

the GB models. The database strongly influences the predictive accuracy of the

models fitted to it, as in all the data-driven approaches.

Q: How do gradient boosting models compare with the currently commonplace

multiple linear regression models?

A: The gradient boosting models outperforms the multiple linear regression models.

The difference in predictive accuracy is large for the stiffness (36 %) and for the re-

sistance to permanent deformation (22 %) models, while it is considerable for the ITS

model (12 %). In Table 7.1 the R2 value on the test subset for each model is presented.

Table 7.1: Overview of the R2 values on the test subset for the MLR and the GB models.

Model
Stiffness

Resistance to

permanent deformation
Indirect tensile strength

Linear GB Linear GB Linear GB

R2
test 0.62 0.96 0.67 0.86 0.72 0.82

7.2 Answers to sub research questions

The sub research questions (Section 1.2) and answers are listed below.

Q: What is the prediction uncertainty of the GB and ML models?

A: In Table 6.8 the uncertainty level expressed as percentage of the range of the

response variable is shown. The uncertainty of the GB an MLR models was

estimated as described in section 3.2. Because two different methods were applied

the uncertainties can not be compared between them. Nevertheless, from Figure 6.16,

6.22, and 6.28 it is clear that the confidence interval for the GB models is narrower.

Considering the linear and the GB models separately, it can be observed that the

stiffness model has the lowest level of uncertainty (2.9 % for GB, 8.5 % for MLR),
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while the resistance to permanent deformation has the highest (4.8 % for GB, 10.8 %

for MLR) (Table 7.2).

Table 7.2: Overview of the uncertainty level for the MLR and the GB models.

Model
Stiffness

Resistance to

permanent deformation
Indirect tensile strength

Linear GB Linear GB Linear GB

P [%] 8.5 2.9 (a) 11.7 4.3 (a) 10.8 4.8 (a)

Data points 388 388 107 107 175 175

(a): The uncertainty percentage is computed using the averaged standard deviation.

Q: What is the scope of applicability and what are the limitations of the fitted

models?

A: The scope of applicability of the MLR and GB models is dependent on the

training database and extrapolation is strongly advised against, being both models

empirical. The main limitation of the linear models is their inflexibility, while for

the GB model the main limitation is the high number of explanatory variables used.

The consequence of this is that many variables should be recorded to apply the

model.

Q: Which are the most relevant explanatory variables for each fitted predictive

GB model?

A: The normalized importance of the explanatory variables for each GB model

is displayed in Figure 6.11, 6.21, and 6.27. The five most important explanatory

variables are listed in Table 7.3.

Q: Are there explanatory variables which are relevant for all the GB models?

A: The asphalt density and the bitumen content are the two explanatory variables

that are among the five most important explanatory variables for all the models.

The penetration grade should also be considered as one of the most influential

explanatory variables. It is the most important explanatory variable for the resistance

to permanent deformation model, the second for the stiffness model, and the seventh
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Table 7.3: List of the five most important explanatory variables for each GB model.

Importance

order
Stiffness

Resistance to

permanent deformation

Indirect

tensile strength

1. asphalt density1 penetration grade C_8

2. penetration grade C_11.2 C_2

3. C_5.6 bitumen shear modulus G C_11.2

4. filler content asphalt density asphalt density

5. bitumen content bitumen content bitumen content

1 The bold explanatory variables are among the first five most important variables

for all the GB models.

for the ITS model.

7.3 Recommendations

At the end of this work, three main recommendations are formulated by the author:

• the recommended procedure to follow when a predictive model is fitted is to

use part of the data for training the model and the rest as test subset.

• the use of gradient boosting is suggested to fit predictive models for asphalt

functional properties, rather than multiple linear regression;

• the quantification of the uncertainties of the fitted models is highly advised.

7.4 Future work

Suggestions for future work are hereby presented in two subsections: the first one

related to a possible extension of the NL-Lab project and the second subsection

related to improvement of the predictive models.
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7.4.1 NL-Lab project

The following actions are suggested in case of a second phase of the NL-Lab project:

• extension of the database, enhancing the variability in the explanatory vari-

ables and making the database more homogeneous for what concerns the

mixing and compacting techniques;

• addition of measurements of variables which may influence the functional

properties as the temperature of compaction and the location of sampling in

the field;

• agreement on protocol to define the target density, so that if new mixes are

added to the database their target density is defined following the same

procedure.

7.4.2 Improvement of the predictive models

Future analysis could:

• refit the predictive models including the Dura Vermeer database or other

available data. The content of the Dura Vermeer database is analysed and

compared with the NL-Lab database in Appendix D. This would increase

the applicability of the predictive models and it might increase the predictive

accuracy;

• definition of a rigorous procedure to assess interpolation and extrapolation,

before applying the models;

• development of a customized loss function which takes into account some

physical relationships;

• perform a parametric analysis of the models to minimize the number of

explanatory variables used;
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• further test of the methodology used for estimate the uncertainties of the GB

models.
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Glossary

The terminology and notation used in this work are based on the terminology

accepted and used in (i) machine learning; (ii) mathematical statistics and probability

theory; and (iii) pavement engineering. The roman numerals indicate precedence

in case of conflicting terminology or notation in different fields. This glossary

contains some definitions which are taken verbatim from relevant glossaries of TNO

Structural Reliability reports.

Categorical variable Variable which take its values from a set with finite number

of elements. A categorical value is assigned to each data-point in the group,

on the base of a qualitative property.

Explanatory variable/predictor/independent variable/feature Variable which

seeks to predict the response variable in a regression problem.

Loss function “A function which assigns numerical values to making good

or bad decisions. Explicitly a general loss function is denoted as L(d, θ)

expressing how bad it would be to make decision d if the parameter value

was θ”(Everitt, 2002).

Minimal problem A problem that is as simple as possible yet able to capture

the essential features of the examined question; “as simple as possible, but

no simpler”. Minimal is used in the sense of minimal working example in

programming.
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Model A mathematical representation of selected characteristics of an object or

phenomenon.

Predictive power/accuracy It expresses the goodness of a model in predicting

response values on which the model was not trained (validation data set).

Commonly quantified with the R2 value (Equation 3.1) corresponding to

the validation data set. In this thesis the adjectives of predictive accuracy

are to be interpreted as described in Table G.1. For clarity, this terminology

and interpretation are used throughout the thesis and highlighted with

italicized adjectives in the text, e.g. good predictive accuracy would be used

for a model that has an R2 = 0.8 on the validation set.

Table G.1: Predictive power/accuracy scale in terms of R2.

Term Lower bound Upper bound

poor −∞ 0.65

moderate 0.65 0.75

good 0.75 0.85

high 0.85 0.95

very high 0.95 1

Relative difference The absolute value of the relative difference between two

values. It is defined as εrel = |
yi−yj

yi
|. In this thesis the adjectives of relative

difference are to be interpreted as described in Table G.2. For clarity,

this terminology and interpretation are used throughout the thesis and

highlighted with italicized adjectives in the text, e.g. large difference would

be used if a variable is 30 % larger than another one.

Response variable/predicted variable/dependent variable Variable to be pre-

dicted by the explanatory variable in a regression problem.
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Table G.2: Relative difference, εrel, [%] scale applied in this thesis.

Term Lower bound Upper bound

negligible 0 5

marked 5 10

considerable 10 20

large 20 40

substantial 40 ∞

Standard error “The standard deviation of the sampling distribution of a statistic”

(Everitt, 2002).

Statistical inference “The process of drawing conclusions about populations or

other collections of objects about which we have only partial knowledge

from samples”(Simon, 1997) .

Test data set “The sample of data used to provide an unbiased evaluation of a

model fit on the training data set while tuning model hyper-parameters”

(Brownlee, 2017).

Training data set “The sample of data used to fit the model” (Brownlee, 2017).

Validation data set “The sample of data used to provide an unbiased evaluation

of a final model fit on the training data set”(Brownlee, 2017).



A | Regression working examples

Following the advice of the committee members of the author, minimal working

examples are presented to ease the understanding of the applied regression methods.

The presentation of the minimal working examples follows that of the suggestions

and requests of the committee members.

A.1 MLR working example

For simplicity only two explanatory variables are selected from the database: the

achieved density and the mixing method. The mixing method is a categorical

variable, via one-hot-encoding it will be transformed into two numerical variables

"Planetary mixer" and "Forced action mixer". The response variable is the asphalt

mix stiffness. The model to be fitted is:

S = a1 · ρachieved + a2 ·Mplanetary + a3 ·Mforced + b + ε, (A.1)

where:
S asphalt stiffness [MPa];

ρachieved density of the sample [kg/m3];

Mplanetary planetary mixer. This variable originates from the one-hot encoding

transformation. It can assume only 0 or 1 values;

Mforced forced action mixer. This variable originates from the one-hot encod-

ing transformation. It can assume only 0 or 1 value.

Using the least squares method the coefficients ai and b of Equation A.1 are

determined1.

1To determine the coefficients a system of four equations needs to be solved.
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In Python, once defined the directory where the data-base is located (DATA_DIR),

the following code can be run to load the data and split the initial data set in a

training and testing set. The training set is the 80 % of the full database.

1 import os
2 import pandas as pd
3

4

5 data_file_name = "stiffness_data.csv"
6 file_path = os.path.join(DATA_DIR, data_file_name)
7 full_df = pd.read_csv(file_path, delimiter= ';')
8

9 train_ratio = 0.8
10 seed = 42 # for reproducibility
11

12 full_df = full_df.sample(frac=1, random_state=42) # shuffling the data before
splitting in training and test set.↪→

13 nrows = round(full_df.shape[0]*train_ratio)
14 df_train = full_df.iloc[0:nrows, :]
15 df_test = full_df.iloc[nrows:, :]

The model can be fitted using the statsmodels library and the coefficients can be

obtained with attribute params.

1 from statsmodels.formula.api import ols
2

3 model = ols('stiffness~density+C(mixing)', full_df).fit()
4 coefficients = model.params

The coefficients are equal to:

a1 = 48.7

a2 = −222.2

a3 = 566.4

b = −106713.5.
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Now the predicted values for the training and test subset, and for the entire

data set are obtained and then the correspondent R2 are computed.

1 y_pred = model.predict(X)
2 y_pred_train = model.predict(X_train)
3 y_pred_test = model.predict(X_test)
4

5 R2 = r2_score(y, y_pred)
6 R2 = r2_score(y, y_pred_train)
7 R2_test = r2_score(y_test, y_pred_test)

The obtained values of R2 are:

R2
fulldataset = 0.44

R2
train = 0.44

R2
test = 0.38.

In the end, the predicted values can be plotted against the measured values

(Figure A.1).The R2 value for the full data set and for the test subset are printed on

the plot.

1 from plotnine import *
2

3 text = pd.DataFrame({'r2':[r'R^2=0.44']})
4

5 p = ggplot(data=full_df, mapping=aes(x='stiffness', y='stiffness_predicted'))
6 p = p + geom_point(color='#00BFC4', alpha=0.6)
7 p = p + geom_line(mapping=aes(y='stiffness'), color='black')
8 p = p + theme(axis_text=element_text(size=14),
9 axis_title=element_text(size=14))

10 p = p + theme(text=element_text(family='Palatino'))
11 p = p + xlab('Measured value [MPa]')
12 p = p + ylab('Predicted value [MPa]')
13 p = p + geom_text(data=text, mapping=aes(x=6800, y=18000, label='r2'),

color='black', nudge_x=-0.01, parse=True, family='Palatino')↪→

14 print(p)
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Figure A.1: Predicted-measured values for the fitted stiffness predictive model.

A.2 GB working example

The same variables used in the MLR example (Appendix A.1) are selected to fit the

GB model.

In Python, once defined the directory where the data-base is located (DATA_DIR),

the following code can be run to load the data, list the variables to be considered in

the model, and specify the categorical and the numerical variables. In the last two

lines of code, the explanatory variables are divided from the response variable.

1 import os
2 import pandas as pd
3

4 data_file_name = "stiffness_data.csv"
5 file_path = os.path.join(DATA_DIR, data_file_name)
6 full_df = pd.read_csv(file_path, delimiter= ';')
7 cat_column_names = ["mixing", "compacting"]
8 float_column_names = ["density", "stiffness","bitumen"]
9

10 model_features = ["mixing", "compacting",



128 Appendix A. Regression working examples

11 "density", "stiffness", "bitumen"]
12

13 full_df = full_df[model_features]
14 X = full_df.drop('stiffness', axis=1)
15 y = full_df.stiffness

At this point, the explanatory and response variables are split in a training and

a test subset. The training subset is the 80 % of the full database. This is done with

the the function train_test_split of the sklearn library.

1 from sklearn.model_selection import train_test_split
2

3 train_ratio = 0.8
4 seed = 42 # for reproducibility
5 X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=train_ratio,

random_state=seed)↪→

Now it is possible to fit the regression model using the CatBoost library. Before

fitting the model a CatBoost data structure called Pool is created. This step is

necessary to fit the model.

1 from catboost import *
2 train_pool = Pool(X_train,
3 y_train,
4 cat_features=cat_column_names)
5

6 test_pool = Pool(X_test,
7 y_test,
8 cat_features=cat_column_names)
9

10 model = CatBoostRegressor()
11 model.fit(train_pool,
12 eval_set=test_pool,
13 use_best_model=True)

The predicted values for the training and test subset, and for the entire data set

are obtained and then the correspondent R2 are computed.
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1 y_pred = model.predict(X)
2 y_pred_train = model.predict(X_train)
3 y_pred_test = model.predict(X_test)
4

5 R2 = r2_score(y, y_pred)
6 R2 = r2_score(y, y_pred_train)
7 R2_test = r2_score(y_test, y_pred_test)

The obtained values of R2 are:

R2
fulldataset = 0.92

R2
train = 0.93

R2
test = 0.90.

In the end, the predicted values can be plotted against the measured values

(Figure A.2). The R2 value for the full data set and for the test subset are printed on

the plot.

1 from plotnine import *
2

3 data_test = pd.DataFrame({'y_truth': y_test, 'y_pred': y_pred_test,
'subset':'test'})↪→

4 data_train = pd.DataFrame({'y_truth': y_train, 'y_pred': y_pred_train,
'subset':'train'})↪→

5 data = data_test.append(data_train)
6 text = pd.DataFrame({'r2':[r'\rm R^2=0.92']})
7 text_train = pd.DataFrame({'r2':[r'\rm R^2=0.90']})
8

9 p = ggplot(data=data, mapping=aes(x='y_truth', y='y_pred'))
10 p = p + geom_point(aes(color='subset'), alpha=0.7, stroke=0, size=3)
11 p = p + geom_line(mapping=aes(y='y_truth'), color='black')
12 p = p + theme(axis_text=element_text(size=14),
13 axis_title=element_text(size=14))
14 p = p + theme(text=element_text(family='Palatino'))
15 p = p + xlab('Measured value [MPa]')
16 p = p + ylab('Predicted value [MPa]')
17 p = p + scale_color_manual(values = ["#F8766D", "#00BFC4"])
18 p = p + geom_text(data=text, mapping=aes(x=6800, y=18000, label='r2'),

color='black', nudge_x=-0.01, parse=True, family='Palatino')↪→
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19 p = p + geom_text(data=text_train, mapping=aes(x=6800, y=17250, label='r2'),
color="#F8766D", nudge_x=-0.01, parse=True, family='Palatino')↪→

20 print(p)
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Figure A.2: Predicted-measured values for the fitted stiffness predictive model.



B | Number of data points

Table B.1: Data-points per work and phase regarding stiffness.

Work Phase I Phase II Phase III

1 17 18 36

2 30 24 18

3 9 10 28

4 18 18 C 36

5 18 36 18

6 18 18

Table B.2: Data-points per work and phase regarding fatigue resistance.

Work Phase I Phase II Phase III

1 2 2 2

2 2 2 1

3 1 1 2

4 1 1 2

5 1 1 1

6 1 2 1
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Table B.3: Data-points per work and phase regarding resistance to permanent deformation.

Work Phase I Phase II Phase III

1 8 8 13

2 5 5 5

3 3 4 8

4 4 8 8

5 5 5 5

6 5 8 4

Table B.4: Data-points per work and phase regarding indirect tensile strength.

Work Phase I Phase II Phase III

1 14 18 20

2 6 6 6

3 6 6 12

4 6 6 12

5 8 9 7

6 8 16 8



C | Target and maximum density

Table C.1: Target density, maximum density and target air void content per each subset of the NL-Lab

database.

Work Phase Lab ρtarget [kg/m3] ρmax [kg/m3] VAtarget [%]

1

1
1

2370

2491 4.86

2 2492 4.90

2
1 2479 4.40

2 2480 4.44

3
1 2483 4.55

2 2484 4.59

2

1
1

2375

2473 3.96

2 2473 3.96

2
1 2498 4.92

2 2498 4.92

3 1 2466 3.69

3

1 1

2360

2477 4.72

2 1 2471 4.92

3 1 2477 4.72

4

1 1

2386

2458 2.93

2 1 2472 3.48

3 1 2496 4.41

Continued on next page
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Table C.1 (continued).

Work Phase Lab ρtarget [kg/m3] ρmax [kg/m3] VAtarget [%]

5

1 1

2380

2505 4.99

2 1 2489 4.38

3 1 2492 4.49

6

1 1
2390

2462 2.93

2 1 2474 3.40

2 2
2390

2463 2.96

3 1 2456 2.69



D | Dura Vermeer database

The Dura Vermeer (DV) database is an additional database regarding the results of

type tests, equaivalent to phase I of the NL-Lab database, for AC surface layers. It

was intended to be used as validation database, but because the mix properties do

not fully fall in the range of the NL-Lab database, the validation is not possible. The

study of the database and the comparison with the NL-Lab database is presented

as follows.

D.1 Comparison of the Dura vermeer and NL-Lab database

The DV database has the results of six type tests for AC surface. The first difference

which should be outlined is that none of the NL-Lab mixes is a surface layer, i.e.half

of them are base layers and the other half are intermediate layers. Another difference

between the two databases lies in the RAP content. In the NL-Lab database it varies

between 50 and 65% while for the DV database four mixes do not have any RAP

content and two mixes present 40% RAP. From experience it is known that the RAP

content has a strong influence on the functional properties of the mix (Aghapour &

Babagoli, 2019).

Granulometry

In Figure D.1 the granulometry distribution of the mixes in the DV database is

compared to the one of the NL-Lab database. The percentage of aggregates passing

trough the bigger sieves (between 8 and 16 mm) is higher in the DV database than

in the NL-Lab one, while for aggregates of diameter ≤ 2 mm the DV database is in

the range.
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Figure D.1: Granulometry distribution comparison between the DV and the NL-Lab database.

Bitumen

In Table D.1 the range of the bitumen properties of the two databases are compared.

Unfortunately only the value of the bitumen content and the penetration grade are

available for both databases. In the DV database, the results of the DSR test are not

provided and hence it is not possible to compare the bitumen shear modulus G.

Table D.1: Extreme values of the bitumen properties for the two databases.

Property NL-Lab database Dura Vermeer database

Min bitumen content [%] 3.8 3.34

Max bitumen content [%] 5.4 6.8

Min penetration grade [10−1mm] 11 33

Max penetration grade [10−1mm] 53 50

Mixing and compaction type

The mixing and compaction techniques used in the DV database are the same for

all the six mixes: forced action mixer and segment compactor for the beam samples
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while for the cylindrical samples the planetary mixer and the gyrator compactor

were used. Both combinations already existed in the NL-Lab database as shown in

Figure 4.7 and 4.8.

Density

In Table D.2 the range of the target density and of the maximum density for the

two databases is displayed. The distribution of the achieved density for the mixes

Table D.2: Extreme values of the target and maximum density for the two databases.

Property NL-Lab database Dura Vermeer database

Minimum Target density [kg/m3] 2360 2370

Maximum Target density [kg/m3] 2390 2385

Minimum max density [kg/m3] 2456 2434

Maximum max density [kg/m3] 2505 2463

of the DV database is shown in Figure D.2 in red, while the one from the NL-Lab

database is colored in blue. The density of the DV database varies between 2354 and

2399 kg/m3 which is fully in the range of achieved density of the NL-Lab database

(2317-2468 kg/m3).
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Figure D.2: Achieved density distribution comparison.

Stiffness

The distribution of the stiffness is displayed in Figure D.3. The stiffness range for

the NL-Lab database is much wider than the range of the DV database even if

stiffness values < 6318 kg/m3 are part solely of the DV database. The extremes

values of the stiffness are presented in Table D.3.
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Figure D.3: Comparison of the achieved stiffness for the NL-Lab and the DV databases.

Table D.3: Extreme values of the stiffness for the two databases.

Property NL-Lab database Dura Vermeer database

Minimum stiffness [MPa] 6318 5355

Maximum stiffness [MPa] 17866 8518

The same plots and tables are done for the resistance to permanent deforma-

tion (Figure D.4 and Table D.4) and for the water sensitivity (Figure D.5-D.6 and

Table D.5). In both cases the DV database is in the range of the NL-Lab database.
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Resistance to permanent deformation
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Figure D.4: Comparison of the measured creep rate fc for the NL-Lab and the DV databases.

Table D.4: Extreme values of the creep rate fc for the two databases.

Property NL-Lab database Dura Vermeer database

Minimum creep rate fc

[
µε

cycle · 106
]

0.02 0.1

Maximum creep rate fc

[
µε

cycle · 106
]

0.96 0.41
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Water sensitivity
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Figure D.5: Comparison of the indirect tensile strength unconditioned for the NL-Lab and the DV

databases.
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Figure D.6: Comparison of the indirect tensile strength conditioned for the NL-Lab and the DV

databases.
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Table D.5: Extreme values of the indirect tensile strength for the two databases.

Property NL-Lab database Dura Vermeer database

Minimum ITSDry [MPa] 1.8 1.97

Maximum ITSDry [MPa] 4.6 3.1

Minimum ITSWet [MPa] 1.3 1.54

Maximum ITSWet [MPa] 4.3 2.76
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