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A B S T R A C T   

The performance of units in the same batch can exhibit considerable heterogeneity due to the variation in the 
raw materials and fluctuation in the manufacturing process. For products suffering performance degradation in 
their use, such heterogeneity often results in an increase in the dispersion of the degradation paths of units in a 
population. The degradation rate of products can be unit-specific and often treated as random effects. This paper 
develops a novel random-effects Wiener process model to account for the unit-to-unit heterogeneity in the 
degradation, where the generalized inverse Gaussian (GIG) distribution is used to model the unit-specific 
degradation rate. The GIG distribution is a very general distribution with broad applications, which includes 
the inverse Gaussian (IG) distribution and the Gamma distribution as special cases. We investigate the model 
properties and develop an expectation maximization (EM) algorithm for parameter estimation. By comparing the 
proposed model with existing models on two real degradation datasets of the infrared LEDs and the GaAs lasers, 
we show that the proposed model is quite effective for degradation modeling with heterogeneous rates.    

Notations 
X(t) Degradation level at time t 
Λ(t; θ) Time scale transformation function with parameter θ 
B (⋅) Standard Brownian motion 
v Drift rate 
Df Predetermined failure threshold 

Tf First passage time of X(t) with respect to Df 

Γ(⋅) Gamma function 
K p(⋅) Modified Bessel function of the second kind 
N (⋅) Gaussian distribution 
E[•] Expectation operator 
Var[•] Variance operator 
n Number of units of a degradation dataset 
mi Number of degradation observations for unit i, i = 1,…,n 
ti,j The jth condition monitoring time of unit i, j = 1,…,mi 

Xi,j The jth degradation observation of unit i at ti,j 
Xi = {Xi,1,⋯,Xi,mi} Degradation observations for unit i 
X = {X1,⋯,Xn} Degradation observations for the n units 
V = {v1, ⋯, vn} Drift of the n units 
Θ Unknown model parameters 

Θ(k) Estimated Θ at the kth step in the EM algorithm 
ℓ(Θ|X) Log-likelihood for degradation data X 
ℓ(Θ|V,X) Complete log-likelihood for the complete data {V, X}

Q(Θ
⃒
⃒Θ(k− 1)) Expectation of ℓ(Θ|V,X) with respect to the conditional 

distribution of V given X and Θ(k− 1)

1. Introduction 

In many industrial applications, the quality characteristics of devices 
and systems would degrade over time. For instance, the lumen output of 
LED decreases with usage [1], and mechanical parts such as bearings 
often wear gradually with an increase in vibration and noise [2]. When 
the degradation level exceeds an admissible or safe threshold, the system 
is deemed failed. To predict the failure time and assess the reliability of 
systems, it is of importance to monitor these performance indicators and 
model the degradation process. Once the degradation model is available, 
the remaining useful life of the system can be established. Subsequently, 
effective maintenance actions, such as repair and replacement, can be 
arranged to avoid unexpected sudden failures, and the lifecycle cost can 
be optimized [3]. 

Many approaches have been proposed for degradation modeling, 
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including the general path models, the stochastic process models, and 
the machine learning-based models. The general path models assume 
the degradation trajectories can be fitted by deterministic functions, 
which overlook the temporal uncertainties in the degradation process 
[4]. The machine learning-based models, such as the support vector 
machine [5] and deep learning approaches [6], are heavily dependent 
on the training dataset, which may be insufficient in engineering prac-
tice. Stochastic process models take the temporal randomness of the 
degradation process into account, which are especially favored for 
degradation modeling in recent years [7-9]. Commonly-used stochastic 
process models include the Wiener process [10-13], the Gamma process 
[14] and the inverse Gaussian process [15,16]. The Gamma process and 
the inverse Gaussian process are monotone, and they are widely used to 
model degradation with monotonic paths, such as crack growth and 
wearing. On the other hand, the Wiener process can model 
non-monotone degradation paths, and it has been successfully applied to 
the degradation modeling of rail tracks [17], lithium-ion batteries [18], 
LEDs [19], electrical distribution devices [20] and many other products 
[21]. 

Traditional Wiener process models assume that the units from a same 
batch are homogeneous. Due to the variation in the raw materials and 
fluctuation in the manufacturing process, however, units from a same 
batch may exhibit considerable heterogeneity in their degradation 
paths. Such heterogeneity is often modeled as random-effects, where 
some degradation characteristics, such as the degradation rate, are 
assumed to be unit-specific and random in the population. For Wiener 
process models, the normal distribution is widely adopted to describe 
the heterogeneous degradation rate for mathematical convenience [22, 
23]. Sun et al. [24] considered the accelerated degradation test and used 
a Wiener process model with normally distributed degradation rates to 
account for the heterogeneity in the population. Xu et al. [25] also 
applied the Wiener process with normal random-effects to model the 
degradation of lithium-ion batteries. Wang [26] considered the hetero-
geneity in the diffusion coefficient of the Wiener process, where the 
diffusion coefficient follows an inverse Gamma distribution and the drift 
rate follows a normal distribution conditional on the diffusion coeffi-
cient. Ye et al. [27] assumed a normal distribution for the reciprocal of 
the drift rate parameter and incorporated the heterogeneity of the 
diffusion coefficient using a linear relationship between the drift rate 
and the diffusion coefficient. 

The Wiener process model with normal random-effects is convenient 
and have attracted lots of attentions, yet using the normal distribution 
for the heterogeneous degradation rate has certain shortcomings. One 
deficiency lies in that the degradation rate is generally one-sided (pos-
itive or negative), but the normal distribution has a support on the whole 
real domain. Although the probability of the negative part is negligible 
when the expectation is larger than three times of the standard devia-
tion, it is only approximately true and depends on the distribution pa-
rameters [27]. The truncated normal distribution can remedy this 
deficiency, but it also complicates the model [28]. In addition, the 
normal distribution has a symmetric probability density function (PDF), 
which is restricted in applications when the heterogeneous degradation 
rate follows skewed distributions. For example, it is observed that a 
skewed distribution is more suitable for the heterogeneous degradation 
rate of the laser devices [29]. In addition, the typical Wiener process 
with normally distributed drift also overlooks the heterogeneous in the 
volatility of the degradation process. Zhai et al. [29] fitted each path in a 
GaAs laser device degradation dataset using the traditional Wiener 
process model, and found that there exists positive correlation between 
the degradation rate and the diffusion coefficient. Yan et al. [30] used 
the same method to study a silicon rubber aging dataset, and arrived at a 
similar conclusion. Therefore, it is also necessary to take into account 
the heterogeneity in the diffusion coefficient in degradation modeling of 
heterogeneous populations. 

To address these concerns, a novel Wiener process considering the 
heterogeneity in the population is proposed in this paper. We exploit the 

accelerated failure time concept to link the degradation rate and the 
diffusion coefficient, by which the heterogeneity in the degradation 
process can be fully accounted for. Further, the unit-specific degradation 
rate is characterized by a generalized inverse Gaussian (GIG) distribu-
tion, which has a positive support and overcomes the deficiencies of the 
normal distribution as the random-effects. The proposed model gener-
alizes some existing models, e.g. the model in [29], and also induces 
some new special models due to the generality of the GIG distribution. 
The proposed model is analytically tractable and an EM algorithm is 
developed for model parameter estimation. The performance is 
compared with existing models by the application to two real degra-
dation datasets, and its applicability in degradation modeling is dis-
cussed. To sum up, the paper contributes to the study on degradation 
modeling in two folds:  

• First, we propose a general family of Wiener process models with GIG 
distributed random effects for heterogeneous population, and the 
estimation procedure is developed.  

• Second, a comprehensive comparative study is implemented for the 
proposed models with the existing models, by which the applicability 
of the proposed model is validated. 

The remainder of the paper is organized as follows. Section 2 gives 
the detailed model formulation and the model properties. In Section 3, 
the EM algorithm is developed to implement the maximum likelihood 
estimation (MLE) of the proposed model. Section 4 implements 
comparative study based on two degradation datasets to compare the 
proposed model with existing ones. Conclusions are given in Section 5. 

2. Wiener process model with GIG random-effects 

2.1. The model formulation 

The Wiener process is one of the most popular degradation models in 
recent years [10,18,19,29]. In this study, we consider the Wiener pro-
cess model with the following form: 

X(t) = vΛ(t) + κB (vΛ(t)), (1)  

where v > 0 is the drift rate, κ > 0 is the diffusion parameter, and B (⋅)
represents a standard Brownian motion. The transformed time scale Λ(t)
= Λ(t; θ) with parameter θ is used to capture possible non-linear 
degradation patterns. Following the convention, it is assumed that 
Λ(t) is monotonically increasing with Λ(0) = 0. For instance, Λ(t) can 
follow the power law form Λ(t) = tθ. 

The model in (1) was originally proposed in [29] based on the 
accelerated failure time model (AFTM). In accelerated test, the elevated 
stress can lead to a shortened lifetime of product, and this effect can be 
modeled by scaling of the time scale under the normal stress in the 
AFTM. Following the same idea, the heterogeneity in the degradation of 
a population can be modeled as a random scaling effect of the time scale. 
More specifically, v can be seen as the scaling factor that reflects the 
randomness in the quality of the unit and the randomness from the 
operating environment. The degradation pattern for the population is 
identical, which is modeled as a Wiener process, while the time scale vΛ 
(t) is unit-specific. 

In model (1), the degradation rate and the diffusion are v and κ2v, 
respectively. This indicates that the magnitude of the fluctuations in the 
degradation path is dependent on the particular degradation rate v, 
which explains a common phenomenon in degradation data that the unit 
with a larger degradation rate often has a larger variation. 

To capture the heterogeneity in a population, v is assumed to follow a 
GIG distribution G I G (a, b, p) with the following PDF: 

f (v) =
(a/b)

p
2

2K p
( ̅̅̅̅̅

ab
√ )vp− 1exp

(

−
1
2
(
av+ bv− 1)

)

, v > 0 (2) 
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where a > 0, b > 0, p ∈ (− ∞,+∞) and 

K p(z) =
1
2

∫+∞

0

yp− 1exp
(
−

z
2
(
y+ y− 1)

)
dy (3)  

is the modified Bessel function of the second kind [31]. The GIG dis-
tribution is a generalization of the inverse Gaussian distribution, which 
has been widely applied in industrial applications [32]. In particular, the 
GIG distribution degenerates to the inverse Gaussian distribution if the 
parameter p is fixed to − 1/2. In addition, the GIG distribution also 
generalizes the Gamma distribution, and it degenerates to the Gamma 
distribution when the parameter b approaches 0. 

Conditional on the degradation rate v, the degradation X(t) at any 

time t follows the following normal distribution: 

X(t)|v ∼ N
(
vΛ(t), vκ2Λ(t)

)
. (4)  

Consequently, the unconditional distribution of X(t) can be obtained by 
integrating v out. Based on (2) and (4), the unconditional PDF of X(t) can 
be obtained as  

where 

A(t) = a +
Λ(t)
κ2 , B(t) =

x2

κ2Λ(t)
+ b. (6) 

The unconditional expectation and variance of X(t) can be obtained 
as: 

E[X(t)] = E[v]Λ(t), Var[X(t)] = Var[v]Λ2(t) + κ2E[v]Λ(t). (7)  

The expectation and variance of a GIG random variable can be expressed 
in terms of the modified Bessel function of the second kind [31]: 

E[v] =
̅̅̅
b

√
K p+1

( ̅̅̅̅̅
ab

√ )

̅̅̅
a

√
K p
( ̅̅̅̅̅

ab
√ ) , Var[v] =

bK p+2
( ̅̅̅̅̅

ab
√ )

aK p
( ̅̅̅̅̅

ab
√ ) − E[v]2. (8)  

2.2. Reliability analysis based on the proposed model 

For products suffering degradation, its lifetime is often defined as the 
first hitting time of X(t) with respect to a predetermined threshold Df : Tf 

= inf{t : X(t)> Df}. The product is deemed failed if the degradation 
exceeds the threshold and should be repaired or replaced. Conditional 

on v, X(t) has a linear degradation path under the transformed time scale 
Λ(t), and the first hitting time under Λ(t) follows an IG distribution, i.e., 

Λ(Tf ) ∼ I G

(

Df
v ,

D2
f

vκ2

)

. More specifically, the PDF of the conditional 

distribution of Λ(Tf ) is: 

fΛ(Tf )|v(u) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

D2
f

2πvκ2u3

√

exp

⎛

⎜
⎜
⎝ −

v
(

u −
Df
v

)2

2κ2u

⎞

⎟
⎟
⎠. (9)  

The PDF of Λ(Tf ) can be obtained by integrating v out:  

Given that Λ(t) is differentiable, the PDF of Tf under the calendar time t 
is 

fT f (t) = fΛ(Tf )(Λ(t))
dΛ(t)

dt
. (11)  

The expected lifetime of the degradation unit can be derived based on 

fTf (t). For example, if the transformed time scale follows the power law 
form Λ(t) = tθ, then the mean and variance of Tf can be derived as 

E
[
Tf
]
=

̅̅̅̅̅̅̅̅
2Df

πκ2

√

exp
(

Df

κ2

)

D
1
θ
f

K p− 1
θ

( ̅̅̅̅̅
ab

√ )
K − 1

2+
1
θ

(
Df
κ2

)

K p
( ̅̅̅̅̅

ab
√ )

a
b

1
2θ, (12)  

Var
[
Tf
]
=

̅̅̅̅̅̅̅̅
2Df

πκ2

√

exp
(

Df

κ2

)

D
2
θ
f

K p− 2
θ

( ̅̅̅̅̅
ab

√ )
K − 1

2+
2
θ

(
Df
κ2

)

K p
( ̅̅̅̅̅

ab
√ )

a
b

1
θ − E

[
Tf
]2
. (13)  

The establishment of the first hitting time Tf is an important part in the 
prognostics and health management. Once the PDF of Tf is obtained 
based on the above inference, the expected lifetime of the in-service 
systems can be estimated with a predetermined threshold Df . Then, 
appropriate health management works can be performed to ensure the 
reliability and stability of industrial devices. 

2.3. Gamma distribution as a special case of the GIG distribution 

As mentioned in Section 2.1, the GIG distribution degenerates to the 

fX(t)x =

∫+∞

0

1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2πκ2vΛ(t)

√ exp
(

−
(x − vΛ(t))2

2κ2vΛ(t)

)
(a

b

)p
2

2K p

( ̅̅̅̅̅
ab

√ )vp− 1 exp
(

−
1
2
(
av + bv− 1)

)

dv =

1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2πκ2Λ(t)

√
(a/b)

p
2

K p

( ̅̅̅̅̅
ab

√ ) exp
( x

κ2

)
K p− 1

2

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
A(t)B(t)

√ )(B(t)
A(t)

)

(

p− 1
2

)

2

(5)   

fΛ(t)(u) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

D2
f

2πκ2u3

√ (
a
b

)p
2

K p
( ̅̅̅̅̅

ab
√ ) exp

(
Df

κ2

)

⋅K p− 1
2

⎛

⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

a +
u
κ2

)
(

D2
f

κ2u
+ b

)√
√
√
√

⎞

⎠

(
D2

f + bκ2u
u2 + aκ2u

)

(

p− 1
2

)

2

. (10)   
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Gamma distribution if b approaches 0. As a special case of the GIG dis-
tribution, the Gamma distribution is also utilized widely in engineering 
field. When the proposed model has the Gamma random-effects, the 
unconditional PDF of the degradation X(t) is 

fX(t)x =

∫+∞

0

1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2πκ2vΛ(t)

√ exp
(

−
(x − vΛ(t))2

2κ2vΛ(t)

)
1

Γ(p)

(a
2

)p

vp− 1exp
(

−
1
2

av
)

dv

=
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2πκ2vΛ(t)

√
1

Γ(p)
ap

2p− 1 exp
( x

κ2

)
K p

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

x2

κ2Λ(t)

(
a +

Λ(t)
κ2

)
√ )

(
x2

Λ(t)2
+ aκ2Λ(t)

)p
2

.

(14)  

Accordingly, we can also derive the PDF of the first hitting time Λ(Tf )

under the time scale Λ(⋅) as: 

fΛ(Tf )(u) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

D2
f

2πκ2u3

√ (a
2

)p
2

Γ(p)
exp
(

Df

κ2

)

K p− 1
2

⎛

⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

a +
u
κ2

) D2
f

κ2u

√ ⎞

⎠

(
D2

f

u2 + aκ2u

)

(

p− 1
2

)/

2

.

(15)  

When the time scale transformation function follows the power law form 
Λ(t) = tθ, the expectation and the variance of Tf are 

E
[
Tf
]
=

̅̅̅̅̅̅̅̅
2Df

πκ2

√

exp
(

Df

κ2

)

D
1
θ
f K − 1

2+
1
θ

(
Df

κ2

)Γ
(

p − 1
θ

)

Γ(p)

(a
2

)1
θ−

p
2
, (16)  

Var
[
Tf
]
=

̅̅̅̅̅̅̅̅
2Df

πκ2

√

exp
(

Df

κ2

)

D
2
θ
f K − 1

2+
2
θ

(
Df

κ2

)Γ
(

p − 2
θ

)

Γ(p)

(a
2

)2
θ−

p
2
− E

[
Tf
]2
. (17)  

Thus, the reliability analysis based on the proposed model with GIG 
distributed random-effects and its special case with Gamma distributed 
random-effects is analytically tractable. For the special case with IG 
distributed random-effects, the corresponding reliability analysis can be 
seen in [29]. As stated above, the proposed model with GIG distributed 
random-effects includes the one with Gamma random-effects and with 
IG random-effects as special cases, which provides more flexibility for 
degradation modeling while maintains the mathematical convenience. 

3. Parameter estimation with EM algorithm 

In this section, the parameter estimation for the proposed model is 
discussed. Suppose that we have collected the degradation observations 
of unit i at mi discrete time points (ti,1,…, ti,mi ) for i = 1,⋯, n in a 
degradation test. Denote Xi,j = X(ti,j) as the degradation record at time 
ti,j, Xi = (Xi,1,…,Xi,mi )

T as the degradation record for unit i, and X =
{X1,⋯,Xn} as the degradation data of the n units, where the superscript 
“T” denotes matrix transposition. 

Let ΔXi,j = Xi,j − Xi,j− 1 with Xi,0 = 0. According to the property of the 
Wiener process, the increments ΔXi,j, j = 1,…,mi are independent and 
follow the normal distribution conditional on the drift rate v: 
(
ΔXi,j

⃒
⃒vi
)
∼ N

(
viΔΛi,j, viκ2ΔΛi,j

)
, (18)  

where ΔΛi,j = Λ(ti,j) − Λ(ti,j− 1), j = 1,…,mi. By convention, let ti,0 = 0. 
Accordingly, the joint distribution of Xi conditional on vi is normal with 
the following PDF: 

p(Xi|vi) =
∏mi

j=1
p
(
ΔXi,j |vi

)

=
∏mi

j=1

1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2πviκ2ΔΛi,j

√ exp
(

−

(
ΔXi,j − viΔΛi,j

)2

2viκ2ΔΛi,j

)

.

(19)  

Unconditionally, the joint distribution of Xi can be obtained as 

p(Xi) =

∫+∞

0

p(Xi|vi)f (vi)dvi

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

(2π)mi κ2mi

√
∏mi

j=1

1
̅̅̅̅̅̅̅̅̅̅
ΔΛi,j

√ exp
(

Xi,mi

κ2

)
(a

b

)p
2

K p

( ̅̅̅̅̅̅̅
ab

√ )

K Pi

( ̅̅̅̅̅̅̅̅̅
AiBi

√ )(Bi

Ai

)Pi/2

(20)  

where 

Ai = a +
Λi,mi

κ2 , Bi = b +
1
κ2

∑mi

j=1

ΔX2
i,j

ΔΛi,j
, Pi = p −

mi

2
(21)  

The unknown model parameters involve the parameters in the GIG 
random-effects {a, b, p}, the diffusion coefficient κ2 and the possible 
parameters in θ in the time scale transformation function Λ(t; θ). Denote 
Θ = {a, b, p, κ2, θ}. Based on the observed degradation data, the 
maximum likelihood (ML) estimates for the model parameters can be 
obtained by maximizing the following log-likelihood function: 

l(ΘX) =
∑n

i=1
ln p(Xi|Θ). (22)  

Referring to (20), we can see that the model parameters are involved in 
the modified Bessel function K , which causes difficulties in directly 
maximizing the log-likelihood function. To address this problem, we 
treat the unit-specific drift rate as the latent variable, and resort to the 
EM algorithm to obtain the ML estimates. 

3.1. The EM algorithm 

Denote V = (v1,⋯, vn)
T. By treating the unobserved drift rates of the 

n units as missing data, the complete log-likelihood for the complete 
data {V,X} can be obtained as 

l(ΘX,V) = lV + lX, (23)  

where 

ℓV =
∑n

i=1
lnf (vi)

= − nln
[
2K p

( ̅̅̅̅̅
ab

√ )]
+

np
2

lna −
np
2

lnb + (p − 1)
∑n

i=1
lnvi

−
1
2
∑n

i=1

(
avi + bv− 1

i

)
,

(24)   

ℓX=⋅
∑n

i=1
lnp(Xi|vi,Θ)

=
∑n

i=1

{

−
mi

2
ln(2π)− mi

2
ln
[
κ2vi
]
−

1
2
∑mi

j=1
lnΔΛi,j −

1
2κ2vi

∑mi

j=1

(
ΔXi,j − viΔΛi,j

)2

ΔΛi,j

}

(25) 
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The EM algorithm is an iterative algorithm, where each iteration 
implements the expectation-step (E-step) and maximization-step (M- 
step). In the kth iteration of the EM algorithm, the E-step calculates the 
expectation of the complete log-likelihood with respect to the condi-
tional distribution of the mission data V given the observation X, i.e., 
p(V

⃒
⃒X, Θ(k− 1)), where Θ(k− 1)={a(k− 1),b(k− 1),p(k− 1),[κ(k− 1)]

2
,θ(k− 1)} denotes 

the estimates for the model parameters in the last iteration. More spe-
cifically, the E-step derives the following Q-function: 

Q
(
Θ
⃒
⃒Θ(k− 1)) = EV|X,Θ(k− 1) [ℓ(Θ|V,X)] (26) 

After the Q-function is obtained, the estimates for the model pa-
rameters are updates by maximizing the Q-function with respect to Θ: 

Θ(k) = argmaxΘQ
(
Θ
⃒
⃒Θ(k− 1)). (27)  

To accomplish this, we first treat the parameters p and θ as fixed. By 
deriving the first order partial derivatives of Q(Θ

⃒
⃒Θ(k)) with respect to a, 

b and κ2 and letting them equal to zero, we have 

2pn − 2a
∑n

i=1
EV|X,Θ(k− 1) [vi] +

n
̅̅̅̅̅
ab

√

K p
( ̅̅̅̅̅

ab
√ )

{
K p+1

( ̅̅̅̅̅
ab

√ )
+K p− 1

( ̅̅̅̅̅
ab

√ )}

= 0,
(28)  

2pn + 2b
∑n

i=1
EV|X,Θ(k− 1)

[
v− 1

i

]
−

n
̅̅̅̅̅
ab

√

K p
( ̅̅̅̅̅

ab
√ )

{
K p+1

( ̅̅̅̅̅
ab

√ )
+K p− 1

( ̅̅̅̅̅
ab

√ )}

= 0,
(29)  

κ2 =
1

n
∑n

i=1mi

∑n

i=1

{

Λi,mi EV|X,Θ(k− 1) [vi] − 2Xi,m +

[
∑mi

j=1

ΔX2
i,j

ΔΛi,j

]

EV|X,Θ(k− 1)

[
v− 1

i

]
}

.

(30)  

Combining the first two equations yields 

a =
2pn + b

∑n
i=1EV|X,Θ(k− 1)

[
v− 1

i

]

∑n
i=1EV|X,Θ(k− 1) [vi]

. (31)  

Then, substituting (31) into (29) and solving it with respect to b, we can 
get the estimate for b. Subsequently, the estimates for a and κ2 can be 
obtained by substituting the estimated b back to (31) and (30), respec-
tively. The estimates {â, b̂, κ̂2

} are obtained for each fixed {p,θ}, which 
are functions of {p,θ}. Substituting {â, b̂, κ̂2

} back into Q(Θ
⃒
⃒Θ(k− 1)), we 

obtain the profiled Q-function as a function of {p,θ}: 

Q̃(p, θ) = Q
(

â(p, θ), b̂(p, θ), κ̂(p, θ)2
, p, θ

⃒
⃒
⃒Θ(k− 1)

)
(32)  

The estimates for {p, θ} is obtained by maximizing the profiled Q-func-
tion with respect to p and θ. The EM algorithm iterates until the dif-
ference between the estimates for the model parameters in two 
consecutive iterations is smaller than a given threshold, and the ML 
estimates for Θ is obtained. 

3.2. E-step in the EM algorithm 

As can be noticed, we have to calculate the expectation of vi and v− 1
i 

with respect to the conditional distribution p(V
⃒
⃒X, Θ(k− 1)). The condi-

tional distribution p(VX) can obtained as 

p(V|X)∝p(V,X) =
∏n

i=1
f (vi)p(Xi|vi), (33)  

which means that the conditional distribution p(V|X) can be decom-
posed as 

p(V|X) =
∏n

i=1
p(vi|Xi), (34)  

where p(vi|Xi) is obtained as 

Fig. 1. Degradation paths of 25 IRLEDs.  
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p(vi|Xi) =
f (vi)p(Xi|vi)

p(Xi)

=
(Ai/Bi)

Pi/2

2K Pi

( ̅̅̅̅̅̅̅̅̅
AiBi

√ )vi
Pi − 1exp

(

−
1
2
(
Aivi + Bivi

− 1)
)

.

(35)  

Formula (35) indicates that the distribution of vi conditional on the 
degradation observations Xi also follows a GIG distribution with 

parameters (Ai,Bi, Pi). According to the properties of the GIG distribu-
tion [32], it can be readily obtained that 

EV|X,Θ(k− 1) [vi] =

̅̅̅̅̅
Bi

√
K Pi+1

( ̅̅̅̅̅̅̅̅̅
AiBi

√ )

̅̅̅̅̅
Ai

√
K Pi

( ̅̅̅̅̅̅̅̅̅
AiBi

√ ) , (36)  

EV|X,Θ(k− 1)

[
v− 1

i

]
=

̅̅̅̅̅
Ai

√
K Pi+1

( ̅̅̅̅̅̅̅̅̅
AiBi

√ )

̅̅̅̅̅
Bi

√
K Pi

( ̅̅̅̅̅̅̅̅̅
AiBi

√ ) −
2Pi

Bi
. (37) 

Fig. 2. Histogram of the drift rates of 25 IRLEDs when fitting each path individually by the basic Wiener process.  

Fig. 3. Q-Q plot of the estimated drift rates versus standard normal distribution.  
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In the prognostics and health management, it pays considerable atten-
tion to the degradation rate conditional on the measured degradation 
signals [33]. Based on (35), we can utilized the online measured 
degradation observations to update the conditional distribution of the 
drift rate and the operational status of the in-service units can be 
monitored periodically. 

In the end, the complete algorithm for the model parameters esti-
mation is summarized in Algorithm 1.  

Algorithm 1: Maximum likelihood estimation with EM algorithm 
Input: X = {X1,…,Xn};  
1. Initialize the estimates Θ(0), k = 0; 

2. Let k = k+ 1: 
E-step: Calculate conditional expectation of ℓ(Θ|V,X)by using (26) 
M-step: Update parameters by using (27) 
3. If the difference between the estimates in two consecutive steps is smaller than a 
predetermined tolerance, then stop. Otherwise, go to Step 2.  

Output: ML estimates Θ̂.   

3.3. Interval estimation 

The interval estimates for model parameters can be obtained by 
normal asymptotics. Nevertheless, the observed information matrix is 
difficult to calculate due to the existence of the modified Bessel function 
of the second kind. Therefore, we propose to use the parametric boot-
strap method for interval estimation. Based on the estimates Θ̂, we 
generate the analogues of the degradation data X and obtain the 
resample of Θ̂ by applying the EM algorithm. This process is repeated M 
times and we get M resamples for the ML estimates : {Θ̂

∗

1, …, Θ̂
∗

M}. 
Subsequently, the confidence intervals for each parameter can be con-
structed by calculating the percentiles from {Θ̂

∗

1,…,Θ̂
∗

M}. The algorithm 

for the bootstrap method is listed in Algorithm 2.  
Algorithm 2: Bootstrap method for interval estimation 
Input: ML estimates Θ̂;  
For s= 1 to M: 

1. Generate drift rates vi, i = 1,…, n from the GIG distribution G I G (â, b̂, p̂). 
2. Generate the degradation data Xi = {Xi,1,…,Xi,j} for each unit at {t1,1,…, t1,mi }

from the following Wiener process 
Xi(t) = viΛ(t) + κ̂B (vi Λ̂(t)). 
3. Obtain the ML estimates Θ̂

∗

s base on the EM algorithm.  

Output: M resamples {Θ̂
∗

1,…, Θ̂
∗

M} for the ML estimates.   

4. Illustrative examples 

4.1. Application to the IRLEDs degradation data 

In this section, the IRLEDs degradation data from Yang [34] is used 
to validate the proposed model. Under the testing condition of 170 mA, 
the degradation of IRLEDs increases over time. The IRLEDs are deemed 
failed when the degradation level exceeds a given threshold. The dataset 
contains the degradation data of 25 testing samples, where each unit is 
measured at 11 test time points {24, 48,96,…,2550}. The degradation 
paths of the 25 units are illustrated in Fig. 1. 

From the above figure, we can observe that the degradation rates of 
the 25 units exhibit an obvious dispersion. To verify the random-effects 
in the degradation rates, we first fit each degradation path using a basic 
Wiener process model X(t) = vΛ(t) + σB (Λ(t)). Since the degradation 
paths appear non-linear, we consider a power law function Λ(t) = tθ as 
the transformed time scale. 

The histogram of the estimated drift rates for the 25 units is given in 
Fig. 2. As shown in the figure, the estimated drift rates appear to be 
right-skewed. To validate this observation, a Q-Q plot of the estimated 
drift rates versus the standard normal distribution is given in Fig. 3. The 

Fig. 4. The CDF for the fitted GIG distribution, the CDF of the fitted normal distribution and the empirical CDF with 90% confidence band (CB) for v̂i .  
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Q-Q plot shows a convex curvature, which indicates that the random 
drift is right-skewed. Therefore, it is reasonable to exploit a skewed 
distribution, such as the GIG distribution to capture the heterogeneities 
in the degradation rates. 

To check possible correlations between the drift rate and the diffu-
sion coefficient, we calculate the correlation coefficient between v̂i and 
σ̂2

i , i = 1, …, 25, which is 0.9594. This indicates that the drift rate is 
highly correlated with the diffusion coefficient. Therefore, we consider 
the following fixed-effects model by imposing σ2 = κ2

tsv to fit the 
degradation data: 

Xi(t) = viΛ(t) + κtsB (viΛ(t)). (38)  

The ML estimates for vi and κ2
ts can be obtained as follows after some 

algebra 

κ̂2
ts =

1
∑n

i=1mi

∑n

i=1

(
∑mi

j=1

ΔX2
i,j

ΔΛj
v̂i

− 1
− 2Xi,m + v̂i Λm

)

, (39)  

v̂i =
1

2Λi,mi

⎛

⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

mi
2 κ̂4

ts + 4Λi,mi

∑mi

j=1

ΔX2
i,j

ΔΛi,j

√
√
√
√ − mi κ̂2

ts

⎞

⎠, i = 1, …, 25. (40)  

Subsequently, a G I G (ats, bts, pts) distribution is employed to fit the 
ML estimates v̂i, i = 1,…, 25, and the estimates for ats, bts and pts are: 
âts = 109.0382, b̂ts = 0.0005, p̂ts = 2.0806. 

The empirical distribution function of v̂i and the CDF for G I G (âts,

b̂ts, p̂ts) from the estimated GIG distribution are given in Fig. 4. For 
comparison, we also fit v̂i using a normal distribution and the estimated 
CDF is also given in Fig. 4. As can be seen from the figure, the estimated 
distribution G I G (âts, b̂ts, p̂ts) agrees well with the empirical distri-
bution, which indicates a good fit for the heterogeneous drift rates in the 
IRLEDs degradation data. 

Thus, there does exist a high positive correlation between the drift 
rate and diffusion coefficient for IRLEDs in the same batch, and a GIG 
distribution can provide a good fit for the heterogeneous degradation 
rates. Based on the above analysis, the proposed random-effects Wiener 
process model (1) is utilized to fit the IRLEDs degradation data. To verify 
the assumption on the power-law degradation trend, we also consider 
(a) the exponential law function Λ(t) = exp(θt) − 1; and (b) the loga-
rithm form function Λ(t) = ln(θt + 1) that are commonly used in engi-
neering practices [22] . Table 1 displays the log-likelihood values for the 
proposed model with different transformed time scales Λ(t). As can be 
seen from this table, the power law function, i.e. Λ(t) = tθ, provides the 
best fit for the degradation data. 

The detailed estimates for model parameters in the proposed model 
with power law Λ(t) are given in Table 2, where the standard deviations 
(SD) are obtained by the parametric bootstrap with M = 1000 resam-
ples. For the power law Λ(t), we note that the estimate of θ is less than 1. 

Table 1 
Log-likelihood values for the proposed model with different transformed time 
scales when fitting to the IRLEDs data.   

Power law Λ(t)
= tθ  

Exponential Λ(t) =

exp(θt) − 1  
Logarithm Λ(t) =

ln(θt + 1)

Log- 
likelihood 

− 446.18 − 498.20 − 478.45  

Table 2 
ML estimates for the parameters in our proposed model when fitting the IRLEDs 
data.   

θ  a  b  p  κ2  

ML estimates 0.7618  128.4391  6.3454× 10− 5  2.4375  1.4275  

SD 0.0228 5.6098 3.8035× 10− 6  0.1023 0.2430  

Fig. 5. The expected degradation path E[X(t)] =

̅̅̅
b̂

√
K

p̂+1
(

̅̅̅̅̅
â b̂

√
)

̅̅̅
â

√
K

p̂
(

̅̅̅̅̅
â b̂

√
)

Λ̂(t) for 25 IRLEDs.  
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This indicates that the degradation of the IRLEDs exhibits a decreasing 
rate. This is consistent with the degradation patterns in Fig. 1. 

The estimate for the expected degradation path E[X(t)] =

̅̅̅
b̂

√
K

p̂+1
(

̅̅̅̅̅
â b̂

√
)

̅̅̅
â

√
K

p̂
(

̅̅̅̅̅
â b̂

√
)

Λ̂(t) and the piecewise confidence band (CB) by bootstrap 

for the IRLED is illustrated in Fig. 5. As shown in the figure, the expected 
degradation path properly reflects the degradation pattern of the 
population. 

To further justify the proposed model, we also consider two special 
cases of the GIG random-effects model to model the heterogeneities, i.e., 
the IG random-effects model and the Gamma random-effects model. The 
IG random-effects model can be obtained by fixing p = − 1 /2 in the 
proposed model, while the Gamma random-effects model is obtained by 

fixing b = 0. The estimation results for our proposed model and its 
special cases are listed in Table 3, where the estimates are obtained from 
the EM algorithm and the standard deviations (SD) are obtained from 
the parametric bootstrap with M = 1000 resamples. The log-likelihood 
value and the AIC value are given for each model. From the table, we 
can note that the Gamma random-effects model has a very close log- 
likelihood value to the more general GIG random-effects model, and 
the AIC value of the Gamma random-effects model is the smallest. This 
implies that the Gamma random-effects model may be more suitable for 
the IRLEDs dataset. 

4.2. Application to the GaAs laser device degradation data 

To further investigate the performance of the proposed model on real 
degradation data, the GaAs laser degradation data from Meeker and 
Escobar [35] is fitted by the proposed GIG model. This dataset contains 
the degradation measurements from 15 testing samples of laser devices, 
each of which is measured at times {250, 500, …, 4000}. The 

Table 3 
The estimation results for our proposed model and its derivative models when 
fitting the IRLEDs data.   

GIG random-effects 
model 

IG random-effects 
model 

Gamma random- 
effects model 

θ  0.7618  0.7575 0.7617 
SD 0.0228 0.0594 0.0522 
a  128.4391  45.2929 128.4083 
SD 5.6098 4.4429 7.0589 
b  6.3454× 10− 5  0.0699 \ 

SD 3.8035× 10− 6  0.0022 \ 

p  2.4375  \ 2.4410 
SD 0.1023 \ 0.4302 
κ2  1.4275  1.4165 1.3979 

SD 0.2430 0.3209 0.2732 
Log- 

likelihood 
− 446.18 − 447.31 − 446.17 

AIC 902.35 902.61 900.35  

Fig. 6. Degradation paths of 15 laser devices.  

Table 4 
The log-likelihood values and AIC values for different models when fitted to the 
laser devices data.    

Log- 
likelihood 

AIC  

GIG random-effects model 74.09 − 140.17 
Linear IG random-effects model 74.08 − 142.16  

Gamma random-effects model 73.79 − 141.58  
GIG random-effects model 74.09 − 138.19 

Power law IG random-effects model 74.09 − 140.18  
Gamma random-effects model 73.80 − 139.60 

Existing 
models 

Gaussian drift model [22] 69.19 − 132.38  

Skew-normal drift model [36] 71.11 − 134.22  
Normal-Gamma drift-volatility  
[26] 

72.86 − 137.73  
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degradation paths of 15 laser devices are plotted in Fig. 6. 
From Fig. 6, it can be noticed that the degradation paths of 15 laser 

devices appear to have a linear trend with time. Therefore, we utilize 
both linear and power law degradation trend, namely Λ(t) = t and Λ(t)
= tθ, to model the degradation paths. In Table 4, the performance of the 
proposed model and its two special cases are summarized for the linear 
and power law cases. Different from the IRLEDs case, the IG random- 
effects model exhibits a better performance than the GIG random- 
effects model and the Gamma random-effects model for the laser de-
vice dataset according to the AIC values. 

According to the results in [29], the dataset was also fitted by the 
following three models: (a) the commonly used random-effects Wiener 
process model with Gaussian drift [22]; (b) the random-effects Wiener 
process model with skew-normal drift [36]; (c) the random-effects 
Wiener process model with normal-Gamma drift-volatility [26]. To 
ease the reference, we also list these results in Table 4. As can be noted, 
the proposed models have better performance than these existing 
models in terms of the log-likelihood values and AIC values. 

5. Conclusions 

Degradation modeling plays an important role in reliability assess-
ment. In this study, we proposed a general random-effects Wiener pro-
cess model to capture the unit-to-unit heterogeneities in the 
degradation. We used a Wiener process model to characterize the 
degradation of each unit, and a GIG distribution to capture the hetero-
geneous degradation rates in the population. The proposed model in-
cludes the existing IG random-effects Wiener process model in [29] as a 
special case, and also introduces a useful special case, i.e., the Gamma 
random-effects Wiener process model. 

The proposed model was applied to an IRLEDs dataset and a laser 
device dataset to show its applicability. For the IRLEDs dataset, the 
Gamma random-effects model outperforms the more general GIG 
random-effects model and the IG random-effects model in terms of the 
AIC criterion. For the laser device dataset, the IG random-effects model 
performs the best and outperforms the existing models, such as the 
widely used Gaussian drift model and the complicated Normal-Gamma 
drift-volatility model. The application of the proposed model to the 
real degradation datasets indicates that the GIG random-effects model, 
including two of its special cases, have a satisfactory performance in 
reality. 

Further studies can be carried out based on the results of this paper. 
One possible research direction for future studies is to extend the pro-
posed model to accelerated degradation test, and investigate the design 
for the optimal test schemes based on this type of models. In addition, it 
is worthwhile to consider the optimal maintenance strategies for prod-
ucts subject to degradation, where the degradation process is charac-
terized by the proposed model. 
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