Enhancing 3D Model for Urban Area with Neural Representations

Sitong Li 5683688

First supervisor: Ken Arroyo Ohori Second supervisor: Nail Ibrahimli

Content

- 1. Introduction
- 2. Related work
- 3. Methodology
- 4. Result
- 5. Conclusion

15		
Ťι	JDe	elft

Related Work

Methodology

Result

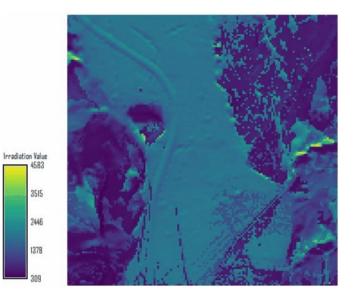
Conclusion

3D Models For Urban Area

Construction monitoring

15				
Ť	U	D	e	ft

Related Work


Methodology

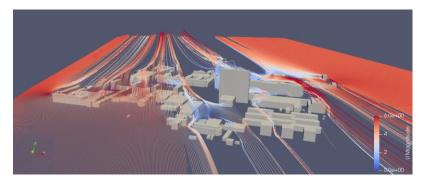
Result

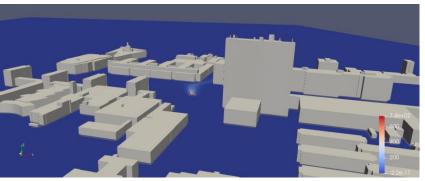
Conclusion

3D Models For Urban Area

Irradiation analysis

Related Work


Methodology

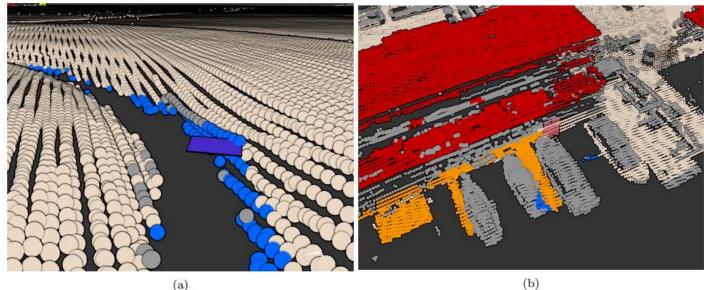

Result

Conclusion

3D Models For Urban Area

Wind simulation

Related Work


Methodology

Result

Conclusion

ŤUDelft

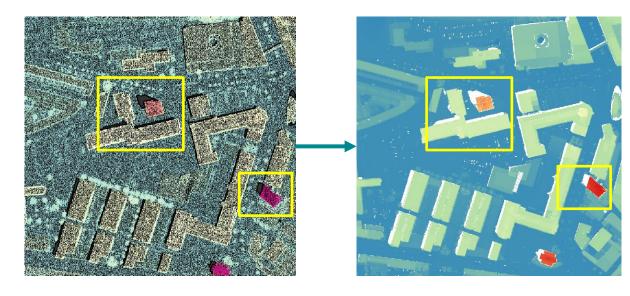
Limited Quality

(a)

Screenshot of AHN5

- Discretized representation
- Limited resolution

7


Related Work

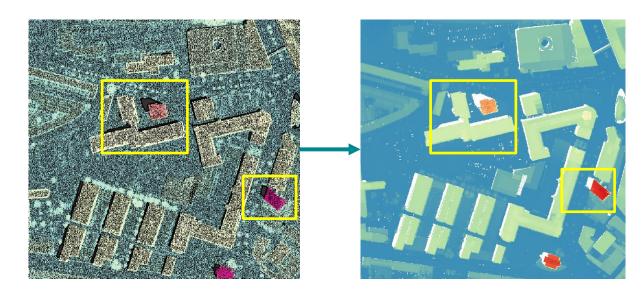
Methodology

Result

Conclusion

- low reflectance surfaces
- Occlusion

Related Work

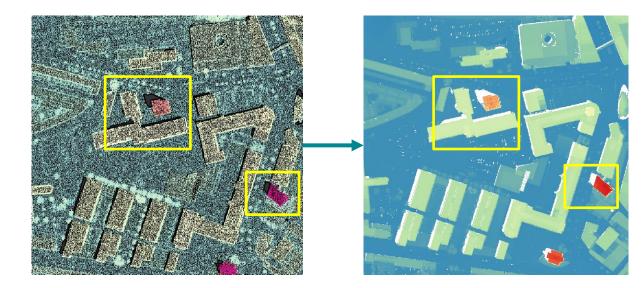

Methodology

Result

Conclusion

Missing data

- Better sensors or more flight lines
- Interpolation
- Fill with reference data


Related Work

Methodology

Result

Conclusion

High cost Frequent manual adjustment Limited reference data sources

Related Work

Methodology

Result

Conclusion

Implicit neural representation

- Utilize neural networks to implicitly encode complex, highdimensional data into a continuous functional field.
- Return result at any designated point.

11

Background

Methodology

Preliminary Result

Work plan

- Multi-modal inputs have the potential to significantly improve the quality of 3D models and can enrich it with more detailed information.
- The generalizable nature of this approach enable the generation of parts that is not directly captured during data acquisition.
- The continuous nature ensures that the final products, such as DSMs, are complete without any no-data parts.

Picture from: Chou, et al. (2022) . Diffusion-SDF: Conditional Generative Modeling of Signed Distance Functions

Related Work

Methodology

Result

Conclusion

Research question

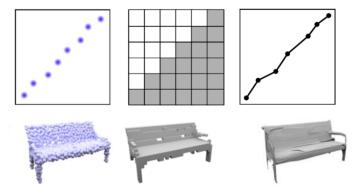
What are the characteristics of implicit neural representation when it's used for 3D real-scene urban area reconstruction

- What process steps are needed to adapt current geospatial data to the network?
- What is the geometric performance of implicit neural representation when applied to real-scene urban data reconstruction?
- How effective is the generalizability of the implicit representation functions on AHN3 urban data?
- Compared to traditional methods, what are the advantages and disadvantages of using the implicit neural representation for urban scene reconstruction with open-source datasets in the Netherlands?

2. Related work

Related Work

Methodology


Preliminary Result

Work plan

Explicit Representations

Point cloud

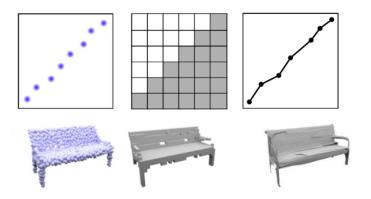
- No connectivity and topological structures
- × No global shape
- Multi-modal inputs
- Generation of various products

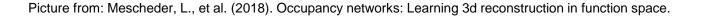
15

Related Work

Methodology

Preliminary Result


Delft


Work plan

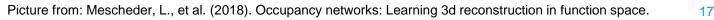
Explicit Representations

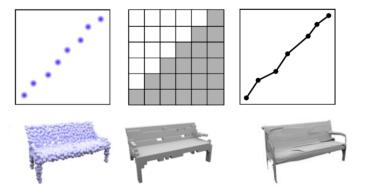
- Point cloud
 - No connectivity and topological structures
 - × No global shape
 - Multi-modal inputs
 - Generation of various products
- Voxel

- × Manhattan World bias
- Limited resolution (256^3)
 - Aligned with world coordinate
 - Continuous

Related Work

Methodology


Preliminary Result


Work plan

TUDelft

Explicit Representations

- Point cloud
 - No connectivity and topological structures
 - × No global shape
 - Multi-modal inputs
 - Generation of various products
- Voxel
 - 🗴 🛛 Manhattan World bias
 - Limited resolution (256^3)
 - Aligned with world coordinate
 - Continuous
- Mesh
 - Require class-specific templates
 - Topology problems (self-intersection)
 - Represent shape as functions
 - Continuous and intersection-free

Related Work

Methodology

Result

Conclusion

DeepSDF (2019)

Learn continuous signed distance functions for complex geometries

Implicit representation in 3D reconstruction

X High computational demands

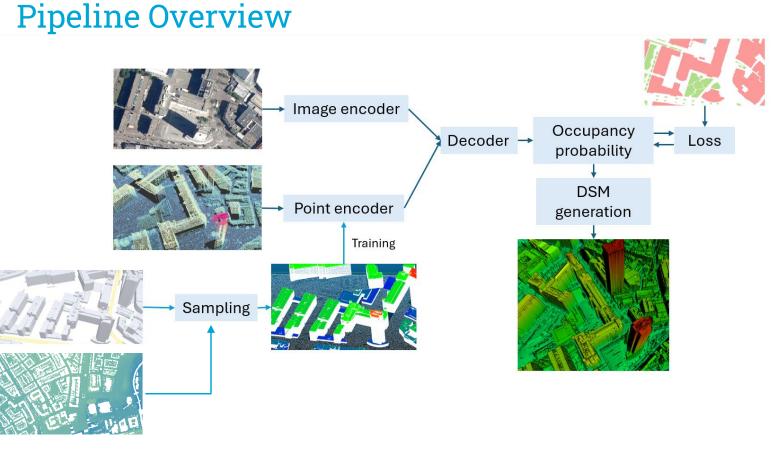
Convolutional Occupancy Network (2020)

Translation equivariance

ImpliCITY (2022)

- Apply to real scene data in Zurich
- Use orthophotos as second latent encoding to add topology information
- Closed-sourced datasets
- No analysis on the characteristics x

3. Methodology



Related Work

Methodology

Result

Conclusion

Related Work

Methodology

Result

Conclusion

Data Pre-Processing

Open-sourced datasets in the Netherlands Fully reproducible

Related Work

Methodology

Result

Conclusion

Data Pre-Processing

AHN3

• Raw point cloud

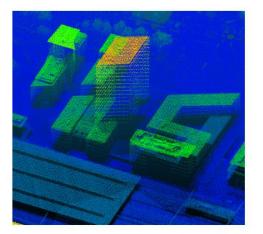
Clipped and merged by PDAL command

Related Work

Methodology

Result

Conclusion



Data Pre-Processing

AHN3

• Raw point cloud

Clipped and merged by PDAL command Generate reference DSM

(a) Area 1 in point cloud

(b) Area 1 in DSM

Related Work

Methodology

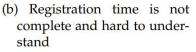
Result

Conclusion

Data Pre-Processing

AHN3

• Raw point cloud


Clipped and merged by PDAL command Generate reference DSM

Building class points used to generate building mask

(a) Accuracy for some building polygon is low

eature	Value		
pand [3]			
▼ identificatie	0599100000617974		
 (Derived) 			
 (Actions) 			
gid	1716638		
bouwjaar	1935		
identificatie	0599100000617974		
pandstatus	Pand in gebruik		
geconstateerd	false		
documentdatum	1/1/1975		
documentnummer	01/3744/72		
voorkomenidentificatie	1		
begindatumtijdvakgeldigheid	1/1/1975 00:00:00 (UTC)		
einddatumtijdvakgeldigheid	10/16/2015 00:00:00 (UTC)		
tijdstipregistratie	8/27/2010 18:39:30 (UTC)		
eindregistratie	10/16/2015 17:33:29 (UTC)		
tijdstipinactief	NULL		
tijdstipregistratielv	8/27/2010 19:01:23 (UTC)		
tijdstipeindregistratielv	10/16/2015 18:00:02 (UTC)		
tijdstipinactiefly	NULL		
tijdstipnietbaglv	NULL		
aanduidingrecordinactief	false		
geom_valid	true		

(c) Underground part is also included in the BAG

Related Work

Methodology

Result

Conclusion

Data Pre-Processing

AHN3

• Raw point cloud

Clipped and merged by PDAL command Generate reference DSM

Building class points used to generate building mask

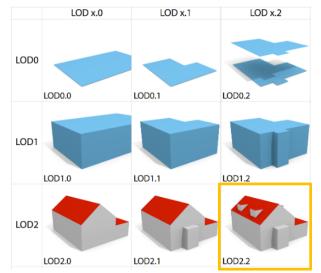
• Reference terrain points

Sampled from DTM in AHN3 No terrain surface in 3DBAG

Related Work

Methodology

Result


Conclusion

Data Pre-Processing

3DBAG

• Reference point cloud

LOD 2.2 model which includes detailed roof

Picture from: Biljecki, F., Ledoux, H., and Stoter, J. (2016). An improved LOD specification for 3d building models.

Related Work

Methodology

Result

Conclusion

Data Pre-Processing

3DBAG

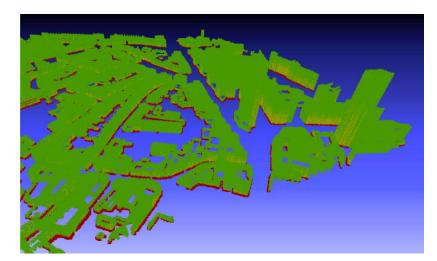
• Reference point cloud

LOD 2.2 model which includes detailed roof Sampled with different density on roof, wall and ground

Related Work

Methodology

Result


Conclusion

Data Pre-Processing

3DBAG

• Reference point cloud

LOD 2.2 model which includes detailed roof Sampled with different density on roof, wall and ground Divided into three categories with regard to DSM and DTM

ŤUDelft

Introduction

Related Work

Methodology


Conclusion

Result

Data Pre-Processing

BGT

• Water and vegetation layers as masks

Related Work

Methodology

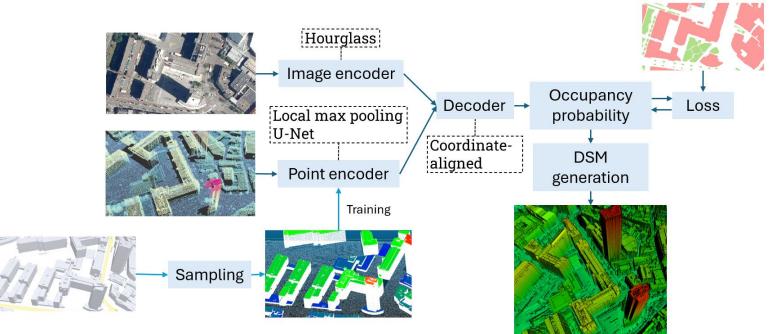
Result

Conclusion

Data Pre-Processing

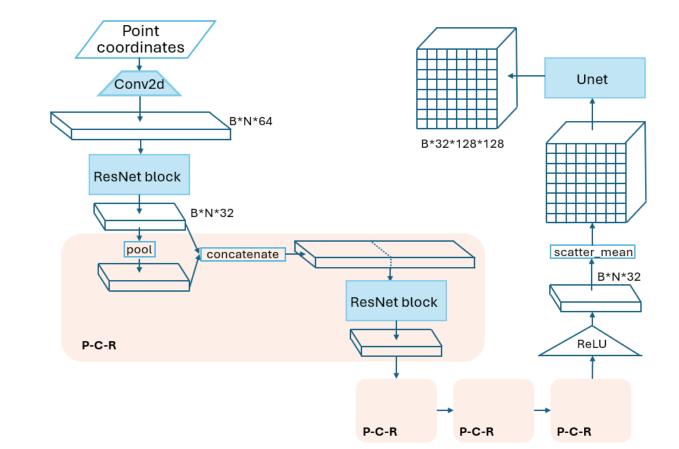
Luchtfoto Beeldmateriaal

- 25 cm resolution
- Converted to black and white


Related Work

Methodology

Conclusion


Result

Network Overview

Network Architecture-Point encoder

Methodology Preliminary Result Work plan

Introduction

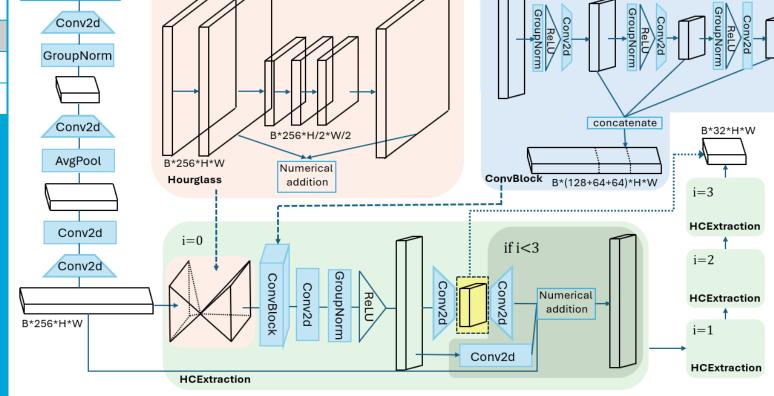
Background

ŤUDelft

Network Architecture—Image encoder

Introduction

Background


Methodology

Preliminary Result

ÚDelft

Orthophoto

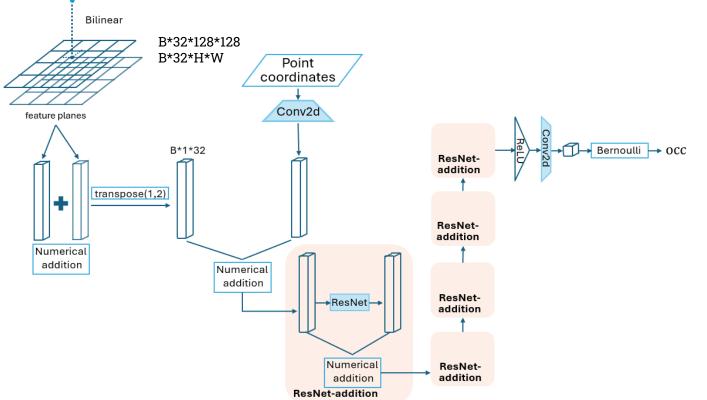
Work plan

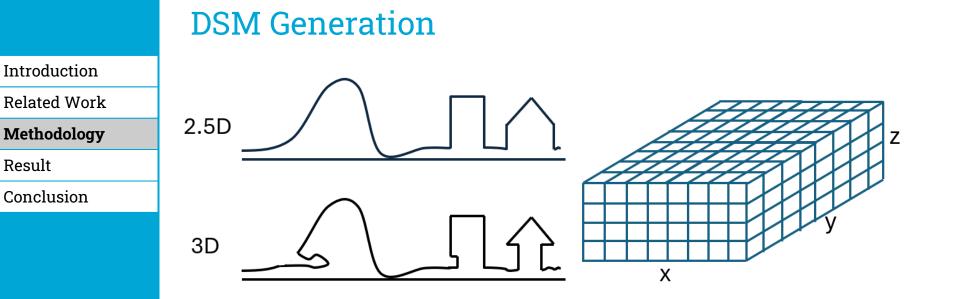
B*64*H*W

B*128*H*W

Network Architecture—Occupancy probability decoder

Background

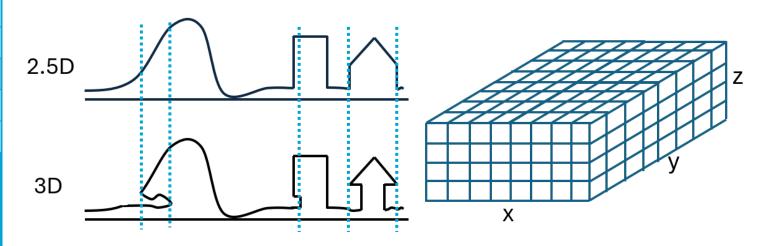

Introduction


Methodology

Preliminary Result

Work plan

Create a grid at the desired horizontal resolution but considerably low vertical resolution.



Related Work

Methodology

DSM Generation

Create a grid at the desired horizontal resolution but considerably low vertical resolution.

Related Work

Methodology

Result

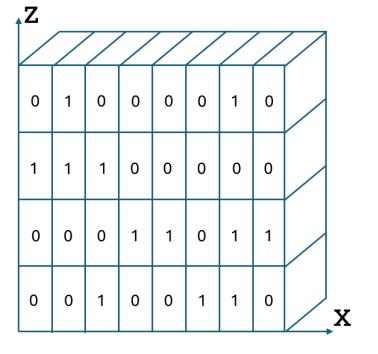
Conclusion

DSM Generation-Highest cell method

Only the cell is predicted to be occupied and is the highest in the column, will it be divided into four smaller voxels for further iteration.

0.25 0.75 0.36 0.27 0.45 0.35 0.57 0.25 0.72 0.56 0.76 0.30 0.40 0.42 0.31 0.36 0.63 0.40 0.28 0.66 0.86 0.26 0.76 0.76 0.32 0.20 0.13 0.32 0.32 0.56 0.65 0.37 Х

Related Work

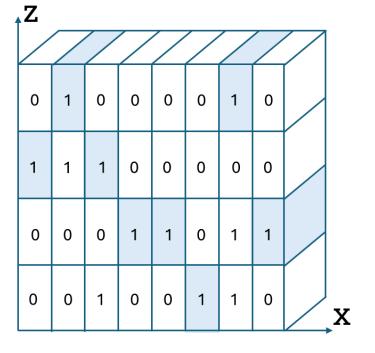

Methodology

Result

Conclusion

DSM Generation-Highest cell method

Related Work

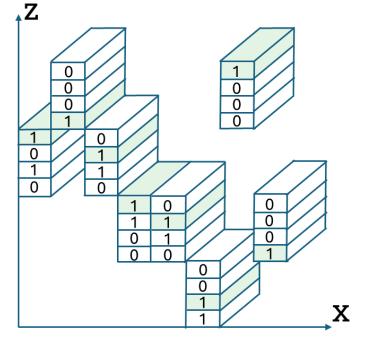

Methodology

Result

Conclusion

DSM Generation-Highest cell method

Related Work

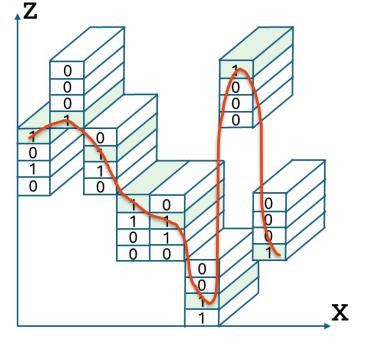

Methodology

Result

Conclusion

DSM Generation-Highest cell method

Related Work

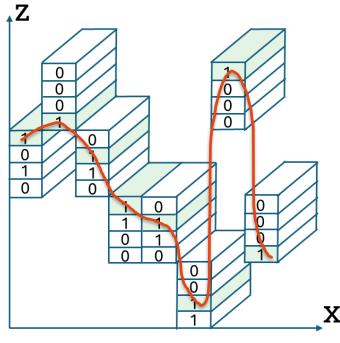

Methodology

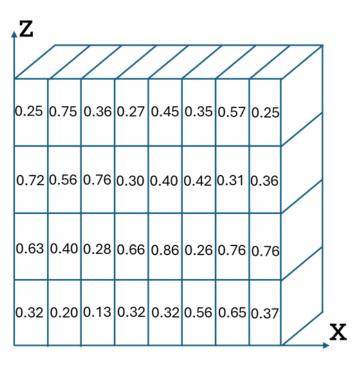
Result

Conclusion

DSM Generation-Highest cell method

Related Work

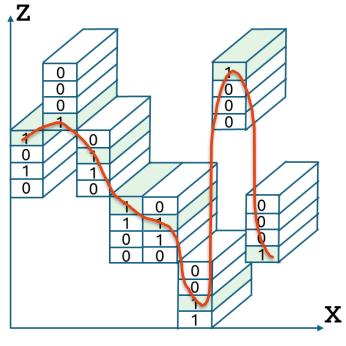

Methodology

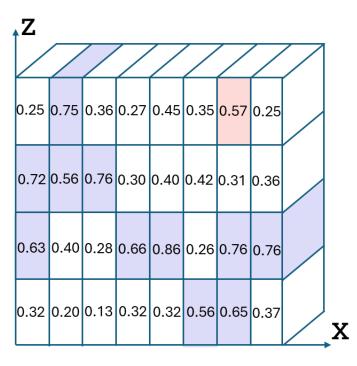

Result

Conclusion

- Probability larger than the threshold
- Ranking among the top-n
- The highest in the z-direction

Related Work

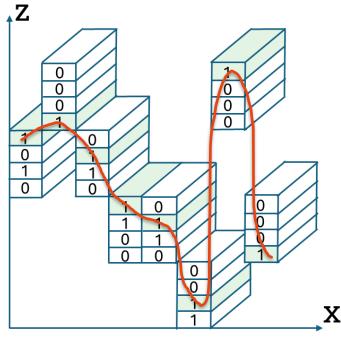

Methodology

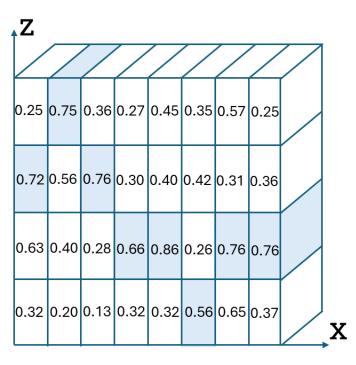

Result

Conclusion

- Probability larger than the threshold
- Ranking among the top-n
- The highest in the z-direction

Related Work

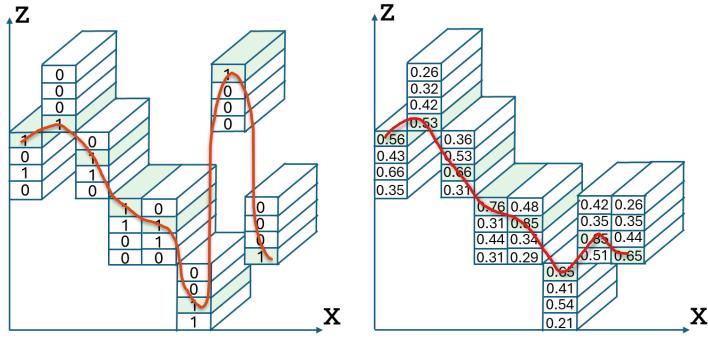

Methodology


Result

Conclusion

- Probability larger than the threshold
- Ranking among the top-n
- The highest in the z-direction

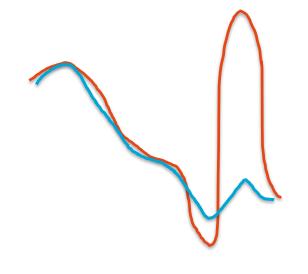
Related Work


Methodology

Result

Conclusion

- Probability larger than the threshold
- Ranking among the top-n
- The highest in the z-direction


Related Work

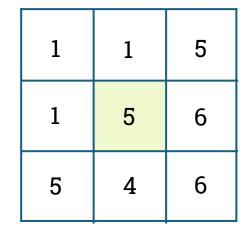
Methodology

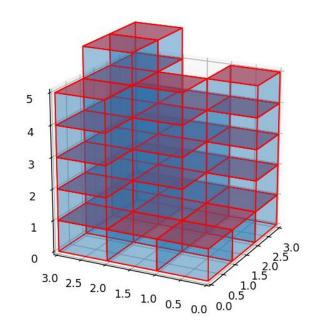
Result

Conclusion

- Probability larger than the threshold
- Ranking among the top-n
- The highest in the z-direction

Related Work

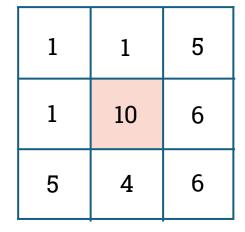

Methodology

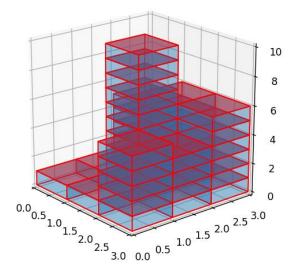

Result

Conclusion

- Elevation > 80%×max_height
- 3×3 neighborhood
- Height differences

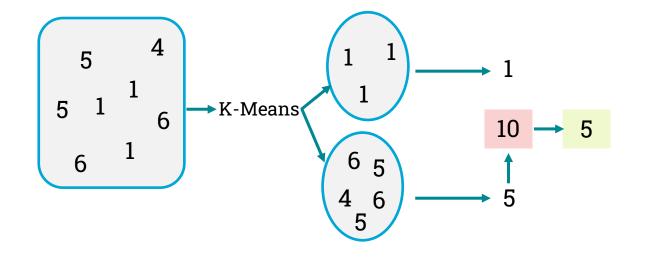
Related Work


Methodology


Result

Conclusion

- Elevation > 80%×max_height
- 3×3 neighborhood
- No neighbor have the same height, or all differences exceed 2×current_height_resolution.


Related Work

Methodology

Result

Conclusion

- K-Means to separate into two, representing roof and ground elevations.
- Depending on the center value, it selects the appropriate cluster
- Mean value of the cluster is assigned to the center position

4. Result

Related Work

Methodology

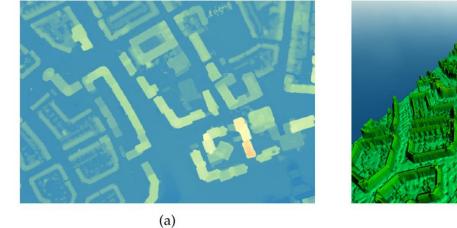
Result

Conclusion

Study area

Eindhoven
 2.043km*1.103km
 Train and test data

Rotterdam
 0.665km*1.139km
 Test data


Related Work

Methodology

Result

Conclusion

DSM Generation result on training area Highest cell method

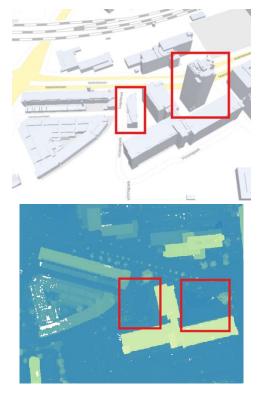
(b)

52

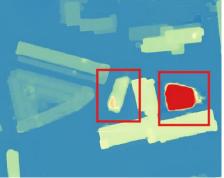
Туре	MedAE[m]	Median[m]	MAE[m]	RMSE[m]	NMAD[m]	Pixels
Overall	1.2828	0.2093	2.7408	6.6293	2.1450	17209506
Building	2.1471	-1.9780	3.6042	6.4280	6.2400	3529615
Vegetation	0.5515	0.4728	3.5183	8.6550	0.5023	718374
Terrain	0.3573	0.3118	2.0316	5.3886	0.2266	6862569
Terrain_no_Vegetation	0.3497	0.2985	1.8928	5.2770	0.2114	4937153

Related Work

Methodology

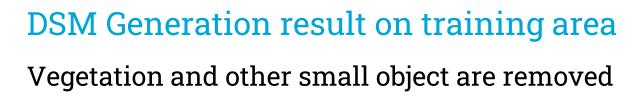

Result

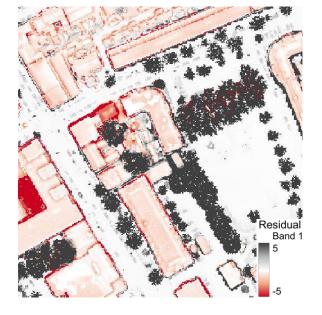
Conclusion


ŤUDelft

DSM Generation result on training area

Differences in AHN and 3DBAG




Related Work

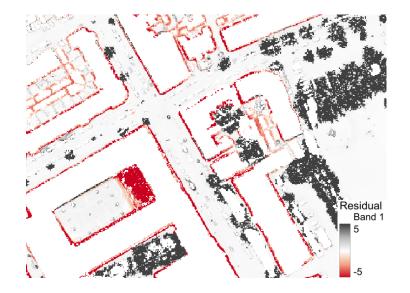
Methodology

Result

Conclusion

1	~ d	ot1 0 10	
	<i>(\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ </i>	(1 1 / 1 / 1	
m	ouu	CUOII	
m	ouu	ction	

Related Work


Methodology

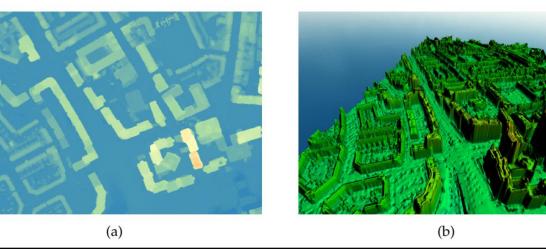
Result

Conclusion

DSM Generation result on training area

Model not used to sudden height change

Related Work


Methodology

Result

Conclusion

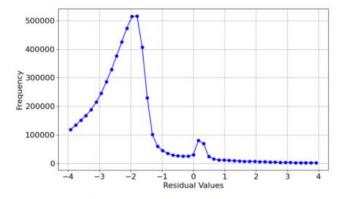
ŤUDelft

DSM Generation result on training area Highest cell method

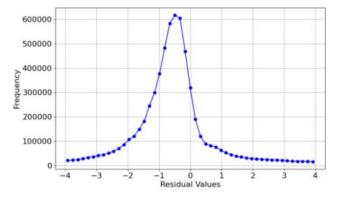
Туре	MedAE[m]	Median[m]	MAE[m]	RMSE[m]	NMAD[m]	Pixels
Overall	1.2828	0.2093	2.7408	6.6293	2.1450	17209506
Building	2.1471	-1.9780	3.6042	6.4280	6.2400	3529615
Vegetation	0.5515	0.4728	3.5183	8.6550	0.5023	718374
Terrain	0.3573	0.3118	2.0316	5.3886	0.2266	6862569
Terrain_no_Vegetation	0.3497	0.2985	1.8928	5.2770	0.2114	4937153

DSM Generation result on training area

Introduction


Related Work

Methodology


Result

Conclusion

Top-2 probability method

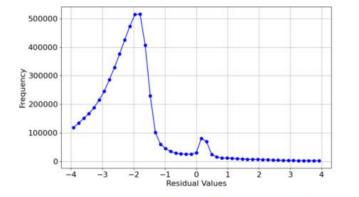
(a) Distribution of building residual of the highest cell method

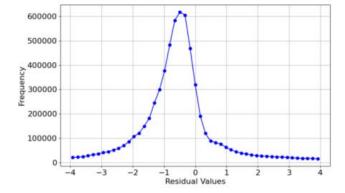
(b) Distribution of building residual of the top-2 probability method

DSM Generation result on training area

Introduction

Related Work


Methodology


Result

Conclusion

Top-2 probability method

- (a) Distribution of building residual of the highest cell method
- (b) Distribution of building residual of the top-2 probability method

Туре	MedAE[m]	Median[m]	MAE[m]	RMSE[m]	NMAD[m]	Pixels
Overall	1.5199	1.0424	3.5156	6.9758	2.8159	17209506
Building	0.7912	-0.5777	2.5448	7.3884	2.2274	3529615
Forest	3.5613	3.3565	6.1072	9.4555	3.5732	718374
Terrain	2.1896	2.0857	4.2174	6.6949	1.9181	6862569
Terrain_no_vegetation	2.0066	1.8859	3.8383	6.3075	1.7083	4937153

Related Work

Methodology

Result

Conclusion

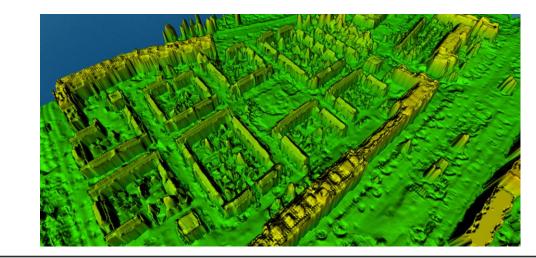
ŤUDelft

DSM Generation result on training area Combined DSM

Туре	MedAE[m]	Median[m]	MAE[m]	RMSE[m]	NMAD[m]	Pixels
Overall	0.4843	0.1882	2.2267	6.2917	1.0183	17209506
Building	0.7983	-0.4930	1.9334	4.0296	2.1755	4535085
Vegetation	0.4801	0.4085	3.3444	8.5057	0.4615	718374
Terrain	0.3016	0.2636	2.7728	8.6806	0.2045	6230403
Terrain_no_vegetation	0.2900	0.2543	2.6568	8.1074	0.1816	4328152

Related Work

Methodology


Result

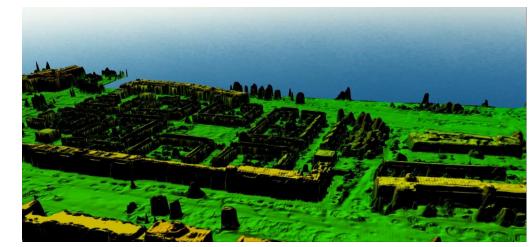
Conclusion

Generalization ability

Eindhoven

Туре	MedAE[m]	Median[m]	MAE[m]	RMSE[m]	NMAD[m]	Pixels
Overall	0.3364	0.2281	2.4177	5.2011	0.4988	6066614
Building	0.7137	-0.4039	1.9222	4.1182	1.9224	822627
Vegetation	0.2777	0.2609	3.9082	7.3576	0.4117	915725
Terrain	0.2747	0.2663	2.7092	5.7631	0.4073	3697489
Terrain_no_vegetation	0.2999	0.2885	2.0520	4.5059	0.2693	1702021

Related Work


Methodology

Result

Conclusion

Eindhoven

Туре	MedAE[m]	Median[m]	MAE[m]	RMSE[m]	NMAD[m]	Pixels
Overall	0.3364	0.2281	2.4177	5.2011	0.4988	6066614
Building	0.7137	-0.4039	1.9222	4.1182	1.9224	822627
Vegetation	0.2777	0.2609	3.9082	7.3576	0.4117	915725
Terrain	0.2747	0.2663	2.7092	5.7631	0.4073	3697489
Terrain_no_vegetation	0.2999	0.2885	2.0520	4.5059	0.2693	1702021

Generalization ability

Introduction

Related Work

Methodology

Result

Conclusion

ŤUDelft

Туре	MedAE[m]	Median[m]	MAE[m]	RMSE[m]	NMAD[m]	Pixels	
Overall	0.2304	0.0000	1.4960	3.9871	0.3416	11942849	
Building	0.8582	-0.6525	1.6034	3.3675	2.4043	1123399	
Vegetation	0.4043	0.3548	3.1362	6.3861	0.3088	940520	
Terrain	0.0000	0.0000	1.3113	3.8818	0.0000	8617636	
Terrain_no_vegetation	0.0000	0.0000	0.8120	2.8603	0.0000	6730096	6

Related Work

Methodology

Result

Conclusion

Generalization ability--No-value data filling Visual inspection

Related Work

Methodology

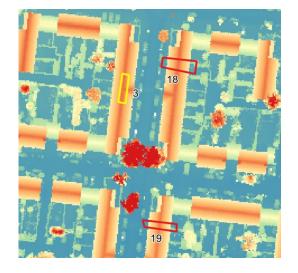
Result

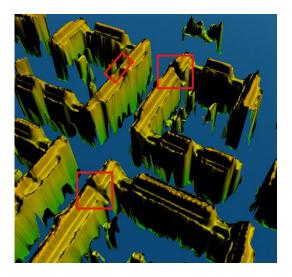
Conclusion

Generalization ability--No-value data filling Quantitative evaluation

Background

Methodology


Preliminary Result

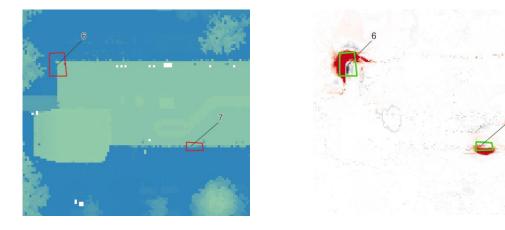

ŤUDelft

Work plan

Generalization ability--No-value data filling

Quantitative evaluation

ID	Area [m ²]	MAE [m]	RMSE [m]	MedAE [m]	Median [m]	NMAD [m]	Pixels
3	40.386	0.146	0.228	0.061	0.000	0.091	1100
18	76.187	1.295	2.119	0.416	0.000	0.617	1950
19	46.613	0.906	1.940	0.112	0.000	0.167	1302


Related Work

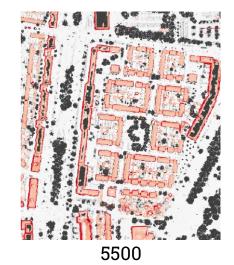
Methodology

Result

Conclusion

Generalization ability--No-value data filling Quantitative evaluation

• The model struggles to generate clear features in areas with missing points along the edges.

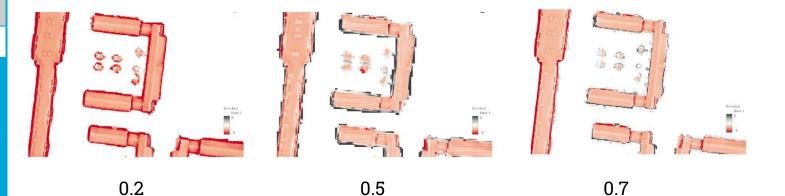

Background

Methodology

Preliminary Result

Work plan

DSM Generation—Iteration number Iteration number



- Background
- Methodology
- **Preliminary Result**
- Work plan

DSM Generation-Threshold

5. Conclusion

Related Work

Methodology

Result

Conclusion

Contribution

- Data preprocessing algorithms
- New DSM generation method
- Generalization ability exploration
- Effect of training iteration and threshold

Related Work

Methodology

Result

Conclusion

Research question

Sub-question: What process steps are needed to adapt current geospatial data to the network?

Data	Source	Processing method
Raw point cloud	AHN3	Clipped and merged by PDAL command
Reference point cloud	3D BAG AHN3	Download in .obj format, with varying sample densities on the roof, wall, and ground Terrain points from AHN3 DTM
Orthophoto	Luchtfoto Beeldmat eriaal	Convert the image to black and white
Masks	BGT, AHN3	Plant and water mask can be extracted from BGT using API Building mask is made with building type points in AHN3

Related Work

Methodology

Result

Conclusion

Research question

Sub-question: What is the geometric performance of implicit neural representation when applied to real-scene urban data reconstruction?

The best result is a merged DSM, with buildings generated using the top-2 probability method and other areas using the highest cell method.

This DSM shows clear edges and corners, with most roof parts accurately generated.

The residual map shows accuracy reaching 0.8 m of MedAE for buildings and 0.3 m for terrain.

Related Work

Methodology

Result

Conclusion

Research question

Sub-question: How effective is the generalizability of the implicit representation functions on AHN3 urban data?

The model is tested in area with totally different landscape and height distribution. The evaluation shows nearly the same accuracy as in the trained area.

The filling of void parts shows good results in both visual and quantitative checks.

Related Work

Methodology

Result

Conclusion

Research question

Sub-question: Compared to traditional methods, what are the advantages and disadvantages of using the implicit neural representation for urban scene reconstruction with open-source datasets in the Netherlands?

Traditional DSM generation methods often requires frequent manual adjustments and limited data sources.

- ✓ Use only open-source datasets
- Deep learning network can automatically calculate suitable hyperparameters for DSM generation and void filling.
- Implicit neural representation allows for unlimited resolution and generates a continuous field, solving the problem of losing information due to discrete explicit representation.

Related Work

Methodology

Result

Conclusion

Research question

Sub-question: Compared to traditional methods, what are the advantages and disadvantages of using the implicit neural representation for urban scene reconstruction with open-source datasets in the Netherlands?

Traditional DSM generation methods often requires frequent manual adjustments and limited data sources.

- Requires a variety of data for training whereas traditional methods only need DSM covering the same area.
- The model is also prone to overfitting, with increased iterations potentially leading to artifacts on flat roofs rather than improved accuracy.
- The entire learning process is a black box, unlike traditional methods where all the hyperparameters can be fully understood and adjusted as needed.

Related Work

Methodology

Result

Conclusion

Research question

Main question: What are the characteristics of implicit neural representation when it's used for 3D real-scene urban area reconstruction?

Implicit neural representations demonstrate strong performance when used for 3D real-scene urban area reconstruction with geospatial data.

They can effectively generate **continuous** and **high-resolution** DSM with high accuracy. The model exhibits notable **generalization** capabilities, allowing them to generate accurate data for areas with entirely different landscapes. Additionally, its ability to **fill voids** in the data has been validated, further supporting their efficacy in real-world applications.

These characteristics underscore the potential of implicit neural representations in advancing geospatial data processing and urban area reconstruction.

Methodology

Result

Conclusion

Future work

Network input optimization

- RGB and Infrared information of the point cloud Eliminate the issues of geological alignment and feature differences caused by varying data acquisition times.
- Synthetic maps to be used as input data. Much clearer topological guidance

Related Work

Methodology

Result

Conclusion

Future work

Generation of other formats of 3D models

- Point cloud. Current methods use only threshold as constrain for extraction and can create redundant points at various height. Further work need to be done to find out how to extract desired clean surface when applied to geospatial data.
- 3D city model. Current method was only applied on single building reconstruction and it's not an end-to-end network architecture. Still, this show the potential of using implicit neural representation as indicator for city model reconstruction on larger scale.

Related Work

Methodology

Result

Conclusion

Future work

Rotation-invariance in the representation of point cloud

- Rotation invariance can enhance the robustness of the model by seeing more data in different rotational poses and ensures the consistency in the output.
- Random flipping and rotating data patch does not guarantee covering all possible orientations and there always exists unseen angle for the model.
- The possible solution is to generate transformation-invariant features of the point cloud by methods like local canonicalization and use it as an additional input for each point.

Related Work

Methodology

Result

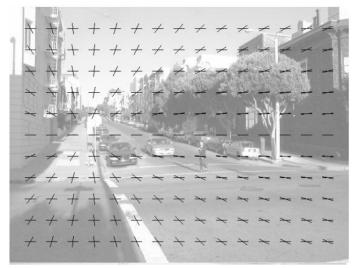
Conclusion

Future work

Extended application on vegetation classification

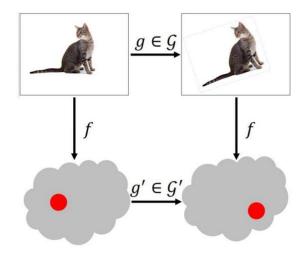
- An excessive removal of vegetation details.
- Consequently, vegetation can be identified from the residual map where the height is lower than expected.
- By utilizing point cloud spectral information, detailed insights into vegetation and water content can be obtained by calculating NDVI and NDWI for each point.
- Incorporating these indices in the training process improves the model's capability to accurately identify and classify vegetation, making it an effective tool for environmental monitoring and landscape management.

Thanks for hearing!



Question

Manhattan World bias


- many visual scenes are based on a "Manhattan" three-dimensional grid which imposes regularities on the image statistics.
- grid-based structure force the axis to be straight and orthogonal
- do not naturally accommodate the spherical shape of the Earth

Translation Equivariance

- If the input (e.g., an image or 3D shape) is translated, the features extracted by the convolutional layers are translated in the same way.
- This property ensures that the network's understanding of the features is consistent regardless of their position.
- When a network learns to identify a feature (like an edge in an image or a specific pattern in a 3D shape), it can recognize that feature whether it's small or large, as long as the relative proportions remain consistent.

 $f\bigl(g(\mathbf{x})\bigr) = g'\bigl(f(\mathbf{x})\bigr)$

84

PointNet

1. Processing of Point Clouds

- 2. Feature Extraction: PointNet uses a series of neural network layers (such as multi-layer perceptrons) to extract features from each point independently. This means it learns to understand the characteristics of each point, considering its position (in this case, on the x-y plane) and potentially other features like color or intensity if available.
- **3. Symmetric Function for Unordered Data**: A key aspect of PointNet is its use of a symmetric function (like max pooling) to ensure that the output is invariant to the order of the points in the input. This is crucial since point clouds are inherently unordered.

U-Net

- 1. Efficient Use of Data: U-Net is designed to work well with a limited amount of training data.
- 2. Symmetric Expanding Path: U-Net's architecture consists of a contracting path (encoder) to capture context and an expanding path (decoder) that enables precise localization. This symmetric structure helps in learning representations that are effective for segmentation tasks.
- **3. Feature Concatenation**: In the expanding path, U-Net concatenates features from the contracting path. This skip-connection feature concatenation helps the network to use information gathered at various resolutions, improving the accuracy of the segmentation.

Too early heuristic reduction

- Heuristic Reduction: This refers to the process of simplifying or reducing the complexity of the original point cloud data. Heuristics are rules or methods applied to make this process more manageable or efficient. However, these rules are based on general assumptions or estimations rather than specific, detailed analysis of each point.
- Loss of Detail: The original point cloud contains a wealth of detail. Early reduction to a height field or mesh can oversimplify these details, especially if the heuristics used do not adequately capture the nuances of the data.

Background

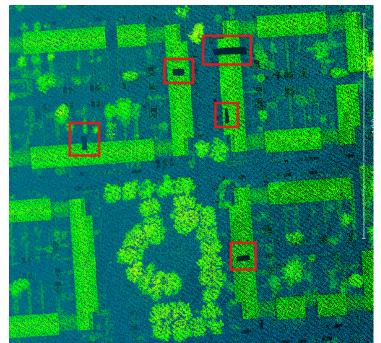
Methodology

Preliminary Result

Work plan

Data combination Water removal

Background


Methodology

Preliminary Result

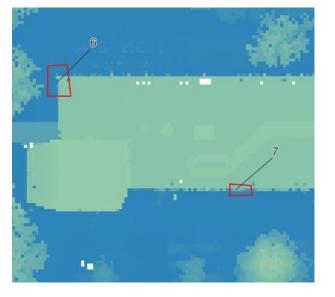
Work plan

Generalization ability--No-value data filling

Quantitative evaluation

Background

Methodology


Preliminary Result

Work plan

Generalization ability--No-value data filling

Quantitative evaluation

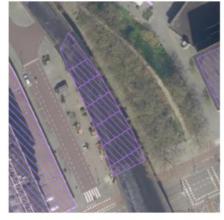
The performance of edge regeneration is not ideal.

Background

Methodology

Preliminary Result

Work plan


Building mask is generated from classified point cloud instead of using the "pand" layer from BGT or BAG.

		154
2		1 4 1
31	11%	1.4
		dis .

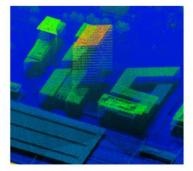
(a) Accuracy for some building polygon is low

Feature	Value
* pand [3]	
* identificatie	0599100000617974
(Derived)	
(Actions)	
gid	1716638
bouwjaar	1935
identificatie	0599100000617974
pendstatus	Pand in gebruik
geconstateerd	false
documentdatum	1/1/1975
documentnummer	01/3744/72
voorkomenidentificatie	1
begindatumtijdvakgeldigheid	1/1/1975 00:00:00 (UTC)
einddatumtijdvakgeldigheid	10/16/2015 00:00:00 (UTC)
tijdstipregistratie	8/27/2010 18:39:30 (UTC)
eindregistratie	10/16/2015 17:33:29 (UTC)
tijdstipinactief	NULL
tijdstipregistratielv	8/27/2010 19:01:23 (UTC)
tijdstipeindregistratielv	10/16/2015 18:00:02 (UTC)
tijdstipinactiefly	NULL
tijdstipnietbaglv	NULL
aanduidingrecordinactief	false
geom_valid	true

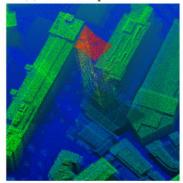
(b) Registration time is not complete and hard to understand

(c) Underground part is also included in the BAG

Background


Methodology

Work plan


Preliminary Result

Data preparation

A reference DSM is created using the AHN point cloud due to the presence of abnormal data gaps in the AHN3 version.


(a) Area 1 in point cloud

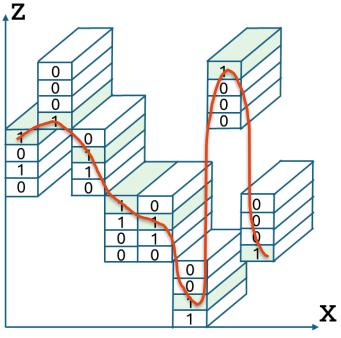
(c) Area 2 in Point cloud

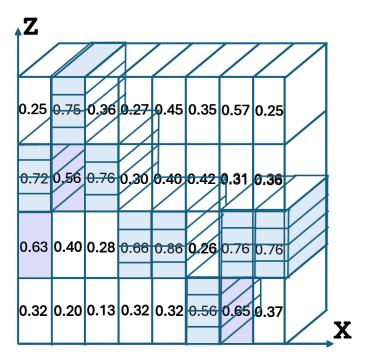
(b) Area 1 in DSM

(d) Area 2 in DSM

Related Work

Methodology


Result


Conclusion

DSM Generation—Top-n probability method

- Probability larger than the threshold
- Ranking among the top-n
- The highest in the z-direction

15	
TU	Delft

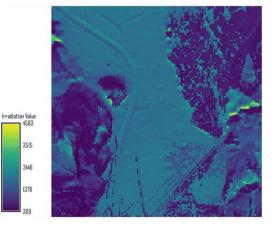
Data Pre-Processing

Introduction		
Related Work		

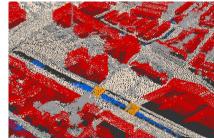
Data	Source	Processing method
Raw point cloud	AHN3	Clipped and merged by PDAL command
Sampled point cloud	3D BAG	Download in .obj format, with varying sample densities on the roof, wall, and ground
Orthophoto	Luchtfoto 25cm database	Convert the image to black and white
Masks	BGT, AHN3	Plant and water mask can be extracted from BGT using API Building mask is made with building type points in AHN3

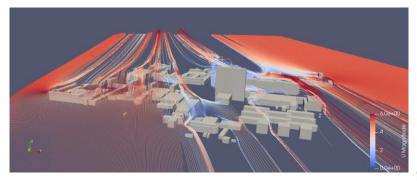
Related Work

Methodology


Result

Conclusion




3D Models For Urban Area

• Accuracy and completeness

