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A B S T R A C T   

As an effective way to facilitate the increasing demand for reliable infrastructure, energy supply and sustainable 
urban development, underground utility tunnels have been developed rapidly in recent years. Due to the 
widespread distribution of utility tunnels, the safe operation of natural gas pipelines accommodated in utility 
tunnels has caused great concern considering fire, explosion, and other coupling consequences induced by the 
gas pipeline leakage. However, the limited information on leakage source terms in accidental leakage scenarios 
could preclude timely consequence assessment and effective emergency response. In this study, a BI-IEnKF 
coupling source term estimation (STE) model is developed, with the combination of gas dispersion model, 
Bayesian inference (BI) and iterative ensemble Kalman filter (IEnKF) method, to achieve the effective source term 
estimation (including leakage location and leakage rate) and gas concentration distribution prediction. The 
newly developed model is first evaluated by the twin experiment with good reliability and accuracy. Further
more, three contributing factors affecting the performance of the developed BI-IEnKF coupling STE model were 
investigated to assist parameter selection for practical use. Additionally, the novel application of mobile sensors 
serving as an alternative for fixed sensors is explored, and an application framework is sequentially given to 
guide the deployment of the developed coupling model in utility tunnels. The results show that the developed 
model has great performance in accuracy, efficiency and robustness, as well as the potential to be applied in 
actual utility tunnel scenarios. This study can provide technical supports for safety control and emergency 
response in the case of natural gas pipeline leakage accidents in utility tunnels. Also, it could be helpful to 
reasonable references for gas lekage monitoring system design.   

1. Introduction 

With the rapid development of urbanization, utility tunnel, as an 
effective way to address the pressing requirement of reliable infra
structure, energy supply, and higher environmental protection, has been 
utilized widely in the past few decades (Broere, 2016; Wang et al., 2018; 
Yin et al., 2020; Apak et al., 2022). Natural gas pipeline characterized by 
widespread distribution is more vulnerable to accidental, natural, and 
intentional threats (Chen et al., 2021; Vairo et al., 2021; Wang et al., 
2021). Once the inevitable accidental leakage cannot be well treated 
with reasonable emergency response by decision-makers, it can consti
tute a major contributor to the escalation of leakage into fire/explosions 
(Zhang et al., 2020; Tang et al., 2020; Deng et al., 2022). And thus the 
accommodation of the natural gas pipeline in utility tunnels has caused a 

wide concern considering the potential consequence induced by the 
unexpected leakage accident (Yang et al., 2021; Cheng et al., 2022). 
Therefore, it is necessary to pay sufficient attention to the leakage ac
cident of the natural gas pipeline from the emergency response point of 
view, which has a pivotal role in the safe operation of urban under
ground utility tunnels. 

In the early years, there have been some studies regarding gas 
leakage and dispersion in utility tunnel scenarios by employing nu
merical simulation methods and experimental analysis. Tan et al. (2017) 
employed Ansys Fluent to analyze the dispersion behaviors of leaking 
gases and the effect of mechanical ventilation was also considered. The 
results showed that mechanical ventilation plays a significant role in 
leaking gas mixing and dilution. Lu et al. (2018) took the actual 
Yanyingshan tunnel as a research subject and investigated the effect of 
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multi-factors (e.g. leakage location, leakage direction, the shape of 
leakage hole) on the gas leakage and dispersion processes. It was indi
cated that the pipeline operating pressure has a more adverse influence 
on the leakage consequence. Liu et al. (2019) studied the influence of 
temperature and humidity on the leaking gas dispersion characteristics 
and a relatively apparent gas dispersion promotion phenomenon was 
found. Wang et al. (2020) conducted a scenarios analysis considering the 
effect of leakage size, pipeline pressure, and mechanical ventilation on 
gas dispersion through the two-dimensional numerical analysis. Zhang 
and Lan (2020) developed a large-scale experimental mockup for the 
numerical model validation purpose and the optimization of ventilation 
speeds and sizes of ventilation vents in the utility tunnels was also dis
cussed. Zhang et al. (2021) explored the possibility of the water–gas 
integrated compartment in utility tunnels from the perspective of 
energy-saving oriented. It is revealed that the present emergency 
response treatment can be applied to the novel water–gas compartment 
safely. Zhou et al. (2021, 2022) have built a utility tunnel experimental 
apparatus to simulate the gas leakage and dispersion in the underground 
utility tunnel using alternative safe gas with CO2. And the adopted nu
merical model was validated by the experimental data. Moreover, the 
layout scheme of gas sensors in the utility tunnel networks was opti
mized as well. Bu et al. (2021) proposed a methane invasion distance 
(MID) equation for describing the gas leakage process in the utility 
tunnel, which is beneficial to the optimized gas sensor layout. In 
conclusion, most of the aforementioned studies usually employed a 
forward numerical model (i.e., e.g. Computational Fluid Dynamics 
model) to handle the process of gas release and dispersion, which needs 
to prescribe initial parameters (e.g., leakage source term and wind 
conditions). It can be used to reproduce the scenarios after the occur
rence of accidents and provide some reasonable reference for later ac
cident planning. However, when an unexpected natural gas leakage 
accident occurs in utility tunnels, the unknown source term and unstable 
wind conditions can cause varying degrees of errors, which inevitably 
deviates the simulation results from real situations. Therefore, the 
aforementioned issues make the timely and reasonable emergency 
response difficult when coping with the unclear or unknown source term 
(i.e., leakage location and leakage rate) scenarios in utility tunnels. 

As a widely used method to realize the source term estimation and 
physical field correction by assimilating observation data into the gas 
dispersion model, the reliability and practicability of the data assimi
lation (DA) method have been validated in different scenarios, such as 
atmospheric conditions (Zhang et al., 2015; Wang et al., 2017; Wu et al., 
2021), river pollution (Zhang and Huang, 2017; Wang et al., 2019), and 
urban environment (Xue et al., 2018; Jia and Kikumoto, 2021). The 
natural gas compartment of utility tunnels can serve as a potential sce
nario for the application of the DA method since the gas sensors are 
required to be accommodated inside the natural gas compartment ac
cording to GB50838-2015 Technical Specification for Urban utility Tunnel 
Engineering (CPS, 2015), which facilities the data collection and utili
zation. There have been some studies using the DA method to achieve 
the gas dispersion prediction under the unknown source term in utility 
tunnels. Yuan et al. (2019) and Cai et al. (2022) developed a one/three- 
dimensional CFD-ensemble Kalman filter (EnKF)based model respec
tively for the gas concentration prediction and the leakage rate esti
mation, but this model could not deal with the inversion of the leakage 
location. Wu et al. (2020) proposed a source term estimation model 
based on the Bayesian inference method, which was capable of both the 
leakage rate and leakage location inversion. However, the proposed 
Bayesian inference-based model can not realize a gas concentration 
distribution prediction. These abovementioned studies mainly 
employed one specific DA method and focused on one objective (i.e., 
only source term estimation or gas concentration prediction). They have 
difficulties in achieving release source term estimation and the leaking 
gas concentration prediction simultaneously. Therefore, coupling pre
diction of source term and gas concentration distribution is still a very 
challenging task aiming for both emergency response and consequence 

assessment. Moreover, the utilization of mobile sensors has great pros
pects in terms of both the DA model improvement and gas sensor system 
design but has not been investigated in utility tunnel scenarios. 

In this paper, a BI-IEnKF coupling STE model is developed with the 
combination of the gas dispersion model, Bayesian inference, and the 
iterative ensemble Kalman filter method, which can help to realize the 
source term (both leakage location and leakage rate) estimation and gas 
concentration prediction. Firstly, the effectiveness of the developed 
model is validated by a widely used twin experiment. Furthermore, the 
parameter sensitivity analysis is conducted to evaluate the performance 
of the developed model further in the context of different ensemble sizes, 
prior distribution, and time intervals of available observation data. 
Moreover, the novel application of mobile sensors in utility tunnels and 
its enhancement for the developed model is demonstrated. Finally, an 
application framework of the BI-IEnKF coupling STE model is proposed. 
This study contributes to providing technical support for source term 
estimation and gas concentration prediction of the commonly used gas 
transportation facilities in process industries, such as utility tunnels and 
chemical plants equipped with gas sensors. 

2. Methodology 

In this study, the developed BI-IEnKF coupling STE model consists of 
a forward gas dispersion model and a novel coupling DA model. This 
section is organized as follows: Firstly, the adopted gas dispersion model 
is defined to ensure that the main gas leakage and dispersion charac
teristics in utility tunnels can be well captured; Secondly, the Bayesian 
inference method and iterative ensemble Kalman filter method are 
introduced respectively. With the combination of two DA methods, a 
newly coupling DA model is developed. In the developed coupling DA 
model, the computational burden stemming from the sampling section 
of the BI method can be reduced significantly. Meanwhile, the drawback 
of the IEnKF method in possibility and uncertainty analysis will also be 
complemented. Finally, the combination of the gas dispersion model and 
the newly developed coupling DA model is elaborated. 

2.1. Gas dispersion model 

The natural gas compartment of utility tunnels is constructed as a 
long and narrow structure, which means that the ratio of the cross- 
section and length of utility tunnels is very small (Liu et al., 2022). 
Moreover, when an accidental gas leakage happens, the leaking gas will 
be mixed within the cross-section rapidly and transported along with the 
length direction of the utility tunnel under the effect of mechanical 
ventilation. Therefore, the one-dimensional gas advection–diffusion 
equation is selected as the gas dispersion model (i.e. the forward model) 
because of the special structure and gas dispersion characteristics (Yuan 
et al., 2019; Wu et al., 2020). This gas dispersion model can propagate 
the leaking gas as time marches by presetting the initial source term 
parameters. This simplification can reduce computational consumption 
to a large extent and satisfy the emergency demand for rapid prediction 
of gas leakage and dispersion. As a result, it can help to construct the fast 
source term estimation model. The adopted advection–diffusion equa
tion is presented as follows: 

∂ρc
∂t

+
∂(ρuc)

∂x
=

∂
∂x

(

D
∂c
∂x

)

+ S (1) 

Where 
c represents the volume fraction of natural gas, 
ρ is the gas density, 
u is the gas velocity corresponding to the x-direction, 
D is the gas diffusion coefficient and S is the leakage source term. 
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2.2. Data assimilation method 

2.2.1. Bayesian inference method 
The Bayesian inference method is derived based on the framework of 

the Bayes theorem. The Bayesian inference method is used to obtain the 
posterior probability of interest parameters, the calculation of the pos
terior distribution is given as follows: 

P(α|β) = P(α)P(β|α)
P(β)

(2) 

Where 
α is the unknown parameter matrix of the gas leakage source term (i. 

e., the. leakage location and leakage rate), 
β is the observation data matrix obtained from the gas sensors, 
P(α) represents the prior distribution that can help to predefine the 

range of the source term parameters, and P(β) is a normalization factor, 
P(β|α) and P(α|β) denote the likelihood function and the posterior 

distribution respectively. 
Generally, the direct calculation of P(β) needs to solve a complex 

multidimensional integral. In this study, the IEnKF method is chosen to 
simplify the calculation of the posterior probability presented in Eq. (2). 
Meanwhile, the predictive deterioration problem can be avoided to a 
large extent by the iteration calculation involved in the IEnKF method 
(Sousa and Gorlé, 2019). 

2.2.2. Iterative ensemble Kalman filter method 
The iterative ensemble Kalman filter method is developed to address 

the crux in solving the strongly non-linear inversion problem. The spe
cific procedure of the IEnKF method can be found in the study proposed 
by Iglesias (Iglesias et al., 2013). In this study, only some key steps are 
presented. 

Taking an inversion problem for the calculation of u as an example: 

y = G(u)+ η (3) 

Where. 
G : X→Y is the forward response operator, which can map the un

known parameter u to observation space, 
X and Y are hilbert spaces (i.e., the state spaces of the leakage source 

term and ga s concentration respectively in this study), 
η represents the noise following distribution with 0 mean and Γ 

variance, 
y ∈ Y is observation data. 
To solve the inversion problem mentioned above, the artificial dy

namics model (Gas dispersion model in this study) based on state 
augmentation is defined as follows: 

(4)  

yn+1 = Hzn+1 + ηn+1 (5) 

The mapping rule Ξ: Z → Z is achieved by constructing a state-space 
Z = X× Y, and the corresponding equation is presented below: 

(6) 

Where H : Z→Y is the projection operator and H = (0, I). {ηn}n∈Z+ is 
a random variable sequence with independent distribution, and η1 N(0,
Γ). 

Moreover, a prior set 
{

z(j)n

}J

j=1 
is constructed for finding the true 

unknown parameter by blending the artificial dynamics model and 
available observation data. The unknown parameter u can be obtained 
by: 

un ≡
1
J

∑J

j=1
u(j+1)

n =
1
J

∑J

j=1
H⊥z(j)n (7) 

Where H⊥ : Z→X is a mapping operator and H⊥ = (I,0). 
The solving process of the standard EnKF method has been involved 

in many studies (Zhang et al., 2015; Zhang and Huang, 2017; Sousa and 
Gorlé, 2019). Similar to the conventional EnKF method, every iteration 
of the IEnKF method involves two steps (i.e., the forecast step and the 
analysis step). The specific solving procedure of the IEnKF method is 
listed as follows: 

(i) Forecast step 

(8)  

zn+1 =
1
J
∑J

j=1
ẑ(j)n+1 (9)  

Cn+1 =
1
J
∑J

j=1
ẑ(j)n+1

(
ẑ(j)n+1

)T
− zn+1(zn+1)

T (10) 

Where Eq. (8), Eq. (9), and Eq. (10) are used to calculate the results 
of model prediction ẑ(j)

n+1, the ensemble means zn+1, and covariance 
respectively Cn+1. 

(ii) Analysis step 

Kn+1 = Cn+1H*(HCn+1H* + Γ)− 1 (11)  

z(j)n+1 = I ẑ(j)n+1 + βKn+1

(
y(j)n+1 − Hẑ(j)n+1

)
(12)  

y(j)n+1 = y+ η(j)
n+1 (13) 

Where Eq. (11), Eq. (12), and Eq. (13) are used to calculate the 
Kalman gain Kn+1, the posterior results z(j)n+1, and observation data with a 
perturbation noise y(j)

n+1. β is a damping coefficient to alleviate the 
inbreeding problem, which can be set ranging from 0 to 1. 

Finally, the optimal state of the unknown parameters is obtained by 
the average of state matrix: 

un+1 ≡
1
J

∑J

j=1
H⊥z(j)n+1 =

1
J

∑J

j=1
u(j)

n+1 (14)  

2.3. BI-IEnKF coupling STE model 

With the combination of the gas dispersion model and coupling DA 
method mentioned above, the specific procedure of the BI-IEnKF 
coupling STE model is shown in Fig. 1. Firstly, the BI module provides 
a prior ensemble sampled from the initial-guess prior distribution for the 
gas dispersion model calculation. The results calculated by the gas 
dispersion model are used to construct the state matrix of the IEnKF 
module, which consists of gas concentration distribution, leakage loca
tion, and leakage rate. When the available observation data is obtained, 
the state matrix can be revised by the IEnKF model. Finally, the calcu
lated posterior distribution of the source term parameters and revised 
gas concentration distribution can be utilized for the next iteration or 
serve as reasonable outcomes according to the predefined/ideal itera
tion (Sousa and Gorlé, 2019). 

3. Model configurations 

The developed BI-IEnKF coupling STE model needs to integrate the 
observation data into the gas dispersion model for the source term 
estimation and gas concentration prediction. Fig. 2 presents the whole 
process of the validation and evaluation of the developed BI-IEnKF 
coupling model. Firstly, the rhoReactingBuoyantFoam solver in the 
OpenFOAM platform is selected as a good candidate to serve as the 
observation data generator. This solver has been widely validated in the 
buoyant gas dispersion scenario, e.g., methane and carbon dioxide 
(Fiates et al., 2016; Fiates and Savio, 2016; Wu et al., 2021). Meanwhile, 
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the validation of the rhoReactingBuoyantFoam solver has been achieved 
in our previous studies, where the experimental data obtained from a gas 
release scenario in a confined utility tunnel system was used. And a 
maximum relative error less than 5% could be seen, which indicates a 
good agreement between simulation results and experimental data (Cai 
et al., 2022). Therefore, the data generated from the rhoR
eactingBuoyantFoam solver have its rationality in the validation of the 

developed BI-IEnKF coupling model by using the twin experiment 
(Zhang et al., 2014; Yuan et al., 2019; Wu et al., 2020); In the twin 
experiment, the prior source term parameters, which simulate the un
certainty and deviation from the actual source term parameters in real 
gas leakage situation, will be initialized into the gas dispersion model. 
Then, the generated data from the validated rhoReactingBuoyantFoam 
solver are assumed as actual data. It will be integrated into the gas 

Fig. 1. Schematic of the BI-IEnKF coupling STE model.  

Fig. 2. Validation and evaluation of the developed BI-IEnKF coupling model.  

J. Wu et al.                                                                                                                                                                                                                                      
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dispersion model by the BI-IEnKF coupling model to minimize the pre
dictive error derived from the aforementioned uncertainty and devia
tion; Finally, the performance of the developed BI-IEnKF coupling model 
can be evaluated by the relative error between assumed actual param
eters and predicted parameters by BI-IEnKF coupling model. In the 
following subsections, the specific configuration parameters of the 
developed model are presented. 

3.1. Configurations of OpenFOAM simulation 

The computational domain is created by referring to the requirement 
of GB50838-2015 Technical Specification for Urban utility Tunnel Engi
neering (CPS, 2015), and it has a dimension of 200 m × 2 m × 2.25 m. 
The specific layout of the computational domain and corresponding 
boundary conditions is presented in Fig. 3. Moreover, the detailed pa
rameters used in the simulation are listed in Table 1. 

By referring to GB50838-2015 Technical Specification for Urban 
utility Tunnel Engineering (CPS, 2015), the adopted boundary condi
tions and the determination of the specific value are shown as follows: 

(i) Inlet: the velocity at the ventilation vent is calculated by Eq. (15) 
(Wang et al., 2020; Zhang et al., 2020): 

v =
N × V

3600 × F
(15) 

Where 
N is the air change rate, 
F is the area of the ventilation vent, 
V is the volume of the natural gas compartment. 
(ii) Leakage hole: The leakage rate can be obtained through the Eq. 

(16) (Wang et al., 2020; Zhang et al., 2020): 

Qm = CAPa

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

kM
RT

(
2

k + 1

)k+1
k− 1

√

(16) 

Where 
C is the release coefficient and the value of C range from 0.9 to 0.98, 
A is the area of the leakage hole, 
Pa is the pressure of the natural gas pipeline and is assumed to be 0.2 

Mpa, 
k is the isentropic index and equal to 1.29, 
M is the molar mass and the value is set as 16 g/mol, 
R is the molar gas constant and the value is set as 8.314472 J/ 

(mol⋅K), 
T is the temperature and the value is set as 293 K. 
(iii) Outlet: A pressure-outlet boundary condition is utilized at the 

Outlet and the pressure is set as atmospheric pressure. 
(iv) Walls: All the walls involved in the computational domain are set 

as no-slip conditions. 
Besides, the SST turbulence model is chosen to account for the pro

cess of turbulent diffusion. 
Since the leaked gas can be rapidly mixed within the cross-section of 

the natural gas compartment. The average gas concentrations within the 
cross-sections are used as observation data at the observation sites (ten 
observation sites in this study). Also, a perturbation noise is involved in 
the observation data to represent the observation errors in the real 
situation. 

3.2. Configurations of the BI-IEnKF coupling STE model 

The determination of configuration parameters in the BI-IEnKF 
coupling STE model can affect the performance of assimilation to a 
certain degree. In this study, the time interval of available observation 
data is set as 5 s, which means that the observation data will be assim
ilated into the gas dispersion model every 5 s. The interval of observa
tion sensors is 20 m (i.e., 10 observation sensors in total). The actual 
leakage rate and location are assumed as 0.5654 m3/s and 20 m 
respectively, which serve as the initial condition of OpenFOAM simu
lation to generate synthetic observation data (Yuan et al., 2019). These 
configuration parameters were employed for representing an assumed 
real situation (using initial parameters without uncertainty). Mean
while, the prior distributions of the leakage location (m) and leakage 
rate (m3/s) follow the uniform distribution U (0, 100) and U (0,1)
respectively. It represents an accidental leakage without information 
about the actual source term. Therefore, the performance of the BI- 
IEnKF coupling STE model can be evaluated by the difference between 
the actual source term parameters and the source term parameters 

Fig. 3. Computational domain of the natural gas compartment in utility tunnels.  

Table 1 
Configuration parameters of OpenFOAM simulation.  

Parameters Value 

Length (m) 200 
Wide (m) 2 
Height (m) 2.25 
Area of ventilation vent (m2) 1 
Velocity of Inlet (m/s) 1.54 
Location of leakage hole (m) (20, 0.75,0.6) 
Diameter of leakage hole (mm) 60 
Leakage rate (m/s) 100 
Diameter of the natural gas pipeline (mm) 300 
Total simulation time (s) 145  

J. Wu et al.                                                                                                                                                                                                                                      
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predicted by the developed model, namely, the twin experiment (Zhang 
et al., 2014; Yuan et al., 2019). The specific configuration parameters 
related to the developed model are presented in Table 2. 

4. Results and discussion 

4.1. Evaluation of the BI-IEnKF coupling STE model 

As mentioned in Section 3.2, the accuracy of the developed model is 
evaluated by comparing the model predictions with the actual source 
term parameters (leakage location and leakage rate). Moreover, the 
correction effect of the gas concentration distribution under an initial- 
guess source term is also involved in the model evaluation. Besides, 
the skill scores are adopted to evaluate the performance of the developed 
model further (Ma et al., 2018). 

The posterior distributions of the source term parameters and the gas 
concentration distribution revised by the developed model are presented 
in Fig. 4 and Fig. 5. As shown in Fig. 4, the blue columns are the posterior 
distributions of the source term and the red lines represent the Gaussian 
fitting curve of the source term. Meanwhile, the prior probability dis
tributions of the source term are contained in the form of a small chart 
and the red line denotes the predefined actual value of the source term 
parameters. It can be seen that the posterior probability peaks of the 
leakage location and the leakage rate are 20.2125 m and 0.5593 m3/s 
respectively. The relative errors between the actual source term (leakage 
location and leakage rate) and model prediction are 0.9% and 1%, which 
demonstrates a good agreement with the actual source term. As can be 
seen from Fig. 5, the gas concentration distributions are closer to the 
actual gas concentration distribution with the increase of the model 
iteration number. A reliable result is achieved when the model iteration 
number is 5 and the average relative error is less than 1%. Therefore, the 
developed BI-IEnKF coupling STE model can realize the reasonable 
source term estimation and gas concentration prediction at the same 
time. 

The skill scores are used to evaluate the performance of the devel
oped model quantitatively, and the definition of the related equations 
are presented below: 

Si =

⃒
⃒
⃒
⃒
meva,i − mtrue,i

mtrue,i

⃒
⃒
⃒
⃒ (17)  

Sl =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

k=x,y,z
S2

k

√

(18)  

Save =
Sl + SQ

2
(19)  

St,ave =

⃒
⃒
⃒
⃒

tave

2tmax

⃒
⃒
⃒
⃒ (20)  

Sr,ave =

⃒
⃒
⃒
⃒

rave

2rmax

⃒
⃒
⃒
⃒ (21) 

Where 
Si is the relative error of the source term parameters, 
5 i Represents the specific source term parameters (i.e., leakage 

location S and leakage rate Q), 
meva,i and mtrue,i are the model predictions and actual value of the 

source term parameters, 
Sl denotes skill score of the location, 
Sk is the skill score at a specific coordinate, 
St,ave and Sr,ave are skill scores of the computational time and 

robustness, 
tave and tmax are the average computational time of 10 calculations 

and max computational time, 
rave and rmax are the average relative error of 10 calculations and max 

relative error. 
According to the abovementioned equations, the total skill score can 

be calculated as follows: 

Ssum = Sl + Save+St,ave + Sr,ave (22) 

The calculated skill scores are summarized in Table 3. Generally, the 
lower skill scores (ranging from 0 to 1) represent a greater performance 
of the developed model (Ma et al., 2013). As shown in Table 3, all the 
skill scores are at a low level. The score of the leakage location and 
leakage rate are both 0.009, which indicates that the developed model 
can achieve a good source term estimation. The score of the computa
tional time and robustness are 0.15 and 0.1 respectively, which dem
onstrates the low computation cost and high robustness of the developed 
model. 

4.2. Sensitivity analysis of model parameters 

There are still some uncertainties in the determination of model 
parameters when coping with a specific scenario. In this section, three 
contributing factors (i.e., the ensemble sizes, the prior distributions, and 
the time intervals of available observation data) affecting the perfor
mance of the developed model are investigated to analyze the effect of 
these three factors. It can serve as an effective reference for the perfor
mance improvement of the developed model in actual application sce
narios in terms of accuracy, efficiency, robustness, and cost- 
effectiveness. 

4.2.1. Effect of the ensemble sizes 
As a key factor influencing the performance of the developed model, 

a reasonable selection of the ensemble size can balance the model’s 
accuracy and efficiency (Wang et al., 2019). In this section, the ensemble 
sizes of 10, 30, 60, 90, and 120 are compared for the appropriate 
determination of the ensemble size. The variance of the estimation re
sults for the source term parameters and gas concentration distribution 
when employing different ensemble sizes are shown in Fig. 6 and Fig. 7. 
Fig. 6 indicates that there is a gradual fall error of the estimation results 
with the increase of the ensemble size and the accuracy of both leakage 
location and leakage rate are improved. When the ensemble size is 60, 
an accurate estimation result can be obtained. As the stepwise increase 
of the ensemble sizes from 60 to 120, the increased computational time 
achieved a slight accuracy improvement, which can also be observed in 
Fig. 7. Therefore, the ensemble size of 60 can be considered an ideal 
candidate for both computational accuracy and efficiency. 

4.2.2. Effect of the prior distributions 
The prior distribution represents the available information about the 

source term parameters when an unexpected leakage occurs in the 
natural gas compartment of the utility tunnel. Generally, the prior dis
tribution of the source term can be predefined by empirical determi
nation. Taking a 200 m natural gas compartment as an example, the 
physical boundary ranges from 0 to 200 m and the range of leakage rate 
can be determined by the theoretical formula estimation. In this section, 
two prior distributions largely derived from the actual source term pa
rameters are used to investigate the influence of the prior distribution on 
the source term estimation. As shown in Table 4, Case 1 and Case 2 

Table 2 
Configuration parameters of the BI-IEnKF coupling STE model.  

Parameters Value 

Ensemble size 60 
Number of observation sensors 10 
Time interval of available observation data (s) 5 
Interval of observation sensors (m) 20 
Max iteration of the developed model 10 
Damping coefficient 0.01  
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represent two rough prior distributions, the average values of the prior 
distributions of these two cases are much larger and smaller than the 
actual value respectively. However, the estimation results predicted by 
the developed model show good agreement with the actual value of the 
source term parameters, which demonstrates the robustness and prac
ticability of the developed model when handling an uncertain scenario 
with a rough prior distribution. 

4.2.3. Effect of the time intervals of available observation data 
Gas sensors accommodated in the natural gas compartment of the 

utility tunnel can provide continuous data measurement. However, 
intensive data collection will pose a huge burden for data storage and 

transmission, which can cause an increased cost. In this section, three 
different time intervals of available observation data (i.e., 5 s, 10 s, 15 s) 
are compared for the optimization of the developed model with the 
consideration of accuracy and cost-effectiveness. Table 5 presents the 
comparison of the actual value and estimation results with different time 
intervals. It can be seen that the errors between the actual value and 
estimation results become smaller with the decrease of the time interval. 
Besides, the root mean square error is adopted to evaluate the developed 
model by Eq. (23). 

Fig. 4. The posterior distributions of the source term, (a) leakage location, and (b) leakage rate.  
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RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(Xt − Xs)

√
√
√
√ (23) 

Where N is the ensemble size, Xt and Xs are the actual value and 
estimation results of the source term respectively. 

The root mean square error of source term parameters can be 
reduced to a low level rapidly when employing a small time interval, 
which can be observed in Fig. 8. This is because the small time interval 
provides more available observation data and thus accelerates the pro
cess of assimilation. Moreover, Fig. 9 shows the estimation results of the 
gas concentration distribution with different time intervals. When the 

Fig. 5. Gas concentration distributions with different model iteration numbers.  

Table 3 
Skill scores of the BI-IEnKF coupling STE model.  

Performance evaluation parameters Value 

The score of the source term SS 0.009 
SQ 0.009 

The score of the location Sl 0.009 
Average score Save 0.009 
The score of the computational time St,ave 0.15 
The score of the robustness Sr,ave 0.1 
Total skill score Ssum 0.287  

Fig. 6. Results of the source term parameters with different ensemble sizes.  
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time interval is set as 5 s, the gas concentration distribution can be well 
predicted. Therefore, the time interval of 5 s can achieve reasonable and 
satisfactory estimation considering both source term estimation and gas 
concentration prediction. 

4.3. Dynamic sensors analysis 

The layout of gas sensors is of significance for the performance of the 
DA method, which has been investigated and verified in the utility 
tunnel scenarios (Yuan et al., 2019; Wu et al., 2020). However, due to 
the long and narrow structure of the gas compartment in utility tunnels, 
the leaked gas needs a relatively long time to be detected by the majority 
of sensors. At the initial stage of leakage, this situation usually causes 
invalid monitoring of some sensors, which are located far from the 
leakage location. Mobile sensors can adjust the specific layout according 
to the leaked gas concentration automatically. Therefore, it can provide 
more leakage-related information compared with conventional gas 
sensors, which is helpful to achieve a better performance of the devel
oped model and save monitoring equipment investment to a certain 
extent (Hutchinson et al., 2017). In this section, two basic rules of mo
bile sensors are assumed: (i) the natural gas compartment is divided into 
two parts (i.e., search zone 1 and search zone 2), mobile sensors are 
stationary and start to approach the leakage location when anyone gas 
sensors are triggered; (ii) The moving speed of the gas sensor is 1 m/s, 
and the collected data will be provided to the developed model for data 
assimilation every 5 s. Fig. 10 presents the moving path of mobile sen
sors in two search zones when an accidental leakage occurs. Moreover, 
the mobile sensors in each zone will monitor the leaked gas in the cor
responding zone periodically. In this study, the total calculation time is 
set as 145 s and the specific locations of mobile sensors within 40 s are 
exemplified in Table 6. 

Fig. 11 shows the posterior distributions of the source term predicted 
by using 8 mobile sensors. The estimation results of the leakage location 
and leakage rate are 19.96 m and 0.5464 m3/s. And the relative errors 
between the actual value and the estimation results are 0.7% and 0.65%, 
which achieve a better prediction compared to the estimation results by 
using 10 fixed sensors in Section 3.1. This is because the gas sensors 
installed in the natural gas compartment can be fully utilized by 
continuous movement and thus provide more available spatiotemporal 
information. The comparison of estimation results by using the mobile 
sensor and the fixed sensor is presented in Fig. 12. It can be seen that the 
estimation result by using the mobile sensor has a good agreement with 
both actual value and fixed sensor prediction. Therefore, the mobile 

Fig. 7. Results of the gas concentration distribution with different ensemble sizes.  

Table 4 
Results of the source term parameters with different prior distributions.   

Source term 
parameters 

prior 
distribution 

Actual 
value 

Average of the 
prior 
distribution 

Estimation 
results 

Case 
1 

Leakage 
location (m) 

U(0,200) 20  121.8  20.2 

Leakage rate 
(m3/s） 

U(0,10) 0.5654  5.04  0.5666 

Case 
2 

Leakage 
location (m) 

U(0,5) 20  4.56  20.24 

Leakage rate 
(m3/s) 

U(0,0.1) 0.5654  0.059  0.5565  

Table 5 
Results of the source term parameters with different time intervals of available 
observation data.  

Time intervals of 
observation data 

Source term 
parameters 

Actual 
value 

Estimation 
results 

Relative 
errors 

5 s Leakage 
location (m) 

20  20.18  0.009 

Leakage rate 
(m3/s） 

0.5654  0.5598  0.009 

10 s Leakage 
location (m) 

20  19.69  0.015 

Leakage rate 
(m3/s) 

0.5654  0.5457  0.034 

15 s Leakage 
location (m) 

20  20.56  0.028 

Leakage rate 
(m3/s) 

0.5654  0.5125  0.093  
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sensor can be used as an alternative tool for the conventional sensor 
considering the benefits of predictive accuracy, flexibility, and 
economy. 

4.4. Model application and limitations 

4.4.1. Application framework 
The BI-IEnKF coupling STE model shows great advantages in the 

aspect of accuracy, efficiency, and robustness, which has been demon
strated above. And the utilization of mobile sensors is also practical and 
promising. Therefore, a reliable framework for the application of the 
developed model is proposed in this section. Such a framework can serve 
as a useful guide to support the deployment of the developed BI-IEnKF 
coupling STE model in utility tunnels. As a result, it could be helpful 
to facilitate emergency response treatment in accidental leakage sce
narios and provide a reasonable reference for monitoring system design. 
Finally, this framework is expected to be a basis for an early warning 
system in utility tunnels. 

Fig. 13 presents an application framework of the developed BI-IEnKF 
coupling STE model in utility tunnels, which consists of four main 
modules (i.e., sensor layer, model layer, decision layer, and response 
layer). For the purpose of providing more flexible and effective data 
acquisition, mobile sensors could be installed in the utility tunnel as a 
feasible alternative to conventional fixed sensors. As shown in Fig. 13, 
the adopted mobile sensors system connects gas sensors to the ceiling of 
the utility tunnel by guide rails, which allows each mobile sensor to have 
a wide span of movement. Once an accidental leakage accident occurs, 
the mobile sensor system will be triggered and available data can be 
assimilated into the BI-IEnKF coupling STE model. Then, the rapid 
source term estimation and corresponding gas concentration distribu
tion can be achieved automatically. Furthermore, the crucial informa
tion conducive to decision-making will be visualized and the sequent 
emergency response treatment can be implemented more informed. In 
addition to being beneficial to the data collection of the developed 
model, the mobile sensor system could reduce the number of used sen
sors and sensor false alarm rates. It could help to enhance the efficiency, 

Fig. 8. Root mean square error of source term parameters with different time intervals.  

Fig. 9. Results of the gas concentration distribution with different time intervals.  
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reliability, and maybe cost-benefit of the monitoring system in utility 
tunnels. 

4.4.2. Limitation and outlook 
In this study, the one-dimensional gas advection–diffusion equation 

was employed as the forward model in the BI-IEnKF coupling model. The 
used forward model can capture the main characteristics associated with 
the gas leakage and dispersion process in the underground tunnel 
considering the long and narrow structure. Therefore, it can be inte
grated with data assimilation methods (i.e., BI-IEnKF coupling algo
rithm in this study) to achieve the source estimation and gas 
concentration prediction. When it comes to application in outdoor areas, 
although the developed framework is applicable, an appropriate for
ward model able to describe the gas leakage and dispersion process in 
outdoor areas should be selected first, such as the two/three- 
dimensional CFD model. Then, the developed BI-IEnKF coupling 
model can be extended to outdoor area scenarios like chemical parks. 
However, the integration of a two/three-dimensional CFD model will 
cause a huge computational burden. The estimation efficiency of the BI- 
IEnKF coupling model cannot be guaranteed. Therefore, high- 
performance computing (HPC) and machine learning (ML) techniques 
have great potential to facilitate the BI-IEnKF model for application in 
more complex scenarios, which is also expected to be a basis for an early 
warning system. 

Due to the unavailability of sufficient experimental data, we first 
validated the CFD model (i.e., rhoReactingBuoyantFoam solver in the 
OpenFOAM platform). Then, the data generated from the 

rhoReactingBuoyantFoam solver was used to validate the BI-IEnKF 
coupling model by the twin experiment. In fact, the gas leakage exper
iment using CH4 can rarely be allowed in the laboratory because of the 
potential fire and explosion risk. In further, the utility tunnel experi
ments can be conducted by using alternative safety gases such as CO2 
and neon, which can provide more available data for various model 
validation. 

5. Conclusion 

In this paper, a BI-IEnKF coupling STE model with the combination 
of gas dispersion model, Bayesian inference, and iterative ensemble 
Kalman filter method was developed to achieve the source term esti
mation (leakage location and leakage rate) and gas concentration pre
diction when an accidental leakage occurs in utility tunnels. Also, its 
practical use was explored by sensitivity analysis of model parameters 
and mobile sensors application. The main conclusions are summarized 
as follows:  

(a) The BI-IEnKF coupling STE model was applied in natural gas 
leakage scenarios of the utility tunnel and the skill scores were 
used to evaluate the performance of the developed model. The 
results show that the deviation between the predefined actual 
value and model prediction is less than 1% and the developed 
model has an optimistic performance in accuracy, efficiency, and 
robustness. 

Fig. 10. Moving path schematic of mobile sensors in two search zones.  

Table 6 
Specific locations of gas sensors within 40 s.   

Sensor 
index 

Time (s) 

5 10 15 20 25 30 35 40 

Search zone 1 1 5 m 10 m 15 m 20 m 15 m 10 m 5 m 0 m 
2 25 m 30 m 35 m 40 m 35 m 30 m 25 m 20 m 
3 45 m 50 m 55 m 60 m 55 m 50 m 45 m 40 m 
4 65 m 70 m 75 m 80 m 75 m 70 m 65 m 60 m 
5 85 m 90 m 95 m 100 m 95 m 90 m 85 m 80 m 

Search zone 2 6 105 m 110 m 115 m 120 m 115 m 110 m 105 m 100 m 
7 135 m 140 m 145 m 150 m 145 m 140 m 135 m 130 m 
8 165 m 170 m 175 m 180 m 175 m 170 m 165 m 160 m  
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(b) The sensitivity analysis was conducted in the context of different 
ensemble sizes, prior distributions of the source term, and time 
intervals of available observation data. The results show that the 
developed model has good robustness characterized by not being 
sensitive to prior distributions. And the appropriate prediction 
can be obtained when the ensemble size and time interval are set 
as 60 and 5 s in the specific utility tunnel scenarios. It can provide 
some reasonable reference for the parameter adjustment of the 
developed model and its practical use.  

(c) The model prediction results obtained by using 8 mobile sensors 
and 10 fixed sensors were discussed. The results show that 
comparable results can be realized by using the mobile sensor 
with a relative error less than 5%, which indicates that the mobile 
sensor can be used as an alternative monitoring scheme for the 

conventional sensor considering the benefits of model accuracy 
and flexibility. Meanwhile, it was found that mobile sensors have 
a good prospect in utility tunnels. And the corresponding appli
cation framework by combing the developed model and mobile 
sensors in utility tunnels is proposed, which helps to guide the 
application of the BI-IEnKF coupling STE model. 
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