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Abstract
Introduction  Grasping unknown objects is an important ability for robots in logistic environments.
While humans have an excellent understanding of how to grasp objects because of their visual
perception and understanding of the 3D world, robotic grasping is still a challenge. Due to the
fastgrowing development of deep learning methods, it is now possible to train deep neural networks
on this grasp task.
Objective  This thesis proposes a binpicking pipeline that uses deep learning to take care of the
perception and estimation task. The pipeline can predict grasps for known and unknown objects with a
twofingered pinchgripper in realworld environments in a single object and multiobject scenes.
Method  A grasp annotation tool has been developed to generate a wide variety of grasps in the
training data that are antipodal and collisionfree. Together with annotated objects, the generated
grasps are used to train GraspRCNN. The developed GraspRCNN combines an object and a
graspdetection network to predict objects masks and grasps, and a decision algorithm that picks the
bestestimated grasp based on a grasp score.
Results  Robotic experiments demonstrate that the proposed method allows a robot gripper to grasp
both known and unknown objects in singleobject and multiobject scenes with a total successrate of
89.7% and 81.0% with average processtimes of 616 ms and 739 ms per scene respectively. In a
binpicking scene a successrate of 87.5% with a processtime of 1235 ms is achieved.
Conclusion  These results indicate that the proposed GraspRCNN is able to grasp known and
unknown objects with an accuracy that is comparable to the stateoftheart. For production purposes,
the speed of the network still can be improved.

iii



This page is intentionally left blank.



Preface
It is hard to make the boat go as fast as you want to. The enemy of course, is resistance of the water,
as you have to displace the amount of water equal to the weight of the men and equipment, but that
very water is what supports you and that very enemy is your friend. So is life: the very problems you

must overcome also support you and make you stronger in overcoming them.

George Yeoman Pocock

The problems and frustrations I had during this project I’ve overcome, which resulted in a better thesis.
The thesis in front of you marks both the end of the research I conducted to finish the Mechanical
Engineering Master at the TU Delft and the fun student time I’ve had in Delft. It summarizes the work
I’ve done in the period between November 2020 and August 2022. This is a bit longer than I expected
due to the persuasion of a dream that I still have: getting into the National Rowing team. To
accomplish both goals, I had to combine this project with elitelevel rowing, which was due to the
24hour training schedule, rowing tests and races all around the world, not always a perfect fit and
quite challenging.

With this project, I combined my interests in robotics and machine learning and I’m thankful that Fizyr
gave me the opportunity to work on this grasp problem. I would like to thank both Vivek and Nuno for
their supervision during the project. It was very interesting to learn from your experiences and use that
in this project.

I also would like to thank Dr. Wei Pan and Dr. Ir. Gerwin Smit for being my TU Delft supervisor. Wei
for allowing me to pursue a project that I thought was very interesting while giving me the freedom and
trust to organize my project and Gerwin for the useful tips and tricks to make this report even better.

During the project, I could count on the endless support of my friends, the Pierres, and the Spechtjes. A
special mention for Menno for all the time we spent on and off the water with rowing, coffee breaks, and
study sessions. At last a special thanks to Babette, my mom, and my sister for the patience, endless
love, and support during this thesis project. You all kept me motivated!

L.R. Lipman
Delft, Augustus 2022

v



This page is intentionally left blank.



Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Data Generation 5
2.1 Data Annotation Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Grasp Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Input Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Grasp Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4.1 Grasp Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4.2 Principle Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4.3 Objects Skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4.4 Rotation around CoM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Grasp Annotation Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5.1 Grasp Trimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5.2 Collision Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5.3 Antipodal Grasps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 GraspRCNN 13
3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Output Branches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Training Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Training Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5 Loss Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6 Post Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.6.1 Object  Grasp matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6.2 Grasp Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6.3 Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6.4 Collision Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.6.5 Pixels to Grasp Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.7 GraspRCNN Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Experiments and Results 19
4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Experiment Methodology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4 Experiment 1  Single objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.5 Experiment 2  Cluttered Scenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.6 Experiment 3  Bin picking boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.7 Grasp failures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.7.1 Failure types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.7.2 Perobject failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.8 Prediction and postprocessing time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Discussion 27
5.1 Data Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.1 Used Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.2 Grasp collisions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

vii



Contents

5.2 GraspRCNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3 PostProcessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3.1 Pixel vs. reallife location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3.2 Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.4 Recommendations and Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.4.1 Larger Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.4.2 Better collision detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.4.3 Add depth information in the network . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.4.4 Increase speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.4.5 Shaker Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6 Conclusion 31

A CNN and RPN 37
A.1 Convolutional Neural Network  CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

A.1.1 Convolutional Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
A.1.2 Pooling layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
A.1.3 Fully Connected Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

A.2 Region proposal network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

B Grasp objects 41

C Network predictions 43



1
Introduction

In the past few years, ecommerce has grown fast and after the corona lockdown, the ecommerce
became even more significant. Warehouses and logistics with order pickers had to shift towards
automation and robotic solutions to keep up with the growth. The products in ecommerce have a big
diversity in goods, sizes, shapes and materials, and therefore a general approach is needed for
pickandplace tasks. Humans are good at these tasks, because of their visual perception and
understanding of the 3D world. However, for robots that rely solely on RGB and depth images,
understanding the environment and the 3D world is complex. For the pickandplace task, the robot
needs to understand the distinction between objects and their orientation to grasp them. In order to
automate this task, robots need to outperform human orderpickers on performance, speed, and
accuracy.

With the introduction of deep learning in computer vision, robots are getting more acquainted with the
handling and understanding of visual information. It is now possible to train robots on these grasp tasks
with high picking accuracies. A general grasp system consists of a combination of object detection,
grasp estimations, grasp planning and a control system for the robot. While the planning and the control
of an endeffector are as relevant for a correct grasp as grasp detection, this thesis focuses on grasp
detection solely. The planning and control systems used in this thesis are therefore mentioned, but not
discussed.

1.1. Background
To pick up objects, the robot and endeffector are vital components. In industry, a wide variety of
robotic arms are developed with a 57 Degrees of Freedom (DoF) movement to ensure a high order of
flexibility in position and orientation of the endeffector. Endeffectors with one or multiple suction cups
are used to grasp objects using a pressure difference [19], while two or threefingered pinchgrippers
grasp with force or shapeenclosure [18, 35]. Unlike suctioncups, pinchgrippers are able to grasp
objects that are permeable to air such as stuffed animals, and objects with a rough surface. Research
is also done on dexterous grippers [28, 39] to grasp objects with pneumatic or active changing
surfaces in handshaped grippers.

To guide an endeffector to a graspposition, a 6DoF gripper pose is essential to grasp a target object.
A 6DoF grasp pose consists of three position and three orientation variables. The pose is dependent
on the location of the grasped object, but could be limited by the location of other objects. When the
gripper direction is perpendicular to the table, the grasp pose could be simplified to a 4DoF planar
grasp pose with three positions and one orientation variable. If the height is also fixed or 2D grasps
are predicted, the planar grasp can be described by 3DoF.

The information that is required to generate grasp predictions is obtained from both RGB images and
pointcloud data. Based on the RGB images a distinction can be made between objects on a pixel
level, while the pointcloud data contains the information of the pixels in Cartesian space. In
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1. Introduction

pickandplace tasks, depth information is a crucial element to understand the shape, size and
orientation of the object. For 6DoF grasps this information is used to create valid poses with different
orientations. For planar grasps, only the orientation around the zaxis is predicted. Depth information
is then used to obtain information on the approach height.

For actual grasp predictions, researchers have developed different methods to predict grasp poses.
For known objects, it is possible to grasp objects when they are in a predefined location, or when they
pass a sensor. It is also possible to store 3D information of objects with predefined grasp locations in
a database and match the pointcloud and RGBimage with methods such as shapecompletions [17,
30] or 6DoF objectpose estimation [36]. These methods match templates or pointcloud features to
extract the predefined grasp estimation from existing databases. When the amount of stored objects
increases, this shape matching can be timeconsuming, which could make the process slower. Some
research is done on transferring grasps from known objects to unknown objects with similar geometry
[27, 20]. However, when the geometry of the unknown object is not comparable with a known object,
this will not work. With the growing number of goods in warehouses, it is desired that these novel
objects can be grasped without the use of stored grasp information in a database.

To account for unknown objects, grasps could be estimated with an analytical method [31] that
computes grasps with available information of an RGBimage and depth information and achieves
grasp accuracies of 88.2% and 77.0% for single and multiobject environments respectively.
Research is also done on the use of neural networks for grasp predictions. For planar grasps, [13]
was the first to apply deeplearning methods on grasp predictions with a twostep
classificationsbased cascade system. Their work was quickly improved by [22] in both accuracy and
precision by using spatial locations instead of a sliding window approach. [11] proposed a singlestep
predicting network where they use ResNet [7] instead of AlexNet [10] to decrease the runtime of
grasp prediction. Furthermore, they assume only one object with a single predicted grasp and
improved the accuracy significantly. [6] combined both visual and tactile sensing to their model to
enhance the robot’s perception and grasping skills, achieving 93.2% and 89.1% on single and multi
objects respectively on objects from the Cornell Database.
The abovementioned methods are achieving up to 93.2% accuracy on grasp predictions on the
Cornell dataset but lack results in reallife experiments which is done by the following methods: [37]
introduced a RoIGD, a twostep approach, to detect grasps based on Region of Interest (RoI). Within
these RoI’ grasps are predicted. For cluttered scenes, they combine this with the FasterRCNN
network to classify objects, such they can decide which objects will be grasped and achieve an
accuracy of 92.5 and 83.8 in realworld single and multi objects scenarios. [40] introduced the
orientated anchor boxes, which allow the use of only one anchor box with different orientations. The
orientation, position and size of the anchor box are predicted with respect to their original orientation.
[4] used the work of [40] by extending the multigrasp predictor with a direct dependency between the
score evaluations and the regressed predictions. With this method, an accuracy of 92.4% is achieved
in singleobject environments. In contrast with the previous methods, [15] proposed a grasp detection
based on keypoints instead of anchorbased or rectangularbased grasps achieving 94% and 87% in
single and multiobject scenes and is the current stateoftheart in 2Dplanar grasping.

These neural networks needs to be trained on datasets that contain annotated grasps. For 2D planar
grasps, only a few datasets exist. Some of them were created by manual annotations [25], while [14,
21] went a step further and annotated grasps by robotic grasp attempts. [21] created a dataset of 50k
data points with a Baxter robot within 700 hours, while [14] used up to 14 real robot arms to collect
800k data points within two months. In both cases, the authors successfully trained a CNN network
to detect grasp locations from their data. To get rid of the timeconsuming robotic experiments, [18]
created a synthetic dataset of over 6.7M images by using annotated data from simulations. However,
for every image in the aforementioned datasets, only one graspannotation per image is given, which is
suboptimal for grasp predictions in cluttered scenes. The Cornell Grasp Dataset [9] and the Jacquard
dataset [5] contain multiple grasps per image. The Cornell Grasping Dataset contains 885 RGBD
images with 8019 handannotated grasp rectangles. To increase the number of images, and thus grasp
data, [5] created the Jacquard dataset with 54k images and 1.1 million grasps based on an automatized
algorithm. Due to the large variety of objects in the Jacquard dataset, this should generalize to a variety



1.2. Research Objective 3

of objects. However, this dataset is only available for academic purposes and could therefore not be
used in this thesis.

1.2. Research Objective
As discussed, few researchers actually put their network for planar grasps in cluttered scenes into
practice and the grasp databases that are used contain one grasp per object, are small, or are not
publicly available. Therefore the objective of this thesis is a binpicking pipeline that uses deep
learning to generate a complete solution for binpicking with a twofingered pinchgripper in realworld
environments. The pipeline must be able to grasp known and unknown objects in a singleobject and
multiobject environment. The gripper can not collide with the object, surrounding objects or the
environment.
To achieve this goal a grasp generation tool needs to be developed that is able to generate grasps that
are feasible to grasp and collision free. Second a neural network needs to be developed that predicts
feasible grasps. At last, from the predicted grasps, a ”bestgrasp” needs to be selected which is grasped.

1.3. Outline
This report sequentially addresses the abovementioned objectives. Chapter 2 explains the grasp
annotation tool. A complete overview of the network’s architecture, the training preparation and the
postprocessing is given in chapter 3. Chapter 4 explains the experimental setup and the results and
also includes the observations. In chapter 5 the results are discussed and recommendations for future
work are made. This thesis work is concluded in chapter 6 and the extra material is added to the
appendix.
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2
Data Generation

A neural network is trained to make predictions, based on training data. In this research the
GraspRCNN will be making grasp predictions around objects, so the training data needs to contain
locations of grasps and objects. The process of adding information to images is called annotation.
The dataset from Fizyr used in this thesis already contains the object annotation. This chapter focuses
on the generation of the grasp annotations. First, the different data annotation types are discussed,
followed by the requirements and inputs of the grasp annotation tool. At last the working of the
grasp annotation tool is explained.

2.1. Data Annotation Types
The data annotation of grasps can be done in three different ways: physical annotation, computer
simulation and manual annotation. The explanation of these three methods will follow in this section.
Physical annotation is done using a physical robot setup that attempts grasps at random locations in the
scene. The advantage of this method is that the correct obtained grasps annotations are as accurate as
they can be. A disadvantage of this method is that it requires a lot of time and resources. In literature,
[21] created 50k grasp annotations with robotic attempts in 700 hours, while [14] used fourteen robot
arms to collect 800k annotations in two months.
To overcome this time issue, computer simulations can also be used to generate images and their
corresponding annotations. The benefit of this method is that the exact location in the simulated
environment is known and that a lot of different scenarios can be created in a relatively short amount
of time. [18] used this method to create a synthetic dataset of 6.7M images and 6.7M data points,
containing one grasp per image. [5] also used synthetic data to create the Jacquard grasp dataset
with 54k images and 1.1 million grasps based on their automatizing algorithm. However, learning from
synthetic data could lead to undesired performance due to the gap between synthetic and real image
distributions [1].
The last type of annotation is manual annotation. With this method, a human operator annotates the
grasps in the images by hand. This method is faster than generating data using physical annotations
but is slower than computersimulated annotations. While it is slightly less accurate than a computer
simulation, the annotations are done on real data which should give better results.

In this thesis, manual annotation is combined with computer simulation by automatizing an analytical
algorithm to create grasp annotations. This has as advantage that a lot of grasps can be generated in
a relatively short amount of time on real image data. Also, the synthetic gap is not present, since real
images are used. A disadvantage of this method is that the grasps are dependent on the quality of the
analytical method. The requirements of the analytical model and working of the analytical model are
discussed in the following sections.

2.2. Grasp Requirements
The analytical method needs to generate feasible grasp annotations based on the annotated objects
and the pointcloud. An object annotation consists of a list of pixel coordinates (𝑥, 𝑦) that describes the
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2. Data Generation

contour of an object in the image. An image could contain more than one object. From the
object annotation, the grasp annotations are created. To acquire the required data, the following
assumptions/rules should be implemented in the grasp annotation tool:

• Images could contain zero, one, or multiple objects.

• Objects could be partly outside the grasp area; grasp should be generated in the graspable area.

• Objects could be in contact or overlap with other objects.

• The gripper can not collide with the object they grasp, surrounding objects or the environment.

• The grasp must be antipodal around the grasped object.

A grasp annotation tool with the required functionalities is created in Python. Further details about the
implementation of requirements is given in the following section.

2.3. Input Data
The input of the grasp annotation tool is an RGB image and its corresponding pointcloud and
object annotations. An object annotation consists of a list with the 𝑥 and 𝑦 coordinates describing the
contour of the object. In the tool, also an object mask is used. An object mask is a binary image with
the same size as the original RGB image with ones at the pixels representing the object, and zeros on
the pixels that are not. An overview of the input of the algorithm can be seen in fig. 2.1. The pointcloud
does not cover the full image, but only the graspable area on the table. Every point of the pointcloud
corresponds to one pixel of the RGB image.

(a) (b) (c)

Figure 2.1. The input of the network (from left to right) is (a) an RGB image and its (b) corresponding pointcloud
and (c) the total set of object masks. The pointcloud does not cover the whole RGB image, but only the area on the
wooden table. The colors in the pointcloud indicate how high the object is.

2.4. Grasp Annotations
In this section, the grasp annotation is discussed. First, the grasp rectangle is explained, followed by
the explanation of three different methods that are used to create the 2D grasps based on the input
described in section 2.3. The grasps are generated based on a Principle Component Analysis, the
skeleton method [31], and the Center of Mass (CoM) of the objects. Initially, the grasps have a length
that is equal to the maximum distance between the fingers in pixels. After the grasps are generated,
the distance between the fingers is trimmed and the grasps that collide or are not antipodal (see
section 2.5.3, are removed. These steps are explained in section 2.5.

2.4.1. Grasp Representation
For the grasp annotation, an orientated grasp rectangle first described by [9] is used. This
grasp rectangle takes into account the location, the orientation and the dimensions of the gripper. The
gripper representation is described as:

g = 𝑐𝑥 , 𝑐𝑦 , 𝑤, 𝑙𝑓 , 𝜃𝑔𝑟𝑎𝑠𝑝 (2.1)
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with (𝑐𝑥 , 𝑐𝑦) as gripper center, 𝑤 as width of the fingers, 𝑙𝑓 as length between fingers and 𝜃𝑔𝑟𝑎𝑠𝑝 as
grasp orientation. The gripper rectangle is visualized in fig. 2.2.

Figure 2.2. A grasp is represented by a rectangle with a center (𝑐𝑥 , 𝑐𝑦), dimensions𝑤 and 𝑙𝑓, and orientation 𝜃𝑔𝑟𝑎𝑠𝑝

In the following sections, this grasp rectangle is used to create various grasps around objects.

2.4.2. Principle Component Analysis
The first method to generate grasps is based on a Principle Component Analysis (PCA) of the
object masks.

“The principal components of a collection of points in coordinate space are a sequence of 𝑝 unit
vectors, where the 𝑖𝑡ℎ vector is the direction of a line that best fits the data while being orthogonal to
the first 𝑖 − 1 vectors”  [33].

For a collection of 2D points, e.g. for the binary masks of objects, this represents a set of two
2Dorthogonal vectors called the major and minor axis. The major axis represents the direction of the
mask with the most variance, e.g. for boxshaped objects the major axes should be parallel to the
longest side. The grasps are then generated orthogonal to the major and minor axes with interval
steps of 25 pixels. In fig. 2.4a, grasps based on this method are shown. When shapes become more
complex, it is possible that the principal component analysis is not generating antipodal grasps. For
these kinds of shapes, the skeleton method is used.

2.4.3. Objects Skeleton
To have grasps cover the whole object mask, thus also around protrusions, the object skeleton method
can be used. [38] described a method that creates a skeleton of a mask. By making several passes
around the border of themask and removing pixels on the border of themask, one can create a onepixel
wide, fully connected, representation of the mask. This skeleton has as property that the shortest
distance to the contour of the mask is equal on both sides of the line. A visual representation of a
skeleton is shown in fig. 2.3. The mask of the horse in the image is reduced to a set of lines that
maintain connectivity. Along the skeleton, grasps are created to cover the object.

The grasp rectangles will be generated orthogonal to the orientation of the skeleton. To calculate the
orientation of the skeleton at the center of the grasp rectangle the following calculation is used: let q𝑛
be the set of pixels that represent the skeleton. Take a circular region with radius 𝑟 around every 𝑛𝑡ℎ
point of q𝑛. Let p𝑚 represent the pixels of the skeleton, inside this circular region. The orientation of
the skeleton at the grasp center q𝑛 is then calculated by:
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Figure 2.3. A visualization of a mask’s skeleton. The algorithm makes successive passes along the border of the
mask, removing pixels with the condition that the connection of the object stays intact. (Image from [26])

𝜇𝑥 =
∑𝑚𝑖=1 p𝑖(𝑥)

𝑚 (2.2)

𝜇𝑦 =
∑𝑚𝑖=1 p𝑖(𝑦)

𝑚 (2.3)

𝜎𝑥 =
𝑚

∑
𝑖=1
(𝜇𝑥 − p𝑖(𝑥))

2
(2.4)

𝜎𝑦 =
𝑚

∑
𝑖=1
(𝜇𝑦 − p𝑖(𝑦))

2
(2.5)

𝜎𝑥𝑦 =
𝑚

∑
𝑖=1
(𝜇𝑥 − p𝑖(𝑥)) (𝜇𝑦 − p𝑖(𝑦)) (2.6)

𝑏 =
𝜎𝑥 − 𝜎𝑦 +√(𝜎𝑥 − 𝜎𝑦)

2 + 4𝜎2𝑥𝑦
2𝜎𝑥𝑦

(2.7)

𝜃𝑠𝑘𝑒𝑙 = tan−1(𝑏) (2.8)

The grasp rectangle has center q𝑛∶𝑥,𝑦 and a slope orthogonal to 𝜃𝑠𝑘𝑒𝑙. In fig. 2.4b the grasps based on
this method are shown.

2.4.4. Rotation around CoM
For round objects, the methods described above do not create a good grasp. For a good grasp, the
fingers must be antipodal to the object (see section 2.5.3 for more information). When the PCA method
is used on round objects, it creates only antipodal grasps around the center of the mask. When the
skeleton method is used for a perfectly round object, the skeleton consists of only one point and a short
line for an ellipse.
To create feasible grasps for round objects, grasps are created around the CoM. The CoM of a binary
mask is calculated by taking the average 𝑥 and 𝑦 coordinates of all the pixels with value 1. During the
grasp generation, the grasp rectangle is rotated around the CoM of the mask with stepsize 𝜃𝑟𝑜𝑡_𝑠𝑡𝑒𝑝:

𝜃𝑟𝑜𝑡 = {𝜃𝑟𝑜𝑡_𝑠𝑡𝑒𝑝𝑘 ∣ 𝑘 ∈ [0..180]} (2.9)

This method creates feasible, antipodal grasps for round objects, in fig. 2.4c the grasps based on a
rotation around the CoM are shown.

The grasps generated by the abovementioned methods are all generated with a maximum distance
between the fingers. Before the next step, the grasps where at least one of the ends of the
grasp rectangle collide with the object, are removed, This step is visualized in fig. 2.4 by the red
rectangles.
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(a1) (a2) (a2)

(a) Grasps created using the PCAmethod, the major and minor axis are indicated in black.

(b1) (b2) (b2)

(b) Grasps created using the skeletonmethod. The skeleton is indicated by the black lines

(c1) (c2) (c2)

(c) Grasps created around the CoM of objects. The CoM is indicated with a black dot.

Figure 2.4. Grasp rectangles (green) are created around an object (yellow) based on three different methods, from
top to bottom row: (a) the PCAmethod, (b) the object skeleton and (c) the CoM. Objects have, from left to right, (1)
a rectangular shape, (2) a round shape and (3) a complex shape. Red rectangles indicate grasps that are colliding
with the object and are therefore removed before the next step.

2.5. Grasp Annotation Optimization
The grasps annotations generated with one of the beforementioned methods are based on, but not
optimized for the shape of individual masks. The generated grasps are also not ’aware’ of the
surrounding objects. Therefore the generated grasps will go through four steps to filter, remove and
optimize the generated grasps.

2.5.1. Grasp Trimming
The first step is to trim the predicted grasps such that the fingers come closer to the object. This step
is performed to decrease the chance that the fingers are colliding with other objects. The decreasing of
the finger distance is done at both ends individually as shown in fig. 2.5. As result, the finger distance
𝑙𝑓 and the gripper center might alter.

Figure 2.5. Each end of the grasp rectangle is trimmed to get a smaller grasp around the mask. For simplicity only
grasps generated with the PCAmethod are shown.

2.5.2. Collision Detection
After the grasps are trimmed, the algorithm checks if the grasps rectangles collide with other objects.
A grasp is considered in collision with another object if at least one end of the grasp rectangle, thus
the location of the gripper finger, overlaps the mask of another object. In fig. 2.6 two objects are close
together. The grasp rectangles that overlap the mask of the other object are indicated as red and
removed.
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Figure 2.6. (l) Two object masks are close together (m) the rectangles of which one of the ends overlaps the other
mask are indicated in red and (r) removed.

2.5.3. Antipodal Grasps
A twofingered pinchgripper can grasp an object if the contact points are antipodal. Antipodal points
have surface normal vectors which are colinear and in opposite directions. If such a pair exist, a
forceclosed grasp is guaranteed [3].

To calculate if a grasp meets this antipodal requirement a few calculations are made. The first step is
to calculate the contact points between the gripper and the object. Second, the surface normal vectors
at these locations are calculated. The last step is to compare the orientation of these normal vectors
with the orientation of the grasp. If this difference exceeds a certain limit, the grasps are discarded.
These steps are explained in more detail below.

The first step is to determine the contact points of the grasp on the object. Let each grasp 𝑔𝑖 be presented
by a graspline 𝑙𝑔 with center (𝑐𝑥 , 𝑐𝑦), length 𝑙𝑓 and orientation 𝜃𝑔𝑟𝑎𝑠𝑝. Each object mask O𝑛 consists
of a set of annotated boundary points B𝑖, which contains the contour coordinates. The intersections
between graspline 𝑙𝑔 and the contour ofO are defined as contactpoints cp1 and cp2. A visualization of
this is shown in fig. 2.7. Note that the number of contact points must be even. An odd number indicates
that one of the fingers is on top of the object mask. These grasps are not used and thus discarded.
With more than four contact points, only the outer cp𝑖 ’s are used.

Figure 2.7. An object maskO (yellow) with a contour (blue) defined by boundary points B𝑖 (red). The grasp rectangle
g (green), is presented by graspline 𝑙𝑔. 𝑙𝑔 intersects the contour of O at cp1 and cp2 .

The second step is to calculate the normalvectors at contactpoints cp1 and cp2. This calculation is
given for the normalvector at cp1, but is similar for cp2. A visualization is given in fig. 2.8. Define BC𝑛
as a subset of B that lie within a circular region 𝐶 with radius 𝑟𝑎𝑛𝑡𝑖𝑝𝑜𝑑𝑎𝑙 around center cp1. Let B1,𝑗 and
B1,𝑗−1 be the boundary points from B that are on each side of cp1. The tangentvector at the cp1 can
be calculated by reusing eqs. (2.2) to (2.8). In these equations, p𝑛 represents the pixels of which the
orientation is calculated, and is dependent on the size of subset BC𝑁, see eq. (2.10). If the size of BC𝑛
is less than two, p𝑛 is defined as set [B𝑗 ,B𝑗−1], otherwise as BC𝑛. Orthogonal to the tangent vector
the normal vector is calculated.

p𝑛(𝑥,𝑦) = {
BC𝑛 if |BC𝑛| ≥ 2
B𝑗−1,B𝑗 if |BC𝑛| < 2

(2.10)
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Figure 2.8. At cp1 and cp2 a circular area 𝐶 with radius 𝑟𝑎𝑛𝑡𝑖𝑝𝑜𝑑𝑎𝑙 is defined in red. On each side of cp𝑖, [B1,𝑗 ,B1,𝑗−1]
and [B2,𝑗 ,B2,𝑗−1] are indicated. At cp1 multiple boundary points are located inside 𝐶 indicated with blue dots. For
the calculation of the surface normal at cp1, BC is used. At cp2, there are no boundary points inside the circle,
|BC| = 0, so the surface normal is calculated using B2,𝑗 and B2,𝑗−1.

The last step is to compare the orientations of the surfacenormal and graspline 𝑙𝑔. In fig. 2.9, a visual
representation is given. With the assumption that the contact at cp𝑖 is a pointcontact with friction, force
closure is achieved if and only if 𝑙𝑔 lies within a friction cones 𝜃𝑐𝑜𝑛𝑒 at both cp1 and cp2. The size of
𝜃𝑐𝑜𝑛𝑒 is dependent on the friction between the gripper and the object. According to the Robotiq manual
[24], the silicon fingertips have a static friction coefficient on lubricated steel of 0.3. Since the static
friction coefficient of lubricated steel is lower than the friction coefficient between silicon and materials
such as plastic, wood, or cardboard, a friction coefficient of 0.3 is considered safe. Using eq. (2.11), a
𝜃𝑐𝑜𝑛𝑒 of 15deg will be used.

𝜃𝑐𝑜𝑛𝑒 = arctan(𝜇) (2.11)

g𝑎𝑛𝑡𝑖𝑝𝑜𝑑𝑎𝑙 = {
True if |𝜃𝑐𝑝𝑖 − 𝜃𝑔𝑟𝑎𝑠𝑝| < 𝜃𝑐𝑜𝑛𝑒
False if |𝜃𝑐𝑝𝑖 − 𝜃𝑔𝑟𝑎𝑠𝑝| > 𝜃𝑐𝑜𝑛𝑒

(2.12)

Only grasps where 𝑙𝑔 lies within the frictioncone at both cp𝑖 are considered antipodal. Looking at
fig. 2.9 at cp2, 𝑙𝑔 lies within the friction cone and is thus antipodal. At cp1, 𝑙𝑔 lies not inside the friction
cone, so this contact is not antipodal. This grasp is thus removed from the graspset.

Figure 2.9. At each contactpoint cp𝑖, the surfacenormal n𝑖 (blue arrow) is calculated. Around each n𝑖, a friction
cone is drawn. A grasp is antipodal if at all cp𝑖, 𝑙𝑔 lies within the friction cone. At cp2, 𝑙𝑔 lies within the friction cone,
but at cp1 it is not. This grasp is thus not antipodal and will be removed from the generated data.

In fig. 2.10 the step for the antipodal check is visualized with the scenario that is used before. The
middle part of mask 1 is inclined, so the normalvectors are now under an angle. The surface normal
vector and the friction cone are also shown. The graspline 𝑙𝑔 that does not lie within the friction
cones, and are removed.
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Figure 2.10. The grasps and masks from the collision check are passed through to the antipodal check (left). For
each grasp, the surface normal vector and friction cone are calculated (only a few of them are shown), and grasps
that do not lie within the friction cone are indicated in red and removed. (middle). A grasp annotation that is both
collisionfree and antipodal is passed through to the network (right).

This chapter gave an overview of the different steps in grasp generation. Figure 2.11 shows the different
steps on a real image. In figs. 2.11a to 2.11c the generated grasps with the methods from section 2.4 are
shown. On these generated grasps a collision and antipodal check is done. Figure 2.11d gives a visual
summary of these steps. Both the white and green lines are according to the algorithm collisionfree. It
can be observed that a lot of grasps from figs. 2.11a to 2.11c are removed around the two right objects.
The objects on the right are very close together and the grasp rectangle has overlap and is thus not
considered collisionfree. After the collision check, the antipodal check is performed. All the green lines
in fig. 2.11d represent the collisionfree and antipodal grasps. Grasps that were generated near the
corners of boxes are removed. Only the green grasps are saved to train the network. The network
architecture and the training will be discussed in chapter 3.

(a) Grasps generated by the PCAmethod (b) Grasps generated by the skeletonmethod

(c) Grasps generated by the rotation method (d) All these grasps are collisionfree, the
green lines indicate antipodal grasps

Figure 2.11. The grasps generated by the annotation tool on actual data are based on (a) the PCA method, (b) the
skeleton method, and (c) the rotation method. After the grasp generation, the grasps are checked for collision with
surrounding objects. It is also checked if the grasps are antipodal. Figure 2.11d shows all collisionfree grasps in
white and green. Grasps that are antipodal are indicated in green and are saved to train the network.
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GraspRCNN

In this chapter, the neural network model will be discussed. First, a detailed overview of the architecture
of the network is given, followed by the underlying parameters. At last, the postprocess is discussed.

3.1. Architecture
The GraspRCNN consists of two multistage networks that take a single RGB image as input and
produces grasps and object masks as output. A MaskRCNN network [8] is used for the prediction of
the masks, and a FasterRCNN network [23] is used for the predictions of the grasps around objects.
The RGB images are fed through several convolutional layers creating a Convolutional Neural Network
(CNN). The CNN layers are pretrained on the Microsoft COCO dataset [16] and use ResNet50 [7] as
a backbone. The ResNet50 backbone creates different feature maps that are passed through to the
Region Proposal Network (RPN) which produces a Region of Interest (RoI) with a score. A summary of
the working of a CNN and RPN is given in appendix A. Based on the best scoring RoI, the information
from the feature maps is processed to the further layers of the network. For every RoI, one particular
prediction is made in the image. Since each object can have multiple grasp predictions, the RPN of
the object detection and grasp detection had to be separated. Figure 3.1 shows an overview of the
GraspRCNN architecture.

Figure 3.1. The GraspRCNN architecture is visualized. The architecture consists of a FasterRCNN (top) and a
MaskRCNN network (bottom) that consists of a pretrained network. Since multiple grasps are predicted for one
object, the RPN could not be combined. The left side creates the different RoI proposals while the right side gives
the output of a grasp and the segmentation.

13
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3.2. Output Branches
The right side of the GraspRCNN consists of several output branches, each with its type of output. For
each RoI the branches produce the following output:

• FasterRCNN (Grasp detection)

– Bounding box (𝑏𝑏𝑜𝑥): A bounding box is a rectangle that enclosed the RoI from the RPN.
The output is a list of 𝑛 × 4 values with the coordinates and the dimensions of the bounding
box.

– Grasp: For every bounding box, a grasp is predicted by the network. Since we make use of
the RoI, the output of the graspprediction head is with respect to its surrounding bounding
box. The output consists of 𝑛×5 values with the gripper representation 𝑔 = 𝑐𝑥 , 𝑐𝑦 , 𝑙𝑓 , 𝜃𝑥 , 𝜃𝑦.
The center coordinates are with respect to the topright corner of the bounding box, the length
as a percentage of the diagonal length of the bounding box, and 𝜃𝑥 and 𝜃𝑦 representing an
𝑥 and 𝑦 vector on the unit circle.

• MaskRCNN (Object detection)

– Bounding box (𝑏𝑏𝑜𝑥): A bounding box is a rectangle that enclosed the RoI from the RPN.
The output is a list of 𝑛 × 4 values with the coordinates and the dimensions of the bounding
box.

– Segmentation mask: For each bounding box a segmentation mask is predicted for the object
that the bounding box is related to. The segmentation consists of ones for pixels that are
predicted to be part of the object in the bounding box and zeros for the pixels that are not.

3.3. Training Preparation
The generated grasps from chapter 2 need to be transformed into data that the network understands.
The FasterRCNN and MaskRCNN networks are based upon a Region Proposal Network (RPN) that
looks at small patches of the images. In these patches, based on feature maps, a prediction is made
of possible grasps/objects. During training, the RPN predicts in each patch a grasp representation and
its bounding box. In this model, the bounding box is represented by:

𝑏𝑏𝑜𝑥 = [𝑥, 𝑦, 𝑤, ℎ] (3.1)

with 𝑥 and 𝑦 as coordinates, and 𝑤 and ℎ as bounding box dimensions.

The size of the feature map is always the same, regardless of the size of the predicted bounding box.
Therefore, the gripper representation that the network predicts on the feature map needs to be invariant
to the size of the bounding box. The representation is made invariant based on the bounding box
dimensions [𝑏𝑏𝑜𝑥𝑤 , 𝑏𝑏𝑜𝑥ℎ]. The orientation of the grasp is split into an 𝑥 and 𝑦 component. 𝑡𝑔𝑟𝑎𝑠𝑝 is
introduced as the groundtruth grasp.

𝑏𝑏𝑜𝑥𝑑𝑖𝑎𝑔 = √𝑏𝑏𝑜𝑥2𝑤 + 𝑏𝑏𝑜𝑥2ℎ (3.2)

𝑡𝑐𝑥 =
𝑐𝑥 − 𝑏𝑙𝑥
𝑏𝑏𝑜𝑥𝑤

(3.3)

𝑡𝑐𝑦 =
𝑐𝑦 − 𝑏𝑙𝑦
𝑏𝑏𝑜𝑥ℎ

(3.4)

𝑡𝑙 =
𝑙

𝑏𝑏𝑜𝑥𝑑𝑖𝑎𝑔
(3.5)

𝑡𝜃𝑥 = cos (𝜃𝑔𝑟𝑎𝑠𝑝) (3.6)
𝑡𝜃𝑦 = sin (𝜃𝑔𝑟𝑎𝑠𝑝) (3.7)

𝑡𝑔𝑟𝑎𝑠𝑝 = 𝑡𝑐𝑦 , 𝑡𝑐𝑦 , 𝑡𝑙𝑓 , 𝑡𝜃𝑥 , 𝑡𝜃𝑦 (3.8)
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3.4. Training Parameters
The GraspRCNN is trained on a single Nvidia Titan X GPU. As a training dataset, 765 images, 3883
objects, and 102275 grasps are used. The network is trained with a batch size of 4 and the learning
rate set to 0.0001. The implementation is done in PyTorch 1.9.0. with TorchVision 0.10.0a0, CUDA
11.4 and cuDNN 8202. Both networks use ResNet50 as a backbone.

For the experiments, both networks are trained separate for 75 epochs with 1000 steps and an Adam
optimizer with 𝐵1 = 0.9, 𝐵2 = 0.999 and 𝜖 = 1𝑒 − 8.

3.5. Loss Functions
The network learns from its training data by minimizing a loss function. Since a MaskRCNN network
and FasterRCNN networks are trained separately, each network will have its own loss function. Since
the networks are trained for multiple tasks the multitask loss function is calculated by the sum of
losses produces by each branch of the network. A single pass through the network produces multiple
RoI, so the loss for each output branch is the sum of losses within each RoI. The different predicted
RoI’s are matched and compared against the closest groundtruth bounding box. An RoI is considered
valid if the Intersection of Union (IoU) with the groundtruth bounding box is at least 0.5. If multiple RoI
are matched with the same ground truth, only the RoI with the highest IoU score is used.

For the classification branch, the classification loss 𝐿𝑐𝑙𝑠 is defined for two classes (object vs. no object).
In the work of [8, 23], this crossentropy loss is defined as:

𝐿𝑐𝑙𝑠 = −
𝑛

∑
𝑖=1
𝑦𝑓 log (𝑝 (𝑦𝑖)) (3.9)

For the bounding box and grasp predictions, the regression loss function is the same. As input for the
bounding box regression, the following parameterization is used:

𝑡𝑏𝑏𝑜𝑥 = [𝑡𝑥 , 𝑡𝑦 , 𝑡𝑤 , 𝑡ℎ] (3.10)
𝑣𝑏𝑏𝑜𝑥 = [𝑣𝑥 , 𝑣𝑦 , 𝑣𝑤 , 𝑣ℎ] (3.11)

with 𝑡𝑏𝑏𝑜𝑥 as groundtruth bounding box, 𝑣𝑏𝑏𝑜𝑥 predicted bounding box and with 𝑥 and 𝑦 as the center
coordinates and 𝑤, ℎ as the bounding box dimensions. The groundtruth grasp is defined in eq. (3.8)
where the predicted grasp is defined as 𝑣𝑔𝑟𝑎𝑠𝑝/

𝐿𝑏𝑏𝑜𝑥𝑥 = ∑
𝑖∈{𝑥,𝑦,𝜔,ℎ}

𝐿1; smooth (𝑡𝑏𝑏𝑜𝑥_𝑖 − 𝑣𝑏𝑏𝑜𝑥_𝑖) (3.12)

𝐿𝑔𝑟𝑎𝑠𝑝 = ∑
𝑖∈{𝑐𝑦 ,𝑐𝑦 ,𝑙𝑓 ,𝜃𝑥 ,𝜃𝑦}

𝐿1; smooth (𝑡𝑔𝑟𝑎𝑠𝑝_𝑖 − 𝑣𝑔𝑟𝑎𝑠𝑝_𝑖) (3.13)

𝐿1; smooth (𝑥) = {
0.5𝑥2 if |𝑥| < 1
|𝑥| − 0.5 otherwise

(3.14)

The mask branch generates a mask of dimensions 𝑁 x 𝑁 for each RoI and 𝑘 class. The mask loss
𝐿𝑚𝑎𝑠𝑘 is defined as the average binary crossentropy loss

𝐿mask = −
1
𝑚

𝑚

∑
𝑖=1
𝑦𝑖 ⋅ log (𝑝 (𝑦𝑖)) + (1 − 𝑦𝑖) ⋅ log (1 − 𝑝 (𝑦𝑖)) (3.15)

with 𝑚 as the number of pixels in the mask, 𝑦𝑖 the groundtruth for pixel 𝑖 and 𝑝(𝑦𝑖) as the probability of
a pixel to be part of the mask.



3. GraspRCNN

The loss functions for the object detection and grasp detection networks are

𝐿𝑡𝑜𝑡_𝑜𝑏𝑗𝑒𝑐𝑡 =
𝑅𝑜𝑏𝑗𝑒𝑐𝑡

∑
𝑖=1

𝐿𝑖𝑐𝑙𝑠 + 𝐿𝑖𝑏𝑏𝑥 + 𝐿𝑖𝑚𝑎𝑠𝑘 (3.16)

𝐿𝑡𝑜𝑡_𝑔𝑟𝑎𝑠𝑝 =
𝑅𝑔𝑟𝑎𝑠𝑝

∑
𝑖=1

𝐿𝑖𝑐𝑙𝑠 + 𝐿𝑖𝑏𝑏𝑥 + 𝐿𝑖𝑔𝑟𝑎𝑠𝑝 (3.17)

with 𝑅𝑜𝑏𝑗𝑒𝑐𝑡𝑠 and 𝑅𝑔𝑟𝑎𝑠𝑝 as the amount of valid RoI in the different networks.

3.6. Post Processing
To go from the predicted 2Dplaner grasp to actual grasping a few postprocessing steps are made. In
the following sections, the postprocessing of the predicted grasps is explained.

3.6.1. Object  Grasp matching
The output of the network is a list of 𝑛 object masks and 𝑚 grasp locations in pixels. Together with
the pointcloud data, these are used to get real grasp locations. The first step is to match the predicted
grasps with the predicted object masks. Every grasp of which a center lies on top of a mask is assigned
to that particular mask. Grasps that do not have a corresponding mask, are removed. The next step is
to calculate the grasp score of each mask, this will be discussed in the next section.

3.6.2. Grasp Score
To determine which grasp is the best, a graspscore is assigned to each grasp. The graspscore 𝑠𝑔𝑟𝑎𝑠𝑝
is calculated based a distancescore 𝑠𝑑𝑖𝑠𝑡 and an anglescore 𝑠𝑎𝑛𝑔𝑙𝑒. The distancescore is based on
the distance between the gripper center and the CoM of the object mask. For the distancescore, a
maximum distance 𝑑𝑚𝑎𝑥 between the gripper center and the mask CoM of 300px is chosen since the
biggest objects in the image had a length of around 600px. For the calculation of the anglescore, the
smallest angle between the orientation of the gripper and the orientation of one of the principle axis of
the object is taken. The total graspscore is the average of the distance and anglescore. The 𝑠𝑔𝑟𝑎𝑠𝑝,
𝑠𝑑𝑖𝑠𝑡 and 𝑠𝑎𝑛𝑔𝑙𝑒 are calculated with:

𝑑𝐶𝑜𝑀 = √(𝑔𝑟𝑖𝑝𝑝𝑒𝑟𝑦 − 𝐶𝑜𝑀𝑦)2 + (𝑔𝑟𝑖𝑝𝑝𝑒𝑟𝑥 − 𝐶𝑜𝑀𝑥)2 [𝑝𝑥] (3.18)

𝑠𝑑𝑖𝑠𝑡 =
𝑑𝑚𝑎𝑥 − 𝑑𝐶𝑜𝑀

𝑑𝑚𝑎𝑥
[0...1] (3.19)

𝛼𝑑𝑖𝑓𝑓 = (𝑚𝑎𝑠𝑘𝜃 − 𝑔𝑟𝑎𝑠𝑝𝜃) % 180 [𝑑𝑒𝑔𝑟𝑒𝑒𝑠] (3.20)
𝛼𝑔𝑎𝑝 = 𝛼𝑑𝑖𝑓𝑓 % 45 [𝑑𝑒𝑔𝑟𝑒𝑒𝑠] (3.21)

𝑠𝑎𝑛𝑔𝑙𝑒 =
45 − 𝛼𝑔𝑎𝑝

45 [0...1] (3.22)

𝑠𝑔𝑟𝑎𝑠𝑝 =
𝑠𝛼 + 𝑠𝑑
2 [0...1] (3.23)

3.6.3. Sorting
With a list of grasps and their grasp score, the best grasp is picked. To reduce the change in a possible
collision the highest objects should be picked first. Therefore the grasps are sorted first on the height of
their corresponding object, and second on the individual grasp score of these grasps. The gripper will
thus grasp the best grasp for the highest object.
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3.6.4. Collision Check
During the creation of the training data, a collision check is performed to create grasps that do not
overlap with other object masks (section 2.5.2). Before the actual grasp, a second collision check is
performed. The method checks the height data at the area covered by the left and right finger
locations and compares it with the height data from the object. When this difference exceeds 0.01 m,
a grasp is performed. Since the network relies on the depth data from the sensor, it is also checked if
there is at least 50% data present in the area covered by the fingers. If this is not the case due to
possible occlusions or bad sensor quality, the predicted grasp is removed.

3.6.5. Pixels to Grasp Coordinates
Until this point, everything is calculated in pixel coordinates. The pointcloud has a data point for every
pixel in the RGB image above the table. The 𝑥 and 𝑦 coordinates at both ends of the blue line are
used to calculate the gripper length 𝑙𝑓. The coordinates of the center of the blue line are used for the
grasp location. The rotation of the gripper around the zaxis is calculated using realworld coordinates.
Rotations around the x and yaxes are zero.

3.7. GraspRCNN Overview
A global overview of the grasp prediction sequence is visualized in fig. 3.2. On the left, we got an
input RGB image that is fed to the network. The MaskRCNN gives as output two object masks (in
yellow) and the FasterRCNN predicts around twenty output grasps (in green). The postprocessing
step computes for each grasp the grasp score, sorts the grasps based on the object height and grasp
score, and checks if the grasp is in a collision. In this scenario, the object on the right is the highest,
so the best grasp around this object is selected (in blue). The pixel coordinates are transformed into
realworld coordinates and the object is grasped.

(a) Input RGB data (b) Output from the network (c) Grasp in pointcloud

Figure 3.2. The RGB image (a) is fed into the network, the network predicts (b) masks for the objects in yellow,
grasp rectangles (represented as green lines), and their respective bounding boxes (orange). The postprocessing
creates a score for each grasp and prioritizes them on (1) the highest objects and (2) the highest grasp score. (top
1 grasp presented as a blue line). In (c) the grasp is seen in a 3D visualization.

In the next chapter, the experimental results are discussed.
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4
Experiments and Results

The grasp performance of GraspRCNN is evaluated by robot experiments. During the experiment, 35
different objects of various sizes, shapes, materials and colors were picked. A total of around 1900
grasp attempts were made both in the single object and in cluttered scenes. A total of three different
experiments are conducted.

4.1. Setup

Figure 4.1. The UR5 is performing
a pick with the Robotiq parallel
plate gripper. The RGB and depth
cameras are located above the pick
area.

The robot platform setup is shown in
fig. 4.1 and consists of a UR5 robot manipulator. As an endeffector,
a Robotiq parallel plate gripper is used. The vision hardware consists
of an RGB sensor from IDs and a depth camera by Ensenso. For
the experiments, a set of 20 known objects and 15 unknown objects
is used with a variety of shapes, colors, materials, and sizes. Objects
are chosen such that at least one of the dimensions does not exceed
the maximum width of the gripper. Complex shapes such as a
nerf gun or a bath duck were used to test how the network deals with
complex objects. The objects are shown in figs. B.1 and B.2. During
the different experiments, objects are randomly placed in the scene.

4.2. Metrics
To analyze the performance two metrics are used: successrate
and completionrate. The successrate is the number of successful
grasps as a percentage of the total amount of attempted grasps. A grasp is considered successful
when the robot lifts the object and moves it away from the gripping area to a predefined location
without collision. An attempt is started at the moment the network takes a new photo of the scene. A
scene where no grasps can be found by the network is seen as a failed attempt. The second metric is
the completionrate: this is the percentage of scenes in which a table is fully cleared by the robot. In
singleobject experiments, the successrate and completionrate are the same.

During the experiments, it is observed that in some cases the gripper collides with the object that it is
going to grasp, but still succeeds in doing so. For single object scenes (Experiment 1), these
graspswithcollision attempts are discarded as a failure. For multiple object scenes (Experiments 2
and 3), these types of graspwithcollision are discarded, and therefore seen as failures in the
successrate. However, the gripper is able to grasp and remove the object from the scene. Therefore
a scene where one or multiple graspwithcollision events occur can still be completed, and thus do
count for the completionrate.
This same strategy is used for grasps that pick multiple objects. In some cases, the gripper picked up
two objects, instead of one. This could occur in cases where the robot could not make a distinction
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between the objects, or when the robot picked up the lowest of the stacked objects. In these cases, the
grasp is discarded as a failure for the successrate, but the grasp does count for the completionrate.

4.3. Experiment Methodology
To test GraspRCNN a total of three experiments are conducted. The first experiment is to test the
network on single objects in the scene. Each object is grasped in 20 different scenes. In these
scenes, the objects are manually placed in random locations and with random orientations to ensure
that all the orientations of the object are present.
The second experiment is to test the performance of the method in a cluttered scene. The experiment
procedure is as follows: (1) Choose 8 of the 35 objects at random and put them in the box and turn the
box around on the table to create a random cluttered scene; (2) The robot attempts multiple grasps
until all objects are grasped or three consecutive grasp attempts failed. The objects are chosen at
random but it is checked that all the objects are equally represented in the cluttered scenes.
In the third experiment, a simulation is made of a binpicking scenario where a bin must be emptied.
We simulate this kind of environment by putting 40 similar boxes on the table. The goal of this
experiment is to pick as many objects as possible. The robot attempts multiple grasps until all objects
are grasped, or three consecutive grasp attempts fail.

4.4. Experiment 1  Single objects
During the test of the network on single objects, the orientation of the object was varied such that it
was present in different orientations. For objects such as the superglue, attempts are made both in the
standing and lying positions. During the experiment, 35 objects were grasped between 18 and 22
times with a total of 698 grasps attempts. In table 4.1 the number of grasp attempts and the
successrate of the single object experiments are shown. The algorithm can achieve an overall
successrate of 89.68% for grasping single objects in a scene, with a total average processing time of
616ms. Split into known and unknown objects a successrate of 87.73% and 90.94% respectively is
achieved. An overall successrate of 89.7% is achieved.

The successrate for unknown objects is higher than that of known objects, while a neural network
normally achieves better on known objects. This can partly be explained by the number of unknown
objects that can be described as boxtype objects, which can be grasped more easily. Another
explanation is some badperforming known objects. In the known objects group there are four bad
performers; the spatula, the white piggybank, the nerfgun and the wooden dear, while in unknown
object group has only one bad performing object, the orange building block. From three of these
objects, it is observed that their bad performance is likely to be dependent on their shape. In
section 4.7, these objects and their typical failures are further discussed.
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Table 4.1. Number of attempts and the SuccessRate (SR) of objects in Experiment 1. The objects are categorised in three categories: boxshaped, round or
cylindrical shaped, and complex shaped. The object known from the training are shown in the toppart of the table, the bottom part contain the unknown objects.
The average successrate under each column is a weighted average.

Known objects
Boxshaped Round / Cylindrical shapes Complex Shapes

Objects Attempts SR Objects Attempts SR Objects Attempts SR

Grey box 21 90.5 Glue Pen 19 94.7 Wooden Dear 20 75
White medicine box 20 95 Nail polish 20 95 Bath Duck 21 85.7
Container (green) 20 85 Cup 20 95 Piggy bank color 20 95
Stamper 20 100 Spatula 20 60 Piggy bank white 20 65
Perforator (purple) 20 100 Paint Roller 20 90 Styrofoam cat 20 95

Totem Pole 20 85 Wooden tree 19 94.7
Super Glue 20 90 Nerfgun 20 70

Tennis balls 20 95

Average 94.1 Average 87.0 Average 84.4
Average Known 87.73

Unknown objects
Boxshaped Round / Cylindrical shapes Complex Shapes

Objects Attempts SR Objects Attempts SR Objects Attempts SR

Brown Camera Box 20 95 Tomato 20 95 Banana 19 100
Orange Building Block 20 65 Pipe 20 90 XBox controller 18 94.4
Red house 20 95 Triangular Box 20 95 Nut cracker 20 85
Glasses Case (wood) 21 90,5 Stuffed Wood Pecker 20 100 Peeler 21 81
Stapler (green) 20 100 Headphones 20 95
Measuring Tape 19 84,2

Average 88.63 Average 95.0 Average 90.8
Average unknown 90,94

Average Total 89.68
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4.5. Experiment 2  Cluttered Scenes

Figure 4.2. For the cluttered scenes
experiment, 8 out of the 35 objects are put
into a box, where after the box is turned on
the table, creating cluttered scenes.

To test the ability of the algorithm to handle cluttered scenes, a
total of 81 cluttered scenes were created with a total of 694 grasp
attempts. Each start scene consists of eight objects (fig. 4.2)
chosen at random from the objects used in Experiment 1. The
algorithm achieves an 81.0% successrate in cluttered scenes and
an 84.6% completion rate with an average process time of 739 ms
per scene.
From these results, it can be seen that the successrate of
Experiment 1 drops from 89.7% to 81.0%. This is caused to the
increase in the number of collisions and rejected grasps. A grasp
is rejected if the algorithm does not find a feasible grasp during
the prediction or postprocessing stage. When more objects
are present in the scene, the probability that objects are close to
each other gets higher. A more detailed overview of the different
types of failures is given in section 4.7.

A second observation from the results is that the completionrate is higher than the successrate. In
section 4.3 it is explained that graspswithcollision are not incorporated for the successrate but are
incorporated for the completionrate. During eight grasp attempts the gripper picked up multiple objects,
and with 14 attempts a graspwithcollisions occurred. This is shown in table 4.3.

4.6. Experiment 3  Bin picking boxes

Figure 4.3. A start scene for the binpicking
experiment with similar boxes. A total of 17
similar scenes are created.

In the multiplebox experiment, a total of 17 start scenes
are generated with a total of 502 grasps attempts. A total of 439
collisionfree grasps were conducted resulting in a successrate
of 87.5% with an average process time of 1235 ms per scene.
In 8 out of 17 scenes, the gripper was able to empty the table.
In the 9 other cases, the network failed to find feasible grasps
on three consecutive tries. This resulted in a completionrate
of 47.1%. The big difference between the successrate
and completionrate can be explained by the grasp streak during
the experiment. During this experiment, the system could grasp
on average 8.7 boxes before a failure. The longest consecutive
grasp streak without failure was 51 grasps. During the
experiments, it was observed that the network could predict and
commence grasps not only at the border of the clutter but also
when holes were present where the gripper would fit in.

Three of the nine bins, the system was not able to clear, are shown in fig. 4.4. The objects are densely
packed and are stacked in two layers. Looking from a 2D perspective, it is hard to find a collisionfree
antipodal grasp location. However, if viewed from a 3D perspective, some objects are possible to grasp.
These possible grasps were not seen by the network due to design choicesmade in the grasp generation
tool. Stacked objects were only grasped when both ends of the grasp rectangle were above the table,
instead of on top of other objects.

Table 4.2. The successrate and completionrate for the different experiments.

Single objects Multiple objects binpicking

Successrate 89.7 81.0 87.5
Completionrate  84.6 47.1
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Figure 4.4. In experiment 3, the algorithm was not able to generate feasible grasps for the nine scenarios, three of
them are shown.

4.7. Grasp failures
During the three grasp experiments, different kinds of grasp failures were observed. The gripper
grasped at the wrong height, collided with (other) objects, or the network was not able to predict a
grasp at all. This section elaborates on different failure types and the perobject failures.

4.7.1. Failure types
To get an understanding of the strong and weak points of the model, the failed grasp attempts are
summarized and shown in table 4.3. From the failure types in the table it can be concluded that with a
cluttered scene, e.g. more objects in a scene, the amount failures due to collisions and the number of
notfeasiblegrasps increased.
Nofeasiblegrasps occur when GraspRCNN is unable to predict a grasp in a scene or when the
postprocessing rejects all grasps due to collisions or lack of overlap.
Failures based on wrong finger distance are errors in the predictions made by the GraspRCNN itself.
A wrong finger distance could occur in two different ways. The first option is that both the grasp and
the object are predicted smaller than they are. The smaller grasp is sent to the postprocessing
algorithm which should find that there is not enough overlap. In case of an error in the height data at
both fingers, the grasp could still be conducted. The second option and more likely explanation is that
a correct grasp is sent to the postprocessing, but that due to camera distortion, the coordinates are
made smaller than they should be.
The errors due to NaN values occur when there are not enough pointcloud points at the location of the
fingers or at the gripper center. This is caused by occlusions due to higher objects, which are more
likely to occur in cluttered scenes.

Failures based on heights, hollow objects or slips are discussed in the next section.

Table 4.3. An overview of the different reasons of grasp failure of single object experiments (Exp. 1), multiple
objects experiments (Exp. 2) and binpicking experiments (Exp.3 ) For some objects, failures are very specific.
These objects are noted with the number of described failures during experiment 1 and 2. For collision a distinguish
is made between collision with and without a grasp.

Reason of failure Exp. 1 Exp. 2 Exp. 3 Specific objects

Total 72 125 63

Collision (w. / w.o grasp) 10 / 1 14 / 9 15 / 7 
Wrong height 6 10 0 White Piggybank [3/3]
Wrong finger distance 5 9 0 
Hollow objects 12 10 0 Orange Block [4/1], Peeler [4/9]
Slip of object 10 9 0 Spatula [6/7], Nerfgun [3/1]
No feasible grasp predicted 9 17 29 
NaN values at grasp 5 12 0 
Not specified failures 14 26 7 
Grasp of multiple objects  8 5 
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4.7.2. Perobject failures
From table 4.1 it can be observed that the successrate of some objects is underperforming. For some
of these objects, the failed attempts are very specific and caused by specific reasons. Looking at the
performance on a perobject basis can reveal what types of failures occur in the algorithm. The most
difficult items to pick, are items with the lowest successrate.
Of the known objects, the spatula, white piggy bank, wooden dear, and nerfgun are achieving a
successrate below 75%. For the unknown objects, only the orange building block has a low
successrate of 65%. In fig. 4.5, objects are shown with a low performance together with indications
that cause their failures.
The spatula’s (fig. 4.5a) CoM is located just on the edge of the haft. A predicted grasp on top of the
CoM, as indicated with the black dot and red gripper representations, is not antipodal. The edges are
inclined and the object will slip through the fingers of the gripper.
For the piggy bank, (fig. 4.5b), failures occur when the center of the gripper is predicted on top of the
coin slot. The height of the object at the gripper’s center could therefore not be estimated by the
postprocessing, causing the gripper to approach the object to high.
The low performance of the orange block is caused by the scenes in which the block is upside down
(fig. 4.5c). The algorithm detects the object and predicts the grasp, but the difference in the overlap
between the center and the left and right gripper is not sufficient enough to go for a grasp. In the
dataset, two more objects have a hollow structure: the cup and the green container. However, when
the cavity of these objects is facing up, the algorithm finds a feasible grasp at the ear of the cup, or the
sides of the green container, see fig. 4.6

(a) (b) (c)

Figure 4.5. These objects have a low successrate during the single object experiments. Grasp fail due to slipping
on a grasp around the CoM (4.5a), a grasp attempt with wrong height estimation due to the coinslot (4.5b) and no
feasible grasp due to a lack of overlap when objects are hollow (4.5c).

(a) (b)

Figure 4.6. GraspRCNN is able to find grasps for hollow objects. A successful grasp of (a) a container at the side
and (b) a coffee cup at the ear.
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4.8. Prediction and postprocessing time
In automation processes, the total prediction time is an important factor. If the prediction time exceeds
the movement time of the robot, the robot has to wait before it can pick a new object. In the
experimental phase, the prediction and movements are in sequence. When the current method will be
used in production, new images are made when the robot is moved outside the grasp area.
In table 4.4, the average prediction time, postprocessing time, and total process time are given. It is
seen that the average time for both prediction and postprocessing goes up in between experiments.
This suggested that the computation time is dependent on the number of objects, observed by the
network, in the scene.
It is worth mentioning that for the multiple object experiment the average times also include single
object scenarios. If the number of objects would be kept on a higher constant value, the average would
increase.

Table 4.4. The average prediction and postprocessing time of the different methods. The prediction and
postprocessing are done in sequence, so the total process time is the total waiting time of the robot.

Single object [ms] Multiple objects [ms] binpicking [ms]

Average prediction time 278.3 287.9 392.7
Average postprocessing time 337.6 450.9 838.9
Total process time 615.9 738.8 1235.2

In fig. 4.7 the postprocessing and prediction time are shown for 140 consecutive scenes (scene
number 100 to number 240) in all three experiments. For the single object experiments (fig. 4.7a), a
clear constant prediction and postprocessing time is seen. However, looking at figs. 4.7b and 4.7c, a
tooth profile is visible caused by a changing number of objects in the scene. With more objects in the
scene, more object segmentation and grasps are predicted, which takes time. The tooth profile is
more visible in the postprocessing time with a duration between around 250 up to 1000+ ms than with
the predictiontime which lies between 250 and 380 ms.

To understand the dependence of the time on the number of objects, the prediction, postprocess, and
total process time are shown against the number of objects in the scene. This is done separately for
experiments 2 and 3. It can be seen that an upward trend for both the prediction and postprocessing
time vs. the number of objects exist.
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(a) Experiment 1: Single Objects scenarios

(b) Experiment 2: Multiple objects scenarios (c) Experiment 3: Multiple Boxes scenarios

Figure 4.7. The postprocessing and prediction throughout the experiment. For visualization reasons, only scene
100 to 240 are shown. It can be seen clearly that in the single object scenes (fig. 4.7a) the time stays constant. In
the multipleobject (fig. 4.7b) and binpicking scenarios (fig. 4.7c) decay in the postprocess time and prediction time
is seen. This is caused by a decreasing amount of objects, thus fewer calculations.

(a) Duration of the prediction and postprocessing for Experiment 2. (b) Duration of prediction and postprocessing for Experiment 3.

Figure 4.8. The average prediction, postprocessing and totalprocess time of Experiments 2 and 3. As the number
of objects in the scene increase, the totalprocess time also increases.



5
Discussion

To obtain the results of this research some assumptions and simplifications were made which can affect
the performance of GraspRCNN. The assumptions and simplifications made in each part of the pipeline
are discussed in their respective section.

5.1. Data Generation
The grasp generation is the first part of the grasp pipeline. Assumptions, simplifications and design
choices in the grasp generation affect the way the network is trained and what output the network will
give. In this section, the grasp annotation tool is discussed.

5.1.1. Used Dataset
In this thesis, one existing dataset from Fizyr is used for the grasp generation consisting of 765
images with 66 individual objects [32]. A total of 3883 objects were captured and 102275 grasps were
generated. In terms of machine learning networks, this is a quite small dataset and increasing the
dataset size could positively influence the prediction of GraspRCNN. As discussed in the introduction,
some grasp databases exist that could extend this dataset, but it is chosen not to use them during this
thesis for several reasons. [14, 18] created both big datasets with 800k and 6.7M grasps images
respectively. However, these datasets only contain one grasp per object and were therefore not used.
This could lead to issues when attempting to grasp objects in cluttered scenes.
Two grasp datasets are present that contain multiple grasps per object: the Cornell Grasp Dataset [9]
and the Jacquard Database [5]. The Cornell Dataset consists of 885 images and pointcloud with a
total of 240 objects and 8019 handlabeled grasps, which is still a small dataset in terms of machine
learning data. Therefore [5] created the Jacquard Database that consists of 54k images and 1.1M
grasps based on an automatizing algorithm. Due to the large variety of objects in the Jacquard
dataset, this should generalize to a variety of objects. For this thesis, this could have helped to give
the network a ”warmstart” for predicting grasps, before training the network on cluttered scenes.
However, this database is only available for academic purposes and due to the collaboration with
Fizyr, could not be used.

5.1.2. Grasp collisions
The generated grasp needs to pick up objects without colliding with objects or the environment. In the
collision detection phase (section 2.5.2) grasps were labeled ”in collision” and discarded when one of
the ends of the grasp rectangle had overlap with the grasped object or with other object masks.
Therefore only grasp rectangles where the fingers were above the table were seen as correct. As
consequence, for a high object that is surrounded by lower objects, no grasps are generated. Also
when objects are stacked and the bottom objects are still seen by the network, the annotation tool
does not generate feasible grasps. This caused the network not to learn these kinds of grasps. In
Experiments 2 and 3 this resulted in higher ”no feasible grasp” failures, while grasps were feasible,
which let to a lower success and completionrate.
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5.2. GraspRCNN
GraspRCNN consists of two independent networks: one to predict grasps (FasterRCNN) and one to
predict objects (MaskRCNN). The networks share the same architecture but predict different types of
data, grasps and objects. Since multiple grasps are predicted per object, the Region Proposal Network
cannot be shared. However, they could have shared the first set of CNN layers. This could decrease
the computation time during both the training and prediction phases. If this measure also increases
the accuracy of the network needs to be investigated. It is possible that the shared features maps
make both parts of the network more aware of good grasps. However, as the features learned for the
object detection task could be fundamentally different than the features learned for the grasp estimations
option, this implementation should be tested first.

5.3. PostProcessing
The grasps that are predicted by the network are passed through to the postprocessing part. This
section describes the assumptions made in the postprocessing that could impact the performance.

5.3.1. Pixel vs. reallife location
The GraspRCNN predicts grasps on a 2D image in pixel coordinates. In the postprocess, the grasp
representation is transformed from pixel coordinates to realworld coordinates. In postprocessing, the
camera view is assumed to be parallel, instead of having a cone shape. Therefore the distortion of the
camera is not taken into account, which can lead to incorrect realworld finger locations. This effect
occurs mainly at the side of the image. For multipleobject scenes, where objects are close together
and near the border of the image, this could lead to collisions.

5.3.2. Speed
The current network predicts a grasp on average of 616 ms in single object environments and 739 ms in
multiobject environments. Of the total processtime, the postprocessing grows fast when the number
of objects increases. When the robot speed goes up, and the prediction and grasping are done in
parallel, with the current processtime it could happen that the robot has to wait for the prediction. This
can be very costly and should be avoided.

5.4. Recommendations and Future Research
This section contains recommendations that should result in an improvement of the network.

5.4.1. Larger Dataset
Improve the current dataset by adding a wide variety of objects in single and multiple object scenarios.
With a bigger dataset, the network can generalize better on new images and objects. The current
pipeline needs (hand) annotated object masks, which can be timeconsuming. Another possibility is to
create a synthetic database such as done by [5] with the Jacquard Dataset. This database should be
composed of a simulation environment that automatically generates grasps. With this step, one should
be aware of the simulation/reallife learning gap. In literature solutions to bridge this synthetic to reallife
data gap are proposed [1, 29]. A possible hybrid solution between reallife images and synthetic images
could also work.

5.4.2. Better collision detection
In the current method possible feasible grasps are removed during the collision detection of the grasp
generation. It is advised to change the collision detection in such a way that grasps are not directly
removed when the fingers overlap with other object masks, but use depth information to check if enough
overlap exists to grasp the object without colliding with its surrounding. This should result in better grasp
generations which lead to better grasp predictions in densely cluttered scenes, or with stacked objects.

5.4.3. Add depth information in the network
In line with the previous recommendation, It could be beneficial to add depth information to the neural
network. With the current setup, this could be done by removing the blue channel and replacing it with
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the depth information from the pointcloud data. Together with improved collision detection, this should
result in more feasible grasps because the network is more aware of its environment

5.4.4. Increase speed
If the speed of prediction is to slow for a production pipeline, the following improvements can be made.
First, the CNN of the MaskRCNN and FasterRCNN should be combined, such that the object and
grasp network share the same basis. In the current method, the networks predict in series, while they
could predict in parallel. Another option would be to incorporate the graspscores already in the
objectannotation and feed this to the GraspRCNN network. The network is then trained on preferred
grasps, and the whole object and grasp matching could be removed from the postprocessing part.

5.4.5. Shaker Plate
Regardless if changes are made according to the recommendations in the software, it could positively
influence the performance in cluttered scenes if a shaker plate is attached to the table or bin. In this
way, when the network does not find a feasible grasp, the scene could be shaken up, changing the
locations of objects and thus creating a different scene.
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6
Conclusion

This thesis worked towards the objective to create a binpicking pipeline that uses deep learning to
generate a complete solution for binpicking with a twofingered gripper. The grasp pipeline consists of
a graspgeneration method, a neuralnetwork architecture, GraspRCNN, and a decision algorithm. The
graspannotation tool generates a wide variety of grasps that are antipodal and collisionfree based on
an RGB image and a pointcloud. With these generated grasps GraspRCNN is trained. GraspRCNN
consists of two independent networks for object and grasp detection followed by a decision algorithm.
The network can predict feasible grasps that are processed by the decision algorithm to select the
best grasp. Physical experiments are performed and show that GraspRCNN can pick both known
as unknown objects. The proposed algorithm achieves an 89.68% and 81.0% successrate with an
average totalprocess time of 616 ms and 739 ms in single and multiple object scenarios, respectively.
The dataset contains both known and unknown objects. In binpicking experiments, a successrate of
87.5% with a total process time of 1235 ms is achieved. These results indicate that the accuracy of the
proposed graspnetwork is comparable to the stateoftheart, but that the speed of the network still can
be improved.
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A
CNN and RPN

In chapter 3 the GraspRCNN architecture is explained. GraspRCNN model consists of two separate
networks, one for detecting grasps (FasterRCNN) and one for detecting objects (MaskRCNN).
FasterRCNN and MaskRCNN networks are in the base the same. Within MaskRCNN, an extra
branch is added that predicts the object segmentation. For computer vision, the RCNN networks are
widely used for object detection and segmentation. RCNN networks are CNN networks that look at
particular regions, instead of the whole data.

A.1. Convolutional Neural Network  CNN
A Convolutional Neural Network (CNN) is a neural network that takes an image as input and can
differentiate between objects in the image. Therefore they are widely used and very effective for
recognition and classification tasks in images. A CNN consist of two main parts; A feature extraction
part and a classification part. These parts are built up from convolutional layers, pooling layers and
fully connected layers. An overview is shown in fig. A.1

Figure A.1. An overview of CNN Network. A CNN consists of multiple stacked feature extractions followed by one
classification layer. (image from: [2])

A.1.1. Convolutional Layer
A convolutional layer is used to extract the various features from the input images based on a method
called convolution. With a convolution spatial information of the image is extracted by applying kernel
filters to the input image. During the forward pass of the training, the kernel slides across the image
creating a representation of the image. The kernel is a matrix of trained parameters and shares the
local properties spatially.

A.1.2. Pooling layer
The pooling layer is responsible for reducing the spatial size of the feature maps generated by the
convolution layer. This decrease the amount of data, and therefore the computational costs that are
required. However, within the pooling layer, dominant features that are rotation or positional invariant
are still extracted. This makes the network not biased toward small changes within the image.
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A. CNN and RPN

Figure A.2. A convolutional of an image with a kernel. The kernel slides across the image creating a new
representation of the image. (image from: [12])

Two types of pooling are commonly used: Averaged pooling and max pooling. Average pooling
returns the average value from the patch covered by the kernel, and max pooling is the maximum
value. According to literature, max pooling performs a lot better than average pooling because it
removes the noise from the convolutional activation functions. Figure A.3 visualizes the pooling
process.

Figure A.3. A max pooling and average pooling operation with a 2x2 pool. At max pooling, the maximum value of
each pool is taken, while with average pooling the average is taken. (image from: [34])

A.1.3. Fully Connected Layer
After several consecutive layers of the convolutional and pooling layers, a classification of the image is
needed. For this process, the output of the last pooling layer is flattened and used as input for the Fully
Connected Layer (FClayer). In several consecutive FClayers, all the neurons are connected to the
previous and next layers of the network. The last layer of this FClayer stack is the output layer, which
gives the result of the classification.

A.2. Region proposal network
The RCNN of FasterRCNN and MaskRCNN stands for Regionbased Convolution Neural Network
(RCNN) and is an architecture for object detection. A RCNN uses the in appendix A.1 described CNN,
without the fully connective layers, and a region proposal algorithm that generate bounding boxes or
location proposals of possible objects in the image. The RPN, consists of a classification layer and an
added regression branch to obtain better values for the bounding boxes and for the anchors.
A RPN takes anchor as input and has as output a set of rectangular region proposals together with an
objectness score. The region proposals are generated by sliding a small network over the feature map
of the last convolutional layers. The input of this network is a 𝑛 × 𝑛 spatial window of the convolutional
feature map, and is mapped to a lower dimensional feature map. This lower dimensional feature is fed
into two FClayers, one for classification and one for regression. Because of the sliding window
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approach, the FClayers are shared across all the spatial locations. At each location of the sliding
window, multiple region proposals are predicted called anchors. For each anchor, four regressions
outputs are given: the coordinates of the anchor, and classification is given: background or no
background. The anchors are centred at the sliding window and are proposed with multiple scales and
aspect ratios. In this way, objects of different sizes and shapes can be detected. The result of this
approach is that the network is invariant to translation. This means that the same object should be
predicted across the image.
The predicted bounding boxes with a foreground classification are used as input for the Region of
Interest (RoI) pooling layer. This layer takes two inputs: A fixedsize feature map from the CNN with
multiple convolutions and max pooling layers, and a list of 4𝑘 with the coordinates of the RoI bounding
boxes with 𝑘 as the number of RoI’s. [23]
A typical CNN is only able to classify an object and regress its bounding box for one object at a time.
When multiple objects are present, the bounding box regression will not work. Therefore a Region
Proposal Network is used to decide which smaller regions of the image are ”worth” looking into, to
reduce the computational requirements of the overall inference process. This way, the RCNN forces
the CNN to focus on only these small regions. The output of a RPN are bounding boxes, that will be
passed to a classifier and regressor to check the occurrence of objects. The RPN predicts thus the
possibility of an anchor being a background or a foreground.
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B
Grasp objects

Known objects

Figure B.1. Known objects during the experiments.
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B. Grasp objects

Unknown Objects

Figure B.2. Unknown objects during the experiments.



C
Network predictions

This appendix contains a selection of the network predictions of experiment 1, experiment 2 and
experiment 3.

Figure C.1. Grasp predictions for images from experiment 1. The first and second column are the RGB images.
The second and fourth column contain the predictions. The predicted pixels of the objects are covered yellow, the
predicted grasps are given in green and the grasp that is executed is shown in blue.
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C. Network predictions

Figure C.2. A sequence of grasps of experiment 2. The first and third row contain the RGB image at the grasp
area. The second and fourth row gives the predictions by the grasp network. The predicted pixels of the objects are
covered yellow, the predicted grasps are given in green and the grasp that is executed is shown in blue. Sequence:
Rubber duck, Piggy Bank, Wooden Tree, Measuring Tape, Wooden dear and a Triangle box.
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Figure C.3. Network predictions from experiment 3. The first and third row contain the RGBimage at the grasp
area. The second and fourth row gives the predictions by the grasp network. The predicted pixels of the objects are
covered yellow, the predicted grasps are given in green and the grasp that is executed is shown in blue.


	Introduction
	Background
	Research Objective
	Outline

	Data Generation
	Data Annotation Types
	Grasp Requirements
	Input Data
	Grasp Annotations
	Grasp Representation
	Principle Component Analysis
	Objects Skeleton
	Rotation around CoM

	Grasp Annotation Optimization
	Grasp Trimming
	Collision Detection
	Antipodal Grasps


	Grasp-RCNN
	Architecture
	Output Branches
	Training Preparation
	Training Parameters
	Loss Functions
	Post Processing
	Object - Grasp matching
	Grasp Score
	Sorting
	Collision Check
	Pixels to Grasp Coordinates

	Grasp-RCNN Overview

	Experiments and Results
	Setup
	Metrics
	Experiment Methodology
	Experiment 1 - Single objects
	Experiment 2 - Cluttered Scenes
	Experiment 3 - Bin picking boxes
	Grasp failures
	Failure types
	Per-object failures

	Prediction and post-processing time

	Discussion
	Data Generation
	Used Dataset
	Grasp collisions

	Grasp-RCNN
	Post-Processing
	Pixel vs. real-life location
	Speed

	Recommendations and Future Research
	Larger Dataset
	Better collision detection
	Add depth information in the network
	Increase speed
	Shaker Plate


	Conclusion
	CNN and RPN
	Convolutional Neural Network - CNN
	Convolutional Layer
	Pooling layer
	Fully Connected Layer

	Region proposal network

	Grasp objects
	Network predictions

