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Abstract
The automotive industry is experiencing a significant shift towards advanced electronic and software
integration, driven by the increasing demand for self-driving and autonomous vehicles. With electronics
now making up a major portion of vehicle costs, ensuring their reliable operation is critical. However, as
the complexity of automotive systems increases, so do the risks associated with malfunctions, requiring
a critical need for robust safety measures. Functional Safety (FuSa), as defined by ISO 26262, provides
a framework for addressing these concerns at different stages of the safety lifecycle. The primary aim
of FuSa is to develop Safety Mechanisms (SM) to detect faults and recover from them. The efficiency
of these SMs is indicated by Diagnostic Coverage (DC), which represents the percentage of detected
faults. In this context, there are several challenges in verifying the functional safety of automotive
chips, especially with RTL designs. For example, identification of safe faults is one of the initial steps in
FuSa verification. Discrepancies are observed in their classification when utilising different techniques
such as Automatic Test Pattern Generation (ATPG), formal methods and fault injection simulation.
This raises questions about the accuracy of overall results obtained from these tools as well. Varying
outcomes from fault simulation EDA tools in classifying faults may result in different Automotive Safety
Integrity Levels (ASIL) assigned to the component being assessed. This discrepancy would misrepresent
the component’s ability to reduce associated risks, highlighting the importance of conducting a detailed
analysis and comparison of the tools.

The thesis provides a comprehensive evaluation of EDA tools utilized for Functional Safety Verifica-
tion, focusing on RTL designs. Scripts are developed to automate fault simulation flows of two prominent
FuSa EDA tools, XFS by Cadence and VC Z01X by Synopsys, and derive automatic comparisons. By
comparing these tools, their strengths and limitations are analyzed. XFS exhibits limitations in fault
propagation on input and output ports, resulting in the omission of certain fault scenarios. VC Z01X
showcases faster fault simulation capabilities along with an extensive feature set for fault simulation, but
lacks support for transient fault injection on a section of the fault subspace. By applying the automated
tool flows on a FIFO design enabled with ECC, the DC obtained from XFS and VC Z01X are 68.96%
and 80.47% respectively, showcasing a major difference. These findings highlight the importance of a
holistic verification methodology that accurately estimates diagnostic coverage.

A novel verification methodology is proposed, which combines the strengths of XFS and VC Z01X
to optimize the efficiency and accuracy of fault simulation. Leveraging VC Z01X’s concurrent engine
for parallel fault injection and XFS’s capabilities to cover the unexplored fault space, this integrated
approach provides comprehensive fault coverage. The flow also provides users the capability to update
fault classification results based on manual analysis or designer inputs, thereby changing the DC as
well. The verification methodology is applied to the AutoSoC benchmark suite, an automotive System-
on-Chip with configurable SMs. Based on the results, additional SMs are implemented in the AutoSoC
design - duplication of pipeline stages with temporal redundancy and ECC on internal memories. This
leads to an estimated area increase of 1.4x as compared to the baseline design, but also results in
the qualification of an ASIL C level component with a DC of 97.79%. The baseline verification flow
included in the benchmark suite provides a DC of 98.36%, which is an over estimation of the actual
coverage. The proposed methodology provides a more accurate coverage by taking into account the
maximum possible fault space and considering transient faults as well. While there remains room for
further improvement in verification methodologies, this framework effectively addresses the fault space
required for FuSa verification and provides an accurate estimation of Diagnostic Coverage.
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1
Introduction

1.1. Motivation
The automotive industry has undergone significant transformation, marked by a notable surge in the
integration of electronic components and software, driven in part by the escalating demand for self-
driving and autonomous vehicles. In the 1970s, electronics constituted merely 5% of a vehicle’s total
composition [1], and by 2020, it accounted for 35% of overall vehicle costs [2]. Projections suggest a
further elevation to 50% by the end of 2030. Illustrated in Figure 1.1, the ascending trajectory of the
automotive electronics market is evident, with its global valuation reaching USD 289 billion in 2022,
and anticipated to exhibit a compound annual growth rate (CAGR) of 7.8% from 2023 to 2032 [3]. This
surge is fueled by the extensive integration of advanced safety systems, including automatic airbags,
anti-lock braking mechanisms, parking assist systems, emergency braking, and lane warning systems, all
aimed at mitigating road accidents [4]. Moreover, the incorporation of features such as alcohol ignition
interlocks, emergency call systems, and accident data recording systems is rapidly gaining prominence
for vehicular protection, thus poised to propel industry expansion throughout the ensuing decade [4].

Figure 1.1: Predicted growth in Global Automotive Electronics Market [3]

The expansion of electronic components in vehicles introduces an increased vulnerability to failures
stemming from environmental conditions, electromagnetic interference, wear and tear, and latent bugs
in the hardware or software of these components. Such failures can bring about hazardous events over
a vehicle’s lifespan, posing life-threatening risks to its users. Figure 1.2 emphasizes the magnitude of
global vehicle recalls, reaching as high as approximately 15 million, primarily attributable to defects in
Integrated Electronic Components (IECs) and software issues [5]. This begs the question as to what
kind of measures and practices could be brought into place and enforced in order to stop this number
from going even further upwards, and ensure utmost safety in vehicular functionality.

1
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Figure 1.2: Global vehicle recalls till 2019 [5]

This is where the concept of Functional Safety emerges to ensure that an automotive system does
not lead to hazardous situations even when unexpected errors occur during it’s operation. Functional
safety, as defined by ISO26262 [6], is “the absence of unreasonable risk due to hazards caused by
malfunctioning behavior of E/E 1 systems,”. This serves as a foundational approach to securing the
safety of automotive electronics, further explained in Chapter 2. Basic questions such as, “Can I trust
my car’s automatic electronic steering wheel to function properly if a component unexpectedly fails
while driving?” or “What are the implications if the anti-lock braking system malfunctions on a high-
speed highway?” need to be answered. In essence, functional safety provides the necessary framework
to address such concerns and guarantee the safe operation of vehicles amidst potential system failures.

The ISO 26262 standard, an adaptation of the IEC 61508 series [7], addresses the sector-specific
needs of electrical and electronic systems in road vehicles with respect to functional safety. It guides the
diverse activities undertaken during the development and lifecycle of safety-related systems comprising
electrical, electronic, and software components. Adherence to ISO 26262 is imperative for ensuring the
functional safety of automotive chips during their hardware development, validating their suitability for
real-world deployment.

The Electronic Design Automation (EDA) industry assumes a pivotal role in facilitating the devel-
opment of ISO 26262-compliant automotive chips. With an array of tools tailored for various stages
of chip development, EDA tools, particularly those focused on Functional Safety Verification, play a
critical role. Functional Safety verification extends beyond traditional functional verification, requiring
compliance with various safety requirements throughout different stages of the development lifecycle
and is thus one of the most critical issues in automobile development. This thesis delves into an explo-
ration of different EDA tools, aiming to provide a solution that contributes to the thorough functional
safety verification of chip designs tailored to meet automotive requirements.

1.2. Problem Statement
On a high level, functional safety involves introducing faults in the design of an electronic component,
and understanding their effect on the functional outputs of the system. Safety mechanisms must be
implemented in the design to detect faults and initiate recovery mechanisms. The effectiveness of these
Safety Mechanisms is determined by Diagnostic Coverage, indicating the proportion of detected faults.
Diagnostic Coverage establishes the extent of risk reduction achievable by the design. In this thesis,
1Electrical and Electronic
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we will be looking at digital designs with Register Transfer Level (RTL) or Gate Level Netlist (GLN)
descriptions, and verify their functional safety with respect to ISO 26262. But, what are the problems
in current functional safety solutions for the same?

While leading vendors such as Cadence, Synopsys, and Siemens (Mentor Graphics) offer dedicated
EDA tools for Functional Safety Verification [8], an evident dearth of empirical research persists on the
rationale behind favoring one tool over another. Moreover, the reliability and accuracy of tool-generated
results pose inherent challenges, prompting scrutiny of the tools themselves. For example, identification
of safe faults is one of the preliminary steps in functional safety verification and [9], [10] discuss utilising
different technologies such as ATPG, formal methodologies and fault injection simulation to identify
the same. Discrepancies are seen with the usage of different tools and technologies which need to be
carried out manually. Continuing on the same note, if we use two tools from different vendors to carry
out functional safety verification on a single design, will they provide the same overall results? If not,
which of these results do we eventually trust?

Ensuring functional safety involves injecting various types of faults and accurately classifying them
to calculate the desired fault coverage. Therefore, it is critical to consider the tools’ capability to
cover the fault space effectively and give correct classification results. Further, it is crucial to start
the functional safety verification process as soon as possible in the safety lifecycle, preferably at the
RTL development stage. The duration required for finalizing the RTL and creating the GLN can be
lengthy. Discovering bugs or functional safety issues at a later stage may consequently extend the time
to market [11]. Thus, the main question focuses on finding better ways to make sure the Functional
Safety Verification process is strong and reliable through improved verification methods. In light of
these considerations, we propose the following research question:

“Are there discrepancies in the results of FuSa EDA tools at the RTL stage? If so,
how can they be resolved to provide accurate diagnostic coverage estimations?”

In order to answer our primary research question, we need to look at the following sub-topics in
order to understand it better.

1. To address the question of discrepancies, a thorough examination of current Functional Safety
EDA tools is necessary. This involves a comparative analysis of features and performance metrics
to understand the strengths and limitations of each tool.

2. A verification methodology must be developed by considering the comparison of the tools, aiming
to address their limitations, if any. The determination of whether one tool significantly outper-
forms the other, or if a combinations of various approaches is preferable, depends on the findings
from the comparison process.

3. Following the verification process, a detailed review presenting relevant metrics essential for ISO
26262 qualification needs to be provided. This includes a detailed analysis of the design, diagnosing
areas that require improvement in safety mechanisms and offering insights into achieving increased
Functional Safety. It should also be able to provide suggestions for improving Safety Mechanisms
and refining the overall chip design.

1.3. Thesis Contributions
The thesis aims to develop a complete and robust verification flow which can be used to test the
Functional Safety of any given chip, with a concurrent emphasis on proposing enhancements. In this
regard, the major contributions of the thesis are as follows:

1. An in-depth comparative analysis of EDA tools from Cadence and Synopsys for Functional Safety
Simulation is carried out in order to figure out what works better and can be integrated in the
verification flow of any required design at the RTL stage. Key comparison metrics are defined to
evaluate the performance of each tool. The tool flows are tested with small reference designs to
analyse the working and results of the tools.

2. Scripts are developed in order to automate the verification flows of both the tools. Additionally,
post-processing scripts are developed to extract differences in the results along with other necessary
information in order to facilitate easy debug and reduce manual work. This is further tested on
a reference design featuring Safety Mechanisms, and is thus relevant for deriving the defined
comparison metrics.
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3. Following the evaluation of tools, a unified verification methodology is proposed using a combina-
tion of the two tools with additional features and utilities incorporated using scripts. The primary
goal of this framework is to comprehensively address the fault space, providing precise results and
metrics. It is adaptable and can be utilized in diverse verification environments with minimal
changes based on the specific design.

4. The proposed verification flow is applied to the AutoSoC open-source automotive design, serving
as a case study. Results are analyzed to identify areas for improvement, leading to enhancements
within the design. Contributions are made to this open source design, by implementing ECC on
all internal memories of the design, along with the duplication of pipeline stages with temporal
redundancy. The inclusion of these hardware Safety Mechanisms improves the Functional Safety
metrics of the AutoSoC without imposing significant area overhead, as is often the case with other
Safety Mechanisms, like Dual Core Lock Step processors, providing similar metrics.

5. The aforementioned contributions are consolidated in a scientific paper discussing the proposed
unified verification methodology and its results (to be submitted to VLSI SoC, 2024).

1.4. Report Outline
This thesis is organized into seven chapters. Chapter 2 provides an introduction to the key concepts of
Functional Safety Verification, briefing various parts of the ISO 26262 standard. It outlines the safety
lifecycle to be adhered to and highlights important metrics and results to be considered upon completion
of the verification flow. In Chapter 3, the literature survey and an exploration of the current state-of-the-
art in Functional Safety Verification are presented. This section offers insights into diverse methodologies
and techniques employed in the verification process, with a motivation to enhance existing practices
using established Safety Mechanisms. Chapter 4 offers an overview of existing EDA tool flows for fault
injection simulation. It also provides a comparative analysis of tools applied to a design (FIFO) with
Safety Mechanisms (ECC and module duplication), presenting results in relation to predefined metrics.
Building upon the findings outlined in this section, Chapter 5 introduces a verification methodology
aimed at maximizing the utility of the discussed tools to develop a reliable and robust verification
solution. Subsequently, Chapter 6 delves into the outcomes of the proposed verification flow applied to
the FIFO design and extends the analysis to include AutoSoC, a more applicable open-source automotive
SoC design. This chapter also explores the integration of additional Safety Mechanisms to improve
the design following the verification flow and assess possible enhancements. Finally, Chapter 7 offers
concluding remarks on the thesis study and explores avenues for future research and enhancements in
Functional Safety Verification.



2
Background

2.1. Functional Safety (FuSa) Verification with regards to ISO
26262

The primary aim of Functional Safety is to establish a reliable system capable of operating as intended,
even in the face of accidental or unexpected circumstances. It also aims to mitigate the level of risk
or injury resulting from such occurrences. As stated previously, adherence to ISO 26262 is imperative
to ensure functional safety throughout the product lifecycle, covering aspects such as specification,
design, verification and production. To achieve this goal, it is crucial to implement safety systems or
mechanisms within the product, typically accomplished through the utilization of two techniques:

• Error detection systems belong to the category of safety mechanisms, designed with checkers
to monitor the system and activate responses as needed, triggering relevant recovery features.
Such systems primarily offer partial recovery capabilities.

• Error detection and correction systems can be developed using redundant architectures,
which would provide multiple copies of the same logic/system that would limit the risk of any
error that upsets the system. While these systems consume more area compared to error detection
systems, they offer increased recovery capabilities.

The root cause of having to develop functionally safe systems arises from the fact that failures could
happen in any system, because of various reasons such as radiation sources, electromagnetic fields, and
normal wear and tear of systems. ISO 26262 defines two classes of failures:

• Systematic failures are failures which are essentially created during design, also known as bugs.
The causes of these failures can be tracked in a deterministic way, and would require a change
in the design process, verification or any of the stages of typical product development in order
to eliminate the same. It is necessary to have a good design flow to avoid such failures. Such a
design flow would entail the creation of specification based on requirements, design, verification,
prototyping, validation and evaluation. It is paramount to have standardized reviews at each
stage of this design process to eliminate human errors and bugs to avoid systematic failures.

• Random failures are failures which generally happen after manufacturing, whose root causes
are probabilistic and can occur anytime during the lifetime of a hardware device. As mentioned
before, the usual causes of such failures are electromagnetic radiation, aging, heat, temperature,
technology processes, among others. Random failures cannot be completely prevented and hence
safety mechanisms need to be deployed in order to mitigate the effects of such failures.

The ISO 26262 standard defines all the necessary guidelines and measures which need to be taken
to assess the safety mechanisms and procedures developed to mitigate the effects of both categories of
failures. As shown in Figure 2.1, the latest ISO 26262 standard, which was released in 2018, defined a
total of 12 parts in the entire safety lifecycle to standardize the Functional Safety process.

5
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Figure 2.1: Overview of ISO 26262 safety lifecycle [6]

Every part in ISO 26262 has four general topics - Scope, normative references, terms and definitions,
and requirements for compliance. Hence, as shown in Figure 2.1, the numbering of the subsections in
each part starts from 5 onward. A quick overview of the individual parts is listed below to get an overall
picture of ISO 26262:

• Part 1 highlights common vocabulary and definitions to establish clarity and coherence for the
remainder of the standard.

• Part 2 outlines an extensive approach to managing functional safety throughout the project life-
cycle, covering overall safety management and project-specific directives.

• Part 3 focuses on the conceptual phase, focusing on topics such as Hazard Analysis and Risk
Assessment (HARA), defining Functional Safety Requirements, and establishing Safety Goals.
Automotive Safety Integrity Levels (ASIL) are defined for components at this stage.

• Part 4 addresses system-level product development, including technical safety specifications and
top-level system architectural design.

• Part 5 dives into hardware development, encompassing hardware design and the evaluation of
safety goal violations, along with determining relevant metrics for classification of automotive
components.

• Part 6 specifies software development guidelines, covering software architectural design, unit de-
sign, and verification, and the additional steps to be followed in comparison to the typical product
development of software.

• Part 7 guides production, operation, service, and decommissioning processes for safety-related
elements in road vehicles, and deals with safety processes after the completion of system develop-
ment.
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• Part 8 governs supporting processes, ensuring verification, tool qualification, and proven in-use
arguments are correctly executed.

• Part 9 is ASIL-oriented, and focuses on ASIL decomposition of different components, coexistence
criteria for such elements, and dependent failure analysis.

• Part 10 offers guidelines to enhance understanding and application of ISO 26262.
• Part 11 provides detailed support for semiconductor manufacturers and integrators, with addi-

tional guidelines on topics from the previous parts.
• Lastly, Part 12 outlines the adaptation of ISO 26262 for motorcycles, covering safety culture,

confirmation measures, hazard analysis, vehicle integration, and safety validation.

In the next section, we discuss each of the parts briefly, with detailed discussion on relevant sections
for deeper understanding of the background knowledge required for this thesis.

2.2. Parts of ISO 26262
2.2.1. Part 1 - Vocabulary
Part 1 - Vocabulary encompasses the formal definitions, terms and abbreviations, which would be
applied in all parts of the standard. The functional safety lifecycle starts at an “Item”, which is defined
as a “system or combination of systems to which ISO 26262 is applied, that implements a function
or part of a function at the vehicle level”. It is further broken down into elements, which could be a
system, component or any hardware/software unit. A system should relate a sensor, controller and an
actuator with one another.

Figure 2.2: Terminologies in ISO 26262 [12]

Illustrating the application of the introduced terms, we can take the example of an Anti-Lock Braking
System (ABS), whose function is to prevent locking of the wheel and provide more control to the driver.
In the context of the standard, ABS will be an Item. Different elements of the ABS item could be E/E
system (ABS Control Unit, Sensing Unit, Pump Motor Control Unit, Valve Control Unit), Mechanical
System (Actual Brake pedals, Brake Pads, Rotor, Brake Hose) and Hydraulic System (Master Cylinder,
Accumulator, Reservoir, Pump Motor, Piston). Figure 2.2 shows a perspective of the hierarchy of these
terminologies in ISO 26262. It gives an overview of the overall system to which the safety lifecycle is
applied. In the context of the thesis, we would be looking into individual E/E components to exercise
functional safety verification.

2.2.2. Part 2 - Management of Functional Safety
Part 2 - Management of Functional Safety addresses the safety lifecycle and compliance with the stan-
dard in terms of three clauses. Overall Safety Management is related to the organization which develops
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the product and includes procedures such as developing a company-specific lifecycle, definition of tools
to be used, different kinds of safety analyses to be performed, among other things [13]. The second
clause is regarding Safety Management at the Project Level, which outlines the actions required through-
out product development, particularly focusing on impact analysis. The outcomes of this analysis are
utilized to customize the lifecycle and formulate the necessary safety activities. The third and final
clause is about Safety Management post Development, and talks about processes which need to be in
place regarding the safety of production and in-field monitoring. To summarise, the second part of
ISO 26262 discusses the comprehensive management of the safety lifecycle, specifically tailored to the
development organization. It further explores the necessary measures to be implemented during and
after the development phase, ensuring the ongoing maintenance of the product’s functional safety.

2.2.3. Part 3 - Concept Phase
Part 3 - Concept Phase is the initial phase in product development wherein different concepts start
to become more concrete. Essential product functionalities must be outlined, accompanied by a risk
analysis to allocate specific levels of importance to the system. Finally, a detailed functional safety
concept must be articulated to understand all system requirements. This section is further subdivided
into three clauses -

1. Item Definition: As previously noted, an Item serves as a pivotal starting point in product
development. It represents the primary subject of development — the product and it is important
to clearly define and delimit the scope of the intended functionalities and constraints.

2. Hazard Analysis and Risk Assessment: ISO 26262 stresses the significance of understanding
risks associated with the product and identifying potential hazardous situations it may lead to.
The standard proposes a Hazard Analysis and Risk Assessment (HARA) strategy to identify
different hazards, assess the associated risks and then accordingly formulate safety goals. HARA
begins with a description of operational situations and modes of the product, and the hazards
which could arise in the event of a fault in the specified Item. A hazard is defined as “a potential
source of harm caused by malfunctioning behavior of the item”. It is important to understand the
operational situations to truly assess the risk of the item. For instance, taking an ABS system into
consideration, the impact of a hazardous event would vary if it occurred within a garage as opposed
to transpiring on the highway, where the consequences could potentially be life-threatening. So,
an in-depth risk analysis needs to be performed and then the corresponding “Automotive Safety
Integrity Level” or “ASIL” is assigned. ASIL is determined in terms of four levels, each level
designated with a letter, A being the lowest and D being the highest.
To conduct the risk analysis, it is essential to evaluate three metrics associated with the pertinent
hazardous events - Severity, Exposure, and Controllability.

• Severity is quantified in terms of the harm caused by the event, considering factors such as
potential injuries and their extent. This metric spans from level S1 to S3, where S1 denotes
light injuries, and S3 indicates life-threatening or fatal injuries. Sometimes, an S0 level is
also included, signifying no injuries.

• Exposure is determined by the likelihood or probability of the hazard, relying on statistical
information obtained from diverse sources related to similar vehicles and systems, correspond-
ing technologies, and the rate of traffic accidents. As shown in Table 2.1, it is expressed in
4 levels ranging from E1 to E4, with E4 being the highest probability of occurrence.

• Controllability is evaluated based on the driver’s ability to manage an unwanted situation
and prevent a hazardous event. This metric is also categorized into three levels, ranging
from C1 to C3. A C1 level signifies that the situation is easy to control, whereas a C3 level
indicates that it is very challenging to control. Additionally, there is sometimes a C0 level
associated with this metric, indicating that the situation is generally controllable.

The combination of these metrics gives rise to the corresponding ASIL level of an item, ranging
from A to D, as described by the matrix shown in Figure 2.3. There is also an additional level
called QM (Quality Management), in which the development of the item is sufficient according to
the established quality management at the organization. As depicted in the figure, as the levels
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Table 2.1: Exposure probability table [14]

Class E1 E2 E3 E4
Description Very low proba-

bility
Low probability Medium proba-

blity
High probability

Definition of fre-
quency

Situations that
occur less often
than once a year
for the great ma-
jority of drivers

Situations that
occur a few times
a year for the
great majority of
drivers

Situations that
occur once a
month or more
often for an aver-
age driver

All situations
that occur during
almost every
drive on average

Table 2.2: Classification of controllability [14]

Class C0 C1 C2 C3
Description Controllable in

general
Simply control-
lable

Normally control-
lable

Difficult to con-
trol or uncontrol-
lable

Definition Controllable in
general

99% or more
of all drivers
or other traffic
participants are
usually able to
avoid a specific
harm.

90% or more
of all drivers
or other traffic
participants are
usually able to
avoid a specific
harm.

Less than 90%
of all drivers
or other traffic
participants are
usually able, or
barely able, to
avoid a specific
harm.

of the metrics increase, the likelihood of a life-threatening hazard also rises, and the ability to
control such a scenario becomes more difficult. Consequently, a higher ASIL level is then assigned.

Figure 2.3: Determination of ASIL level in ISO 26262 using HARA[15]

Continuing with the example of an ABS, the primary function of this system is to prevent wheel
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locking during braking and thereby maintaining tractive contact with the surface of the road. Let
us consider a hazardous situation wherein there is a loss of control on a split-µ surface (Surfaces
with asymmetrical friction coefficient) [16]. The severity of this hazard would then be assigned
a level of S3, as there could be fatal injuries in case of an accident triggered by this hazardous
situation. The probability of this scenario occurring could also be high on typical highways, and
thus, the exposure level is E4. Finally, this kind of a situation can be difficult to control because
of the automatic engagement of ABS in an unwanted scenario, and hence, the controllability is
C3. Combining these three metrics, we get an ASIL level of D for this particular feature. Once
the ASIL level is determined, appropriate safety goals need to be formulated, which in our case
could be as follows:

• Additional sensors need to be in place to determine the difference in friction coefficient to
provide better control.

• Improved steering mechanisms need to be developed to allow added control from the driver.

These safety goals must be implemented and developed later in the course of the lifecycle. Sub-
sequently, the relevant metrics, as defined by the hardware development section, need to be met,
as will be elaborated upon later. To provide a perspective on the ASIL levels of different systems
in an automotive context, an example is shown in Figure 2.4.

Figure 2.4: ASIL levels of different components in an automotive [17]

3. Functional Safety Concept: This clause discusses the derivation of functional safety require-
ments from the safety goals, thereby providing a high level overview of the intended functionalities
of the system. Requirements for avoiding, detecting, and controlling faults are developed in this
phase. Safe states need to be defined, into which the system should enter in the event of an
erroneous situation. These stated requirements need to be implemented later in the system archi-
tecture or get implemented by external measures. The main work products out of this phase will
allow the beginning of the product development at the system, hardware and software levels.

2.2.4. Part 4 - Product Development at System Level
Part 4 - Product Development at System Level, along with Parts 5 and 6 of the ISO 26262 follow
a general V-model framework, starting with the requirements of the system, design, implementation,
integration at different levels, verification and validation. This section deals with the top level system
requirements and functional safety goals. There are three major clauses in this part -

• Technical Safety Concept includes the prerequisites for hardware and software development.
Based on the identified high level functional safety goals, a necessary conversion to technical
safety requirements need to be performed. This phase involves detailing system functionalities and
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architecture, inter-dependencies among various sub-systems, specifying interfaces, and allocating
resources for hardware and software components. Additionally, this phase requires the precise
specification of safety mechanisms, including fault detection strategies and intervals, along with
the corresponding transitions to safe states.
It is also necessary that different safety analyses are carried out in order to establish strategies for
avoiding random hardware failures. Typically used techniques are Failure Mode Effect and Di-
agnostic Analysis (FMEDA), Fault Tree Analysis (FTA) and Dependent Failure Analysis (DFA).
The primary aim of these analysis techniques is to identify faults and their causes and calculate
the probability of failures of different hardware components, also known as Failure Rates. The
end product or the realization of these measures will be evident during the stage of Product De-
velopment at Hardware Level, when the eventual metrics will be calculated. However, an initial
assessment of the safety mechanisms could be defined by the Diagnostic Coverage (DC) at
this stage. Diagnostic Coverage is the property of a Safety Mechanism to detect faults, and is
quantitatively expressed in terms of percentage of faults detected. Necessary requirements for DC
must be defined such that the failure rates are reduced to acceptable levels.

• System and item integration and testing involve the integration of sub-systems at various
levels and the assessment of their outcomes, culminating at the top-level system. This process
can only be performed once adequate development at lower levels (hardware and software) are
completed. The primary objective of this clause is to make sure that the safety mechanisms are
correctly implemented and integrated such that they fulfill all the required safety requirements at
the system level.

• Safety Validation has to make sure that the safety goals have actually been achieved in the
automotive, and that the product can now be deployed to be released, produced and installed in
vehicles.

2.2.5. Part 5 - Product Development at Hardware Level
Hardware development refers to the process of developing the hardware of electrical and electronic
systems. Part 5 - Product Development at Hardware level runs concurrently with software development,
after a “Technical Safety Concept” has been formulated at the system level. In the context of this
thesis, this section is highly significant as the objective is to verify functional safety at the hardware
level. Therefore, it is crucial to understand the work products generated in this phase. The individual
clauses in this part are discussed briefly as follows:

• General topics: All the necessary activities and processes required to develop hardware are
discussed briefly in this clause. As an overview of the hardware development, it must include the
hardware implementation of the Technical Safety Concept, analysis of hardware faults and their
effects (both quantitatively and qualitatively), and the integration with the software development.
Figure 2.5 shows an overview of the development process flow at the hardware level and its
connections with other clauses in the ISO standard.

• Specification of hardware safety requirements: The main objectives of this clause are to
specify the hardware safety requirements, which are derived from the technical safety concept and
architecture specifications of the system design. The relevant properties and functionalities of the
safety mechanisms and their ability to detect internal/external failures need to be well defined. It
is also important to specify and refine the hardware-software interface (HSI) specification at this
stage.
These requirements and specifications must be verified with different criteria(which could include
environmental conditions such as temperature, vibration or specific operational environment such
as supply voltage) to ensure the consistency with the technical safety concept and system archi-
tectural design specification. This level of specification should also include attributes to ensure
that the safety mechanisms are indeed effective and achieve the required coverage needed for the
corresponding ASIL classification.
Additionally, the requirements should comply with the fault tolerant time interval or with the
maximum fault handling time interval. In view of ISO 26262, there are certain timing aspect con-
siderations which need to be performed as well. Safety mechanisms will be completely evaluated
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Figure 2.5: Product development at hardware level [18]

only when timing constraints are taken into consideration. The system should be able to detect
faults and transition to a safe state within a specific time interval, also known as FTTI - Fault
Tolerant Time Interval. Figure 2.6 shows an illustration of FTTI, which also includes the
time for the Safety Mechanism to detect the fault - Diagnostic Test Interval, along with the Fault
Reaction Time and the corresponding transition to the Safe state. This timing consideration is
important to be taken care of while verifying the hardware design.

Figure 2.6: Fault tolerant Time Interval and Diagnostic Test Interval [19]

• Hardware Design: This is the next stage where a concrete hardware design is implemented.



2.2. Parts of ISO 26262 13

In addition to ensuring that the functional safety requirements are met, it is also important to
make sure that the actual functionality of the hardware is not affected while implementing the
design. Necessary hardware architecture needs to be defined in order to implement the hardware
safety requirements. These will be allocated to the hardware elements, which will be developed
in compliance with the highest ASIL of any of the allocated requirements.
This clause defines the necessary properties of hardware design in terms of the ASIL levels. In
general, components with higher ASIL levels need to have some essential properties such as pre-
cisely defined interfaces of safety-related hardware, maintainability and testability among others.
In order to ensure that the implemented design is in conjunction with the safety requirements, this
clause also extends the concepts of safety analyses. The hardware design must be created in a way
that it supports all the necessary safety-oriented analysis and also considers the corresponding
results.
For every safety related hardware, the safety analyses shall identify the following faults:

1. Safe Faults: Occurrence of such faults do not increase the likelihood of a safety goal being
violated.

2. Single-point faults/Residual faults:
a. Single Point Faults: Hardware faults in an element that leads directly to the violation

of a safety goal and no fault in that element is covered by any safety mechanism.
b. Residual Faults: Part of a random hardware fault which leads to the violation of a safety

goal, occurring in a hardware element, where that portion of the random hardware fault
is not controlled by a safety mechanism.

3. Multiple-point faults (either detected, perceived or latent):
a. Detected fault: Fault whose presence is detected within a prescribed time by a safety

mechanism.
b. Perceived fault: Fault that may be perceived indirectly (through deviating behavior on

vehicle level).
c. Latent fault: Multiple-point fault whose presence is not detected by a safety mechanism

nor perceived by the driver within the multiple-point fault detection time interval.

The above classifications are also illustrated in Figure 2.7, as will be discussed later during Fault
Classification and Analysis. Such a safety analysis is imperative to demonstrate the effectiveness
of implemented safety mechanisms in averting faults from causing various failures. After the
completion of design phase, the design verification plan must be formulated and executed. This
plan aims to verify the intended functionality, a process akin to the typical functional verification
of chips. To summarise this clause, the main work products coming out of this phase are the
hardware design specification, hardware safety analysis report, hardware design verification report,
and finally the specification of requirements related to the production, operation, service and
decommissioning, which will be used in the later parts of the safety lifecycle.

• Evaluation of the hardware architectural metrics: The main aim of this clause is to provide
evidence regarding the suitability of the hardware architectural design in terms of detection and
control of safety-related hardware failures. There are two hardware architectural metrics defined
by ISO 26262: Single Point Fault Metric (SPFM) and Latent Point Fault Metric (LFM).
SPFM quantifies the danger posed by faults not protected by the Safety Mechanisms. LFM, on
the other hand, denotes the threat posed by faults which do not violate a safety goal directly, but
could be a risk in the presence of another fault.
In order to calculate the hardware architectural metrics, we need to understand the kind of
faults we need to inject. With regards to ISO 26262, the hardware safety analysis must consider
the classification of Stuck-At-0 (SA0), Stuck-At-1(SA1), Single Event Upset (SEU) and
Single Event Transient (SET) faults.
The idea is to inject all the aforementioned faults at different locations in the system, and classify
them into the different classes, as mentioned in the previous clause. Typically, at this stage, an
FMEDA analysis is carried out to tabulate all the Failure Modes (FM) of the hardware element
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under consideration, and the failure rates or Failure in Time (FIT - number of expected failures
per one billion hours of operation) of the FMs. The Safety Mechanisms associated with the FMs
are identified and the corresponding Diagnostic Coverage is calculated. With the help of this,
the residual FIT rates are calculated for each hardware component. The FIT Rate is denoted by
λ, and the different FIT rates corresponding to the fault classes earlier defined are mentioned as
follows:

– λSP F : Failure rate of Single Point Faults (which directly violate a safety goal and is unpro-
tected by SM)

– λR: Failure rate of Residual Faults (which are undetected by SMs)
– λMP F : Failure rate of Multi-point faults (which could only violate a safety goal in combina-

tion with another faults, and is the summation of λMP F,DP and λMP F,L)
– λMP F,DP : Failure rate of detected MPF (covered by SM)
– λMP F,L: Failure rate of Latent MPF (faults in an SM)
– λS : Failure rate of Safe faults (which do not violate a safety goal)

The sum of all these faults (λ) is given by:

λ = λSP F + λR + λMP F + λS , where λMP F = λMP F,DP + λMP F,L (2.1)

Once the failure rates of these classes are defined, we can formally describe the SPFM and LFM.
The Single Point Fault Metric or SPFM is characterized by the classes of faults which can
violate safety goals. The major contributing factors for this metric are the Single Point Faults
and Residual Faults, both of which has the potential to directly violate safety goals. This metric
is defined by the equations shown below:

SPFM= 1− Single Point Faults + Residual Faults
Total Safety Related Faults

SPFM = 1− λSP F + λR

λ
(2.2)

The Latent Fault Metric or LFM denotes the classes of faults which could be a risk in the
presence of another fault, and are not covered by Safety Mechanisms. To calculate this, it is
necessary to determine the coverage while excluding the classes of Single Point Faults and Residual
Faults. LFM is defined by the following equation:

LFM= 1− Undetected Multi Point Faults
Safety Related Faults - (Residual + Single Point Faults)

LFM = 1−
λMP F,L

λ - (λSP F + λR) (2.3)

The target values for the two metrics, SPFM and LFM, are defined based on the ASIL level of
the hardware component, and are shown in Table 2.4.
We take an example of an FMEDA analysis on a hardware element to illustrate the calculation
of these metrics. It is important to note that such analyses can vary from one project to another,
and the example shown below in Table 2.3 is a specific representation of the same.
The different acronyms in the given table are listed below:

– ID: Identifier associated with a Failure Mode
– FIT: Failure in Time
– FMD: Failure Mode Distribution
– SG: Safety Goal
– SM? (SPF): Safety Mechanism with regard to Single Point Fault
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Table 2.3: FMEDA example for calculating hardware metrics

Failure Mode ID FIT FMD Violates
SG?

SM?
(SPF)

DC-
SPF

RF MPF SM?
(MPF)

DC-
MPF,L

MPF,L

Memory
array

Memory element
becomes corrupted
to give wrong
output values

FM1 100
70% Yes SM1 90% 7

30% No

Stored ECC value
gets corrupted

FM2 10 100% No Yes No 10% 9

Total 110 7 9

– DC-SPF: Diagnostic Coverage for SPF
– RF: Residual Fault
– MPF: Multi-Point Fault
– SM? (MPF): Safety Mechanism with regard to Multi-Point Fault
– DC-MPF,L: Diagnostic Coverage for Latent MPF
– MPF-L: Latent Multi-Point Faults

We have an example of a memory array with two associated Failure Modes, FM1 and FM2. A
Failure Mode Distribution (FMD) is linked to these FMs, indicating the percentage of area relative
to a design block that could cause a failure. FMD is typically obtained from different statistical
sources and is used in the eventual calculation of the number of faults relevant to the violation of
a safety goal. FM1, with a FIT rate of 100, directly violates a Safety Goal. To address this error,
a Safety Mechanism (such as ECC) is implemented, providing a Diagnostic Coverage of 90%.
Assuming there are no single point faults (meaning there are no faults which are not covered by
a Safety Mechanism), the total number of residual faults is then calculated as follows:

RF = 100×0.7× (1−0.9) = 7

This FM does not have any Multi-Point Faults and therefore, there are no other contributing faults
associated with it. FM2 does not directly violate a Safety Goal, as it represents a fault within the
Safety Mechanism itself. It contributes to a multi-point fault and does not have any secondary
Safety Mechanism for protection. The Diagnostic Coverage for this Multi-Point Fault is 10%.
Again assuming that there are no detected multi-point faults, the total number of multi-point
faults is determined by:

MPF = MPF,L + MPF,DP = 10×1× (1−0.1) + 0 = 9

Finally, the SPFM and LFM metrics are given by:

SPFM = 1− 7
110 = 93.63%

LFM = 1− 9
110−7 = 91.26%

Upon examining the values of the SPFM and LFM for this hardware element, along with the
target values for a specific ASIL as presented in Table 2.4, this element qualifies for an ASIL B
rating. Another metric, which will be elaborated on in the next clause, also contributes to the
calculation, affirming the qualification of the element for an ASIL B rating.
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• Evaluation of the safety goal violation due to random hardware failures: The primary
objective of this clause is to ascertain that the residual risk of a safety goal violation caused by
random hardware failures is diminished to acceptable levels. ISO 26262 puts forth two methods
to assess whether such a risk is sufficiently low.
The first method is the calculation of Probabilistic Metric for Random Hardware Failures
(PMHF), which denotes the average probability of failure per billion hours of operational time
of the hardware design. The evaluation of PMHF must prove that the combined safety target
violation of all hardware elements are below a certain threshold for a given ASIL level. However,
unlike the SPFM and LFM, ISO 26262 does not provide any method to calculate this metric. The
data associated with different elements could be taken from statistical sources or relevant field
data to arrive at the final PMHF metric. It could be also derived from different safety standards,
such as the IEC 61508, as shown below in Equation 2.4:

PMHF = ΣλSP F + ΣλRF + ΣλMP F,L (2.4)

Table 2.4 denotes the target values for the three metrics, SPFM, LFM and PMHF in order to
attain a given ASIL rating. Considering the example discussed above, the derivation of PMHF,
based on IEC 61508, is as follows:

PMHF = 7 + 9 = 16FIT

This value corresponds to an ASIL rating of B (<100 FIT), as also seen earlier with the other two
metrics. If any of the metrics has a higher ASIL level than the others, then the metric with the
lowest ASIL qualification will be attributed to the entire hardware element.

Table 2.4: Target values for metrics based on ASIL level

ASIL SPFM LFM PMHF
B >90% >60% <100 FIT
C >97% >80% <100 FIT
D >99% >90% <10 FIT

The second method is an extensive evaluation of the different possible causes of a safety goal
violation. Individual analysis of different failures must be performed at the hardware level, with
the results of such an evaluation providing evidence that the risk of failures from these fault classes
are acceptable. All different types of faults - SPF, MPF and RF, must be considered during this
evaluation along with their failure rates. The diagnostic coverage of safety mechanisms must be
sufficient to rationalize and mitigate the associated risks to a tolerable level.

• Hardware Integration and Verification: The main activities described in this clause aim at
the integration of different hardware elements and verifying the compliance of the overall hard-
ware design in accordance with the appropriate ASIL. Various methods need to be followed in
order to derive test cases for testing the integrated hardware, with examples of such methods
including analysis of requirements, internal and external interfaces, environmental conditions and
operational use cases. Hardware integration tests must be used to verify the completion and
correctness of the implemented Safety Mechanisms by means of functional testing, fault in-
jection simulation and electrical testing. The final work products from the clause include
the hardware integration and specification requirements along with the results and reports.

2.2.6. Part 6 - Product Development at Software Level
This part discusses the functional safety requirements at the software level which arises from the need of
developing error-free software as more and more automotives include increased proportions of software
in their design. An important thing to note in this case is that, software cannot fail randomly like
electronic or hardware components. Thus, software faults fall into the category of systematic faults
and in order to have an error-free software, it is essential to avoid such faults through systematic
development. This part is further divided into the following clauses:
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• General topics gives an overview of the software development and its integration with the
hardware development in parallel, with respect to a V-model, as mentioned earlier. Software
development for automotive applications must conform to the ISO 26262 standard and adhere to
the requirements of the safety lifecycle, distinguishing it from conventional development practices
in other domains.

• Software Safety requirements must be derived from the technical safety requirements in detail
for implementation in software. This includes defining self-testing and monitoring mechanisms for
the operating system, basic software, and application software. The clause encompasses require-
ments for detecting, indicating, and controlling faults in all safety-related hardware. Additionally,
it is crucial to define safe states and establish procedures for achieving them in the event of a
failure. The specification also outlines necessary interface requirements between the software and
hardware.

• The software architecture should implement all the functional requirements and safety mech-
anisms at the software level. It is imperative to conduct thorough safety analysis to prevent
dependent failures, ensuring that error-prone software does not compromise the functional safety
of critical software components. This analysis should encompass aspects such as runtime behavior,
memory areas, and message traffic.

• Unit design and implementation is a typical part of every software development process. A
software unit design is essential as it could also be used as a model for applying model-based
software development.

• The subsequent phase involves Unit verification, which is needed for validating the accurate
implementation of safety mechanisms through thorough testing. This process ensures that test
coverage requirements are met and verifies the absence of unintended functionality in the code.
Additionally, it ensures the availability of essential resources, including execution time, memory,
and message throughput, to facilitate smooth code operation.

• After the development of individual software units, software integration and verification of
these units need to be carried out to ensure the intended functionality of all functions at the
software level. Questions raised in the previous clause must also be taken care of here at the
overall software level.

• Testing of embedded software is essential to verify that the software meets safety requirements
when deployed on specific hardware in a given target environment. To achieve this, the software
must undergo testing in various environments. First, the testing should be done with the help
of simulation. Second, it should be tested by placing the software in a network of real electronic
control units. Finally, it should be tested in a real-life scenario by placing the system in a prototype
vehicle.

To summarise, software development in ISO 26262 takes a step further than the usual route by
ensuring that all safety requirements are met with the help of safety mechanisms implemented in
software, and that there is no unintended functionality. Systematic faults must be avoided at all
costs with proper integration and testing methods and test coverage must be measured to evaluate the
completeness of testing and achievement of test goals.

In the context of the thesis, Parts 1-6 cover majority of the essential background knowledge needed for
Functional Safety Verification in automotive chips. The subsequent sections of the standard, spanning
from 7 to 12, are briefly discussed to provide a general idea about the topics.

2.2.7. Parts 7 - 12
Part 7 - Production, operation, service and decommissioning deals with the activities in the
lifecycle after the development has been completed. It is essential to verify that the safe production
and installation of electronics is carried out. Workshops conducting repairs must avoid any safety
hazards, and adherence to ISO 26262 is therefore necessary for proper planning. The field observation
process aims to examine defective parts, analyzing deviations from safety concepts and checking if
software updates or hardware replacements are needed. These steps conclude the vehicle’s lifecycle
considerations.
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Part 8 - Supporting Processes provides guidelines and additional considerations to assist en-
gineers in achieving compliance with the safety lifecycle. There are clauses with defined objectives,
prerequisites and expected work-products, describing critical processes that support the entire lifecycle.
They address aspects such as interfaces in distributed developments, specification and management
of safety requirements, configuration and change management, verification processes, documentation
management, and ensuring confidence in the use of software tools, which will also be discussed in detail
in Section 2.4. Additionally, the clauses provide information on topics like the qualification of soft-
ware components, evaluation of hardware elements, proven in-use arguments for existing elements to
be reused, interfacing with applications outside the scope of ISO 26262, and integrating safety-related
systems not developed according to the standard.

Part 9 - ASIL-oriented and safety-oriented analyses must be carried out in conjunction with
the development process throughout the lifecycle. These analyses are essential for gaining a precise
understanding of the origins and effects of different kinds of faults, thereby ensuring a robust and
functionally safe design.

Part 10 - Guidelines on ISO 26262 provides in-depth explanations and further recommendations
for better understanding. This part is more of an informative section, but still quite helpful.

Part 11 - Guidelines on application of ISO 26262 to semiconductors is one of the two
additional parts introduced in the ISO 26262 version of 2018. This part offers additional insights into
understanding Safety Mechanisms and the reliability of semiconductors within the functional safety
process. Many concepts mentioned briefly in preceding sections are further explained and explored in
greater detail within this part.

Detailed explanations are provided for the quantification of transient faults, the calculation of failure
rates sourced from industry data, and examples illustrating Diagnostic Coverage in different systems.
The DFA section delves into the various causes and initiators of common cause and dependent failures.
The recommended workflow and subsequent preventive measures for addressing these failures are also
thoroughly discussed. Further definitions and guidance regarding fault models for components, including
memories, failure modes of common digital blocks, and the analysis and estimation of transient behavior
and diagnostic coverage, are documented in detail. Similar analysis is also followed for analog and mixed
signal components, programmable logic devices, multi-cores and sensors/transducers, covering majority
of the semiconductor technologies for consideration under functional safety development.

Part 12 - Adaptation of ISO 26262 for motorcycles has been specifically added to the stan-
dard for explaining the functional safety lifecycle and its adjustment for motorcycles. Majority of the
concepts still remain the same, including the HARA process, with some minor tweaks in the clauses
relating specifically to motorcycles. For example, additional terminologies have been added to the vo-
cabulary, and ASIL has been substituted with Motorcycle Safety Integrity Level (MSIL). The MSIL
levels translate to one level lower than the ASIL levels (i.e. MSIL B is handled according to the rules
of ASIL A), and the classification table remains almost identical. The different rules already discussed
in the previous parts of this standard are then modified according to these updated classifications.

This concludes an overview of the Functional Safety concepts in relation to ISO 26262 standard.
The subsequent section explores various fault classification techniques and the corresponding analysis
for evaluating the final outcomes of hardware metrics.

2.3. Fault Space Analysis and Classification
ASIL ratings of automotive components determine the quality and robustness of the overall system. In
order to determine ASIL levels, it is important to understand the effects of faults in these components
and their corresponding classifications. Thus, the next logical step is to analyse different fault effects
and determine their classifications, along with the failure rates, to calculate the required hardware
architectural metrics.

There are different ways in which fault analysis can be performed, aided by different technologies. In
general, the main aim is to classify the entire fault space into the classes described by ISO 26262 and as
shown in Figure 2.7. Any hardware element under consideration is divided into various failure modes,
and the corresponding coverage of the safety mechanisms associated with these FMs are identified to
classify the various faults. Once the fault classes are known, we can calculate the necessary metrics and
qualify the element to the appropriate ASIL level.

Various methods can be employed for fault classifications, as will also be elaborated in Section 3.2.
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Figure 2.7: Flow diagram for failure mode classification [18]

However, for a concise overview of the technologies and methodologies in use, a preliminary discussion
is provided in this section.

The primary methodology recommended by ISO 26262 is fault injection simulation, wherein
different faults are injected at various design points and subsequently simulated using functional tests.
Comparisons between the design outputs and those of a good (fault-free) simulation determine the fault
classification. This approach is supported by various EDA tools, simplifying the process and minimizing
manual effort. It represents an improvement over testbench-based fault simulation methods [20][8],
which manually introduce faults and force corresponding signals during test simulation — a process
which requires a lot of manual work and lacks scalability for larger and complex designs. Other classifi-
cation methods include radiation-based testing [21] for transient fault analysis, primarily applicable
post-product development, and not suitable for RTL-level testing. While fault emulation methods
are feasible and emulation platforms are available for fault injection, their discussion is not presented
here as fault simulation is the suggested ISO 26262 qualification methodology. On the other hand,
formal methods offer an extensive means of identifying safe faults through different analysis tech-
niques, requiring minimal user intervention. Identifying safe faults early in the lifecycle saves critical
simulation time, emphasizing the importance of formal methods. Considering the feasibility of fault
injection simulation and formal methods with respect to the research problem at hand, this section
delves deeper into these two methods.

• Fault Injection Simulation: This is the methodology suggested by ISO 26262 for fault space
classification and is widely used in different solutions. There are dedicated tools provided by
leading EDA vendors for fault simulation purposes. These tools can analyze Register Transfer
Level (RTL) or Gate Level Netlist (GLN) design descriptions to simulate their behaviour. The
fault class is determined by comparing the outputs of the Design-under-Test (DUT) with and
without faulty behaviour. The main steps involved in the fault injection simulation flow are as
follows:
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1. Compilation/Elaboration of RTL/GLN designs: The given design has to be compiled
with the necessary switches and arguments required to prepare for fault simulation.

2. Generation of fault list and optimisation: This is where the fault space is defined and
generated. Users can define the targets for fault generation, the type of fault models to
be used (Stuck-At, Transient or any other variations supported by the tool), fault injection
times. Different types of faults could also be excluded in this stage from being generated,
thus saving valuable time in not instrumenting those faults.

3. Good simulation: The DUT is simulated without any injection of faults to generate a
golden database for reference. Users typically define specific signals in the design to act as
observation and checker points. Observation points capture information related to functional
outputs that directly impact the design output, while checker points are integral to the Safety
Mechanisms and could be regarded as signals for fault detection or alarms. These user-
defined signals are recorded during a fault-free simulation run and later compared during
fault simulation.

4. Fault simulation: Faults are injected one by one into different locations and the DUT is
simulated under the influence of these faults. The observation and checker points are once
again recorded during this faulty run in order to find out what the classification of the faults
are.

5. Fault classification and reporting: The primary idea behind Safety Mechanisms is the
fact that it should be able to detect faults in the design. Under an ideal case with a perfect
Safety Mechanism, all faults would be detected at the checker outputs, which would lead
to achieving complete coverage. However, faults could also be detected at the functional
outputs, and not at the checker outputs, which is exactly the kind of scenario we want to
avoid. Based on where the faults are observed/detected, classifications are made accordingly.
Different tools provide varied classifications, but the basic idea still remains the same.

Figure 2.8: Design with Safety Mechanism(configured with Observation and Checker strobes)

Let us consider a DUT with a Safety Mechanism to detect faults and erroneous situations, as
shown in Figure 2.8. In this setup, one or more functional outputs of the DUT are designated as
functional/observation strobes, while a corresponding set of outputs from the Safety Mecha-
nism logic serves as checker/detection strobes. If a fault introduced at any point in the design
propagates to a functional strobe, it is labeled as Observed; if not, it is deemed Not Observed.
Conversely, if the fault reaches a checker output, it is categorized as Diagnosed; otherwise, it is
marked as Not Diagnosed.
The final classification of a fault occurs based on its propagation to both these strobes. When
a fault is injected and propagates to both the functional and checker strobes, it is termed as
an Observed Diagnosed Fault (OD). If a fault is injected and propagates solely to the checker
strobe, without affecting the functional strobe, it is labeled as a Not Observed Diagnosed fault
(ND). The first letter in the two-letter classification refers to the fault detection at the functional
strobe, whereas the second letter corresponds to the detection at the checker strobe. Table 2.5
shows the combination of these classifications with one another, along with the acronyms, which
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will be used for the remainder of this report, if and when applicable. These are the most basic
classifications which will be seen in any functional safety verification setup, with the classification
names varying from tool to tool. Generally, there is a subset of Safe (S) faults as well, faults which
cannot be propagated to any output regardless of the inputs provided to the design (fully
exhaustive input space). Not Observed Not Diagnosed faults (ND) also do not propagate to
either of the outputs, but only for the set of tests that we provide. However, there is a possibility
that a certain set of inputs might propagate this fault to one of the outputs, and hence is not
considered a true Safe fault. Further, there are more fault classifications provided by different
tools, based on different situations observed in the design and test cases.

Table 2.5: Fault classifications

Detected Functional point Undetected Functional point
Detected Checker point Observed Diagnosed (OD) Not observed Diagnosed (ND)
Undetected Checker point Observed Not Diagnosed (ON) Not Observed Not Diagnosed

(NN)

Based on the above classifications, we can make an estimation of the Diagnostic Coverage of the
Safety Mechanism, which is essentially the percentage of faults detected by an SM. The DC is
then given by the equation:

Diagnostic Coverage (DC) = OD + ND

OD + ND + ON
×100% (2.5)

By examining the equation, it becomes evident that the enhancement of Diagnostic Coverage
is achievable through the reduction of faults observed at functional points but not detected at
checker points (ON). This stands as a key motivation behind the Functional Safety Verification
process. Expanding the fault classifications introduces additional classes to the DC equation and
accordingly, fault analysis must be done to increase the DC.

• Formal methods: A crucial initial step in Functional Safety verification involves identifying Safe
faults, namely faults that do not influence the design outputs. Once these faults are recognized,
there is no need to inject them for simulation, resulting in significant time savings. Labeling a fault
as Safe is dependent upon proving its untestability, implying that no available combination of test
stimuli can propagate the fault. In this regard, formal methods emerge as a robust alternative,
as they are not confined to specific times or states. Instead, their scope is global, encompassing
every evaluation context and test stimuli for an extensive assessment.
Various EDA vendors incorporate fault analysis capabilities into their formal solutions. In broad
terms, these solutions automatically generate properties that validate the behavior of faulty de-
signs, eliminating the need for expertise in formal languages. Furthermore, they facilitate integra-
tion with Fault Injection Simulators, optimizing fault lists and streamlining simulation campaigns.
Tools employed for formal analysis typically employ two primary fault analysis techniques: Struc-
tural Analysis and Formal Analysis.

– Structural Analysis: This kind of analysis is done with the help of the physical character-
istics of the design. There are several techniques under structural analysis which are utilised
to find out Safe faults, briefly explained below:

1. Cone of Influence (COI) analysis: The primary idea behind this technique is to
identify signals and points in the design which directly come in the cone of influence of
the strobing points. An example of this is illustrated in Figure 2.9. Considering that
o0 is the only strobe of this design and looking at the cone of influence for this point, a
fault at i4/s2 or i5/s3 will not cause a failure, and hence these faults can be considered
Safe. All the remaining faults need to analysed further to decide whether they are safe
or not.

2. Constant analysis: This technique also goes by different names such as Controlla-
bility analysis and Activation analysis in different tools. If any signal is held at a
constant value, then the corresponding fault at that constant value can be considered
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Figure 2.9: Cone of influence example [22]

Safe. Considering the example shown in Figure 2.10, if the input B stays at 0 the entire
time, then the faults SA0 and SA1 at the shown locations are not controllable, and hence
Safe.

Figure 2.10: Controllability analysis [23]

3. Propagation/Observability Analysis: This analysis indicates the faults which can-
not be observed at the strobes and occur when the workload obstructs the propagation
of the fault from a specific fault location to an observation point. These faults manifest
when a dominant signal to a gate remains static and does not toggle, persisting at either
0 or 1 throughout, depending on the gate. Let us take the example of a simple NAND
gate where one of the inputs, B, remains 0 throughout. Then, the SA0 and SA1 faults
at A will be blocked, as shown in Figure 2.11.

Figure 2.11: Propagation analysis [23]

These are some of the basic structural analysis techniques seen in formal tools. Nevertheless,
various tools offer more sophisticated features to identify additional Safe faults. Direct
examination of inputs is possible to determine if a fault can be activated or if it will never
propagate to the functional output. Furthermore, checks can be conducted to see if faults
can consistently be detected at the checker outputs or if a propagated fault will always be
detected. These kind of improved techniques help in further pruning the fault space required
for fault simulation.
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– Formal Analysis: Formal verification utilizes mathematical analysis to navigate the design
state space exhaustively, ensuring the accuracy of the design. It complements simulation
based verification methods. The general idea behind formal analysis in functional safety
verification lies in two replicas of the same design being generated by the tool - one for
the normal (good) state and another for the faulty (bad) state, as shown in Figure 2.12.
First, the tool administers identical inputs to both machines and incorporates monitors at
observation points. Discrepancies in the observation points between the two machines signify
the propagation of a fault. Thus, by inducing the fault effect in the faulty machine, we can
discern the fault subclass. This iterative process is replicated for all elements within the fault
space.

Figure 2.12: Formal analysis [24]

Formal methods depend on property verification to identify different fault classes. These
tools automatically generate properties to assess the activation and propagation of faults.
Activation analysis checks whether any combination of inputs can activate a fault at the
functional outputs. Therefore, the formal engine must verify a property affirming that the
fault target can adopt a logic value opposite to the fault model, allowing for the activation of
such a fault. The formal engine must validate these properties for every possible combination
of input values. If a property is proven false, the activation of the corresponding fault is
deemed impossible, rendering it a Safe fault.
The formal analysis capabilities of these tools can provide additional insights into faults. For
instance, upon confirming a property that verifies the propagation of a fault, the tool can
give the combination of input stimuli validating that property. Therefore, we can obtain a
counter-example for each proven property. Moreover, replicating such input stimuli in the
simulation environment can enhance Fault Injection simulation results.

2.4. Tool Qualification
Given that we are engaging with EDA tools for functional safety verification, we need to understand
the impact of these tools on the development process. ISO 26262 offers detailed guidelines on the
qualification of software tools, with the main goal of presenting evidence that the tool is appropriate for
use in the functional safety development process. It is essential to document and analyze the use cases
for a tool, thus aiming to assess whether a malfunctioning software tool or its erroneous output could
result in the violation of a safety requirement. Further, the analysis should evaluate the likelihood
of preventing or detecting errors in the tool’s output. The outcome of this analysis contributes to
determining the required Tool Confidence Level (TCL).
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Figure 2.13: Tool Confidence Level Classification [25]

The process of determining the TCL of a given tool is illustrated in Figure 2.13. To initiate the
process, we need to first assess the Tool Impact, which is ascertained in two levels, TI1 and TI2.
If a tool has the potential to introduce errors or even fails to detect errors, it significantly influences
the ultimate product quality, resulting in a TI2 classification. Conversely, if a tool plays no role in
determining the final product quality, it falls under the category of TI1. For instance, let us take the
example of a code generator or a compiler. Given that these tools generate code that are integrated
into the final product, a malfunction in such tools can indeed impact the product quality, resulting in
a TI2 classification.

Following the assessment of Tool Impact, the next step involves determining the Tool Error Detec-
tion (TD) level to assign the Tool Confidence Level (TCL). In the case of a TI1, the default classification
is TCL1, and further TD evaluation is unnecessary. However, for tools with a high impact, it is im-
portant to determine whether the introduced errors can be detected by the tool and the probability of
such detection. If there is a very high probability of detection (TD1), the tool is designated TCL1. In
instances with a moderate probability of error detection (TD2), a TCL2 is assigned. Finally, if there is
a minimal probability of detection (TD3), the tool receives a TCL3 classification. For example, consid-
ering the code generator/compiler scenario, if tests are not conducted to validate the generated code,
the likelihood of error detection is very low, resulting in a TD3 classification and ultimately a TCL3.
The exact probability metrics are not defined by the standard and is dependent on the functional safety
engineers in the planning process.

TCL1 is the lowest tool confidence level and implies that the tool has no particular say in the final
quality of the product. For this classification, a tool qualification is not necessary as well. When
it comes to EDA tools used for fault simulation purposes, their usage does not directly
impact the quality of the product design, as these tools do not introduce errors into the
product themselves. They are therefore assigned a TCL1 classification. TCL2 and TCL3
corresponds to medium/high confidence level tools, meaning they have significant impact on the quality
of the product. Thus, a tool qualification needs to be performed to ensure the reliability of the tool.

Table 2.6: Suggested Tool qualification methods

Method ASIL A/B/C/D
Increased confidence from use ++
Evaluation of the development process ++
Validation of the software tool +
Development in compliance with a safety
standard

+

(+ - method recommended; ++ - method highly recommended)

Tool qualification is primarily the user’s responsibility within a specific project context, although
tool providers can facilitate this process. As shown in Table 2.6, there are four suggested methods
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provided by ISO 26262:

• Increased Confidence from Use relies on the tool’s successful use in a previous project.

• Evaluation of the Development Process involves a detailed analysis of the tool development and
is typically pre-qualified by an authority.

• Another approach is Validation of the Software Tool, requiring the development of a comprehensive
test suite covering all tool use cases, which can be undertaken by either the user or the tool vendor.

• Lastly, aligning tool development with a safety standard is essential in order to demonstrate the
reliability of the tools being used.

Having laid down the necessary concepts for functional safety verification in this chapter, we now
present the literature review and explore the current state-of-the-art in this field in the next chapter.
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State-of-the-art

The primary research question in this thesis involves identifying potential discrepancies in the classifica-
tion results of fault simulation EDA tools. If such discrepancies exist, what can be done to address them
and develop a robust and dependable verification methodology? Based on results, safety enhancements
must also be proposed for designs to improve fault detection and recovery mechanisms. To address these
questions, we investigated three primary themes aimed at identifying current trends and technologies
in Functional Safety (FuSa). The first theme involved obtaining an overview of Functional Safety
concepts and ISO 26262, along with exploring general trends in functional safety topics to better under-
stand the concept. The second theme delved into the trend of verification methodologies employed
in functional safety solutions, with the goal of gaining insights to develop a solution for the research
problem. As shown in Figure 3.1, we looked at approaches developed specifically with FuSa EDA tools,
along with optimisations built on top of it. We also looked at techniques such as emulation, radiation
based testing and testbench based fault injection in a different category. The third theme focused
on understanding the safety mechanisms typically used in functional safety solutions, either based on
error prevention/detection or error correction. A complete overview of the literature review conducted
is presented in Figure 3.1, with each of the individual themes discussed in detail in subsequent sections.
We conclude with summarizing the key takeaways obtained from the literature review, reiterating the
research objectives, and paving the way for the development of proposed solutions.

Figure 3.1: Overview of literature review topics
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3.1. Overview and Functional Safety Analysis
Safety analysis techniques play a pivotal role in the functional safety lifecycle, offering a comprehensive
insight into design, failure modes, safety mechanisms, and failure rates. In [19], an overview of safety
analysis techniques is presented, covering both qualitative and quantitative methods. Quantitative
approaches like FMEDA and Timing Analysis are widely adopted in functional safety solutions. Ad-
ditionally, qualitative techniques such as DFA list the causes of failures not addressed by quantitative
methods, focusing on common cause and dependent failures. Common reasons for such failures stem
from random hardware faults in shared resources such as clocks, power supplies, or reset logic. Coun-
termeasures involve independent monitoring of shared resources, diversification of impact (e.g., clock
delays between master and checker cores), physical separation, among others. [19] also provides a con-
cise overview of safety mechanisms, including Built-in Self Test (BIST), Triple Modular Redundancy,
and Dual Core Lock-Step (DCLS) architectures. Various BIST variations are employed to enhance both
SPFM and LFM, addressing online and offline BIST scenarios.

In [14], the authors discuss challenges of EDA tools in functional safety applications and outline their
requirements in the lifecycle. The bare minimum requirements involve automating critical tasks and
providing users with a coherent database for better design understanding. The paper also analyses fault
injection strategies, risk assessment, and failure analysis of a Lane Keeping/Departure system, offering
practical insights into the process. [20] discusses the requirements for fault injection environments, em-
phasizing factors like scalability, re-usability, rapid simulations, and multi-user control. The discussion
provides guidance on selecting EDA tools based on whether they fulfill these specified requirements.
Further, [26] provides insights into diagnostic coverage and associated overheads for commonly used
safety mechanisms, as summarized in Table 3.1. [27] further highlights diagnostic measures related
to memory elements - RAM test (checkerboard/march) and single bit redundancy, which provide low
diagnostic coverages, and Error Detection-Correction Codes (EDC) and block replication, which have
high diagnostic coverages. A general overview of these diagnostic measures serves as a quick reference
guide to understanding what safety mechanism bodes well in what kind of a system.

Table 3.1: Diagnostic coverage of Safety Mechanisms with relevant overheads [26]

Safety Mechanism Transient
fault DC

Permanent
fault DC

Area over-
head

MIPS over-
head

Lock-step CPU High High High Low
Hardware self-test for
CPU

NA High Medium Medium

Software self-test for
CPU

NA Medium Low High

Parity for memories Low Low Low Low
ECC for memories High High Medium Low
Self test for memories NA High Medium Medium

[28] outlines a general functional safety verification process aligned with Part 5 of ISO 26262. The
example focuses on a safety microprocessor equipped with safety mechanisms like dual modular redun-
dancy, CRC, parity, and self-tests for hardware. The evaluation involves synthesizing the safety design,
determining failure modes, assessing corresponding failure rates, and calculating the diagnostic coverage
of safety mechanisms. Using an EDA tool, TetraMax (primarily an ATPG tool, not a dedicated fault
simulator), the SPFM, LFM, and PMHF metrics are established and compared with ISO target values
to determine the ASIL level. Notably, the approach lacks consideration for transient faults and does
not include fault simulation, as suggested by ISO 26262 for fault testing. Despite these limitations,
the approach sheds light on a commonly used process for hardware verification in accordance with ISO
26262.

3.2. Methodologies and Techniques for Functional Safety Verifi-
cation

One of the main aims of the thesis is to develop a generic framework which can be used to perform
functional safety verification on a generic hardware design. Different methodologies and techniques to
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perform fault simulation are looked at in order to understand the state-of-the-art and understand the
scope of improvement.

3.2.1. Verification approaches without dedicated FuSa EDA Tools
In this section, we explore verification methodologies for FuSa that have been devised without relying
on specialized EDA tools for functional safety. Examples of such approaches include verification using
Functional Testbench setups, Radiation-based testing and emulation.

In [11], a verification flow similar to the one outlined in Section 2.3 for fault injection simulation
is adopted. The authors raise a critical issue in safety verification, which is typically conducted at the
gate level to leverage translated physical features effectively with functional safety EDA tools. However,
discovering bugs at the gate level would require subsequent changes to the RTL, prompting a repetitive
process to achieve the desired diagnostic coverage and stability. This issue aligns with one of the key
questions posed in our research problem—exploring the feasibility of using EDA tools for functional
safety at the RTL stage.

In [20], the authors present a customized Design Verification Environment that incorporates fault
injection campaigns and simulation. The EDA tools employed are only for simulation rather than fault
injection and classification. A tool is devised to extract features from RTL/GLN for generating fault
lists and pruning them based on static analysis, akin to formal methods. Additionally, the authors
employ clustering techniques to condense the fault space by grouping similar elements (e.g., buses,
hierarchical modules). Subsequently, only one fault from each cluster is injected during fault simulation.
Fault injection is executed using force/release statements to synchronize injection times, with detection
points set in the testbench to classify faults and ascertain detection times for timing constraints.

An FMEDA-based fault Injection and Data Analysis (FIDA) framework is discussed in [8], which
supports the FMEDA analysis in conjunction with fault injection and simulation. First, the design
is parsed to generate targets for fault injection. FIDA subsequently produces a set of testbenches to
run fault-free and faulty simulations, yielding classification results. The framework then automatically
generates corresponding metrics and the final FMEDA report, effectively reducing manual effort for the
designer.

[21] introduces a distinctive approach to functional safety verification through the development of
a System Validation Tool (SVT). Unlike conventional bottom-up methods like FMEDA, SVT adopts
a top-down strategy to assess transient faults, particularly Single Event Effects (SEE). Employing
radiation-based fault injection and automatic test generation, SVT applies significant stress on the
hardware logic and memories of a System on Chip (SoC) designed for automotive applications. The
tool generates targeted random test vectors to cover various testing scenarios, comparing the device
register state to the expected state post-testing. Classification is based on detection and comparison
values, eventually leading to the calculation of SPFM and LFM metrics. However, the study lacks
comparisons with traditional testing methods to assess the tool’s effectiveness in detecting otherwise
undetected failures.

Emulation based fault injection is also seen in [29], wherein a customised fault injection framework
is developed in hardware (contributing to additional overhead) and then emulated using a dedicated
EDA emulator. Further, a lot of these emulation based fault injection techniques are often carried out
using Field Programmable Gate Arrays (FPGAs), as seen in [30][31][32] among others. This is also not
in line with our thesis research as we want to verify RTL designs without the overhead of an FPGA.

The techniques discussed above are based on tools and methods which are custom developed to
perform fault injection and classification, without the usage of dedicated FuSa EDA tools. Now, we
look at methodologies developed using EDA tools, including formal methods and alternative technologies
like Automatic Test Pattern Generation (ATPG).

3.2.2. FuSa EDA tools-based verification methodologies
One of the focal points in functional safety verification using fault simulators include the identification
of Safe faults, thereby contributing to Fault Space Optimisation. Identifying Safe faults early in the
process helps save valuable time by avoiding fault simulation on targets that are already deemed safe.
Formal tools play a significant role in this process, offering support by employing various strategies to
isolate safe faults. Fault simulation tools themselves come equipped with capabilities to identify safe
faults.

Different methodologies leverage diverse techniques to enhance the Tool Confidence Level in this
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Figure 3.2: Combination of ATPG with fault injection simulator to compare fault lists [33]

regard. For instance, in [33], two parallel flows are executed using different technologies to compare fault
lists generated by both tools. This process, illustrated in Figure 3.2, involves running a fault injection
simulator concurrently with the ATPG flow to produce original and optimized fault lists. These fault
lists are compared to check for any discrepancies and improve the TCL of the tools. Similarly, in [34],
the formal tool JasperGold FSV is utilized to prune fault lists and compare results with optimized lists
generated by a fault injection simulator, resulting in an average reduction of 29.5% in fault lists.

In [9], [10], a combined approach utilizing ATPG, formal, and fault injection simulators is used
for functional safety verification. Illustrated in Figure 3.3, this method leverages formal and ATPG
tools concurrently to generate optimized fault lists, followed by the utilization of ATPG-generated test
vectors for fault simulation. At the conclusion of this process, annotated fault lists are compared, and
equivalencies across tools (e.g., Safe in formal, Ignored in ATPG, and Untestable in Simulator) are
mapped to produce final reports. Manual inspection is required for certain discrepancies to assign the
fault’s final classification. This method was tested across four different designs with Stuck-At faults at
all cell ports, achieving a fault detection rate of at least 99%.

Figure 3.3: Combination of fault analysis technologies [10]
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Another key aspect in fault simulation is the classification of undetected faults. The primary chal-
lenge with such faults lies in the uncertainty regarding whether they are safe or dangerous, necessitating
either enhanced testing or expert analysis for further classification. In [35], [36], a strategy is introduced
wherein code coverage obtained during functional verification is employed to classify faults as safe. The
behavior of code coverage is then automatically translated into formal properties to constrain the en-
vironment. Without any modifications to the design, this methodology itself succeeded in enhancing
the ISO 26262 metric sufficiently to elevate a CAN controller design from ASIL B to ASIL C. [37] also
discusses about the usage of software-based self tests to elevate fault coverage levels in general purpose
GPUs used in automotives. Test programs are refined based on initial fault coverages until they meet
the desired coverage requirements, in addition to identifying Safe faults through formal methods.

The methodologies and techniques mentioned above provide interesting insights into improving fault
injection simulations and classifications. However, there remains limited discussion on the classification
of the results and the effectiveness of the tools in achieving their intended purposes. Additionally, there
is a need to verify the accuracy of the tool results at various abstraction levels, especially considering
that functional safety EDA tools now extend fault injection support to the RTL stage.

3.3. Safety Mechanisms
Safety mechanisms refer to supplementary logical components integrated into the design, contributing
to the “safety” aspect of the functional safety process. While these components don’t directly contribute
to the primary functionality of the system, their role is crucial in identifying potential errors within
the system and assessing its ability to detect them. This section explores prevalent safety mechanisms
employed in automotive chips, shedding light on their current advancements.

3.3.1. Dual Core Lock Step (DCLS)
The primary idea of DCLS lies in redundancy wherein two processor cores are initialized with the same
states and fed with identical inputs. The outputs are then compared to check for any discrepancies
and recovery to safe state is initiated, if required. To remove common mode failures, temporal diversity
is added by delaying the redundant core for a few cycles by inserting shift registers. Another way
adopted to avoid common failures is to implement the redundant core in a different way, for example,
by incorporating different ALUs or physical design implementations. Two instances of a comparator
logic are also implemented to avoid faulty behaviour from a single one.

As shown in Figure 3.4, an ARM Cortex-M33 based dual core lockstep processor [38] consists of
two identical processor cores (TEAL), along with two comparator logic (tealdccm), a DCLS controller
module and resynchronization/delay flip-flops (tealdcctl) to provide the temporal diversity. The same
clock is fed to both the cores, with the fault indicator signals being indicated from DCCMOUT[0] and
DCCMOUT2[0], from the main comparator and redundant comparator respectively. THE DCCMINP
signals are used to deassert the fault indicator signals when required. Such a DCLS logic helps the
system detect logic failures and provides good reliability to the overall system.

In [39], the authors discuss about different memory architectures in DCLS systems. Independent
memory architectures allocate separate memories to the two processors and thus can be optimized to
run independently when there is no need for checking errors. Storage units are copied, meaning that
memory errors could also be detected. Shared memory architectures have a single memory for both the
processors in a master-slave system, with the master being able to access external modules as well. This
configuration offers advantages such as reduced cost and area, while eliminating the need to resolve
conflicts arising from shared components. The authors also discuss checkpoint-based fault tolerant
designs [40] which use a combination of both hardware and software to establish checkpoints within the
program. These checkpoints serve as reference points to rollback to in the event of an error occurrence.
They propose a hardware-based DCLS using checkpoint-based designs, which provide advantages such
as improved fault tolerance rates, performance and recovery time with little area overhead. In [41],
virtual cores are used to create two lockstep processors using two 5-stage pipelines in an interleaved
fashion to overcome common mode failures. Further, with the redundant architecture running on a
different pipeline, the system can also detect single point failures.

DCLS processors offer commendable reliability, albeit at the cost of requiring a larger area footprint.
However, as seen above, variations of the concept can be employed to optimize the system according to
specific requirements, particularly in applications necessitating high levels of safety.
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Figure 3.4: Cortex-M33-based DCLS processor [38]

3.3.2. Triple Modular Redundancy (TMR)
Triple modular redundancy (TMR), also known as triple-mode redundancy, is a fault-tolerant technique
that falls under the category of N-modular redundancy. In TMR, three systems independently execute
a process, and the output from each system is fed into a majority-voting system. This majority-
voting system then produces a single output based on the results of the three systems. If one of the
three systems fails, the remaining two systems can detect and correct the fault, ensuring uninterrupted
operation.

Figure 3.5: Triple voter mechanism in TMR [42]

To mitigate potential failures arising from voter circuits, a triple voter mechanism is commonly
implemented, as discussed in [42], and shown in Figure 3.5. In [43], the authors discuss the reliability of
a TMR system with a spare component. Such a configuration involves a spare processor accompanied by
additional logic, including disagreement detectors, controllers, and switches. Illustrated in Figure 3.6,
disagreement detectors, implemented with simple XOR gates, assess whether a processor’s output aligns
with the voter output. Switches, managed by the controller, dictate the processors participating in the
voting process. Employing 2-out-of-3 majority voters, the study suggests that this system typically
yields superior reliability outcomes compared to 3-out-of-5 or higher redundancy systems solely by
integrating this additional logic.

In [44], the authors propose a novel concept called Triple Modular Temporal Redundancy (TMTR)
system, which incorporates a checkpoint scheme to establish temporal redundancy. They develop a
reliability model to assess the system’s performance under both independent and correlated faults,
determining the optimal number of checkpoints required to improve reliability. Unlike traditional TMR
systems, which struggle to recover from faults in two or more systems simultaneously, the TMTR system
can mitigate such failures by rolling back to the latest checkpoints, thereby enhancing overall reliability.
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Figure 3.6: TMR system with spare

3.3.3. Built-in Self Test (BIST)
The primary motivatoin behind Built-in Self Tests (BIST) lies in its ability to provide in-field diagnos-
tic functionalities for automotive Electronic Control Units (ECUs). BISTs are increasingly pervasive
in automotive System-on-Chips (SoCs), particularly within safety-critical or high-reliability systems.
Typically, BISTs come in two variants: Logic BIST (LBIST) and Memory BIST (MBIST). MBISTs are
generally less cost-effective compared to other memory-related safety mechanisms like Error Correcting
Codes (ECC), parity, and Cyclic Redundancy Check (CRC). Additionally, MBISTs may impose higher
area and power overheads than their counterparts, further reducing their attractiveness for automo-
tive applications. Therefore, in this section, we focus primarily on LBIST technologies and techniques
commonly employed.

Figure 3.7: Architecture of LBIST

The basic architecture of LBIST is shown in Figure 3.7. It consists of a Test Pattern Generator
(TPG) which is responsible for generating test patterns that are applied to the circuit under test
(CUT). These patterns are designed to detect faults within the circuitry by exercising various paths
and conditions. The test patterns along with primary inputs are fed to the CUT to produce the outputs,
which are then compacted to a signature value using Multiple Input Signature Register (MISR). The
Read-Only Memory stores the expected responses or signatures that are generated by the TPG. These
expected responses are used by the Comparator to verify the correctness of the circuit’s operation.
The test controller coordinates the operation of the TPG, Comparator, and ROM, ensuring that test
patterns are generated, applied to the circuit, and compared against expected results in a systematic
manner. Additionally, the Test Controller manages the overall test flow and controls the timing and
sequencing of test operations. One of the primary research areas lies in the optimisation of TPG to
reduce the test time and memory, while at the same time increasing fault coverage.

A survey of different TPGs commonly used in LBISTs is presented in [45]. The survey categorizes
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TPGs into four versions based on the presence of Test Point Insertion (TPI) or scan compression: 1)
No TPI or scan compression is used, 2) Only scan compression is used, 3) Only TPI is used, 4) Both
TPI and scan compression are used. Scan compression involves breaking down long scan chains into
multiple shorter scan chains to reduce test times, albeit with a trade-off in fault coverage. TPI, on the
other hand, involves inserting test mode Flip Flops (FFs), known as test points, into the circuit. These
test points are categorized into control points (for forcing values into internal nodes) and observe points
(for capturing values of internal nodes). Moreover, two separate LBIST strategies are applied on top
of this: 1) “Full” strategy which uses an On-chip pattern generator that generates ATPG patterns to
achieve the highest reachable test coverage, 2) “Top-off” strategy which applies a set of Linear Feedback
Shift Register (LFSR)-generated patterns and runs ATPG for remaining faults. The results shown in
Figure 3.8 indicate that Test Point Insertion (TPI) enhances fault coverage while potentially introducing
delays in critical paths, and not meeting timing requirements. Conversely, Scan Compression reduces
coverage but substantially reduces test duration.

Figure 3.8: Test coverage, Test Time, and Area overhead for different DFT techniques and LBIST strategies [45]

In addition to this, there are various BIST methods which are widely used in different systems.
Weighted Pseudo Random Test Pattern generators [46] are used to generate test patterns by assigning
weights to bits or combinations of bits to enhance fault coverage and improve fault detection capabilities
during testing. Bit Flipping BIST [47] employs a bit flipping function, utilizing the LFSR state to alter
the value propagated into the scan path, thereby enhancing the randomness of test patterns. This
technique effectively transforms random test patterns into a comprehensive test set, improving fault
coverage in the testing process. BIST reseeding [48] involves encoding deterministic patterns into
smaller vectors known as seeds, which are then loaded into the LFSR and expanded into desired test
patterns. This process typically involves solving a linear system of equations to algebraically represent
the linear expansion of the LFSR and generate the seeds required for the testing procedure. Further, to
achieve higher fault coverages, Mixed mode BIST [49] combines the use of LFSR-based pseudo-random
patterns with deterministic patterns. The mapping logic is a key technique in mixed mode testing,
helping identify patterns within the pseudo-random sequence that do not detect new faults and map
them to deterministic patterns for enhanced fault detection capabilities.

3.3.4. Software Test Library (STL)
A Software Test Library (STL) comprises software safety mechanisms that supplement hardware safety
features to detect random hardware faults. STLs offer a means to conduct processor testing while
mitigating the effects on the application. They can initiate tests during system startup to ensure
proper functionality before the safety application commences execution. Alternatively, they can be set
to test during application execution without necessitating processor rebooting afterward. These tests
can be activated either as a comprehensive block or in brief bursts, enabling checks to be conducted
whenever time allows, thereby minimizing application disruption.

A key benefit of STL is that it does not incur additional hardware overhead. Users are not required
to have a complete understanding of the STL tests; they can simply test the products with the given STL
to assess fault coverage. However, the generation of STLs is primarily a manual process, and need to
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conform to several constraints, as also highlighted in [50]. STLs intended for in-field testing must comply
with the operating system specifications without interrupting the regular operation of the device’s
application. This integration of STLs with simple and cost-effective hardware safety mechanisms has
demonstrated increased fault coverage with less area overhead, as observed in an SoC design in [51].

3.3.5. Error Correction Codes (ECC)
Error correction codes (ECC) are methods employed in functional safety to detect and correct errors
that may occur during data transmission or storage. These codes involve adding extra bits to the
transmitted data to create redundancy, enabling the receiver to detect and, in some cases, correct
errors that may have occurred during transmission. In broad terms, ECC falls into two categories:
Block codes and convolutional codes. Block codes involve breaking messages into fixed-sized bit blocks,
to which extra redundant bits are added for error detection and correction. Convolutional codes, on
the other hand, operate on variable-length data streams, where parity symbols are derived through the
application of a Boolean function as a sliding window moves across the data stream. There are different
types of ECC algorithms, including Hamming codes, Reed-Solomon codes, and BCH (Bose-Chaudhuri-
Hocquenghem) codes, each with its own method of encoding and decoding data to detect and correct
errors.

Hamming codes are one of the most popular ECCs, which can achieve Single Error Correction and
Double Error Detection (SEC-DED). The first step in Hamming code encoding is to calculate the
number of redundant bits, r in a data of m bits, and follows the equation:

2r ≥ m + r + 1 (3.1)

Considering a Hamming code for 8-bit data, 4 redundant bits are enough to encode the information,
as per the above equation (24>8 + 4 + 1). The redundant bits are placed at indexes which are powers
of 2 (1,2,4,8 etc.) These bits, denoted as ri, are computed using XOR operations across different bit
positions. Each ri represents the even parity based on its bit position, covering all positions with a
binary representation that includes a 1 in the ith position, excluding the position of ri. For instance:

• r1 is the parity bit for all data bits in positions where the binary representation includes a 1 in
the least significant position, excluding 1 (3, 5, 7, 9, 11, and so on).

• r2 is the parity bit for all data bits in positions where the binary representation includes a 1 in
the position 2 from the right, excluding 2 (3, 6, 7, 10, 11, and so on).

If we have 8 data bits, each represented by di, then the final encoded data bits (ei) will be as shown
in Figure 3.9, and calculated according to Equation 3.2. Now in order to decode the same, we take
the encoded data and apply the same XOR operations to get back the bits, dec1, dec2, dec4 and dec8
(ECC bits). These bits combined form a 4-bit number {dec8, dec4, dec2, dec1}, which is then XOR-ed
with the original encoded data bits at these positions ({e8, e4, e2, e1}) to retrieve the index where the
error has occurred. This bit is then flipped to give the correct decoded data.

Figure 3.9: ECC encoding for 8 data bits using Hamming code

e1 = e3⊕e5⊕e7⊕e9⊕e11 = d1⊕d2⊕d4⊕d5⊕d7
e2 = e3⊕e6⊕e7⊕e10⊕e11 = d1⊕d3⊕d4⊕d6⊕d7
e4 = e5⊕e6⊕e7⊕e12 = d2⊕d3⊕d4⊕d8
e8 = e9⊕e10⊕e11⊕e12 = d5⊕d6⊕d7⊕d8

(3.2)

Hamming codes offer a straightforward yet efficient approach to error detection in memory locations,
presenting a cost-effective solution. Building upon this fundamental redundancy concept, numerous
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ECC algorithms have been devised to enhance reliability in automotive applications. An example of
the aforementioned ECC approach is also seen later in the report during the implementation of a FIFO
protected by the ECC safety mechanism. An ECC application is also present in the final IP to be tested
using the verification methodology to be developed.

3.3.6. Error Detection Codes (EDC)
Error detection codes (EDCs) are mechanisms employed to detect errors that may occur during data
transmission or storage. They are crucial in ensuring data integrity and reliability in various systems.
There are different EDCs commonly used, which are discussed briefly below:

• Parity: Parity is one of the simplest forms of error detection. For example, in even parity, an
extra bit (the parity bit) is added to each unit of data (e.g., byte or word) such that the total
number of ones in the data, including the parity bit, is always even. If a single bit error occurs
during transmission or storage, the parity check detects it by comparing the number of ones in
the received data with the expected parity.

• Checksum: A checksum is a value calculated from a block of data using a mathematical al-
gorithm. For instance, in Internet Protocol (IP), the Internet Checksum is computed for each
packet to ensure data integrity during transmission over networks. The receiver recalculates the
checksum from the received data and compares it with the transmitted checksum. If they do not
match, an error is detected.
Cyclic Redundancy Check (CRC) is a robust error detection technique widely used in digital
communication systems, and can be considered as an algorithm for calculating checksums. For
example, Ethernet and Wi-Fi protocols employ CRC to detect errors in transmitted data frames.
A polynomial algorithm generates a CRC checksum based on the data being transmitted. The
receiver performs the same CRC calculation and compares the computed checksum with the
received CRC checksum. If they differ, an error is detected.
Various other algorithms for computing checksums, such as MD5 (Message Digest Algorithm
5), SHA-1 (Secure Hash Algorithm 1), Internet checksum (RFC 1071), etc. are widely used in
different solutions as well.

In summary, error detection codes such as parity, checksum, and CRC play a crucial role in identify-
ing errors during data transmission or storage, ensuring the integrity and reliability of digital systems.
They are fundamental in various applications, including networking, storage systems, and digital com-
munication protocols.

3.4. Research Gap and Conclusions
In light of the research question at hand, we looked at different methodologies using FuSa EDA tools and
alternative approaches as well. Testbench based fault injection is not very scalable to larger complex
designs and requires a lot of manual work. Emulation based fault injection is typically carried out using
FPGAs, and hence not in line with our thesis goals. Further, fault injection simulation is the preferred
methodology suggested by ISO 26262 for FuSa. So, it becomes evident that fault simulation EDA tools,
with their variety of capabilities and features, become the go-to methodologies for FuSa verification
solutions.

While a lot of the approaches focus on extracting Safe faults initially with the help of formal tools
and ATPG in order to save time on simulating these faults, it is yet to be seen whether safe faults can
be extracted from RTL designs as well. Further, we see discrepancies in the classification of Safe faults
from these tools. This begs the question - will two FuSa EDA tools give the same classification
results when running fault injection simulation on different points of an RTL design? There
is no evident information on the accuracy of fault simulation results of different tools, or a comparison
between different features and optimisations of different tools. Can the preference for one tool over
another help speed up fault campaigns and yield accurate results?

Second, once we get the results, how do we improve the diagnostic coverage - by
improving tests or by developing additional safety mechanisms? Do the tools provide the
necessary information in order to make an informed decision? In the next few chapters, we aim to
answer these research gaps. We will begin by presenting a detailed comparison of FuSa fault simulation
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EDA tools. Subsequent chapters will delve into other areas of research gaps, exploring avenues for
improvement.





4
Comparison of existing EDA tools

The three primary tools used for fault simulation purposes are Xcelium Fault Simulator (XFS) (Ca-
dence), VC Z01X (Synopsys) and Austemper/Kaleidescope (Siemens/Mentor Graphics), and is widely
adopted in many solutions for functional safety verification. As introduced before, there is a lack of
research on why we should favour one tool over another. Keeping that in mind, this thesis looks at a
quantitative and qualitative comparison of these tools, by applying the appropriate setup on reference
designs and analyzing the corresponding results. Since a license was not available for Austemper and
Kaleidescope during the course of the thesis, it was not possible to include this tool in the comparison
analysis. In the following sections, we look at the general flows for XFS and VC Z01X. We automate
the verification flow using these two tools, use them on reference designs to analyze the results and
make comparisons.

4.1. Overview of tool flows
A top level flow of general verification methodologies for XFS and VC Z01X are outlined in Figure 4.1,
and follows a generic approach as outlined in Section 2.3. The tools offer different features with regards
to ISO 26262 compliant FuSa verification and utilities for optimisations and ease of usage. In this
section, we introduce the individual flows of the tools, along with their features to further compare
them in the subsequent sections.

Figure 4.1: Overview of XFS and VC Z01X flows

39
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4.1.1. Xcelium Fault Simulator (XFS) flow
The Xcelium Fault Simulator (XFS) is a Functional Safety EDA tool which facilitates fault injection
simulation with the reuse of existing functional verification environments. XFS supports SA0 and SA1
faults, which can be applied to any kind of signal in the design. In transient faults, XFS supports
Single Event Upsets (SEU) which can be applied only on the outputs of sequential elements - memories,
flip-flops and latches. It also supports Single Event Transients (SETs) which can be applied on any
signal by inverting its current value and holding it for a required period of time. Therefore, according to
ISO 26262 specification, it covers the necessary fault models required for FuSa verification. As outlined
in Figure 4.1, the different steps involved in the XFS flow are detailed below:

1. Definition of fault specification file: The first step is to define the targets where we want to
instrument or inject faults. In order to do this, a fault specification file needs to be created which
defines all possible locations of fault instrumentation. The scope of fault targets could be any
module name, signal name or hierarchical path to an instance, which can be either specified using
the testbench or module hierarchy. If a module name or an instance is provided, by default, all
ports, nets, variables and registers inside them are identified as faultable nodes. It is also possible
to include all possible faultable nodes from all hierarchies under a given module using three dots
as a suffix after the fault target name.
It is also possible to exclude certain targets in the fault specification file. For example, if there
are certain blackbox modules where we do not want to instrument faults, we can include them as
exclusion targets. Particular signals could also be excluded from instrumentation in this regard. In
this stage, XFS provides several switches in order to identify the type of faults to be instrumented:

• Net faults can be switched on to allow for fault instrumentation on wires. For example, if
we instrument a port fault (M.A in Figure 4.2), the fault by default will not be instrumented
on the wire (M.N) connected to that port. However, if we use the net switch, we will be able
to instrument the fault on the wires connected to the port as well.

Figure 4.2: Net faults with XFS

• Port faults can be switched on in order to instrument faults at ports of modules or cells
only. Internal nets and regs will not be considered as fault targets in this case.

• Ports of cell instances can also be configured as targets, in which case non-cell module
ports and nets/regs declared inside a module or cell will not be considered for fault instru-
mentation.

• Sequential elements only can be identified as faultable nodes, examples including variables
driven by an always block at RTL or a sequential User Defined Primitives (UDP) at gate
level.

• There is also a switch to specify the type of faults we want to consider - SA0, SA1, SET, SEU
or all. Depending on the fault type, different points of the fault target will be considered for
instrumentation. For example, if we mention the fault type as SEU, only sequential element
outputs will be instrumented.

2. Elaboration of fault specification file: The fault specification file needs to be elaborated
along with the necessary design files and verification testbench. This will create a fault database
containing all the nodes where faults are to be injected along with the fault type. There are several
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options which can be passed along with this elaboration command. For example, gate collapsing
capabilities and optimisations can be turned off, or untestability/safe fault identification can be
turned off. Such switches can allow the user to run faults on all possible nodes of the design when
required.

3. Fault strobing: Before we continue with running the good simulation, signals in the design need
to be identified for observing functional and safety mechanism outputs. Such points, also known
as strobing points, are further divided into two categories - functional and checker strobes. It is
also however possible to define all strobe points without any distinction. A strobe point can be
Detected, meaning it has a value mismatch between the good simulation and faulty simulation
run. It could be Potentially Detected - meaning that there is a signal value change for the
specified strobe point, but with an unconfirmed value (x,z,u,h,l). Finally, it could be Undetected,
meaning it has no difference in value between the two runs.
The fault strobes are placed in a tcl (Tool Command Language) file, which is then later used in
the fault injection campaign for both the good and fault simulation runs. In this tcl file, it is
either possible to mention a single strobe list without any distinction of functional and checker
strobes, or to list out both types of strobes. The latter is recommended in order to classify faults
according to ISO 26262 classification.
Fault strobing also provides certain switches, such as mapping potentially detected values or
stopping simulations. The mapping switch offers two options: pessimistic and optimistic. In
the pessimistic mode, potentially detected results for functional strobes will be marked as detected,
while checker strobes will be marked as not detected. Conversely, in the optimistic mode, the
opposite scenario occurs. There is also a stop_on switch which tells when the simulation is to be
stopped. Simulation could be halted if a fault is detected at any strobe point, or if it is potentially
detected, or the simulation could be even allowed to continue. This provides options to configure
the simulation according to the requirements.
There is also the option of virtual strobes, which are system tasks that can be put anywhere in the
design or testbench to look for complex patterns and configure them as strobes. All the strobing
information can also be captured, and then later reported to see the changes in signal values of
the defined strobes.
In order to comply with Fault Tolerant Time Interval, the fault strobing option allows a
checker delay interval switch, specifying the duration for monitoring checker outputs following the
detection of an injected fault at one of the functional outputs. The simulator stops monitoring
the checker outputs upon reaching the specified time, regardless of whether a fault is detected.

4. Serial Fault Simulation: The next step in the flow is to run good simulation in order to
generate a golden database to compare the fault simulation runs. XFS provides support for two
engines: serial and concurrent. The serial engine initiates the good simulation first, followed by
the triggering of fault simulation runs. In contrast, the concurrent engine executes both the good
and faulty simulations simultaneously.
The good simulation is triggered along with the strobing tcl file to create a reference golden
database. Necessary arguments and tests need to be provided with the command. All the identified
fault nodes along with their fault IDs are generated after the good simulation. At this point, we
can now run fault simulations by selecting a fault ID or any random ID from the generated fault
list and simulate the fault with the given tests. With this method (also known as random fault
campaign), for every fault ID, a separate command needs to be triggered to run fault simulation.
However, there is another method (targeted fault campaign) by which we can perform fault
injection through a tcl file. This file contains fault injection commands for each fault node, specify-
ing the fault type, injection time, and a stop severity similar to the stop_on switch. Additionally,
an option exists to specify a start and end time frame, during which the simulator randomly se-
lects a time unit for fault injection. This approach consolidates all fault injection commands into
a single file, allowing it to be executed once with the simulation command. One thing to be noted
is that after every command, a run;reset; needs to be appended, in order to run the simulation
and then reset it once completed. These commands can be written manually, however, Xcelium
also provides the Xcelium Fault Set Generator (xfsg) utility in order to automate the generation
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of fault injection commands in the tcl file. The fault simulation proceeds by providing the tcl file
as input and simulating the faults sequentially, one at a time.

5. Concurrent Fault Simulation: Instead of running the good and faulty simulations separately,
the concurrent engine runs them in parallel, with the capability of injecting and simulating multiple
faults simultaneously in a single fault run. This leads to increased throughput as compared to
serial fault simulation. The concurrent fault simulation switch needs to be provided along with
the strobing and fault injection tcl files in a single invocation of the simulation command. The
concurrent fault engine, however, supports only SA0, SA1 and SEU fault types. If SET faults are
specified, they will not be simulated. Further, only zero delay gate-level designs are supported
with the concurrent engine by default. In order to enable concurrent fault simulation at RTL,
additional switches need to be provided. However, there are limitations with different Verilog RTL
constructs as well. Also, SystemVerilog and VHDL is not supported with concurrent simulations.

6. Fault reporting: Xcelium Fault Reporting (xfr) is a post processing utility provided by XFS
in order to report the results of fault injection simulation. The database containing the results
of fault simulations are provided as an input to this utility, which also has several switches for
different types of optimisations. The final report generated typically has the fault classifications
for the given nodes, along with their injection time, observation and detection times. In case both
functional and checker strobes are present, the classifications will be as shown in Table 2.5, with
differing names. If a single strobe list is present, the classifications will be Detected, Potentially
Detected and Undetected. Finally, a summary of the classification numbers is generated in a log
file.
XFS also assigns fault classification priorities, with Observed Diagnosed classification holding the
highest priority and Undetected classifications the lowest. When merging SA results of faults
from various directories, xfr evaluates each node and its corresponding fault classifications from
different directories, annotating them with the highest priority. Regarding transient faults, xfr
merges only those of the same type, injection time, and hold time.

As seen from the steps above, there are a few ways in which FuSa verification can be utilised with
XFS, particularly with the serial and concurrent fault engines, and targeted/random fault campaigns.
We will see the results of these techniques in subsequent sections.

4.1.2. Verification Continuum (VC) Z01X flow
Verification Continuum (VC) Z01X is the fault simulation EDA tool provided by Synopsys, which
is developed on top of VCS (used for logic fault simulation), and also reuses functional verification
testbench setup for fault simulations. VC Z01X, by default, uses a concurrent engine, meaning that it
runs the good simulation with large number of faulty simulations in parallel. However, it also provides
support for a serial engine, if and when required.

As depicted in Figure 4.1, the details of the VC Z01X flow and the corresponding features are
elaborated below:

1. Compilation and Simulation of design: In the first step, the VC Z01X compiler is called
by the vcs command in order to create the simulator executable and the design database. In
this step, all necessary design and testbench files are to be provided. If the provided files are of
different types (Verilog, VHDL, SystemVerilog), this step is usually broken down into two smaller
steps - one for analysing the different types of files separately, the second for elaborating the same
with vcs command. Necessary switches for different constructs in different versions of HDL used
also need to be provided.
In addition to testbench support, VC Z01X also supports external stimulus options such as Fast
Signal Value Dump (FSDB), Value Change Dump (VCD), eVCD and forcelist. In this case, the
stimulus options must be provided along with the elaboration command in order to prepare for
external stimulus. Also, in order to prepare for fault simulation, the fsim switch needs to be
added. This switch provides options for enabling different types of faults, such as port, primitive
or array faults, among others. This is a required switch during elaboration, in order to enable
fault simulation.
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During this stage, a good simulation is not necessary but can be run using the simulator executable
generated after elaboration. Essential test arguments must be provided along with the simulation
command.

2. Generation of faults with Fault Campaign Compiler: In the next step, we provide a
Standard Fault Format (SFF) file to the Fault Campaign Compiler (FCC) of VC Z01X
in order to generate the fault database. The SFF file is the crux of fault simulation in VC Z01X,
which consists of all the functionalities and features. In this part, we discuss the different sections
of SFF file, and their usage.
VC Z01X has an extended default classification list for faults, providing for better debugging. It
provides multiple fault groups, which in turn has multiple fault classes. For example, there is
a Detected Fault Group, which consists of three different fault classes. The first class corre-
sponds to faults whose good and faulty simulation values do not match. The second class is for
faults which causes Verilog assertions to fire, resulting in a call to $fatal or $error. The third
class refers to faults where $stop or $finish is encountered. Various fault groups within the
tool offer additional features regarding fault classification rationale. The tool itself facilitates the
identification of Untestable faults or Safe faults, accompanied by explanations categorized under
different classes. Additionally, fault classes may indicate whether a fault remains unpropagated
due to static workload values or is blocked by another signal. These classifications improve un-
derstanding of fault classification reasons, enabling improvement of tests or design modifications.
The different sections of the SFF file are discussed below:

• The Test Information section contains details about the individual test runs along with
the fault counts obtained from each test.

• VC Z01X allows for User Defined Fault Statuses (UDFS). According to ISO 26262,
functional and checker outputs should both be monitored to get the classifications of both
classes. However, the default classes of VC Z01X do not provide such a categorization.
Hence, custom classes can be defined in order to accommodate the same. Further, existing
fault classes can also be redefined to signify other definitions.
It is important to know how different fault statuses interact with each other. This is defined
with the help of a Promotion Table, which is a 2D array of the interaction between the fault
status of a previous simulation compared to that of a new simulation. There is a default
Promotion Table defined by VC Z01X, consisting of the interaction between defined classes.
If we are using UDFS, we need to define our own Promotion Table in the SFF file in tabular
form.

• The Coverage section enables the definition of equations for fault coverage or ASIL metrics
in the final report, using the fault classes previously defined. Following the completion of
all fault simulation runs and the availability of fault classification numbers, the coverage
equations specified in the SFF file will be automatically calculated and included in the final
report.

• The FailureMode section within the SFF is utilized to link fault observation and detection
data with each specific failure mode, facilitating FMEDA calculations. It contains a list of
observation and detection points/signals in two subsections, which can be strobed to find out
differences in good and faulty simulation values. With this FailureMode section, two system
functions - $fs_observe and $fs_detect can be used to find out the status of the defined
signals - whether they have been detected, potentially detected or undetected.
In addition, a SafetyMechanism section can also be defined and then included inside
a FailureMode instead of individually specifying the detection signals. This allows for re-
usability of SafetyMechanism in different Failure Modes.

• The FaultGenerate section defines the list of fault targets to be instrumented, along with
the type and location of fault. VC Z01X allows for faults to be placed at array (ARRY),
port (PORT), prim (PRIM), variable (VARI), wire (WIRE) and flop (FLOP).
All these locations are supported for SA0 and SA1 faults. However, for transient faults, only
ARRY, PORT, VARI, and FLOP classes are supported. There is also a location filter
list which could be specified in order to place the faults at INPUT, OUTPUT, INOUT, REG,
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LOGIC, etc. This allows for more customisation with respect to the type of faults we want
to instrument. With the help of wildcard syntax, we can also include fault targets of multiple
hierarchies under a particular module or instance. The FCC interprets the FaultGenerate
section and figures out the different fault locations based on the provided options.
There are two types of transient faults supported by VC Z01X - transient toggle and transient
hold. Transient toggle injects a fault by flipping a bit at the specified cycle time, thereby
inverting the current value at the specified location. The fault location will be updated again
according to the input at the next clock cycle. As shown in Figure 4.3a, a transient toggle is
injected on q at 6th cycle. The value is inverted and changes back to 0 at the positive edge
of the next clock at 8th cycle (based on input d = 0).
Transient hold inverts the value of fault location and holds it until the specified cycle. The
value will be updated at the next clock cycle after the hold has been released. As shown in
Figure 4.3b, the transient hold is injected on q from 6th to 9th cycle. Therefore, the inverted
value is sustained until the next rising edge of the clock, when it reverts back to 0, as driven
by d being set to 0.

(a) Transient toggle at cycle 6 (b) Transient hold from 6 - 9 cycles

Figure 4.3: Transient fault behaviour in VC Z01X

Transient faults introduce the concept of cycles. The specifics of each cycle must be outlined
within the FaultGenerate section of the SFF file. This includes defining the total duration of
the cycle and an offset for fault injection. It’s essential to understand that this cycle does not
necessarily align with the clock of the design or testbench but can be configured to match it.
VC Z01X supports a very useful feature of Sampling in the FaultGenerate section. Fault
sampling is a method used to reduce the number of simulated faults while still approximating
the coverage outcome achievable through simulating all faults. There are three approaches
for determining the sample size. Percentage-based sampling calculates the fault count
based on the user-provided percentage. Fixed number sampling allows users to directly
define the desired sample size. Confidence Interval sampling employs mathematical
calculations to ascertain the necessary fault count, considering a margin of error (confidence
interval) and user-specified confidence level.
The required sample size for confidence based sampling is calculated using statistical formulas
as described below:

New sample size = sample size
1 + sample size - 1

population
(4.1)

where

sample size = z2 ∗p∗ (1 - p)
C2

population = total number of faults
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p = coverage estimate expressed as a decimal. Default value is 0.5, if coverage estimate is
not provided
z = standard Z score based on confidence level
C = confidence level
Given a design which has 100,000 faults, a confidence interval of 1% and a confidence level of
99% would require only 14,267 faults to adequately represent the design, as shown below in
the calculations. Put differently, approximately 14% of randomly selected faults can reliably
indicate, with 99% confidence, that the measured fault detection percentage falls within
the interval of the true value plus or minus 1%. For instance, if the actual fault coverage
percentage is 95%, the fault coverage will typically fall within the interval of (94% to 96%)
99% of the time.

sample size = 2.582 ∗0.5∗0.5
0.012 = 16,641

New sample size = 16,641
1 + 16,641 - 1

100,000
= 14267

population = 100,000

C = 0.01

Z = 2.58(for confidence level of 99%)

Fault sampling proves highly beneficial for efficiently reducing the fault space without com-
promising the fault coverage range for any given ASIL. This capability significantly reduces
simulation time and accelerates fault campaigns.
This concludes an overview of the various features within an SFF file, which is used in a fault
campaign to generate the necessary faults while conforming to specified optimizations and
constraints. The FCC accepts one or more SFF files as inputs and generates the fault list for
utilization in the fault campaign. Users have the option to define multiple fault campaigns
using various SFF files to differentiate between campaigns.

3. Addition of tests for fault simulation: The next step is to define tests which will be used
for fault simulation. Each test needs to be defined with the necessary arguments along with the
simulator executable generated after elaboration. However, if FSDB files or any external stimulus
is given, the simulator executable is not needed.
Before starting fault simulation, various relevant parameters can be configured. These include
selecting statuses to be run for fault simulation, disabling assertion checking and illegal file ac-
cess faults, and enabling the fault dictionary, which captures the list of strobes detected during
simulations.

4. Fault simulation: With the defined tests, we initiate the fault simulation with a simple fsim
command. Upon triggering fsim, Fault Campaign Manager (FCM) executes toggle simulation
(good logic simulation) and performs testability analysis. During toggle simulation, Z01X
generates an FSDB file to capture the data utilized during testability analysis. Leveraging the
information acquired from toggle simulation, FCM assesses the optimal test for detecting the
maximum number of faults during testability analysis. Subsequently, the highest ranked test is
executed, and this iterative process continues until all tests have been exhausted.

5. Fault reporting: Results can be reported based on a chosen Failure Mode (FM) from the SFF
file or a specific fault campaign. The report is formatted as an SFF file and includes sections
detailing the classifications of each signal and the final count of different fault classes and groups.
At the end of the report, coverage equations are also calculated. VC Z01X further offers a useful
feature enabling the documentation of reasons for specific Safe faults. For instance, if certain
faults are deemed uncontrollable or blocked due to workload constraints, relevant information can
be included in the report. Tests can then be changed to toggle the specified locations or design
constraints can be evaluated. This facilitates improved debugging instead of categorizing faults as
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Not Observed and Not Diagnosed, which would require manual inspection of waveforms to figure
out the reason.

As evident from the process, VC Z01X provides a wide array of features and utilities to assist in FuSa
verification. Subsequently, we will delve into comparing the two tool flows mentioned and analyzing
the results obtained from using them on reference designs.

4.2. Comparison Metrics
To gain a better understanding of the tools, it is essential to execute the necessary flows on various
designs and analyze the outcomes. However, prior to this, we must establish specific metrics for com-
paring the two tools. This approach will enhance our comprehension of the tool’s suitability for FuSa
verification. We establish the following metrics for comparing the two tools:

1. Quality of results: The first question that arises when employing EDA tools for fault classifi-
cation is whether the tools are fulfilling their intended purpose. Evaluating the results of fault
classifications and assessing their accuracy is paramount. This process becomes more challenging
with larger, complex designs. Therefore, it’s important to execute the flow on smaller designs for
manual result analysis to ensure that fault classifications and coverage figures are indeed correct.
Additionally, it’s essential to verify if different types of faults are being simulated and if the entire
fault space is covered. These factors collectively influence the quality of results.

2. Comparison of individual features: All the individual features of the two tools need to be
taken into account while comparing. For instance, one feature of a tool may provide more utilities
or optimisations as compared to the other, and therefore could be better utilized in the required
flow. It could also be that certain features are supported by one tool, and not by the other. Thus,
it is essential to carry out a comparative analysis of the features of the two tools to figure out the
similarities and differences.

3. Features for performance optimisation: It’s crucial to identify specific features in the tools
that contribute to optimizing fault campaigns and expediting fault simulations. FuSa verification,
especially for large designs with extensive fault space, is often time-sensitive. Any optimizations
that enhance the performance of fault simulation can prove highly advantageous. For instance,
exploring how concurrent engines enhance the speed of fault simulation in comparison to serial
engines would be interesting.

4. Feasibility of tool: It becomes important to realize whether the tool supports all the necessary
features required for fault simulation at a given abstraction level for any design. Thus, a combi-
nation of the factors mentioned above need to be taken into consideration while evaluating the
feasibility of the tool to be used in FuSa verification flow.

5. Run-time comparison: Measuring the combined runtime of good and faulty simulations across
different supported flows by both tools is essential to understand the time required for fault
campaigns. For fair comparison, it is important to ensure an equal total number of faults when
conducting fault campaigns with both tools. Furthermore, evaluating the runtime of the tools
with feature optimizations also needs to be seen.

6. Ease of usage: The tool flow ought to be modular and adaptable across various designs with
minimal adjustments, facilitating ease of usage for the user. When considering this metric, it is
important to account for the required setup and the different modifications necessary to automate
the flows for both tools.

4.3. Reference Design and Setup
To evaluate the outcomes of the two tools, we consider a few reference designs. Initially, we examine
a basic full adder circuit, which is described using Verilog primitives to implement a structural design.
Secondly, we utilize a behavioral RTL design of a 4-bit up counter. These designs serve as basic
combinational and sequential circuits, offering an initial understanding of fault injection simulation
with small-scale designs. The low complexity of the circuits allows for manual inspection of different
fault classifications, if required.
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Further, we analyze a First In First Out (FIFO) queue design equipped with various safety mech-
anisms. While the adder and counter circuits are simple designs, they do not contain any safety
mechanisms and hence are not representative of functional safety designs. The FIFO design presents a
more relevant representation with the memory array being protected by a Safety Mechanism (ECC) and
logic being duplicated to detect additional faults. This facilitates an understanding of how safety mech-
anisms influence faults injected into the functional design, thereby mitigating the impact of hazardous
faults. The subsequent sections delve into the design, verification, and FuSa setup of these circuits.

4.3.1. FuSa setup
A unified script is created to run three versions of the XFS flow, as outlined in Section 4.1.1. The fault
target list, strobing file, as well as design and verification files remain common across the three flows for
a particular design. However, if we want to use the same script for different designs, modifications are
required in the fault target list, strobing files, design and TB sources passed to the script to accommodate
the changes. The script offers different configurations, mentioned below:

• Serial simulation with random fault ID: This first configuration allows the user to run XFS
flow serially by injecting the faults based on a random fault ID from the elaborated fault list. All
the faults generated have a random fault ID, starting from 1 to the number of faults instrumented.
Every fault injection is triggered with a single xrun command, along with the fault ID, injection
time, fault type and the output directory. All different types of faults are run, and the output
directories are merged with the help of xfr to generate the final report. In this flow, a separate
xrun command is required for every single fault.

• Serial simulation with xfsg: In the second configuration, faults are injected sequentially, albeit
without specific fault IDs. We use the xfsg utility in order to automatically generate fault injection
commands, by giving in inputs for randomized fault injection times and fault types. An important
thing to note is that xfsg utility does not allow for hold time as an input while generating SET
faults. Hence, once the initial fault list is generated, we have to append a hold time for the
required SET faults. A simple search and replace is done to inject SET faults with a fixed hold
time. Finally, a run and reset is appended at the end of every fault injection command. A single
xrun command is then invoked with this fault injection list in order to simulate the
faults. Every fault is injected and run, after which the simulation is reset and the next fault is
run again. This process is repeated until all faults are exhausted. All the results are eventually
combined to generate the final report.

• Concurrent simulation: This flow also utilizes the xfsg generated fault injection list as the
previous flow. However, a good and faulty simulation are not run sequentially. Instead, after
the completion of elaboration phase, the good and faulty simulations are run in parallel with the
help of the concurrent switch. The fault list generated with xfsg does not have to be appended
with run and reset after every command, since the faults are run in parallel. Also, concurrent
simulation does not support SET faults. Thus, in order to cover the entire fault space, we run
serial fault simulation on the SET faults with xfsg flow. Both these flows are combined into a
single script for a mixed concurrent-serial engine approach.

A unified shell script takes care of the aforementioned flows, with the help of arguments passed to
the script (xfs_flow.sh). The different arguments supported are:

1. serial: run serial fault simulation

2. concurrent: run concurrent fault simulation (serial for SET faults)

3. xfsg: use xfsg generated fault list

4. random: use random fault ID from elaborated list for fault injection

5. custom: use a custom fault list for injection (do not use xfsg or random flow)

6. sa: simulate SA faults

7. trans: simulate transient faults
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The script should be invoked with either serial or concurrent as an argument. Additionally,
one out of xfsg, random, or custom must be specified as an argument. Both sa and trans can
be passed as arguments to the script together. In order to run the first configuration, the com-
mand to run all faults would be : ./xfs_flow.sh serial random sa trans. For the second flow,
./xfs_flow.sh serial xfsg sa trans would be used. Finally, for the third flow, ./xfs_flow.sh
concurrent xfsg sa trans is to be run to generate results for all faults.

Based on the arguments provided, the corresponding fault simulation will be run. For example, if
we provide a command such as:

./xfs_flow.sh serial xfsg sa

, a serial fault simulation will be run with the help of xfsg generated fault lists, only for SA faults. This
script also allows a custom fault list to be given as an input such as follows:

./xfs_flow.sh serial custom

In this case, the serial flow will be instrumented, while elaborating all possible faults. However, fault
injection will be done only on the faults provided in the custom fault injection tcl file inside the script.
If no arguments are provided with the script, serial fault simulation on all possible faults will be run.

For VC Z01X, the concurrent engine is the default fault simulator, which is what we use to test
the tool as well. The flow discussed in Section 4.1.2 is put in the form of a script to automate the flow.
Options of running either the SA or transient faults are also provided along with the script. VC Z01X,
by default, does not support classification of faults based on functional and checker strobes. Therefore,
a custom SystemVerilog file (strobe.sv) for strobing purposes is developed in order to accommodate
the same. Further, custom fault statuses are defined to incorporate the ISO 26262 defined fault classes.

In the strobe.sv file, the observation and detection points defined in the SFF file are strobed at
the rising edge of every clock, with the help of $fs_compare, $fs_observe and/or $fs_detect system
functions. Based on the result of the function, the corresponding fault is elevated to the desired status.
For example, if there is a value mismatch for a checker strobe, the checker classification will be updated
to Detected. Different possible combinations are taken care of in the strobe file to accommodate all
possible scenarios. Fault campaigns are generated individually for SA and transient faults, with the
reports merged together at the end.

The different configurations of both the tools will be tested on reference designs to check for any
discrepancies in results, simulation times and any possible optimisations.

4.3.2. Full Adder
Figure 4.4 shows the design of the full adder, along with names of the inputs, outputs and the inter-
mediate wires. Typically, functional outputs of the design are configured as functional strobes, while
outputs from Safety Mechanisms are taken as checker strobes. Given the absence of a Safety Mechanism
for this simple design, we opt to designate S and Cout as functional and checker strobes respectively.
Fault injection is performed on all possible locations in the design, as marked in Figure 4.4.

Figure 4.4: Binary Full adder

For the verification setup, we exercise all possible combinations of inputs one by one in a single test,
and observe the outputs. Fault classifications are then made based on the differences in the output
values of good and faulty simulations.
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4.3.3. 4-bit up counter
Listing 4.1 shows the design of a simple 4-bit upcounter design. With the first design being a combina-
tional circuit, this setup allows us to analyze the results on sequential elements. Fault injection will be
performed on all possible locations in the design, including internal variables in RTL. counter[3:2] is
set as the functional output, while counter[1:0] is designated as the checker strobe. The verification
setup includes setting up a clock (period of 10ns), a reset, and letting the simulation continue until a
rollover of the counter has occured (170 ns).

1 ‘timescale 1ns /10 ps
2 module upcounter ( input clk , reset , output [3:0] counter
3 );
4 reg [3:0] counter_up ;
5

6 // up counter
7 always @( posedge clk or negedge reset )
8 begin
9 if (~ reset )

10 counter_up <= 4’d0;
11 else
12 counter_up <= counter_up + 4’d1;
13 end
14 assign counter = counter_up ;
15

16 endmodule

Listing 4.1: Up counter verilog design

4.3.4. FIFO design with Safety Mechanisms
Figure 4.6 shows a top level overview of a FIFO design, equipped with ECC. This design is provided
by Synopsys as a reference design for FuSa purposes. The FIFO_SM module contains an instance of
a Simple Dual Port RAM (SDPRAM) wrapper - SDPRAM_TOP, which contains an instance of the
dual port RAM, with the two ports denoted by L and R. The L port is used to write the data on to the
FIFO, whereas the R port is used to read data from the FIFO. The signals not used on a particular port
are thus left disconnected or tied to 0. The SDPRAM contains the memory array, which corresponds
to the FIFO, and is configured with a depth of 8, with the data width of each element being 12(8 data
bits + 4 bit ECC). The SDPRAM wrapper also contains an instance each of ECC encoder and decoder
modules.

When data is written to L port after setting L_WriteEn to 1 and passing the data to L_DataIn, the
data goes to the ECC encoder and gets encoded with 4 additional ECC bits to be stored in the FIFO at
the location specified by L_Address. When data is read from the R port, by specifying the R_Address
and enabling the R_ReadEn, the data from the FIFO is fed to the ECC decoder, which then decodes
the data and passes the 8 bit data to the output. If there is an ECC error, the corresponding EccError
signal is also triggered.

There are two additional modules, called the FLAGS and COUNTER. The FLAGS module takes
the read and write enable signals to determine the status of the FIFO, whether it is Full, Half Full or
Empty. As shown in Figure 4.6a, two instances of this module are enabled in FIFO_SM module, with
one of them being redundant logic. The two outputs are compared in order to trigger a FlagError
whenever applicable. The second module, COUNTER, either the read/write enable signals as inputs,
in order to calculate the read/write pointer. As shown in Figure 4.6b, the COUNTER modules are
duplicated for calculating write pointer, with the DoWrite signal being passed as an input to both the
modules. If there is any difference between the outputs of the two modules, a WriteError is triggered.
Similarly, for the read pointer as well, such a setup is implemented to eventually trigger a ReadError
whenever applicable. The top level Error signal in SM_TOP is triggered when any one of EccError,
ReadError, WriteError or FlagError is high. The Error signal is thus configured as a checker strobe
for this design. On the other hand, the DataOut signal is taken as the functional strobe, along with
the three flags - Empty, Full and Half Full.

The WriteEn and ReadEn signals in FIFO_SM are triggered from the testbench. Based on these
signals and the value of flags, the corresponding DoWrite and DoRead signals are set. For example,
DoWrite is set only when WriteEn is high and Full flag is not set. A similar logic follows for the DoRead
signal as well.
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Figure 4.5: Top level diagram of FIFO with ECC

(a) Flags module (b) Counter module

Figure 4.6: Redundant architecture of modules for error detection

On the verification side, a clock with a period of 100 ns is set up, and the reset is initiated after 220
ns. Functions are defined to automate write and read tasks, along with another function to manually
check the status of flags. A couple of tests are defined, each comprising a sequence of Read/Write
Operations to test the FIFO operations.

In the next section, we discuss the results of using the automated tool flows on these reference
designs, followed by drawing comparisons according to the defined metrics.

4.4. Tool outcomes and Comparison
In the first step, we run the three versions of XFS flow, as defined in Section 4.3.1, on the adder design
to look at the results. To recap, faults detected at the functional strobe are classified as Observed; if
not, they are labeled as Not Observed. Similarly, faults identified at the checker strobe are classified
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as Diagnosed or Not Diagnosed. In the context of FuSa verification, the goal is to reduce the number
of Observed Not Diagnosed faults. These faults indicate that the functional output of the design is
affected, and the Safety Mechanism fails to detect them. Minimizing these types of faults contributes
to enhancing the Diagnostic Coverage, potentially resulting in a higher ASIL level.

Table 4.1 shows the results of Stuck-At faults on the adder design. There are a total of 8 faultable
locations, each being injected with SA0 and SA1 fault, leading to a total of 16 faults. “Serial random”
strategy corresponds to the faults being run serially with random fault ID. “Serial xfsg” also refers to
serial simulation, but with fault injection through a tcl file generated with the help of xfsg. “Mixed
concurrent” strategy refers to running the SA faults of the design with the help of concurrent engine,
and simulating the SET faults with serial engine.

Table 4.1: Results of Stuck-At faults from 3 flows of XFS(Adder)

Classification Serial random Serial xfsg Mixed concurrent
Not Observed Diagnosed 6 6 4
Not Observed Not Diagnosed 0 0 0
Observed Diagnosed 8 8 8
Observed Not Diagnosed 2 2 2
Not Simulatable 0 0 2
Total 16 16 16

As seen from the table, the results of “serial random” and “serial xfsg” are same, and in line with
the manual analysis of fault results done on the adder design. However, with the concurrent flow, we
see that 2 of the faults which are supposed to be Not Observed Diagnosed are classified as Not
Simulatable (NS). These two faults correspond to the location of the internal wires, a2 and a3.
However, wire a1 is still being simulated by XFS correctly in the concurrent engine. Faults are usually
classified as NS by XFS if they are not supported by the concurrent engine. This shows that there is
a discrepancy in fault injection on intermediate nodes, as Xcelium seems to optimize the two wires a2
and a3 for SA1 fault, and thus, not consider them for simulation. Such a behaviour is not seen with the
serial engine. In order to avoid such an optimization, a new switch -nogateamalg needs to be provided.
Upon providing the given switch, the results of the three flows for SA faults come out to be the same.

For transient space, the faults are injected at random times in the simulation on all 8 fault locations.
As seen in Table 4.2, the fault classification numbers for the serial random simulation differ from that
of SA faults. This is due to the fact that the transient faults are injected at random times. However,
for the XFSG generated fault list with default options provided by the utility, none of the faults are
injected on the first go. Thus, in order to fix this, fault injection times need to be manually put in the
fault injection tcl file. With the updated tcl script, the fault classification results fall into the other 4
categories in the same way as the “serial random” strategy, provided that the fault injection times are
same for both the cases.

Table 4.2: Results of Transient faults from 2 flows of XFS (Adder)

Classification Serial random Serial xfsg
Not Observed Diagnosed 3 0
Not Observed Not Diagnosed 0 0
Observed Diagnosed 2 0
Observed Not Diagnosed 3 0
Not Injected 0 8
Total 8 8

There is also a single-step mode, wherein all the steps mentioned in the XFS flow can be run with
the help of a single command. The user can provide the design and testbench files along with the
fault specification target, strobe list, and specify the fault engine to be used - serial or concurrent, in
a single invocation of the xrun command. This would facilitate ease of usage for the user. However,
the tool internally uses xfsg for this flow, and with xfsg not providing hold time for SET faults, they
are not injected. Further, there seems to be an issue when both the functional and checker strobes are
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mentioned together in a single line, leading to difference in classification results. This flow is thus not
considered for further discussion.

The VC Z01X flow is instrumented on the adder flow, with the same fault locations as targets.
VC Z01X also provides options for the location type (PORT, PRIM, FLOP, ARRY, WIRE, VARI),
as mentioned earlier. So, for the same fault specification file, VC Z01X instruments more number of
faults. By default, if all the location types are enabled, different types of faults are generated for the
same fault location, as also seen in Figure 4.7 (XFS results on the left versus VC Z01X results on the
right). If we take the example of port Ain, we see that that there are two faults generated in XFS,
but 4 faults in case of VC Z01X. This is because the signal Ain is instrumented both as a port and a
wire in VC Z01X. In this example, the classification does not change whether we inject the fault on
the port/wire. However, as we will see in further designs, the classification might change depending on
whether a fault is injected on a wire connecting the port or the port itself.

Similarly, for the port Cout, we see that there are 3 types of locations being exercised - port, wire and
primitive. The “- -” in the VC Z01X report denotes that the signal is part of the collapsed
list of signals, and follows the same classification as the first signal in the collapsed list. The
fault classifications of the signals do not change necessarily in this example, as compared to the XFS
results. However, there is a big variation in the number of faults being generated for each tool, as also
illustrated in Table 4.3. The first column represents the SA fault results of XFS, with the second and
third columns providing VC Z01X SA fault classifications. The second column contains the complete
list of faults instrumented at all possible location types. The final column contains the results for faults
injected only at wires. Upon manual inspection of all the signals, the fault classification comes out to
be the same for all signals exercised on both tools.

Figure 4.7: Comparison of faults generated with both tools (XFS vs VC Z01X)(Adder)

Table 4.3: Results of Stuck-At faults (Adder) of XFS and VC Z01X

Classification XFS VC Z01X default VC Z01X compressed
Not Observed Diagnosed 6 26 6
Not Observed Not Diagnosed 0 0 0
Observed Diagnosed 8 20 8
Observed Not Diagnosed 2 10 2
Total 16 56 16

Results for SA faults for the counter design is presented in Table 4.4. As seen earlier with the adder
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design, the faults generated on the counter design with default setting of VC Z01X is more than that of
the faults generated with XFS. However, in terms of classification, there is no discrepancy in the results
obtained, and is consistent with the manual analysis performed on the design points.

Table 4.4: Results of Stuck-At faults (Counter) of XFS and VC Z01X

Classification XFS VC Z01X default VC Z01X compressed
Not Observed Diagnosed 4 8 4
Not Observed Not Diagnosed 0 0 0
Observed Diagnosed 8 16 8
Observed Not Diagnosed 8 16 8
Total 20 40 20

In evaluating the transient fault classification for both designs, we find that the outcomes are con-
sistent with the faults injected at various design points over time. However, due to the random timing
of fault injections in both tools, comparing the results becomes challenging. Furthermore, considering
the discrepancy in the number of faults generated by both tools, we first try to create a common ground
for the tools in terms of the fault space and then analyze the results. This is the approach we adopt
first for the FIFO RTL, a design which is also relevant for FuSa, as it contains Safety Mechanisms for
fault detection. We will also look at a way to make the transient fault lists similar for both the tools in
order to aid comparison.

SA faults are instrumented on the FIFO design only on ports to keep the fault space same for the
tools. This allows a common ground for comparison, and can be built upon for the extended fault list.
The classification results for the FIFO are depicted in Table 4.5, highlighting major discrepancies in
the classification of faults.

Table 4.5: FIFO results for SA faults on ports - XFS v/s VC Z01X

Classification XFS VC Z01X
Not Observed Diagnosed (ND) 77 94
Not Observed Not Diagnosed (NN) 98 1
Observed Diagnosed (OD) 119 74
Observed Not Diagnosed (ON) 84 112
Total 378 281
Untestable/Safe faults (UU) 44 88
Not Controllable (NC) - - 53
Total 422 422

As seen above, the Untestable/Safe (UU) faults classification encompasses all faults identified as
Safe by each tool. Further, VC Z01X provides a Not Controllable (NC) fault class, which denotes
signals that do not toggle during the good simulation, and hence a fault injected with the same value is
an NC fault. The different classifications from both the tools are extracted with the help of a Python
script and discussed further in the next section.

4.4.1. Automated comparison scripts
While it was straightforward to manually check the classifications for a simple adder or counter design,
the comparison becomes much more daunting on a more complex design such as FIFO. A script is
developed in order to check the final reports of both the tools and provide three outputs -

• The first file (comp_same_final.txt) contains all the signals whose classifications match for both
the tools.

• The second file (comp_diff_final.txt) contains the signals whose classifications do not match.

• The final file (comp_not_found.txt) contains any signal which is found in one tool, but not found
in another.
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The classification names for both the tools are different, and hence a simple search and replace is
performed in order to convert a particular classification of one tool to another (for example, Dangerous
Detected in XFS to Observed Diagnosed in VC Z01X). This is done for different fault classes supported
by XFS and converted to the corresponding classification in VC Z01X.

Given that VC Z01X had a more extensive set of faults instrumented, each signal in this report was
individually parsed using regular expressions (regex), along with the fault type and fault ID (FID).
Subsequently, each regex match was cross-referenced with the corresponding signal and fault type in
the XFS report, and the classification was checked. Based on whether the classifications matched or
even existed, the signals with their respective classifications were categorized into one of three output
files. The FID was also included in the final report to facilitate quick debugging in VC Z01X using the
FID. The test used along with information about collapsed signals is also presented in the report. It is
important to note that the script did not consider location type, as XFS does not distinguish location
type in its final report. As shown in Figure 4.8, comp_diff_final.txt contains the fault classification
result from both the tools, the fault type, the signal name, FID from VC Z01X, test used for this fault,
and information about collapsed signal. Such a comparative analysis script could be extended for more
tools, if required.

Figure 4.8: Differences in classification results extracted from script

4.4.2. Analysis of Stuck-At Fault classification differences of FIFO
As shown in Table 4.5, the first major difference we see is in the classification of NN faults for XFS
and VC Z01X. NN faults usually demand manual analysis to determine whether the fault is genuinely
safe or if it remains undetected due to limitations in the test. The difference of 97 faults is due to
the 44 UU and 53 NC faults detected by VC Z01X. XFS and VC are both able to detect 44 faults in
common, but VC goes a step further in determining 97 additional faults into two separate categories.
This saves the user in spending additional time to debug the classification of NN faults. UU faults can
be considered Safe, whereas the NC faults can be parsed to appropriately toggle the signals in a new
test case. The classifications provided by VC Z01X play a crucial role in reducing manual effort in fault
analysis. Moreover, they offer insights into the location of NC faults, aiding in the development of more
effective tests to detect faults at strobing points.

The 44 faults which are deemed Untestable by VC Z01X and NN by XFS contain the signals
L_ReadEn, R_WriteEn and R_DataIn signals, all of which are constrained to 0 and left unused on
both ports. The L_DataOut signals are classified as Untestable in both the tools, as no connection
is made to this port. The 53 faults classified as NC by VC Z01X and NN by XFS consists of Reset
signals in all hierarchies and the DataOut signals. All faults are injected after the Reset is asserted,
and hence the SA1 faults on Reset are not controllable. Similarly, because the data written is targeted
rather than random, not all data bits are toggled, resulting in some bits of the DataOut signals being
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uncontrollable. While the Reset signal classifications can be deemed Safe, the DataOut signals can
undergo testing with a variety of randomized data inputs to classify them as testable.

The next set of faults consists of signals which are classified as OD by XFS, and ON by VC
Z01X. Output signals - Empty, Full, HalfFull and input signals such as L_Address and R_Address
fall into this category of classifications. In order to better understand the cause of this difference, let us
take the example of a SA0 fault on the output port Empty. According to the behaviour of both tools
as mentioned in the user guides, a fault injected at an output port will be placed on all the external
loads connected to that output port outside of the module. Similarly, a fault injected on an input port
will be placed on the internal loads connected to the port within the module and hierarchy below it.
This is taken care of by a method called “fault isolation”, wherein pseudo buffers are placed at the ports
in order to avoid unnecessary propagation.

Figure 4.9: Fault injected on DUT output port Empty

According to fault isolation rules, a fault injected on the output port Empty of the DUT, as shown
in Figure 4.9, should propagate outwards towards the Empty port of test module. However, as seen in a
fault simulation run of XFS (SA0 fault on test.DUT.Empty_), there is a back propagation transmitted
to the Empty_ wire of the DUT module, as shown in Figure 4.10. Hence, test.DUT.FL_IF.Empty_
is also stuck at 0 for the simulation. This leads to a difference in the Empty_ flags of the FL_IF
and FL_SM modules (which is still behaving correctly as expected), leading to a FlagError, and con-
sequently a detection at the checker point. The Empty_ signal is already considered as a functional
strobe, and hence the classification provided by XFS is OD. On the other hand, VC Z01X, does not
back propagate the fault and therefore, it is not observed at the checker output. Thus, the classification
of the same fault comes as ON, and hence the difference between the two tools.

Similarly, for a fault injected at the input port - L_Address of SDPRAM_TOP, as shown in Fig-
ure 4.11, the fault is propagated backwards in the direction of WritePtr, which is also stuck at the given
value now. The WritePtr for the SM module is still behaving correctly, leading to a difference in the
two WritePtr signals, and consequently a detection in the WriteError signal. Hence, the classification
for this set of signals is also OD, as provided by XFS, and ON by VC Z01X.

Another set of signals, specifically inputs to the redundant modules of flags, read and write point-
ers, are classified as OD by XFS, and ND by VC Z01X. Taking the example of a fault injected at
“test.DUT.FL_SM.Write”, as shown in Figure 4.12, a fault injected at input port Write, should be
exercised on all internal loads within the modules and hierarchies below it. However, the fault value
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Figure 4.10: Back propagation of fault injected at Empty port

Figure 4.11: Back propagation for L_Address signal in SDPRAM TOP

is also seen at “test.DUT.FL_IF.Write” because of back propagation. This in turn is also seen at the
functional output, and hence there is a difference in fault class at the functional output of both the
tools. The same behaviour is observed for all input signals which are common to the SM modules.

To summarise, all these aforementioned differences in classification are due to the fact that fault
isolation is not executed properly on the input and output ports of the RTL design by XFS, leading
to back propagation of faults. In technical terms, the behavior of the fault in XFS is not inherently
incorrect. Rather, the fault’s modeling differs from what is expected. It also needs to be observed, after
expanding the fault space to all possible locations, whether there is a distinct fault instrumented on the
wire connecting the port. This scenario would be ideal for observing the effects of both faults on the
design.

In the next step, we include all possible fault locations in the design and then compare the results
of both the tools. The results of extending the Stuck-At fault space are illustrated in Table 4.6. As
expected, the fault numbers are much higher for VC Z01X, because of the various fault location types
provided by the tool. The comparison scripts are also used here for the two reports generated with this
extended fault space.

The comp_diff_final.txt does not contain any new differences in the signal classifications other
than the ones which are deemed NN by XFS and UU/NC by VC Z01X, arising because of new signal
additions to these lists. However, since VC Z01X offers fault injection on the same signal with different
location types, similarities are observed for both the tools with the classifications arising from such
situations. For example, while instrumenting port fault on “test.DUT.Empty_”, the fault classifica-
tions were OD and ON for XFS and VC Z01X respectively. However, the latter also instruments the
same signal as a wire, in which case, the classification turns out to be OD, as expected and shown in
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Figure 4.12: Fault injected on inputs of redundant modules

Table 4.6: FIFO results for SA faults on extended fault space - XFS v/s VC Z01X

Classification XFS VC Z01X
Not Observed Diagnosed (ND) 232 487
Not Observed Not Diagnosed (NN) 186 61
Observed Diagnosed (OD) 156 261
Observed Not Diagnosed (ON) 88 200
Total 662 1009
Untestable/Safe faults (UU) 44 176
Not Controllable (NC) - - 223
Total 706 1408

Figure 4.13. On the other hand, XFS does not inject these two faults separately and thus,
we miss out on the effect of a particular fault. In essence, for the extended fault list, we do not
see any new irregularities in terms of fault classes provided by both tools, apart from the injection of
faults at different location types in VC Z01X, which might lead to different results as shown above.

Figure 4.13: Fault injection on different location types in VC Z01X

Moreover, the comp_not_found.txt file now includes specific signals. This is a result of certain
signals in XFS being excluded due to fault collapsing optimizations, resulting in their omission. However,
all signals are included in the final report of VC Z01X, whether they are collapsed or prime faults, along
with the fault classification. With this, we conclude with the results of the SA fault classification of
both the tools for the FIFO design, with the main takeaway being the back propagation of faults
in XFS. In the next section, we look at the transient fault space of both the tools on the same design
and analyze the results.
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4.4.3. Transient fault space modelling for FIFO
XFS supports Single Event Transient (SET) with a hold time on possible fault locations, and Single
Event Upset (SEU) on outputs of sequential elements. On the other hand, VC Z01X supports transient
faults only on outputs and on location types - PORT, VARI, FLOP and ARRY. This means that
transient faults will not be injected on inputs and intermediate wires in VC Z01X. XFS,
however supports transient fault placement on all signals. Further, in order to inject a transient fault
in XFS, one has to write a fault injection tcl file with the fault type, location and hold time for SET
faults. On the other hand, VC Z01X provides options in the SFF file to create an extensive transient
fault list. There is the option of a transient toggle fault, which can be specified with the help of a simple
statement inside the FaultGenerate section such as :

NA ∼ (3:13) {[PORT,ARRY,VARI,FLOP] "test.DUT.**" } (4.2)

This means that transient toggle faults will be injected individually at cycles 3rd, 4th, 5th and so on,
until the 13th clock cycle, on all possible locations supported in the design. There is also the possibility
of a transient hold fault, which can be generated as :

NA ∼ (8ˆ11) {[PORT,ARRY,VARI,FLOP] "test.DUT.**" } (4.3)

This means that a hold fault will be generated starting from 8th cycle till 11th cycle, on all possible
locations in the mentioned hierarchy. The behaviour of these faults have already been discussed in
Figure 4.3. With the options for transient faults being different in both the tools, we try to find a
common ground to inject the faults with the two tools by modeling the transient faults in a particular
way.

First, we run the transient faults with VC Z01X, with all possible options. From the output report
generated, we try to model faults in the same way for XFS. For instance, let us consider the example
shown below:

Figure 4.14: Transient fault injection in VC Z01X

As introduced earlier, VC Z01X has the option of specifying a cycle, with a period, in the SFF file.
In this example, we assume a period of 100ns, which is the same as the clock period. However, the
cycle considered by VC Z01X starts only after fault injection has been triggered (which is by default
at time 0). Here, $fs_inject, which is the cue to start fault injection, is triggered only after reset has
been asserted at 220 ns. Thus, all cycles start from that point onwards, as shown in Figure 4.14. So, if
a fault is injected on the 3rd cycle, it will be injected at the end of the 3rd cycle starting from 220ns,
i.e. 520 ns. The faulty signal will hold its value until the next clock edge comes at 550 ns, and based
on the input, the signal will change its value. Similarly for transient hold faults, the signals will hold
their value until the specified cycle.

Keeping in mind the behaviour of VC Z01X for transient faults, fault injection commands are
generated by parsing every output from the VC report and subsequently injected in XFS. FLOP faults
in VC Z01X are modeled as SEU faults in XFS with the corresponding injection time. All other faults
are modeled as SETs, with the injection time and hold time set up as described before. Now that we
have a common ground for both the tools, it becomes a little bit easier to run the comparison script on
the two reports. As seen in the final classification results of the transient fault space in Table 4.7, there
still seems to be a discrepancy in the final numbers, even though we have created the fault injection
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tcl file from one of the tool reports. This is due to the fact that VC Z01X has different location types
for a particular signal, because of which fault injection commands will be duplicated in XFS. These
duplicated results are converted to one final classification in the final report generated by XFS. We also
see one additional classification of Impossible X-state (IX), which refers to transient faults injected on
signals which were in an Unknown state (x).

Table 4.7: Transient fault results for FIFO - XFS v/s VC Z01X

Classification XFS VC Z01X
Not Observed Diagnosed (ND) 1889 1909
Not Observed Not Diagnosed (NN) 637 815
Observed Diagnosed (OD) 248 318
Observed Not Diagnosed (ON) 390 474
Total 3164 3516
Impossible x-state (IX) 48 48
Total 3212 3564

First things first, the issues and differences which were already seen in stuck-at results of both the
tools (specifically back propagation) are prevalent in the transient fault space as well. In addition to
this, there are a few more differences seen in the results of the two tools. This is attributed to the fact
that the strobing mechanism in both the tools is different, which makes a difference in case of transient
fault behaviour. In VC Z01X, the observation and detection points are being compared at the positive
edge of every clock, whereas in XFS, the strobing points are compared at every time step. Thus, if a
transient fault is injected at a time just before the clock’s rising edge (for example, at 1230 ns), and the
effect of the fault is only for 20ns (till 1250ns), the effect of the fault will never be seen in VC Z01X,
because the observation point is not compared until 1250 ns. However, in XFS, since the strobes are
compared at every time step, the fault effect will be observed. Essentially, these differences arise from
the strobing behavior and not from any issue in the tool itself. The strobing mechanism is dependent
on the user and the requirements of the system, and can be configured accordingly.

To summarise the results of the transient fault space, there are no additional issues seen in terms of
tool results, apart from the back propagation effect already seen in the stuck-at fault space. However,
there are differences in fault space and modeling between the two tools, making direct comparison
quite challenging. XFS has the capability to cover a larger fault space, as VC Z01X cannot generate
transient faults on inputs and intermediate nodes. This factor must be considered in developing the
final solution/verification flow. In the next section, we conclude with the results of these reference
designs in terms of the metrics and set the stage for developing the final methodology.

4.4.4. Metric-based comparison and conclusions
In this section, we look at the results on the basis of metrics defined in Section 4.2, illustrated below:

• Quality of results: XFS has internal discrepancies in tool results with small reference designs.
It is seen that the results from different flows are also not equivalent with each other at times.
While most of these issues can be solved manually with additional configurations or switches, it
still raises questions on the quality of tool results. On the other hand, VC Z01X does not have
any such issues with the tool internally.

One significant observation from the FIFO design results is the back propagation issue identified
in XFS. While the fault behavior technically is not incorrect, XFS does not instrument port faults
as expected. It is essential to distinguish between faults injected at ports and those affecting the
wires connecting the ports because their behaviors may differ, as evidenced by the results from
VC Z01X. On the other hand, VC Z01X lacks the capability to inject transient faults on inputs
and intermediate wires, leaving a portion of the fault space uncovered. Although this is not a tool
issue per se, achieving accurate fault coverage results may be affected if the entire fault space is
not considered.

In summary, when it comes to providing precise and accurate results, and accounting for fault
behaviors across various location types, VC Z01X fares better than XFS in terms of result quality.
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The only limitation is the portion of the transient fault space that remains unaddressed by the
tool.

• Comparison of features: A detailed comparison of the different features provided by the two
tools is tabulated in Table 4.8. The comparison covers aspects such as fault classifications, fault
models, specification files, fault strobing and simulation options among others. Similarities and
differences are analyzed between these different features in order to get a deeper understanding
of the tools.

• Run-time comparison: The comparison of run-times for each of the three designs with both
tool flows is illustrated in Figure 4.15. The XFS flow implemented here utilizes a serial engine
with an xfsg-generated fault list. This choice was made over the concurrent engine due to the
limitations of the latter in instrumenting SET faults and limitations of several constructs and
HDLs.

Figure 4.15: Run time comparison of the tools on reference designs

As seen in the comparison, VC Z01X is faster than XFS in all flows tested. This advantage is
primarily attributed to the concurrent engine employed by VC Z01X. While XFS does offer a
concurrent flow, it presents limitations such as incompatibility with RTL designs, unsupported
constructs, and the inability to work with VHDL and System Verilog designs. Consequently, VC
Z01X exhibits better scalability in terms of run-time, particularly for larger and more complex
designs, as it can instrument thousands of faults in one shot. As depicted in Figure 4.15, the
run-time for the VC Z01X flow does not increase significantly across the three designs compared
to the XFS flow. In the XFS flow, each fault must be injected individually, resulting in longer
simulation times for larger designs. Although scripts can be developed to parallelize fault injection
lists and run them concurrently, this approach requires multiple tool licenses as well.

• Features for performance optimisation: Concurrent simulation is the primary feature which
helps in improving simulation times. Concurrent engine simulates thousands of faults simulta-
neously, speeding up fault simulation times by a large factor. This capability is particularly
advantageous for larger designs, where the impact is more visible. Both XFS and VC Z01X sup-
ports concurrent simulation, with the latter supporting the concurrent engine by default. XFS has
limited concurrent support and has restrictions with respect to using different constructs in RTL
design. XFS also has discrepancies corresponding to the instrumentation of intermediate wire
faults while performing concurrent simulation. Additionally, since SET faults are not supported
in XFS concurrent simulation, a serial run has to be triggered to cover the remaining fault space.
This defeats the entire purpose of concurrent simulation, thus failing to achieve the expected
improvements in simulation times characteristic of the concurrent engine.
XFS also supports a construct in the strobing mechanism wherein simulation can be stopped
when a fault is detected (as shown in Figure 4.16), either at a functional or a checker strobe point.
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Figure 4.16: “stop_on” functionality in XFS strobing to reduce simulation time

This functionality can reduce simulation times, especially for longer tests, if faults are detected
early in the test. VC Z01X, by default, supports this feature and stops simulation once faults are
detected. However, simulations can be allowed to continue as well with the help of system calls
in strobing file in a way similar to XFS. To summarise the results of features for performance
optimisation, VC Z01X is much faster than XFS in terms of fault simulation times, mostly owing
to the concurrent engine support being well-equipped and bug free. With all optimized settings
as well, XFS completes fault simulation slower than VC Z01X.
Fault sampling is also an interesting feature which could be used to prune the fault space, con-
sequently reducing fault simulation time. While this feature provides an estimate rather than an
exact Diagnostic Coverage metric, it allows for substantial reduction in fault simulation time by
reducing the number of faults and estimating the DC within a certain range. In the context of
the FIFO example, fault sampling does not show any significant changes as the reduction in the
number of faults is minimal. However, in more extensive designs, for example when addressing
internal memories for CPUs, using fault sampling can reduce the overall fault space and save fault
simulation time.

• Feasibility of tool: Among the three main tools initially considered for Functional Safety ver-
ification, Siemens’ tool was excluded due to the unavailability of a license. VC Z01X and XFS
emerged as viable options for our verification flow. However, XFS has several challenges with RTL
constructs in the concurrent engine flow, leading to numerous faults classified as Not Simulatable
(NS). Further, there are issues with back propagation on input and output ports, leading to differ-
ent classification results as compared to VC Z01X. Despite these limitations, XFS is still feasible
for usage in verification, particularly with the serial engine. The same feasibility holds true for
VC Z01X. VC Z01X also fails to cover a portion of the transient fault space, in which case, XFS
can come into the fore. In summary, while both VC Z01X and XFS can be incorporated into our
verification flow, careful consideration of their specific capabilities and limitations is important to
develop a final verification methodology.

• Ease of usage: Upon an extensive exploration of the user guides of the two tools and under-
standing the different options and features, it is quite straightforward to set up fault campaigns
in both tools and automate them. However, different setups and prerequisites such as license
paths, setting up environment variables and installation directories need to be performed before
using the tools. In VC Z01X, majority of the information regarding fault simulation is kept in a
single SFF file, facilitating easy usage. Fault list generation is a single step process in VC Z01X,
specified in the SFF file, and taken care of by the Fault Campaign Compiler. In XFS, apart from
specifying the fault specification file, one has to use xfsg in order to generate the fault injection
files. Also, the fault specification and strobing files are separately created, and need to be changed
according to the design in use. That being said, it is not a major drawback in terms of ease of
usage. However, with SET faults not being generated with an automatic hold time, the user has
to manually specify hold times for SET faults in XFS. These are some minor differences in the
usage of both tools, but are not significant enough to dismiss either tool based on ease of usage.
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Table 4.8: Comparison of individual features

Feature Cadence Xcelium Fault Simulator
(XFS) Synopsys VC Z01X

Engines for
fault simu-
lation

• XFS has two engines - serial and concur-
rent, which can be used for fault injection
campaigns. With serial fault simulation, the
good simulation needs to be run first, fol-
lowed by the faulty simulation. The concur-
rent engine runs both the serial and faulty
simulations in one go. There is no default
engine as such, and the user needs to specify
with command line options as to what engine
the fault campaign is to be run on.

• VC Z01X also has two engines like XFS,
serial and concurrent. However, the default
engine in this case is the concurrent en-
gine. In order to invoke the serial engine for
non-concurrent friendly faults, the serial fsim
switch is to be added while elaborating the
design and running fault simulation.

Stimulus

• Only testbench (SystemVerilog, Verilog,
VHDL) is supported as a stimulus in XFS.
The required testbench is to be provided dur-
ing the elaboration stage of the XFS flow.
VHDL and SystemVerilog are however not
supported in the concurrent engine.

• VCZ01X supports Verilog and Sys-
temVerilog(UVM) testbenches as stimulus.
Additionally, there are other stimulus op-
tions, which includes FSDB (Fast Signal
Data Base), VCD (Value Change Dump),
eVCD.

• This allows to reuse dumps from previous
simulations in different fault simulation
campaigns. For example, regressions run
using Xcelium could be enabled to generate
FSDB dumps, which can then be used in
the Synopsys flow for fault campaigns.

Elaboration,
compila-
tion, good
and faulty
simulation
setup

• In XFS, the first step in any FuSa flow
is to elaborate the fault specification file
(which contains the locations of fault instru-
mentation). This elaboration is performed
with xrun, and has some additional options
for the configuration of the fault database to
be generated. There are options to disable
fault isolation at ports of the design, to
disable gate collapsing faults, etc.

• The next steps in the flow are the
good and faulty simulation runs, with the
desired options triggered with xrun.

• In Synopsys, the first step is to compile
and simulate the design. For VC Z01X, in
this step, the fsim switch is added in order
to enable fault simulation. However, while
compiling the design, some additional op-
tions/args need to be provided so that faults
at different locations are instrumented. For
example, PORT, VARIABLE and FLOP
faults instrumentation is not on by default,
so additional switches need to be provided
in order to instrument these faults.

• VC Z01X takes care of good and faulty
simulations in one go in the next step with
the defined SFF file.
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Fault clas-
sification

• The fault classifications in XFS are
based on the functional and checker strobes
(if present), or whether the faults are
untestable, not simulatable, undetected.
The priority of fault classification is as
follows: Dangerous_Detected (DD or OD)
> Dangerous_undetected (DU or ON)>
Unobserved_detected (UD or ND) > Unob-
served_undetected (UU or NN) , Detected
> Potentially_detected > Untestable (S) >
Undetected > Not_simulatable.

• For a dual strobe list (with both func-
tional and checker strobe points), the first
four classifications correspond to the de-
tection of functional and checker strobing
points. For a single strobe list, Detected,
Potentially_detected and Undetected are
the corresponding classifications. Untestable
and Not Simulatable faults do not depend
on the strobing list.

• For Synopsys, the fault classification is
much more detailed. The faults are first
divided into different built-in status groups,
such as Detected, Potential, Oscillating,
Hyper, Illegal, Unselected, Untestable,
Excluded and Not included in Built-in-
status groups. These groups have different
fault classifications inside them. We can
also add custom fault classes in the Fault
specification file in order to enhance the
classifications if required.

• The interaction between the different
fault classes is governed by the Promotion
Table. There is a default promotion table
which shows the interaction between the
current fault status, new fault status and
the merged fault status for the built in
statuses. If custom classes are added, then a
new Promotion Table could also be applied
in the fault specification file.

• There is no separate distinction between
the detection of Observation and Detection
points in terms of the classifications made
in VC Z01X. Custom classes need to be
defined to accommodate the same, along
with appropriate strobing mechanisms.

Fault mod-
els

• XFS supports SA 0/1 faults which can be
applied to any kind of signal. Single Event
Upset (SEU) does a bit flip on the output
of a sequential element, and holds the mod-
ified value until it is assigned a new value.
Single Event transient (SET) also does a bit
flip, but holds the value for specified period
of time, and can be applied to any kind of
signal.

• VC Z01X supports SA 0/1 faults on all
types of signals, and makes a distinction
between the type of signal on which it injects
the fault (e.g. wire or port). Transient faults
are also supported, but only on outputs and
not on primitives and wires.

• There are two types of transient faults
supported - transient toggle and transient
hold, in a way similar to SEU and SET
faults in XFS. VC Z01X also supports a
special fault class, called Transition faults,
which could be either a slow-to-rise or a
slow-to-fall fault. This could be enabled
with the help of additional args with fsim
switch during elaboration, mentioning the
transition delay of the fault. Although, it is
not a requirement to instrument this class
of faults for ISO 26262, it is a good feature
to have.
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Fault spec-
ification
file

• The fault specification file in XFS consists
of the targets for fault instrumentation, and
can contain modules, instances or signals.
It is composed of two types of commands,
fault_target and fault_exclude.

• fault_target is used to enable a par-
ticular target for fault instrumentation, and
can take multiple options in order to instru-
ment, say, net faults, port faults, faults on
sequential elements, and most importantly
the type of faults - SA0/1, SEU, SET or all
of them. fault_exclude is used to exclude
certain targets for fault instrumentation.

• The SFF file in Synopsys consists of
constructs similar to fault_target and
fault_exclude in order to include/exclude
different modules, instances, etc. However,
the fault instrumentation option also con-
tains timing information for transient faults,
and different location types for generation
of faults.

• The SFF file also contains the sig-
nals which are used for strobing purposes
and additional sections such as Sampling,
Coverage and FaultStatus definitions, among
others.

Stuck-At-
faults

• The Stuck-At-fault syntax for XFS is
straightforward, wherein only the fault type
is to be mentioned in the fault specifica-
tion file. However, it lacks configurability in
terms of the different location types where
the fault can be instrumented. The location
type (nets, ports, cell ports, sequential ele-
ments etc.) has to be provided through the
elaboration option every time a specific fault
needs to be instrumented, but does lack in
options as compared to Synopsys tool.

• The Stuck-at-fault syntax for Z01X pro-
vides options with respect to location type.
The fault type is mentioned first followed
by the location info consisting of the lo-
cation type(WIRE, PRIM, PORT, ARRY,
FLOP or VARI) along with the path to the
instance. This gives us more configurabil-
ity with respect to fault location types and
different fault behaviours. When required,
some of the individual options can be turned
off, which will be taken care of by the fault
campaign manager.

Transient
faults

• The two transient faults in XFS, SEU and
SET, do not have extended options for con-
figurability both in terms of location types
and the timing options that go along with
it. The SEU faults can be injected at ran-
dom times between the specified start and
end time (absolute timing), but there is no
provision of injecting the faults at different
clock cycles.

• Synopsys provides Timing Information
that can go along with the fault type and lo-
cation of the transient faults, specifying the
cycles to inject faults. There is also a Tim-
ing Section in the SFF, which contains infor-
mation about the cycle time, and an offset
value within the cycle to inject the fault. The
transient faults are valid for PORT, ARRY,
FLOP and VARI location types.

• SET can be instrumented at a random
time between the specified start and end
times, and an additional time specification
for the hold time. Again, there is no option
of mentioning specific clock cycles at which
to inject the faults, or for how many cycles
the hold should be exercised. The timing is
absolute in nature.

• Transient toggle faults take into account
a start and end cycle to generate faults for
an inclusive range of cycles (one fault gener-
ated for each unique cycle). Absolute timing
can also be given in this case, with the de-
sired frequency(for ex, starting from 0ns and
ending at 100ns with a frequency of 10ns) to
generate faults.

• Since the timing is absolute in nature, the
injection times must be changed with respect
to the clock cycle. Also, if the injection time
is random, a lot of the faults may classify as
undetected because it might not get triggered
on the edges of the clock.

• Synopsys provides an easy way to gener-
ate a huge space of transient faults with ad-
ditional clock cycle options, and makes it
easy (and extensive) to generate the tran-
sient fault space. If required, this fault space
can be trimmed with the help of fault sam-
pling. However, it does not support
transient faults on inputs, primitives
and wires.
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Fault Sam-
pling

• XFS does not have any feature to sample
the faults. The fault space in a big design
would typically be very large, and it is not
possible to run fault simulation for the entire
fault space. In order to trim the fault space
in XFS, one would manually have to pick out
faults randomly based on the requirements,
and then carry out simulations for the same.
But there is no associated confidence or cov-
erage estimation that we can determine with
such a randomized process.

• Fault sampling is provided by VCZ01X,
with three supported methodologies. Sta-
tistical sampling, or confidence model sam-
pling takes into account Confidence Interval,
Confidence Level and a Coverage Estimate.
Based on these parameters, a sample size can
be computed and then the lower and upper
bounds of actual fault coverage can be ex-
trapolated with a given confidence. This pro-
vides an efficient and robust way of reducing
the fault space, and maintaining the required
fault coverage.
• Percentage based fault sampling selects
only a percentage of the total fault space,
with the selection being random. With dif-
ferent seeds, the selected fault subspace will
be different. Fixed number sampling ran-
domly picks out the required number of
faults from the total fault space, and changes
according to the seed provided.

Strobing of
signals

• The strobing of signals, i.e the observation
and detection points are kept in a tcl file in a
strobe list format. The strobe list can consist
of functional and checker strobing points.
Faults at the outputs of functional units are
classified as Dangerous, and faults at the
output of Safety Mechanisms are classified
as Detected. With such a classification,
it becomes easier to distinguish between
different classes of faults as mentioned by
ISO 26262, and is important to calculate
different metrics.

• XFS also provides an interesting strobing
mechanism called virtual strobing, with
the help of a system task, and allows to
put virtual strobing points anywhere in the
design or testbench, based on a sequence
of failure events. This could be useful in
complex scenarios, when faults could not be
determined on the basis of faulty signals,
but with the help of more complex scenarios
and failure events.

• There is also a checker delay window
option, which allows user to keep monitoring
the checker outputs for a duration of time
after the functional output has a fault
detection. This has a direct relation to
the concept of fault tolerant time interval
(FTTI) and thus, can be very useful.

• Synopsys allows to provide a list of
observation and detection signals inside a
FailureMode section in the SFF. Instead
of the detection signals, one can put the
SafetyMechanism section as well, which es-
sentially consists of all the detection signals.
There is also a separate Strobing section,
if we do not want to differentiate between
the two sets of observation and detection
signals, similar to the single strobe list in
XFS. Even though there is the provision of
different classes of strobing signals, the final
classification of faults does not distinguish
between functional and safety mechanism
outputs. A separate strobing file needs to
be defined to differentiate between the two
classes, and define custom fault statuses for
the same.

• Virtual strobing points, technically,
are not a part of Synopsys Fault Simulation
flow. However, it could be compared to
the user-controlled fault detection tasks
provided by Synopsys, fs_drop_status and
fs_set_status. These could be used in
the same way as the virtual strobing points,
say, when a particular sequence of events
are recognised or an assertion failure has
occurred.

• VC Z01X does not have any direct
option such as the checker delay window in
XFS. However, the strobing file could be
set up to monitor the checker outputs for a
fixed duration of time.
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Fault
injection

• Fault injection can be done with the help
of fault ID/ fault random ID or with fault
injection tcl commands generated with xfsg.
This is an additional step on top of defining
the fault specification file.

• VC Z01X only needs the fault target, fault
type, location and timing information (for
transient faults) to be defined in the SFF file.
The Fault Campaign Compiler takes care of
fault injection based on the FaultGenerate
section defined.

Fault
reporting

• XFS generates a fault report for all sig-
nals, specifying the classification, injection
time, observation and detection times. There
is also a final log generated containing the
numbers of fault classifications.

• VC Z01X also generates a fault report, but
in the format of a SFF file. This file includes
details about each signal and its classifica-
tion, though it lacks information regarding
detection times. However, it does provide
details about the test utilized for each fault,
along with the corresponding Fault ID, which
can be directly used to dump good and faulty
waveforms.

Fault cov-
erage and
ASIL met-
ric calcula-
tion

• XFS does not provide any in-built mecha-
nism to generate coverage reports. The fault
classifications and report needs to analyzed,
followed by the manual generation of cover-
age reports. ASIL metrics also need to be
generated manually with the fault classifica-
tion numbers obtained from the final report.

• Synopsys allows the user to define custom
coverage equations in the SFF. There are de-
fault equations for fault coverage and test
coverage, which could be overwritten. Sim-
ilarly, ASIL equations can also be approxi-
mated and defined in the SFF file to be gen-
erated automatically after running the fault
simulations.

Concluding the comparison results between the two tools, VC Z01X emerges as the superior tool
overall, exhibiting advanced features, precise results, and efficient fault simulation run time. It encom-
passes an extensive fault space with support for various location and fault types, along with features like
testability analysis and fault sampling to speed up fault simulation campaigns. However, the question
remains: Is it sufficient to rely solely on this tool to devise a verification methodology that
guarantees accurate fault coverage estimation for FuSa purposes? This question is addressed
in the following chapter, where we propose a methodology for FuSa verification at the RTL stage.
However, before delving into this approach, we also explore the feasibility of employing formal tools to
detect Safe faults within an RTL design, which could help us in optimizing the fault space and speeding
up fault simulation campaigns.

4.5. Feasibility of using Formal tools
As seen in Section 3.2, identifying Safe faults is one of the first steps taken in FuSa verification to
identify faults which cannot affect functional safety, and thus need not be simulated. The identification
of Safe faults is aided by formal tools with their different analysis technologies as described in Section
2.3. However, we also see that FuSa EDA tools also possess capabilities for identifying Safe faults. In
this section, our objective is to determine the necessity and feasibility of employing additional formal
tools to identify Safe faults for RTL designs.

JasperGold Functional Safety Verification (JG FSV) app is the formal tool by Cadence used for
Functional Safety. The formal flow is setup in the form of a tcl script to be invoked along with the tool,
as discussed below:

• The design files are analyzed first, followed by the elaboration (along with the top module to be
considered)
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• Clock and reset signals are provided (for a combinational circuit, “none” option can be passed)

• Fault information is added, with the type of faults - SA0/1, SET, SEU or all, along with the fault
targets, fault injection time window and SET hold time (if applicable).

• Next, the functional and checker strobes are added.

• Structural analysis is then triggered, which involves investigation of COI, activability, propaga-
bility, collapsing. Any of these options can be switched on/off to check results for a particular
analysis technique. By default, all options are enabled.

• The formal properties are then generated and proofs are run. Each of these individual properties
can be checked manually to see the behaviour and effect of fault. The final report is then generated
with the list of Safe, Dangerous and Unknown faults.

VC Formal is the Synopsys counterpart for formal analysis, with a FuSa application mode for
Functional Safety Analysis. In a way similar to JG FSV, VC Formal is also setup in a tcl script, which
is then invoked with the tool. The steps for VC Formal analysis are as follows:

• The SFF files are provided to the tool in the first step with the help of which a fault database is
generated internally. There is no need of providing additional fault target or strobe files, as they
are taken care of in the SFF.

• In the next step, the design files are provided to the tool, and different configurations for certain
type of faults need to be enabled (for example, port, primitive, array faults).

• The clock and reset information are added.

• All the different analysis techniques for Safe fault identification, i.e. structural analysis, control-
lability, propagation and detection analysis are carried out step by step individually to generate
and check the formal properties.

• Once all the properties are generated, the final report is saved in the format of an SFF file.

The two formal analysis flows are executed on both the adder and counter designs, following the
setup of strobes and fault targets as previously configured. However, initially, as there are no untestable
faults in the design, none of the faults are identified as Safe by the output of the two tools. To address
this, we introduce a minor modification to both designs: we connect a2 to 0 in the adder design and
set counter[3] to 0 in the counter design. Following these adjustments, when the flows are rerun, SA0
faults on these two signals are identified as Safe, as expected. Further, the XFS and VC Z01X flows
run on the modified designs also recognize these faults as Safe.

For the FIFO design, we execute the formal flows to determine if any additional Safe faults are iden-
tified beyond those already recognized by XFS and VC Z01X. All fault targets are enabled, covering all
fault types. However, the results from the formal tool do not align with our expectations. The majority
of instrumented faults are categorized as Safe, with only a limited number classified as Dangerous or
Unknown, as evidenced in the results from JG FSV, shown in Figure 4.17. Even faults previously de-
tected in fault simulation results are now marked as Safe. For example, as seen in Figure 4.18, DataIn
signals are marked as Safe, when, in fact, they are not. If there is a fault on the DataIn signal, the
corresponding fault will also be propagated to the DataOut signal, and is not Safe. Given that the
schematic design generated does not match the level of detail provided by GLN designs, it seems that
formal tools struggle to effectively utilize various analysis techniques to accurately identify Safe faults
on RTL designs. Given the limited efficiency of formal tools in identifying Safe faults at the
RTL level, we opt to exclude them from the final proposed flow. Instead, we depend on the
EDA tools themselves to extract as many Safe faults as possible during their analysis of the design.

In the following chapter, we introduce a verification methodology based on the observations and
results obtained from this chapter, with an aim to solve identified issues. A comprehensive outline of
the verification flow is provided, accompanied by the reasoning behind the approach. The subsequent
chapter presents the results obtained from its implementation.



68 4. Comparison of existing EDA tools

Figure 4.17: Formal results on FIFO from JasperGold FSV

Figure 4.18: Formal tool classification for FIFO signals



5
Unified FuSa EDA Verification Methodology

After analyzing the tools in the preceding chapter and evaluating their results, we have gained insights
into their features, advantages, and limitations. Utilizing this knowledge, we introduce a novel ver-
ification methodology combining both the tools to address the concerns arising from the individual
tools.

5.1. Proposed framework for FuSa verification
The proposed verification methodology, outlined in Figure 5.1, integrates the two EDA tools discussed,
and incorporates additional features and utilities. This section delves into the reasoning behind adopting
such a flow, providing further elaboration and discussing the different steps and supported features
within the verification process.

As demonstrated in the preceding chapter, VC Z01X offers a more comprehensive array of features
compared to XFS, including fault injection capabilities across various location types and support for
facilitating extensive transient fault space coverage. The primary motivation for proposing a verification
flow is based on the fact that we want to address the fault space as effectively and extensively as possible,
leading to accurate diagnostic coverage metrics. Despite the advanced features of VC Z01X, it remains
unable to encompass the entirety of the fault space, as illustrated in Figure 5.2. While SA faults are
supported on all possible location types, including inputs, outputs and intermediate nets, transient
faults are only allowed on ports, variables, registers and flops, further restricting them to outputs
exclusively. Consequently, transient faults cannot be injected on inputs, nets, and arrays, which may
indeed occur in real-world scenarios. In contrast, XFS permits the instrumentation of SET faults on all
potential locations within the design and does not limit to any location type. With this understanding
at hand, we intend to develop the verification flow accordingly.

Below, we delve into the various steps comprising the methodology in detail:

• The first step in the flow is to run the stuck-at and transient fault campaigns in parallel with the
help of automated VC Z01X scripts. For SA faults, we enable all possible location types and fault
targets. Likewise, for transient faults, we enable all supported configurations. With VC Z01X,
there are two options for enabling transient faults: transient toggle and transient hold. Transient
toggle injects the fault at a specific clock cycle and maintains it until the subsequent cycle, after
which the value changes based on the input. With transient hold faults, a fault can be injected at
a specific clock cycle and retained until the designated cycle (Equation 4.3). Transient hold can
be seen as an extension of transient toggle faults. The decision to utilize these two fault types is
made in the SFF file through the corresponding statements.
In the default proposed flow, we focus on exercising transient toggle faults and specify start and
end cycles for fault injection, as also shown in Equation 4.2. Faults are injected individually at
each cycle within the given range. The choice of these two points (start and end cycle) depends
on the toggle activity of the design and the possibility of faults being detected at the strobes. For
example, in the FIFO design, writes start happening to the FIFO from the 3rd clock cycle and
end at 12th. Subsequently, reads start happening from 12th cycle onwards. Thus, if we provide
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Figure 5.1: Proposed verification methodology using combination of EDA tools

Figure 5.2: Fault space covered by VC Z01X

the start cycle as 3, and end cycle as 15 (or any number greater than 13), we might be able to see
the effect of faults on the functional and checker strobes. Based on such information, we provide
the start and end cycles in the SFF file for transient faults. In summary, we run SA and transient
fault campaigns using VC Z01X on all supported locations and types to obtain the initial results.

• We know that transient faults cannot be applied to specific locations like nets, inputs, and arrays.
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Consequently, the reports generated from the first step will highlight discrepancies in signals not
targeted by the VC Z01X flow. This indicates signals that have not been subjected to transient
fault injection using VC Z01X. Therefore, the next step involves extracting information from these
reports to identify all such signals. This process utilizes regular expressions to iterate through
each signal in the SA list and verify its presence in the transient report. If no match is identified,
it indicates that the fault location has not been subjected to transient fault injection with VC
Z01X. Now, these signals can be injected with SET faults using XFS, as this tool doesn’t impose
any limitations on the placement of SET faults.

• The next step is to write fault injection commands for these signals in a tcl format, which can then
be invoked with XFS. To achieve this, we expand upon the logic employed in the preceding step
for generating fault injection commands. We consider various parameters such as clock period,
reset time, start cycle, end cycle, and the range for hold time start and end. Listing 5.1 shows a
portion of the logic employed to generate the relevant commands.

1 if fault_type == "0" and location_type != "PORT":
2 for i in range ( start_cycle , end_cycle ):
3 inject_time = reset_time + i* clock_period
4 set_hold_time = random . randint ( hold_time_range_start , hold_time_range_end

)
5 # Write fault injection command in output tcl file
6 output_file1 . write (" fault -inject -time %dns -type SET +% dns {%s}; run;

reset \n" %( inject_time , set_hold_time , signal ))

Listing 5.1: Generation of Fault injection command

Each fault recognized as not injected by VC Z01X is processed by the code displayed. To prevent
generation of duplicate commands, we ensure that we only search for SA0 fault type for the specific
signal. This restriction is applied because any signal not included in the transient campaign will
appear in the SA report for both SA0 and SA1, resulting in redundant fault injection commands
if this constraint is not enforced. Moreover, considering that VC Z01X injects faults on different
location types, implying that port faults are also instrumented as wire faults, we opt for only one
of these two faults. This process is also repeated for the collapsed signals identified in the VC
reports which have not been injected with transient campaign.
Since fault injection in VC Z01X is made to start after reset has been asserted, the injection
time for XFS is accordingly adjusted, in line with the fault modeling done for transient faults in
Figure 4.14. The start and end cycle parameters correspond to those used in the transient fault
generation statements of VC Z01X. As we are injecting SET faults for the identified signals, we
also need to specify a hold time. This can be set to a default value of the clock period. However,
to introduce variability in the transient faults being injected, we include a hold time range. A
number from this range is randomly generated and added as the hold time to the fault injection
command. The process iterates over each signal and the complete range of faults to generate a
fault injection TCL file for use in the subsequent step.

• The XFS script earlier developed is now invoked as: ./xfs_flow.sh serial custom trans.
Using these command line arguments, all transient faults are instrumented, but only the SET
faults present in the custom TCL file generated in the previous step are executed. Since, SET
faults are not supported with the concurrent engine, we have no choice other than to invoke
the serial flow. If necessary, multiple licenses of XFS can be used to divide the fault injection
commands and execute them simultaneously to accelerate the process.

• Following the execution of the XFS flow for transient faults, we consolidate the three reports
— those from VC Z01X for SA and transient faults, and the XFS report — utilising a Python
script that employs a variety of regex operations. These results are merged and compiled into
a final report, presented in the form of an SFF file with some necessary modifications. Initially,
we extract the individual test results from the three reports to provide insights into the numer-
ical data associated with each flow. This contains the fault classification counts, excluding the
Safe/Untestable faults.
The classifications from XFS are mapped to their corresponding VC Z01X classifications to ensure
consistency in naming across the results and to eliminate any confusion arising from the different
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classification names used by both tools. Due to the fewer classification categories in XFS compared
to VC Z01X, it is logical to adjust the XFS fault classes to align with the naming conventions used
in VC Z01X. For each report, a classification array is introduced to store the fault classification
numbers. For instance, if the total number of fault classes was 30, as specified in VC Z01X, three
arrays of size 30 were generated. An enumeration is implemented to represent the various fault
classes and assign numbers from 0 to 29 accordingly. These enumeration numbers could then be
utilized to access the arrays corresponding to the fault classification. If there’s a need to add or
remove fault classes, only the enumeration requires modification, ensuring the script’s continued
functionality
The classification numbers are extracted from each report and appended to the corresponding
index in the array specific to that report. Once all numbers have been incorporated into their
respective arrays, they are aggregated to obtain the classification numbers for the final report.
Since VC Z01X provides numbers for various fault groups (consisting of a group of fault classes),
it is important to calculate the counts for these groups too. Finally, Diagnostic Coverage is
computed based on the consolidated classification numbers.
The output report generated at this stage consists of the following information:

1. Test results from the three reports (excluding Safe faults)
2. Information regarding Fault statuses (classes), Promotion Table and Coverage equation (Di-

agnostic Coverage)
3. List of signals with their respective classifications (from 3 different reports)
4. Fault classification numbers for 3 individual reports, including their Diagnostic Coverage

metrics.
5. Merged fault classification numbers and updated Diagnostic Coverage.

• The final step of the process addresses a notable absence in the tools. Occasionally, we possess
knowledge indicating certain signals are not dangerous and can thus be upgraded to Safe status.
Additionally, there are instances where we anticipate certain faults will always be detected at
functional outputs and remain undetected by Safety Mechanisms, based on prior designer input.
However, the tools lack a provision for manually adjusting the fault status of these signals to
the desired classification. To address this limitation, we introduce a feature in this flow wherein
a classification file is provided as input, specifying the signals slated for status conversion along
with the source and destination classifications. This enables the adjustment of fault classifications
for the specified signals and facilitates the updating of the final report, including the Diagnostic
Coverage metric.
An example of the input file which goes into this step is shown in Listing 5.2. The list includes
signals alongside their respective source and destination classifications, with an additional param-
eter introduced to offer user customization. This parameter takes one of two options: “group”
and “single”, allowing users to specify whether they wish to update the classification for the single
signal only or for all collapsed signals associated with it as well.

1 test.DUT. sdpram_i1 . ECC_Enc . DataEnc [1] IX UU group
2 test.DUT. sdpram_i1 . ECC_Enc . DataEnc [4] ND NN group
3 test.DUT. sdpram_i1 . sdpram_i1 . L_DataIn [6] IX UU group
4 test.DUT. DataIn [0] ON OD single
5 test.DUT. sdpram_i1 . ECC_Dec . DataOut [0] ON UU single
6

Listing 5.2: External input file for manual classification

To update the classifications, each line in the input file is parsed to extract the signal and the
intended classification for conversion. Subsequently, the report generated in the preceding step
is searched to find the specified signal. If the source classification matches, the fault class for
that particular signal is then updated to the destination classification. In addition to this, it is
also important to update the classification numbers for the individual reports as well as the final
reports. This involves considering the third parameter (group or single) to determine whether
to update a single signal or a group of collapsed signals. For a group classification, all collapsed
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signals must be converted to the desired fault class, and the fault class number for both the
source and destination classifications needs to be adjusted based on the number of signals in the
collapsed list. The numbers in the individual arrays are revised and then merged to form the final
classification array. Furthermore, the individual Diagnostic Coverage metrics of the reports are
updated, along with the computation of the final metric. The original report and the modified
report are kept as two separate files in order to see the differences before and after the final step
of the flow.

In addition to this, the workflow includes the capability to independently conduct fault
simulations with XFS when deemed necessary, facilitated by the XFS script. Comparison
scripts are also maintained to enable the execution and subsequent comparison of the results of both
tools, thereby providing discrepancies in classification. This allows the user to run flows with either of
the tools individually based on requirements and analysis of results.

This marks the conclusion of the outlined verification methodology aimed at conducting Functional
Safety Verification on RTL designs. In the following chapter, we delve into the outcomes of applying
this methodology to the previously discussed FIFO design, comparing the resulting diagnostic coverage
from individual tools with that of the proposed verification flow. Additionally, we examine the effects
of the classification update feature incorporated into the verification flow. Furthermore, we apply this
methodology to an automotive System-on-Chip (SoC) design, characteristic of those commonly found
in automotive chips, and analyse the results to identify areas for enhancement.
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Results

In this chapter, our objective is to apply the verification flow to the FIFO design and an automotive
SoC. We compare the results and Diagnostic Coverage obtained from this approach with those achieved
by running the two tools separately. Further, we also look to update the classifications of signals using
the developed feature and verify the results. Since the FIFO design represents a small-scale study of
Functional Safety (FuSa) verification, we also extend our analysis to a larger, more intricate SoC design.
In this design, we look to identify areas of improvement after running the verification flow, and make
enhancements for the same. This is further elucidated in the following sections.

6.1. Classification results of flow on FIFO design
Table 6.1 lists the results of SA and transient faults injected across all supported locations in the
FIFO design, combining the results from the SA and transient fault analyses conducted with VC Z01X,
as highlighted in Section 4.4.2. Faults classified as NC, UU, and NN are deemed Safe and therefore
excluded from the Diagnostic Coverage calculation. IX faults are categorized as Dangerous because
their effect on the functional and checker outputs remains unknown, as VC Z01X labels faults inserted
at locations in an ’unknown (x)’ state as IX. Hence, these faults are factored into the denominator of
the DC equation. Manual debugging is required to assess whether these faults pose a danger or are
Safe in practical scenarios, and if any modifications to the design could mitigate the occurrence of an
unknown state. Utilizing the available data, the DC of the FIFO design with VC Z01X is computed to
be 80.47%.

Table 6.1: Summary of all faults instrumented on FIFO with VC Z01X

Classification VC Z01X
Not Observed Diagnosed (ND) 876
Not Observed Not Diagnosed (NN) 2396
Observed Diagnosed (OD) 579
Observed Not Diagnosed (ON) 674
Total 4525
Impossible x-state (IX) 48
Untestable Unused (UU) 616
Not Controlled (NC) 223
Total 5412
Diagnostic Coverage 80.47%

The SA fault results generated by XFS are already compiled in Table 4.6, with a total of 706 faults
identified by the tool. Similarly, transient fault results are also documented, as depicted in Table 4.7.
However, this does not take all faults into account, as the fault instrumentation was formulated utilizing
a report from VC Z01X. Consequently, we execute the XFS workflow independently for transient faults,
providing distinct cycles for injecting SET and SEU faults (ranging from the 3rd to the 13th cycle, same
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as VC Z01X), with adjustments made to the script accordingly. The transient results solely from XFS,
alongside the total results combining both SA and transient fault campaigns, are presented in Table 6.2.

Table 6.2: Summary of all faults instrumented on FIFO with XFS

Classification XFS transient XFS overall
Not Observed Diagnosed (ND) 2200 2432
Not Observed Not Diagnosed (NN) 1184 1370
Observed Diagnosed (OD) 421 577
Observed Not Diagnosed (ON) 1074 1162
Total 4879 5541
Impossible x-state (Injection failed)
(IX)

192 192

Untestable Unused (Untestable) (UU) 20 64
Total 5091 5797
Diagnostic Coverage 68.96%

The IX fault status is defined as “Not Injected” in XFS, while the UU fault status is labeled as
“Untestable”. As seen from the two flows, there are differences in the final classification metrics and
the diagnostic coverage numbers. First, the higher count of SA faults in VC Z01X is attributed to the
wider range of supported location types. In contrast, XFS instruments more transient faults as there
are no restrictions on the placement of such faults at inputs and intermediate nets. Additionally, with
transient faults injected at varying timestamps, the overall count of XFS faults exceeds that of VC
Z01X. Diagnostic coverage numbers also vary between the two tools, primarily due to differences in
classification numbers. The DC for XFS is on the lower side, owing to the large portion of transient
faults at inputs being observed at functional strobes and not detected at checker strobes. Moreover, the
presence of multiple injection times results in a manifold consideration of faults, potentially reducing
DC if the same classification recurs. This also highlights a challenge with transient fault campaigns -
the expansive fault space and the lack of standardized guidelines for assessing transient fault space and
injecting faults. Despite this, we proceed with treating each fault injected at a specific time as distinct,
as faults occurring at different time instants may exhibit varying behavior and thus warrant separate
consideration.

Table 6.3: Summary of all faults instrumented on FIFO with the proposed verification flow

Classification Fault numbers
Not Observed Diagnosed (ND) 2611
Not Observed Not Diagnosed (NN) 1393
Observed Diagnosed (OD) 731
Observed Not Diagnosed (ON) 1252
Total 5987
Impossible x-state (IX) 156
Untestable Unused (UU) 616
Not Controlled (NC) 223
Total 6982
Diagnostic Coverage 70.36%

The results of the proposed verification methodology applied to the FIFO design are depicted in
Table 6.3. This analysis does not include an external classification input file to automatically modify
the outputs of specific signals, which will be discussed in the next step. As evidenced by the results,
the proposed flow yields a DC of 70.36% for the FIFO. This DC considers all possible fault locations in
the design for SA faults. Transient faults on supported location types with VC Z01X are considered,
following which the remaining fault space is covered by XFS. It is however interesting to note that the
back propagation issue would still be prevalent for input ports while instrumenting transient faults with
XFS. Although it represents a real life scenario and signifies a fault injected on the wire connected to
the port, the transient fault space in XFS does not cover faults injected at the port inwards towards
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lower hierarchies. Consequently, a small subset of faults remains unaddressed by the overall verification
flow, a shortcoming which could not be solved by the combination of the tools as well.

Following this report, the next logical step involves identifying methods to enhance coverage. To
achieve this, all dangerous faults must be analysed. For instance, ON faults identified during SA fault
analysis should be rectified prior to injecting transient faults. Otherwise, the percentage of ON faults
may significantly increase during transient fault injection with the addition of different time instants.
Similarly, IX faults require examination to determine if they can be reclassified or if design alterations
can be made to assign appropriate values to the signals, thereby eliminating the unknown state.

To verify the added functionality of updating classifications, we consider the input classification file,
as mentioned in Listing 5.2. We present the results of the reports, before and after integrating the classi-
fication file as an input to the flow. Considering the signal test.DUT.sdpram_i1.ECC_Enc.DataEnc[1],
where we want to convert all IX classifications of the signal to UU, we see the following results, as shown
in Figure 6.1 and Figure 6.2. The original report is displayed on the left side, while the modi-
fied report is shown on the right side. In Figure 6.1, the signals are found, but they do not match
the source classification. Hence they are not updated in the final report. In Figure 6.2, all signals have
matching source classifications, resulting in their update to UU classification. Further, the number of
IX classifications decreases by 4, while the corresponding UU class increases by 4.

Figure 6.1: Conversion of signal using classification script - no match found

Figure 6.2: Conversion of signal using classification script - match found and updated

Now, considering the signal test.DUT.sdpram_i1.ECC_Enc.DataEnc[4], depicted in Figure 6.3, we
observe that this signal is part of a collapsed fault group involving multiple signals. Since the ’group’
parameter is specified, all classifications in the list need to be updated. Consequently, the primary
fault in this list is adjusted to NN, the desired classification. The collapsed signals, denoted by ’- -’,
remain unchanged as they inherit the fault class of the primary fault. In terms of numerical changes,
ND decreases by 10, while NN increases by 10.

Figure 6.3: Conversion of collapsed signal in a list (with parameter ’group’)

Now, let us consider the case of test.DUT.DataIn[0], which requires conversion from ON to OD.
However, the ’single’ parameter is also applied to this signal. This implies that if this signal is part of
a collapsed list, the classification of all other signals in the list should remain unchanged. The corre-
sponding reports are depicted in Figure 6.4. The required signal is changed to the desired classification,
whereas the other two signals in the list are kept as ON. Further, OD is incremented by 2, while reducing
ON by 2.
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Figure 6.4: Conversion of collapsed signal in a list (with parameter ’single’)

Considering the external classification file(Listing 5.2), we see that the Diagnostic Coverage increases
from 70.36% to 70.81%. However, the input file considered in this case was developed in order to test
different scenarios for the verification of the added feature, and not representative of actual modifications
required for signals. Therefore, we look at a more practical case of the IX faults to see if they can be
changed to a more accurate classification based on manual analysis of the faults, and utilise this feature.

To recap the verification setup for FIFO design, writes were initiated to all locations of the FIFO until
1250ns, after which reads were triggered. Taking a look at the 176 IX faults present in the design, there
are several groups of signals which contribute to this - first, test.DUT.sdpram_i1.ECC_Enc.DataEnc
and test.DUT.sdpram_i1.sdpram_i1.L_ DataIn. All bits of these signals are currently classified as IX
when the corresponding bit is held at an x-state. Upon closer observation, it appears that no value
is being driven to these signals in the testbench after the writes have been completed,
resulting in them being held in an unknown state. However, these signals are detected by the
Safety Mechanisms at all other timestamps. In this scenario, we have two options: first, we can modify
the testbench to accurately drive the appropriate signals, or second, we can utilize the classification
update feature to adjust the fault classes of these signals. Given the availability of the feature, we opt
to utilize it to convert these IX faults.

Next, we have the set of signals - test.DUT.DataIn, test.DUT.sdpram_i1.L_DataIn, test.DUT.
sdpram_1.ECC_enc.DataIn, which are Observed and Not Diagnosed (ON), until the writes are being
performed. Once the read operation starts, these signals are again held at an x-state. However, if
these signals were set to a particular value(ideally 0 if no write is happening), and a transient fault was
injected on them for a clock cycle, they would neither be observed nor diagnosed (NN) as it would not
affect the read functionality happening at that time. Hence all these IX faults can be converted to NN.

After converting the aformentioned set of signals to the required classifications, we are
able to improve the Diagnostic Coverage from 70.36% to 73.23%. An important thing to
consider is that there are still 223 ‘Not Controllable’ (NC) faults, as seen in Table 6.3. These faults
are not representative of any group of signals which can be updated to a required classification based
on manual analysis. Therefore, tests must be written in order to toggle the signals at these faults.
Consequently, these faults could fall into the OD/ON/NN categories based on the test outcomes, thus
impacting the DC once again. As the initial two tests conducted for this design were targeted, a third
test is planned to introduce some randomness in the data written to the FIFO, aiming to cover a broader
range of data combinations.

The number of NC faults decreases from 223 to 58 after executing the flow with the third test. These
faults drop into the categories of NN, ON, and OD. Consequently, the count of ON faults increases from
1252 to 1304, resulting in a slight decrease in DC from 73.23% to 73.21%. This indicates that
by introducing more randomness and toggling additional signals in the simulation, the DC experiences a
marginal reduction. While further tests could be developed to address the toggling of signals associated
with NC faults, this aspect is not pursued here, considering this as merely an illustrative example for
FuSa verification. However, in a more comprehensive design, such considerations would be crucial,
prompting the development of more refined tests.

We conclude the takeaways from the results of the proposed verification flow in the following points:

• The Diagnostic Coverage achieved through the verification methodology takes into account the
maximum possible fault space supported by a combination of the two tools, resulting in a more
accurate coverage estimation. However, the transient fault space analysis is still limited due to
the lack of standardized guidelines and information regarding the choice of fault injection and
hold times.

• The faults classified as ON, OD, NN and ND can be taken on merit from the results of the final
report. Other signals such as IX and NC need to be deduced in order to further classify the
signals.
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• Transient faults categorized as IX need to undergo analysis to determine whether the design can
be enhanced to prevent those signals from being held in an unknown state at any instance after
the reset has been deasserted. Alternatively, if they can be assumed safe on a detailed analysis
of the faults at other timestamps, they can be converted to the desired classification using the
proposed classification update feature.

• Faults labeled as NC indicate signals that do not toggle. Therefore, more effective tests need to be
developed to enable these signals to toggle during good simulations. Additionally, if these signals
collectively represent a group that is typically detected or considered safe, they can be reassigned
to a desired classification.

The analysis of the verification methodology on the FIFO design provides valuable insights into the
effectiveness of Safety Mechanisms and serves as a preliminary step in Functional Safety Verification.
However, it is important to note that this design is not fully representative of automotive industry
standards. Therefore, we shift our focus to a more relevant automotive design to analyse the results
and focus on enhancing the design’s reliability and robustness.

6.2. AutoSoC overview
To assess the efficacy of the verification flow on a larger scale, it is important to select an appropriate
benchmark design tailored for automotive needs. In view of this, we opt for the Automotive SoC
(AutoSoC) [51] [52], a fully open-source benchmark suite for automotive System-on-Chip (SoC) that
encompasses both hardware and software components. The AutoSoC was created with the intention of
providing a benchmark suite capable of meeting industry demands while also being open to researchers
for conducting comprehensive comparisons across different methodologies and tools. Hence, it serves as
an ideal candidate for us to execute the proposed verification flow and analyze the results.

The AutoSoC is distributed as a collection of configurable hardware IPs, described in RTL, and
integrated into a System on Chip. The suite comprises various hardware configurations, diverse options
of Safety Mechanisms (SMs), and software applications developed for the automotive sector. Figure 6.5
presents an overview of the functional blocks in AutoSoC. The concept of functional blocks is introduced
to maintain modularity within the design. By tailoring different versions of AutoSoC to meet the
specific requirements of each functional block and accommodate various design use cases, the flexibility
to incorporate different hardware components is ensured.

Figure 6.5: Functional modules of AutoSoC [51]

The Safety Island serves as a dedicated functional block responsible for handling all safety-critical
processing tasks. It encompasses essential components such as the CPU and memories, which require
protection through Safety Mechanisms. On the other hand, the Application Specific Block consists
of hardware tailored for application-specific processing needs. This unit may incorporate CPUs and
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memories optimized for high-demand applications, as well as specialized components like GPUs and
image processing units tailored for video applications.

Complementing these primary blocks are auxiliary components essential for broader system func-
tionality. The Automotive Block facilitates communication with in-vehicle systems, supporting CAN
protocol. However, protocols such as FlexRay, LIN, and Automotive Ethernet could also be incor-
porated in this block. The Security Block manages all security-related functionalities, encompassing
encryption cores such as AES and DES. The Infrastructure Block oversees online health monitoring,
equipped with debugging tools like JTAG and UARTs to ease development processes. Lastly, the Inter-
connect Block governs internal communication, utilizing standard buses such as AXI and Wishbone or
advanced solutions like Network-on-Chip (NoC) to facilitate easy data exchange between components.

The CPU used for AutoSoC is based on the mor1kx implementation of the OpenRISC CPU [53]. The
SoC is based on an example SoC package comprising of a CPU, memory, UART, JTAG, and a debug
unit, interconnected through a Wishbone bus. Additionally, the SoC incorporates a testbench equipped
with functionalities for loading software applications into memory and establishing a connection to the
debug unit via JTAG. On the software side, the AutoSoC integrates different software resources to cater
to different application scenarios. This includes an extensive set of development tools, pre-compiled test
applications, a bootable Linux kernel, and a dedicated RTEMS[54] environment.An Automotive Cruise
Control application is available (autosoc.exe), built upon the RTEMS operating system, which includes
real-time tasks for vehicle sensor data processing, actuation computation, engine parameter adjustment,
and system housekeeping. This is also the software application which is used primarily while executing
the verification flow on the AutoSoC.

Our main emphasis lies on the inclusion of Safety Mechanisms within the Safety Island, a vital
component for safety-critical applications. AutoSoC offers support for various Safety Mechanisms (SMs),
each customizable through additional defines provided during elaboration and runtime. Using these
defines, different configurations of AutoSoC are defined, pertaining to different ASILs. Figure 6.6
presents one such configuration (SAFE configuration), which implements all the Safety Mechanisms
- DCLS, ECC, Bus Parity, Checkpoint Control, Safety Monitor and STLs. The different SMs are
discussed below:

Figure 6.6: AutoSoC SAFE configuration [51]



6.2. AutoSoC overview 81

• Dual Core Lock Step (DCLS): DCLS is the most common SM which is present in processors
targeting ASIL D applications. A time diverse DCLS is implemented in AutoSoC as one of
the configurations, as shown in Figure 6.7. Only the main CPU has write access to the bus,
controlling the SoC’s functionality, while the shadow CPU’s outputs are used for fault detection
by the Compare Unit. Any discrepancies between the processors’ outputs trigger an alarm through
the Compare Unit. The delay units are inserted at the output of the main CPU and the input of
the shadow CPU to provide temporal diversity. The default configuration implements a delay of
2 clock cycles, which can be changed according to the requirements of fault tolerant time interval.

Figure 6.7: DCLS implementation in AutoSoC with time diversity

• Internal and External Memories ECC: Internal memories typically occupy a large area on
the physical device, thereby correlating to the maximum probability of faults. Based on indus-
try standards, ECC emerges as the best option for implementing SMs for internal memories,
considering it’s high probability of detecting and correcting faults while maintaining a relatively
low area footprint. Additionally, external RAM should also be protected by ECC since soft-
ware applications depend on external memory for storing critical data and control parameters.
Consequently, failures in external memory could directly impact intended functionality, thereby
requiring protection by ECC.

• Bus parity: The implementation of a parity checker to the data bus ensures fault detection in
data transmissions between the CPU and memory, protecting against faults that may otherwise
go undetected by other SMs. The parity checker calculates a Parity bit for each communication
happening between the memory and CPU, and any discrepancy triggers an alarm to alert the
system.

• Checkpoint Control: The Checkpoint Control monitors the Data Bus for predetermined soft-
ware signatures in specific memory locations, protecting against common mode failures that could
happen in DCLS. Acting as a Hardware Watchdog, it verifies the Control Flow by expecting dif-
ferent signatures for each software task, ensuring not only that the software is running but also
that the Control Flow aligns with expectations. This configuration is cutomizable in terms of
software signatures which can be provided along with the expected sequence and deadlines.

• Safety monitor: The Safety Monitor block generates external alarms and error codes upon
detecting faults in any Safety Mechanism, serving as a central hub for detection alarms. As
shown in Figure 6.6, this block considers signals from DCLS, External Memory ECC, Bus Parity,
and Checkpoint Control, to generate error alarm and provide the specific code for the triggering
SM.

• Software Test Library (STL): STLs are integrated in AutoSoC to minimize overhead in terms
of area while still achieving high ASIL capability. The STL consists of 16 test programs totaling 64
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KB. The AutoSoC STL Configuration focuses on the CPU (mor1kx_cpu), eliminating potential
sources of non-determinism like Instruction Cache and Data Cache. It is important to ensure
a deterministic instruction stream for STL execution, including deactivation of modules causing
control flow fluctuations (e.g., caches) during fault grading. This setup does not prohibit the use
of caches or similar components during STL deployment but requires additional preparation for
test library execution.

6.2.1. AutoSoC setup
The AutoSoC benchmark suite supports different configurations, combining a choice of Safety Mecha-
nisms to be used, along with the software application to be tested. On the hardware side, the different
configurations[51] supported by AutoSoC are outlined in Table 6.4.

Table 6.4: AutoSoC configurations [51]

Benchmark
configuration

DCLS Internal
Mem
ECC

STL Bus
parity

Checkpoint
Control

Safety
Monitor

QM - - - - - -
ECC - + - - - -
STL - + + - - -
DCLS + - - - - +
SAFE + - - + + +

In order to create a new configuration, a separate build directory needs to be created containing the
following files:

• An elaboration file containing all the design sources and testbench files must be provided. Unless
new design or TB sources are added, this file remains consistent across all configurations.

• An additional args file is to be provided containing the different configurations to be run with
AutoSoC. For example, the software application to be run must be provided in this file along with
+elf_load=<software binary> option. In order to run the autosoc application, we provide the
option - +elf_load=autosoc.exe. With this option, the binary file is loaded onto the memory
for simulation. clean_ram is used to write zeroes to the RAM memories during the start of the
simulation.
In order to configure the Safety Mechanisms, additional defines need to be provided. For exam-
ple, if we want to enable ECC on internal memories, bus parity and checkpoint control in one
configuration, we need to provide the following options:

– +define+MEMECC
– +define+PARITY
– +define+CHECKPOINT

For DCLS, the define to be used is +define+LOCKSTEP. Although Safety Monitor is provided
as an option which can be configured, the AutoSoC benchmark implements it regardless of any
additional defines. Therefore, this monitor is enabled by default, requiring no additional defines.
Likewise, for the STL configuration, there’s no need for extra defines to be provided, except for
altering the software application to be loaded. The STL application needs to be loaded for the
STL configuration to work.

• Functional and checker strobes must be specified for the given configuration. The functional
strobes remain consistent across all configurations and include signals related to the instruction
and data buses, as well as Special Purpose Register (SPR) accesses to external units like cache
and MMU. Regarding checker strobes, the relevant signals should be included depending on the
configuration used. For instance, if ECC is implemented, the corresponding error detection signals
from ECC decoder modules must be designated as the checker strobes.
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• The fault targets and exclusions are dependent on the user and configuration used. They can
be adjusted according to specific requirements and the necessity of module-level fault injection.

Using the described setup, automated scripts facilitate the generation of fault injection simulation
results on the AutoSoC. In the following section, we look at the initial results and the implemented
enhancements designed to elevate the ASIL level of the SoC.

6.3. Implementation of AutoSoC Safety Mechanisms and classi-
fication results

First and foremost, it is important not to proceed directly with fault simulation on the entire design
because of it’s large and complex nature. Instead, dividing the design into smaller blocks aids in
facilitating easier analysis. By examining the total number of instrumented faults across different parts
of the design, we gain insights into which areas cover the most fault locations. As also seen in [51],
faults are injected on all possible locations in the mor1kx_cpu, including the internal memories. The
initial analysis involves obtaining the list of SA faults generated by XFS, utilizing the existing setup in
the AutoSoC benchmark. As depicted in Figure 6.8, internal memories encompass approximately 96%
of the fault space, with logic faults in the CPU constituting the remaining 4%. Further distribution of
memory faults is illustrated in Figure 6.8 as well. Given that these memory faults dominate most of the
fault space, prioritizing them seems logical. Addressing these faults initially could potentially elevate
the component to an ASIL B level, even if the ECC can detect 99% of the faults.

Figure 6.8: Distribution of logic and memory faults

[51] does not consider the register file memory as part of the internal memories, but instead considers
it a part of the logic faults. Hence, the corresponding analysis presents that internal memories only
cover 91.3% of the fault space. The Diagnostic Coverage of ECC is estimated as 92.8%, considering
a 99% DC, in [51]. However, it is important to note that fault simulations have not been performed
in this instance, and the figure serves as an estimate of the DC. To validate this estimate, we perform
fault simulations on the design.

At first glance, after running fault simulations on one of the internal memories (Fetch Cache Tag
RAM), we see that none of the faults on the memories are getting detected, and hence
the Diagnostic Coverage obtained from the ECC Safety Mechanism is 0%. Upon closer
observation, it is noticed that ECC is not implemented for the internal memories of the AutoSoC.
Therefore, utilizing the available ECC modules in the benchmark suite, ECC is implemented on internal
memories, which is further discussed in the next section.
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6.3.1. Results of ECC implementation on Internal Memories
All internal memories are instances of dual-port RAM (DPRAM) module. To enable ECC on memory,
a separate DPRAM module with ECC functionality is developed. An OPTION_MEMECC parameter
is passed to various modules in the hierarchy based on whether lower modules require an instance
of the DPRAM. Depending on the status of OPTION_MEMECC, either a generic instance or the
ECC-enabled instance of the DPRAM is invoked.

The ECC module available in AutoSoC is a double error correcting (DEC) BCH [55] code. It allows
for correction upto 2 bit errors, and supports 16/32/64/128 bit memories. It operates on complete
memory words in a single cycle and is a purely combination logic design. When data is written to a
particular address in the RAM, the same data is also passed as an input to the ECC encoder module.
As depicted in Figure 6.9, the ECC encoder module takes a data input (d_i) and computes an ECC
syndrome (p_o) (calculated ECC signature) based on the data width. For instance, with a data width
of 64 (upto 113), the corresponding syndrome length is 14. Similarly, for a data width of 32 (upto
51), the syndrome width is 12. This parametrization allows for flexibility regarding the supported data
widths. For example, most internal memories have a data width of 32 bits. However, certain instances
of the DPRAM memories in modules like Tag RAM and LSU store buffer have data widths of 39, 41,
and 102 bits. Depending on the data width, the syndrome width is adjusted accordingly, thereby also
requiring careful specification of signals of that particular width connected to the port. The calculated
ECC signature is specific to a particular address and is used for comparison while decoding the read
data from this address.

The decoder module operates with two inputs: the read data from the address (d_i) and the stored
ECC signature at that address (ecc_i). Using these inputs, the module sets the corresponding error
detection signal (err_det_o) and mask (msk_o). If no error is detected, the mask remains 0. However,
if an error is detected, the mask becomes a non-zero value, indicating that the read data must be
XOR-ed with the mask before being assigned to the data out signal from the RAM.

Figure 6.9: ECC encoder and decoder modules for DEC BCH codes

After including the ECC implemented version of DPRAM on all the internal memories, the results
obtained from the SA fault simulation are shown in Table 6.5. As seen from the results, there are no
faults which are observed at the functional outputs and not detected by the Safety Mechanism (ON
faults). Therefore, the Diagnostic Coverage achieved by ECC is 100% on SA faults, as expected for
a correctly implemented ECC solution capable of resolving one-bit errors. Faults categorized as Not
Observed Not Diagnosed (NN) and Not Controllable (NC) result from insufficient toggling on different
memory bits within the AutoSoC application. While the application can toggle a significant number of
bits among the 300,000-odd potential memory locations, it does not exercise all bits, leading to the NN
and NC classifications. If there were any issues with the ECC encoding and decoding functionality, faults
would not have been detected at the corresponding checker outputs for the signals that were toggling.
Therefore, these faults can be considered Safe. Ideally, additional tests could cover the remaining non-
toggling bits. However, due to the absence of a proper randomized testbench, developing software
applications specifically for toggling all memory bits and exercising fault injection is beyond the scope
of this thesis.

[51] does not consider transient fault analysis for the final evaluation of the AutoSoC.
In this study, transient faults are also injected on all memory locations, albeit on a smaller subset of
the fault space and only at single timestamps. This is done because of the large number of faults in the
transient fault space of memory locations. The corresponding results are shown in Table 6.6.

As seen from Table 6.6, the number of detected faults decreases in comparison to the results from
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Table 6.5: Summary of SA faults on internal memories with ECC

Memory sub blocks ND NN/NC Total
Fetch Instruction Cache TAG RAM 10515 10477 20992
Fetch Instruction Cache RAM 159453 102691 262144
Fetch Instructions MMU RAM 0 8192 8192
Load/Store Data Cache TAG RAM 9996 9972 19968
Load/Store Data Cache RAM 204755 57389 262144
Load/Store Store buffer 39158 12554 51712
Load/Store Data MMU RAM 0 8192 8192
Register File 5259 7029 12288
Total 429136 216496 645632
Diagnostic Coverage 100%

Table 6.6: Summary of transient faults on internal memories with ECC

Memory sub blocks ND NN/NC IX Total
Fetch Instruction Cache TAG RAM 7954 13038 0 20992
Fetch Instruction Cache RAM 119832 142312 0 262144
Fetch Instructions MMU RAM 0 0 8192 8192
Load/Store Data Cache TAG RAM 8105 11863 0 19968
Load/Store Data Cache RAM 176504 85640 0 262144
Load/Store Store buffer 30458 21254 0 51712
Load/Store Data MMU RAM 0 0 8192 8192
Register File 3807 8481 0 12288
Total 346660 282588 16384 645632
Diagnostic Coverage 95.48%

SA faults. This is attributed to transient fault injection and hold times, which might not necessarily
result in fault detection or activation at all timestamps. Further, we also see that there are 16384 faults
which are labeled as IX because of which Diagnostic Coverage decreases from 100% to 95.48%.
These faults correspond to Translation Lookaside Buffer memories inside Memory Management Unit
(MMU). The MMU for both instruction and data modules are not enabled and hence the signals in the
particular module are held at an unknown state. However, since these memories are also instantiated
as ECC-enabled instances of the same modules used in other memories, it is reasonable to expect ECC
detection for this memory as well. Consequently, we can utilize the fault classification script to designate
these signals as Safe (or detected), effectively achieving a Diagnostic Coverage of 100% once more.

Figure 6.10: Summary of Diagnostic Coverage with ECC
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A manual examination of transient faults further demonstrates that ECC errors, if they occur, will be
detected regardless of the fault injection time and hold time. This is attributed to the fully combinational
nature of the ECC encoder and decoder modules. Therefore, during memory read operations, any bit
flips that occur at any moment can be captured by the decoder module. The final results of the ECC
implementation, and its comparisons to the baseline (verification setup in the benchmark suite using
XFS) and proposed flows with the update classification script are illustrated in Figure 6.10. In the next
section, we delve into the logic faults within the design and explore potential enhancements to address
them.

6.3.2. Results of Pipeline stage duplication with temporal redundancy
The next step is to identify areas of improvement within the logical part of the CPU. Figure 6.11 and
Table 6.7 illustrate the distribution of faults on the CPU excluding the memory faults. It is evident
from the figure that the Control, LSU, and Fetch modules encompass the highest percentage of faults,
approximately 70%. Thus, we look at covering this fault space with the help of an additional Safety
Mechanism. We apply the concept of redundancy on these modules in a way similar to DCLS to be
able to achieve high diagnostic coverage with minimal effort.

Figure 6.11: Division of logic faults

Table 6.7: Distribution of logic faults in different modules

Module No. of faults % of faults in CPU
Fetch 4746 18%
Decode 548 2%
Decode execute 1202 5%
Branch prediction 134 1%
Execute ALU 2716 10%
LSU 6330 24%
Wishbone (WB) mux 396 2%
Register File (RF) 1628 6%
Execute control 810 3%
Control 7726 29%
Total 26236 100%
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As shown in Figure 6.12, the fetch module is duplicated with two instances, where output signals
from the primary fetch are provided to the SoC (without any delay). Inputs to the shadow fetch
undergo a two clock cycle delay. Similarly, outputs from the main fetch are delayed by two clock cycles
for comparison with the redundant module. Any differences in outputs trigger the fetch lockstep error
signal, which also functions as the checker strobe for this configuration.

With respect to the defines, another configuration, namely OPTION_FETCH_DUP, is introduced.
When enabled, both instances of the fetch module are instantiated; otherwise, only a single instance is
created. To assess the initial diagnostic efficiency of this Safety Mechanism, faults are injected into the
reduced fault space using XFS, and the outcomes are summarized in Table 6.8.

Figure 6.12: Duplication of fetch module with temporal redundancy

Table 6.8: SA Classification results of fetch duplication with time redundancy

Classification Number of faults
Not Observed Diagnosed (ND) 579
Not Observed Not Diagnosed (NN) 3151
Observed Diagnosed (OD) 1078
Observed Not Diagnosed (ON) 4
Total 4746
Diagnostic Coverage 99.75%

As seen from Table 6.8, majority of the faults inside the fetch module are detected, lead-
ing to a Diagnostic Coverage of 99.75%. However, we see that 4 faults are observed at the
functional output, but not detected by the lockstep mechanism. These four faults are residual faults
observed on signals that cause a jump to an invalid PC address. For example, injecting a SA fault on
decode_branch_i (one of the four ON signals) triggers a jump to a PC address because of the injected
fault, causing an invalid PC address. Consequently, one or more of the output signals from the main
CPU are held at a high impedance or unknown state. As shown in Figure 6.13, the ibus_addr_o signal
is held at an unknown state (and subsequently ibus_addr_o_delay), and even though it differs from
the ibus_adr_o_shadow signal, it still does not trigger the lockstep error, since comparisons are not
valid on ‘x’ signals. The four faults categorized as ON are all representative of this type of fault and
hence are not detected by the Safety Mechanism.

It is important to note here that the summary of faults presented in Table 6.8 cover the faults
injected only on the main module. It does not cover faults injected on the redundant logic and the
comparator. Faults injected solely on the safety mechanism logic can be considered Safe, since they
will not affect the functional outputs of the fetch module, and will be detected by the comparator
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Figure 6.13: Analysis of ON fault for fetch duplication

logic. Additionally, a manual analysis of faults on the comparator is further presented to understand
the effects of comparator faults on a dual-logic setup. For instance, let us take the example of a fault
injected into one of the locations inside the fetch module:

autosoc_tb.dut.mor1kx0.mor1kx_cpu.cappuccino.mor1kx_cpu.mor1kx_fetch_cappuccino.ic_
enable

This fault triggers the fetch lockstep error signal, which occurs due to the discrepancy of the delay
and shadow version of the two signals - ibus_addr_delay_[2] and ibus_req_o_delay, as shown in
Figure 6.14. Given that we are only dealing with the inputs and outputs of the comparator, our focus
lies with potential faults in these areas. If a SA fault is present on any one of the comparator inputs
(delay or shadow signal), the error will still be detected because mismatches will be found for other
timestamps. However, if both the delay and shadow signals are stuck at the same value, then the error
will not be detected.

Figure 6.14: Signal mismatches from the comparator

In the event of a transient fault causing the comparator logic to fail, one such possibility is that
both the inputs ibus_adr_o_delay[2] and ibus_req_o_delay have a transient fault at the exact same
time and for a fixed duration. However, the probability of such a scenario might be very low as well. In
most cases, the fetch lockstep error will be detected if transient faults are injected at other timestamps,
or not on specific bits of the signals.

Next, we extend the dual logic design to both the Control and the LSU modules, the results of which
are tabulated in Table 6.9. As shown, LSU module duplication achieves a DC of 98.42%, with
40 faults categorized as ON. Again, this is because of output signals being held at an unknown value
and failing in comparison with the corresponding shadow values. On the other hand, Control module
duplication is able to achieve a DC of 100%, with no residual faults.

Table 6.9: SA Classification results for duplication of Control and LSU modules

Classification LSU Control
Not Observed Diagnosed 1019 3635
Not Observed Not Diagnosed 3310 3212
Observed Diagnosed 1914 235
Observed Not Diagnosed 47 0
Untestable/Safe faults 40 0
Total 6330 7726
Diagnostic Coverage 98.42% 100%

We combine the implementation of ECC along with the duplication of Control, Fetch and LSU
modules to obtain results arising from the overall enhancements. As shown in Table 6.10, the results
include SA faults injected at all logic modules in the CPU along with internal memories. Faults are
however not injected on duplicated modules and comparator logic. The numbers presented do not take
into account the update classification feature and provide the baseline results on the AutoSoC design.
The final Diagnostic Coverage obtained is 97.66%, which corresponds to an ASIL C level
component. Further, it is also seen that the combination of LSU and Control module duplication also
contributes to a Diagnostic Coverage of 97.33%, indicating its suitability for an ASIL C component.
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Table 6.10: Overall AutoSoC classification results for SA faults (baseline flow)

Classification Numbers
Not Observed Diagnosed 434361
Not Observed Not Diagnosed 228707
Observed Diagnosed 3227
Observed Not Diagnosed 7301
Untestable/Safe faults 684
Total 674280
Diagnostic Coverage 98.36%

It is important to note that these results do not account for the effect of transient faults or the
influence of port and wire faults on duplicated modules, which could potentially result in different clas-
sifications. Thus, Table 6.10 presents the results of the proposed verification flow considering transient
faults as well as the extended fault space. This does not include the usage of the update classification
script to change fault classes of signals. As seen, the Diagnostic Coverage decreases to 95.88%,
which makes the design an ASIL B component.

The reduction in DC can be attributed to the inclusion of transient faults along with faults injected
at various location types. Common input signals shared among redundant modules will classify all
faults as ON due to common-mode errors, leading to a reduced DC. Moreover, there is an increase in
the number of IX faults resulting from faults injected randomly during simulation. In this group, there
are 16,384 faults that can be updated to Safe/Detected status, as depicted in Figure 6.10. Using the
update classification script, we modify the status of these signals, resulting in a final Diagnostic
Coverage of 97.79%, thereby reinstating it as an ASIL C component. The final results are
illustrated in Figure 6.15.

Table 6.11: Overall AutoSoC classification results for entire fault space (proposed flow)

Classification Numbers
Not Observed Diagnosed 793387
Not Observed Not Diagnosed 43329
Observed Diagnosed 11816
Observed Not Diagnosed 13537
Untestable/Safe faults 2736
Impossible X-State 21034
Total 885839
Diagnostic Coverage 95.88%

Figure 6.15: Comparison of results on AutoSoC - baseline v/s proposed flow
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While the final Diagnostic Coverage remains lower compared to the baseline flow, the ASIL level of
the component remained unchanged after using the proposed flow. However, in a scenario where
the Diagnostic Coverage approaches the lower limit of the ASIL metrics, the proposed flow
could play a critical role in determining the ASIL of the desired component. Neglecting
to consider all faults may result in the eventual metric incorrectly assigning a higher ASIL
level to a component. This could have dire implications on the final quality of the product.

6.4. Discussion
The results of the proposed verification flow on the FIFO and AutoSoC designs indicate that the
Diagnostic Coverage varies depending on the faults considered for simulation. By incorporating a
combination of two tools, the proposed methodology covers the maximum possible fault space, thereby
providing more accurate coverage metrics. Initial analysis of the design identified areas for improvement
within the memories and logic parts of the CPU, highlighting the distribution of faults in each category.
Subsequently, the implementation of ECC on internal memories and duplication of three modules was
performed. Following the verification flow, the AutoSoC design achieved an ASIL C certification.
Now, the question arises: How do these modifications impact the area utilization of the overall design
compared to the baseline design?

To estimate the additional area required for the enhancements made to the design, we consider
the total number of faults. There are a total of 322,816 locations for internal memories and 13,118
logic locations. Considering that every 32 bits of data required 12 bits of ECC logic, we would need
an additional 121,056 bits for ECC. Additionally, we would require extra logic for error mask, enable,
encoder, and decoder logic. This is estimated by instrumenting a fault list on the RAM instance, which
yields an additional 3512 locations for the ECC logic on all RAM instances. For the duplication of
modules, we consider the number of fault locations duplicated in the logic, along with the comparator
faults. This adds an additional 10,924 fault locations to the picture. Therefore, the estimate of the
total additional fault locations in the enhanced design is 135,492, indicating an increase of 1.4x
compared to the original design area. In comparison to DCLS, which would have a 2x increase
in area while providing an ASIL D design with 99% coverage, this design does not incur as much area
overhead while still achieving a coverage close to ASIL D rating.

The Diagnostic Coverage of the design could potentially improve further depending on the manual
analysis of the IX faults occurring in the logic of the CPU. The presence of many signals held at an
unknown state during simulation also highlights the importance of ensuring proper signal assignment
for different scenarios within the design. Moreover, this situation highlights a critical issue related to
transient fault injection. The potential fault space for transient faults is extensive, implying that faults
could be injected at any time during simulation and for any duration. Although it was feasible to inject
multiple transient faults in the FIFO design, achieving the same in a much larger and more complex
design such as AutoSoC is nearly impossible. As a result, we could only inject one transient fault per
location at a random timestamp. However, does the transient fault injection guarantee that a fault will
be propagated at that particular timestamp, or does it have to be injected at a fixed time in order to
see the effect of the fault on the strobes? The complexity of the transient fault space thus raises serious
questions for future methodologies to be developed for improving estimation of transient fault space
coverage.
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Conclusion

7.1. Summary
The primary aim of the thesis was to evaluate EDA tools used for Functional Safety Verification with
RTL designs, aiming to identify possible discrepancies in their outcomes and feature sets. Inconsistencies
in results could potentially lead to varying ASILs being assigned to different components. Therefore, a
thorough analysis of FuSa EDA tools was required to understand any disparities in fault classification
results and to identify potential advantages of one tool over another, if there were any. Therefore, the
primary research question was centered around comparing the results of FuSa EDA tools on reference
RTL designs. Further, how could these differences be resolved to develop a better verification method-
ology and also provide accurate coverage metrics? The thesis aimed at addressing these concerns by
comparing two FuSa EDA tools and subsequently devising a verification framework informed by the
obtained results.

Chapters 1 and 2 provided initial insights by exploring the fundamentals of Functional Safety and
delving into the ISO 26262 lifecycle. The problem statement and essential background information were
introduced, setting the foundation for the remainder of the thesis. In Chapter 3, existing methodologies
and techniques for Functional Safety Verification were analysed, alongside an examination of typical
Safety Mechanisms employed in functional safe designs. This analysis highlighted the need for a com-
prehensive evaluation of FuSa EDA tools due to observed discrepancies in verification results across
different methodologies. Chapter 4 presented a qualitative and quantitative comparison of two EDA
tools, with a specific focus on their respective strengths and weaknesses. Building upon this comparative
analysis, Chapter 5 proposed a novel verification methodology that combined the capabilities of both
tools to develop a robust and reliable verification solution. The results of this approach were presented
in Chapter 6, which scrutinized its efficacy on two distinct designs: FIFO with ECC and AutoSoC, an
automotive-grade SoC tailored for functional safety applications. Additionally, Safety Mechanisms were
proposed and implemented on the AutoSoC to improve its ASIL level, aligning with industry standards
and requirements.

The comparison of the two EDA tools - XFS and VC Z01X provided several noteworthy insights.
First, XFS had an issue of back propagation while injecting faults on input and output ports. While
this serves as a valid fault scenario, it was not covering faults injected solely on the port and not
back propagating. This resulted in missing a particular section of faults in XFS. VC Z01X, on the
other hand, injected faults on various location types, which allowed it to exercise different types of
faults. This difference had an effect on the fault classifications, thereby leading to divergent Diagnostic
Coverage numbers. Second, VC Z01X boasted a notably faster fault simulation capability, attributed to
its concurrent engine, in contrast to XFS. Additionally, features such as fault sampling contributed to
expediting fault campaigns within VC Z01X. XFS, on the other hand, had limitations and issues with
the concurrent engine, whilst not supporting SET faults and various HDL constructs. This forced usage
of the serial engine, and even though runs could be split to execute multiple fault injection commands,
it required usage of multiple licenses for the same. Lastly, VC Z01X lacked the capability to inject
transient faults on inputs and intermediate nets, thus leaving a portion of the fault space uncovered.
Despite outperforming XFS in several aspects, this limitation in VC Z01X highlighted the necessity for
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comprehensive fault coverage across all fault types.
Building upon the findings of the comparison, a new verification methodology is proposed combining

the two tools. First, all supported SA and transient faults are injected utilizing VC Z01X. Next, post-
processing scripts are employed to extract reports identifying faults that were not injected with VC
Z01X. For these remaining signals, fault injection commands are automatically generated using scripts
for execution with XFS. This combined approach ensures comprehensive coverage of the maximum
possible fault space, minimizing the risk of overlooking any faults and thereby enhancing the accuracy
of Diagnostic Coverage metrics. Moreover, the methodology capitalizes on the faster fault simulation
flow of VC Z01X while strategically leveraging XFS to cover the unexplored fault space, thus optimizing
efficiency and efficacy in fault simulation.

The proposed verification flow was tested on two designs - one being a reference example of FIFO
enabled with ECC, which also served as the basis of comparison between the two tools. The second
design was AutoSoC, an open-source benchmark suite featuring configurable Safety Mechanisms. The
results revealed that the final Diagnostic Coverage differed from the individual results obtained from
each tool. However, the metric derived from the combined flow offered a more accurate depiction of
the fault space, aiming to minimize oversights in injected faults. Upon initial evaluation of AutoSoC
utilizing the verification flow, potential areas for enhancement were identified. Subsequently, additional
Safety Mechanisms were integrated, including ECC implementation on internal memories and pipeline
stage duplication with temporal redundancy. After utilising the update classification feature of the
proposed verification flow combined with these enhancements, a final Diagnostic Coverage of 97.79%
was achieved. This resulted in an ASIL C rating for the design, while incurring an estimated area
increase of 1.4x. In comparison to DCLS, which boasts a Diagnostic Coverage of 99% and a 2x increase
in area, this design exhibits favorable performance in terms of area utilization while achieving coverage
close to an ASIL D rating.

7.2. Limitations and Future Work
While the proposed flow carefully aims to consider the maximum possible fault space attainable by
the two tools, the results also highlight a critical issue in transient fault campaigns. The possibility of
injecting transient faults at different timestamps with varying hold times presents quite an extensive
transient fault space. However, for a large and complex design, it might not be possible to inject all such
faults. Even if we consider a portion of these faults, is it possible to make sure that the injected faults
will result in propagation to the concerned outputs? If not, how do we ensure that the injection and
hold times are selected in a manner that guarantees the faults will indeed impact the strobes? While
these questions could not be answered in the current scope of this thesis, they pave the way for future
methodologies to consider these aspects of the transient fault space for better coverage estimation.
Further, extensive guidelines regarding the injection of transient faults and the associated diagnostic
coverage should be incorporated into the ISO standard.

An enhancement to the proposed verification methodology could involve the automated generation
of tests for faults undetected by existing testbenches and scenarios. Drawing inspiration from ATPG
tools, which generate inputs to propagate faults to desired outputs, automated tests could be developed.
However, devising tests at a higher abstraction level such as RTL poses several challenges compared to
GLN, where fault propagation paths are more evident. Nevertheless, there remains potential to develop
tests for faults categorized as “Not Controllable (NC)”, for instance, by toggling the relevant signals in
additional tests. These automated tests could reduce the manual workload on verification engineers,
speeding up fault simulation campaigns and ultimately resulting in accurate coverage results.
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