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Model-based optimization approaches for pressure-driven 
membrane systems 
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A B S T R A C T   

Membrane technology is commonly used within food, bio- and pharmaceutical processes. Beside single-stage 
membranes, multi-stage membrane systems are become more popular to improve separation performance. In 
this review, we present a unified four-phase model-based optimization framework to optimize these systems, 
using mechanistic models, empirical models including machine learning models, or a combination of them. We 
begin by providing a general overview and outlining the steps to construct each phase in the framework. The 
importance of each stage and critical points to consider are discussed. We then provide detailed information for 
each phase, including the governing equations from known literature models. Finally, we explore the platform’s 
potential applications and outlook. Despite the great potential of an integrated approach, studies thus far focus 
either on extensive membrane modeling with brute-force optimization via simple comparison or on meticulous 
optimization using an oversimplified membrane model. We believe that the integrated framework can bridge the 
well justified approaches in both filtration modeling and mathematical optimization and help in designing multi- 
unit processes.   

1. Introduction 

Membrane separation technology is often used for food, bio- and 
pharmaceutical processes because of its mild conditions, resulting in 
limited product quality degradation [1–3], its ability to process a 
massive volume of streams, and its economic benefits [4]. Moreover, 
successful implementation of membrane processes has been reported for 
applications involving macromolecules such as proteins and carbohy
drates [5–8], medium-sized molecules such as oligosaccharides [9,10], 
and small compounds such as sugars and salts [11–15]. 

As a disadvantage, the achievable purity is an issue for membrane 
technology. A single-unit membrane cannot produce the same high- 
purity product as more selective processes such as chromatography 
[16,17] or thermal based processes like evaporation and crystallization. 
Yet, economic considerations and the advantage of mild conditions 
motivate researchers to keep improving the performance of membrane 
processes. This can be done in three ways: (1) improving the selectivity 
by modifying the membrane properties during fabrication [18,19], (2) 
improving the mass transfer by modifying the module design [20,21], 
and (3) optimizing the process design, for example by utilizing multi- 
stage membrane systems [7,22–25]. Each approach has been well 
developed and involves multidisciplinary research, which includes (not 

limited to) material science, process engineering, mathematics and 
computer science. In this paper, we focus on the third approach. 

Optimizing the design of a membrane process may include the se
lection of optimum process parameters (e.g. trans-membrane pressure, 
TMP, or process temperature) of a single membrane unit or the use of 
multiple membrane systems that can be optimized in the later stage as 
well. A membrane system of this configuration comprises multiple 
(similar or different types of) membranes such that it gives an enhanced 
performance compared to a single membrane unit [22–27]. One mem
brane process may function as a pre-treatment for another membrane 
process in order to yield a better overall separation compared to a direct 
feeding. A classic example of such a multiple membrane system is a 
series configuration where the outlet stream of each membrane is fed to 
the next membrane to improve the product purity. For purification of 
permeable compounds, the additional membrane is configured next to 
the permeate stream [28], while for concentration of rejected molecules, 
the additional membrane is configured next to the retentate stream [23]. 
Dilution of this retentate stream before feeding it to the next membrane 
is often done to wash the permeable compounds. Such a process is well 
known as diafiltration [29,30]. 

Membranes in a series configuration (with or without diafiltration) 
only further process one of the two outlet streams of a membrane. The 
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other stream is usually collected and discharged as a waste stream or fed 
to another unit to recover valuable compounds. This practice increases 
the product loss, thus reducing the yield. To overcome this issue, a 
practice of recycling the other stream and feeding it back to the previous 
stage has been applied. The stream can be fed directly to the adjacent 
unit, making it a counter-current cascade configuration (or simply 
cascade) [26,31,32]. An illustration of different configurations of the 
membrane system can be seen in Fig. 1. 

Optimizing membrane systems can be done from two perspectives: 
(1) finding the optimum set of process parameters, and (2) selecting the 
optimum configuration. The optimum process parameters are often 
determined for an individual unit and later used within the full mem
brane system. This practice is easier due to the smaller number of pa
rameters involved during the optimization procedure. In some cases, the 
optima of a single unit are also the optima for the full system. However, 
it can be found that the global objective of a membrane system differs 
from the objective of its individual contributing unit. In those cases, a 
holistic optimization for the complete system is necessary. 

Designing an optimum membrane system can be challenging. It re
quires insight into the behavior of each unit and how a change in each 
process parameter affects the overall performance of the membrane 
system. Brute-force optimization can be done by testing various com
binations of process parameters (e.g. using factorial design) and 
comparing the results. The combination that gives the highest perfor
mance is then selected as the optimum. Considering other possible 
configurations of the system further complicates the search for optimum 
conditions [27]. Testing all possible combinations experimentally can be 
very laborious and may not guarantee that the real optimum is among 
the tested combinations. 

Modeling can aid the optimization process and save a lot of time and 
resources. With a proper model, the outcome of membrane processes can 
be simulated with given process parameters. The optimum can then be 
selected from the best simulated result [26,27]. Due to the huge number 
of possible combinations of process parameters and configurations, the 
search for an optimum set-up can still be challenging and time 
consuming. Applying an optimization algorithm can then help to find 
the optimum faster [36–39]. 

In this paper, we review modeling approaches that have been studied 
for pressure driven membrane processes and integrate them with opti
mization algorithms. While we focus on selected applications within 
food, bioprocesses and pharmaceutical areas, similar principles are ex
pected to apply for other areas. An integrated framework bridging 
membrane filtration modeling and mathematical optimization is then 

discussed as a general guideline to approach complex optimization 
problems in the context of membrane systems. This framework is similar 
to the general framework used in process system engineering [40] giving 
special attention to multi-stage pressure-driven membranes. 

2. Optimization framework 

The optimization of a membrane system using models can be divided 
into two parts: modeling the membrane itself and programming the 
optimization problem. Each part has become the subject of intensive 
research in separate fields. However, an integration of both approaches 
is underrepresented in the literature. 

An integrated modeling approach can be achieved by sequentially 
combining the membrane and optimization models, with the membrane 
model serving as input for the optimization algorithm. Prior to model 
development, it is crucial to define a clear and aligned problem scope to 
synchronize the objectives of both models. A membrane system is 
comprised of multiple filtration units, making a single filtration model 
the building block for the larger membrane system model. This inte
grated approach can be broken down into four phases, which are dis
cussed in the following sections and summarized in Fig. 2. 

2.1. Phase 1: System definition 

The first phase in the modeling framework is to define the system 
itself. This system definition can reflect the following phases to ensure 
the integration between models that will be developed in each phase. 

To define the filtration process, we first set up the model mixture. 
How many components are being considered, and which ones are pre
sent in which streams? It is common to lump and weight-average mul
tiple components [27,41]. It is also common to neglect minor 
components which are a priori known to have little or no effect on the 
chosen functionality of the filtration system. This model mixture has to 
be the simplest representation that still captures the desired complexity 
to be observed. Knowing this mixture definition, we can roughly decide 
the filtration process (e.g. micro-, ultra- or nanofiltration, or reverse 
osmosis). A general guideline for this selection has been widely pub
lished and presented as a filtration spectrum of (pressure-driven) 
membrane processes (Fig. 3). 

To anticipate the model being extended into a multi-stage system and 
later optimized, we need to define the configuration of the multi-stage 
system. A further question will be if the optimization will be per
formed within one fixed configuration or if multiple configurations will 

Fig. 1. Illustration of streams and configurations of 
membrane systems: (a) Single-stage membrane, (b) 
Sequential concentration, adapted from Cordova et al. 
[23], (c) Sequential purification, adapted from Ebra
himi et al. [28], (d) Three-stage ideal cascade, 
adapted from Lightfoot [22], and (e) (General) 
counter-current cascades, adapted from Caus et al. 
[33], Abejon et al. [34], and Rizki et al. [35]. F, P, 
and R represent the feed, permeate, and retentate 
streams, respectively. Subscripts indicate stage 
numbers.   
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be considered. Head-to-head comparison of several predefined config
urations is commonly used for brute-force optimization [26,27,41]. This 
does not guarantee the global optima are found; there may be another 
alternative configuration that gives a better separation performance. 

Adopting a technique from process system engineering, we can develop 
a superstructure, which is a general structure that represents all possible 
configurations [42–44]. This superstructure employs logical variables so 
that a combination of those yields each considered configuration. When 

Fig. 2. Model-based optimization framework for multi-stage membrane systems.  

Fig. 3. Filtration spectrum adapted from various commercial membrane specifications dedicated to food, bioprocesses and pharmaceutical applications.  
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considering multiple configurations to be optimized later, this super
structure needs to be defined in this phase. 

While defining the system, it is also important to consider the process 
variables. These can reflect parameters which are varied and parameters 
which are kept constant in the set-up. Our model, in principle, relates 
these variables to certain performance parameters. The optimization 
will later aid in selecting the best values for these variables. Which of 
these variables become decision variables will be decided during opti
mization programming in a later step. However, we need to make sure 
that these decision variables exist in the model. 

2.2. Phase 2: Single-stage filtration modeling 

Having defined the system, we next develop a single-stage filtration 
model. As commonly done for other types of processes, membrane 
filtration modeling can follow three approaches [45–47]: mechanistic 
modeling, machine learning (ML)-based modeling, or hybrid modeling, 
which is a trade-off between the other two approaches. Mechanistic 
models are process-specific, developed by considering the physical 
phenomena that happen within the process under consideration. ML- 
based models, on the other hand, are based on an input–output rela
tionship [48,49], so that a similar modeling technique can be adopted 
for any type of process. 

These three types of models come with their own benefits and 
drawbacks (Fig. 4). An ideal model should have the desired benefits and 
tolerable drawbacks. A process scientist may prefer a mechanistic model 
because it represents a good understanding of the process. However, 
such a model may require a longer time to develop and to solve. 

Over the past decades, pressure-driven membrane processes have 
been well established and a good understanding of the underlying 
working principles has been achieved [50–52]. Therefore, it should not 
be difficult to develop a mechanistic model. Challenges may emerge 
when attempting to model a new system. Information may be lacking 
with regard to the model mixture, the membrane itself, or interactions 
between them. This may require a dedicated study into the new phe
nomena, or the development of empirical relationships to represent the 
missing information, which can then be combined into a hybrid model. 
However, the main limitation of mechanistic models of pressure-driven 
membrane processes is the availability of either computational power or 
experimental data. Fig. 4 shows that a mechanistic model is relatively 
complex compared to other types of models. Extensive computing re
sources are needed as the model employs sets of many physical equa
tions that may include ordinary or partial differential equations. Even 
though numerous solvers are readily available, solving this system of 
equations may still take a considerable amount of time, especially when 
more variables are involved, for example when working with multiple 
components or when expanding the model to a multi-stage system. 

Fig. 4 shows a general distinction between the three types of models. 
The mechanistic and ML-based models occupy the opposite ends of the 
evaluation criteria spectrum. Hybrid models exist in between the two, 
with a broad range of possibilities depending on the formulation. 

Despite the clear distinctions presented in Fig. 4, real-world models may 
deviate from this simplified classification. The performance of the 
models themselves may vary depending on available resources. For 
example, access to advanced modeling tools and/or supercomputers 
may alleviate the computational resources bottleneck and thus aid the 
development and solving of the models. These advanced tools, however, 
may not be available or accessible to every-one. 

Although it requires less data, a mechanistic model may require not 
only the process input and output data but also system characterization 
data. This characterization may include the determination of certain 
process parameters or material properties under certain conditions. 
Such a characterization of a new system is often more difficult and 
expensive to perform than simply gathering process input–output data, 
as required for ML-based models. 

Regardless of the choice of model, the development of a single-stage 
filtration model follows three steps (steps 2 to 4 in the model-based 
optimization framework, Fig. 2): equations development, data collec
tion, and model validation. These steps are discussed next. 

Step 2 - Equations development. 
Once the system and parameters are set, we need to define the 

relationship between these parameters. This step is the core of the 
modeling effort, where we use everything we know about the system to 
formulate equations used to simulate the filtration process. Primary goal 
of the single-stage filtration modeling is to predict fluxes and solute 
rejections [53–57]. Having predicted these parameters, other output 
parameters of the filtration model can be calculated simply by consid
ering total and component mass balances. 

Before developing the governing equations, one should consider to 
what level the model will incorporate such equations. Mechanistic 
models and empirical models lay at opposite ends of the model 
complexity scale. In addition, both mechanistic and empirical models 
can still be decomposed and formulated into several levels of 
complexity. This closely depends on the problem definition. 

Empirical models employ an input–output equation without giving 
attention to what is really happening in the system. The equation is 
traditionally selected based on the shape of the input–output plot. A 
simple equation can rarely capture the actual input–output relationship 
of a filtration system unless within an exceptionally narrow observation 
range. Capturing more complex input–output relationships may require 
the use of more advanced empirical models, such as composites of 
several equations, or neural networks. 

Governing equations in a mechanistic model represent physical 
phenomena. These phenomena fall within two categories: ideal and non- 
ideal systems (Fig. 2). Most works on filtration modeling study ideal 
systems and only a few studies [58–60] have been reported on non-ideal 
filtration systems. From an industry perspective, this area is less 
attractive because it involves impracticalities such as difficult mainte
nance or very low fluxes, affecting the cost level. From a modeling 
perspective, a non-ideal system is more complicated because the stron
ger interactions between the solutes require more rigorous computation. 

Ideal filtration systems operate within dilute conditions, so that the 
inter-component interactions can be neglected. The governing equations 
can then be decomposed into solvent and solute transport, which may 
affect each other due to convection and concentration polarization. Even 
so, the effect may be simpler than observed in non-ideal systems. 

While formulating solvent transport equations, it is also important to 
consider if the system is fouled or not. In both cases, we may observe a 
regime where the flux decreases with time until a steady state is reached. 
In systems without fouling, the steady-state regime can still be an 
interesting operational regime [53,61,62]. In contrast, fouled systems 
can severely decrease the filtration performance so that the process 
needs to be stopped and the system cleaned [3,63–65] before or not long 
after steady state is reached. Therefore, dynamic models are more 
relevant for representing filtration systems with fouling. For non-fouled 
systems, it is optional to use dynamic or steady-state models, depending 
on the purpose. One obvious fact to be considered is that steady-state 

Fig. 4. Graphical comparison of Mechanistic models (black filled squares), 
hybrid models (grey filled octagons) and ML-based models (open circles). 
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models are easier to formulate and solve because of the absence of the 
time variable. 

Step 3 – Data collection 
After completing the second step, the model may still be incomplete 

due to missing information, such as material properties, process-related 
properties or parameters that are not predefined by the equations. Such 
information is usually available within a database in literature, e.g. a 
chemical engineering handbook, or from previous research studying 
(close to) similar systems. When no explicit values are available, an 
approximation is needed. Fortunately, approximations have been pub
lished to estimate certain material and process-related properties using 
more general attributes, such as molecular weight and process temper
ature [62,66–68]. These estimations are useful to predict properties of 
uncommon materials that still belong to a certain group, for example, 
proteins and carbohydrates [69,70]. As an alternative to those approx
imations, molecular dynamics simulations have been reported [71,72] 
to be useful in predicting some physical properties of biomolecules. This 
approach makes use of properties of substances at a molecular level and 
simulates how such molecules behave in a mixture. 

If the unknown parameters cannot be retrieved from a database or 
approximated, they can be characterized experimentally. This step is 
usually compulsory for new systems. A common parameter to be char
acterized experimentally is the membrane pore size distribution. 
Experimental characterization can be done by direct measurements or 
by fitting data using regression. Direct measurement techniques include 
(nano- or microscopic) imaging and phase change measurements. For a 
review of available techniques, see for example Hilal et al. [73]. Per
forming such measurements may not be easy due to the expertise needed 
to operate analytical instruments or simply due to the cost involved. 
Parameter fitting [74,75] is a more user-friendly characterization 
technique with arguably less accuracy compared to direct measure
ments. It makes use of data that are usually more common or easier to 
observe. Although the values of fitted parameters can be biased by other 
parameters that are probably not well defined in the system, they can 
still be useful enough to predict certain outcomes. 

Unlike a mechanistic model, all parameters required for empirical or 
ML-based models should be fitted. The number of these parameters 
varies between models. Advanced empirical models like neural net
works employ more parameters [76] (also known as weights). Statisti
cally, the required data points to fit parameters increase with the 
number of the fitted parameters, which makes sense in relation to the 
degree of freedom. This may also be the reason that neural network 
models require more data points than other types of models. 

Step 4 – Model validation 
After completing the missing information by direct measurements of 

fitting, the model is technically complete and able to predict an outcome 
based on input information. To understand how good this prediction is, 
the model needs to be validated. This assessment of the model perfor
mance is done by comparing the model outcome with a real dataset. This 
requires separate experimental datasets that are distinct from the ones 
used for model development, such as those used for parameter charac
terization. The validation data set can be obtained from similar experi
ments, but it is important to carefully design these experiments to ensure 
that the validation set accurately represents the intended scope and 
application domain of the model. This challenge becomes even more 
significant when dealing with limited resources for performing the 
experiments. 

The assessment may employ some statistical metrics (e.g. R2, root 
mean squared errors, residuals) for an objective measure. In addition to 
that, visual plots are often used to see if the models can capture the 
general shape of the data. The result of the assessment can lead to a 
decision whether the model is acceptable or needs some improvements. 
The model could be improved by, for example, incorporating additional 
mechanisms or tuning the hyperparameters (e.g. number of hidden 
layers or neurons) for neural network models. 

2.3. Phase 3: Expansion to multi-stage models 

With a validated model, we can expand the model to describe a 
larger system comprising multiple membranes. This phase is often less 
complicated than the other phases in the optimization framework of 
Fig. 2. Most hurdles have probably been solved in phase 2 (single-stage 
membrane) with a good foundation in phase 1 (system definition). The 
main challenge in phase 3 is to formulate a correct mass balance within 
the system and then to solve it. With a good definition of the configu
ration (with or without superstructure) in phase 1, this task should be a 
relatively easy. However, solving the mass balance can still be prob
lematic for dynamic models, especially with recycles. This circumstance 
creates an inter-dependency between streams that makes it impossible 
to solve sequentially. A simultaneous solving may be computationally 
expensive. As the number of variables increases linearly with the num
ber of stages, the increase in computing time can be an even more severe 
complication. 

With a proper formulation, a multi-stage model should be able to 
predict stream conditions at any point in the system. This information 
can then be used to formulate performance indicators to assess the 
filtration performance holistically. Common indicators include product 
purity, yield, productivity, and separation factors, which in turn can be 
translated into production cost and revenue, the indicators used for 
process optimization in phase 4. Note that an ML-based model can 
directly predict these performance indicators, skipping the intermediate 
prediction of each stream. 

2.4. Phase 4: Optimization 

Optimization means finding an optimum condition of a system. This 
procedure consists of three steps [77]: (1) formulating the knowledge of 
a system, (2) finding a measure of effectiveness or objective function, 
and (3) finding the optimum point. The first two steps can be considered 
as (mathematical) formulation steps, exploiting the available knowledge 
about the process. The third step is the real optimization step and usually 
done by selecting an appropriate optimization solver from the available 
options. 

As step 1 (formulating the knowledge of multi-stage membrane 
systems) has already been performed in the previous phases, the opti
mization phase is mostly about steps 2 and 3. 

Step 6 – Optimization programming 
In this step, the optimization problem is formulated mathematically. 

This formulation, in general, aims to optimize (minimize or maximize) 
an objective function by varying decision variables within certain con
straints. The decision variables can be chosen from a pool of variables 
that are employed in the filtration model. The objective is usually 
derived from the performance indicators. At this stage, the developed 
model should be able to relate decision variables to performance 
indicators. 

Filtration systems are rarely assessed by a single performance indi
cator, complicating the optimization formulation because of multiple 
objectives. Nonetheless, multi-objective optimization has been studied 
thoroughly, and some strategies are available [27,78–80]. A similar 
approach can then be applied to filtration systems [27,37]. Alterna
tively, a single-objective optimization can still be performed with 
respect to one chosen indicator while designating the other indicators as 
constraints. Another alternative is to convert all indicators into a single 
metric, such as profit. 

During programming, optimization constraints need to be formu
lated as well. These constraints can be relationships between variables 
or system boundaries. Bounding variables may simplify the optimization 
problem by narrowing the search domain, while adding constraints may 
complicate the optimization problem, requiring an extra strategy for 
solving. Implicitly, all governing equations from the previous phases are 
optimization constraints. Thus, the optimization model may already 
give a satisfactory solution without the need for additional (explicit) 
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formulation of constraints. In some cases, these constraints do need to be 
explicitly defined. The challenge is then to explicitly formulate the 
constraints in terms of the decision variables. 

Multiple categories of optimization models can be discerned by 
considering the linearity of the objective and constraints, and the 
involvement of discrete variables. In general, models for membrane 
systems involve an obvious non-linear behavior, which makes the 
optimization problem a non-linear programming (NLP) problem. Some 
cases also incorporate discrete parameters in the optimization problem, 
for example, for superstructure optimization, which complicates the 
problem into a mixed-Integer non-linear programming (MINLP) prob
lem. MINLP is considered to be the most complicated programming, and 
may require more advanced resources to solve. It can be wise to simplify 
the system via relaxation [83,84], linearization [81], or evaluating 
continuous variables [82]. In doing so, the problem is transformed into a 
mixed-integer linear programming (MILP) or NLP problem, which is 
probably easier to solve. 

Step 7 – Solver selection and problem solving 
The last part of optimization is to solve the problem itself, using an 

appropriate solver from a large pool of available optimization solvers. It 
is often possible that some general solvers are capable of solving various 
problems. 

2.5. Surrogate model/hybrid optimization 

Regardless of the choice of model (mechanistic, ML-based, or 
hybrid), an optimized solution for a multi-stage membrane system can 
be found by following the four-phase optimization framework. While 
mechanistic models reflect a good understanding of the system and 
require (relatively) long execution times, ML-based models have the 
opposite traits. These traits are carried over to the optimization phase. 

Optimization is, in principle, an iterative procedure to find the op
timum condition. In each iteration, a calculation is done, and repeated in 
the next iteration until the optimum solution is found. This implies that 
at every iteration, the membrane model is called to predict the outcome 
with altered input values. The execution of the optimization model then 
depends on the execution of the membrane model. The execution time of 
a single prediction depends on the complexity of the model. Inclusion of 
a dynamic model instead of a steady-state model, and recycles instead of 
sequences may increase the execution time of the model. The involve
ment of more stages in the system can also contribute to a longer 
execution time. Therefore, it is beneficial to accelerate the calculation to 
solve the whole optimization problem within an acceptable time frame. 
Attempts to do so have been reported in the literature by means of 
surrogate modeling, also known as hybrid optimization [83–85]. This 
approach combines both models within the optimization framework 
(Fig. 5). Initially, a mechanistic model is developed. This model is then 
used to generate a dataset to train an ML-based model. This trained 

Fig. 5. Summary of the mechanistic model, surrogate model/hybrid optimization, and ML-based model optimization schemes, outlining their working principles as 
well as their advantages and disadvantages. 
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model is then used within the optimization loop. The solution from this 
optimization is finally fed back to the mechanistic model to get a more 
precise prediction. 

Hybrid optimization offers advantages over both mechanistic and 
ML-based models, and suffers none of their shortcomings. The mecha
nistic models are utilized for their deep process understanding, gener
ating continuous predictions despite requiring a smaller dataset for 
development. This data requirement concerns the system characteriza
tion and validation. Once developed, mechanistic models can generate 
as many data as needed within the validity range, which can then be 
used to train ML-based models. Developing ML-based models without 
the help of mechanistic models requires numerous experiments to 
generate the required dataset. Nevertheless, ML-based models are uti
lized for their fast calculation, thus accelerating the optimization 
algorithms. 

The hybrid optimization approach also comes with pitfalls. It em
ploys not one but two models, which means an additional step. Each 
additional step in modeling approaches contributes to possible de
viations propagating into the final outcome. In the hybrid approach, an 
ML-based model suffers from a deviation originating from the mecha
nistic model that produces its training set, which already has a deviation 
from the real experimental values. This may lead to the objective 
function having a different profile than those formulated by only 
mechanistic or ML-based models. Despite different profiles, the global 
optimum will be similar and can be tested for both models. A global- 
optimization solver can be used to ensure that the optimization solver 
is not trapped within local optima. 

2.6. Current modeling state 

Within the optimization framework (Fig. 2), the most knowledge is 
needed for step 2: the governing equations for single-stage models. This 
is reflected in the number of studies into single-stage membrane 
modeling. The various mechanisms involved in pressure-driven filtra
tion are now well understood. Typical equations used in the models have 
also been developed over decades. In recent years there have not been 
many contributions to the fundamental models. Recent studies examine 
a wider area emerging from new applications. 

A good understanding of well-established filtration models 
commonly comes from studies of simplified systems [53,61,86]. While 
this type of study is indeed useful as a foundation for working with new 
systems, additional considerations, especially with regard to the solute 
transport, are needed to make existing models work for new applica
tions. These aspects are addressed by recent membrane modeling 
studies, and may include corrections or additional parameters that 
represent the deviations of new systems with respect to the well-studied 
simplified systems. Examples are the incorporation of non-spherical 
solutes [67], pore size distribution [31], and mass transfer estimation 
[87,88]. 

The membrane model is constantly evolving to accommodate new 
applications in the field of circular processes. With the current trend 
towards waste valorization, innovative processes are being developed to 
extract valuable components from waste streams. Membrane processes 
are renowned for their robustness and high productivity, making them a 
preferred choice over other downstream techniques. 

Membrane processes are frequently operated in multiple stages, with 
fewer studies available for multi-stage systems compared to single-stage 
systems. The reason for this is that when the membranes serve similar 
purposes and operate under similar conditions, a single-stage model 
with multiplication factors is sufficient to predict the behavior of the 
overall system. It becomes more challenging when the membranes in the 
system have different functions. For instance, in a three-stage cascade 
model [22,25,27,62], the membrane system is used for both purification 
and concentration, requiring a more complex model to account for the 
different functions. This complexity can be mitigated by applying 
similar operating conditions for each membrane performing a similar 

function, reminiscent of a multi-stage distillation process [32,89,90]. 
Conversely, the challenge becomes more pronounced when individual 
modules have the freedom to operate with varying process parameters 
[35,39,91,92], resulting in an inhomogeneous membrane system. 

Comprehensive studies spanning all four phases of the optimization 
framework (Fig. 2) are rare. Regardless, membrane modeling studies in 
the literature indicate the need for identifying optimum conditions. 
Some studies include simple attempts at optimization by limiting the 
alternatives, for example reducing the optimization problem into a bi
nary correlation between one process variable and one performance 
indicator [93,41]. Other attempts involve discretizing some alternatives 
and comparing their performance indicators [27,94]. These attempts, 
however, exempt other variables in the search domain by making such a 
simplification. The ‘pseudo’ optimum coming out of the comparison is 
not guaranteed to be the global optimum; the real optimum can come 
from other exempted alternatives. 

Application of advanced optimization programming to solve multi- 
stage membrane systems has been reported in the literature 
[36,96,97]. Those studies, however, disregard the complexity of single- 
stage membrane modeling, using an over-simplified representation and 
focusing on optimization programming. These attempts can arguably be 
considered as empirical modeling efforts, following all four the phases 
reviewed in this article. A better representation of the membrane model 
can be found in a study where the input–output relationship of single 
membranes is described and fed to a multistage model, after which it is 
solved as an MINLP problem [39]. As the input–output relationship is 
generated from a mechanistic model, this study resembles a hybrid 
optimization approach. 

Separately, all four phases discussed in this section have been 
intensively studied, often within different disciplines. Studies that 
integrate the four phases remain scarce. Fig. 6 illustrates the number of 
scientific articles discussing pressure-driven membranes and optimiza
tion. It can be seen that only a small portion of these articles attempt to 
optimize the problem. The number of articles that explore multi-stage 
membranes is even smaller. On the other hand, the number of studies 
of the optimization algorithm alone is 700 times larger than the number 
of optimization studies dedicated to the membrane process. 

This section has presented an overview of such an integrated 
approach. The governing models in each phase will be discussed in more 
detail next. 

3. Filtration models 

The primary goal of filtration models used in process optimization is 
to predict the outcome of a membrane process with known process pa
rameters at given feed values. In a steady-state condition, this prediction 
can be done by solving general mass balances for both overall streams 
(Fig. 1a) and each component (Eqs. (1) and (2)). Here, the mass flow rate 
of each stream is indicated by ṁ and the mass concentration of a 
component by Ci. The subscript f indicates feed, p permeate, and r 
retentate. 

ṁf = ṁp + ṁr (1)  

ṁf Cf ,i = ṁpCp,i + ṁrCr,i (2) 

The feed condition (flow rate and composition) is known in most 
cases. That leaves Eqs. (1) and (2) with four unknowns. Solving those 
equations requires two more known parameters, which is the core of any 
filtration model. The first parameter needed is the permeate flow rate 
that can be calculated from the volumetric flux, Jv, of the membrane as 
follows. 

ṁp = Jv ρ A (3) 

Here, ρ is the material density and A is the unit dimension. 
The second parameter needed to solve Eqs. (1) and (2) is the rejection 

coefficient, which describes the relation between the concentrations of 
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the solute in permeate and retentate. Because this parameter concerns 
two observable concentrations, the term ‘observed rejection’, Ro, is more 
commonly used (Eq. (4)). 

Ro,i = 1 −
Cp,i

Cr,i
(4) 

The volumetric flux, Jv, and rejection coefficient, Ro,i, are two key 
parameters to be modeled in any filtration model. This is not always 
straightforward, and often requires solving a system of equations 
simultaneously. The number of equations to be solved depends on the 

phenomena that are considered in the models. Neglecting those phe
nomena, both flux and rejection coefficient can also be modeled using 
ML-based models. The next sections summarize the mechanistic and ML- 
based models available in the literature. 

3.1. Mechanistic models 

Most works on mechanistic membrane modeling investigate ideal 
systems. The models describe the transport of both solvent and solutes, 
and can be decomposed into several sequences reflecting the 

Fig. 6. Sankey diagram of the number of articles related to optimization modeling of multi-stage pressure-drive membranes. The figure is constructed using the 
Scopus database accessed on 8 February 2023 with keywords “membrane and filtration and pressure” and refined by keywords “model”, “multi-stage or cascade or 
system”, and “optimization”. (a) Number of articles about pressure-driven membranes, both with and without models. (b) Number of articles about pressure-driven 
membrane modeling that further discuss multi-stage membrane system and optimization. (c) Number of articles on optimization algorithms, including discussions on 
membrane optimization. 

Fig. 7. Schematic overview of mechanistic filtration modelling approaches reported in the literature for ideal systems.  
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mechanisms at play during filtration. Fig. 7 shows the important se
quences in mechanistic modeling of ideal filtration systems. 

In general, the solvent flux is expressed using a well-known perme
ability equation [97] for membrane processes (Eq. (5)), with Lp the 
membrane permeability and ΔP the trans-membrane pressure (TMP). 

Jv = Lp • ΔP (5)  

The permeability is often broken down into more contributing factors. 
Such factors are commonly expressed in Darcy’s equation [98] (Eq. (6)) 
or Hagen-Poiseuille equation [52] (Eq. (7)). Darcy’s equation expresses 
the effect of viscosity, η, on the flux and total resistance, RT. The Hagen- 
Poiseuille equation implies the contribution of membrane radius r and 
thickness δ to its resistance, ruling out other resistances in a system 
without solute. 

Jv =
ΔP
η RT

(6)  

Jv =
r2ΔP
8 η δ

(7) 

As the pore size gets smaller, transport is no longer ideal as assumed 
in the Hagen-Poiseuille equation. Regardless, the equation is still 
commonly used to model tighter membranes (e.g. nanofiltration) with 
an addition of correction factors. One correction that is commonly used 
in nanofiltration models is the viscosity correction due to the presence of 
narrow pores. Studies [53,67] proposed a higher viscosity inside a 
narrow pore because of the formation of a water layer of one molecule 
thick on the surface of the pore. Another correction for flux models in 
nanofiltration membranes stems from the non-uniformity of the pores, 
inferring average and pore-size distribution parameters. In most cases, 
using the average pore diameter is sufficient and already able to give a 
good prediction [53,61]. Additionally incorporating the pore size dis
tribution may give a better prediction, as demonstrated in the work of 
Bowen and Welfoot [31]. 

The presence of solutes affects the solvent transport by reducing the 
driving force while increasing the resistance at the same time. Solutes 
can be partially or totally retained by a membrane, creating a concen
tration difference between the two sides of the membrane. This differ
ence triggers a reverse solvent flux due to the osmotic pressure 
difference. The total solvent flux can then be formulated as a resultant of 
both fluxes by adding the osmotic pressure correction, Δπ, as a driving 
force in Eqs. (5) to (7). This modification of Eq. (6) is shown in Eq. (8). 

Jv =
ΔP − Δπ

η RT
(8)  

The osmotic pressure difference is concentration dependent and can be 
approached in several ways. One of the most utilized models for osmotic 
pressure is van’t Hoff model (Eq. (9)) that assumes an ideal solution. In 
this model, the osmotic pressure is proportional to the difference in total 
molar concentration of all solutes between the two sides of the mem
branes, ΔCt , and the operating temperature, T, with R the ideal gas 
constant. 

Δπ = ΔCt i R T (9) 

The accumulation of retained solute on the membrane surface leads 
to a reduction in solvent flux, which is referred to as fouling. The fouling 
mechanism varies from system to system, and depends on the solutes 
and their interaction with the membrane. It is typically incorporated 
into the flux model using a resistance-in-series approach [63,64,99]. In 
this approach, the fouling solute creates an additional resistance, thus 
reducing the solvent flux. The total resistance, Rt , (Eq. (10)) for solvent 
transport can be broken down into the resistance from the membrane 
itself, Rm, and the resistance from fouling, Rf . 

Rt = Rm +Rf (10)  

In most cases, the fouling resistance is much higher than the membrane 
resistance, so that the membrane resistance is often neglected in the 
calculation of filtration flux involving fouling. The fouling resistance can 
be formulated differently depending on the fouling mechanism. The 
formulation may also encompass multiple resistances, as multiple 
mechanisms (hybrids) may occur at the same time. The mechanisms 
underlying fouling have been modeled and reviewed in the literature; 
some models have been well explained, such as Hermia’s model [100] 
for various mechanisms, or the Kozeny-Carman and Ergun equations 
[52,101] for cake formation. 

Despite being a crucial area of study in membrane filtration, models 
for fouling are mostly limited to the resistance-in-series model and 
Hermia’s model, which dates back to the 1980 s. Both models are semi- 
empirical and reflect limited knowledge of the underlying phenomena. 
Hermia’s model proposes a unique relationship for each mechanism, but 
the physical principles behind these relationships are still not fully un
derstood. This knowledge gap has spurred researchers to study fouling 
phenomena using more advanced process monitoring and more so
phisticated modeling techniques, such as computational fluid dynamics. 

The transport of solutes during filtration processes consists of 
transport towards the membrane surface and transport across the 
membrane. The transport towards the surface occurs because of con
vection and diffusion, and strongly depends on the hydrodynamic design 
of the membrane module. In addition to convection and diffusion, 
transport across the membrane is also affected by the membrane itself. 
The effect can appear either physically (e.g. size exclusion due to pore 
size) or chemically (e.g. chemical interaction between active groups on 
the membrane surface and the solutes) [53,62,102]. 

Due to convection, the flow of solvent drags along the solute from the 
retentate side to the membrane surface and finally across the membrane. 
However, the membrane can (partially) reject certain solutes, creating 
an accumulation of solutes on the membrane surface. This accumulation 
triggers a back-diffusion towards the bulk retentate region where the 
concentration is lower. Such phenomena are well known as concentra
tion polarization [103–105] (Fig. 8). Estimating solvent flux without 
considering this phenomenon will result in an overestimated flux due to 
a lower estimate of osmotic pressure difference. 

Fig. 8. Schematic illustration of concentration polarization (CP) phenomena. 
Solid lines indicate concentration profiles for component i with subscripts r =
retentate, w = wall, and p = permeate. 
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After the system reaches an equilibrium, the convection and back 
diffusion effects will be balanced. In this state, a relationship between 
concentrations at the retentate bulk, Cr,i, at the membrane wall, Cw,i, and 
at the permeate, Cp,i, can be formulated (Eq.11). This equation can be 
solved if the mass transfer coefficient, ki, is known. 

Cw,i − Cp,i

Cr,i − Cp,i
= exp

(
Jv

ki

)

(11) 

The mass transfer coefficient in a convective flow is related to the 
diffusivity coefficient of convective mass transport, Di, and the length of 
the transport pathway, expressed as the hydraulic diameter, dh, by the 
dimensionless Sherwood number (Eq. (12)). 

Shi =
kidh

Di
(12) 

The diffusivity coefficient of several solutes are available in the 
literature and in databases [106–110]. These data usually provide in
formation for common substances such as sucrose or glucose. Common 
proteins such as lysozyme are sometimes included as well. For uncom
mon solutes, for which diffusivity data are not available, an approxi
mation may be needed such as the Stokes-Einstein equation [68] (Eq. 
(13)). 

Di =
kB T

6 π η rS,i
(13) 

This equation can be used to estimate the diffusivity coefficient at a 
certain temperature, T, for a solution with known viscosity, η, and 
(Stokes or hydrodynamic) radius, rS, of the solute. The Stokes radius can 
be estimated by considering the shape of the molecules involved. For 
small molecules, a spherical shape can be a good approximation. Thus, 
the radius can be easily calculated from the molar volume. Molar vol
ume data can be available in literature or estimated from the solute 
density. Density data are in general more easily to access compared to 
diffusivity data. For more complex biomolecules, such as carbohydrates 
and proteins, the size approximation becomes more complicated. To 
address this issue, some researchers develop semi-empirical relation
ships to estimate the diffusivity coefficients for uncommon biological 
compounds. These relationships, however, are mostly studied for certain 
types of solutes. The application of these relationships can be limited to 
those types. Some empirical relationships are available in the literature, 
and frequently summarized and tabulated [62,66,67,111]. 

The Sherwood number is related to other dimensionless numbers: the 
Reynold, Re, and Schmidt, Sc, numbers. The relationships between those 
dimensionless numbers depend on the hydrodynamics of the systems. 
The hydrodynamic behavior is often not straightforward and rarely 
explained mechanistically. Therefore, many empirical relationships are 
proposed in literature that are valid only for specific regimes and flow 
patterns. The most common form of the empirical relationship for those 
dimensionless numbers is expressed as a power law (Eq. (14)). 

Sh = a RebScc (14)  

where 

Re =
ρ uv dh

η (15)  

Sci =
η

ρ Di
(16) 

The constants used in this power law depend on the system and are 
only valid within certain ranges. One common form was expressed by 
Chilton and Colburn [112] with a = 0.023, b = 0.8, and c = 0.33. This 
relationship is valid for turbulent flows, which is found in most mem
brane separation practices. 

The Sherwood relationship may depend on the system design, 
including the flow regime and the module. In addition to the constants 

proposed by Chilton and Colburn [112], other values for these constants 
have been proposed by other researchers with multiple validity condi
tions. Some models use a different form than the power model. Other 
Sherwood relationships have been described in the literature and 
tabulated in numerous publications, for example in the works of Gekas 
and Hallstrom [113], Lisdonk et al. [114], and Bandini and Morelli 
[115], among other publications. 

In order to solve Eqs. (12) – (16) and estimate the mass transfer 
coefficient, we need to know the solution viscosity, η. In most cases, the 
viscosity depends on the concentration as the void fraction between 
molecules decreases when the concentration increases. A general rela
tionship relating solution concentration and viscosity is commonly 
expressed in the Krieger-Dougherty [116] equation (Eq. (17)). This 
equation relates the relative viscosity (compared to the solvent viscos
ity) to the volume fraction of the solution, Φ. 

η
η0

=

(

1 −
Φ

Φmax

)Φmax [η]

(17) 

The volume fraction depends on the solute concentration. Estimating 
it may become more complicated for natural polymers such as proteins 
and carbohydrates. For that purpose, researchers have proposed simpler 
relationships that directly relate the relative viscosity to the concen
tration. These relationships are non-linear and commonly expressed as 
polynomial (Eq. (18)) [117] or exponential (Eq. (19)) [70,118] equa
tions using regressed parameters determined from experiments. 

η
η0

= 1+ a1c+ a2c2 + a3c3 +⋯  

a2 = k1a2
1, a3 = k2a3

1, ⋯ (18)  

η
η0

= aexp(E X) (19) 

Unlike the transport on the membrane surface, few models have been 
developed to explain the solute transport across the membrane. The 
Donnan Steric Pore Model (DSPM) has been proven to effectively 
explain solute transport across the membrane, although corrections 
have been proposed for some parts of the equations. The DSPM is based 
on the Extended Nernst-Planck equation, which considers both diffusive 
and convective transport in the membrane. The diffusive transport oc
curs due to a gradient of the electro-chemical potential between the two 
sides of the membrane. The Nernst-Planck equation can be further 
divided into three parts: convection, diffusion due to the concentration, 
and diffusion due to the electrical potential, Ψm, (Eq. (20)). This equa
tion employs a hindrance coefficient due to convection, Kc,i, and also 
diffusion, Kd,i, along with the solute diffusion coefficient for a diluted 
system,Di,∞. 

Ji = Kc,i ci Jv − Kd,i Di,∞
dci

dx
− zi ci Kd Di,∞

F
RgT

dψm

dx
(20) 

For neutral solutes, the third term of Eq. (20) is nullified. The solute 
flux is then only dependent on the convection and diffusion due to the 
concentration gradient. For both terms, hindrance coefficients are 
employed, which proportionally relate the solute flux to each driving 
force. Dechadilok and Deen [119,120] commonly estimate these values 
using transport of a sphere along a cylindrical pipe, which is a similar 
assumption in the Hagen-Poiseuille equation. 

The DSPM has been widely utilized to model filtration systems for 
both neutral and charged solutes. Solving Eq. (20) may not be 
straightforward. However, attempts to solve the equation have been 
reported for a wide range of filtration systems [53,61,67,121]. These 
works also successfully couple the DSPM with other models related to 
the solute transport on the membrane surface, confirming the robustness 
of DSPM. 

In the presence of non-idealities, the flux formulation can reflect 
back to non-ideal mass transport. The solute flux can then be derived 
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thermodynamically, starting with the gradient of chemical activity as 
the driving force [60,122] (Eqs. (21) and (22)). Eqs. (21) and (22) are 
simplifications of Eq. (20) without considering drag coefficients and 
electrical interaction. Instead, the gradient of osmotic pressure is 
assumed to affect the solute flux in the non-ideal system. The osmotic 
pressure itself is related to the solute concentration. These equations 
have been validated for concentrated monoclonal antibody solutions in 
the work of Binabaji et al. [60]. 

Ji = Jv ci −
(Dici)

RT

(
dμ
dx

)

(21)  

(
dμ
dx

)

=
1
ci

(
dΠ
dc

)(
dc
dx

)

(22) 

A similar approach to derive the flux equation based on the activity 
gradient was taken by Aguirre-Montesdeoca et al. [58]. They developed 
a filtration model for a concentrated mixture of oligosaccharides, uti
lizing the Maxwell-Stefan approach. This model is designed to handle 
more complex systems with multiple solutes that interact with each 
other, and where the solvent may also affect the transport of the solutes. 
Inclusion of these effects is the main difference between the Maxwell- 
Stefan equation and models for ideal solutions, such as Fick’s law. 

The works of Binabaji et al. and Aguirre-Montesdeoca et al. 
demonstrate approaches to model filtration for concentrated systems. 
However, membrane filtration for concentrated systems forms only a 
small part of existing liquid membrane processes, primarily due to low 
fluxes making the process economically unfeasible. Binabaji et al. 
showed that the flux almost reaches zero at the maximum observed 
concentration. Other factors such as the high osmotic pressure and high 
viscosity also make these systems difficult to handle from a technology 
point of view. To our knowledge, the works discussed here have not been 
extended towards other concentrated solutions. However, they provide 
additional options for expanding the operation range of membrane 
process modeling. 

3.2. Empirical and Machine Learning-based models 

As alternatives to detailed mechanistic models, empirical models can 
be used to predict the outcomes of membrane filtration processes. These 
models relate unknown parameters to known variables by employing 
empirical coefficients. The coefficients are normally fitted using exper
imental data obtained within a certain range of process conditions. 
Therefore, the models using such coefficients are only valid for systems 
operating in similar conditions. 

Empirical models adopt common equations to relate input variables 
to predicted variables. The simplest equation correlates the input vari
able with the prediction variable in a linear fashion; an increase of the 
input variable yields a proportional increase in the other variable. 
Despite its very simple nature, the linear model is still satisfactory for 
several conditions. Some properties have linear dependencies on com
mon variables, such as water permeability. In addition, linear behavior 
can also be observed when the window of observation is narrow and the 
effect small [62,123]. Even a complicated relationship between process 
variables can be simplified using a linear model by limiting the process 
range (e.g. a narrow window of process temperatures). Another tech
nique to empirically utilize the linear relationship is by interpolating 
available data. Here, an unknown data point in between two available 
data is interpolated by assuming a linear relationship between them. 
This practice is also found to be satisfactory for certain conditions, and 
used in the literature [24,26]. 

For larger parameter ranges, the relationships between variables 
often lose their linearity, requiring the use of non-linear models. Many 
available non-linear models have been explained in the literature, 
including polynomial, exponential, and sigmoid models, among other 
models. 

In addition to the different equations involved, different non-linear 

models can be distinguished by their unique shapes. A polynomial 
model can be identified by the presence of turning points (extremes) in 
the curve. The number of turning points also indicates the polynomial 
degree. A second-degree polynomial model (quadratic) has only one 
turning point, a third-degree polynomial model has two turning points, 
and so on. A rapid increase of the predicted value (J shape) can indicate 
an exponential relationship. The inverse behavior (a plateau) can be 
seen in a logarithmic model. 

The selection of the empirical model is often done by looking at the 
shape of the relationship being considered. One can first plot the pre
dicted values against their predictor and see what kind of shape appears. 
From there, the model can be chosen from the unique shape of the 
relationship. It often appears that the available data can be represented 
by multiple shapes, giving multiple candidates of non-linear models. The 
model selection is then commonly performed by statistically comparing 
the performance of such candidates by performing an error analysis 
[124]. Regardless of its usage in comparing models, an error analysis can 
give an indication of the model performance when no other models are 
available. 

It is often found that the behavior of the predicted variables is not 
represented straightforwardly by any of the available non-linear models. 
In this case, a composite of multiple non-linear models (and linear 
models) can be utilized. This can be translated into a series of sequential 
models as if the process is performed in two steps; one step follows one 
model and the second follows another model. Whether the process 
actually happens in that sequence is not really important since it is not 
the main objective of the empirical models. 

The concept of an artificial sequence of empirical models has found 
its way into neural network modeling, which is widely used in artificial 
intelligence development. A neural network model consists of multiple 
neurons that mimic the neuron structure in our brain. The neurons are 
connected to each other with activation functions [76]. This structure 
makes a neural network a huge composite empirical model. 

The neurons are organized into several layers, including (1) an input 
layer, (2) one or multiple hidden layer(s), and (3) an output layer 
(Fig. 9). The input and output layers consist of a specific number of 
nodes that depends on the number of predictors being considered, plus 
the bias node, and the number of outputs that need to be predicted. For 
the hidden layers, on the other hand, there is no clear relationship be
tween the number of layers and nodes, and the number of predictors and 
output variables. The structure of the networks, i.e. the number of layers 
and nodes within them, needs to be defined a priori. There are no exact 
guidelines for determining such a structure. However, it is obvious that 
more layers and nodes require more computing power. For a more 
advanced prediction, which can be the goal of artificial intelligence 
development, more layers and nodes (deep neural network, [125–127]) 
may be beneficial to the model performance. For filtration processes, 
shallow neural networks that consist of 2 – 3 hidden layers are reported 
to be sufficient [37,128–130]. 

Each node in a neural network has two connections: input and 
output. Both of them are related to functions (Fig. 9). The input from 
each node can come from multiple nodes in the previous layer, making 
the total input a cumulative sum of weighted values from those nodes. 
The values of these weights then need to be determined using a training 
dataset. 

The activation functions, in principle, can be chosen from all simple 
empirical equations discussed above. However, in current practice, only 
a few functions are commonly used in neural networks (e.g. linear and 
sigmoid functions) [76]. The selected function is normally generalized 
for all nodes, i.e. all nodes have a similar activation function. One 
exception is usually the output layer. The activation function used here 
depends on the types of expected outputs. A huge number of neural 
network applications are used for classification [48,76,131], requiring a 
binary output. For this purpose, a sigmoid function will be suitable. For 
applications where continuous process parameters need to be predicted, 
a linear function is more suitable [84,129,130]. 
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Developing empirical models, including neural networks, can be 
relatively straightforward and follow a similar framework as mecha
nistic models. Instead of developing physical equations, candidate 
models are proposed. These candidates can be selected by analyzing the 
shape of the input–output plot or through a heuristic approach based on 
similar data reported in literature. In the case of neural networks, the 
structure can be chosen through a heuristic approach or initially guessed 
and later optimized by adjusting the hyperparameters. These hyper
parameters, which include the number of hidden layers, the number of 
nodes in each layer, and the type of activation function, determine the 
architecture of the neural network and must be decided before training 
the model [132]. 

The candidate models are then trained using experimental data. The 
training process is in principle a regression technique with the objective 
to minimize the error between the dataset and predicted values [74,75]. 
Several optimization algorithms are available to perform this regression, 
as discussed in the next section. From the training, a set of empirical 
parameters is obtained. For neural networks, these empirical parameters 
are replaced by a set of weights respective to the nodes in the structure. 
Once the parameters are determined, the models are complete and ready 
to be validated. The validation requires a new set of data coming from a 
different set than the one used for training, which is called the validation 
set. With these data, the model’s ability to predict outputs is evaluated 
using metrics such as statistical error [124]. If the model’s performance 
is not satisfactory, the second step is repeated by proposing another 
model or altering the neural network structure. This process can be 
repeated until the model’s performance meets expectations. 

Empirical models and neural networks can be a popular option due 
to their ease of development compared to meticulous calculations in 
mechanistic models. In addition, unlike mechanistic models, simple 
empirical models and shallow neural networks do not require extensive 
computational power to solve. However, empirical models and neural 
networks give no information about what is happening inside the sys
tem. The values of empirical parameters mostly do not represent any
thing. With this trade-off, one may opt for a hybrid approach, in which a 
mechanistic model is used towards a certain complexity, and some steps 
are replaced by an empirical model. The hybrid model can then still 
provide information about the behavior of the system without getting 
too complex to solve. We can also decide which part of the mechanism in 
the model is less important and replace that part with an empirical 
model. 

While simple empirical models are not widely utilized, neural 
network models continue to garner attention for modeling filtration 

processes. Simple empirical models exhibit poor performance due to 
their inability to capture the non-linearities arising from multiple stages 
of non-linear relationships in each mechanism. In contrast, neural net
works can capture such complex non-linearities due to their multiple 
nodes and layers. The following subsection examines how ML-based 
models are formulated for various applications in membrane filtration. 

3.2.1. Application of ML-based models for pressure-driven membranes 
Despite differences in the specific applications, the ultimate goal of 

ML-based models is similar to that of mechanistic models, which is to 
balance the mass of the output from the membrane processes. To achieve 
this, the models must predict the flow rates and concentrations of the 
outlet streams, using the input information and process parameters. 
However, this does not limit the formulation of the model outputs to 
flow rates and concentrations. 

The output formulation may differ for each application, with a focus 
on critical parameters. In general, the permeate flow rate, mp, is deter
mined by multiplying the flux by the cross-sectional area of the mem
brane, while the retentate flow rate can be calculated from the permeate 
flow rate. The flux, Jv, is more complex to calculate, and typically 
formulated as the output of the ML-based models for membrane appli
cations [133–135]. The models can predict the solute concentrations 
either directly or by predicting the rejection coefficient, Ro,i, 
[15,136,137], which relates the concentrations in the permeate and 
retentate streams (Cp,i and Cr,i, ). These concentrations are often 
expressed as other derivative quantities, such as turbidity, total dis
solved solid (TDS) or total organic content (TOC). Alternatively, ML- 
based models can be used to predict only one mechanism in the filtra
tion process, resulting in a hybrid model. This approach has been widely 
used in filtration cases involving fouling, where the ML models are 
formulated to predict the fouling resistance, Rf , or other derivative 
quantities leading to fouling characteristics, such as specific fouling 
growth, α [128,138]. It is easier to estimate membrane flux with a 
known fouling resistance than to estimate the resistance itself. 

The TMP is a crucial factor in the separation processes described in 
this paper and therefore typically included as an input parameter in the 
ML-based models. In cases where the models only study isobaric sys
tems, the TMP may be excluded from the input parameters. However, in 
systems where the aim is to maintain a controlled flux with variable 
TMPs, pressure buildup may occur to prevent fouling and to maintain 
the desired flux. In some instances, the TMP itself becomes the output of 
the ML-based models [139,140]. 

The input variables of ML-based models are more diverse in com

Fig. 9. Schematic illustration of a neural network structure (left) and model (right).  
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parison to the output parameters, and tailored to specific applications. 
While they may resemble the variables utilized in mechanistic models, 
the inter-relationships between these variables are not necessarily 
considered. Feed flow rates and concentrations are frequently utilized as 
input variables. Other variables derived from the process setup, such as 
TMP, temperature, T, and cross-flow velocity, uv, may also be incorpo
rated. For filtration systems that involve charged solutes, further ionic 
information, such as ionic valence, zi, zeta potential, ζ, ionic strength, I, 
and pH, is often included as relevant input variables [15,141]. In 
addition to the common process input data, studies have reported 
incorporating detailed analysis data, such as imaging [142], into ML- 
based models to predict fouling growth. This predicted fouling 
behavior can then be combined with other models to forecast permeate 
flux. 

Applications of ML-based models have been reported across a broad 
spectrum of pressure-driven membrane processes, including micro-, 
ultra-, and nanofiltration, and reverse osmosis. These processes corre
spond to various product applications, such as cells, proteins, sugars, 
salts, and water purification. Representative cases of ML-based models 
in pressure-driven membranes are summarized in Table 1. 

Fouling is a significant problem in micro- and ultrafiltration pro
cesses. The primary objective of modeling is to predict the decline in flux 
over time due to fouling. ML-based models are commonly formulated to 
directly predict the permeate flux [141,143,144] or fouling resistance 

[138,37], after which they are combined with flux models. The solute 
concentration is often not considered as a critical factor and is not 
directly formulated in the model. In micro- and ultrafiltration cases, 
solutes are either completely rejected or not rejected at all, making it 
easy to derive their concentration from flow rates if necessary. 

ML-based models for micro- and ultrafiltration often incorporate 
common process parameters like TMP, temperature, and pH as input 
variables. Due to the dynamic nature of the system resulting from 
fouling phenomena, time is often included as an input in the model 
[128,143,145]. Additionally, specific material properties can be 
included, the choice of which varies between specific cases. They may 
include the ionic strength and zeta potential of colloids [143], indirect 
measures of concentration like total organic carbon [146], or turbidity 
[147]. 

The prediction of rejection coefficients is particularly important for 
nanofiltration cases as these membranes are used for more selective 
separations. As a result, ML-based models for nanofiltration often have 
the rejection coefficient as an output variable [15,148], in addition to 
permeate flux. This is also seen in reverse osmosis (RO) cases [149–151]. 

3.2.2. Current status of ML-based models for membrane separations 
Despite the lack of a fundamental explanation, ML-based models can 

accurately predict critical parameters in pressure-driven membranes 
across a broad range of applications. These models are flexible enough to 

Table 1 
Summary of representative ML-based models for pressure-driven membrane applications, which include microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), 
and reverse osmosis (RO).  

Type Input Output Feed Performance Ref. 

MF TMP,uv, t Rt cane sugar R2 = 0.94–0.99 
[145] 

MF TMP,Cf,i,uv, t Rh yeast Error = 11 % 
[152] 

MF mf ,Jv,α,μ, t TMP natural water Error = 10 % 
[146] 

MF mf ,T,Cf ,i(turbidity,TOC), t Jv,Rf (foulingindex)
MF Cf,pH, rp Rf(α) yeast suspension MSE = 9.85E-8 

[153] 
UF TMP,pH, I, ζ, t Jv, foulinggrowth silica coloids Average error = 5.6 % 

[135] 
UF TMP,uv,T,pH Jv,Rf waste water R2 0.99,  

RMSE = 7.2 E-4 

[37] 

UF pH, I,ζ Jv BSA Error = 2.7 % 
[154] 

UF TMP,mp,T,Cf ,i(turbidity) Rt natural water Error < 5 % 
[139] 

UF TMP, t Jv,Rt ,Ro,i milk Error < 1 % 
[128] 

UF pH, t,Cf,i(fatcontent) Jv,Rt milk Error < 3.6 % 
[155] 

UF TMP,Cf,i, t Jv,Cp,i fruit juice MAE = 0.076 lmh 
[156] 

UF Jv, t,Cf ,i(turbidity) TMP (model) natural water SSE = 10-4 

[157] 
UF mf , t Jv BSA RE = 5 % 

[147] 
NF TMP,Cf,i,pH,Di,zi Ro,i NaCl, Na2SO4, MgCl2, MgSO4 Error = 1.751 × 10-5 

[15] 
NF TMP,Cf,i Jv,Ro,i NaCl, MgCl2 5 % deviation 

[158] 
NF TMP,uv Jv humic acid RE = 0.1 % 

[159] 
NF/RO TMP,pH,ζ,T,MW,othersaltproperties Ro,i NaCl, MgSO4 R2 = 0.986 

[160] 
NF/RO Foulingimage,membranetype, Jv,0, t Jv,Rf (foulinggrowth) humic acid R2 = 0.99 (fouling),  

R2 = 0.99 (flux) 

[142] 

RO TMP,T,Cf ,uv Jv,Ro,i ethanol / acetic acid 10 % accuracy 
[149] 

RO TMP,T,Cf Jv NaCl R2 = 0. 998 
[134] 

RO TMP,T,mf ,TDS, t mp,Cp(TDS) sea water R2 = 0.96 (TDS)  

R2 = 0.75 (mp) 

[161] 

RO TMP,T,pH,Cf ,i(conductivity) mp,Cp(TDS) sea water R2 = 0.99 
[162]  
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model both steady-state and dynamic systems. Studies utilizing ML- 
based models have shown their robustness in addressing various issues 
in membrane separations. It can be assumed that the models are useful 
for addressing unforeseen problems within pressure-driven membrane 
applications. The simplicity of their formulation may increase interest in 
industrial applications where historical data are readily available and 
the underlying mechanisms not yet fully understood. 

One of the main challenges of ML-based models is their limited 
generalizability. The models are only effective within the range of data 
they were trained on and may not perform well when applied to new 
data outside of this range. The formulation approach and architecture of 
ML-based models are transferable, providing a valuable source of 
knowledge for future applications. This includes the definition of input 
and output variables, which can be applied across different cases. 
However, it is important to keep in mind that the model’s parameters 
and performance are specific to the training data and may not be directly 
transferable to new cases unlike parameters defined for mechanistic 
models. 

Current studies have shown that ML-based models can perform well 
within specific problems. However, the application of these models to 
more complex systems and to optimization is still an area of ongoing 
research. One study reported the integration of a neural network model 
with a genetic algorithm for process optimization [37], but this study 
was limited to single-stage processes. However, a similar approach to 
model development can be applied to each stage of a multi-stage system, 
with the possibility of retraining the models for each stage as they may 
need to operate within different parameter ranges. 

Future efforts to improve the efficiency of ML-based models and 
reduce the need for repetitive training could include incorporating 
physical information into the training process. This might offer the po
tential to extend the validity range and lower the size of the training set 
[163], leading to fewer retraining needs. The training set can be 
designed to encompass the range of all stages involved in the system, 
thereby reducing the need for retraining. The field of physics-informed 
ML is currently growing, and has potential for application in multi- 
stage membrane systems. 

4. Models for membrane systems 

With models for single membranes available, efforts to model 
membrane systems focus on solving stream balances. The material bal
ances between the inlet and outlet streams of a single membrane unit 
have been incorporated in the single-stage model. The membrane sys
tem model then looks at the interconnections between inlet and outlet 
streams for certain configurations: which streams become the inlet 
streams and which streams are mixed with other streams? It is then 
important to have a single-stage model that is valid through all stream 
conditions (e.g. different concentrations). This single-stage model will 
then become a building block for the membrane system structure with 
stream balance to be solved. Solving steady-state stream balance itself is 
not difficult, especially in a sequential order. 

The move towards larger systems with more stages, and to a gener
alization of small system models has shifted the focus of modeling works 
towards system design and process synthesis, which is the main scope of 
process system engineering. Models of small membrane systems (with 
only a few stages) have been reported in the literature [22,26,91,92]. 
Most of these works focus on developing single-stage models without 
addressing the extension of these models to full membrane systems. 
Some design parameters are introduced in these works, such as stage cut, 
volume concentration factor, and separation factor. The models are then 
used to assess the overall performance of the system in relation to those 
design parameters, at which point the performance of the individual 
membrane is no longer important. 

Membrane systems are often designed based on simplifications, 
which limit the design options to solve the calculations more easily. One 
common simplification is the use of identical membranes operated 

under similar process conditions [25,89,164]. The overall performance 
will then be a multiplication or power of the performance of a single 
membrane. The number of membranes can then be introduced as a 
variable, n, in the design. Another simplification is to replace the whole 
single-stage model with constants or ratios, such as separation factors 
that are found heuristically. This practice is even simpler than empirical 
models. While the accuracy of this approach is questionable when 
evaluating the performance of each stage, it can be satisfying enough for 
the initial design, for example, as a part of larger systems or a plant 
design. 

The performance of inhomogeneous systems with variable mem
brane properties and process operations has been reported to be better 
than that of homogeneous ones with a similar number of stages 
[26,27,91]. However, the calculation is more rigorous with stage-by- 
stage evaluation instead of using one general model. This a trade-off 
that has to be considered. 

Modeling membrane system with a pre-defined single-stage model is 
like building a structure with existing building blocks. Solving the sys
tem can be done by sequentially solving the building blocks. However, 
sequential solving only works for simple scenarios, namely a steady- 
state system without recycling. With current trends towards waste 
stream utilization and circular processing, recycled streams are more 
commonly found in practice. Some techniques already incorporate 
recycle streams in their models, applying some constraints for 
simplification. 

Solving models with recycling cannot be done sequentially because 
of the interdependency between units that are connected by the recycle 
streams. The model should then be solved holistically. One well-known 
example of a simple recycling configuration was introduced in the work 
of Lightfoot [22] with three membranes. Generalizing this concept to 
more membranes, the large system still has three sections as in Light
foot’s cascaded configuration, i.e. feed stage, refining section, and 
concentration section. Such a configuration resembles the classical 
design of a distillation column, which is commonly solved using the 
McCabe-Thiele technique. A similar approach has been used for mem
brane systems [34,35,89]. 

Another approach to model multi-stage membrane systems is to 
utilize flow sheet design tools. These tools make it easy to design multi- 
stage membrane systems by simply drawing the flow configurations 
within the system. The conditions of each flow are then calculated 
automatically. These tools typically require custom-defined models for 
each unit, which can be accomplished using the single-stage models 
defined in the previous section. This approach has been demonstrated in 
the literature [165,166] and is widely used in industry. 

5. Optimization models 

In general, optimization can be mathematically formulated as fol
lows [167]: 

Optimize F = f (x)

Subject to h(x) = 0  

k(x) ≤ 0 

Here, the general problem is to optimize objective function F with 
equality, h, and inequality, k, constraints. The optimization problem can 
be formulated to find a maximum, a minimum, or a combination of both, 
of the objective function. These optima can appear regionally (local 
optima) or globally (global optima). Finding global optima may require 
more extensive techniques [168,169] while local optimization can be 
more sensitive since it searches within a smaller domain. 

Both objective and constraints must be formulated as functions of 
decision variable(s), x. How these functions are formulated is the major 
factor in classifying mathematical programming cases. Generally, the 
programming cases are classified based on their linearity and continuity. 

Z. Rizki and M. Ottens                                                                                                                                                                                                                        



Separation and Purification Technology 315 (2023) 123682

15

The simplest form of programming is when the functions are linear with 
continuous variables, which is called linear programming (LP) [170]. 
Similar as with continuous variables, non-linear programming (NLP) 
falls in the second category of mathematical programming. This type of 
programming can involve any type of non-linearity in the objective, 
constraints, or both. This may range from quadratic functions (also 
known as quadratic programming, QP [171]) to complex functions as a 
composite of many non-linear relationships. When discrete variables are 
included in the problem formulation, the problem becomes integer 
programming [172,173]. The discrete variables are often included in 
combination with continuous variables, resulting in a more complex 
approach known as mixed-integer linear (MILP) or non-linear pro
gramming (MINLP) [39,174,175]. To the best of our knowledge, MINLP 
is the most complex optimization problem discussed in the literature. 

Available optimization solvers or algorithms are often developed for 
specific programming types. Therefore, it is important to define which 
programming case is to be formulated. It is commonly found that a 
solver developed to solve a complex problem also performs well in 
solving a simpler problem. However, this does not work the other way 
around. Sometimes, simplifying the case by linearization or relaxation 
can be a strategic option in optimization modeling [81,176]. 

Solving an optimization problem is in principle a means to find a 
maximum (or minimum) value of a function within certain constraints. 
This search is done iteratively by comparing points until the maximum is 
found. The strategy to find the next iterate is crucial, and distinguishes 
one algorithm from another. A good algorithm is able to find the real 
optima with only a few iterations. Based on the technique to find the 
next iterate, optimization algorithms can be classified into gradient- 
based and gradient-free algorithms. 

Gradient-based algorithms search for an optimum based on the fact 
that the optimum has a gradient of zero (∇f(x) = 0). Thus, the algo
rithm looks for a new iterate with a lower derivative value than that of 
the starting point. Finding the new iterate from the initial point requires 
two major parameters: the search direction, pi, and the step length, αipi 
[177,178]. Thus, the computation of the new iterate can be formulated 
as follows: 

xi+1 = xi + αipi (23) 

Within the gradient-based algorithm, the calculation of both αi and pi 
requires the function derivative. The iteration is then stopped when the 
updated iterate has a gradient value of (computationally) zero. 

As the main goal of gradient-based algorithms is to find the new 
iterate with the lowest gradient, it is then logical to find the new iterate 
based on the steepest gradient descent. This idea led to the gradient 
descent (or steepest descent) algorithm [178], which calculates the di
rection vector, pi, based on its local derivative. Therefore, the step size 
gets smaller as the search is gets closer to the optimum, which makes the 
algorithm slow. Further improvements of this algorithm focus on a more 
straightforward search that finds the optimum without significantly 
slowing down close to the optimum. Among other algorithms in this 
cluster, Newton’s method (Eq. 61) has gained a lot of attention and has 
been applied to many cases [179–181]. 

xi+1 = xi −
f ′

(xi)

f ′′(xi)
(24) 

Gradient-based algorithms are not always practical to solve an 
optimization problem. One reason is that some cases simply do not have 
explicit derivatives or the derivatives are difficult to formulate. Alter
native algorithms to find the optimum without employing the function 
gradients (gradient-free algorithms) have been developed and published 
in the literature. While all gradient-based algorithms have similar 
stopping criteria – to find the zero-gradient point – gradient-free algo
rithms have various stopping criteria that are unique to each algorithm. 
The comparison between iterates is not done via their gradient values, 
but via the values of the iterates themselves. The mechanism of gradient- 

free algorithms is similar to gradient-based algorithms, which is to find 
the next iterate coming from the initial point. The difference lies in the 
direction and step size of the search. Here, no derivatives are used to 
determine the next iterate. 

The iteration in gradient-free algorithms may start from a group of 
starting points. The group can be selected randomly, initiated by the 
algorithm itself or predefined by the user. The points are then struc
turally evaluated. From that evaluation, the algorithms determine which 
points should be dropped and which ones should remain. From these 
remaining points (or a single point) new candidates are generated to find 
a new group for the next iteration. The evaluation and generation steps 
are then repeated. Algorithms can be distinguished based on the tech
niques they use to evaluate the group and to generate new candidates. 

Many algorithms are available. Some advanced techniques may be 
difficult to access or require paid licenses. Published algorithms have 
been summarized in several reviews [182–184], from which a suitable 
algorithm can be selected. 

6. Outlook and discussion 

In practice, multi-stage membrane systems, as shown in Fig. 1, are 
more common than single-stage membranes. The need for multi-stage 
membrane models only emerges when different purposes are assigned 
to each stage. Multi-purpose membrane systems are used to handle 
multi-component mixtures, which are more prevalent than simplified 
binary mixtures. In these systems, several components are considered 
valuable, so that processes involving multiple products are desired. Such 
processes are also known as fractionation processes, where several 
fractions are extracted from the feed mixture. As each fraction may have 
different properties, multi-purpose separation processes are required. 
Here, each membrane stage can be tuned to effectively separate the 
targeted fraction. 

For binary mixtures, multi-stage membrane models are only 
considered necessary in the presence of recycle streams that create in
terdependencies between stages. Recycle streams are usually introduced 
when the by-product stream still contains valuable compounds, which 
usually appears due to low selectivity between the main product and by- 
product compounds within one particular membrane. Another reason to 
introduce recycles is to reduce the fresh solvent requirement in diafil
tration [30,185]. Diafiltration itself is commonly designed as a multi- 
stage process because of the limitation of permeated compounds. As a 
consequence, each diafiltration stage requires fresh solvent, which in
creases the production cost. While back-looping the permeate stream 
immediately to the same stage is a futile effort, using permeate streams 
coming from the subsequent diafiltration stage as diafiltrate signifi
cantly reduces the fresh solvent requirement [186]. 

Fractionation systems and systems with recycles are getting more 
attention due to the trend towards circular processes. Here, two prin
ciples apply: make use of as many compounds as possible and discharge 
as little waste as possible. This drives the evolution of multi-stage 
membrane systems from classical two-outlet-stream membrane 
processes. 

Industrial and lab-scale examples of fractionation systems exist, 
usually in the context of multi-component feed streams. Such feed 
streams are more prevalent in food, bio- and pharmaceutical processes 
that involve natural sources. One well-known case is milk fractionation 
[2,5,187], the components of which are widely utilized within the dairy 
industry. Other examples come from extracting solutions from crops 
containing macromolecules such as proteins and carbohydrates, or 
functional micromolecules such as colorants, antioxidants, or other 
bioactive compounds. The fractionation processes can be used to frac
tionate mixtures of different proteins [5,7] or various fractions of car
bohydrates [24], or to strip those functional components [188–190]. 

In the bio-pharmaceutical industry, the need for multistage mem
brane fractionation systems appears during down-stream processing. 
Here, mixtures of metabolites produced during fermentation are 
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handled [191–194]. These mixtures often contain multiple components 
of interest. 

All the mentioned systems preferably perform at their optimum 
conditions. The optimization framework discussed in this review is a 
valuable tool for ensuring they do. With the proposed approach dis
cussed in this paper, one can efficiently design an optimum process, 
preventing a time-consuming and costly trial-and-error approach. 

7. Conclusion 

This paper explores various methods for optimizing membrane sys
tems using a four-phase modeling approach. Despite its numerous po
tential applications, the optimization of membrane systems through a 
comprehensive modeling approach is underrepresented in the literature. 
Most studies focus either on the development of membrane filtration 
models without proper optimization or on rigorous optimization with 
oversimplified filtration models. This paper presents an overview of 
both perspectives and provides an integrated guideline, including 
alternative pathways within this integration. The paper also discusses 
the advantages and drawbacks of different methods and highlights the 
use of both detailed mechanistic approaches and empirical or machine 
learning-based approaches, as well as hybrid optimization approaches. 
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[152] E. Piron, E. Latrille, F. René, Application of artificial neural networks for 
crossflow microfiltration modelling: ‘black-box’ and semi-physical approaches, 
Comput Chem Eng 21 (9) (Jun. 1997) 1021–1030, https://doi.org/10.1016/ 
S0098-1354(96)00332-8. 

[153] J. Ní Mhurchú, G. Foley, Dead-end filtration of yeast suspensions: Correlating 
specific resistance and flux data using artificial neural networks, J Memb Sci 281 
(1–2) (Sep. 2006) 325–333, https://doi.org/10.1016/J.MEMSCI.2006.03.043. 

[154] W.R. Bowen, M.G. Jones, H.N.S. Yousef, Dynamic ultrafiltration of proteins – A 
neural network approach, J Memb Sci 146 (2) (Aug. 1998) 225–235, https://doi. 
org/10.1016/S0376-7388(98)00108-2. 

[155] M.A. Razavi, A. Mortazavi, M. Mousavi, Application of neural networks for 
crossflow milk ultrafiltration simulation, Int Dairy J 14 (1) (Jan. 2004) 69–80, 
https://doi.org/10.1016/S0958-6946(03)00150-X. 

[156] P. Rai, G.C. Majumdar, S. DasGupta, S. De, Modeling the performance of batch 
ultrafiltration of synthetic fruit juice and mosambi juice using artificial neural 
network, J Food Eng 71 (3) (Dec. 2005) 273–281, https://doi.org/10.1016/J. 
JFOODENG.2005.02.003. 

[157] Q.F. Liu, S.H. Kim, Evaluation of membrane fouling models based on bench-scale 
experiments: A comparison between constant flowrate blocking laws and artificial 
neural network (ANNs) model, J Memb Sci 310 (1–2) (Mar. 2008) 393–401, 
https://doi.org/10.1016/J.MEMSCI.2007.11.020. 

[158] N.A. Darwish, N. Hilal, H. Al-Zoubi, A.W. Mohammad, Neural Networks 
Simulation of the Filtration of Sodium Chloride and Magnesium Chloride 
Solutions Using Nanofiltration Membranes, Chem. Eng. Res. Des. 85 (4) (Jan. 
2007) 417–430, https://doi.org/10.1205/CHERD06037. 

[159] J.C. Chen, A. Seidel, Cost Optimization of Nanofiltration with Fouling by Natural 
Organic Matter, J. Environ. Eng. 128 (10) (Oct. 2002) 967–973, https://doi.org/ 
10.1061/(ASCE)0733-9372(2002)128:10(967). 

[160] L. Khaouane, Y. Ammi, S. Hanini, Modeling the Retention of Organic Compounds 
by Nanofiltration and Reverse Osmosis Membranes Using Bootstrap Aggregated 
Neural Networks, Arab J Sci Eng 42 (4) (Apr. 2017) 1443–1453, https://doi.org/ 
10.1007/S13369-016-2320-2/METRICS. 

[161] Y.G. Lee, et al., Artificial neural network model for optimizing operation of a 
seawater reverse osmosis desalination plant, Desalination 247 (1–3) (Oct. 2009) 
180–189, https://doi.org/10.1016/J.DESAL.2008.12.023. 

[162] A.M. Aish, H.A. Zaqoot, S.M. Abdeljawad, Artificial neural network approach for 
predicting reverse osmosis desalination plants performance in the Gaza Strip, 
Desalination 367 (Jul. 2015) 240–247, https://doi.org/10.1016/J. 
DESAL.2015.04.008. 

[163] G.E. Karniadakis, I.G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, L. Yang, “Physics- 
informed machine learning,” Nature Reviews Physics, vol. 3, no. 6. Springer 
Nature, pp. 422–440, Jun. 01, 2021. doi: 10.1038/s42254-021-00314-5. 

[164] W.E. Siew, A.G. Livingston, C. Ates, A. Merschaert, Continuous solute 
fractionation with membrane cascades - A high productivity alternative to 
diafiltration, Sep Purif Technol 102 (2013) 1–14, https://doi.org/10.1016/j. 
seppur.2012.09.017. 

[165] D. Bocciardo, M.C. Ferrari, S. Brandani, Modelling and Multi-stage Design of 
Membrane Processes Applied to Carbon Capture in Coal-fired Power Plants, 
Energy Procedia 37 (Jan. 2013) 932–940, https://doi.org/10.1016/J. 
EGYPRO.2013.05.188. 

[166] D. Bocciardo, M.-C. Ferrari, S. Brandani, Modelling and multi-stage design of 
membrane processes applied to carbon capture in coal-fired power plants 
Selection and/or peer-review under responsibility of GHGT, Energy Procedia 37 
(2013) 932–940, https://doi.org/10.1016/j.egypro.2013.05.188. 

[167] U. Diwekar, Introduction to Applied Optimization, Second Edi. (1984), https:// 
doi.org/10.1007/978-3-662-00719-8. 

[168] D. Gao, N. Ruan, and W. Xing, Advances in Global Optimization, vol. 95. 2015. doi: 
10.1007/978-3-319-08377-3_41. 

[169] C.A. Floudas, C.E. Gounaris, A review of recent advances in global optimization, 
J. Glob. Optim. 45 (1) (2009) 3–38, https://doi.org/10.1007/s10898-008-9332- 
8. 

[170] D.G. Luenberger, J. Zhu, Linear and nonlinear programming 116 (2008), https:// 
doi.org/10.1201/b17264-17. 

[171] G.H. Golub, U. von Matt, Quadratically constrained least squares and quadratic 
problems, Numer Math (Heidelb) 59 (1) (1991) 561–580, https://doi.org/ 
10.1007/BF01385796. 

[172] P. Feautrier, Parametric integer programming, RAIRO - Operations Research 22 
(3) (1988) 243–268, https://doi.org/10.1051/ro/1988220302431. 

[173] L. Connectives, I.P. Constraints, Logic and Integer Programming 130 (2009) 
[Online]. Available:. 

[174] M. Tawarmalani and N. v. Sahinidis, “Global optimization of mixed-integer 
nonlinear programs: A theoretical and computational study,” Math Program, vol. 
99, no. 3, pp. 563–591, 2004, doi: 10.1007/s10107-003-0467-6. 

[175] D. Vázquez, R. Ruiz-Femenia, J.A. Caballero, Mixed integer non-linear 
programming model for reliable and safer design at an early stage, Comput Chem 
Eng 147 (Apr. 2021), 107256, https://doi.org/10.1016/j. 
compchemeng.2021.107256. 

[176] B.N. Pshenichny, The linearization method, Optimization 18 (2) (Jan. 2007) 
179–196, https://doi.org/10.1080/02331938708843231. 

[177] Y. Bengio, Gradient-Based Optimization of Hyperparameters, Neural Comput 12 
(8) (Aug. 2000) 1889–1900, https://doi.org/10.1162/089976600300015187. 

[178] S. Ruder, “An overview of gradient descent optimization algorithms,” pp. 1–14, 
Sep. 2016, doi: 10.48550/arXiv.1609.04747. 

[179] J. Fliege, L.M.G. Drummond, B.F. Svaiter, Newton’s method for multiobjective 
optimization, SIAM J. Optim. 20 (2) (May 2009) 602–626, https://doi.org/ 
10.1137/08071692X. 

[180] A. Fischer, A special newton-type optimization method, Optimization 24 (3–4) 
(Jan. 1992) 269–284, https://doi.org/10.1080/02331939208843795. 

[181] P.E. Gill, W. Murray, Quasi-Newton Methods for Unconstrained Optimization, 
IMA J Appl Math 9 (1) (Feb. 1972) 91–108, https://doi.org/10.1093/imamat/ 
9.1.91. 

[182] F. Boukouvala, R. Misener, C. A. Floudas, “Global optimization advances in 
Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free 
Optimization, CDFO,” European Journal of Operational Research, vol. 252, no. 3. 
Elsevier B.V., pp. 701–727, Aug. 01, 2016. doi: 10.1016/j.ejor.2015.12.018. 

[183] D. Fouskakis, D. Draper, Stochastic optimization: A review, Int. Stat. Rev. 70 (3) 
(2002) 315–349, https://doi.org/10.1111/j.1751-5823.2002.tb00174.x. 

[184] L.M. Rios, N.v. Sahinidis, Derivative-free optimization: A review of algorithms 
and comparison of software implementations, J. Global Optimization 56 (3) (Jul. 
2013) 1247–1293, https://doi.org/10.1007/s10898-012-9951-y. 

[185] F. Lipnizki, J. Boelsmand, R.F. Madsen, Concepts of industrial-scale diafiltration 
systems, Desalination 144 (1–3) (Sep. 2002) 179–184, https://doi.org/10.1016/ 
S0011-9164(02)00309-0. 

[186] M.G. Jabra, C.J. Yehl, A.L. Zydney, Multistage continuous countercurrent 
diafiltration for formulation of monoclonal antibodies, Biotechnol Prog 35 (4) 
(Jul. 2019) e2810. 

[187] G. Daufin, J.P. Escudier, H. Carrère, S. Bérot, L. Fillaudeau, M. Decloux, Recent 
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