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Summary
Where people gather, they communicate. In the last decade the graph burning model was developed
to model the spread of information between people. Graph burning is a process that is done in rounds
with the aim of spreading information to every connected person in a network. Every round one new
source of information may be appointed and information spreads from people who have received it, to
all of their connections, just like fire spreads. The burning number of a graph, denoted by 𝑏(𝐺), is the
parameter that quantifies the speed of this spread of information.

It has been conjectured that the burning number for a connected graph on 𝑛 vertices is at most ⌈√𝑛⌉.
This has been proven for many types of graphs, but not all. Moreover, not much is known about the
relation between the number of sources that are used to burn a graph and the burning number. In this
light, we prove the burning number conjecture for cat-constructs. Cat-constructs are trees obtained
from a path graph 𝑃𝑛 by adding at most two vertices to subtrees of 𝑃𝑛. These subtrees are induced by
closed balls which have the vertices of a burning sequence as their centers and a chosen radius. We
show the burning sequence of a cat-construct may contain one fewer source than its burning number if
the number of vertices for the cat-construct is more than the first square bigger than 𝑛. With this result
we show that adding a vertex as a leaf to these cat-constructs and appointing it as a source results in
the proof of the burning number conjecture for certain 3-caterpillars.

Finally, we prove the burning number conjecture for trees with a single degree-2 vertex. For this
proof we use a method similar to the method developed by Murakami (2023) for proving the burning
number conjecture for homeomorphically irreducible trees.
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1
Introduction

Graph burning models the spread of information between people. It is done in rounds. Initially, all
vertices are unburned. Every round one vertex may be chosen as a source. This source is burned in
that round. Every round the fire spreads from burned vertices to all neighbour vertices, making these
vertices burned as well. A vertex cannot be unburned. This process continues until all vertices are
burned. The minimal number of rounds it takes for all vertices of a graph to be burned is called the
burning number, denoted by 𝑏(𝐺).

(a) A path graph that is burned in 3 rounds with 2 sources in grey. The
numbers denote the round in which the vertex is burned.

(b) A tree that is burned in 3 rounds with 3 sources. The numbers
denote the round in which the vertex is burned.

Figure 1.1: Examples of burned graphs.

1.1. Basic concepts in graph theory
We first introduce some basic concepts in graph theory important to graph burning. Graph burning
is currently being researched on simple graphs. Janssen (2020) proved that graph burning can be
naturally generalized to directed graphs. Therefore, the focus is currently on simple graphs. A simple
graph 𝐺 is a pair of sets (𝑉, 𝐸) where 𝑉 is the set of vertices and 𝐸 the set of edges such that 𝐸 is a
subset of all two-element subsets of 𝑉. We denote the number of vertices in 𝐺 by |𝐺|, the set of vertices
of 𝐺 by 𝑉(𝐺) and the set of edges of 𝐺 by 𝐸(𝐺). Furthermore, graphs are denoted by capital letters,
vertices are denoted by lowercase letters and edges are denoted by the two letters of the vertices that
are the endpoints of the edge. For example, in a graph 𝐺, for two vertices 𝑢 ∈ 𝑉 and 𝑣 ∈ 𝑉, 𝑢𝑣 is
an edge in 𝐺 if 𝑢𝑣 ∈ 𝐸(𝐺). Vertices in a graph may be labeled if we want to distinguish between the
vertices. For example, if a graph depicts the connection between people we can label the vertices with
the names of the people that they represent. If it does not matter what label the vertex holds then the
vertices will not have a label. A subgraph of 𝐺 is a graph 𝐺′ = (𝑉′, 𝐸′) such that 𝑉′ is a subset of 𝑉 and
𝐸′ is a subset of 𝐸 such that it contains only edges of 𝐸 that have both endpoints in 𝑉′. Such a subgraph
is induced by 𝑉′ if it contains exactly the edges between the vertices in 𝑉′ that were originally also in
𝐸. Two vertices 𝑢, 𝑣 ∈ 𝑉 are called neighbours if 𝑢𝑣 ∈ 𝐸. Every vertex 𝑣 ∈ 𝑉 has a degree, denoted
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1.2. Graph burning 2

by deg(𝑣) which equals the number of vertices that are adjacent to 𝑣. Between any two vertices 𝑢, 𝑣 in
a graph there exists a path if there exists a sequence of unique vertices 𝑢, 𝑣1, ..., 𝑣𝑘 , 𝑣 such that 𝑢𝑣1 ∈ 𝐸,
𝑣𝑘𝑣 ∈ 𝐸 and for every 𝑖 ∈ {1, ..., 𝑘 − 1}, 𝑣𝑖𝑣𝑖+1 ∈ 𝐸. A path’s length is equal to the number of edges in
the path. When a path exists between every pair of vertices in a graph, then a graph is connected. For
this thesis, graph burning is considered only on simple connected graphs. An example of a connected
and a disconnected graph is shown in Figure 1.2.

(a) A connected graph. (b) A disconnected graph.

Figure 1.2: Examples of a connected and a disconnected graph.

An important type of connected graph that will be the focal point of this thesis is a tree. A tree is a
connected graph without cycles. A cycle is defined as a path of which the start and endpoint are the
same. Every tree has at least one leaf, a vertex 𝑣 with deg(𝑣) = 1 or deg(𝑣) = 0 if the tree consists of
a single vertex. All vertices in trees that have degree more than 1 are internal vertices. Finally, denote
the distance between two vertices 𝑢, 𝑣 in a graph 𝐺 by 𝑑(𝑢, 𝑣), which is the length of a shortest path
between these two vertices.

More background information on graph theorymay be found in Diestel (2017) and formore advanced
information on graph theory, Yadav (2023) may be consulted.

1.2. Graph burning
We will now go into more detail on what graph burning is formally. Graph burning is a process on an
arbitrary simple connected graph 𝐺. In 𝐺 a sequence of vertices 𝑆 = (𝑥1, 𝑥2, ..., 𝑥𝑘) is chosen to be
burned as sources in the order of the sequence. In the round after a source is burned all neighbours
of the source and any other burned vertex also get burned. A vertex cannot be unburned. So in round
1, 𝑥1 is burned as a source. In round 2, all adjacent vertices of 𝑥1 are burned and 𝑥2 is burned as a
source. In round 𝑖, all adjacent vertices of burned vertices are burned and vertex 𝑥𝑖 is burned as a
source. This process stops after all vertices are burned. If at the end of round 𝑘 all vertices of 𝐺 are
burned, then 𝑆 is called a burning sequence. The length of a burning sequence equals the number
sources in the burning sequence. The burning number of 𝐺, 𝑏(𝐺), equals the length of a burning
sequence of shortest length in 𝐺. Multiple burning sequences of equal length may exist for a graph.
Therefore, a burning sequence does not necessarily have a unique length.

1.3. The burning number conjecture
Graph burning is a concept in graph theory that was developed in the last decade. Bonato et al. (2016)
showed that a path graph 𝑃𝑛 on 𝑛 vertices has burning number exactly ⌈√𝑛⌉. A path graph 𝑃𝑛 is a
graph that consists of 𝑛 vertices such that all vertices are part of one unique path and appear in the
path sequence only once. An example of a path graph on 5 vertices in an unburned and burned state
is shown in Figure 1.3.
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(a) A path graph 𝑃5 on 5 vertices. (b) A path graph 𝑃5 on 5 vertices that is fully burned. The grey vertex is
the source in the burning sequence and the numbers indicate in which

round the vertex is burned.

Figure 1.3: An example of a path graph 𝑃5 on 5 vertices in an unburned and burned state.

Following this proof Bonato et al. (2016) conjectured that the burning number of all graphs must be
smaller equal to ⌈√𝑛⌉.
Conjecture 1.1 (Bonato et al. 2016). Let 𝐺 be a connected graph on 𝑛 vertices. Then 𝑏(𝐺) ≤ ⌈√𝑛⌉.

Bonato et al. (2016) also proved that if the burning number conjecture is true for trees, it is true for
all graphs.

Corollary 1.1 (Bonato et al. 2016). For a graph 𝐺 we have that

𝑏(𝐺) =min{𝑏(𝑇) ∶ 𝑇 is a spanning tree of 𝐺}.

A spanning tree 𝑇 of a graph 𝐺 is a tree that consists of all vertices of 𝐺 and the edges of 𝑇 are a
subset of the edges of 𝐺. Examples of a spanning tree in a graph are shown in Figure 1.4.

(a) A spanning tree with burning number equal to 3. (b) A spanning tree with burning number equal to 2.

Figure 1.4: An example of a spanning tree of a graph depicted by red edges and connected vertices. The blue edges
are part of the original graph, but not of the spanning tree.

1.4. Contributions
In this thesis, we prove the burning number conjecture holds for cat-constructs in Chapter 3. Cat-constructs
are trees constructed by adding at most two vertices to subtrees of a path graph 𝑃𝑛. These subtrees
are induced by closed balls with the vertices of a burning sequence as their centers and a chosen
radius. The definition for cat-constructs is found in Chapter 3. We further prove cat-constructs may be
burned by a burning sequence, with the number of sources equal to ⌈√𝑛⌉, which is the burning number
for 𝑃𝑛. Finally, we will show that the burning number conjecture holds for certain 3-caterpillars that can
be constructed from cat-constructs by adding a vertex as a leaf.

In Chapter 4, we prove the burning number conjecture for trees with a single degree 2 vertex. An
example of a tree with a single degree 2 vertex is shown in Figure 1.5.
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Figure 1.5: A tree with a single degree-2 vertex.



2
Literature review

Although the concept of graph burning is relatively new, many articles can be found on the subject. The
burning number conjecture has been researched on different topics such as computational complexity,
algorithms to determine the burning number for a graph and proving the conjecture for certain types of
graphs. We will discuss some articles on these subjects.

2.1. Computational complexity
It was proven by Bonato et al. (2015) that finding an optimal burning sequence in a graph is an
𝑁𝑃-complete problem. A burning sequence is considered optimal when a graph is fully burned by
the sequence in a minimal number of rounds. The computational complexity for graph burning was
further proven in 2020 by Gupta et al. (2021), where the burning graph problem was extended to
connected interval graphs, permutation graphs and several other geometric graph classes. Gorain
et al. (2023) proved once more that the burning problem is 𝑁𝑃-complete on connected interval graphs
and permutation graphs and studied the burning properties of grids. They proved the lower bound of
the burning number of a grid of length 𝑙 and width 𝑏 is at least (𝑙 × 𝑏)

1
3 .

2.2. Deterministic algorithms
Bonato and Kamali (2019) introduced a 2-approximation algorithm for trees and a 3-approximation
algorithm for graphs in general. The exact value of the burning number has been found for algorithms
for graph products (Mitsche et al. 2018), the Petersen graph (Sim et al. 2017), theta graph (Liu et al.
2019), dense and tree-like graph (Kamali et al. 2019) and grid graphs (Bonato et al. 2020). These types
of graphs are not subjects for this thesis. Therefore, a description is not included, but may be found
in Diestel (2017) and Yadav (2023). More recently, Farokh et al. (2020) introduced 6 new heuristics
for burning graphs which they tested on datasets, which are used for solving other NP-hard problems
in graph theory. Examples of such problem are the independent set problem and the maximum clique
problem. The latest research on an 𝑂(𝑚𝑛+𝑘𝑛2) greedy heuristic for graph burning, with 𝑛 the number
of vertices of the graph,𝑚 the number of edges and 𝑘 a guess on the burning number, was published by
García-Díaz and Cornejo-Acosta (2024). Their research explored advantages and limitations of such
a heuristic for the burning graph problem.

2.3. Burning number conjecture on specific types of graphs
In Chapter 1 we introduced the burning number conjecture by Bonato et al. (2016). In the same article
Bonato et al. (2016) proved that it suffices to prove the burning number conjecture for trees. Many
proofs for different types of trees on the burning number conjecture have been published, such as a
proof on path graphs by Bonato et al. (2016), generalized Petersen graphs by Sim et al. (2017), spider
graphs by Bonato and Lidbetter (2017) and large enough graphs with minimum degree 3 or 4 by Bastide
et al. (2022). Furthermore, the burning number conjecture was proven for caterpillars, 2-caterpillars and
𝑝-caterpillars with at least 2⌈√𝑛⌉−1 leaves by Hiller et al. (2019). For homeomorphically irreducible trees
(HITs) and graphs that contain a homeomorphically irreducible spanning tree (HIST) the conjecture was
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proven byMurakami (2023). The burning number conjecture has also been proven to hold asymptotically
such that 𝑏(𝐺) ≤ (1 + 𝑜(1))√𝑛 by Norin and Turcotte (2022).

Since caterpillars, 2-caterpillars and HITs are important graph types for this thesis, these will be
discussed in more detail below.

Caterpillars are trees such that when all leaves are deleted, a path remains. A 𝑝-caterpillar is a tree
with a central (longest) path such that all leaves are at a shortest distance to the path of at most 𝑝. The
proof of the burning number conjecture for caterpillars and 2-caterpillars by Hiller et al. (2019) is a proof
by induction. It consists of a recursive algorithm where at every step a part of the tree is burned off, such
that the number of vertices left in the tree is at most the next smaller square number. This proof is rather
long and complex and for caterpillars a shorter proof has since been found by Liu et al. (2020). We will
use the result from Hiller et al. (2019) in our proof on the burning number conjecture for trees with a
single degree 2 vertex in Chapter 4. An example of a caterpillar and a 2-caterpillar is given in Figure 3.1.

(a) An example of a caterpillar. (b) An example of a 2-caterpillar.

Figure 2.1: An example of a caterpillar and a 2-caterpillar.

HITs are trees that have no degree 2 vertices. Figure 2.2 shows an example of a HIT. In the proof
for HITs, Murakami (2023) searches an arbitrary HIT on 𝑛 vertices for a large enough subtree such that
burning one vertex as a source results in burning the whole subtree. This means that a single source is
needed to burn the full subtree and the propagation of the fire burns part of the remainder of the tree as
well. They then continue to burn the remainder of the tree (which is another subtree) with the remaining
number of sources available and they use the fact that the vertex that was burned in round 1 also burns
part of the leftover subtree. This results in burning the full tree with at most ⌈√𝑛⌉ sources such that the
burning number for HITs is at most ⌈√𝑛⌉. We will use a similar method to prove the burning number
conjecture for trees with a single degree 2 vertex in Chapter 4.

Figure 2.2: An example of a HIT.



3
Caterpillar construction

The burning number conjecture for 2-caterpillars was proven by Hiller et al. (2019). In this chapter,
we introduce a different approach to proving the burning number conjecture for certain subsets of
2-caterpillars, which we will call cat-constructs (short for caterpillar constructs). With this approach we
prove the burning number conjecture holds, such that there is a burning sequence with the number of
sources at most the burning number minus 1 for cat-constructs of large enough size.

Before we define cat-constructs, we describe the action of adding a vertex to a (sub)tree.
The addition of a vertex 𝑥 to a tree 𝑇1 to obtain 𝑇′1, is considered to be done in two ways, in this thesis:

1. Adding a leaf 𝑥 to an existing vertex 𝑣 ∈ 𝑉(𝑇) such that 𝑇′ = (𝑉(𝑇) ∪ {𝑥}, 𝐸(𝑇) ∪ {𝑥𝑣}).
2. Subdividing an edge 𝑢𝑤 ∈ 𝐸(𝑇) such that 𝑇′ = (𝑉(𝑇) ∪ {𝑥}, 𝐸(𝑇) ∪ {𝑢𝑥, 𝑥𝑤}\{𝑢𝑤}).
If 𝑇1 is a subtree of 𝑇 then a vertex 𝑥 that is added to 𝑇1 is also added to 𝑇. Formally we consider

adding a vertex 𝑥 to a subtree 𝑇1 to be done in three ways

1. Adding a leaf 𝑥 to an existing vertex 𝑣 ∈ 𝑉(𝑇1) such that 𝑥 is added as a leaf to 𝑣 ∈ 𝑉(𝑇) such
that 𝑇′ = (𝑉(𝑇) ∪ {𝑥}, 𝐸(𝑇) ∪ {𝑥𝑣}).

2. Adding a leaf 𝑥 to an existing vertex 𝑣 ∈ 𝑉(𝑇1) such that an edge 𝑢𝑣 ∈ 𝐸(𝑇), where 𝑢 ∉ 𝑉(𝑇1), is
subdivided. This results in 𝑇′ = (𝑉(𝑇) ∪ {𝑥}, 𝐸(𝑇) ∪ {𝑢𝑥, 𝑥𝑣}\{𝑢𝑣}).

3. Subdividing an edge 𝑢𝑤 ∈ 𝐸(𝑇1) such that edge 𝑢𝑤 ∈ 𝐸(𝑇) is subdivided, such that 𝑇′ = (𝑉(𝑇)∪
{𝑥}, 𝐸(𝑇) ∪ {𝑢𝑥, 𝑥𝑤}\{𝑢𝑤}).

Note that 𝑇′1 is a subtree of 𝑇′ for each of these ways of adding a vertex to a subtree 𝑇1. Adding
2 vertices sequentially is defined as adding the first vertex to a tree 𝑇, to obtain 𝑇′ and then adding
the second vertex to 𝑇′, to obtain 𝑇∗. Suppose we have a tree 𝑇 with subtrees 𝑇1 and 𝑇2. Assume we
add a vertex 𝑥 to 𝑇1 and 𝑇 in the second way and we add a vertex 𝑦 to 𝑇2 and 𝑇 in the second way. It
could occur that a single edge 𝑢𝑣 is subdivided, to add 𝑥 and 𝑦 to 𝑇. In that case we consider 𝑢𝑣 to be
subdivided, such that we obtain 𝑇′ = (𝑉(𝑇) ∪ {𝑥, 𝑦}, 𝐸(𝑇) ∪ {𝑢𝑥, 𝑥𝑦, 𝑦𝑣}\{𝑢𝑣}).

We now introduce the definition for a closed ball on a graph that will be used in this chapter based
on the definition of closed balls on a graph that was used by Bastide et al. (2022). We define a closed
ball on a graph with center 𝑣𝑖 and radius 𝑟 as the set of all vertices 𝑢 ∈ 𝑉(𝑇) of a graph 𝑇 that satisfy
𝑑𝑇(𝑣𝑖 , 𝑢) ≤ 𝑟. We denote such a closed ball by 𝐵𝑇(𝑣𝑖 , 𝑟). All vertices in a closed ball are at distance
less than or equal to 𝑟 from its center in a given graph. Therefore, it can be easily seen, that all these
vertices can be burned in 𝑟 + 1 rounds by assigning the center as the only source. Thus, if a graph 𝐺
admits a burning sequence 𝑆 = (𝑣1, 𝑣2, ..., 𝑣𝑘) that has 𝑘 sources, such that it burns 𝐺 in 𝑘 rounds, we
find the union of the closed balls with centers 𝑣𝑖 and radii 𝑘 − 𝑖 contains all vertices of 𝐺.

We will now define a cat-construct in Definition 3.1. Note that for a path graph 𝑃𝑛 on 𝑛 vertices, it
has been proven by Bonato et al. (2016) that 𝑏(𝑃𝑛) = ⌈√𝑛⌉. Therefore, we can find a burning sequence
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that consists of ⌈√𝑛⌉ sources which burns 𝑃𝑛 in ⌈√𝑛⌉ rounds. Note that such a burning sequence may
not be optimal for 𝑃𝑛.
Definition 3.1 (cat-construct). Let 𝑃𝑛 = (𝑉, 𝐸) be a path graph on 𝑛 vertices and let 𝑆 = (𝑣1, 𝑣2, ..., 𝑣⌈√𝑛⌉)
be a burning sequence such that it burns 𝑃𝑛 in ⌈√𝑛⌉ rounds with ⌈√𝑛⌉ sources. For every 𝑖 in {1, 2, ..., ⌈√𝑛⌉}
let 𝐵𝑃𝑛(𝑣𝑖 , ⌈√𝑛⌉ − 𝑖) be closed balls with center 𝑣𝑖 and radius ⌈√𝑛⌉ − 𝑖 such that

𝑉 =
⌈√𝑛⌉

⋃
𝑖=1

𝐵𝑃𝑛(𝑣𝑖 , ⌈√𝑛⌉ − 𝑖).

Let 𝑇′𝑖 denote the 𝑖-th subtree of 𝑃𝑛, induced by 𝐵𝑃𝑛(𝑣𝑖 , ⌈√𝑛⌉ − 𝑖). Any tree 𝑇 obtained from 𝑃𝑛, by
sequentially adding for every 𝑖 at most 2 vertices to 𝑇′𝑖 , is called a cat construct.

Note that𝑃𝑛 is a subtree of the cat-construct that is constructed from it. Furthermore, any cat-construct
is a subtree of a 2-caterpillar. A cat-construct may therefore be a path graph itself with at most 𝑛 + 2𝑘
vertices. The distance from a vertex 𝑣 to a subtree 𝐹 in a tree 𝑇 is defined as the shortest distance
from 𝑣 to any vertex in 𝐹. We define a longest path in a tree as a path with maximal length such
that there is no path in the tree that is of greater length. A longest path in a tree is, in general, not
necessarily unique. The distance from leaves to a longest path in a cat-construct can clearly be at
most 2, because for every 𝑖 at most 2 vertices are added sequentially to 𝑇′𝑖 . So a cat-construct can be
a 2-caterpillar. However, not every 2-caterpillar is a cat-construct. If the number of vertices that are not
on a single longest path in the 2-caterpillar is bigger than 2⌈√𝑛⌉ then we can easily see it cannot be a
cat-construct. However if this is not the case then the steps for creating a cat-construct would have to
be retraced which is hard to do.

(a) An example of a 2-caterpillar that is not a cat-construct. (b) An example of a 2-caterpillar that is a cat-construct. The gold
vertices were originally in the path from which the caterpillar was

constructed. The red circles depict the closed balls that were used in the
construction process.

Figure 3.1: Two examples of 2-caterpillars where one is a cat-construct and the other is not.

We will now show, with Theorem 3.1, that the burning number for any cat-construct 𝑇 on𝑚 vertices,
obtained from a path graph 𝑃𝑛 on 𝑛 vertices, is at most ⌈√𝑛⌉+1. Furthermore, 𝑇 has a burning sequence
of ⌈√𝑛⌉ sources.
Theorem 3.1. Let 𝑇 be a cat-construct on 𝑚 vertices, obtained from a path graph 𝑃𝑛 on 𝑛 vertices.
Then 𝑏(𝑇) ≤ ⌈√𝑛⌉ + 1 with a burning sequence that consists of ⌈√𝑛⌉ sources.
Proof. We will construct an arbitrary cat-construct 𝑇, by the process from Definition 3.1.
Let 𝑃𝑛 = (𝑉, 𝐸) be a path graph on 𝑛 vertices and let 𝑆 = (𝑣1, 𝑣2, ..., 𝑣𝑘) be a burning sequence for 𝑃𝑛,
such that ⌈√𝑛⌉ = 𝑘. Denote the closed balls with center 𝑣𝑖 in 𝑉(𝑃𝑛) and radius 𝑘−𝑖 by 𝐵𝑃𝑛(𝑣𝑖 , 𝑘−𝑖). Note
that we have 𝑉(𝑃𝑛) = ⋃𝑘𝑖=1 𝐵𝑃𝑛(𝑣𝑖 , 𝑘 − 𝑖). For all 𝑖 ∈ {1, 2, ..., 𝑘} we add at most 2 vertices sequentially
to every 𝑖-th subtree 𝑇′𝑖 of 𝑃𝑛 induced by 𝐵𝑃𝑛(𝑣𝑖 , 𝑘 − 𝑖). We thereby obtain 𝑇𝑖 from 𝑇′𝑖 and cat-construct
𝑇 from 𝑃𝑛. Let 𝐵𝑇

′
𝑖 (𝑣𝑖 , 𝑘 − 𝑖) and 𝐵𝑇(𝑣𝑖 , 𝑘 − 𝑖) denote closed balls with centers 𝑣𝑖 in 𝑉(𝑇′𝑖 ) and 𝑣𝑖 in 𝑉(𝑇)

and radius 𝑘 − 𝑖.

We consider three cases:
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1. Without loss of generality assume for some 𝑖 that no vertices are added to 𝑇′𝑖 . Note that for all
vertices 𝑢 in 𝑉(𝑇′𝑖 ) it holds that 𝑢 ∈ 𝐵𝑃𝑛(𝑣𝑖 , 𝑘 − 𝑖) ⊆ 𝐵𝑇𝑖(𝑣𝑖 , 𝑘 − 𝑖) ⊆ 𝐵𝑇(𝑣𝑖 , 𝑘 − 𝑖). Then for all
such 𝑖 we choose a ball 𝐵𝑇(𝑞𝑖 , 𝑘 − 𝑖 + 1) with center 𝑞𝑖 = 𝑣𝑖 and radius 𝑘 − 𝑖 + 1. Note that
𝐵𝑇(𝑣𝑖 , 𝑘 − 𝑖 + 1) ⊆ 𝐵𝑇(𝑞𝑖 , 𝑘 − 𝑖 + 1).

2. Without loss of generality assume for some 𝑖 that one vertex is added to 𝑇′𝑖 . Then there can
be one vertex 𝑎 in 𝑉(𝑇𝑖) that is not contained in 𝐵𝑇𝑖(𝑣𝑖 , 𝑘 − 𝑖) and 𝐵𝑇(𝑣𝑖 , 𝑘 − 𝑖). Vertex 𝑎 is not
necessarily the added vertex. Since only one vertex was added to 𝑇′𝑖 the distance from 𝑣𝑖 to 𝑎 in
𝑇𝑖 and 𝑇 must be equal to 𝑘−𝑖+1. Therefore, for all such 𝑖, we choose a ball 𝐵𝑇(𝑞𝑖 , 𝑘−𝑖+1) with
center 𝑞𝑖 = 𝑣𝑖 and radius 𝑘− 𝑖 +1 such that all vertices in 𝑉(𝑇𝑖) are contained in 𝐵𝑇(𝑞𝑖 , 𝑘 − 𝑖 +1).

3. Without loss of generality assume for some 𝑖 that 2 vertices are added sequentially to 𝑇′𝑖 . Then
there can be at most 2 vertices 𝑤 and 𝑦 in 𝑉(𝑇𝑖) that are not contained in 𝐵𝑇𝑖(𝑣𝑖 , 𝑘 − 𝑖) and
𝐵𝑇(𝑣𝑖 , 𝑘 − 𝑖). Note that 𝑤 and 𝑦 are not necessarily the added vertices. If 𝑤 and 𝑦 are contained
within 𝐵𝑇(𝑣𝑖 , 𝑘 − 𝑖), we choose a ball as in case 1 which contains all vertices of 𝑇𝑖.
Without loss of generality, if 𝑤 is not contained within 𝐵𝑇(𝑣𝑖 , 𝑘 − 𝑖), but 𝑦 is contained within
𝐵𝑇(𝑣𝑖 , 𝑘 − 𝑖), we choose a ball as in case 2 which contains all vertices of 𝑇𝑖.
Suppose 𝑤 and 𝑦 are not contained in 𝐵𝑇𝑖(𝑣𝑖 , 𝑘−𝑖) and 𝐵𝑇(𝑣𝑖 , 𝑘−𝑖). We either have 𝑑𝑇𝑖(𝑣𝑖 , 𝑤) =
𝑑𝑇𝑖(𝑣𝑖 , 𝑦) = 𝑘 − 𝑖 + 1 or without loss of generality 𝑑𝑇𝑖(𝑣𝑖 , 𝑤) = 𝑘 − 𝑖 + 1 and 𝑑𝑇𝑖(𝑣𝑖 , 𝑦) = 𝑘 − 𝑖 + 2.
Suppose 𝑑𝑇𝑖(𝑣𝑖 , 𝑤) = 𝑑𝑇𝑖(𝑣𝑖 , 𝑦) = 𝑘 − 𝑖 + 1 holds. Then we choose a ball as in case 2 which
contains all vertices of 𝑇𝑖.
Suppose 𝑑𝑇𝑖(𝑣𝑖 , 𝑤) = 𝑘 − 𝑖 + 1 and 𝑑𝑇𝑖(𝑣𝑖 , 𝑦) = 𝑘 − 𝑖 + 2 holds. Then 𝑤 and 𝑦 are on the same
path from 𝑣𝑖 to 𝑦. Let 𝑞𝑖 be the neighbour of 𝑣𝑖 on the path from 𝑣𝑖 to 𝑦. As 𝑑𝑇𝑖(𝑣𝑖 , 𝑞𝑖) = 1 and
𝑞𝑖 is closer to 𝑦 than 𝑣𝑖 we now have 𝑑𝑇𝑖(𝑞𝑖 , 𝑦) = 𝑘 − 𝑖 + 1. For all other vertices 𝑢 in 𝑉(𝑇𝑖) we
now have 𝑑𝑇𝑖(𝑞𝑖 , 𝑢) ≤ 𝑘 − 𝑖 +1. Then we choose a ball 𝐵𝑇(𝑞𝑖 , 𝑘 − 𝑖 +1) with center 𝑞𝑖 and radius
𝑘 − 𝑖 + 1 such that 𝑉(𝑇𝑖) ⊆ 𝐵𝑇(𝑞𝑖 , 𝑘 − 𝑖 + 1).

We therefore choose for every 𝑖 a ball 𝐵𝑇(𝑞𝑖 , 𝑘−𝑖+1) with its center 𝑞𝑖 as discussed in the three cases
and radius 𝑘 − 𝑖 + 1. We then have 𝑉(𝑇) = ⋃𝑘𝑖=1 𝐵𝑇(𝑞𝑖 , 𝑘 − 𝑖 + 1). We can therefore find a burning
sequence 𝑆𝑇 = (𝑞1, 𝑞2, ...𝑞𝑘) such that 𝑆𝑇 contains 𝑘 = ⌈√𝑛⌉ sources and all vertices in 𝑇 are burned
within 𝑘+1 = ⌈√𝑛⌉+1 rounds. We have thus found a burning sequence that contains 𝑘 = ⌈√𝑛⌉ sources
and for the burning number it holds that 𝑏(𝑇) ≤ ⌈√𝑛⌉ + 1 as required.

We have now proven that every cat-construct 𝑇 on 𝑚 vertices, obtained from a path graph 𝑃𝑛 on 𝑛
vertices, has a burning sequence of ⌈√𝑛⌉ vertices, such that 𝑏(𝑇) ≤ ⌈√𝑛⌉+ 1. With this result we prove
Corollary 3.1, 3.2 and 3.3.

Corollary 3.1. Let 𝑃𝑛 be a path graph on 𝑛 vertices, where 𝑛 is square, and let 𝑇 be a cat-construct,
obtained from 𝑃𝑛, such that |𝑇| = 𝑚 > 𝑛. Then 𝑏(𝑇) ≤ ⌈√𝑚⌉.

Proof. Let 𝑇 be such a cat-construct. By Theorem 3.1 we have 𝑏(𝑇) ≤ ⌈√𝑛⌉+1. Since 𝑛 is square and
𝑚 > 𝑛, it then holds that 𝑏(𝑇) ≤ ⌈√𝑛⌉ + 1 = ⌈√𝑚⌉.

Corollary 3.2. Let 𝑃𝑛 be a path graph on 𝑛 vertices, where 𝑛 is not square. Let 𝑇 be a cat-construct
on 𝑚 vertices, obtained from 𝑃𝑛. If |𝑇| = 𝑚 > (⌈√𝑛⌉)2, then we get 𝑏(𝑇) ≤ ⌈√𝑚⌉.

Proof. Let 𝑇 be such a cat-construct. By Theorem 3.1, we have 𝑏(𝑇) ≤ ⌈√𝑛⌉ + 1. It is given that 𝑛 is
not square and we have |𝑇| > (⌈√𝑛⌉)2, which is the first square bigger than 𝑛. Note that the number of
vertices in 𝑇 can be at most 𝑛+2⌈√𝑛⌉. Therefore, |𝑇| can never be greater than the first square bigger
than (⌈√𝑛⌉)2. Thus, for the burning number it must hold that 𝑏(𝑇) ≤ ⌈√𝑛⌉ + 1 = ⌈√𝑚⌉.

Corollary 3.3. Let 𝑇 be a cat-construct on 𝑚 vertices, obtained from a path graph 𝑃𝑛 on 𝑛 vertices.
Suppose |𝑇| = 𝑚 > (⌈√𝑛⌉)2 − 1. Let 𝑤 be a vertex that is added as a leaf to 𝑇, to obtain a tree 𝑇𝑤.
Then 𝑏(𝑇𝑤) ≤ ⌈√𝑚⌉.
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Proof. Suppose 𝑇 is such a cat-construct and 𝑤 is a vertex that is added as a leaf to 𝑇, to obtain 𝑇𝑤.
Since 𝑉(𝑇𝑤) = 𝑉(𝑇) ∪ {𝑤}, we have |𝑇𝑤| = |𝑇| + 1 > (⌈√𝑛⌉)2, which is the first square bigger than
𝑛. Since 𝑇 is a cat-construct, by Theorem 3.1, we find a burning sequence 𝑆𝑇 = (𝑞1, 𝑞2, ..., 𝑞⌈√𝑛⌉) that
contains ⌈√𝑛⌉ sources and we have that 𝑏(𝑇) ≤ ⌈√𝑛⌉ + 1 = ⌈√𝑚⌉. We choose for a burning sequence
𝑆𝑇𝑤 for 𝑇𝑤 the vertices from 𝑆𝑇 and add 𝑤 as a source, to be burned in round ⌈√𝑛⌉ + 1. So we have
found a burning sequence 𝑆𝑇𝑤 = (𝑞1, 𝑞2, ..., 𝑞⌈√𝑛⌉, 𝑤), such that all vertices of 𝑇𝑤 are burned in ⌈√𝑛⌉ + 1
rounds and. For the burning number, it then holds that 𝑏(𝑇𝑤) ≤ ⌈√𝑛⌉ + 1 = ⌈√𝑚⌉.

Remark 3.1. Since a cat-construct 𝑇 may be a 2-caterpillar, adding a leaf 𝑤 to 𝑇 may result in a
3-caterpillar. Therefore corollary 3.3 shows the burning number conjecture holds for certain 3-caterpillars.

We will now prove for cat-constructs on 𝑚 vertices, obtained from a path graph 𝑃𝑛 on 𝑛 vertices,
that 𝑏(𝑇) ≤ ⌈√𝑚⌉ such that it has a burning sequence that contains ⌈√𝑛⌉ sources.

Theorem 3.2. Let 𝑇 be a cat-construct on𝑚 vertices obtained from 𝑃𝑛 on 𝑛 vertices. Then 𝑏(𝑇) ≤ ⌈√𝑚⌉
and 𝑇 has a burning sequence, that consists of ⌈√𝑛⌉ sources.

Proof. Let 𝑇 be such a cat-construct. Suppose 𝑛 is square. Then, by Corollary 3.1, we have 𝑏(𝑇) ≤
⌈√𝑚⌉. Note that in Corollary 3.1 the burning sequence from Theorem 3.1 for 𝑇 remains unchanged. So
we have a burning sequence for 𝑇, that consists of ⌈√𝑛⌉ = ⌈√𝑚⌉ − 1 vertices.

Suppose 𝑛 is not square. By Corollary 3.2, if |𝑇| = 𝑚 > (⌈√𝑛⌉)2, we have 𝑏(𝑇) ≤ ⌈√𝑚⌉. Note that in
this corollary Theorem 3.1 is also used so there exists a burning sequence that consists of ⌈√𝑛⌉ sources.

Now suppose we have |𝑇| = 𝑚 < (⌈√𝑛⌉)2. Then ⌈√𝑛⌉ = ⌈√𝑚⌉. Note that a cat-construct is either
a path, caterpillar or 2-caterpillar and the burning conjecture for these types of trees holds. Thus we
have that 𝑏(𝑇) ≤ ⌈√𝑛⌉ and there must exist a burning sequence with exactly ⌈√𝑛⌉ vertices.

We conclude that 𝑏(𝑇) ≤ ⌈√𝑚⌉ and 𝑇 has a burning sequence that consists of ⌈√𝑛⌉ sources.

We have now proven that the burning number conjecture holds for cat-constructs, obtained from a
path 𝑃𝑛. In particular we have seen that for cat-constructs with a number of vertices 𝑚 larger than the
first square after 𝑛 there exists a burning sequence with ⌈√𝑚⌉−1 sources. We suspect this is also true
for cat-constructs with a number of vertices less than the first square after 𝑛 so we introduce Conjecture
3.1.

Conjecture 3.1. A cat-construct 𝑇 on 𝑚 vertices, obtained from a path graph 𝑃𝑛 on 𝑛 vertices, has a
burning sequence with ⌈√𝑚⌉ − 1 sources.



4
Trees with single degree 2 vertex

Murakami (2023) proved that the burning number conjecture holds for homeomorphically irreducible
trees (HITs) trees that contain homeomorphically irreducible spanning trees (HISTS). A tree with a
single degree-2 vertex can be viewed as a HIT with one added vertex that subdivides an edge between
2 distinct vertices. Therefore we will use multiple lemmas and the theorem on the burning number
conjecture for HITs by Murakami (2023) for the proof of the burning number conjecture for trees with a
single degree-2 vertex. We will now introduce these lemmas, the theorem and key concepts that were
introduced in the article by Murakami (2023). Furthermore, we introduce the theorems on the burning
number conjecture for paths, proven by Bonato et al. (2016) and caterpillars and 2-caterpillars, proven
by Hiller et al. (2019).

We now prove trees with a single degree vertex on less than or equal to 12 vertices are paths,
caterpillars or 2-caterpillars in Lemma 4.1.

Lemma 4.1. Let 𝑇 be a tree with a single degree-2 vertex on 𝑛 ≤ 12 vertices. Then 𝑇 is either a path,
a 1-caterpillar or a 2-caterpillar.
Proof. Let 𝑇 be a tree on 𝑛 ≤ 12 vertices with a single degree-2 vertex 𝑥. First we show the longest
possible path 𝑃 in 𝑇 is of length 6. Suppose for a contradiction that 𝑃 were of length at least 7. In that
case 𝑃 contains 8 vertices. Then, there would be at least 5 internal vertices of degree at least 3. So we
would have at least 5 more leaves that are not on path 𝑃. We now add up the number of these internal
vertices and leaves and the 3 remaining vertices in 𝑃. This results in |𝑇| ≥ 5 + 5 + 3 = 13. Thus the
longest possible path 𝑃 in 𝑇 is of length 6.

We will now show 𝑇 cannot be a 𝑝-caterpillar with 𝑝 ≥ 3. For any 𝑝-caterpillar with 𝑝 > 3 there
exists a subtree which is a 3-caterpillar. Therefore it suffices to show 𝑇 cannot be a 3-caterpillar. Note
that all trees are 𝑝-caterpillars with 𝑝 ≥ 0. If 𝑝 = 0 then the 𝑝-caterpillar is a path.

Suppose for a contradiction that 𝑇 is a 3-caterpillar. Then 𝑇 has at least one vertex 𝑥 at distance 3
from a central longest path 𝑃. Therefore, for any vertex 𝑢 in 𝑉(𝑃) we have 𝑑𝑇(𝑥, 𝑢) ≥ 3. Let 𝑎 be the
vertex on 𝑃 such that 𝑑𝑇(𝑥, 𝑎) = 3. Then the leaves of 𝑃 must be at distance at least 3 from 𝑎 since 𝑃
is a longest path in 𝑇. Thus 𝑃 must be of length at least 3 + 3 + 1 = 7. We have therefore arrived at a
contradiction.

Since all trees are 𝑝-caterpillars and trees with a single degree-2 vertex cannot have 𝑝 ≥ 3 it remains
to show there exists a path, a 1-caterpillar and a 2-caterpillar on at most 12 vertices for this type of trees.

Suppose we have a tree 𝑇 with a single degree-2 vertex on 𝑛 = 3 vertices. We then have a single
degree-2 vertex with 2 neighbours that are not connected to each other and must be leaves. Therefore,
a tree on 𝑛 = 3 vertices is a path.

Suppose we have a tree 𝑇 with a single degree-2 vertex on 𝑛 = 5 vertices. Let 𝑥 be the degree-2
vertex. Then 𝑥 has precisely 2 neighbours 𝑢 and 𝑣. 𝑢 and 𝑣 are vertices of degree 1 or degree at least
3. Since there are 5 vertices in 𝑇 and 𝑥 cannot have any other neighbours, either 𝑢 or 𝑣 is a vertex of
degree at least 3. Without loss of generality suppose 𝑢 is a vertex of degree at least 3. Then 𝑢 has
exactly 5 − 3 = 2 neighbours 𝑦 and 𝑧. There exists no edge between 𝑦 and 𝑧 since 𝑇 is a tree. Thus
𝑧 cannot be on the path from 𝑣 to 𝑦. More precisely the path from 𝑣 to 𝑦 goes through the vertices
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𝑣, 𝑥, 𝑢, 𝑦. We have 𝑑(𝑧, 𝑢) = 1 and the distance from 𝑧 to any vertex in the path from 𝑣 to 𝑦 then equals
at least 1. Thus 𝑇 is a 1-caterpillar for 𝑛 = 5.

Suppose we have a tree 𝑇 with a single degree-2 vertex on 𝑛 = 11 vertices. Let 𝑃 be the longest
path in 𝑇 such that it is of length 5. Then 𝑃 contains 6 vertices of which 4 are internal vertices. Then 𝑃
has 4 internal vertices of degree at least 3 and there must be at least 4 leaves not on the path. Let 𝑥 be
the degree-2 vertex in 𝑇. Furthermore, let 𝑥 be connected to an internal vertex of 𝑃 that is at distance
at least 2 from both leaves of 𝑃. Adding up the number of vertices we have 6 + 4 + 1 = 11 vertices in
𝑇. One of the leaves 𝑢 must be connected to 𝑥, otherwise 𝑥 cannot be a degree-2 vertex. Then 𝑢 is at
distance 2 from the path 𝑃. Thus 𝑇 is a 2-caterpillar.

We conclude a tree 𝑇 with a single degree-2 vertex on 𝑛 ≤ 12 vertices can be either a path, a
caterpillar or a 2-caterpillar.

We will now introduce the lemmas and theorem by Murakami (2023) that are important for the proof
of the burning number conjecture for trees with a single degree-2 vertex. We first introduce an important
concept that is used in the lemmas. For a graph 𝐺 on 𝑛 ≥ 2 vertices with edge 𝑥𝑦 the component that
contains 𝑥 upon removing 𝑥𝑦 from 𝐸(𝐺) is denoted by 𝐺𝑥(𝑥𝑦).

Lemma 4.2 (Murakami 2023). Let 𝑛 ≥ 6. Any tree 𝑇 on 𝑛 vertices contains a vertex 𝑥 with neighbours
𝑣1, ..., 𝑣𝑘 such that |𝑇𝑥(𝑥𝑣𝑘)| ≥ 2⌈√𝑛⌉ − 1 and |𝑇𝑣𝑖(𝑥𝑣𝑖)| < 2⌈√𝑛⌉ − 1 for 𝑖 ∈ [𝑘 − 1] = {1, 2, ..., 𝑘 − 1}.

Figure 4.1: An example of a tree on 𝑛 = 7 vertices where a vertex 𝑥 has been found such that |𝑇𝑥(𝑥𝑣3)| ≥ 5 and
|𝑇𝑖(𝑥𝑣𝑖)| < 5 for 𝑖 ∈ {1, 2}. 𝑇𝑥(𝑥𝑣) is the subtree within the purple area. 𝑇𝑣1 (𝑥𝑣1) is the subtree within the yellow area

and 𝑇𝑣2 (𝑥𝑣2) is the subtree within the green area.

In Figure 4.1 we see an example of the result from Lemma 4.2. We prove a similar result for when
trees contain a single degree-2 vertex in Lemma 4.3 Furthermore, we prove Lemma 4.4 with a method
similar to the proof by Murakami (2023) for Lemma 4.2.

Lemma 4.3. Let 𝑇 be a tree on 𝑛 ≥ 13 vertices with exactly one vertex 𝑥 of degree 2. Then |𝑇𝑥(𝑥𝑣)| ≥
2⌈√𝑛⌉ − 1 or |𝑇𝑥(𝑥𝑢)| ≥ 2⌈√𝑛⌉ − 1 with 𝑢 and 𝑣 the distinct neighbours of 𝑥.

Proof. Suppose we have such a tree 𝑇 on 𝑛 ≥ 13 vertices with 𝑥 the degree-2 vertex. Furthermore,
suppose for a contradiction that |𝑇𝑥(𝑥𝑣)| < 2⌈√𝑛⌉ − 1 and |𝑇𝑥(𝑥𝑢)| < 2⌈√𝑛⌉ − 1. |𝑇𝑥(𝑥𝑣)| + |𝑇𝑥(𝑥𝑢)| =
𝑛+1 < 4⌈√𝑛⌉−2. This inequality does not hold for 𝑛 ≥ 13. Therefore, we have arrived at a contradiction.



13

Figure 4.2: An example of a tree with a single degree-2 vertex on 𝑛 = 17 vertices where 𝑇𝑥(𝑥𝑣) is in the yellow area
and 𝑇𝑥(𝑥𝑢) is in the purple are. So we have |𝑇𝑥(𝑥𝑣)| < 9 and |𝑇𝑥(𝑥𝑢)| ≥ 9.

In Figure 4.2 a tree with a single degree-2 vertex on 17 vertices is shown such that Lemma 4.3
holds.

Lemma 4.4. Let 𝑇 be a tree on 𝑛 ≥ 13 vertices with exactly one vertex 𝑥 of degree 2, with 𝑢, 𝑣
distinct neighbours of 𝑥. Suppose |𝑇𝑥(𝑥𝑣)| ≥ |𝑇𝑢(𝑥𝑢)| and |𝑇𝑢(𝑥𝑢)| ≥ 2⌈√𝑛⌉ − 1 then 𝑇𝑢(𝑥𝑢) contains
a vertex 𝑦 with neighbours 𝑞1, ..., 𝑞𝑘 such that |𝑇𝑦(𝑦𝑞𝑘)| ≥ 2⌈√𝑛⌉ − 1 and |𝑇𝑞𝑖(𝑦𝑞𝑖)| < 2⌈√𝑛⌉ − 1 for
𝑖 ∈ [𝑘 − 1] = {1, 2, ..., 𝑘 − 1}.

Proof. Let 𝑇 be such a tree. Suppose |𝑇𝑥(𝑥𝑣)| ≥ |𝑇𝑢(𝑥𝑢)| and |𝑇𝑢(𝑥𝑢)| ≥ 2⌈√𝑛⌉−1. Let the neighbours
of 𝑢 be denoted by 𝑞1, ..., 𝑞𝑚 where 𝑞𝑚 = 𝑥. Given |𝑇𝑢(𝑥𝑢)| ≥ 2⌈√𝑛⌉ − 1, if |𝑇𝑞𝑖(𝑢𝑞𝑖)| < 2⌈√𝑛⌉ − 1 for
𝑖 ∈ [𝑚 − 1], then we are done.
Otherwise, for some 𝑖 ∈ [𝑚−1] we have that |𝑇𝑞𝑖(𝑢𝑞𝑖)| ≥ 2⌈√𝑛⌉−1. Without loss of generality assume
𝑞1 is such a neighbour. Now let the neighbours of 𝑞1 be denoted by 𝑤1, ..., 𝑤𝑗 such that 𝑤𝑗 = 𝑢. If
|𝑇𝑤𝑖(𝑞1𝑤𝑖)| < 2⌈√𝑛⌉ − 1 for all 𝑖 ∈ [𝑗 − 1] we are done. Otherwise we repeat this process.
Since 𝑇𝑢(𝑥𝑢) has a finite amount of vertices this process must terminate.

Remark 4.1. Using the notation in the proof for Lemma 4.4, the single degree-2 vertex 𝑥 is not contained
within |𝑇𝑦(𝑦𝑞𝑘)|, because 𝑇𝑦(𝑦𝑞𝑘) ⊂ 𝑇𝑢(𝑥𝑢) and 𝑥 ∉ 𝑉(𝑇𝑢(𝑥𝑢)). Moreover, since 𝑇𝑞𝑖(𝑦𝑞𝑖) ⊂ 𝑇𝑦(𝑦𝑞𝑘), it
then follows that 𝑥 ∉ 𝑉(𝑇𝑞𝑖(𝑦𝑞𝑖)).

An important lemma in the proof of the burning conjecture on HITs is Lemma 4.5. This Lemma is
also important for the proof of the burning number conjecture on trees with a single degree-2 vertex.

Lemma 4.5 (Murakami 2023). Let 𝑘 ∈ ℕ>0. Let 𝑇 be a HIT where |𝑇| ≤ 2𝑘 − 1. Then 𝑇 contains at
most 𝑘 − 2 internal vertices.

For the next two lemmas we introduce two more concepts. A modified burning sequence 𝑀 of
a graph 𝐺 is a burning sequence where the first vertex 𝑥1 is burned simultaneously with another set
of vertices 𝑈 ⊆ 𝑉(𝐺) in round 1. In all rounds 𝑖 ≠ 1, graph burning occurs in the traditional way for a
burning sequence. So all vertices of 𝐺 are burned after 𝑘 rounds. 𝑀 is denoted by (𝑈 ∪ {𝑥1}, 𝑥2, ..., 𝑥𝑘).
The length of a shortest modified burning sequence for some set 𝑈 ⊆ 𝑉(𝐺) is then called themodified
burning number 𝑏𝑈(𝐺) of 𝐺.

Lemma 4.6 (Murakami 2023). Let 𝑇 be a tree with one degree-2 vertex 𝑣, and let 𝑇′ be the HIT obtained
from 𝑇 by smoothing 𝑣. Then 𝑏{𝑣}(𝑇) ≤ 𝑏(𝑇′).

For the proof of the burning number conjecture for trees with a single degree-2 vertex, Lemma 4.6
can be generalized into Lemma 4.7. We prove this lemma by a method similar to the proof for the
original Lemma by Murakami (2023).

Lemma 4.7. Let 𝑇 be a tree on 𝑛 vertices with 𝑚 ≤ 𝑛 − 2 degree-2 vertices 𝑣1, ..., 𝑣𝑚. Let 𝑣𝑎 be such
a degree-2 vertex where 𝑣𝑎 ≠ 𝑣𝑚. Let 𝑇′ be the tree with 𝑚 − 1 degree-2 vertices that is obtained by
smoothing 𝑣𝑎. Then 𝑏{𝑣𝑚}(𝑇) ≤ 𝑏(𝑇′).
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Proof. Let 𝑆 = (𝑥1, ..., 𝑥𝑘) be a (not necessarily optimal) burning sequence for 𝑇′. We will show by a
proof of contradiction that 𝑀 = ({𝑣𝑚 , 𝑥1}, 𝑥2, ..., 𝑥𝑘) is a modified burning sequence for 𝑇. From which
we can conclude that any burning sequence for 𝑇′ yields a modified burning sequence of the same
length for 𝑇, and therefore 𝑏{𝑣𝑚}(𝑇) ≤ 𝑏(𝑇′).
Assume for a contradiction that 𝑀 is not a modified burning sequence for 𝑇. Then we find a vertex 𝑝
in 𝑇 that is not burned at the end of round 𝑘. Thus 𝑝 ≠ 𝑥𝑖 or 𝑝 ≠ 𝑣𝑚. Which means 𝑝 is not one of the
sources of the modified burning sequence. In 𝑇′, 𝑝 is burned at the end of round 𝑘 since 𝑆 is a burning
sequence for 𝑇′. Assume 𝑝 is burned in round 𝑖 for some 𝑖 ≤ 𝑘. Then we can find a source 𝑥𝑗 with
𝑗 < 𝑖 such that 𝑑𝑇′(𝑝, 𝑥𝑗) = 𝑖 − 𝑗.
Since 𝑝 does not get burned in 𝑇, the distance for 𝑝 and 𝑥𝑗 in 𝑇 must be greater than 𝑖 − 𝑗. So we have
𝑑𝑇(𝑝, 𝑥𝑗) > 𝑖 − 𝑗. Then 𝑣𝑎 must be on the path from 𝑝 to 𝑥𝑗, because this is the only vertex in 𝑉(𝑇) that
is not in 𝑉(𝑇′). Then 𝑑𝑇(𝑝, 𝑥𝑗) = 𝑑𝑇′(𝑝, 𝑥𝑗) + 1 = 𝑖 − 𝑗 + 1, which implies that 𝑑𝑇(𝑝, 𝑣𝑚) ≤ 𝑖 − 𝑗. Then 𝑝
must be burned in 𝑇 in round at most 1+ 𝑖 − 𝑗 as 𝑣𝑚 is burned in round 1. Then 𝑝 must be burned in 𝑇
at the end of round 𝑘 as 1 + 𝑗 − 𝑖 ≤ 𝑘. Thus we have arrived at the required contradiction.

Finally we introduce Theorem 4.1 on the burning number conjecture for HITs by Murakami (2023),
Theorem 4.2 by Bonato et al. (2016) and Theorems 4.3 and 4.4 by Hiller et al. (2019) which are used
in our proof of the burning number conjecture for trees with a single degree-2 vertex.

Theorem 4.1 (Murakami 2023). Let 𝑇 be a HIT on 𝑛 vertices. Then 𝑏(𝑇) ≤ ⌈√𝑛⌉.

Theorem 4.2 (Bonato et al. 2016). Let 𝑃𝑛 be a path on 𝑛 vertices. Then 𝑏(𝑇) ≤ ⌈√𝑛⌉.

Theorem 4.3 (Hiller et al. 2019). Let 𝑇 be a 1-caterpillar on 𝑛 vertices. Then 𝑏(𝑇) ≤ ⌈√𝑛⌉.

Theorem 4.4 (Hiller et al. 2019). Let 𝑇 be a 2-caterpillar on 𝑛 vertices. Then 𝑏(𝑇) ≤ ⌈√𝑛⌉.

We will now prove the burning number conjecture for trees with a single degree-2 vertex.

Theorem 4.5. Let 𝑇 be a tree on 𝑛 vertices with exactly one vertex of degree-2. Then 𝑏(𝑇) ≤ ⌈√𝑛⌉.

Proof. We prove by induction on the number of vertices 𝑛.
For the base cases we show the burning number for trees with a single degree-2 vertex on 𝑛 ≤ 12

vertices is at most equal to ⌈√𝑛⌉. By Lemma 4.1 we know that all trees 𝑇 with a single degree-2 vertex
on 𝑛 ≤ 12 vertices are either paths, 1-caterpillars or 2-caterpillars. Therefore by Theorem 4.2, 4.3 and
4.4 we have 𝑏(𝑇) ≤ ⌈√𝑛⌉.

We may now assume the induction hypothesis that for any tree with exactly one degree-2 vertex on
less than 𝑛 vertices the theorem holds.

Let 𝑇 be a tree on 𝑛 > 12 vertices and let 𝑥 be the vertex in 𝑇 of degree 2 with neighbours 𝑢
and 𝑣. Then by Lemma 4.3 |𝑇𝑥(𝑥𝑣)| ≥ 2⌈√𝑛⌉ − 1 or |𝑇𝑥(𝑥𝑢)| ≥ 2⌈√𝑛⌉ − 1. Assume without loss of
generality that |𝑇𝑥(𝑥𝑣)| ≥ 2⌈√𝑛⌉ − 1 and |𝑇𝑥(𝑥𝑣)| ≥ |𝑇𝑥(𝑥𝑢)|. Note that 𝑉(𝑇𝑥(𝑥𝑢)) = 𝑉(𝑇𝑣(𝑥𝑣) ∪ {𝑥})
and 𝑉(𝑇𝑥(𝑥𝑣)) = 𝑉(𝑇𝑢(𝑥𝑢) ∪ {𝑥}). We consider two cases:

1. |𝑇𝑢(𝑥𝑢)| < 2⌈√𝑛⌉ − 1 and

2. |𝑇𝑢(𝑥𝑢)| ≥ 2⌈√𝑛⌉ − 1.

Case 1: |𝑇𝑢(𝑥𝑢)| < 2⌈√𝑛⌉ − 1.
Since 𝑥 is a leaf in 𝑇𝑥(𝑥𝑣), 𝑇𝑥(𝑥𝑣) is a HIT. Note 𝑉(𝑇𝑢(𝑥𝑢)) ∪ {𝑥} = 𝑉(𝑇𝑥(𝑥𝑣)) implies |𝑇𝑥(𝑥𝑣)| =
|𝑇𝑢(𝑥𝑢)| + 1. Since 𝑉(𝑇𝑥(𝑥𝑣)) = 𝑉(𝑇𝑢(𝑥𝑢)) ∪ {𝑥} is a HIT with 𝑥 as a leaf, its internal vertices are the
same as the internal vertices of 𝑇𝑢(𝑥𝑢). As |𝑇𝑢(𝑥𝑢)| < 2⌈√𝑛⌉ − 1, |𝑉(𝑇𝑢(𝑥𝑢)) ∪ {𝑥}| ≤ 2⌈√𝑛⌉ − 1. So
by lemma 4.5 and since 𝑉(𝑇𝑢(𝑥𝑢)) ∪ {𝑥} = 𝑉(𝑇𝑥(𝑥𝑣)), 𝑇𝑥(𝑥𝑣) has at most ⌈√𝑛⌉ − 2 internal vertices.
Since 𝑥 is a leaf in 𝑇𝑥(𝑥𝑣), the longest path from 𝑥 to any other vertex in 𝑇𝑥(𝑥𝑣) is then of length at most
⌈√𝑛⌉ − 1. By choosing 𝑥 as the first source to be burned in 𝑇, 𝑇𝑥(𝑥𝑣) will be fully burned by round ⌈√𝑛⌉
without needing any other sources. It remains to show that 𝑏(𝑇𝑣(𝑥𝑣)) ≤ ⌈√𝑛⌉ − 1.
𝑇𝑣(𝑥𝑣) is either a HIT or a tree with a single degree-2 vertex, where 𝑣 is the degree-2 vertex. Note
|𝑇𝑣(𝑥𝑣)| + |𝑇𝑥(𝑥𝑣)| = 𝑛 and we assumed before |𝑇𝑥(𝑥𝑣)| ≥ 2⌈√𝑛⌉ − 1. So |𝑇𝑣(𝑥𝑣)| = 𝑛 − |𝑇𝑥(𝑥𝑣)| ≤
𝑛 − 2⌈√𝑛⌉ − 1 ≤ (⌈√𝑛⌉ − 1)2.

Suppose 𝑇𝑣(𝑥𝑣) is a HIT. Then by Theorem 4.1 we have 𝑏(𝑇𝑣(𝑥𝑣)) ≤ ⌈√𝑛⌉ − 1.



15

Suppose 𝑇𝑣(𝑥𝑣) is a tree with a single degree-2 vertex, where 𝑣 is the degree-2 vertex. Then by
the induction hypothesis 𝑏(𝑇𝑣(𝑥𝑣)) ≤ ⌈√𝑛⌉ − 1. Thus the theorem holds for |𝑇𝑢(𝑥𝑢)| < 2⌈√𝑛⌉ − 1.

Case 2: |𝑇𝑢(𝑥𝑢)| ≥ 2⌈√𝑛⌉ − 1.
By Lemma 4.4 we find 𝑦 ∈ 𝑉(𝑇𝑢(𝑥𝑢)) with neighbours 𝑞1, ..., 𝑞𝑘 such that |𝑇𝑦(𝑦𝑞𝑘)| ≥ 2⌈√𝑛⌉ − 1 and
|𝑇𝑞𝑖(𝑦𝑞𝑖)| < 2⌈√𝑛⌉ − 1. By Remark 4.1 we know that 𝑥 ∉ 𝑉(𝑇𝑦(𝑦𝑞𝑘)) and 𝑥 ∉ 𝑉(𝑇𝑞𝑖(𝑦𝑞𝑖)).

We will now show that the distance from 𝑦 to any vertex in 𝑉(𝑇𝑞𝑖(𝑦𝑞𝑖)) for 𝑖 in {1, ..., 𝑘 −1} is at most
⌈√𝑛⌉−1. Let 𝑇𝑖 be the subtree of 𝑇 induced by 𝑉(𝑇𝑞𝑖(𝑦𝑞𝑖))∪ {𝑦}. Then 𝑦 is a leaf in 𝑇𝑖 and every 𝑇𝑖 is a
HIT. We have |𝑇𝑞𝑖(𝑦𝑞𝑖)| < 2⌈√𝑛⌉−1 and |𝑇𝑖| = |𝑇𝑞𝑖(𝑦𝑞𝑖)|+1. Therefore, we find |𝑇𝑖| ≤ 2⌈√𝑛⌉−1. Then
by Lemma 4.5, we know that 𝑇𝑖 has at most ⌈√𝑛⌉ − 1 internal vertices. By choosing 𝑦 as a source in
round 1, all vertices in every 𝑇𝑖 will then be fully burned by round ⌈√𝑛⌉. Note that 𝑇𝑦(𝑦𝑞𝑘) is a subtree of
𝑇 that is induced by ⋃𝑘−1𝑖=1 𝑉(𝑇𝑖). So by choosing 𝑦 as a source in round 1, 𝑇𝑦(𝑦𝑞𝑘) will be fully burned
by round ⌈√𝑛⌉.

Since 𝑦 is a source in round 1, it remains to show that 𝑏{𝑞𝑘}(𝑇𝑞𝑘(𝑦𝑞𝑘)) ≤ ⌈√𝑛⌉ − 1.
𝑇𝑞𝑘(𝑦𝑞𝑘) is either a tree with a single degree-2 vertex 𝑥 or a tree with two degree-2 vertices, 𝑥 and 𝑞𝑘.
Suppose 𝑇𝑞𝑘(𝑦𝑞𝑘) is a tree with a single degree-2 vertex. We can apply the induction hypothesis since
the number of vertices for this tree is less than 𝑛. So if we have |𝑇𝑞𝑘(𝑦𝑞𝑘)| ≤ (⌈√𝑛⌉ − 1)2, then it
holds that 𝑏(𝑇𝑞𝑘(𝑦𝑞𝑘)) ≤ ⌈√𝑛⌉ − 1. Furthermore, 𝑏{𝑞𝑘}(𝑇𝑞𝑘(𝑦𝑞𝑘)) ≤ 𝑏(𝑇𝑞𝑘(𝑦𝑞𝑘)) always holds. So we
would then have that 𝑏{𝑞𝑘}(𝑇𝑞𝑘(𝑦𝑞𝑘)) ≤ ⌈√𝑛⌉ − 1 as required. We now show this is the case. Since
|𝑇𝑦(𝑦𝑞𝑘)| + |𝑇𝑞𝑘(𝑦𝑞𝑘)| = 𝑛, we know |𝑇𝑞𝑘(𝑦𝑞𝑘)| = 𝑛 − |𝑇𝑦(𝑦𝑞𝑘)| ≤ 𝑛 − 2⌈√𝑛⌉ + 1 = (⌈√𝑛⌉ − 1)2 as we
wanted.

Suppose 𝑇𝑞𝑘(𝑦𝑞𝑘) is a tree with two degree-2 vertices. Let 𝑇′ denote the tree with a single degree-2
vertex 𝑥 obtained by smoothing 𝑞𝑘 in 𝑇𝑞𝑘(𝑦𝑞𝑘). From Lemma 4.7 we have 𝑏{𝑞𝑘}(𝑇𝑞𝑘(𝑦𝑞𝑘)) ≤ 𝑏(𝑇′).
Furthermore, we have that |𝑇′| < |𝑇𝑞𝑘(𝑦𝑞𝑘)|. Since 𝑇′ is a tree with a single degree-2 vertex we can
also apply the induction hypothesis in this case. We then get |𝑇′| < |𝑇𝑞𝑘(𝑦𝑞𝑘)| = 𝑛 − |𝑇𝑦(𝑦𝑞𝑘)| ≤
2⌈√𝑛⌉ − 1 ≤ (⌈√𝑛⌉ − 1)2. Thus 𝑏{𝑞𝑘}(𝑇𝑞𝑘(𝑦𝑞𝑘)) ≤ 𝑏(𝑇′) ≤ ⌈√𝑛⌉ − 1. Since 𝑦 is a source in round 1 we
know 𝑞𝑘 is burned in round 2. Thus we have 𝑏{𝑞𝑘}(𝑇𝑞𝑘(𝑦𝑞𝑘)) ≤ ⌈√𝑛⌉ − 1.

Thus we can conclude that 𝑏(𝑇) ≤ ⌈√𝑛⌉ for trees with a single degree-2 vertex.

We have now proven the burning number conjecture for trees with a single degree-2 vertex.



5
Conclusion & Discussion

The goal for this thesis was to find proofs for the burning number conjecture that had not been found
yet. In chapter 3 we have shown that the burning number conjecture holds for cat-constructs, obtained
from a path 𝑃𝑛, such that a cat-construct on 𝑚 vertices may be burned in ⌈√𝑚⌉ rounds. A cat-construct
is obtained from 𝑃𝑛 by adding at most 2 vertices to subtrees of 𝑃𝑛 induced by closed balls that have the
vertices of a burning sequence of 𝑃𝑛 as their centers with a chosen radius. These cat-constructs are
burned with a burning sequence that consists of ⌈√𝑚⌉ − 1 sources if they have more vertices than the
first square bigger than 𝑛. A proof for needing one fewer source on cat-constructs smaller than the first
square after 𝑛 has not yet been found. We have seen that adding one vertex as a leaf to a cat-construct,
which counts as a source in the last round of the burning of the graph, upholds the burning number
conjecture. Thereby, we have shown that for some 3-caterpillars, which can be constructed by adding
a vertex to a cat-construct, the burning number conjecture holds. Further research into the number
of sources that are needed to burn a graph, could be beneficial to proving the full burning number
conjecture.

In chapter 4 we have shown that the burning number conjecture holds for trees with a single
degree-2 vertex, by adjusting the method from the article by Murakami (2023) to fit this situation. By
increasing the number of degree-2 vertices in the trees, step by step, eventually the full conjecture
could possibly be proven by induction. For a next step in proving the burning number conjecture, it
would be interesting to look at trees with 2 degree-2 vertices and create a similar proof. There are two
aspects that need to be addressed when looking at this next step. The first aspect is that the subtrees
which can be burned with one source are more difficult to find in trees with more degree-2 vertices.
Therefore, it is harder to prove that they exist. The second aspect is that a new proof for the size of the
subtrees must be found for trees with more degree-2 vertices. In order to prove the burning number
conjecture with this method, the lemmas on the size of the subtrees have to be generalized.
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