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Abstract The 6 j-symbols for representations of the q-deformed algebra of polyno-
mials on SU(2) are given by Jackson’s third q-Bessel functions. This interpretation
leads to several summation identities for the q-Bessel functions. Multivariate q-Bessel
functions are defined, which are shown to be limit cases of multivariate Askey–Wilson
polynomials. The multivariate q-Bessel functions occur as 3nj-symbols.

Keywords Jackson’s third q-Bessel function · 6 j-symbols · 3nj-symbols ·
Multivariate q-Bessel function · Quantum algebra representations

Mathematics Subject Classification 33D45 · 33D50 · 33D80 · 81R50

1 Introduction

It is well known that Wigner’s 6 j-symbols for the SU(2) group are multiples of
hypergeometric orthogonal polynomials called the Racah polynomials. Similarly,
6 j-symbols for the SU(2) quantum group can be expressed in terms of q-Racah
polynomials, which are q-hypergeometric orthogonal polynomials. With this inter-
pretation, properties of 6 j-symbols such as summation formulas and orthogonality
relations lead to properties of specific families of orthogonal polynomials, see
e.g., [21,22, Chaps. 8, 14].

In this paper, we consider 6 j-symbols for representations of the q-deformed algebra
of polynomials onSU(2). This algebra has as irreducible representations the trivial one,
and a family of infinite-dimensional representations which disappear in the classical
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318 W. Groenevelt

limit. The 6 j-symbols for tensor products of three infinite-dimensional representa-
tions can be expressed in terms of Jackson’s third q-Bessel functions [8]. Note that,
different from the classical 6 j-symbols, these are not polynomials. We consider three
fundamental identities for 6 j-symbols (see e.g., [1]): Racah’s backcoupling identity,
the Biedenharn–Elliott identity and the hexagon identity. These identities are obtained
by decomposing 3- or 4-fold tensor product representations in several ways. To keep
track of the order of decomposing the representations, it is convenient to identify cer-
tain vectors in the representation spaces with binary trees. Then the 6 j-symbols can be
considered as coupling coefficients between two of these trees. The identitieswe obtain
can be interpreted as summation identities for q-Bessel functions. We remark that the
hexagon identity implies that the q-Bessel functions are matrix elements of an infinite-
dimensional solution of the quantum Yang–Baxter equation (or, the star-triangle
equation in IRF-models), see e.g., [10], which should be of independent interest.

We also consider specific 3nj-symbols, which may naturally be considered as mul-
tivariate q-Bessel functions. The one variable q-Bessel functions fit into an extended
Askey-scheme [15] of orthogonal q-hypergeometric functions; the original (q-)Askey-
scheme [12] consists of (q-)hypergeometric orthogonal polynomials. We will show
that themultivariateq-Bessel functionsfit into an extendedAskey-schemeofmultivari-
ate orthogonal functions of q-hypergeometric type, by showing that the multivariate
q-Bessel functions can be obtained as limits of the multivariate Askey–Wilson poly-
nomials defined by Gasper and Rahman [4], which are the q-analogs of Tratnik’s
multivariate Wilson polynomials [19]. The multivariate Askey–Wilson polynomials
can be thought of as being on top of a scheme of multivariate orthogonal polynomials;
several limit cases are considered in [4,5,9].Geronimo and Iliev [7] obtainedmultivari-
ateAskey–Wilson functions generalizing themultivariateAskey–Wilson polynomials,
which should be on top of the extended Askey-scheme. Several families of orthogonal
polynomials in this scheme and its q = 1 analog are connected to tensor product
representations and binary coupling schemes, see e.g., Van der Jeugt [20], Rosengren
[17], Scarabotti [18], and a recent result [6] by Genest et al.

This paper is organized as follows: In Sect. 2, the quantum algebra Aq(SU(2))
and its representation theory are recalled. In Sect. 3, it is shown that the 6 j-symbols
are essentially q-Bessel functions, using a generating function for q-Bessel functions.
Using binary trees, we obtain the fundamental identities for 6 j-symbols, leading to
summation formulas for the q-Bessel functions. In Sect. 4, we first define multivariate
q-Bessel functions as nontrivial products of q-Bessel functions, and we prove orthog-
onality relations. Then we show that these multivariate q-Bessel functions occur as
3nj-symbols, and use this interpretation to find a summation formula.

Notations We use N = {0, 1, 2, . . .} and we use standard notation for q-
hypergeometric functions as in [3].

2 The quantum algebraAq(SU(2))

Let q ∈ (0, 1). The q-deformed algebra of polynomials on SU(2) is the complex
unital associative algebraAq = Aq(SU(2)) generated by α, β, γ , δ, which satisfy the
relations
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3nj-symbols and identities for q-Bessel functions 319

αβ = qβα, αγ = qγα, βδ = qδβ, γ δ = qδγ,

βγ = γβ, αδ − qβγ = 1 = δα − q−1βγ. (2.1)

Aq is a Hopf-∗-algebra with ∗-structure and comultiplication � defined on the gen-
erators by

α∗ = δ, β∗ = −qγ, γ ∗ = −q−1β, δ∗ = α, (2.2)

�(α) = α ⊗ α + β ⊗ γ, �(β) = α ⊗ β + β ⊗ δ,

�(γ ) = γ ⊗ α + δ ⊗ γ, �(δ) = δ ⊗ δ + γ ⊗ β. (2.3)

An irreducible ∗-representation ofAq is either 1-dimensional or infinite-dimensional.
The infinite-dimensional irreducible ∗-representations are labeled by φ ∈ [0, 2π),
and we denote a representation by πφ . The representation space of πφ is 	2(N). The
generators α, β, γ, δ act on the standard orthonormal basis {en | n ∈ N} of 	2(N) by

πφ(α) en =
√
1 − q2n en−1,

πφ(β) en = −e−iφqn+1 en,

πφ(γ ) en = eiφqn en,

πφ(δ) en =
√
1 − q2n+2en+1.

Note that, πφ(γβ) is a self-adjoint diagonal operator in the standard basis.

Remark 2.1 In this paper, we consider tensor products of π0. We could also consider
the representation πφ1 ⊗ πφ2 , but this would not lead to more general results in this
paper, because representation labels only occur in phase factors; see [8, §II.A]. The
representation space of the tensor product representation is the Hilbert space comple-
tion of the algebraic tensor product of copies of 	2(N).

Let σ : 	2(N) ⊗ 	2(N) → 	2(N) ⊗ 	2(N) be the flip operator, the linear operator
defined on pure tensors by σ(v1 ⊗ v2) = v2 ⊗ v1. We write

π12 = (π0 ⊗ π0)�, π21 = σπ12σ.

For three-fold tensor product representations, we write

π1(23) = (π0 ⊗ π0 ⊗ π0)(1 ⊗ �)(�), π(12)3 = (π0 ⊗ π0 ⊗ π0)(� ⊗ 1)(�).

Since � is coassociative, we have π1(23) = π(12)3.
From (2.3), one finds

�(γ γ ∗) = q−1�(γβ) = −q−1(γβ ⊗ αδ + γα ⊗ αβ + δβ ⊗ γ δ + δα ⊗ γβ).
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320 W. Groenevelt

Using this, eigenvectors of π12(γ γ ∗) can be computed (see [8] for details): for p ∈ Z

and x ∈ N define

e12x,p =
∑

n,m∈N
n−m=p

Cx,m,n em ⊗ en,

where we assume e−n = 0 for n ≥ 1, then π12(γ γ ∗)e12x,p = q2x e12x,p. The Clebsch–
Gordan coefficients Cx,m,n can be given explicitly in terms of Wall polynomials, see
[12], which are defined by

pn(q
x ; a; q) = 2ϕ1

(
q−n, 0

aq
; q, qx+1

)

= (−a)nq
1
2 n(n+1)

(aq; q)n
2ϕ0

(
q−n, q−x

–
; q,

qx

a

)
, (2.4)

for n, x ∈ N. The second expression follows from applying transformation [3, III.8]
with b → 0. Note that, for x ∈ N, the 2ϕ0-series can be considered as a polyno-
mial in q−n of degree x . This polynomial is (proportional to) an Al-Salam–Carlitz II
polynomial.

Let the function p̄n(qx ; a; q) be defined by

p̄n(q
x ; a; q) = (−1)n+x

√
(aq)x−n(aq; q)∞(aq; q)n

(q; q)n(q; q)x
pn(q

x ; a; q), (2.5)

then from the orthogonality relation for the Wall polynomials and from completeness,
we obtain the orthogonality relations

∑
x∈N

p̄n(q
x ; a; q) p̄m(qx ; a; q) = δnm,

∑
n∈N

p̄n(q
x ; a; q) p̄n(q

y; a; q) = δxy,

for 0 < a < q−1. The second relation corresponds to orthogonality relations for
Al-Salam–Carlitz II polynomials. The coefficients Cx,m,n , m, n ∈ N are defined by

Cx,m,n =
{
p̄n(q2x ; q2(n−m); q2), n ≥ m,

p̄m(q2x ; q2(m−n); q2), n ≤ m,

and they satisfy
Cx,n,m = Cx,m,n, (2.6)

which follows from the explicit expression as a 2ϕ1-function. Furthermore, we define
Cx,m,n = 0 for m ∈ −N≥1 or n ∈ −N≥1 or x ∈ −N≥1.
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3nj-symbols and identities for q-Bessel functions 321

The set {e12x,p | p ∈ Z, x ∈ N} is an orthonormal basis for 	2(N) ⊗ 	2(N). The
actions of the Aq -generators on this basis are given by

π12(α) e12x,p =
√
1 − q2x e12x−1,p,

π12(β) e12x,p = −qx+1 e12x,p+1,

π12(γ ) e12x,p = qx e12x,p−1,

π12(δ) e
12
x,p =

√
1 − q2x+2 e12x+1,p, (2.7)

where e12−1,p = 0. We can also find eigenvectors e21x,p of π21(γ γ ∗) for eigenvalue q2x ,
x ∈ N:

e21x,p =
∑

n,m∈N
m−n=p

Cx,m,n em ⊗ en = e12x,−p.

3 6 j -symbols and q-Bessel functions

In [8], explicit expressions for the 6 j-symbols (and for more general coupling coeffi-
cients) have been found. It turns out that they are essentially q-Bessel functions. Here,
we derive these results again using a more direct approach, and use this interpretation
of the q-Bessel functions to obtain summation identities.

3.1 6 j -symbols

In the same way as above, we can find eigenvectors of π1(23)(γ γ ∗) and π(12)3(γ γ ∗);
for x ∈ N, p, r ∈ Z,

e1(23)x,p,r =
∑
n∈N

Cx,n,n+p en ⊗ e23n+p,x−n−r

=
∑

n,m∈N
Cx,n,n+pCn+p,m,k en ⊗ em ⊗ ek, n − m + k = x − r,

e(12)3
x,p,r =

∑
k∈N

Cx,k−p,k e
12
k−p,r−x+k ⊗ ek

=
∑

k,m∈N
Cx,k−p,kCk−p,n,m en ⊗ em ⊗ ek, n − m + k = x − r,

are eigenvectors for eigenvalueq2x , x ∈ N.We use here the convention e−n = e−n,p =
0 for n ∈ −N≥1. The actions of the Aq -generators α, β, γ, δ on the eigenvectors can
be obtained in the same way as in [8]
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322 W. Groenevelt

π1(23)(α)e1(23)x,p,r =
√
1 − q2x e1(23)x−1,p,r , π(12)3(α)e(12)3

x,p,r =
√
1 − q2x e(12)3

x−1,p,r ,

π1(23)(β)e1(23)x,p,r = −qx+1 e1(23)x,p+1,r , π(12)3(β)e(12)3
x,p,r = −qx+1 e(12)3

x,p+1,r ,

π1(23)(γ )e1(23)x,p,r = qx e1(23)x,p−1,r , π(12)3(γ )e(12)3
x,p,r = qx e(12)3

x,p−1,r

π1(23)(δ)e
1(23)
x,p,r =

√
1 − q2x+2 e1(23)x+1,p,r , π(12)3(δ)e

(12)3
x,p,r =

√
1 − q2x+2 e(12)3

x+1,p,r ,

where e−1,p,r = 0. Note that, this corresponds exactly to the actions on the eigenvec-
tors ex,p.

The 6 j-symbol (or Racah coefficient) Rx
p1,r1;p2,r2 is the (re)coupling coefficient

between the two eigenvectors;

Rx
p1,r1;p2,r2 =

〈
e1(23)x,p1,r1 , e

(12)3
x,p2,r2

〉
,

or equivalently
e1(23)x,p1,r1 =

∑
p2,r2

Rx
p1,r1;p2,r2e

1(23)
x,p1,r1 . (3.1)

We start by looking at some simple properties of R.

Proposition 3.1 The coefficients R have the following properties:

(i) Orthogonality relations:
∑

p1,r1∈Z
Rx
p1,r1;p2,r2 R

x
p1,r1;p3,r3 = δp2,p3δr2,r3 .

(ii) Rx
p1,r1;p2,r2 = Rx

p1+k,r1;p2+k,r2
for k ∈ Z.

(iii) Rx
p1,r1;p2,r2 = Rx+k

p1,r1;p2,r2 for k ∈ Z≥−x .
(iv) For k,m, n ∈ N,

Cx,n+p1,nCn+p1,m,k =
∑

p2∈Z≤k

Rx
p1,r;p2,rCx,k−p2,kCk−p2,m,n,

x − r = n − m + k.

(v) Duality: Rx
p1,r;p2,r = Rx

−p2,r;−p1,r
.

Note that, identity (iii) implies that R is independent of x ; therefore, we will omit
the superscript ‘x .’

Proof The coefficients R are matrix coefficients of a unitary operator, which leads to
the orthogonality relations. The next two identities follow from the ∗-structure ofAq .
From β∗ = −qγ , we obtain

〈
e1(23)x,p1±1,r1

, e(12)3
x,p2,r2

〉
=

〈
e1(23)x,p1,r1 , e

(12)3
x,p2∓1,r2

〉
,

which implies (ii). Identity (iii) follows from α∗ = δ. Identity (iv) follows from the
expansion

e1(23)x,p1,r1 =
∑

p2,r2∈Z
Rp1,r1;p2,r2 e(12)3

x,p2,r2 ,
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3nj-symbols and identities for q-Bessel functions 323

by taking inner products with en ⊗em ⊗ek . The duality property follows from identity
(iv). 
�

3.2 q-Bessel functions

Define

Jν(x; q) = x
ν
2
(qν+1; q)∞

(q; q)∞
1ϕ1

(
0

qν+1 ; q, qx

)
, x ≥ 0, ν ∈ R, (3.2)

which is Jackson’s third q-Bessel function (also known as the Hahn-Exton q-Bessel
function), see e.g., [16]. Note that,

(B; q)∞ 1ϕ1

(
A

B
; q, Z

)
=

∞∑
k=0

(A; q)k(Bqk; q)∞
(q; q)k

(−1)kq
1
2 k(k−1)Zk

is an entire function in B, so we may take ν to be a negative integer in (3.2); in this
case, we have the identity

J−n(x; q) = (−1)nq
n
2 Jn(xq

n; q), n ∈ N,

see [16, (2.6)].Wewill use the followinggenerating function to identify the 6 j-symbols
with q-Bessel functions.

Proposition 3.2 For |t | < 1,

∞∑
m=0

q− νm
2 Jν(xq

m; q)
tm

(q; q)m
= x

ν
2
(qν+1; q)∞
(q, t; q)∞

1ϕ1

(
t

qν+1 ; q, qx

)
.

Proof Write Jν as a 1ϕ1-series, interchange the order of summation, and use summa-
tion formula [3, (II.1)];

∞∑
m=0

1ϕ1

(
0

qν+1 ; q, xqm+1
)

tm

(q; q)m
=

∞∑
k=0

(−1)kq
1
2 k(k−1)(xq)k

(q, qν+1; q)k

∞∑
m=0

qmktm

(q; q)m

=
∞∑
k=0

(−1)kq
1
2 k(k−1)(xq)k

(q, qν+1; q)k(tqk; q)∞
. 
�

If t−1qν+1 ∈ q−N, the right-hand side in the Proposition 3.2 can be written in terms
of a Wall polynomial, which gives the following special case.
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324 W. Groenevelt

Corollary 3.3 For n ∈ N,

∞∑
m=0

q− 1
2 (ν−n)m Jν−n(xq

m; q)
qm(ν+1)

(q; q)m
= x

1
2 (ν−n) (qx; q)∞

(q; q)∞
pn(q

ν; x; q).

Proof In Proposition 3.2 replace ν by ν −n, set t = qν+1, and use the transformation

1ϕ1

(
A

B
; q, Z

)
= (A, Z; q)∞

(B; q)∞
2ϕ1

(
0, B/A

Z
; q, A

)
,

(which is a special case of [3, (III.4)]) and the Definition (2.4) of theWall polynomials.

�

We are now in a position to show that the 6 j-symbols are essentially q-Bessel
functions.

Proposition 3.4 For p1, p2, r1, r2 ∈ Z,

Rp1,r1;p2,r2 = δr1,r2 (−q)p1−p2 Jr1(q
2p1−2p2; q2).

Proof We write out Proposition 3.1(iv) for m = k = 0, and we replace p2 by −p2,

∑
p2∈N

Rp1,r;−p2,r
(−1)p2q p2(n+x+1)

(q2; q2)p2

= (−1)p1q p1(x−n+1)

(q2; q2)p1
pn(q

2x ; q2p1; q2), x − r = n,

then the result follows from Corollary 3.3. 
�

3.3 Identities

Several classical identities for 6 j-symbols for SU(2) remain valid for our 6 j-symbols.
By Proposition 3.4, these can be interpreted as identities for q-Bessel functions.

First of all, the orthogonality relations for the 6 j-symbols from Proposition 3.1 are
equivalent to the well-known q-Hankel orthogonality relations, see [16, (2.11)], for
the q-Bessel functions Jν .

Theorem 3.5 For n,m ∈ Z,

∑
x∈Z

Jν(q
x+m; q)Jν(q

x+n; q)qx = δm,nq
−n .
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3nj-symbols and identities for q-Bessel functions 325

To derive other identities, it is convenient to represent eigenvectors of γ γ ∗ as binary
trees; see e.g., Van der Jeugt’s lecture notes [20] for more details. We denote

e12x,n2−n1 =
x

n1 n2

where n1, n2, x ∈ Z. Equivalently, we can identify this tree with the Clebsch–Gordan
coefficient Cx,n1,n2 , similar as in [18]. The identity e12x,p = e21x,−p, which is equivalent
to (2.6), is represented as

x

n1 n2

=
x

n2 n1

(3.3)

where p = n1 − n2. By coupling two of these, we can represent eigenvectors corre-
sponding to threefold tensor products:

e1(23)x,p1,r123 =
x

n1 n2 n3

p′
1 e(12)3

x,p2,r123 =
x

n1 n2 n3

p′
2

where p′
1 = n1+ p1, p′

2 = n3− p2, and ri jk = x −ni +n j −nk for i, j, k ∈ {1, 2, 3}.
Now we can e.g., represent the identities e1(23)x,p1,r123 = e1(32)x,p1,r132 = e(23)1

x,−p1,r231 by

x

n1 n2 n3

p′
1 =

x

n1 n3 n2

p′
1 =

x

n3 n2 n1

p′
1

The transition (3.1) from e1(23)x,p1,r to e(12)3
x,p2,r which involves a 6 j-symbol, which is

equivalent to identity (ii) in Proposition 3.1 in terms of Clebsch–Gordan coefficients,
is represented as

x

n1 n2 n3

p′
1

R
x,n1,n2,n3
p′
1,p

′
2

x

n1 n2 n3

p′
2
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326 W. Groenevelt

where the coefficient R is given by

Rx,n1,n2,n3
p′
1,p

′
2

= Rp1,r123;p2,r123

= (−q)p
′
1+p′

2−n1−n3 Jx−n1+n2−n3(q
2p′

1+2p′
2−2n1−2n3; q2). (3.4)

Note that the transition from right to left involves exactly the same 6 j-symbol. To
find identities for the 6 j-symbols, we can use the binary trees and identities for these
trees as explained above, without referring to the underlying eigenvectors. We obtain
the following identities, which can be considered as analogs of Racah’s backcoupling
identity, the Biedenharn–Elliot (or pentagon) identity, and the hexagon identity.

Theorem 3.6 The following identities hold:

(i)
Rx,n1,n2,n3
p1,p2 =

∑
p∈Z

Rx,n1,n3,n2
p1,p Rx,n3,n1,n2

p,p2 ,

or in terms of q-Bessel functions

Jr123(q
p1+p2; q) =

∑
p∈Z

Jr132(q
p+p1; q)Jr312(q

p+p2; q)q p,

where ri jk = x − ni + n j − nk.
(ii)

Rx,n1,n2,p1
r1,p2 Rx,p2,n3,n4

p1,r2 =
∑
p∈Z

Rr1,n2,n3,n4
p1,p Rx,n1,p,n4

r1,r2 Rr2,n1,n2,n3
p,p2 ,

which in terms of q-Bessel functions is equivalent to the product formula

Jν+μ1(q
P−Q; q)Jν+μ2(q

Q−R; q) =
∑
μ∈Z

Aμ1,μ2,μ
P,Q,R Jν+μ(qP−R; q)

where P, Q, R, ν, μ1, μ2 ∈ Z and

Aμ1,μ2,μ
P,Q,R = (−1)μ1+μ2qμ− 1

2 (μ1+μ2)

× Jμ2−μ1+P−Q(qμ−μ1; q)Jμ1−μ2+Q−R(qμ−μ2; q).

(iii)
∑
r∈Z

Rx,p1,n3,n4
p2,r Rr,n2,n1,n3

p3,p1 Rx,p3,n2,n4
p4,r

=
∑
r∈Z

Rx,n1,n2,p2
r,p1 Rr,n2,n4,n3

p2,p4 Rx,n1,n3,p4
r,p3 ,

or in terms of q-Bessel functions,
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3nj-symbols and identities for q-Bessel functions 327

∑
r∈Z

(−1)p2+p4qr−n4+ 1
2 (p2+p4) Jr−n2+n1−n3(q

p1+p3−n2−n3; q)

× Jx−p1+n3−n4(q
r+p2−p1−n4; q)Jx−p3+n2−n4(q

r+p4−p3−n4; q)

= idem
(
(n1, n2, p1, p3) ↔ (n4, n3, p2, p4)

)
.

Here ‘idem’ means that the same expression is inserted but with the parameters
interchanged as indicated.

Proof The first identity follows from

x

n1 n2 n3

p1

x

n1 n2 n3

p2

x

n1 n3 n2

p

R
x,n1,n2,n3
p1,p2

R
x,n1,n3,n2
p1,p R

x,n3,n1,n2
p,p2

The second identity is

x

n1 n2 n3 n4

r1

p1

x

n1 n2 n3 n4

p2 p1

x

n1 n2 n3 n4

p2

r2

x

n1 n2 n3 n4

r1

p

x

n1 n2 n3 n4

r2

p

R
x,n1,n2,p1
r1,p2 R

x,p2,n3,n4
p1,r2

R
r1,n2,n3,n4
p1,p

R
x,n1,p,n4
r1,r2

R
r2,n1,n2,n3
p,p2

The corresponding identity for q-Bessel functions is obtained by substituting

r1 − n1 = P, p1 − p2 = Q, n4 − r2 = R, ν = x − n1,

μ1 = n2 − p1, μ2 = n1 − p2 + n3 − n4, μ = p − n4.
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The third identity is

x

n1 n2 n3 n4

p1 p2

x

n1 n2 n3 n4

p1

r

x

n1 n2n3 n4

p3

r

x

n1 n2n3 n4

p3 p4

x

n1 n2 n3 n4

p2

r

x

n1 n2n3 n4

p4

r

R
x,p1,n3,n4
p2,r

R
r,n2,n1,n3
p3,p1 R

x,p3,n2,n4
p4,r

R
x,n1,n2,p2
r,p1

R
r,n2,n4,n3
p2,p4 R

x,n1,n3,p4
r,p3


�
Remark 3.7 (i) The q-Hankel transform of a function f ∈ L2(qZ; qx ) is defined by

(Hν f )(n) =
∑
x∈Z

f (qx )Jν(q
x+n; q)qx , n ∈ Z.

Identity (i) of Theorem 3.6 shows that the q-Hankel transform maps an orthogo-
nal basis of q-Bessel functions to another orthogonal basis of q-Bessel functions,
which implies a factorization of the q-Hankel transform: Hr123 = Hr312Hr132 .

(ii) Identity (ii), the product formula for q-Bessel functions, has appeared before
in the literature; representation theoretic proofs are given by Koelink in [13,
Corollary 6.5] and Kalnins et al. in [11, (3.20)]. A direct analytic proof is given
by Koelink and Swarttouw in [14].

(iii) It is well known that the hexagon identity for classical 6 j-symbols can be
interpreted as a quantum Yang–Baxter equation. Here, we obtain an infinite-
dimensional solution: for u, v ∈ Z, define a unitary operator R(u, v) : 	2(Z) ⊗
	2(Z) → 	2(Z) ⊗ 	2(Z) by

R(u, v)(ex−a ⊗ eb−x ) =
∑
y∈Z

Ru,a,v,b
x,y eb−y ⊗ ey−a, a, b, x ∈ Z,

where {ex | x ∈ Z} is the standard orthonormal basis for 	2(Z). Then the hexagon
identity says that the operator R satisfies

R12(u, w)R13(v,w)R23(u, v) = R23(u, v)R13(v,w)R12(u, w)

as an operator identity on 	2(Z) ⊗ 	2(Z) ⊗ 	2(Z).

4 3n j -symbols and multivariate q-Bessel functions

We consider certain 3nj-symbols and show that these can be considered as mul-
tivariate q-Bessel functions, which are limits of the multivariate Askey–Wilson
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polynomials introduced by Gasper and Rahman in [4]. In this section, we use the
following notation. For v = (v1, v2, . . . , vd−1, vd), we define |v| = ∑d

j=1 v j and

v̂ = (vd , vd−1, . . . , v2, v1). For some function f : Z
d → C, we set

∑
x

f (x) =
∑
xd∈Z

· · ·
∑
x1∈Z

f (x1, . . . , xd),

provided the sum converges.

4.1 Multivariate q-Bessel functions

Let d ∈ N≥1. For ν = (ν0, . . . , νd+1) ∈ Z
d+2, we define q-Bessel functions in the

variables x = (x1, . . . , xd), λ = (λ1, . . . , λd) ∈ Z
d by

Jν(x, λ) =
d∏
j=1

Jν j−x j+1−λ j−1(q
x j−x j+1+λ j−λ j−1; q), (4.1)

where λ0 = ν0 and xd+1 = νd+1. Occasionally, we will use the notation Jν(x, λ; q)

to stress the dependence on q.

Theorem 4.1 The multivariate q-Bessel functions have the following properties:

(i) Orthogonality relations:

∑
x

Jν(x, λ)Jν(x, λ
′)qx1 = δλ,λ′qνd+1+ν0−λd , λ, λ′ ∈ Z

d .

(ii) Self-duality: Jν(x, λ) = Jν̂ (λ̂, x̂).

Proof The self-duality property follows directly from (4.1). The orthogonality rela-
tions follow by induction using the q-Hankel orthogonality relations from Theorem
3.5, which can be written as

∑
x j∈Z

Jν j−x j+1−λ j−1(q
x j−x j+1+λ j−λ j−1; q)Jν j−x j+1−λ j−1(q

x j−x j+1+λ′
j−λ j−1; q)qx j

= δλ j ,λ
′
j
qx j+1−λ j+λ j−1 . (4.2)

Define for k = 1, . . . , d + 1,

J (k)
ν (x, λ) =

d∏
j=k

Jν j−x j+1−λ j−1(q
1
2 (x j−x j+1+λ j−λ j−1); q),

the empty product being equal to 1. Note that J (1)
ν = Jν and

Jνk−xk+1−λk−1(q
xk−xk+1+λk−λk−1; q)J (k+1)

ν (x, λ) = J (k)
ν (x, λ). (4.3)
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We will show that

∑
xk∈Z

· · ·
∑
x1∈Z

Jν(x, λ)Jν(x, λ
′)qx1 (4.4)

= δλ1,λ
′
1
· · · δλk ,λ

′
k
qxk+1−λk+λ0 J (k+1)

ν (x, λ)J (k+1)
ν (x, λ′). (4.5)

For k = 1, (4.4) follows directly from (4.2). Now assume that (4.4) holds for a certain
k, then by (4.2) and (4.3),

∑
xk+1∈Z

· · ·
∑
x1∈Z

Jν(x, λ)Jν(x, λ
′)qx1

= δλ1,λ
′
1
· · · δλk ,λ

′
k

∑
xk+1∈Z

J (k+1)
ν (x, λ)J (k+1)

ν (x, λ′)qxk+1−λk+λ0

= δλ1,λ
′
1
· · · δλk+1,λ

′
k+1

J (k+2)
ν (x, λ)J (k+2)

ν (x, λ′)qxk+2−λk+1+λ0 ,

which proves the orthogonality relations. 
�
Next we show that the multivariate q-Bessel functions can be considered as limit

cases of multivariate Askey–Wilson polynomials. The 1-variable Askey–Wilson poly-
nomials are defined by

pn(x; a, b, c, d | q) = (ab, ac, ad; q)n

an
4ϕ3

(
q−n, abcdqn−1, ax, a/x

ab, ac, ad
; q, q

)
,

which are polynomials in x+x−1 of degree n, and they are symmetric in the parameters
a, b, c, d. Using notation as in [9], the multivariate Askey–Wilson polynomials are
defined as follows. Let n = (n1, . . . , nd) ∈ N

d and x = (x1, . . . , xd) ∈ (C×)d , then
the d-variable Askey–Wilson polynomials are defined by

Pd(n; x;α | q) =
d∏
j=1

pn j

(
x j ;α j q

N j−1 ,
α j

α2
0

qN j−1 ,
α j+1

α j
x j+1,

α j+1

α j
x−1
j+1 | q

)
,

(4.6)
where N j = ∑ j

k=1 nk , N0 = 0, α = (α0, . . . , αd+2) ∈ C
d+3, xd+1 = αd+2. These

are polynomials in the variables x1 + x−1
1 , . . . , xd + x−1

d of degree |n| = Nd .

Proposition 4.2 Let λ = (λ1, . . . , λd) ∈ Z
d , ν = (ν0, . . . , νd+1) ∈ Z

d+2 and define

α(m) =
(
q−m, q

1
2 ν0 , q

1
2 ν1−m, . . . , q

1
2 ν j− jm, . . . , q

1
2 νd−dm, qνd+1+m

)
∈C

d+3,

x(m) =
(
q− 1

2 ν0−x1+m, q
1
2 ν1−ν0−x2+m, . . . , q

1
2 νd−1−ν0−xd+m

)
∈ C

d ,

λ + m = (λ1 + m, . . . , λd + m) ∈ N
d ,

Cm(x; λ;α) =
d∏
j=1

q( 12 ν j−1−ν j+ν0+x j+1−m)(λ j+m)
(
qν j−ν j−1−2m; q

)
λ j+m

,

123



3nj-symbols and identities for q-Bessel functions 331

then

lim
m→∞

Pd(λ + m; x(m);α(m) | q)

Cm(x; λ;α)

= (q; q)d∞

⎛
⎝

d∏
j=1

q
1
2 (x j+1−x j+� j+1−� j )(ν j−x j+1−� j−1)

⎞
⎠ Jν(x,�),

where � = (�1, . . . , �d) with � j = ν0 − ∑ j
k=1 λk and �0 = ν0.

Proof First we substitute

α0 �→ q−m, n j �→ λ j + m, j = 1, . . . , d

x j �→ x jq
m, α j �→ α j q

m( j−1), j = 1, . . . , d + 1,

in (4.6) (recall, xd+1 = αd+2). The 4ϕ3-part of the j th factor pn j is

4ϕ3

⎛
⎜⎝
q−λ j−m, α2

j+1q
2(

∑ j−1
k=1 λk )+λ j−1+m,

α j+1
α j

x j+1x jqm,
α j+1x j+1

α j x j
q−m

α2
j+1

α2
j
q−2m, α j+1x j+1q2m+∑ j−1

k=1 λk , α j+1x j+1q
∑ j−1

k=1 λk

; q, q

⎞
⎟⎠,

where the empty sum equals 0. Letting m → ∞, this function tends to

1ϕ1

(
0

α j+1x j+1q
∑ j−1

k=1 λk
; q,

α j x j+1

α j+1x j
q1−λ j

)
.

Finally, we substitute

α j �→ q
1
2 ν j−1 , x j �→ q

1
2 ν j−1−ν0−x j ,

and set ν0 − ∑ j
k=1 λk = � j for j = 0, . . . , d, then we have

1ϕ1

(
0

qν j−x j+1−� j−1
; q, qx j+1−x j+� j−� j−1

)
,

which we recognize as the 1ϕ1-part of the j th factor of the multivariate q-Bessel
function Jν(x,�), see (4.1). 
�

4.2 3n j-symbols

Let k ∈ N≥1, and let r, s ∈ Z
k , n ∈ Z

k+2. We define the 3nj-symbols Rx;n
r,s to be the

coupling coefficients between two specific binary trees corresponding to (k + 2)-fold
tensor product representations. We will use the following notation:
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x

n1 n2 nk+1 nk+2

r1

rk

· · ·

=

x

r

n

x

n1 n2 nk+1 nk+2

s1

sk

· · ·

=

x

s

n

Note that, a node with a bold symbol represents several nodes, and that the label r
(respectively s) on the right (left) of a node means that all branches ‘hang’ on the right
(left) edge. The 3nj-symbols Rx,n

r,s are defined by

x

r

n

=
∑
s

Rx,n
r,s

x

s

n

andwewill denote the corresponding transition again by an arrow. Note that, for k = 1
we have Rx,n

r,s = Rx,n1,n2,n3
r,s .

Proposition 4.3 The coefficients Rx,n
r,s have the following properties:

(i) Orthogonality relations:
∑

r
Rx,n
r,s R

x,n
r,s′ = δs,s′

(ii) Duality: Rx,n
r,s = Rx,n̂

ŝ,r̂ .

Proof The coefficients R are the matrix coefficients of a unitary operator, which
implies the orthogonality relations. The duality property is a consequence of the iden-
tity

x

r

n

=

x

r̂

n̂

which follows from repeated application of (3.3). 
�

Theorem 4.4 For i = 1, 2 let ki ∈ N≥1, ni ∈ Z
ki+1 and ri , si ∈ Z

ki . Let k = k1+k2,
n = (n1,n2), r = (r1, r2), s = (s1, s2), then

Rx,n
r,s = R

x,(n1,rk1+1)
r1,s1 R

x,(sk1 ,n2)
r2,s2 .
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As a consequence,

Rx,n
r,s =

k∏
j=1

R
x,s j−1,n j+1,r j+1
r j ,s j ,

where s0 = n1 and rk+1 = nk+2.

Proof The first identity follows from

x

r2

r1

n1 n2

R
x,(n1,rk1+1)
r1,s1

x

r2s1

n1 n2

R
x,(sk1 ,n2)
r2,s2

x

s1

s2

n1 n2

The second identity follows from repeated application of the first identity. 
�
From (3.4) it follows that Rx,n

r,s is essentially amultivariate q-Bessel function as defined
by (4.1).

Corollary 4.5 Let ν(x,n) = (n1, x + n2, . . . , x + nk+1, nk+2), then

Rx,n
r,s = (−q)r1+sk−n1−nk+2 Jν(x,n)(r, s; q2).

Note that, this corollary and Proposition 4.3 together give a representation theoretic
proof of Theorem 4.1.

Our next goal is to prove a summation identity for the multivariate q-Bessel
functions. Let us firstmention that by interpreting a binary tree as a product ofClebsch–
Gordan coefficients, the 3nj-symbols Rx,n

r,s satisfy, by definition, the formula

Cx,r,n =
∑
s

Rx,n
r,s Cx,ŝ,n̂, Cx,r,n =

k+1∏
j=1

Cr j−1,n j ,r j , (4.7)

where r0 = x, rk+1 = nk+2, s0 = n1, sk+2 = x . The functions Cx,r,n can be consid-
ered as multivariate Wall polynomials, which are q-analogs of Laguerre polynomials.
In this light, (4.7) is a multivariate q-analog of an identity proved by Erdélyi [2] which
states that the Hankel transform maps a product of two Laguerre polynomials to a
product of two Laguerre polynomials.

For the 3nj-symbols Rx,n
r,s , there exists a multivariate analog of the Biedenharn–

Elliott identity. In terms of q-Bessel functions, this gives an expansion formula for
k-variable q-Bessel functions in terms of (k − 1)-variable q-Bessel functions. The
identity requires also another 3nj-symbol. For r, s ∈ Z

k , n ∈ Z
k+2, x ∈ Z, let Sx,nr,s

be the coupling coefficient defined by
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x

r

n

=
∑
ŝ

Sx,nr,s

x

s

n

(4.7)

Note that,
∑

ŝ = ∑
s1 · · · ∑sk . This 3nj-symbol can of course also be considered as

a multivariate q-Bessel function (see the following result), but it lacks the self-duality
property. Let us first express S in terms of the 6 j-symbols.

Lemma 4.6 Sx,nr,s is given by

Sx,nr,s =
k∏
j=1

R
s j+1,n1,r j−1,n j+2
r j ,s j ,

with sk+1 = x and r0 = n2.

Proof We use the transition

sk− j+1

rk− j

n1 r j nk− j+2

R
sk− j+1,n1,rk− j−1,nk− j+2
rk− j ,sk− j

sk− j+1

sk− j

n1 r j nk− j+2

where r j
=

rk− j−1

r′j

n j

and where r′
j = (r1, . . . , rk− j−2) and n j = (n2, . . . , nk− j+1). We set sk+1 = x and

r0 = n2, then applying this transition successively on subtrees for j = 0, . . . , k − 1
gives

Sx,nr,s =
k−1∏
j=0

R
sk− j+1,n1,rk− j−1,nk− j+2
rk− j ,sk− j .

Changing the index gives the stated expression for the coupling coefficient S. 
�
The following identity is the multivariate analog of the Biedenharn–Elliott identity

from Theorem 3.6, i.e., the k = 2 case gives back Theorem 3.6(ii).

Theorem 4.7 For k ∈ N≥2 let r, s ∈ Z
k and n ∈ Z

k+2, then

Rx,n
r,s =

∑

t∈Zk−1

Sx,n(t,r1),s
Rr1,n′
r′,t ,

where v′ is obtained from v by leaving out the first component. In terms of multivariate
q-Bessel functions,

Jν(x,n)(r, s) =
∑

t∈Zk−1

Ar1
t,s Jν(r1,n′)(r

′, t)
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with

Ar1
t,s = (−q

1
2 )|t|+|s|−|n|−(k−2)n1−sk+r2

×
k∏
j=1

Js j+1−n1+t j−1+n j+2(q
s j+t j−n1−n j+2; q), tk = r1.

Proof This follows from the transition

x

r

n

=

x

r′
r1

n1
n′

R
r1,n

′
r′,t

x

r′
r1

t

n1
n′

=

x

p

n

Sx,np,s

x

s

n

where p = (t, r1), and the definition of the coupling coefficients R. 
�
Remark 4.8 It seems that there are no analogs for the 3nj-symbols R of identities (i)
and (iii) of Theorem 3.6, but there does exist an analog of Theorem 3.6(i) involving
only the 3nj-symbols S which may be of interest. This is obtained as follows.

Let n ∈ Z
k+2. For j ∈ {1, 2, . . . , k + 1}, we define n j = (nk+3− j ,

. . . , nk+2, n1, . . . , nk+2− j ). Furthermore, given a vector v, we denote (as in Theo-
rem 4.7) by v′ the vector v without the first component, and we set n′

j = (n j )
′.

Consider the transition

x

r̂

n̂

=

x

r

nk+2

n′
1

S
x,n1
r,s1

x

s1

nk+2

n′
1

=

x

ŝ1

n̂1

Iterating this transition k+1 times shows that the coupling coefficient in the transition

x

r̂

n̂

T x,n
r,s

x

ŝ

n̂k+1

=

x

s

n1
n′

is given by

T x,n
r,s =

∑
sk

· · ·
∑
s1

(
Sx,n1s0,s1 · · · Sx,nk+1

sk ,sk+1

)
, s0 = r, sk+1 = s.
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On the other hand, by the definition of the coupling coefficient S, we have

x

r̂

n̂

=

x

r

n

Sx,ns,r

x

s

n

=

x

s

n1
n′

.

so that

Sx,ns,r =
∑
sk

· · ·
∑
s1

(
Sx,n1s0,s1 · · · Sx,nk+1

sk ,sk+1

)
, s0 = r, sk+1 = s.

For k = 1, this gives back Theorem 3.6(i).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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