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Abstract

The right to use a certain amount of capacity in an electrical cable between two countries
for the purpose of trading energy is an asset that can be bought. Each hour of capacity can
be seen as a real spread option with the energy prices of each country being the underlying
processes. In this thesis we build a model to find the fair value of a month of cross-border
capacity and use it to predict this value for the Germany-France and Netherlands-Germany
border for the months of July-October 2021. Our model is implemented as an IOHMM
with 4 states following a multinomial distribution and a non-stationary Normal Inverse
Gaussian distribution for each output distribution. We use SPOT prices of each bordering
country to create a ’spread process’, which are then used as target values. As inputs vari-
ous market drivers for each respective country were used. The model produces a mixture
probability distribution for the spread for each hour of the month. Taking the discounted
expected value then gives the hourly capacity value; certain Greek calculation is also pos-
sible. The results show that the capacities follow a comparable trend to the market. The
predicted values for September and October fall short of the realized prices; we expect this
to be due to unprecedented volatility in the energy market. Finally, we tested whether cer-
tain key drivers were mapped to the spreads as one would expect; this was the case for the
Dutch and French drivers, but not for the German drivers.
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1
Introduction

In the last two decades, the distribution and sale of electricity has gone under major dereg-
ulation all around the globe. Where previously markets were controlled in a mostly deter-
ministic way, electricity prices have recently become subject to the forces of the market
[5, 9, 19]. This makes the pricing of electricity and electricity derivatives more complicated
than in previous years [17]. Furthermore, the introduction of market dynamics to the elec-
tricity market brings the question of a ’fair’ price for such derivatives. This is the question
we concern ourselves with for a specific type of electricity derivative in this thesis.

Say we have an electricity trader that wishes to trade between two different countries.
These countries have separately organized electricity networks, however there exists a ca-
ble that physically connects these networks. This cable has the physical constraint of a
maximum amount of capacity that can flow through it at any one time. This scarcity en-
sures that the capacity has a certain amount of value. The question this thesis aims to
answer is, what premium should the trader pay for the use of the capacity in the cable? In
practice the right to use this cable is auctioned by the Joint Allocation Office (JAO). The use
of a certain amount of capacity in the cable can then be assigned through the auction for
certain blocks, for example weeks or months [31, 32]. However, as we will see, this process
does not necessarily show the true value of the asset. So then, how do we find this true
value?

Naturally this problem is multifaceted. We immediately notice that as the trader plans
on making a profit or loss with regards to the price of electricity in both countries, the pre-
mium must be related in some form to these prices. We can therefore see this capacity as a
derivative of the electricity prices. This framework gives rise to two areas which can be ex-
plored: electricity pricing and derivative pricing. There are a variety of ways that electricity
prices are calibrated and subsequently predicted [5, 9]. One such approach assumes the
electricity prices follow a stochastic process of some kind; as will be shown, the capacity
can be seen as a real spread option on the electricity price of the two countries. This leads
to the world of Black-Scholes option pricing [34], and subsequently the Margrabe equation
[29]. While we do review this method, we will also take a different approach.

In practice, the Margrabe method requires certain parameters of the price process to be
calibrated to the actual electricity prices; however, due to illiquidity in the market this can

1



2 1. Introduction

be a difficult task [5]. A trader would then usually use experience and heuristics to analyse
certain driving factors in the electricity market and estimate the parameters. We wish to
replicate this process through some kind of quantifiable criterion. To do this, we analyse
the electricity market in France, Germany, and the Netherlands to see which types of data
’drive’ the prices; for example, daily wind, solar, or gas production each have a certain effect
on daily electricity prices. We then employ machine learning algorithms in order to map
these key market variables to the electricity prices. In doing this we create a different type
of non-stationary price process than that of the Black-Scholes framework; however we can
still use this price process to find an option value. This option value then represents the fair
value of our cross-border capacity.

In this thesis we attempt to find a fair price for the monthly cross-border capacities be-
tween Germany and France, and the Netherlands and Germany. We first give a succinct
overview of the electricity market in Europe, and so in the French, German, and Dutch
markets. We define the cross-border capacity as a real option, and explore how this could
be priced through the Black-Scholes framework. We then continue by defining our own
model, a variant of an Input-Output Hidden Markov Model. We first define the model the-
oretically. We do this by showing the mathematics behind the machine learning principles
used, as well by defining the Normal Inverse Gaussian distribution that was used within the
model. We continue by showing implementation considerations specific to our problem.
Given a trained model, we show the results of predicting the capacities for the months of
July to October 2021. Finally, we discuss these results and any further research to be done
in the area.



2
Background

In this chapter we discuss all the necessary background information regarding the problem
this thesis attempts to solve. We start with an overview of the mechanics of the modern day
electricity markets and the various parties involved. This leads to a more rigorous defini-
tion of the cross-border capacity that we wish to value. Using this definition, we show how
this asset can be seen as a real option, from which an overview of the Black-Scholes option
pricing framework follows naturally. We show the extension of the Black-Scholes frame-
work to spread option to include the Margrabe formula. Finally, we give an overview of
machine learning and how it operates. These tools will be used in subsequent chapters for
the valuation of the cross-border capacity.

2.1. Electricity Markets
In this thesis we focus on the modelling of spot prices in European countries in order to
value a type of electricity derivative also taking place in Europe. Therefore an overview of
the electricity markets in this region seems appropriate. Throughout the following chapter,
the words electricity and power will be used interchangably.

2.1.1. Various Types of Markets
The main markets where electricity is traded in Europe that we are interested in are the
’spot market’, the ’forward market’, and the ’IntraDay market’ [5]. The reason for the exis-
tence of so many markets regarding a single commodity lies in an important quality that
most other commodities do not possess: electricity cannot be stored [17]. These markets
work together to still provide all the participants with electricity around the clock. The
main market is the spot market, on which electricity is sold for the day ahead. However,
due to the non-storability of electricity, operators of the electricity grid often need to trade
electricity in real time. This is what the IntraDay market does. Furthermore, the forward
market serves as a way of hedging the spot market, however due to the non-storability is-
sue, this market is often sparse and quite illiquid. Naturally there are more ways in which
electricity is traded in Europe, however seeing that these are not as relevant to this thesis as
the markets mentioned above, these are left for the reader to explore [5].

3



4 2. Background

2.1.2. Spot Markets in Europe
We now take a closer look at the spot market for electricity in Europe, focusing specifically
on the principle of market coupling. As stated before, participants in the spot market trade
electricity for the day ahead. Market coupling is defined as ’the merging of individual, na-
tional markets to render possible the trade of electricity across a large geographical area’
[38]. All EU countries follow the marginal costs system, whereby in the absence of market
coupling, the country with the highest marginal cost has the highest price for a specified
hour in the day ahead market. The last 10 years, the European Union has been working
towards a fully coupled electricity market between all of its member countries. The reason
behind this is to reduce congestion rates and making transaction costs economically effi-
cient, ultimately improving overall welfare for consumers and producers of electricity [23].
However, this fully coupled market is not quite available yet.

Figure 2.1: The Day Ahead (Spot) Markets for the European Union [33].

In Figure 2.1 the current spot markets for electricity are displayed. Clearly some coun-
tries are already participating in a fully coupled market, for example the Nord Pool ex-
change in Scandinavia. This means that in those regions, there is a free market for electric-
ity between all contained geographical areas, assuming the electricity network restriction
are respected. A market participant simply has to input an order with their power exchange
and they take care of the transmission capacity to carry out the transaction [23].

So how does trading between the fully coupled markets in Figure 2.1 work? Let us first
look at the case in which these markets are actually coupled. The majority of the European
power exchanges have agreed to carry out an implicit auction everyday for the delivery of
electricity in the next day, in which they decide which markets will be coupled for which
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hours of the day [23]. This is done using an algorithm called EUPHEMIA, which aims to
maximize consumer and producer welfare while simultaneously minimizing the conges-
tion rent of the entire electricity network [10]. In the case that EUPHEMIA couples the
markets, the cross-border transmission capacities can be used freely to to arbitrage away
any price difference for every hour of the day, as in a fully coupled system described before.
For more information on how the EUPHEMIA algorithm works, see [10]. For more infor-
mation regarding the benefits of market coupling, see [23].

Naturally it also occurs that certain markets are not coupled for certain hours of the
day. In this case, trading between independently fully coupled markets is a bit more diffi-
cult. The Transmission System Operators (TSOs) between the countries then only attempts
to optimize their own grids. Furthermore, there is a physical limitation to the amount of ca-
pacity that can flow through the cross-border transmission cables between these markets
that is not being optimized for one network. This means that there are additional costs
that need to be accounted for when using these cables [23, 38]. The combination of the
limited cross-border capacity and the differences in the prices of marginal costs of electric-
ity between countries is the main factor leading to a different price of electricity between
countries. In general, this leads to inefficiencies for all market participants, either through
increased congestion or increased costs. For more information, see [38].

2.1.3. Forward Markets in Europe
We now take a closer look at the forward market for electricity in Europe, focusing on the
mechanics behind the cross-border capacities briefly described for the spot market. Par-
ticipants in the forward market trade in electricity contracts for the longer term, which we
define as a minimum of a week and a maximum of a year [37]. Unlike the spot market,
there is no EUPHEMIA algorithm to increase the coupling of markets; however the forward
market can be seen as a prediction of the EUPHEMIA algorithm, as these are the prices that
will eventually settle as the spot prices. This means that there is a separate mechanism for
managing the cross-border transmission capacities between the standard markets. This is
done by the Joint Allocation Office (JAO), through a form of auction [18, 32]. This works
as follows. The cross-border capacities are auctioned off in blocks of months, quarters or
years, depending on the particular border. For a block of, for example, a month, there is a
certain amount of capacity (given in Megawatt hours, Mwh) that is available for every hour
of that month. Participants in the auction give bids for how much they would be willing to
pay for 1 Mwh and how many Mwh they would pay at this price. Different bids for differ-
ent amounts of Mwh for a single participant are admitted. JAO then takes the largest of all
combined bids, and allocates the requested MWh to the appropriate participant; then the
amount of MWh with the second largest bid is allocated to appropriate participant. This
continues until all the available capacity in the transmission cable is allocated; the price of
the final allocated capacity is then the price that all the participants pay for their allocated
capacities. To summarize, at the end of the auction, all participants that had capacity al-
located have this capacity for every hour of the auctioned month, and all participants pay
the lowest allocated price for each Mwh of capacity. The auctions for the week, quarter,
and year capacities are performed in a similar manner. The EU has approved harmonized
rules, which define two types of forward capacity rights: “Financial Transmission Right Op-
tion” and “Physical Transmission Right”. The former provides a full option to the owner by
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guaranteeing the payment of the positive difference in the prices for the respective border
for every hour in the day ahead auction. The latter guarantees only the right to transfer
electricity across border through the physical cable [18, 32] Given that a participant in the
forward market then wishes to perform a cross-border trade, it can do so with the allocated
capacity awarded in the auction [37]. For more information about the regulations and spe-
cific products of these auctions, see [18, 31, 32].

2.1.4. Cross-Border Capacity
We can now define the product that we wish to price.

Definition 1 The cross-border capacity between two markets (usually countries) is the amount
of Mwh that can flow through the transmission cable from one network to the other.

In this thesis we focus on the monthly capacity for the border between Germany and France
and the border between The Netherlands and Germany; both of these border fall in the
"Financial Transmission Right Options" category [18, 32]. Keeping in mind the auction
process previously described, we wish to find the market value of 1 Mwh of capacity for
an entire month for these particular borders. We do this by assuming the cross-border
capacity is a real option and so incorporate techniques from financial mathematics and
machine learning to price it.

2.2. Real Options
We show that the cross-border transmission capacity described in the previous section can
be seen as an example of a real option.

Definition 2 A real option is a type of investment that gives the buyer the right, but not obli-
gation, to undertake some kind of business decision at a later time.

The main difference between real options and financial options is that financial options
are usually traded securities based on some explicit underlying financial product, while
real options do not have this restriction [27].

Real options often rely on some physical conditions, as is indeed the case with the cross-
border capacity, as this capacity has physical restrictions which are creating its worth. Let
us assume a German power trader wishes to trade on the forward market in France, for a
specific hour one month from now. The idea the trader has, is that if the price of electric-
ity for that hour is higher in France than in Germany, buying in Germany and selling in
France would give him the difference in price as profit. The trader knows however that if he
is wrong, selling German electricity in France will make him lose money, in which case he
will simply stay in the German market. In order to do this, the trader would have to partic-
ipate in the monthly auction for this particular border, and assuming he bids high enough,
pay a premium for using the transmission cable. Therefore, we see that the trader pays a
premium now, giving him the right, but not obligation, to trade between the German and
French markets for the specific hour he requires. Thus the cross-border capacity, and more
specifically the “Financial Transmission Rights Option”, can be seen as a real option.
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There are some specifics that should be mentioned in this framework, as the auction
from JAO imposes some restrictions. We see that the monthly auction that we wish to value
is in fact not a single option but a bundle of options. When the trader wins the auction and
is allocated the monthly capacity, he or she can choose the individual hours of the month
that they wish to trade at a later date; the trader may choose to do this as different hours
may be more profitable than others. Therefore, each hour is a separate real option, and the
monthly auction we value is the sum of these options. Furthermore, a physical limitation
of the transmission cable is that the electricity ’flows’ in one directions; this means that
there is a separate auction for power flowing from Germany to France and from France to
Germany [18]. In this thesis we aim to value these ’flows’ independently, as this is more
applicable to trading strategy.

We see that as the cross-border capacity is a bundle of real options, we can price it as
such. The ’physical investment’ we are valuing is the right to use the transmission cable in
a specific direction for every hour of a specific month. The underlying asset in this case is
the difference (or spread) between the price of electricity in the two bordering countries, as
this is where the trader earns their profit. Ideally, the forward market prices would be used
for the underlying. However, as stated earlier, the forward market suffers from illiquidity,
meaning that a true ’market price’ for every hour or even every day is quite impossible to
obtain. Therefore instead of forward market prices, we use the spot market prices as an
underlying asset. As is shown in [37], this substitution is justified as spot markets show
close proximity to forward markets and are deemed the ’driving factor’ of the electricity
markets as a whole.

2.3. Option Valuation
One method of pricing real options is by using the Black-Scholes model that is typically
used for financial options [11]. In this section we briefly describe the general Black-Scholes
framework and show the extension to the use of spread options. Certain Greeks are also
shown in this setting. It should be noted that this method of pricing the cross-border ca-
pacity is one of the methods that our final model will be compared to.

2.3.1. The Black-Scholes Model
The Black-Scholes model can be applied to real options by assuming that the real option
is in fact a financial option on the underlying asset, in this case the price of electricity. A
European call option on an underlying asset S(t ) is a contract that gives the holder the
right to buy a certain amount of the asset for a price K (referred to as the strike price), at a
predefined later time T (referred to as the expiry time). The pay-off function of a European
call option is defined as

H(T,S) = max(S(T )−K ,0) (2.1)

Now we let the F = (Ft )t∈[0,T ], be the filtration generated by the sequence S(t ), i.e. Ft :=
σ (Sk | k ≤ t ) are σ-algebras and so F (T ) contains all the information generated by S(t ) up
to time T . Then we define the time t value of the European call option to be the discounted
conditional expectation

V (t ,S) = e−r (T−t )E[H(T,S)|F (T )] (2.2)
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where e−r (T−t ) is the discount factor, with r being the interest rate [34].

The Black-Scholes model assumes that the underlying asset follows a Geometric Brow-
nian Motion (GBM), which is a stochastic process defined by

dS(t ) =µS(t )dt +σS(t )dW P(t ) (2.3)

where µ is the the drift, σ is the volatility, and W P(t ) is a Wiener Process under some real
world measure P. Now the Black-Scholes model assumes the options price V (t ,S) is in fact
a function that solves for the Black-Scholes partial differential equation

∂V

∂t
+ r

∂V

∂X
+ 1

2
σ2

(
−∂V

∂X
+ ∂2V

∂X 2

)
− r V = 0 (2.4)

together with the terminal condition

V (S,T ) = H(T,S)

There are several ways to solve this PDE, some methods are explained in [34]. For a Euro-
pean call option, this PDE can be solved in closed form, giving the option price

Vc (t ,S) = S(t )Φ (d1)−K e−r (T−t )Φ (d2) , (2.5)

where

d1 = 1

σ
p

T − t
log

S(t )

K
+ (

r + 1
2σ

2) (T − t ),

d2 = 1

σ
p

T − t
log

S(t )

K
+

(
r − 1

2
σ2

)
(T − t ) = d1 −σ

p
T − t ,

(2.6)

andΦ the cumulative distribution function of a Standard Normal random variable [34].

The Greeks of a financial option measure how sensitive the price is to its own parame-
ters; these values can be helpful for traders to hedge their portfolios. In the Black-Scholes
model, the Greeks for a European call option can be found in closed form [34]. The Greeks
in regards to the asset price S, the time until maturity T , and the volatility σ are tabulated
in Table 2.1. For more information regarding the derivation and use of the Greeks, see [34].

Name Symbol Derivative Value

Delta ∆
∂V

∂S
Φ (d1)

Gamma Γ
∂2V

∂S2

Φ′ (d1)

Sσ
p

T − t

Vega ν
∂V

∂σ
SΦ (d1)

p
T − t

Theta Θ
∂V

∂t
−SΦ′ (d1)σ

2
p

T − t
− r K e−r (T−t )Φ (d2)

Table 2.1: Selected Greeks for a European call option.
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2.3.2. The Margrabe Formula
We now show how the Black-Scholes model can be extended to a financial option that is
based on the spread between two assets.

Definition 3 An exchange option (or a spread option) is a financial option that, at maturity,
gives the holder the right but not obligation to exchange one risky asset for another

We assume that our two assets, S1(t ) and S2(t ), follow a correlated GBM

dS1(t ) =µ1S1(t )dt +σ1S1(t )dW P
1 (t ),

dS2(t ) =µ2S2(t )dt +σ2S2(t )dW P
2 (t ),

dW1dW2 = ρdt ,
(2.7)

where ρ is the correlation coefficient between the two assets [36]. We can see these assets
as the price of electricity in countries with markets that are not coupled. We assume that
the holder of the option also has possession of asset S2(t ), meaning that at maturity they
have the right to exchange S2(t ) for S1(t ). In the case of S1(T ) > S2(T ), the holder can make
a profit if the exchange is performed. Similarly, the holder of the option has no reason to
perform the exchange in the case that S2(T ) > S1(T ). Therefore we see that at maturity, the
option has a pay-off function of

H(T,S1,S2) = max(S1(T )−S2(T ),0). (2.8)

The option value is then described by the conditional expectation as before

V (t ,S1,S2) = e−r (T−t )E[H(T,S1,S2)|F (T )]. (2.9)

In this sense it is also an option based on the spread between S1(t ) and S2(t ) [29, 36]. Now
in the Black-Scholes framework, assuming a constant interest rate of r , the price of this
option at time t is

V (S1,S2, t ) = S1(t )Φ (d1)−S2(t )Φ (d2) . (2.10)

with

d1 = 1

σ
p

T − t

[
log

(
S1(t )

S2(t )

)
+ σ2

2
(T − t )

]
d2 = 1

σ
p

T − t

[
log

(
S1(t )

S2(t )

)
− σ2

2
(T − t )

]
= d1 −σ

p
T − t

σ=
√
σ2

1 +σ2
2 −2ρσ1σ2

(2.11)

andΦ the cumulative distribution function of a Standard Normal random variable [29, 36].
Formula (2.10) is known as the Margrabe formula [29]. We see that this option value is the
value of the cross-border capacity in the Black-Scholes framework.

The Margrabe formula also has Greeks corresponding to the assets’ parameters [36].
The Greeks at time 0 corresponding to the first asset price S1 and volatility σ1, the second
asset price S2 and volatility σ2, and the time until maturity T have been tabulated in Table
2.2, where φ(x) is the probability density function of a Standard Normal variable. Deriva-
tion of these Greeks can be found in Appendix A.
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Name Sign Derivative Value

Delta 1 ∆1
∂V

∂S1
Φ (d1)

Delta 2 ∆2
∂V

∂S2
−Φ (d2)

Gamma 11 Γ11
∂2V

∂S2
1

1

σ
p

T − t

φ (d1)

S1(t )

Gamma 22 Γ22
∂2V

∂S2
2

1

σ
p

T − t

φ (d2)

S2(t )

Gamma 12 Γ12
∂2V

∂S1S2
− 1

σ
p

T − t

φ (d1)

S2(t )

Vega 1 ν1
∂V

∂σ1
S1(t )

p
T − tφ (d1)

σ1 −ρσ2

σ

Vega 2 ν2
∂V

∂σ2
S1(t )

p
T − tφ (d1)

σ2 −ρσ1

σ

Theta Θ
∂V

∂t

S1(t )σ

2
p

T − t
φ (d1)

Table 2.2: Selected Greeks for a spread call option.

The Margrabe formula, while an excellent starting point for the valuation of cross-border
capacity, does have a few deficiencies. First of all, seeing that it is based on the Black-
Scholes model, it is bound to suffer from the volatility smile, which occurs through the pa-
rameterization of the underlying assets. One of these parameters, the volatility σ, cannot
be directly inferred and so must be implied through market prices. However, as has been
noted many times, the Black-Scholes implied volatility usually does not conform with mar-
ket prices, leading to the possibility of inaccuracies in the valuation of the options [34]. It
is natural to assume that this deficiency should also carry through to the Margrabe for-
mula used on power markets. For this thesis, alternative stochastic processes were first
considered to solve the issue of the Black-Scholes implied volatility; eventually however, a
different route was chosen. For more information regarding such processes as applied to
spread options, see [6, 12, 16, 24, 26, 35]

The second deficiency however, shows that we cannot even know this for certain. Due
to the illiquidity of the forward markets and the low number of auctions, there is not a
fully operated market to which this implied volatility can be compared [5]. This means
that there is no direct numerical method to find the volatility parameter needed for the
valuation. Common practice for traders is that the volatility is instead inferred from market
data in different markets, usually on a heuristic basis. This is one of the deficiencies that
the model in this thesis hopes to circumvent, and the reason that using different stochastic
processes within the Black-Scholes framework was rejected. Even if the implied volatility
could be solved, the market data that would be necessary to calibrate such processes is not
available. We found that different types of data needed to be applied to the market prices
that were available, which could be done through neural networks as will be shown in later
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chapters.

2.4. Machine Learning
In this model we wish to find a way to map certain data from other markets to the data of the
market in which we find our real option. In this way we hope to feed the information that
a trader would use to estimate certain parameters of the model directly to it. We achieve
this through a type of machine learning model, which will be discussed in the next chapter.
Here we give an introduction to the mechanics of machine learning.

2.4.1. Components of a Machine Learning Algorithm
A machine learning algorithm can often be generalized as a combination of a problem that
needs to be solved, a cost function describing the problem, a model used to solve the prob-
lem, a dataset with information from the problem, and an optimization technique used to
optimize the cost function. These problems can be split up in supervised or unsupervised
learning. We are interested in supervised learning:

Definition 4 A supervised learning algorithm is an algorithm that attempts to map a train-
ing set of inputs x to specific outputs y.

By contrast, an unsupervised learning algorithm does not have realized outputs y to di-
rectly map to. The most common cost function that comes with this type of learning is
the negative log-likelihood function, which the model should try to minimized through the
optimization technique. The chosen optimization technique is heavily dependent on the
type of model that is used. Should a linear model be employed, the optimization technique
can often find a closed form solution to minimizing the cost function. However, in the case
of non-linear models, a different approach is needed [22].

2.4.2. Stochastic Gradient Descent
The most popular method of optimizing in a non-linear environment is through Stochastic
Gradient Descent (SGD) (or some variation of SGD). As previously stated, optimizing is
usually done by minimizing (or maximizing) some cost function for the training data; this
is done using gradient descent, which we define below.

Definition 5 The gradient of a (cost) function f (x), denoted ∇x f (x), is the vector containing
all of the partial derivatives of f .

Definition 6 The method of (stochastic) gradient descent proposes that we minimize f
through using the gradient of f together with a learning rate ϵt to iterate to a solution:

xt+1 = xt −ϵt∇x f (x) (2.12)

How the learning rate changes through time is called a learning rate schedule. The method
of gradient descent works well for non-linear problems when direct computation of∇x f (x) =
0 is not possible. However, machine learning algorithms often use very large sets of data
for which gradient descent quickly becomes computationally expensive. In order to coun-
teract this, SGD is used instead. SGD turns the gradient into an expectation, which can be
approximated using uniformly drown samples from the entire training set. These samples
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are called minibatches, and can range from 1 to a few hundred. Using this stochastic gra-
dient in the gradient descent equation (2.12) then leads to similar results for a much lower
computation time [22]. The specifics of the choice of minibatches, learning rate, and a few
other characteristics then decides the type of SGD optimization algorithm that is used.

2.4.3. Common Issues in Machine Learning
Naturally the rich area of machine learning is not perfect, and this approach to pricing
the cross-border capacity does come with some complications. We briefly mention some
of these here, with more detailed solutions presented in the next chapters. For example,
choosing which specific types of data should be used as input can be difficult. While many
different forms of data may be appropriate, increasing the dimension of your inputs makes
the learning process slow down or even stagnate [22]. Choosing the right data is known as
feature selection, which we do using a Principle Feature Analysis (PFA) [28]. SGD (and other
variants) often suffer from underflow or overflow, which essentially means that the gradient
that is being minimized either stops moving, or explodes [22]. This is solved using an ap-
propriate activation function [30] and clipping the gradient where necessary [22]. Finally,
a well known danger of supervised learning is over-fitting the data on the training set. This
means that algorithm starts to predict patterns that are only available in the training set,
but are not part of the whole problem [22]. This is solved by splitting the data into a train-
ing and testing set, where the model is not exposed to the testing data until already fully
trained to see if over-fitting has occurred. There are of course many more considerations,
which will become apparent in the following chapters.
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Model

In this chapter we present the methods used for building the valuation model for the cross-
border capacity. We begin with a section outlining the motivation behind the methodology
and a quick overview of the suggested approach. We then show the workings behind the
type of model, an Input Output Hidden Markov Model (IOHMM), from a mathematical and
machine learning perspective. We continue with an overview of the Normal Inverse Gaus-
sian process. Finally we reiterate the mathematics of the valuation through the expected
value of the price process our model produces, as well as an overview of certain Greeks that
can be produced with this price process.

3.1. Suggested Approach
As was explained in the previous chapter, the Margrabe valuation method that is most often
employed in the pricing of the cross-border capacity lacks a method of quantifying certain
parameters, most notably the volatility of the underlying electricity prices. The way traders
still find a way to value the asset is by reviewing data that drives the volatility in these mar-
kets and then using their experience in the market to estimate the volatility. In a sense, the
traders are mapping input data to output data, albeit without a quantifiable criterion. The
model we have created intends to mimic this mapping, only this time quantifying and op-
timizing the procedure.

The Margrabe approach also attempts to model the two electricity prices separately
into two correlated Geometric Brownian Motions, and subsequently taking the discounted
expected value of the spread. We have chosen to instead model the spread between the
prices directly and taking its discounted expected value. This way we have a single process
that needs to be calibrated to a market instead of two. In order to do this, a different under-
lying process is needed, for which we have chosen a variant of the Normal Inverse Gaussian
process.

Given our new spread process, we then need to find a way to calibrate the parameters to
the necessary market. As stated previously, our target values are the spreads between the
spot prices between the two countries for which we value the cross-border capacity. We
then use market data that influences these prices and map them through our price process
to the target values via a machine learning algorithm. The type of market data that we

13
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use as inputs is reviewed in the next chapter. The model is trained using historical data
pairings between inputs and outputs in order to calibrate how the input data influences
the output data. When this training is finished, new inputs can be used to make predictions
about the distributions of the outputs. The discounted expected value of these predictive
distributions are then used for the cross-border capacity valuation, as will be shown in the
remainder of this chapter.

3.2. Input-Output Hidden Markov Models
Input-Output Hidden Markov Models (IOHMMs) combine Hidden Markov Models (HMMs)
and mapping of inputs and outputs through machine learning [2], as will be shown in this
section. HMMs use a ’state variable’ to describe some kind of market or otherwise unknown
aspect that follows an unknown distribution. Conditioned on this state distribution, inputs
are mapped to outputs through a separate distribution resulting in a total market distri-
bution that is dependent on the state distribution as well as the inputs that are provided.
Initially these types of models were designed for sequence processing and applied to gram-
matical inference [2]. However subsequently they were found to be applicable to financial
processes as well, as can be seen in [3]. Furthermore, an example of modelling and predict-
ing electricity spot prices on the Spanish market using IOHMMs can be found at [21].

3.2.1. Hidden Markov Models
We begin with mathematically defining Markov models in order to give a motivation for
state variables. We begin with a series of definitions:

Definition 7 A Markov model of order k is a probability distribution over some sequence of
variables x t

1 = {x1, x2, . . . xt } which follows the Markov property of order k:

P
(
xt |x t−1

1

)=P(
xt |x t−1

t−k

)
The probability described in definition 7 can be decomposed into

P
(
xT

1

)=P(
xk

1

) T∏
t=2

P
(
xt |x t−1

t−k

)
In the special case of a Markov model of order 1, this becomes

P
(
xT

1

)=P (x1))
T∏

t=2
P (xt |xt−1)

In the case that k is larger, we note that the number of parameters needed for P
(
xT

1

)
be-

comes quite large as well. However, for most lengthy sequences the Markov property is
not applicable and so modelling such sequences with a Markov model directly is also in-
tractable. This was the motivation behind creating a type of variable that described not the
sequence itself but something close to the sequence [4].

In practice, the sequence we are trying to model is the spread between two price pro-
cesses, which indeed cannot be accurately modelled by a Markov model. Now consider the
market (or markets) that our spread is based in. While we do not have a directly observ-
able sequence to represent this market, we could still make some assumptions about the
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information at each time step. Such sequences are often referred to as hidden, as we can-
not observe them directly. One important assumption that HMMs make is that this hidden
variable can in fact be modelled by a Markov model, and that it is closely related to our
observable sequence. Such variables are often referred to as hidden state variables. In the
case of the state variable being a Markov model of order 1, that state at time t can be seen
as carrying all the ’relevant’ information about our observable sequence required to find
the distribution the observable sequence at time t + 1 [4]. This is similar to how traders
would look at indicators in the market at the current time in order to predict the price in
the future. We now formalize such a model mathematically.

Given a sequence y t
1 = {y1, y2, . . . yt }, we now do not assume that the observable se-

quence itself follows the Markov property for a relatively low order. However, we do as-
sume that there exists some unobserved sequence that is closely related to y t

1 that follows
the Markov property for a low order. We call this the hidden state variable and denote it by
xt . Below we define the relationships in this new model:

Definition 8 A Hidden Markov Model (HMM) is a joint probability distribution over some
sequence of observed variables y t

1 = {y1, y2, . . . yt } and an unobserved state variable xt which
follows a Markov model of order 1. The conditional independence assumptions are

P
(
yt |xt

)=P(
yt |x t

1, y t−1
1

)
P (xt+1|xt ) =P(

xt+1|x t
1, y t−1

1

)
The joint distribution of these variables can then be defined as

P
(
yT

1 , xT
1

)=P(x1)
T−1∏
t=1

P (xt+1|xt )
T−1∏
t=1

P
(
yt |xt

)
This joint distribution is then completely defined by

1. P(x1), the initial state probability

2. P (xt+1|xt ), the transition probability

3. P
(
yt |xt

)
, the emission probability

For ease of use, we have defined the hidden state to be a Markov model of order 1 instead
of order (small) k. While it is certainly possible to have higher orders than 1 for this dis-
tribution, the order 1 is often taken as increasing the number of hidden states can usually
recreate the effect of higher orders [4].

These conditional probabilities are often more easily understood through a Bayesian
network; such a network shows how sequences are related through time. Figure 3.1 can be
interpreted as follows. At time t , information has been passed from hidden state xt−1 to
hidden state xt . Hidden state xt then contains all the information needed for observable
variable yt , and subsequently for the next hidden state xt+1. Note that no information is
passed between the observable sequence that does not also flow through the hidden state
sequence. Thus at each time, the hidden state contains all the necessary information [4].
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xt−2 xt−1 xt xt+1 xt+2

yt−2 yt−1 yt yt+1 yt+2

Figure 3.1: Bayesian network showing dependencies through time between hidden state variable xt and ob-
served variable yt .

There are many possible choices for the initial state, transition, and emission proba-
bilities [4]. However due to the scope of this paper we will focus on the most popular and
subsequently the one that is most applicable to us. The hidden state variable xt is most
often seen as a discrete variable, with a multinomial distribution given the previous state.
This means that initial state probabilities and transition probabilities defined above also
follow a multinomial distribution. Furthermore the emission probabilities are taken to be
continuous random variables, as will be shown in subsequent chapters. We assume that
these are not homogeneous for each time step and so change through time. For more in-
formation regarding various types of HMMs and their workings, see [4].

3.2.2. Mapping Inputs to Outputs
We now take a step back from HMMs and focus on machine learning. Recall that we wish
to find a mapping from certain inputs involving market indicators to an output of spreads..
One way of creating such a mapping is through a neural network. We give a definition of a
simple feedforward network with a single hidden layer.

Definition 9 Say we have output y with input x such that y = f (x) for some unknown map-
ping f . A feedforward neural network (or multilayer perceptron) with a single hidden layer
then defines an approximate mapping f ∗(x) as

f ∗(x) = f2(W2 f1(W1x)))

where f1 is non-linear and referred to as the hidden layer (or activation function), f2 is re-
ferred to as the output layer, and Wi for i = 1,2 are matrices corresponding to the weights of
each layer.

This definition can be expanded to a ’deeper’ neural network by increasing the number of
hidden layers. The hidden layers are called ’hidden’ because the values that they produce
are not directly compared to a value; they are simply carried on to the next layer, until the
output layer is compared to the goal value. We show a brief example of a neural network
with two hidden layers in the directed graphs shown in Figure 3.2.

Figure 3.2a shows that the information flows from the input layer x, through the hidden
layers h1, and h2, to the output layer o. The hidden layers h1 and h2 correspond to the acti-
vation functions f1 and f2 respectively, and o corresponds to the function f3. Shown at the
respective edges are the corresponding weight matrices. Figure 3.2b shows the expanded
network. The number of nodes per layer represents the dimensionality of the respective
function, i.e. f1 ∈ R3, so the first hidden layer has three nodes. Furthermore, we note that
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(b) Expanded view of nodes

Figure 3.2: Graphical representation of a multilayer perceptron with 2 hidden layers

all information only flows from the bottom to the top; this is necessary for it to be called a
feedforward network. However, as will be seen later, there are other possibilities for differ-
ent types of neural networks [22].

Usually the activation and output functions are chosen from a family of functions with
a specific parameter set; these families often differ per layer and depend on the goal of the
neural network. Once these are chosen and all the information has flown from left to right,
we have our approximation f ∗(x) defined by our layer functions and weights. This is called
forward propagation. Having our estimate, we then need a cost function to compare our
estimate to the actual value; the choice of cost function is dependent on the goal of the
network. Then in order to train, the derivative is taken from this cost function with respect
to the weights Wi in every layer. This is done using an algorithm called back-propagation,
which applies the chain rule to the layer and activation functions repeatedly. Training then
involves minimizing the cost function; as this is done through the weights, this can be seen
as giving connections through certain hidden nodes more preference if they contain the
’correct’ answer. For many activation functions the gradient cannot be found in closed
form, so Stochastic Gradient Descent (or a similar algorithm) is applied in order to min-
imize the cost function to an acceptable error level. When the network has successfully
trained, the model can be used, for example for predicting unknown outputs based on new
inputs. For more information on specific implementations of back-propagation, see [22].
The choice for the activation functions, output function, and cost function are very depen-
dent on the problem the model is trying to solve; we explore these more in later sections
and chapters.

The choices of how many layers, nodes, and their connections are called the architec-
ture of the neural network; using recurrent connections between nodes is one such archi-
tecture. Recurrent neural networks (RNNs) are an extension of feedforward neural net-
works and are often used for sequence modelling, as using recurrent connections gives the



18 3. Model

x

h1

h2

o

W1

W2

W3

Wr

(a) Information flow

x t−1 x t x t+1

ht−1
1 ht

1 ht+1
1

ht−1
2 ht

2 ht+1
2

ot−1 ot ot−1

. . . . . .

W1 W1 W1

W2 W2 W2

W3 W3 W3

Wr WrWr Wr

(b) Unrolled view of nodes

Figure 3.3: Graphical representation of a RNN with 2 hidden layers

network the ability to have a ’memory’ about previous input-output pairs. The recurrent
connection in RNNs can be implemented in various ways through out the network; here
we will focus on a self recursive hidden unit. In Figure 3.3a we see an RNN with 2 hidden
units, one of which is recurrent. We see that unlike for feedforward networks, information
is allowed to go back a layer. In Figure 3.3b, we see this network ’unfolded’ through each
input-output pair to give a clear view of how the information propagates forward. Back-
propagation is then performed by going backward in this graph. It should be noted that
for feedforward networks, parallel computation of input-output pair back-propagation is
possible and often employed. However, for most RNNs this is not possible, as the order in
which the back-propagation occurs for the entire dataset is fixed [22].

3.2.3. Architecture
Having explained HMMs and the basics behind (recurrent) neural networks, we now com-
bine these two for our final model: an Input-Output Hidden Markov Model (IOHMM). We
first define the state space of the model. We have, at time t , an input vector ut ∈ Ri , an
output vector yt ∈ Ro , and a discrete state xt ∈ {1,2,3, . . .n}. Here i is the number of inputs,
o the number of outputs (usually 1), and n the number of states in our model. This state
space has the following dynamics

xt = f (xt−1,ut )

yt = g (xt ,ut )),

where we call f the state transition function, and g the output function. If we assume a
probabilistic view, these dynamics have the form

St =Φ(ut )St−1,

where St represents the probability distribution of the state at time t , and Φ(ut ) the ma-
trix of probabilities of transitioning between states at time t . Therefore throughout time,
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our state space moves linearly through the discrete state probabilities, and non-linearly
through inputs ut [2].

Having defined the dynamics of the state space, we move on to define the non-linear
functions and how they interact. This is best done through a graphical interpretation. Fig-

O1 . . . On
Softmax

N1
. . . Softmax

Nn

ηt
St

u t

convex sum

η1,t ηn,t

convex sum

φ1,t φn,t

St−1 delay

Figure 3.4: Graphical representation of an IOHMM.

ure 3.4 shows a graph of the IOHMM architecture. While there are multiple possibilities in
which this model can be applied, we shall focus on the probabilistic interpretation as this
is the one that we use. We begin with ut , the inputs at time t . These inputs flow into a series
of subnetworks: N j the state network for state j ∈ {1,2,3, . . .n}, and O j the output network
for state j ∈ {1,2,3, . . .n}. The state networks N j have the task of predictingP(xt+1|xt = j ,ut )
the next state probability, given the input and that the current state is j [2]. While there are
many types of forms these state networks take, we have chosen them to be multilayer per-
ceptrons with a single hidden layer. At each time t , these state networks N j then have an
output of

φ j ,t = (φ1 j ,t ,φ2 j ,t , . . . ,φn j ,t )⊤,

where φi j ,t represents the probability that at time t + 1 the state changes from state j to
state i . Thus there are n state networks, and each state network N j has n outputs at each
time t . In order to ensure that φ j ,t is a proper probability vector, a softmax function is
added to the output layer of each state network.

Definition 10 The softmax function is an activation function that applies the following
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nonlinear transformation to a vector w ∈Rn

σ(w)i = ewi∑n
k=1 ewk

Applying this function to the output layer of N j ensures that

n∑
i=1

φi j ,t = 1, ∀ j , t .

While each state network attempts to find the transitioning probabilities at each timestep,
combining these transition probabilities gives rise to a multinomial state distribution. This
is represented by the state variable St . After the state variable is initialized at time t = 0, the
probability of being in each state at time t is computed recursively by the previous state
probability and the transition probability

St =
n∑

j=1
S j ,t−1φ j ,t

where S j ,t−1 the probability of being in state j at time t −1, and φ j ,t the probability vector
of transitioning from state j at time t as defined before. The relationships between state
networks the recursive nature of the state distribution can also be seen in Figure 3.4 [2].

The output networks, while having the same input as the state networks, have a dif-
ferent goal. As with the state networks, each output network O j is associated to the state
j ∈ {1,2,3, . . .n}. The output networks compete to find some parameters describing the ac-
tual output yt . There are various possibilities for what these parameters could be; we have
chosen them to be parameters of the distribution that we believe the realized output fol-
lows. In a sense we see then that each output network O j attempts to find the following
probability distribution at time t

η j ,t =P(yt |xt = j ,ut )

This is again done through multilayer perceptrons with a single hidden layer.

Combining these output distributions with the state distribution that the state networks
provide, we get the final output of the model

ηt =
n∑

j=1
S j ,tη j ,t (3.1)

= ∑
j=1

P(xt = j |u1
t )P(yt |xt = j ,ut ) (3.2)

=P(yt |u1
t ) (3.3)

We see from this formula that our model produces a probability distribution for yt , the
output at time t , given the entire input sequence ut . We see that the model will produce a
different distribution for every t , as the input sequence on which it is conditioned will have
changed. Thus the total distribution of the sequence we are trying to model is assumed to
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be non-homogeneous through time [2].

The resulting distribution ηt can be interpreted as follows. We see in equation 3.2 that
the distribution is composed of the convex weighted sum of the various output distribution
associated with each state, where the weights correspond to the probability of being in that
state [2]. We note that as the state variable that is produced by the state networks have no
observable sequence with which it can be compared, it is hidden as within an HMM. We
therefore take the interpretation of the states in the model as we did before: we assume
that all the states {1,2,3, . . .n} represent various modes the market of the spread can be in.
For example, we could have two states representing the market having either high or low
volatility. The state variable St then represents the probability of the market being in each
state. Furthermore, each output network then attempts to find the distribution for each
market state at that time step. Finally, these distributions are combined into an overall
spread distribution weighted on the states and conditional on the input.

In order to make computation feasible in the proposed model, some conditional inde-
pendence must be introduced throughout the variable structure. We once again explain
this through a Bayesian network. In Figure 3.5 we see that the Bayesian network for a

xt−1 xt xt+1

ut−1 ut ut+1

yt−1 yt yt+1

Figure 3.5: Bayesian network showing dependencies through time between hidden state variable xt , input
sequence ut and observed sequence yt .

IOHMM is similar to that of a HMM. Once again we only need the input at time t and
the previous state to find the current state. Furthermore, we see that while the input adds
information to multiple places, this does not have an effect on the time dependency [2].

In the description of the subnetworks O j and N j so far we have stated them as multi-
layer perceptrons with a single hidden state. However within that hidden state there is still
a need for an activation function. In the next chapter we define which activation functions
we have used for these networks. We excluded the softmax function from this postpone-
ment as this was relevant to the model architecture itself; the remainder of the activation
functions are an implementation choice and so will be discussed later. Finally it should
again be noted that the model which has been described here is a probabilistic version of
the IOHMM; a broader definition of this type of model can be found at [2, 4].
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3.2.4. Training

IOHMM can be trained using the Expectation Maximization (EM) algorithm, which we will
explain here. The reference paper [2] from which this model stems then proceeds to find
a formulated algorithm specifically for IOHMMs based on the EM algorithm. However, we
have implemented our IOHMM in a machine learning program called Keras [8], and there-
fore do not use this specific variation of the EM algorithm. We therefore briefly show the
general application of the EM algorithm to IOHMMs also described in [2], and leave the
specifics of our implementation for the next chapter.

The EM algorithm is closely related to maximum likelihood estimation. The algorithm
assumes that we have parameters of the modelΘ, the data of the model D , the ’missing’ or
’hidden’ data of the model X and the set D∪X the completed dataset. Naturally in our case,
Θ are the parameters of our output distribution, D is the set of input data u1

t , and X the state
distribution St . Because X is not known, the log-likelihood l (Θ;D ∪ X ) of our model with
the complete dataset is a random variable. We then define the following function through
an expected value under the distribution of X :

Q(Θ,Θ̄) = EX (l (Θ;D ∪X )|D,Θ̄),

which can be seen as the expected value of the completed data log likelihood, given the
known data. The task is then to iteratively maximize this function, as shown in Algorithm
1.

Algorithm 1 The Expectation Maximization (EM) Algorithm.

for k = 1,2,3, . . . do
Estimate:

Compute
Q(Θ,Θk ) = EX (l (Θ;D ∪X )|D,Θk )

Maximize:
Update the parameters as

Θk+1 = argmax
Θ

Q(Θ,Θk )

end for

In general, this function cannot always directly be maximized, in which case Θ is iter-
ated such that Q(Θ,Θ̄) increases.
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Algorithm 2 The Generalized Expectation Maximization (GEM) Algorithm.

for k = 1,2,3, . . . do
Estimate:

Compute
Q(Θ,Θk ) = EX (l (Θ;D ∪X )|D,Θk )

Maximize:
Update the the parameters as

Θk+1 = M(Θk ),

where
Q(M(Θk ),Θk ) ≥Q(Θk ,Θk )

end for

We then speak of the Generalized Expectation Maximization algorithm, shown in Algo-
rithm 2 [2].

In the case of IOHMMs, the log-likelihood of the total probability is employed. We have
the likelihood function for all input-output pairs D = (u1

T ,y1
T )

L(Θ|D) =
T∏

t=1
P(yt |xt ,ut ;θO

j )P(xt |xt−1;θN
j )

=
T∏

t=1

n∏
i=1

n∏
j=1

P(yt |xt = i ,ut ;θO
j )zi ,tP(xt = i |xt−1 = j ;θN

j )zi ,t z j ,t−1

Here we take an indicator variable z j ,t = 1xt= j . Furthermore we take the parameters Θ to
be the combination of θN

j and θO
j , the weights in the state networks and output networks

respectfully. Taking the logarithm we obtain the log-likelihood

l (Θ|D) =
T∑

t=1

n∑
i=1

zi ,t logP(yt |xt = i ,ut ;θO
j )+

n∑
j=1

zi ,t z j ,t−1 logP(xt = i |xt−1 = j ;θN
j )zi ,t z j ,t−1

(3.4)

This log-likelihood is what the algorithm attempts to maximize when training. Algorithm
3 summarizes the specific functions and computations that occur when training. As can
be seen, this is an example of the GEM, as the likelihoods which the IOHMM creates can
become quite complicated [2].

3.3. The Normal Inverse Gaussian distribution
From equation 3.2 we now have several distributions that we need to consider. As we have
already seen, the state variable has a multinomial distribution which is governed by an
initialized multinomial instance propagated through the recursive transition probabilities
generated by the state networks. Then, for each time t , each output network generates a
distribution instance for each state. In historical applications of the IOHMM model, often
a Gaussian distribution has been used for the output distributions, leading to a Gaussian
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Algorithm 3 A Generalized Expectation Maximization Algorithm for an IOHMM.

for k = 1,2,3, . . . do
Estimate:

for each pair (y1
T ,u1

T ) do
for each state j ∈ {1,2,3 . . .n} do

Computeφt , j and ηt , j by running forward propagation through subnetworks N j

and O j

end for
Compute St with φt , j through recursion and past state value.
Compute ηt through convex sum φt and ηt , j

ηt =
n∑

j=1
S j ,tη j ,t

end for
Maximize:

for each state j ∈ {1,2,3 . . .n} do
Adjust the parameter θN

j in the state network N j in order to increase the function
3.4

end for
for each state j ∈ {1,2,3 . . .n} do

Adjust the parameter θO
j in the state network N j in order to increase the function

3.4
end for

end for

mixture for the final distribution [2]. Indeed, in the applciation of an IOHMM on the Span-
ish electrcitiy market in [21], Gaussians were also used. We, however, have chosen a differ-
ent route.

Gaussian distributions, while very applicable, have historically shown to not be empiri-
cally accurate for financial data. Often this is due to tail width and kurtosis constraints [14].
In the case of electricity prices, this is also true; not only are the tails not heavy enough,
there are also instances of jumps between prices that are not modelled accurately with reg-
ular Gaussian distributions [13]. Therefore, we have chosen to implement each output dis-
tribution as a Normal Inverse Gaussian (NIG). The NIG distribution has been shown to have
heavy tails, as well as a jump diffusion element [14]. Furthermore, application to electricity
prices [13], as well as use in a Black-Scholes option pricing framework [39] has proven to
be successful. Therefore using this distribution in pricing an electricity price spread option
seems appropriate.

The NIG distribution was originally constructed through a mean-variance mixture of
an Inverse Gaussian. Below we define the probability density function (PDF).

NIG(x;α,β,µ,δ) = αδ

π

K1

(
α

√
δ2 + (x −µ)2

)
√
δ2 + (x −µ)2

eδγ+β(x−µ) (3.5)
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Here γ=
√
α2 −β2, and the modified Bessel function of the third kind

Kλ(x) = 1

2

∫ ∞

0
uλ−1e− 1

2 x(u−1+u)du

The PDF in equation 3.5 has four parameters, each with its own constraints and effect on
the overall function. The shape is decided byα> 0. The skewness is decided byβ, for which
we have |α| > |β|. The location and scale are decided by µ ∈ R an δ > 0 respectfully. These
effects are illustrated in Figure 3.6.

(a) α (b) β

(c) µ (d) δ

Figure 3.6: PDFs of NIG distributions with certain parameters changed.

Each parameters is changed while the other parameters are kept a standard value. The
standard values are α= 50, β= 0, µ= 0, and δ= 0.1. We note that in the case that β= 0, the
PDF is symmetric around 0.

The cumulative distribution function (CDF) and the survival function of the NIG distri-
bution are defined below.

NIGCDF(x;α,β,µ,δ) =
∫ x

−∞
NIG(y ;α,β,δ,µ)d y

NIGSF(x;α,β,µ,δ) =
∫ ∞

x
NIG(y ;α,β,δ,µ)d y

These functions will be used in the valuation process. Unfortunately, there is no closed
form solution for these integrals, so numerical methods will have to be used for their eval-
uation. For more information regarding the derivation and properties of functions related
to the NIG distribution, see [1].
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3.4. Valuation
Having defined the NIG distribution, we come back to our model output distribution de-
fined in equations 3.1-3.3. We let the output distribution for each output network O j , with
j ∈ {1,2,3 . . .n} be

η j ,t =P(yt |xt = j ,ut ) = NIG(x;α j ,t ,β j ,t ,δ j ,t ,µ j ,t ),

as defined in equation 3.5. We then see that our model output at time t is (η)t = P(yt |u1
t ),

which is a mixture of NIG distributions. Thus we have a time dependent distribution for
the price spreads between two countries yt which is conditional on some input sequence
ut .

We compare this distribution process with the option valuation method for spread op-
tions described in the previous chapter. There the prices were modelled separately accord-
ing to correlated GBMs, and subsequently subtracted within the pay-off function described
in equation 2.8 to create the spread. We have chosen to model the spread directly. We note
that this could not have been done with a single GBM, as these cannot produce negative
values, whereas the NIG distribution can become negative. Furthermore, the parameters
of the GBMs used in the Margrabe formula are stationary, whereas the parameters in the
mixture NIG distribution are updated after every timestep t . We also note that when us-
ing a GBM, the underlying process is a log-asset price process. This means that with the
corresponding exponential representation of the process, the characteristic function of the
process can be used when taking the expected value. This is however not the case when
taking the spread directly, as this is not a log-asset process; this means that characteristic
function has no use when taking expected values. Finally the mixture aspect of our final
distribution introduces an underlying market structure that facilitates possible jumps. No
such structure is available in a GBM.

Despite the differences in underlying process, the subsequent valuation remains simi-
lar. We see that as (η)t already represents the spread, our pay-off function at time T is

H(T,η) = max(ηT ,0) (3.6)

Now we let the F (t ) be the filtration generated by the sequence ηt , i.e. F (T ) contains
all the information generated by ηT up to time T . Then we define the time t value of the
European call option to be the discounted conditional expectation

V (t ,T,η) = e−r (T−t )E[H(T,η)|F (T )] = e−r (T−t )E[max(ηT ,0)]

where e−r (T−t ) is the discount factor, with r being the interest rate [34]. Here the final
equality comes from the fact that all the information carried in the filtration F (T ) is also
contained in the mixture distribution ηT through the hidden states xt , as described previ-
ously. Now we note that for Y following a mixture distribution with component PDFs pYi

for i = 1,2,3 . . .n, if we have a function H(x) such that H(Yi ) exists, we have

E(H(Y )) =
∫

H(x)
n∑
i

wi pYi (x)d x =
n∑

i=1
wi

∫
H(x)pYi (x)d x

=
n∑

i=1
wiE(H(Yi ))
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We apply this to our option value and definition of ηt , where we take wi = S j ,T ; then we get

V (t ,T,η) = e−r (T−t )E[max(ηT ,0)] = E
[

max

(
n∑

j=1
S j ,Tη j ,T ,0

)]

= e−r (T−t )
n∑

j=1
S j ,TE(max(NIG(x;α j ,T ,β j ,T ,δ j ,T ,µ j ,T , ),0)

= e−r (T−t )
n∑

j=1
S j ,T

∫ ∞

−∞
1x>0x

αδ

π

K1

(
α

√
δ2 + (x −µ)2

)
√
δ2 + (x −µ)2

eδγ+β(x−µ)d x

Here we have used the fact that the max(x,0) function can be rewritten as 1x>0x. Some
subscripts ( j ,T ) have intentionally been left out for clarity. Then finally we have our option
value

V (t ,T,η) = e−r (T−t )
n∑

j=1
S j ,T

∫ ∞

0
x
αδ

π

K1

(
α

√
δ2 + (x −µ)2

)
√
δ2 + (x −µ)2

eδγ+β(x−µ)d x (3.7)

The integrals within the summation in equation 3.7 cannot be solved analytically, so nu-
merical methods will be applied. In this thesis we used the SciPy library for numerical
integration [40]. Should computation time be an issue when applying this model, the COS
method could also be employed [34].

Using equation 3.7, we can find the time 0 value of the cross-border capacity for any
expiration T . Recall from the previous chapter that we wish to value the cross-border ca-
pacity for an entire month. Through the described auction process, we then have a bundle
of options that is being auctioned together; each option having a different expiry such that
there is an option for every hour of the month. Say we have a month with m days. Using our
model, we find the option value at time 0 for each of these options in the monthly bundle

Vmonth(η) =
24m∑

i
V (0,Ti ,η),

where Ti for i = 1,2,3 . . .24m is an appropriately scaled time parameter. Averaging this
value then gives the appropriate price of the cross-border capacity in the monthly auction

Vauction(η) = 1

24m
Vmonth(η) = 1

24m

24m∑
i

V (0,Ti ,η) (3.8)

3.5. Greeks
The Greeks are, as explained earlier, sensitivities with regards to the option value in a Black-
Scholes framework. In the Magrabe spread option valuation, much of the original Black-
Scholes framework was used, and so comparative Greeks could be found. However the
model we have described so far is somewhat different from Black-Scholes in many aspects.
Nevertheless, we can still derive certain sensitivities from our option value, namely Delta
and Gamma. Note however that these new sensitivities (which we still call ’Greeks’) may
differ slightly from the original Black-Scholes Greeks. Furthermore, as the dependency of
the modelled spread η to time parameter t is encoded in the non-stationary parameters,
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there is no direct way of calculating Theta. Similarly, as there is no volatility parameter
in the option value function, Vega is also not derivable in closed form. These parameters
could be found numerically, however this beyond the scope of this work.

We begin with some preliminary equations regarding some random variable X and
function H(x). We define A to be the expected value of H(X )

A = E(H(X ))

Then assuming that E(|H(X )|) <∞, the Dominated Convergence Theorem (DCT) states we
have the following

∂A

∂X
= E

(
∂

∂X
H(X )

)
∂2 A

∂X 2
= E

(
∂2

∂X 2
H(X )

)
We can apply this to our option valuation function using the pay-off function defined in
equation 3.6. We see that

∂

∂x
max(x,0) =1x>0,

∂2

∂x2
max(x,0) = δ(x),

where δ(x) is the Dirac Delta function. Therefore, we see that

∆= ∂V

∂η
= e−r (T−t )E

[
∂V

∂η
max(ηT ,0)

]
= e−r (T−t )E[1η>0]

= e−r (T−t )
n∑

j=1
S j ,T NIGSF(0;α j ,T ,β j ,T ,δ j ,T ,µ j ,T )

Here we have used that the expected value of an indicator variable is the probability of the
event occurring, so E[1η>0] =P(η> 0), which gives the survival function at point 0. We then
also have

Γ= ∂2V

∂η2
= e−r (T−t )E

[
∂2V

∂η2
max(ηT ,0)

]
= e−r (T−t )E[δ(η)]

= e−r (T−t )
n∑

j=1
S j ,T NIG(0;α j ,T ,β j ,T ,δ j ,T ,µ j ,T )

Here we have used that, for random variable X with PDF f (x), the expected value the Dirac
Delta function is

E(δ(X )) =
∫ ∞

−∞
f (x)δ(x)d x = f (0)

Applying this to the PDF of ηT and simplifying gives the result.
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Implementation

In this chapter we show how the model we presented in the previous chapter is imple-
mented. We begin with an overview of the deeplearning API Keras, and how a model is
trained. We continue with an overview of the output data and the structure behind it. We
show that as the temporal structure between input and output data differs, multiple in-
stances of the model need to be initialized. We reiterate the need for activation functions
within the hidden and output layers of our subnetworks, and show for every parameter the
choices we have made in that regard. Error measures are defined beyond the loss function
that is optimized. We show the various options for input data, and perform a feature selec-
tion using Principle Feature Analysis. Finally, we define the hyperparameters around the
model and show how the optimal choice for these parameters was made.

4.1. From Training to Valuation
For the implementation of the IOHMM we have used the deeplearning API Keras. This is
an open-source platform backed by the machine learning backend Tensorflow [8]. Model
creation in Keras is done using a layer building API, where the output of a layer becomes
the input of the next layer. Our model consists of a series of neural nets (or Dense lay-
ers), which are recurrently applied and subsequently multiplied to provide a convex sum
of probabilities making a final total probability. The final model in the Keras API is then a
chain of layers from input to final output layer. A graph of the Keras variant of our IOHMM
can be found in Appendix B.

We now reiterate how the EM algorithm from the previous chapter occurs in Keras.
Once we have our model implemented, training works as follows. For the entire set of
input-output pairs (u1

T ,y1
T , the inputs are put into the input layer. These inputs then follow

the transformations provided at each chain in the layering structure, finally reaching the
output layer. This is the forward propagation. These inputs then have the form found in
equation 3.1. Then the log-likelihood is calculated as in equation 3.4. This is then turned
into the negative log-likelihood and is known as the loss function. Subsequently, Keras has
built-in back-propagation which differentiates this negative log-likelihood, now moving
backwards through the layering chain. For some optimizer, Keras applies a change in the
model weights such that the negative log-likelihood is reduced. We define this as follows.

29
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Definition 11 An epoch is a single cycle of forward propagation, backward propagation,
and weight augmentation for all input-output pairs.

After a certain amount of epochs, the model is considered trained. This is either be-
cause it has reached the predetermined number of epochs or because the loss function has
reached a low enough error. When the model is trained, we can predict output values. This
is done by feeding the input layer new inputs and running these along the layered chain.
This time, the weights are not updated and the output layer returns the parameters for the
distribution.

Having our predicted parameters, we can define the hourly option price by equation
3.7. The integrals in equations 3.7 represents the expected value

E[max(ηT ,0)].

Now we train the model with the spreads computed in a certain ’direction’, for example
from Germany to France. For this training, the spreads are positive if the German price is
higher and negative if the French price is higher; in this case we want the expected positive
values and so compute the integral from 0 to ∞. We can repurpose this training for the
other direction. If we have a model trained on the Germany to France spreads, the infor-
mation for the France to Germany spreads is contained within as well. In this case, we wish
to know all the expected negative values, as we are interested in the Germany to France
spread being in France’s favor (i.e. negative). In these cases, we take the integrals in 3.7
from −∞ to 0.

Having our hourly option values at the time of their maturity, we need to discount them.
We take the interest rate r = 1. Furthermore, as we want to know the time 0 value of the
option, we have t = 0. Then we assume that for an options with maturity i days from now,

our expiry will be T = i

365
; the difference between the hourly maturities is ignored, as these

values are computed in separate models. So our final discount factor for an option with
maturity i days from now is

e−r (T−t ) = e− i
365

4.2. Optimizers
As we have stated in previous chapters, once back-propogation is performed, there is a
gradient that needs to be minimized. The backbone of modern optimizers that perform
this minimization is the SGD algorithm defined in previous chapters. There are however
many more variants of this algorithm [7]. We have used the ADAM algorithm [25], whose
update rule is defined below.

Definition 12 The ADAM algorithm proposes that we minimize f through using the stochas-
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tic gradient of f together with parameters αt , β1, β2,ϵ to iterate to a solution:

m0 = v0 = 0

mt+1 =β1mt +
(
1−β1

)∇ f (xt )

vt+1 =β2vt +
(
1−β2

)∇ (xt )2

bt+1 =
√

1−βt+1
2

1−βt+1
1

xt+1 = xt −αt
mt+1p
vt+1 +ϵ

bt+1

As can be seen when compared to equation 2.12, the ADAM algorithm is somewhat more
complicated than SGD. ADAM uses estimates of the first and second moments of the stochas-
tic gradient together with a learning rate parameter αt to create adaptive learning rates for
each network weight parameter. The parameters β1 and β2 govern the exponential de-
cay rate of the first and second moments respectuflly. Finally, ϵ is added for numerical
stability. It is ideally suited for problems with large datasets, as well as for modelling non-
stationarity, and computationally efficient, all of which are available in our problem setting
[25]. It has also been shown to outperform SGD and other comparable algorithms [7]. Fur-
thermore, it is built into Keras for easy implementation.

The final option we have within our optimizer choice is ’gradient clipping’. As men-
tioned before, machine learning models occasionally suffer from ’exploding gradients’. This
essentially means that when the back propagated gradient of the loss function becomes ex-
pectantly large. This can cause numerical overflow within the optimizer trying to adapt the
gradient for the optimization process; this is especially a problem with recurrent models as
large gradients often get reused, extrapolating the problem. One solution for this is defined
below.

Definition 13 An optimizer performs gradient clipping when it resizes the gradient to some
predetermined maximum (or minimum) size if the gradient it receives is too large (or too
small).

Gradient clipping can also be applied such that the norm of the gradient does not exceed
some value; this is the method we have chosen. While gradient clipping does nothing to
improve the performance of the model itself, it improves numerical stability so that gradi-
ents do not explode [22]. All the values in regards to optimizer parameters that we used are
shown in Table 4.1.

Parameter Value
α 0.001
β1 0.9
β2 0.999
ϵ 1e-7
Max norm 1.0

Table 4.1: Parameter values used for the ADAM optimizer.
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4.3. Activation Functions
As previously described, activation functions are non-linear functions used in the hidden
nodes of neural networks [22]. As we saw with the state networks, these functions can also
be used within the output layer in order to mold the output into a specific range. For the
output networks, the hidden units were kept linear, and so no activation functions were
used. However each output network represent a single instance of a NIG distribution, or
more importantly, the parameters of such a distribution. Therefore activation functions
were used to keep the output from the output networks in a specific range. Notably the
location parameter had a range of µ ∈ R, and so required no activation function. The pa-
rameters together with the complete used activation functions are shown in Table 4.2. For
more information regarding the use of activation functions in deep learning, see [30].

We begin with the activation function used in the hidden units.

Definition 14 The sigmoid function is defined by

sigmoid(x) = 1

1+exp(−x)

The sigmoid function is one of the most common activation functions, especially for lo-
gistic probability problems, as well as classification problems [30]. It was also used in the
current setting in the analysis of the Spanish electricity market in [21]. Some concern has
been shown in recent years in the use of the sigmoid function in deeper networks, however
as we only have a single hidden layer, this should not be a worry [30].

The shape and scale parametersα andδhave the constraintsα> 0δ> 0. We considered
the functions defined below. We note that the ranges of these functions do have negative
values; however as they are bounded below, a simple shift in the function shifts the range
to only positive values as well.

Definition 15 The Exponential Linear Unit (ELU) function is defined by

elu(α, x) =
{

x if x > 0

a
(
ex −1

)
otherwise

for the parameter a > 0

Definition 16 The Scaled Exponential Linear Unit (SELU) function is defined by

selu(x) =
{

cx if x > 0

ca
(
ex −1

)
otherwise

for the parameter a = 1.67326324 and c = 1.05070098.

The ELU function was proposed as a way of increasing the speed of learning [30]. This,
together with the lower bound and lack of upper is why it was considered for both α and
δ. However when implemented in our model, numerical stability problems were found,
as both these variables displayed exploding gradients during training. The SELU function
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however, works in a similar manner but has been proven to withstand vanishing and ex-
ploding gradients [30]. When this was implemented for α, the exploding gradients in both
parameters ceased. We also considered ’capping’ the scale parameter at δ= 1, however this
restricted the learning process too much.

Finally, we have the asymmetry parameter β with restriction |β| < α. To satisfy this
restriction, we had to find an activation function σ(x) such that σ(β) ∈ (−1,1), after which
we setβ=ασ(β)−ϵ, where ϵ is some small constant. This way the restriction was respected,
and the different gradient produced by σ(x) and selu(x) ensured that the values of α and β
could differ. For this we considered the following activation functions

Definition 17 The Hyperbolic Tangent (tanh) function is defined by

tanh(x) = ex −e−x

ex +e−x

Definition 18 The softsign function is defined by

softsign(x) = x

|x|+1

We first tried tanh, however this led to vanishing gradients during training for β, mean-
ing that β would consistently be equal to α− ϵ. After implementing the softsign function
however, the issue was resolved.

Parameter Activation function
α 1.67326324×1.05070098+1e-5+ selu(α)
β αsoftsign(β)−5e-6
µ µ

δ 1.0+1e −5+elu(δ)

Table 4.2: Activation function for each parameter of the NIG distribution.

4.4. Error Measures
The purpose of the model in this work is to find a predictive density that accurately de-
scribes the realized spread yt . To do this, a scoring rule is employed for the predicted den-
sity and realized spreads to determine the level of accuracy over the entire data set. We wish
to find a scoring rule that considers not only a point mass estimate, but also if the proba-
bility of an observation was accurately allocated. These error measures are returned after
every training epoch, as well as after prediction, should the observed spreads be available.
We consider three scoring rules in this work.

For scoring the allocation of probability, we employ the use of the negative log-likelihood
(NLL) as described in equation 3.4. This is after all the loss function that the model is train-
ing on. The point mass estimate refers to how far away the probability density is from the
realized observation. This is usually done by finding some error function around a mid-
point of the distribution, for example the mean or median. We have used the Mean Abso-
lute Error defined below.
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Definition 19 The Mean Absolute Error (MAE) for a set of densities and observations (pT
1 ,yT

1 )
is defined by

MAE =
∑T

t=1 |E(pt )−yt |
T

Finally, we consider scoring rule that considers the entire distribution, and so both of
the criterion mentioned above; we define it below.

Definition 20 The Continuous Ranked Probability Score (CRPS) of a distribution with CDF
F and a single observation y is defined by

CRPS(p, y) =
∫ ∞

−∞
(F (x)−1x≥y )2d x

This is comparative to the integral (and so continuous) Brier Score, and is a proper scoring
rule [20]. The CRPS of the entire data set would then be the average of all individual pairs
of distribution and observation. We had wished to use this scoring rule in conjunction with
the previous two. However, as we previously saw, numerical integration is already needed
in order to find the CDF of a NIG distribution. This means the CRPS would again have to
be numerically integrated; this proved to be too computationally expensive, even if only
applied to the prediction results and not during training. Therefore we only used the MAE
and the NLL as error measures.

4.5. Data Analysis
We now begin a preliminary analysis of the data and see what effects this has on our model.
We recall that the output data is the singular sequence of spreads between the hourly spot
prices of two countries, Germany-France and Netherlands-Germany. A preliminary fit of
the data to a single NIG distribution is shown in Figure 4.1. This data is available from the
JAO database at [18]. The input data are multiple sequences of indicators of the German
and French or Dutch and German electricity markets. This data was received from North-
pool B.V.

(a) Germany-France (b) Netherlands-Germany

Figure 4.1: Fit of 1 January 2019 to 31 July 2021 spread data to a single NIG distribution

4.5.1. Temporal Structure
As stated, the output data sequence has a point for every hour. However, for some of the in-
put data, only daily sequences are available. This is an issue, as input-output pairs are fed
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into the model together during training. There are two ways to solve this: either average
the hourly prices to find a daily price, or expand the daily sequences by 24 so that there is a
value for every hourly price. Seeing that we are pricing options by the hour, the second so-
lution is preferable. This however brings a new problem, as we now have multiples of 24 of
the same values for some input sequences. Recall that the model works with weights within
neural networks. When the model is trained and we feed the model a previously unknown
input sequence, these weights are no longer updated. Therefore a sequence of multiples
of 24 of the same values will then return a predicted output sequence of multiples of 24 of
the same values. So despite training being able to take place, predicted distributions will
be equal for every hour of a certain day.

We solve this by changing the temporal structure of the information flow in the model.
Say we have n days of data; in this case we assume all the input data is only available on
a daily basis, so we have ui for i = 1,2,3 . . .n. Our output data is then of the form yi , j for
i = 1,2,3 . . .n days and j = 1,2,3 . . .24 hours. The initial temporal structure then flows from
(u1,y1,1) to (un ,yn,24) as shown in Figure 4.2. We change this by changing the number of

Day 1

Day 2

Day 3

...

Day n

Hour 1 Hour 2 Hour 3 . . . Hour n

(u1,y1,1)

(u2,y2,1)

(u3,y3,1)

...

(un ,yn,1)

(u1,y1,2)

(u2,y2,2)

(u3,y3,2)

...

(un ,yn,2)

(u1,y1,3)

(u2,y2,3)

(u3,y3,3)

...

(un ,yn,3)

. . .

. . .

. . .

. . .

. . .

(u1,y1,n)

(u2,y2,n)

(u3,y3,n)

...

(un ,yn,n)

start

end

Figure 4.2: Temporal structure of information flow for a single initialization of an IOHMM model.

models that we initialize. In Figure 4.2, all the information flows through a single model.
Instead, we initialize 24 models, one for each hour of the day. We then only feed the n pairs
of data that describes hour 1 into the model for hour 1, only hour 2 data into the model of
hour 2, etc. The new temporal structure is shown in Figure 4.3. Initially it may seem like a
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Figure 4.3: Temporal structure of information flow for multiple ’per hour’ initialization of an IOHMM model.

lot of information may be lost in this setup. After all, we now have 24 models that are not
sharing information. However, we now also have 24 times as many weights as before. These
weights are more capable of retaining information than with a single model. Furthermore,
we have now imposed a structure in the data that the model could not have inferred by
itself; the ’memory’ of the data that the model keeps was not sufficient.

Now, for one day’s worth of hourly prices, we have 24 models attempting to find a price
for their own hour, for which they have been specifically trained. Naturally, this does in-
crease necessary memory capacity. However the amount of time it takes to train all the
data stays roughly the same. The initializing of 24 models naturally takes slightly longer,
however when compared to total training time this is negligible. We also now have 24 pairs
of error measures being produced after each epoch. We average these error measures to
obtain a single pair after each epoch. However it should be noted that as the error mea-
sures are computed separately for each hour, the ’best’ epoch that is saved for each hour
could be different.

4.5.2. Input types
Recall from previous chapters the motivation behind the modelling procedure: we wish to
quantify the methodology of a trader. Power traders use various electricity market indica-
tors to try to predict the electricity prices, and so the spreads between electricity prices. We
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have compiled a list of these market indicators for the Germany-France and Netherlands-
Germany borders which can be found in Appendix C. We now explain the various data types
and what they represent.

We begin with energy ratings for certain fuel types. We consider sequences of data in-
volving information about certain fuels, for example coal. However fuel data is split up not
only into what specific type of fuel it is, but also what the energy rating is for how that fuel
is used. Intuitively this makes sense, as energy made by ’low quality’ coal has a higher en-
vironmental impact and so is typically less wanted than ’high quality’ coal. This rating is
denoted by a number; the higher the number, the higher the quality. These ratings are also
interchangeable between fuels, for example Gas57 has a higher quality than Coal44.

The different types of input data we can encounter are fuel availability, fuel marginal
costs, power demand, and actual fuel production. Fuel availability is the availability of a
certain type of fuel for a specific day for a country, for example how much Gas57 there is
available in Germany on a specific day. Fuel marginal costs are the difference in costs for
specific fuels. While higher quality fuel is preferred, it is often also more expensive. An
example of a fuel marginal costs is the difference between Gas57 and Coal44 on a specific
day. Power demand is the amount of total electricity needed for a specific day in a country.
This is usually quite seasonal; considerably more energy is used in winter than in summer
in Europe. Finally, actual fuel production is the amount of fuel that was used to make elec-
tricity in a country on a specific day. Unlike the other fuel related data, the energy rating is
not included in this data; here we are talking, for example, of the actual gas production in a
country on a specific day.

4.5.3. Feature Selection
Unfortunately, using all 44 possible inputs would make training infeasible. Furthermore,
there is the question whether the IOHMM possesses the ability to differentiate between so
much data. A study on various IOHMM implementations for predicting financial returns
is done in [3]. There the highest number of inputs was chosen to be 14, with the results
showing no difficulty in analyzing that amount of data. Therefore we have decided push
this even further and use 25 different types of inputs for our model. The choosing of these
inputs is called feature selection.

We select our input features using a process called Principle Feature Analysis (PFA). The
method is based on Principle Component Analysis (PCA). In PCA, a data set of n features
are linearly transformed into n principle components such that the variance between all
components is maximized. One could then pick the top n − j components and have the
maximal amount of variance using n − j components that the data will allow. The idea
behind PFA is similar, but instead of a list of transformed components with the highest
variance, the features with the highest variance with respect to the entire data set are se-
lected. This is preferable for us, as we do not wish to loose the underlying structure of each
respective feature. PFA is shown in Algorithm 4 [28]. The reasoning behind this is that
the K-mean algorithm clusters the features based on their variability across the chosen di-
mension. The chosen features closest to the means of the clusters represent their cluster’s
variability the most. This way we maximize on the variability in the remaining feature set
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Algorithm 4 The Principle Feature Analysis (PFA) Algorithm.

Require: X = 0-mean matrix containing n features as columns.
1: Compute Σ= Cov(X )
2: Compute A such that Σ= AΛAT , where diag(Λ) contains the eigenvectors of X.
3: Choose q and compute Aq , the matrix comprised of the first q columns of A. The re-

tained variability if your features will be the ratio of the sum of the first q eigenvalues to
the sum of all the eigenvalues.

4: Compute the n Principle Components Vi . V1,V2,V3, . . .Vn ∈Rq which are the first n rows
of Aq .

5: Cluster the absolute principle components |V1|, |V2|, |V3|, . . . |Vn | ∈Rq to p ≥ q cluster via
a K-means clustering algorithm.

6: For each cluster 1,2,3, . . . p, find the vector Vi that is ’closest’ to the mean of the cluster.
Feature xi is then the feature you choose, resulting in p features.

while still holding as much of the original data as possible. The PFA was performed on the
44 inputs after they were scaled and missing values were interpolated. The chosen 25 are
shown in Appendix C.

4.5.4. Data preprocessing
We have now considered all the data and are ready to define how it is fed into the IOHMM
model. Recall that this occurs in input-output pairs (ut ,yt ), and so that we need the same
number of data points for all 25 input sequences in ut and the observed sequence yt . Our
training data begins on 1-1-2019, and ends somewhere in the second half of 2021, depend-
ing on which month we are trying to predict. In reality, no data set is perfect and so we
can encounter a missing value in one of these 26 sequences. We solve this through linear
interpolation of the missing values.

We also note that while we have already implemented techniques to reduce the chance
of exploding gradients, this is still a possibility. If for example, a particularly large input
value gets propagated forward, the resulting back propagated value could start a chain of
every increasing gradients. Therefore we normalize our input sequences. We do this per
sequences, meaning each input type is normalized separately. We use the following nor-
malizing formulae for each feature ui

norm([ui ]T
1 ) = [ui ]T

1 −min([ui ]T
1 )

max([ui ]T
1 )−min([ui ]T

1 )

This further reduces the chance that the gradient becomes unreasonably large.

4.5.5. The Margrabe model
We note here a key difference in the data used by the Margrabe model to that of the IOHMM.
The spread data used for the IOHMM model is hourly. However, the Margrabe model uses
a type of averaged data. In a given week, all hours can be split into three groups: peaks, off-
peaks, and weekends. The peaks consist of the weekday hours of 10:00-22:00; the off-peaks
consist of the weekday hours of 00:00-10:00 and 22:00-00:00; the weekends consists of all
the hours in the weekend. For each data, the appropriate hours are computed for a peak,
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off-peak, and/or weekend price. Naturally there is no weekend price for a weekday and no
peak or off-peak price in the weekend. The resulting option value is then calculated using
these averaged prices, and multiplying them by the amount of hours for which they are ap-
plicable that month. Adding these values gives the total monthly option value, similarly to
the IOHMM model.

4.6. Hyperparameters

The final steps in our implementation are the hyperparameters: the batch size, the num-
ber of epochs, and the number of states. These are the parameters that describe the model
itself, and must be decided before attempting to run our final problem. We begin by letting
the batch size equal to 1. As mentioned before, the batch size can be used to speed up train-
ing through producing stochastic gradients [22]. However due to the recurrent structure of
our model, the continuity of how the sequences are processed is important. Therefore,
despite the implications for the training time, we keep it at 1. The remainder of the hyper-
parameters need to be tested with regards to some data.

The number of times the model can ’see’ the training data is decided by the number
of epochs. For each epoch, the model trains the weights a little further with respect to the
entire training set. With this comes the possibility of over-training: the model weights are
then over-fit to the training data set instead of to the problem as a whole. In order to find
out how many epochs are sufficient, we split the training data into a testing set and a val-
idation set. We then train the model only on the testing set and evaluate it on validation
set as if it were new data. When the error measures for the testing set show better results
than the validation set, we know the model has been over-fit. The validation set is typically
between 10-20% of the training set [22]. In our case we used 94 days for validation.

Finally, we have the number of states that we use in the model. The number of states
used in an IOHMM are very specific to the problem it is trying to model. We assume the the
state variable represents and electricity market in Europe. The IOHMM application to the
Spanish electricity market in [21] assumed the market consisted of 4 states. We tested this
while using this value as a starting point. We let the model train with 2, 3, 4, and 5 states
implemented and selected the number of states with the lowest error measures. Simulta-
neously we tested the number of epochs by running the models for 75 epochs and graph-
ing the resulting error measures. The hyperparameter testing was done on the Germany-
France border for the dates 1-1-2019 to 30-6-2021. The results are shown in Figures 4.4 and
4.5.
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(a) 2 states (b) 3 states

(c) 4 states (d) 5 states

Figure 4.4: Average loss and validation loss for 2-5 states

As can be seen in Figures 4.4 and 4.5, 4 states show the best results. Furthermore, the
validation error measures show degradation around the 25 epoch mark. In the final im-
plementation, we use 30 epochs and we use an attribute called callbacks. This entails that
even during training the final model we keep a validation set. The error measure values of
this validation set are recorded after each epoch. Then the weights of the epoch with the
best validation set are saved for prediction.
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Figure 4.5: Average MAE and validation MAE for 2-5 states





5
Results

We present the results of the model described in the past chapters applied to the cross-
border valuation of the Germany-France border and the Netherlands-Germany border. The
model was trained using the data from 2019-1-1 to 2021-06-30, as described in the last
chapter. The models were trained for 30 epochs, using 4 market states; the training of each
model took approximately 1 hour. The average error measures of the ’best’ average epoch
for each model’s validation set are shown in Tables 5.1.

Month
Germany-France Netherlands-Germany

Loss MAE Loss MAE
July 2.21360 5.76510 1.71822 3.87431
August 1.73384 5.11663 1.27253 4.02100
September 1.94822 5.77923 1.63691 3.99040
October 2.18150 7.86455 2.08989 5.61418

Table 5.1: Average error measures for best training epoch for each model’s validation set.

Subsequently, hourly point mass predictions were computed in batches of 1 month; we
computed the months of July, August, September, and October. These hourly predictions
were used to compute conditional expectations and Greeks for both ’directions’ of the ca-
pacity flow as described in previous chapters. These values were used to find the monthly
cross-border auction price and were then compared to the Margrabe valuation method as
well as the JAO auction value. Furthermore, surface plots of the hourly cross-border val-
ues and the Greek values were created for each month; this was done for our model as well
as the Margrabe model and were then compared. These surface plots for the hourly op-
tion price for the month August are included in this chapter; the Greeks for August and
the surface plots for the remaining months are shown in Appendix D. Note that the Mar-
grabe Greeks’s are computed per separate price process of each country, while the IOHMM
Greeks are computed per spread process. Furthermore, as Vega and Theta cannot be com-
puted directly for the IOHMM, these surface plots have also not been produced for the
Margrabe model. Finally, we tested whether the model had accurately mapped the market
through the shifting of key inputs.

43
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5.1. Valuation
5.1.1. Germany-France
The monthly valuation of cross-border capacity for the Germany to France flow using the
IOHMM, Margrabe model, and JAO auction are shown in Table 5.2 and Figure 5.1.

Month IOHMM Margrabe JAO
July 0.85 1.73 1.79
August 1.46 1.28 1.62
September 1.48 3.69 3.51
October 1.59 16.11 18.27

Table 5.2: Comparison of the cross-border capacity from the Germany to France valuation.

Figure 5.1: Comparison of the cross-border capacity from the Germany to France valuation.

Figures 5.2 and 5.4 show surface plots for the hourly cross-border value generated by
the IOHMM and the Margrabe model for the month August for Germany to France and
France to Germany, respectively.

The monthly valuation of cross-border capacity for the France to Germany flow using
the IOHMM, Margrabe model, and JAO auction are shown in Table 5.3 and Figure 5.3.
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(a) IOHMM (b) Margrabe

Figure 5.2: Germany to France spread option valuation surface plots for August.

Month IOHMM Margrabe JAO
July 1.05 2.00 2.57
August 3.27 2.26 3.03
September 1.95 2.48 2.36
October 2.63 0.87 1.08

Table 5.3: Comparison of the cross-border capacity from the France to Germany valuation.

5.1.2. Netherlands-Germany
The monthly valuation of cross-border capacity for the Netherlands to Germany flow using
the IOHMM, Margrabe model, and JAO auction are shown in Table 5.4 and Figure 5.5.

Month IOHMM Margrabe JAO
July 2.50 1.18 1.09
August 1.45 0.61 0.73
September 1.20 0.68 0.55
October 2.95 1.48 1.51

Table 5.4: Comparison of the cross-border capacity from the Netherlands to Germany valuation.

Figures 5.6 and 5.8 show surface plots for the hourly cross-border value generated by
the IOHMM and the Margrabe model for the month August, for Netherlands to Germany
and Germany to Netherlands, respectively.

The monthly valuation of cross-border capacity for the Germany to Netherlands flow
using the IOHMM, Margrabe model, and JAO auction are shown in Table 5.5 and Figure
5.7.
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Figure 5.3: Comparison of the cross-border capacity from the France to Germany valuation.

Month IOHMM Margrabe JAO
July 0.98 1.76 1.70
August 1.28 3.82 4.36
September 1.98 7.81 7.39
October 1.58 13.09 14.29

Table 5.5: Comparison of the cross-border capacity from Germany to Netherlands valuation.

5.2. Shifting of Inputs
Part of the goal of our model is to map certain inputs to the spreads of our respective spot
prices. However due to the black-box nature of our machine learning approach, these map-
pings cannot be observed directly. We can however, shift certain inputs which we know to
be important in the market and see how our point mass prediction for the month responds.
For example, if we assume that German Demand drops for the entire month, economic the-
ory tells us that the price of German electricity will go down. Therefore, the spread between
Germany-France should go down, and the spread between France-Germany should go up.

We test these mappings by shifting key inputs in the markets by 5% and see how our
predicted spread react. In the Tables 5.6 and 5.6 show the results. A ’✓’ shows the spreads
move in the expected direction, a ’✗’ shows the spreads move in the opposite direction, and
an empty cell shows the movement was negligible. We used the predicted month of August
2021 for testing.
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(a) IOHMM (b) Margrabe

Figure 5.4: France to Germany spread option valuation surface plots for August.

Action (5%) Expected Actual
DE Demand ↓ DE-FR ↓ FR-DE ↑ ✗

FR Demand ↓ DE-FR ↑ FR-DE ↑ ✓ ✓

DE Wind ↓ DE-FR ↑ FR-DE ↓ ✗

DE Solar ↓ DE-FR ↑ FR-DE ↓ ✗

FR Nuclear ↓ DE-FR ↓ FR-DE ↓ ✓ ✓

Table 5.6: Expected and actual response of the Germany-France IOHMM valuation to a 5% decrease in key
inputs.

Action (5%) Expected Actual
NL Demand ↓ NL-DE ↓ DE-NL ↑ ✓ ✓

DE Wind ↓ NL-DE ↓ DE-NL ↑
DE Solar ↓ NL-DE ↓ DE-NL ↑ ✗

NL Gas ↓ NL-DE ↑ DE-NL ↓ ✓ ✓

Table 5.7: Expected and actual response of the Netherlands-Germany IOHMM valuation to a 5% decrease in
key inputs.

An increase in these key inputs show the same mapping relationship results and have
therefore been omitted.
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Figure 5.5: Comparison of the cross-border capacity from the Netherlands to Germany valuation.

(a) IOHMM (b) Margrabe

Figure 5.6: Netherlands to Germany spread option valuation surface plots for August.
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Figure 5.7: Comparison of the cross-border capacity from the Germany to Netherlands valuation.

(a) IOHMM (b) Margrabe

Figure 5.8: Germany to Netherlands spread option valuation surface plots for August.





6
Conclusion

In this chapter we discuss the results of the previous chapter and draw some conclusions as
to the performance of the model. We compare the model results for the months of August
until October to the Margrabe model and the realized JAO results. Furthermore, we show
some improvements to the Margrabe pricing strategy of the cross-border capacity. Possible
motivation for the deviation within these results is also discussed. Finally, we discuss how
the mapping of inputs to output has fared in the results.

In this thesis we attempt to find the ’true’ value for the cross-border capacity between
two countries. As explained previously, the auctioning method that the market uses with
JAO does not necessarily reflect this true value. The Margrabe method attempts to predict
the JAO price and therefore also does not necessarily show the true value. This explains
the discrepancy in the monthly values shown in Tables 5.2-5.5. As the Margrabe method
attempts to predict the JAO price, it produces results that for almost all months lie closer
to this value than the IOHMM prices. While in some case (for example, the valuation from
France to Germany in August as shown in Table 5.3) the predicted model value lies quite
close to the JAO value, for the majority of the months the model values were considerably
different. We note from Figure 5.5 that the IOHMM model values the cross-border capacity
higher than the JAO auction only for the Netherlands to Germany capacity; all other capac-
ities are consistently valued lower.

Looking at Figures 5.1-5.7, we see the the ’trend’ within the market in these months. We
see that from Figure 5.5 that for the Netherlands to Germany capacity the market trend was
captured accurately; the IOHMM model trend follows the JAO trend more accurately than
even the Margrabe model. For the other borders, however, this is not the case. There are
two reasons for this. Firstly, it is possible that the IOHMM model has not captured the mar-
ket accurately and can therefore not predict the trend accurately; we will explore this when
considering the shifting of input results. Secondly, the data for the months of September
and October is most likely different than that of the training data. As can be seen when
comparing electricity prices of the last decade, the electricity market is showing previously
unknown levels of volatility [18]. These levels of volatility lead to very high prices, and so
very high valuations of the cross-border capacity. This is an issue, as it is difficult for a
machine learning algorithm to predict values so far away from what it has seen before.
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The Margrabe model, while good at providing a single price for the entire month of
cross-border capacity, does lack certain insights to the specific hourly capacities. Here the
IOHMM model is a large improvement. Figures 5.2-5.8 show surface plots for the IOHMM
model and the Margrabe model valuations for all border for August. We see that there
is much more accurate representations of which hourly options provide the value of the
monthly option bundle. For example, where the Margrabe model show which weekday
peaks have a high value, the IOHMM model shows which specific hour is most valuable.
This type of data can help in better predicting the underlying market dynamics, as well as
help with trading strategy. This increased accuracy is also extended to the Greeks, for which
an hourly surface plot has also been created. Having knowledge of the hourly value of the
Greeks as compared to 12 or 24 hour bundles as with the Margrabe model can improve
hedging strategy. These plots as well as the surface plots for July, September, and October
can be found in Appendix D.

As shown in Tables 5.6-5.7, we have also tested whether the model accurately captured
the model by shifting key inputs for each border and seeing whether the capacity price
shifts accordingly. We see that the German inputs cause some trouble, while the French
and Dutch inputs have been mapped accurately. We therefore conclude that some part of
the German market has not been mapped properly. This can be due to using the incorrect
inputs; if some key component has not been included a correct mapping would not be
possible. The problem of the Germany market could also be too difficult for the model to
learn. For example, electricity prices show a certain amount of seasonality throughout the
year. However, the weights in the IOHMM are kept static outside of each training epoch;
this means that the model attempts to fit each weight to the entire year, essentially ignoring
this seasonality. If the seasonality has a big enough impact, this could make the problem
too difficult for the model to learn. This is most likely also why the months of September
and October show such different results when compared to the JAO auction.



7
Discussion

In this chapter we briefly discuss how the work in this thesis can be continued. We begin
with research pertaining to the electricity market. We also explore certain mathematical
approaches, especially through different processes. Finally, we touch upon expansions of
the model through machine learning.

As explained in the previous chapters, understanding how a market works is key to pre-
dicting prices and derivatives in that market. In this work we have done a preliminary anal-
ysis in the underlying features of the electricity market and used these features as inputs
for our model. A more careful approach to this input selection could be beneficial in the
valuing of the cross-border capacity, whether these features are used an inputs or not. For
example, analysis on the seasonality of the input data or realized prices would be proactive
in the predictive process. Certain inputs could be shown to be relevant ’all-year’ or only in
certain months. Furthermore, using deseaonalized prices could aid in capturing trends.

The choice of underlying process has a large influence on the predictive power of a
model. Where we used a Normal Inverse Gaussian as a price process, others could be used
as well. As referred to in previous chapters, the stochastic processes with stochastic volatil-
ity offer a wide variety of modelling opportunities. Given such a process, certain seasonal
components could then be implemented directly; furthermore research in the fitting of
such a process to prices is also needed should this approach be used. Processes with a time
parameters (i.e. non-stationary processes) should also be considered. We used a station-
ary process where non-stationarity was introduced through the IOHMM outputs. Using
a non-stationary process directly seems like a logical extension of this. Multiple temporal
structures could be created; through the time parameter and through the IOHMM output.
Furthermore, should a volatility parameter also be added, then Theta and Vega could also
be computed, as with a Black-Scholes framework.

Finally, the IOHMM architecture that was used can also be expanded. In the analysis of
the Spanish electricity market [21], an online updating implementation of the IOHMM was
used. This means that, with each new month of data, only the new data needs to be trained,
not the entire data set. This would greatly speed up training, should it be combined with
our implementation. The recurrent aspect of an IOHMM has the ability ’remember’ infor-
mation from the previous hour. There are, however, certain machine learning architectures
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that can remember across multiple points; these are called long-term short-term memory
models (LSTM) [22]. Should such a model be combined with an IOHMM architecture, more
information could be used from the past when trying to model market dynamics and pre-
dict prices. This could, for example, help the model solve the seasonality of the market
while training.
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Appendix: Derivation of Margrabe Greeks

We refer to the following formulas throughout the entire derivation [29].
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whereΦ(x) is the cumulative distribution function of a standard Normal distribution.
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Substituting this gives
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and so we see that
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where φ(x) is the probability density function of a standard Normal distribution. Using
equations (A.5), we see that
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A.5. Gamma 12
Using equation (A.8) and (A.9)
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We note that the using equation (A.8) in combination with equation (A.6) would lead to
Γ21 = Γ12.

A.6. Vega 1
We begin from equation (A.1)

ν1 = ∂V

∂σ1
= S1(t )φ (d1)

∂d1

∂σ1
−S2(t )φ (d2)

∂d2

∂σ1
.

Using (A.4), we see that

∂d1

∂σ
=− 1

σ2
p

T − t

[
log

(
S1(t )

S2(t )

)
+ σ2

2
T

]
+ 1

σ
p

T − t
σT =−

log
(

S1(t )
S2(t )

)
σ2

p
T − t

+
p

T − t

2
, (A.10)

and

∂d2

∂σ
= ∂d1

∂σ
−
p

T − t =−
log

(
S1(t )
S2(t )

)
σ2

p
T − t

−
p

T − t

2
. (A.11)

Furthermore, we note that

∂σ

∂σ1
= 1

2σ

(
2σ1 −2ρσ2

)= σ1 −ρσ2

σ
.

Using these equations in combination with equation (A.5), we see that

ν1 = S1(t )φ (d1)

(
∂d1

∂σ
− ∂d2

∂σ

)
∂σ

∂σ1

= S1(t )φ (d1)

− log
(

S1(t )
S2(t )

)
σ2

p
T − t

+
p

T − t

2
+

log
(

S1(t )
S2(t )

)
σ2

p
T − t

+
p

T − t

2

 σ1 −ρσ2

σ

= S1(t )φ (d1)
p

T − t
σ1 −ρσ2

σ

A.7. Vega 2
We begin from equation (A.1)
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A.8. Theta
We begin from equation (A.1)
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C
Appendix: All Possible Inputs

Chosen Inputs Rejected Inputs
DE Demand DE Coal40 availability
DE Gas36 availability DE Gas50 availability
DE Gas57 availability DE Gas42 availability
DE Uranium availability DE Lignite
DE Coal37 availability FR Wind
DE Lignite availability FR Gas50 availability
DE Coal32 availability FR Nukes
DE Gas production Gas50-Coal40 (Marginal Cost Spread)
DE Solar production Gas50-Coal44 (Marginal Cost Spread)
DE Coal production Gas50-Lig32 (Marginal Cost Spread)
DE Wind production Gas50-Lig36 (Marginal Cost Spread)
FR Solar production Gas50-Lig40 (Marginal Cost Spread)
FR Hydro production Gas57-Coal40 (Marginal Cost Spread)
FR Demand Gas57-Lig32 (Marginal Cost Spread)
FR Coal37 availability Coal40-Coal44 (Marginal Cost Spread)
FR Uranium availability Coal44-Lig36 (Marginal Cost Spread)
Gas57-Coal44 (Marginal Cost Spread) Coal44-Lig40 (Marginal Cost Spread)
Coal40-Lig32 (Marginal Cost Spread) Lig32-Lig36 (Marginal Cost Spread)
Coal44-Lig32 (Marginal Cost Spread) Lig32-Lig40 (Marginal Cost Spread)
Gas57-Lig40 (Marginal Cost Spread)
Lig36-Lig40 (Marginal Cost Spread)
Coal40-Lig36 (Marginal Cost Spread)
Coal40-Lig40 (Marginal Cost Spread)
Gas50-Gas57 (Marginal Cost Spread)
Gas57-Lig36 (Marginal Cost Spread)

Table C.1: Chosen and rejected inputs by the PFA for the Germany-France border
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Chosen Inputs Rejected Inputs
NL Demand NL Coal40 availability
NL Coal production DE Lignite availability
NL Wind Offshore production DE Gas57 availability
NL Wind Onshore production DE Gas50 availability
NL Gas production DE Demand
NL Uranium availability DE Gas production
NL Gas50 availability Gas50-Coal44 (Marginal Costs Spread)
NL Gas57 availability Gas50-Lig32 (Marginal Costs Spread)
DE Coal production Gas50-Lig36 (Marginal Costs Spread)
DE Lignite production Gas50-Lig40 (Marginal Costs Spread)
DE Solar production Gas57-Coal40 (Marginal Costs Spread)
DE Wind production Gas57-Coal44 (Marginal Costs Spread)
DE Coal40 availability Gas57-Lig32 (Marginal Costs Spread)
DE Coal37 availability Coal40-Coal44 (Marginal Costs Spread)
DE Uranium availability Coal40-Lig32 (Marginal Costs Spread)
DE Gas36 availability Coal40-Lig36 (Marginal Costs Spread)
DE Coal32 availability Coal40-Lig40 (Marginal Costs Spread)
DE Gas42 availability Coal44-Lig32 (Marginal Costs Spread)
Gas50-Coal40 (Marginal Costs Spread) Lig32-Lig40 (Marginal Costs Spread)
Coal44-Lig36 (Marginal Costs Spread) Lig36-Lig40 (Marginal Costs Spread)
Gas57-Lig36 (Marginal Costs Spread)
Coal44-Lig40 (Marginal Costs Spread)
Gas57-Lig40 (Marginal Costs Spread)
Gas50-Gas57 (Marginal Costs Spread)
Lig32-Lig36 (Marginal Costs Spread)

Table C.2: Chosen and rejected inputs by the PFA for the Netherlands-Germany border
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D.1. July

D.1.1. Germany-France

(a) IOHMM (b) Margrabe

Figure D.1: Germany to France spread option valuation surface plots for July.
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(a) IOHMM (b) Margrabe

Figure D.2: France to Germany spread option valuation surface plots for July.

(a) IOHMM

(b) Margrabe Delta 1 (c) Margrabe Delta 2

Figure D.3: Germany to France Delta surface plots for July.
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(a) IOHMM

(b) Margrabe Delta 1 (c) Margrabe Delta 2

Figure D.4: France to Germany Delta surface plots for July.



66 D. Appendix: Surface Plots

(a) IOHMM Gamma (b) Margrabe Gamma 11

(c) Margrabe Gamma 22 (d) Margrabe Gamma 12

Figure D.5: Germany-France Gamma surface plots for July.

D.1.2. Netherlands-Germany

(a) IOHMM (b) Margrabe

Figure D.6: Netherlands to Germany spread option valuation surface plots for July.
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(a) IOHMM (b) Margrabe

Figure D.7: Germany to Netherlands spread option valuation surface plots for July.

(a) IOHMM

(b) Margrabe Delta 1 (c) Margrabe Delta 2

Figure D.8: Netherlands to Germany Delta surface plots for July.
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(a) IOHMM

(b) Margrabe Delta 1 (c) Margrabe Delta 2

Figure D.9: Germany to Netherlands Delta surface plots for July.
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(a) IOHMM Gamma (b) Margrabe Gamma 11

(c) Margrabe Gamma 22 (d) Margrabe Gamma 12

Figure D.10: Netherlands-Germany Gamma surface plots for July.
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D.2. August

D.2.1. Germany-France

(a) IOHMM

(b) Margrabe Delta 1 (c) Margrabe Delta 2

Figure D.11: Germany to France Delta surface plots for August.
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(a) IOHMM

(b) Margrabe Delta 1 (c) Margrabe Delta 2

Figure D.12: France to Germany Delta surface plots for August.
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(a) IOHMM Gamma (b) Margrabe Gamma 11

(c) Margrabe Gamma 22 (d) Margrabe Gamma 12

Figure D.13: Germany-France Gamma surface plots for August.
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D.2.2. Netherlands-Germany

(a) IOHMM

(b) Margrabe Delta 1 (c) Margrabe Delta 2

Figure D.14: Netherlands to Germany Delta surface plots for August.
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(a) IOHMM

(b) Margrabe Delta 1 (c) Margrabe Delta 2

Figure D.15: Germany to Netherlands Delta surface plots for August.
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(a) IOHMM Gamma (b) Margrabe Gamma 11

(c) Margrabe Gamma 22 (d) Margrabe Gamma 12

Figure D.16: Netherlands-Germany Gamma surface plots for August.

D.3. September
D.3.1. Germany-France

(a) IOHMM (b) Margrabe

Figure D.17: Germany to France spread option valuation surface plots for September.
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(a) IOHMM (b) Margrabe

Figure D.18: France to Germany spread option valuation surface plots for September.

(a) IOHMM

(b) Margrabe Delta 1 (c) Margrabe Delta 2

Figure D.19: Germany to France Delta surface plots for September.
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(a) IOHMM

(b) Margrabe Delta 1 (c) Margrabe Delta 2

Figure D.20: France to Germany Delta surface plots for September.
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(a) IOHMM Gamma (b) Margrabe Gamma 11

(c) Margrabe Gamma 22 (d) Margrabe Gamma 12

Figure D.21: Germany-France Gamma surface plots for September.

D.3.2. Netherlands-Germany

(a) IOHMM (b) Margrabe

Figure D.22: Netherlands to Germany spread option valuation surface plots for September.
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(a) IOHMM (b) Margrabe

Figure D.23: Germany to Netherlands spread option valuation surface plots for September.

(a) IOHMM

(b) Margrabe Delta 1 (c) Margrabe Delta 2

Figure D.24: Netherlands to Germany Delta surface plots for September.
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(a) IOHMM

(b) Margrabe Delta 1 (c) Margrabe Delta 2

Figure D.25: Germany to Netherlands Delta surface plots for September.
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(a) IOHMM Gamma (b) Margrabe Gamma 11

(c) Margrabe Gamma 22 (d) Margrabe Gamma 12

Figure D.26: Netherlands-Germany Gamma surface plots for September.

D.4. October
D.4.1. Germany-France

(a) IOHMM (b) Margrabe

Figure D.27: Germany to France spread option valuation surface plots for October.
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(a) IOHMM (b) Margrabe

Figure D.28: France to Germany spread option valuation surface plots for October.

(a) IOHMM

(b) Margrabe Delta 1 (c) Margrabe Delta 2

Figure D.29: Germany to France Delta surface plots for October.
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(a) IOHMM

(b) Margrabe Delta 1 (c) Margrabe Delta 2

Figure D.30: France to Germany Delta surface plots for October.
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(a) IOHMM Gamma (b) Margrabe Gamma 11

(c) Margrabe Gamma 22 (d) Margrabe Gamma 12

Figure D.31: Germany-France Gamma surface plots for October.

D.4.2. Netherlands-Germany

(a) IOHMM (b) Margrabe

Figure D.32: Netherlands to Germany spread option valuation surface plots for October.
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(a) IOHMM (b) Margrabe

Figure D.33: Germany to Netherlands spread option valuation surface plots for October.

(a) IOHMM

(b) Margrabe Delta 1 (c) Margrabe Delta 2

Figure D.34: Netherlands to Germany Delta surface plots for October.
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(a) IOHMM

(b) Margrabe Delta 1 (c) Margrabe Delta 2

Figure D.35: Germany to Netherlands Delta surface plots for October.
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(a) IOHMM Gamma (b) Margrabe Gamma 11

(c) Margrabe Gamma 22 (d) Margrabe Gamma 12

Figure D.36: Netherlands-Germany Gamma surface plots for October.





Bibliography

[1] Ole E Barndorff-Nielsen. Normal inverse gaussian distributions and stochastic volatil-
ity modelling. Scandinavian Journal of statistics, 24(1):1–13, 1997.

[2] Yoshua Bengio and Paolo Frasconi. Input-output hmms for sequence processing. IEEE
Transactions on Neural Networks, 7(5):1231–1249, 1996.

[3] Yoshua Bengio, V-P Lauzon, and Réjean Ducharme. Experiments on the application
of iohmms to model financial returns series. IEEE Transactions on Neural Networks,
12(1):113–123, 2001.

[4] Yoshua Bengio et al. Markovian models for sequential data. Neural computing surveys,
2(199):129–162, 1999.

[5] Fred Espen Benth, Valery A Kholodnyi, and Peter Laurence. Quantitative energy fi-
nance. Modelling, pricing, and hedging in energy and commodity markets. Springer,
2014.

[6] R Carmona and V Durrleman. Pricing and hedging spread options in a log-normal
model (technical report: Department of operations research and financial engineer-
ing). Princeton, NJ: Princeton University, 2003.

[7] Dami Choi, Christopher J Shallue, Zachary Nado, Jaehoon Lee, Chris J Maddison, and
George E Dahl. On empirical comparisons of optimizers for deep learning. arXiv
preprint arXiv:1910.05446, 2019.

[8] François Chollet et al. Keras. https://keras.io, 2015.

[9] Les Clewlow and Chris Strickland. Energy derivatives: pricing and risk management.
Lacima Publ., 2000.

[10] Nemo Committee et al. Euphemia public description: Single price coupling algo-
rithm. URL: https://www. epexspot. com/sites/default/files/2020-02/Euphemia_Public%
20Description_Single% 20Price% 20Coupling% 20Algorithm_190410. pdf, 2019.

[11] Aswath Damodaran. The promise and peril of real options. 2005.

[12] Shijie Deng. Stochastic models of energy commodity prices and their applications:
Mean-reversion with jumps and spikes. University of California Energy Institute Berke-
ley, 2000.

[13] Ernst Eberlein and Gerhard Stahl. Both sides of the fence: a statistical and regulatory
view of electricity risk. Energy and Power Risk Management, 8(6):32–36, 2003.

[14] Ernst Eberlein, OE Barndorff-Nielsen, T Mikosch, and S Resnick. Lévy processes: the-
ory and applications, 2001.

89

https://keras.io


90 Bibliography

[15] Student Energy. Electrical grid, January 2020. URL https://studentenergy.org/
site/assets/uploads/2020/01/Electric-Grid.jpg. [Online; accessed 1 May,
2022].

[16] Seyyed Ruhollah Etesami. Spread options: From margrabe to kirk. Available at SSRN
3665654, 2020.

[17] Alexander Eydeland and Krzysztof Wolyniec. Energy and power risk management: New
developments in modeling, pricing, and hedging, volume 97. John Wiley & Sons, 2002.

[18] European Union Agency for the Cooperation of Energy Regulators. Harmonised allo-
cation rules for long-term transmission rights, Nov 2021. URL https://www.jao.eu/
sites/default/files/2021-12/EU%20HAR%202022%20with%20annexes.pdf.

[19] Hélyette Geman and Andrea Roncoroni. Understanding the Fine Structure of Electric-
ity Prices. The Journal of Business, 79(3):1225–1262, May 2006. doi: 10.1086/500675.
URL https://ideas.repec.org/a/ucp/jnlbus/v79y2006i3p1225-1262.html.

[20] Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and
estimation. Journal of the American statistical Association, 102(477):359–378, 2007.

[21] Alicia Mateo González, AM Son Roque, and Javier García-González. Modeling and
forecasting electricity prices with input/output hidden markov models. IEEE Transac-
tions on Power Systems, 20(1):13–24, 2005.

[22] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[23] Pedro Mejía Gómez. Chapter 10 - benefits of market coupling in terms of social
welfare. In Alessandro Rubino, Maria Teresa Costa Campi, Veronica Lenzi, and
Ilhan Ozturk, editors, Regulation and Investments in Energy Markets, pages 185–
198. Academic Press, 2016. ISBN 978-0-12-804436-0. doi: https://doi.org/10.1016/
B978-0-12-804436-0.00010-2. URL https://www.sciencedirect.com/science/
article/pii/B9780128044360000102.

[24] Jeong-Hoon Kim and Chang-Rae Park. A multiscale extension of the margrabe for-
mula under stochastic volatility. Chaos, Solitons & Fractals, 97:59–65, 2017.

[25] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[26] Minqiang Li, Shi-Jie Deng, and Jieyun Zhoc. Closed-form approximations for spread
option prices and greeks. The Journal of Derivatives, 15(3):58–80, 2008.

[27] Giorgio Locatelli, Mauro Mancini, and Giovanni Lotti. A simple-to-implement real
options method for the energy sector. Energy, 197:117226, 2020.

[28] Yijuan Lu, Ira Cohen, Xiang Sean Zhou, and Qi Tian. Feature selection using principal
feature analysis. In Proceedings of the 15th ACM international conference on Multime-
dia, pages 301–304, 2007.

https://studentenergy.org/site/assets/uploads/2020/01/Electric-Grid.jpg
https://studentenergy.org/site/assets/uploads/2020/01/Electric-Grid.jpg
https://www.jao.eu/sites/default/files/2021-12/EU%20HAR%202022%20with%20annexes.pdf
https://www.jao.eu/sites/default/files/2021-12/EU%20HAR%202022%20with%20annexes.pdf
https://ideas.repec.org/a/ucp/jnlbus/v79y2006i3p1225-1262.html
http://www.deeplearningbook.org
https://www.sciencedirect.com/science/article/pii/B9780128044360000102
https://www.sciencedirect.com/science/article/pii/B9780128044360000102


Bibliography 91

[29] William Margrabe. The value of an option to exchange one asset for another. The
journal of finance, 33(1):177–186, 1978.

[30] Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen Marshall. Ac-
tivation functions: Comparison of trends in practice and research for deep learning.
arXiv preprint arXiv:1811.03378, 2018.

[31] Joint Allocation Office. Auctions, 2022. URL https://www.jao.eu/auctions#/.

[32] Joint Allocation Office. List of bidding zone borders, March 2022. URL
https://www.jao.eu/sites/default/files/2022-03/List%20of%20Bidding%
20Zone%20borders_2022_CORE.pdf.

[33] PCR Project OMIE. Da markets in the eu, 2016. URL https://ars.els-cdn.com/
content/image/3-s2.0-B9780128044360000102-f10-02-9780128044360.jpg.
[Online; accessed March 15, 2022].

[34] Cornelis W Oosterlee and Lech A Grzelak. Mathematical Modeling and Computation
in Finance: With Exercises and Python and Matlab Computer Codes. World Scientific,
2019.

[35] Puneet Pasricha and Anubha Goel. Pricing power exchange options with hawkes jump
diffusion processes. Journal of Industrial & Management Optimization, 17(1):133,
2021.

[36] Rolf Poulsen. The margrabe formula. Encyclopedia of Quantitative Finance, pages
1118–1120, 2009.

[37] Christian Redl, Reinhard Haas, Claus Huber, and Bernhard Böhm. Price formation
in electricity forward markets and the relevance of systematic forecast errors. En-
ergy Economics, 31(3):356–364, 2009. ISSN 0140-9883. doi: https://doi.org/10.1016/
j.eneco.2008.12.001. URL https://www.sciencedirect.com/science/article/
pii/S0140988308001862.

[38] David Schönheit, Michiel Kenis, Lisa Lorenz, Dominik Möst, Erik Delarue, and Ken-
neth Bruninx. Toward a fundamental understanding of flow-based market coupling
for cross-border electricity trading. Advances in Applied Energy, 2:100027, 2021. ISSN
2666-7924. doi: https://doi.org/10.1016/j.adapen.2021.100027. URL https://www.
sciencedirect.com/science/article/pii/S2666792421000202.

[39] DP van de Wiel BSc. Valuation of insurance products using a normal inverse gaussian
distribution. Master’s thesis, Tilburg University, 2015.

[40] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright,
Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay May-
orov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat,
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