
De
lft

Un
iv
er
sit
y
of

Te
ch
no

lo
gy

Teaching Bimanual dexterous manipula-
tions with Interactive Demonstrations and
Reinforcement Learning
Zheyu Du

DELFT UNIVERSITY OF TECHNOLOGY

DEPARTMENT OF MECHANICAL, MARITIME AND MATERIALS ENGINEERING
FOR MASTER THESIS IN ROBOTICS

TEACHING BIMANUAL DEXTEROUS

MANIPULATIONS WITH INTERACTIVE

DEMONSTRATIONS AND REINFORCEMENT

LEARNING

SUPERVISOR MASTER CANDIDATE

DR.-ING. JENS KOBER ZHEYU DU
DELFT UNIVERSITY OF TECHNOLOGY

DAILY SUPERVISOR STUDENT ID
GIOVANNI FRANZESE 5270510
DELFT UNIVERSITY OF TECHNOLOGY

ACADEMIC YEAR
2020-2023

Acknowledgments

I would like to express my gratitude to all my teachers from the Cognitive Robotics
(CoR) Department at TU Delft for bringing me into the world of Robotics and Machine
Learning. In the last two years, I have gained new knowledge and much research expe-
rience from the courses, especially in the learning and control area, which prepared me
well for my future career.

My sincerest thanks tomy daily supervisor Giovanni Franzese andmy supervisor Jens
Kober for their advice and feedback duringmy thesis research. I have learnedmany new
things beyond the courses and gained much experience in academic research through
this process. And I could not smoothly complete the project without their guidance. I
would further thank Giovanni Franzese for his accompany and mentorship throughout
the research assignment, the thesis project, and the master defense. Through uncount-
able discussions and meetings with him in the past two years, I have gained more in-
sights into robot learning and control and further developed and completed my ideas
for the project.
At last, I also want to thank my parents, friends, and classmates. Their accompany

and support in the past three years encouraged me to get through all the difficulties and
always keep energetic and optimistic to face my study and my life.

Teaching Bimanual dexterous manipulations with Interactive
Demonstrations and Reinforcement Learning

Zheyu Du, Giovanni Franzese, and Jens Kober

Abstract— Robot dexterous manipulation research has drawn
more attention in recent years since the development of various
learning methods makes it possible for robots to achieve
dexterity at the human level. Many attempts have been made to
integrate human knowledge into Reinforcement Learning (RL)
processes for faster learning speed and better performance.
Despite their successes in many aspects, there are two open
problems that still need to be carefully considered: 1. The effect
of demonstrations gradually vanishes during RL. 2. In most
cases, only imperfect demonstrations are available to robots. In
this work, we proposed a new learning framework - Interactive
Behavioural Cloning for faster Reinforcement Learning (IBC-
RL), which could alleviate problems in complex manipulation
tasks with long horizons. Different demonstrations are shown
to robots at different learning stages. Robots learn complex
tasks step by step with interactive demonstrations from human
teachers. The framework is evaluated with four dexterous
manipulation tasks simulated with the Isaac Gym engine.
Human teachers perform demonstrations by controlling the
simulated robot hands through a hand-tracking system (See
Fig. 1). The results of the experiments could demonstrate the
efficiency of IBC-RL in guiding and accelerating the learning
processes with imperfect demonstrations.

I. INTRODUCTION

Robot dexterous manipulation researches aim to enable
robots to flexibly manipulate whatever objects they may have
in hand, such as reorienting a cube [1], flipping a box [2], and
using various tools [3]. Human beings have an extraordinary
ability to handle these kinds of tasks and handle objects
with various shapes, textures, and sizes. However, these are
complicated tasks for robots, which challenge both the design
and the driven algorithms of robot hands. As a matter of
fact, the most common robots currently used in industrial
manufacturing still have no ability to react to changes in
the working environments. They can only execute motion
sequences that human engineers predefined. But thanks to
the development of new sensing technologies, more powerful
computation ability, and more innovative driven algorithms,
robots are becoming increasingly intelligent and dexterous in
recent years [4].

Nevertheless, they are still underperforming compared to
humans, especially in learning complex manipulation tasks
where dexterous hands with many degrees of freedom are
necessary. The dexterous hands indeed improve the ability
of robots for complex operations and more human-like
behaviors. On the other hand, they also largely increase
the difficulty of learning an optimal strategy. In particular,
learning bimanual manipulation tasks is challenging without
the availability of expert demonstrations and many hours of
self-exploration [5], [6].

Fig. 1: Left figure: An example of the bimanual manipulation task
- Swing the cup, which is simulated in Isaac Gym [9]. The robot
uses both hands to grab the cup and then rotate it into the target
orientations. Right figure: a human-robot interface - Leap Sensor.
It captures the real-time movements of human hands and outputs
the states of the simulated hands.

Many new learning methods and various control schemes
have been proposed in recent years, which aim to accelerate
the learning process and improve the performance of the
trained controller. However, Reinforcement Learning (RL)
methods still inevitably require massive data from inter-
actions with the environments, although the amount could
be reduced with model-based RL methods [7]. Imitation
Learning (IL) methods require a considerable number of
demonstrations from human teachers, and the reliance on
expert knowledge cannot be entirely avoided [6], [8]. It is
not a new idea to integrate human knowledge with the RL
methods and benefit from the strengths of both two kinds of
techniques. For example, the most common way is to pretrain
the controller with data collected from human teachers and
give the RL algorithm a warm start. Nevertheless, there are
two main problems that have not been sufficiently studied
so far. First, the effect of human demonstrations gradually
vanishes during the RL process: robots will progressively
forget the knowledge they gained from human teachers.
Second, due to the limits of the human-robot interfaces and
other possible interruptions, the recorded human demonstra-
tions may be imperfect, containing suboptimal strategies,
unnecessary movements, and action noises.

In this paper, to alleviate the problems mentioned above,
we introduce Interactive Behavioural Cloning for faster Rein-
forcement Learning (IBC-RL), where human demonstrations
are not used to only pretrain the policy but show robots dif-
ferent sub-skills according to their current learning stage and
guide the explorations during RL. The proposed technique is
motivated by the idea of propaedeutic skill learning where,
for example, we first teach robots how to grasp objects, and
only when they can successfully perform the grasping we
show them how to stack the objects together. This is also the

most natural way when a human child is taught to perform
a task by a teacher. The teaching is always step-by-step, and
demonstrations targeting the current learning stage are shown
to the child.

In the rest of this paper, some related works are introduced
in Sec. II, which includes a brief review of previous research
on dexterous manipulations, human-robot interfaces, and RL
methods with expert or non-expert demonstrations. Sec. III
introduces the background knowledge of the proposed learn-
ing framework, which briefly reviews the basic concepts of
RL and Proximal policy optimization (PPO), presents the
reward functions, and formalizes the imperfect demonstra-
tions. Sec. IV introduces the IBC-RL framework in detail
and formalizes the methods used. Sec. V presents the results
of the evaluation experiments, some ablation studies, and the
limitations of the framework.

II. Related work

Robot manipulation tasks are mainly learned with methods
based on dynamic analysis or reinforcement learning (RL).
The conventional dynamic analysis methods need to model
the dynamics of the entire system and then treat the control of
actuators as optimization problems with chosen constraints.
These methods are normally limited to simple tasks with
simple end effectors, like grippers [10]. Recently, RL meth-
ods have achieved success in more complex and contact-rich
tasks with dexterous robot hands. Model-based RL methods
are well-known for higher adaptability and data efficiency
[7], which makes them seem to be suitable for practical
problems. However, despite having many appealing features,
model-based RL methods still suffer from the inaccuracy of
the learned transition model in practice, which makes it hard
to scale to various high-dimensional tasks [11], [12]. On
the contrary, model-free RL methods directly learn policies
through interactions with the environments. They are gaining
popularity in recent years because of their scalable learning
ability. However, it is undeniable that outstanding perfor-
mance comes with huge costs. These methods usually require
a considerable amount of data for training and typically take
a long time, which is prohibitive in real applications. To
alleviate this problem, an effective way is to utilize human
knowledge to help with learning [10]. Expert demonstrations
have been widely studied and successfully integrated with
RL in different ways to accelerate the learning processes and
improve the performance of trained controllers. But the study
on imperfect demonstrations is still insufficient.

In this section, relevant research about robot dexterous
manipulations is briefly reviewed and introduced in Sec. II-
A. Sec. II-B introduces and compares different ways to in-
tegrate human demonstrations with RL. Sec. II-C introduces
different human-robot interfaces used in previous research
to collect demonstrations. At last, the learning frameworks
that were used to deal with different kinds of imperfect
demonstrations are reviewed in Sec. II-D.

A. Robot dexterous manipulation

Dexterous manipulation tasks were formulated by Salis-
bury [13]. They require the coordination of robot fingers and
even arms to control the objects continuously and always
maintain contact in the process, which puts more challenges
on the design of robot hands and driven algorithms compared
with discrete picking and placing. Some essential works
were done to include the rolling [14], [15], sliding [16],
pivoting [17], and finger gaiting [18] into the control loop,
to optimize the initial grasping position and orientation [19]
and to optimize the hand design for easier control or better
performance [20], [21], [22]. Based on them, many control
schemes have been proposed, especially in recent years.

Conventional methods usually require a high-level planner
and a low-level controller. High-level planner explores the
state and action spaces with various planning techniques
for an optimized trajectory. The low-level controller maps
the friction forces at contact points to the accelerations of
robot fingers and then calculates appropriate actions for
the actuators to follow the planned trajectory. Contact and
grasping states are either modeled mathematically [23], [24],
[25] or directly obtained from various sensors [26]. However,
dynamic modeling and trajectory planning for dexterous
hands severely increase the difficulty of the tasks and calcula-
tion burden. A simpler way is utilizing extrinsic dexterity to
transfer the requirement of dexterity from robot hands to the
external world [27]. But this means robots cannot perform
the manipulation tasks alone without an additional surface
like a wall or a table.

In recent years, machine learning techniques are gaining
prosperity. RL methods, especially those with deep neural
networks, are playing active roles in the robot control area.
They were first used for dexterous manipulation tasks in
2015 [28]. After that, more research with various model-
free RL methods has been done to optimize the learning
processes and improve the performance of trained controllers.
For example, the learning could be more efficient by par-
allelizing neural networks and shaping the reward function
with instructive information [29]. The robustness of the
learned controller could be improved by training with domain
randomization [30] and taking advantage of past experience
with a recurrent neural network [1]. Until now, a large
number of generalized manipulation tasks could be learned
with this kind of method [1], [3], [31]. Model-based RL
methods have also been used in dexterous manipulation tasks,
but less than the model-free ones. Anusha Nagabandi, et al
proposed a model-based RL controller (PDDM), which uses
a deep neural network to model the transition dynamics of
the system [7]. It has shown higher data efficiency in some
dexterous manipulation tasks.

Our work builds upon the model-free deep RL to con-
trol anthropomorphic double hands. By utilizing a small
number of human demonstrations, even the imperfect ones,
the learning processes could be significantly accelerated and
more stable with fewer performance drops. Previous work
has demonstrated learning of multiple bimanual manipulation

tasks with various model-free RL controllers [5]. Based on
them, we further improve the learning algorithms to acceler-
ate learning and reduce interactions with the environments.

B. Reinforcement learning with human demonstrations

An effective way to improve the data efficiency and the
performance of learning methods is by integrating them with
the knowledge of human beings. One approach is to pretrain
the controller to mimic the expert policies extracted from hu-
man demonstrations. Then the controller is further optimized
through reinforcement learning, guided by a shaped reward
function [32], [33]. However, some RL algorithms, such
as maximum entropy RL [34], are designed to encourage
random explorations, which is conflicted with the idea of ini-
tializing the RL with imitation learning. Another problem is
that shaping the reward function with human demonstrations
is indispensable for these methods. Otherwise, the robot will
gradually forget the knowledge learned from human teachers
during the RL. An alternate approach is to train an off-policy
RL with a replay buffer of human demonstrations [35] or
do the imitation learning and policy searching at the same
time [3], [36]. The robot could then benefit from both expert
demonstrations and interactions with the environment in the
policy update. However, these methods heavily rely on the
high quality of the demonstrations, and some of them require
annotating the demonstrated state-action pairs with the expert
rewards, which are inaccessible in some cases.

Our method is inspired by the work of M. Vecerik, et al
[35]. We use imitation learning for controller initialization
and experience replay, and we have released the burden of
shaping the reward function and annotating all the data.

C. Human-robot interfaces

Besides, due to the morphological differences between
robot hands and human hands, the demonstrations usually
could not be directly used for learning. It is still an open
question of how to perform the demonstrations for robots
effectively. Henry Zhu, et al gave demonstrations through
kinesthetic teaching [2]. It is straightforward since the human
teacher could directly manipulate the robot. However, it is
unsuitable for high-DoF robot hands since the demonstra-
tions will not be continuous and accurate enough. Aravind
Rajeswaran, et al used a CyberGlove to record the movements
of fingers and an HTC Vive tracker to track the trajectories
of human hands [3]. Abhishek Gupta, et al. proposed a novel
method [37] to perform demonstrations. Human experts
perform multiple object-centric demonstrations, then each of
them will be weighted for each individual controller. In this
way, controllers only learn from the demonstrations that share
similar initial conditions with themselves and at the same
time are feasible for learning.

Our work uses a Leap Sensor to collect demonstrations,
which is convenient and cheap. It can collect real-time states
of human hands and fingers. However, the sensing area is
limited, and sensing with infrared rays is less accurate.

D. Learning with imperfect human demonstrations

Most previous research studied how to learn a policy from
high-quality demonstrations from human experts effectively.
Imitation learning methods have been proven to work well in
benchmark tasks [38]. However, they could not show satisfac-
tory performance when dealing with practical problems since
the quality of demonstrations could not always be guaranteed.
They might be unavailable at all or too expensive to have a
large number of them for accurate learning [39]. Therefore,
many researchers have moved their attention to learning with
non-expert demonstrations.

Some researchers have studied how to learn from subop-
timal demonstrations with imitation learning and reinforce-
ment learning techniques. However, most of these methods
require different information or other assumptions to update
the policy. The Distance minimization inverse RL (DM-
IRL) assumes that the true reward function is linear in the
predefined feature function and requires human teachers to
estimate the cumulative reward [40]. Semi-supervised IRL
(SSIRL) is able to recognize optimal demonstrations from a
mixture of optimal and suboptimal ones [8]. The reliance on
expert demonstrations could still not be avoided.

Another way to deal with this problem is by utilizing the
nature of RL. Noises learned could be gradually filtered out
through more explorations. Instead of trying to find optimal
demonstrations, robots could learn from the imperfect ones
and make further optimizations and filter out the noises
through the explorations during RL. Normalized Actor-Critic
(NAC) trains the controller for auto-driving with imperfect
human demonstrations and then refines the learned policy
with RL [41]. It is indeed able to utilize imperfect demonstra-
tions to help with the learning, but they are only used for the
initialization of neural networks. Relative Entropy Q-learning
(REQ) collects new data with a mixture of action from RL
and human policy [42]. It has been tested and evaluated with
several bimanual manipulation tasks and has shown excellent
performance and potential. However, it only deals with the
suboptimal strategies in the demonstrations and also requires
the guidance of optimal ones.

Previous research aimed to deal with the demonstrations
with suboptimal strategies, some meant to filter out the
noises, and there are also works tried to learn from demon-
strations with different strategies. Only a few of them tried
to solve all the problems at the same time. Our work is
inspired by NAC and makes further improvements to utilize
imperfect demonstrations during RL. We use the data directly
collected from the sensor and aim to deal with all the
problems mentioned above, which is a more realistic situation
in practical tasks.

III. Background on Robot Learning

This section briefly reviews the main concepts of reinforce-
ment learning in III-A. Then III-A.1 introduces the Proximal
Policy Optimization method [43], which is used in our
framework (IBC-RL). III-A.2 compares three ways to define
the reward function. At last, III-B formalizes the imperfect

demonstration studied in this paper and distinguishes it from
other kinds of non-expert demonstrations studied before.

A. Reinforcement Learning

Reinforcement Learning (RL) methods are able to deal
with the control problems of complex dynamic systems,
which are usually defined by Markov decision processes
(MDP) M = {S,A, T, 𝑟}. Here, S is the state space, A
is the action space, 𝑟 is the reward function, and T defines
the transition dynamics of the system. The robot explores the
environment and learns a policy 𝜋 which could maximize the
cumulative reward

𝑅𝜋 (𝒔0) =
∞∑︁
𝑡=0

𝛾𝑡𝑟𝑡+1 =

∞∑︁
𝑡=0

𝛾𝑡 𝜌(𝒔𝑡 , 𝜋(𝒔𝑡)), (1)

where 𝛾 ∈ [0, 1) is the discount factor that encodes the
increasing uncertainty about the future and helps with the
convergence of learning. The state-value (V) function and
action-value (Q) function are defined as

𝑉 𝜋 (𝒔𝑡) = E[𝑅𝜋 (𝒔𝑡) |𝒔𝑡]; (2)

𝑄 𝜋 (𝒔𝑡 , 𝒂𝑡) = E[𝑅𝜋 (𝒔𝑡) |𝒔𝑡 , 𝒂𝑡], (3)

respectively. The advantage function

𝐴𝜋 (𝒔𝑡 , 𝒂𝑡) = 𝑄 𝜋 (𝒔𝑡 , 𝒂𝑡) −𝑉 𝜋 (𝒔𝑡), (4)

indicates how much is the action 𝒂𝑡 taken at state 𝒔𝑡 better
or worse than the expected return when following policy 𝜋,
which could be used to update the policy.

1) Proximal Policy Optimization: Proximal policy opti-
mization (PPO) is one of the most widely used model-free RL
algorithms, which optimizes the approximated value function
and the control policy periodically [1], [43]. For 𝑘-step returns,
the estimator of the value function𝑉 𝜋 (𝑠𝑡 , 𝑎𝑡) could be defined
as

�̂�
(𝑘)
𝑡 =

𝑡+𝑘−1∑︁
𝑖=𝑡

𝛾𝑖−𝑡𝑟𝑖 + 𝛾𝑘𝑉 (𝒔𝑡+𝑘). (5)

Then, to compare the action 𝒂𝑡 with the average action taken
at state 𝒔𝑡 , the advantage function 𝐴𝜋 (𝒔𝑡 , 𝒂𝑡) is used as an
indication, which could be estimated with the generalized
advantage estimator (GAE) in the following way:

�̂�𝐺𝐴𝐸
𝑡 = (1 − 𝜆)

∑︁
𝑘>0

𝜆𝑘−1�̂�
(𝑘)
𝑡 , (6)

�̂�𝐺𝐴𝐸
𝑡 = �̂�𝐺𝐴𝐸

𝑡 −𝑉 (𝒔𝑡). (7)

During each trial, the transition data of each step are collected
into the update buffers with a fixed length 𝑁𝑢. For every 𝑁𝑢

steps, the policy and value function estimators are optimized
with the mini-batch stochastic gradient descent method (See
Algorithm 1, line 15-18). The clipped objective of this periodic
optimization could be defined as

𝐿𝑃𝑃𝑂 = Emin(𝑅𝑝 �̂�
𝐺𝐴𝐸
𝑡 , 𝑐𝑙𝑖𝑝(𝑅𝑝 , 1 − 𝜖, 1 + 𝜖) �̂�𝐺𝐴𝐸

𝑡),

𝑅𝑝 =
𝜋(𝒂𝑡 |𝒔𝑡)

𝜋𝑜𝑙𝑑 (𝒂𝑡 |𝒔𝑡)
,

(8)

in which 𝑅𝑝 is the ratio of the probability of taking action 𝒂𝑡
with the updated policy 𝜋 to the probability of taking action 𝒂𝑡
with the old policy 𝜋𝑜𝑙𝑑 . 𝜖 is a hyper-parameter that indicates
the range of deviation of the new policy from the old one.

PPO explores the environment by sampling new actions
randomly around the actions given by the old policy. This
randomness will progressively decrease and the update rule
encourages the algorithm to exploit the previous experience
more, which may increase the chance of getting the algorithm
stuck in local minima, especially when dealing with complex
tasks. Besides, although limited by 𝜖 , it is possible that the
updated policy deviates significantly from the old one and
results in the deterioration of performance. Many different
tricks have been used in the variants of PPO to deal with these
problems. In this paper, we will show that they could also be
alleviated with the help of human demonstrations, even with
imperfect ones.

2) Reward Function: The reward function is one of the
most important pieces in RL that guides the explorations and
determines the goals that robots will try to reach. In the real
world, most of the tasks are considered to be episodic [44].
The most natural and intuitive way of awarding a learner is
to give positive feedback if a certain goal has been reached
within a set of constraints, like

𝑟 =

{
𝑅 if |𝒔𝑡 − 𝒔𝑔 | < 𝜉

0 else,
(9)

in which 𝒔𝑔 is the goal state and 𝜉 defines the region of
success. This kind of sparse reward function does not need
any prior information about the environment, but it cannot
provide enough guidance for learning since robots could only
receive feedback if reaching certain regions in the state space
[29], [44].

Since the complexity of the reward function is proportional
to the complexity of the policies that robots could learn,
another choice is to carefully shape a reward function that en-
codes all the intended motions. These methods include Inverse
Reinforcement Learning (IRL), apprenticeship learning, and
inverse optimal control [45]. However, shaping the reward with
human knowledge is usually avoided in robotics research. The
designed functions are typically task-specific, which cannot be
generalized to other tasks. The computational costs increase
significantly with the complexity of the tasks. And the model
that transforms human knowledge to a reward function is
usually not available [45].

Considering the computational complexity and generaliza-
tion to various tasks, reward functions that are structured and
continuous in the state space [2], [7], or at least smoothly
varying across different regions [1], [29], are mostly used in
dexterous manipulation tasks. For example, the reward could
be measured with the distance between the current state and
the goal state as

𝑟 = −𝑤𝑑∗|𝑑𝒔 | + 𝑅𝑔∗ ⊮{ |𝑑𝒔 |<𝜉 }

𝑑𝒔 = 𝒔𝑡 − 𝒔𝑔 .
(10)

The robot will receive higher rewards when the current state 𝒔𝑡

is closer to the goal state 𝒔𝑔. If the task is completed |𝑑𝒔 | < 𝜖 ,
the robot will receive an additional reward 𝑅𝑔. Only a little
prior knowledge has been used in the reward function, and it
could provide more guidance for explorations.

Most of the dexterous manipulation tasks could be divided
into a sequence of subtasks [46]. Robots could achieve the final
goal step by step by achieving all the goals of the subtasks. For
example, the task in which a robot needs to hit a nail with a
hammer could be divided into three subtasks (‘get to hammer’,
‘hammer to nail’, and ‘hit the nail’) and thus three subgoals.
The reward function of such complex manipulation tasks is
usually defined as

𝑟 = 𝑟1
𝑠𝑢𝑏 + 𝑟

2
𝑠𝑢𝑏 + ... + 𝑟

𝑛
𝑠𝑢𝑏

𝑟𝑛𝑠𝑢𝑏 = 𝑓 (|𝒔𝑡 − 𝒔𝑛𝑔 |),
(11)

in which 𝑟𝑛
𝑠𝑢𝑏

and 𝒔𝑛𝑔 are the reward and goal state of 𝑛𝑡ℎ

subtask, respectively. 𝑓 (·) is the function that calculates the
reward value given the current distance to the goal state [3],
[5]. This structure is also used in our work.
B. Formalization of Imperfect Demonstration

Previous researches mainly focus on expert demonstrations
𝜏𝑠𝑎 : 𝒂 = 𝜋∗ (𝒔), which adopt the optimal or a near-optimal
strategy with respect to the definition of the reward function.
Some researchers studied suboptimal demonstrations 𝜏′𝑠𝑎 :
𝒂′ = 𝜋𝑠𝑢𝑏 (𝒔) which are probably collected from non-expert
users, and demonstrations corrupted with different degrees
of Gaussian noises 𝜏′𝑠𝑎 : 𝒂′ = 𝜋∗ (𝒔) + 𝒂𝑛, 𝒂𝑛 ∼ N(𝜇, 𝜎2).
But none of these could represent the most common case in
practice.

Most robot users are not experts in the given tasks in
practical problems. Their demonstrations are based on their
own preferences and experience, which are suboptimal and
probably of different lengths. Depending on different human-
robot interfaces used for demonstration collection, sensing
noises and errors are usually inevitable. The robot learner
could tolerate small noises and errors, but large ones may
cause trouble to learning. Certain limitations of the interfaces
may also result in some unnecessary movements. For example,
due to the limited sensing area, human teachers sometimes
move their hands out of the sensing area and need to move
them back. This behavior is not a part of the strategy to
perform the task, but this kind of unnecessary movement is
inevitable with this kind of human motion-tracking device.
Also, since most human-robot interfaces have no feedback on
human hands, human teachers have no idea of the contact
situation, which may also lead to unnecessary movements
like shaking, regrasping, and other adjustments of hand poses.
These movements mainly depend on the sensing device used
and the personal preferences of human teachers. In most
cases, they could not be distinguished from sensing noises
and measured statistically.

The imperfect demonstrations 𝜏𝑠𝑢 considered in this paper,
on the other hand, contain all the deficiencies mentioned above,
which could be defined as

𝜏𝑠𝑢 : 𝒖 = 𝜋𝑠𝑢𝑏 (𝒔, 𝑘) + 𝒖𝑛𝑜𝑖𝑠𝑒, 𝒔 ∈ S, 𝒖 ∈ A, (12)

Algorithm 1 Interactive Behavior Cloning for Reinforcement
Learning (IBC-RL)

1: Human: Divide task into subtasks: 𝑀 = {𝑚1, 𝑚2, ..., 𝑚𝑛}
2: Step 1: Collect human demonstrations
3: while 𝑅𝑒𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑑𝑒𝑚𝑜𝑛𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
4: 𝜏1

𝑖
← (𝒔1

𝑡 , 𝒂
1
𝑡), 𝜏2

𝑖
← (𝒔2

𝑡 , 𝒂
2
𝑡), ... , 𝜏𝑛

𝑖
← (𝒔𝑛𝑡 , 𝒂𝑛𝑡)

5: D𝑛 ← 𝑓 𝑖𝑙𝑡𝑒𝑟 (𝜏𝑛
𝑖
)

6: end while
7: Step 2: Learning subtasks with diluted demo replay
8: Reset environment and controller: (𝒔0, 𝜽 ,R,S,A,U)
9: for 𝑖 ≤ 𝑛 do ⊲ Learning 𝑖th subtask

10: Train controller with D𝑖: 𝐵𝐶 (𝜋𝜃 ,D𝑖 , 𝑛𝑒)
11: while 𝑡 < 𝐺𝑖 do
12: 𝒔𝑡+1, 𝑟𝑡 , 𝒂𝑜𝑙𝑑𝑡 = Step (𝒔𝑡 , 𝒂𝑡 = 𝜋𝜃 (𝒔𝑡))
13: S ← 𝒔𝑡 , A ← 𝒂𝑡 , R ← 𝑟𝑡 , U ← 𝒂𝑜𝑙𝑑𝑡

14: Update 𝑟𝑚𝑎𝑥 with eq.(18) and eq.(19)
15: if controller needs to be updated then
16: Optimize 𝜽 with eq.(8) ⊲ Update periodically
17: Empty R,S,A,U
18: end if
19: if learning gets stuck then ⊲ Condition in eq.(19)
20: Modify 𝜽 with D𝑖

𝑚: 𝐵𝐶 (𝜋𝜃 ,D𝑖
𝑚, 𝑛

′
𝑒)

21: end if
22: end while
23: end for

in which 𝜋𝑠𝑢𝑏 (𝒔, 𝑘) is the suboptimal policy shown by human
teachers in 𝑘 𝑡ℎ demonstration and 𝒖𝑛𝑜𝑖𝑠𝑒 is the noise signal due
to the sensing errors, unnecessary movements, and dynamics
difference. At state 𝒔𝑡 , the human teacher takes a suboptimal
action 𝒖𝑡 ∼ 𝑝𝑛 (𝒖𝑡 |𝒔𝑡 , 𝒂𝑡 , 𝑘), 𝒖𝑡 ∈ A. Therefore, imperfect
demonstrations could be considered to be drawn from the
following probability density:

𝑝𝑑 (𝜏𝑠𝑢) =
𝑇∏
𝑡=1

𝑝𝑠 (𝒔𝑡+1 |𝒔𝑡 , 𝒖𝑡)

·𝑝𝑛 (𝒖𝑡 |𝒔𝑡 , 𝒂𝑡 , 𝑘), 𝒖𝑡 ∈ A,

(13)

in which 𝑇 is the control horizon, 𝑝𝑠 is the transition
probability, and 𝑝𝑛 is the noise density indicating the level
of suboptimal strategies and the quality of collected data [47].
An ideal control framework should enable robots to extract
useful information from such imperfect demonstrations and
use it to help with learning.

IV. Interactive Teaching Framework

The goal of the proposed learning framework is to enable
robots to benefit from (imperfect) human demonstrations

during the RL in long-horizon tasks, see Algorithm. 1. With
IBC-RL, robots learn the entire task by gradually learning all
the subtasks sequentially with the segmented demonstrations,
which is a similar learning logic as a human teacher teaches a
child. The general learning pipeline of IBC-RL is introduced
in Sec. IV-A. Sec. IV-B explains how robots learn useful
information from imperfect human demonstrations. Sec. IV-C
explains how different demonstration buffers are constructed
based on human knowledge and used to help with learning. At
last, Sec. IV-D explains how human demonstrations are used
to guide the exploration during RL.

A. Learning pipeline
The entire learning pipeline of IBC-RL is shown in Fig. 2.

Before the learning starts, human teachers first decompose
the task and then perform demonstrations for each subtask, as
explained in Sec. IV-C. Optionally, they could also choose to
perform the related demonstrations later during the learning
when robots ask for their help.

After the learning starts, robots start from the first subtask
and finally learn all the subtasks sequentially. The number of
learning iterations for 𝑖𝑡ℎ subtask 𝐺𝑖 (𝑖 < 𝑛) is determined
by the experience and observations of human teachers in the
following way:

𝑟 𝑖𝑡ℎ𝑟𝑒 = 𝑤𝑖
𝑝 · 𝑟 𝑖ℎ, 𝑤𝑖

𝑝 ∈ [0, 1]

𝐺𝑖 = {𝑁𝑒 | 𝑟 𝑖−1
𝑡ℎ𝑟𝑒 ≤ 𝑟 < 𝑟 𝑖𝑡ℎ𝑟𝑒},

(14)

in which 𝑟 𝑖
𝑡ℎ𝑟𝑒

is the threshold reward of 𝑖𝑡ℎ subtask. 𝑤𝑖
𝑝 is the

weight factor of 𝑖𝑡ℎ subtask and is determined by the human
teacher. 𝑟 𝑖

ℎ
is the average reward that human teachers could

get when they complete 𝑖𝑡ℎ subtask. 𝑟 is the average reward of
robot learners, which is introduced and formalized in Sec. IV-
D. If the performance of the controller reaches the threshold
(𝑟 ≥ 𝑟 𝑖

𝑡ℎ𝑟𝑒
), it means robots have roughly learned 𝑖𝑡ℎ subtask,

and they will start to learn (𝑖 + 1)𝑡ℎ subtask. Therefore, 𝐺𝑖 is
the number of iterations 𝑁𝑒 when 𝑟 is in range [𝑟 𝑖−1

𝑡ℎ𝑟𝑒
, 𝑟 𝑖

𝑡ℎ𝑟𝑒
].

𝑤𝑖
𝑝 needs to be chosen carefully based on the observations

of training processes. Being either too small or too large will
slow down learning. 𝐺𝑛 is a relatively large number from the
start of the last subtask to the maximum learning iterations,
and the learning could be stopped if it converges early.

The learning procedure of each subtask is shown in the blue
dotted box in Fig. 2. D𝑖 and D𝑖

𝑚 are the datasets of collected
human demonstrations of 𝑖𝑡ℎ subtask, which will be used when
and only when learning this subtask. The controller is first
trained on the demonstrations inD𝑖 through Behavior Cloning
(BC), which is explained in Sec.IV-B. Robots will ask for D𝑖

if the demonstrations for this subtask are unavailable. Then
the RL starts again, and robots update the controllers through
further explorations with the optimization logic explained in
Sec. III-A.1. During this process, if the learning gets stuck, the
controller will be modified with the demonstrations inD𝑖

𝑚 also
through BC, but with much fewer training epochs (𝑛′𝑒 < 𝑛𝑒).
This kind of active demonstration replay is detailed in Sec. IV-
D. After training for 𝐺𝑖 steps, robots will move on to the next
subtask and repeat this learning procedure.

Fig. 2: The flow chart of sequentially learning 𝑛 subtasks with IBC-
RL. The blue dotted box illustrates the procedure by which robots
learn each subtask. D𝑖 is used for BC. D𝑖

𝑚 is used for the active
demonstration replay, which could be the same set with D𝑖 or a
different data set collected from human teachers trying to help the
robot get out of the local minima.

In this learning pipeline, human teachers show the correct
ways to robots at the beginning of each subtask and guide their
self-learning processes through demonstrations. The noisy
knowledge is demonstrated to robots in a diluted form to
overcome the forgetting problem, and the noises could be
filtered out quickly through RL.

B. Behavior cloning with imperfect demonstrations
The method used in IBC-RL to extract useful information

from imperfect demonstrations is Behavior Cloning (BC) with
restricted learning epochs. The data collected needs to be
filtered at first to compensate for the noises to a certain degree:

𝜏𝑖𝑛𝑡𝑒𝑟𝑖 = {(𝒔, 𝒂) | (𝒔, 𝒂) ∈ 𝜏𝑖 , |𝑎 | > 𝑎𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑} (15)

𝜏∗𝑖 = {𝜏𝑖𝑛𝑡𝑒𝑟𝑖 | �̄�𝑘𝑛𝑛 − 𝜖 < 𝑎 < �̄�𝑘𝑛𝑛 + 𝜖} (16)

𝜏𝑖 is the trajectory collected in 𝑖𝑡ℎ demonstration, �̄�𝑘𝑛𝑛 is the
average action values of 𝑘 nearest data points and 𝜖 is the
tolerance to the noise. In the first filter, small actions whose
values are smaller than the threshold 𝑎𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 will be set to
zero. In the second filter, actions whose values are not close
to the average action values of 𝑘 nearest data points will be
assigned with the average values. The datasets after filtering
are indeed much cleaner. However, it is inevitable to lose some
detailed information, and the noises cannot be fully filtered
out. The suboptimal strategies and the remaining noises could
still cause trouble in learning.

With the filtered demonstration dataset D : {𝜏∗
𝑖
}𝑁 , which

is formed with 𝑁 different trajectories, the parameters 𝜽 of the

Fig. 3: The bimanual manipulation tasks used to evaluate the control framework: ‘Grasp and Place’, ‘Open the Scissor’, ‘Close the Door’, and
‘Swing the Cup’ (From left to right). The definition of the tasks and the simulation environments are provided by Yuanpei Chen, et al [5] with
modifications made by ourselves.

policy neural network are modified to reduce the mean squared
error (MSE)

L𝑀𝑆𝐸 (𝜽) = E
(𝒔,𝒂) ∈D

| |𝜋𝜃 (𝒔) − 𝒂 | | (17)

between the outputs of the policy neural network and the
demonstrated actions. (𝒔, 𝒂) are state-action pairs in the dataset
D. Unlike the original BC, which requires the learned policy
to mimic the demonstrated ones as closely as possible, IBC-
RL requires the trained controller to avoid overfitting any
imperfect human policy. Therefore, the dataset D should
be formed with multiple demonstrations: the average value
of the demonstrations sampled from human teachers is able
to provide general guidance to the robot. Besides, a hyper-
parameter 𝑛𝑒 is used to control how many epochs the controller
is trained on the training set and stop the learning at a proper
time. In this way, overfitting could be avoided, and the robot
only learns the general direction for further explorations.

C. Demonstrations for subtasks

Like teaching children to perform a task, human teachers
could teach a robot step by step to ensure that necessary
knowledge is shown to it at the proper time. As explained
in Sec. III-A.2, most of the manipulation tasks could be
decomposed into a sequence of subtasks. When the robot needs
to hit a nail, it needs to ‘grab the hammer’, ‘move to the nail’,
and finally ‘hit the nail’. The subtasks must be completed
sequentially. There is no way that the robot could move the
hammer to the nail if it has not grabbed the hammer. It could
not hit the nail if the hammer is not near the nail. The related
reward functions of these tasks are defined with the structure
shown in eq. 11, which guides the robot to perform the entire
task by achieving all the subgoals sequentially.

Therefore, the task 𝑀 could be predefined into a sequence
of subtasks 𝑀 = {𝑚1, 𝑚2, ..., 𝑚𝑛} based on human experience
and the reward function (See Algorithm 1, line 1). Demon-
strations for each subtask are collected separately from human
teachers before the RL start or during the learning when robots
need them. For the 𝑛𝑡ℎ subtask, the demonstrated trajectories
𝜏𝑛
𝑖

: (𝒔, 𝒖) are collected. After filtering, these trajectories are
put into the related datasetsD𝑛 orD𝑛

𝑚 (See Algorithm 1, line
3-6). D𝑛

𝑚 could be the same dataset as D𝑛 or a different one
collected later during the learning. When robots need to learn
the 𝑛𝑡ℎ subtask, onlyD𝑛 orD𝑛

𝑚 will be shown to them instead
of the demonstration D for the entire task. The noises and the

suboptimal strategies in other data sets will not corrupt the
learning repeatedly.

By decomposing the entire task into multiple subtasks,
the two main problems mentioned above could be alleviated
simultaneously. It could help with the forgetting problem since
the learning periods of the subtasks are much shorter, and
the related demonstrations are shown to robots only when
they need them. More importantly, it also avoids unnecessary
confusion and undesired corruption to the learning processes
when working with imperfect human demonstrations.

D. Active demonstration replay

Although being only a part of the entire task, some complex
subtasks may still be quite challenging to learn and require
many learning iterations. While learning these subtasks, the
robot could still gradually forget human knowledge. On the
other hand, imperfect demonstrations may fail to provide
enough guidance for learning these subtasks. Therefore, the
learning may still get stuck, which could be corrected by
adjusting the controller with the human demonstrations again.

Many methods could be used to indicate if the learning gets
stuck in local minima or if the robot learns the wrong strategies
that could not lead to the success of the following subtasks. The
most straightforward one is measuring the average rewards 𝑟 of
a fixed number of trials completed recently. During learning,
robots will keep and continuously update a reward buffer R𝑒

with a fixed length 𝑁 . Once a robot worker has completed a
trial, the cumulative reward of this episode is added to R𝑒,
and the earliest reward value stored in R𝑒 is deleted. In other
words, R𝑒 only stores 𝑁 recent reward values. The average
reward

𝑟 =
1
𝑁

𝑁∑︁
𝑖=1

𝑟𝑖 , 𝑟1, 𝑟2, ..., 𝑟𝑁 ∈ R𝑒 (18)

can reflect how well the robot could perform the task at the
current learning stage. During learning, 𝑟 of the past 𝑀 steps
are recorded in a bufferR𝑢 of fixed length 𝑀 and the maximum
value is recorded in 𝑟𝑚𝑎𝑥 as

𝑟𝑚𝑎𝑥 = max{𝑟1, 𝑟2, ..., 𝑟𝑀 }, 𝑟1, 𝑟2, ..., 𝑟𝑀 ∈ R𝑢. (19)

If 𝑟 fails to increase in 𝑀 steps: 𝑟𝑚𝑎𝑥 = 𝑟1, which means the
learning gets stuck, robots will use human demonstrationsD𝑖

𝑚

to adjust the controller to get the learning back into the right
track (See Algorithm 1, line 14, 19-21). In cases where human
teachers continuously supervise the learning, they could also

Fig. 4: The upper figure shows the original action sequences collected from the sensor, and the lower figure shows the action sequences after
filtering with Equation.15 and 16. The X-axis is time and the Y-axis is the main component of collect actions transformed with PCA. Different
strategies are shown in different demonstrations. 𝑑𝑒𝑚𝑜 2 and 𝑑𝑒𝑚𝑜 3 have similar strategies, which are very different from that of 𝑑𝑒𝑚𝑜 1.

manually stop the learning and replay the demonstrations if
unintended behaviors or strategies are observed.

Unlike the previous research, in which human demon-
strations are replayed to robots regularly, we only replay
them when the learning gets stuck. And we only use the
demonstrations to modify the controller to help it get rid of
the local minima instead of forcing the robot to mimic them.
Although imperfect demonstrations indeed could provide
useful guidance for learning, they will also corrupt the learning
every time shown to the robot.

V. Bimanual Manipulation Experiments

TABLE I: Parameters of the simulated environments

Parameters Description Value

𝐷𝑠 Dimension of the state space 428

𝐷𝑎 Dimension of the action space 52

𝑛𝑎 Number of working agents 512

𝑓𝑐 Control frequency 60 Hz

𝑓𝑛 Frequency of noise generation 600 steps

𝑁𝑜 The range of noise in observations [0, 0.002]

𝑁𝑎 The range of noise in actions [0, 0.05]

Various experiments have been done to validate the prob-
lems when integrating imperfect human demonstrations with
reinforcement learning and evaluate the effectiveness and
robustness of our framework. The first part of the experiments
demonstrates the problems that human knowledge will be
gradually forgotten during reinforcement learning and how the
noises will cause trouble to the learning processes. The second

part of the experiments explains why multiple demonstrations
are used instead of a single one and why demonstrations of
the subtasks are used instead of those of the entire task. The
last part of the experiments evaluates the effectiveness of the
framework with four bimanual dexterous manipulation tasks
(see Fig.3) and explains the limitations of the framework.

All the test environments are built and simulated with the
Isaac Gym engine [9]. The important parameters are listed
in table I. Each human-like robot hand has 26 DoF, which
is dexterous enough to perform various tasks like pushing,
grasping, catching, etc. For the collection of human demon-
strations, human teachers control the simulated robot hands
with the human motion tracking device, which captures the
movements of human hands with infrared rays at 100 Hz. The
sensor collects the real-time states of human hands and fingers.
After some transformations which could compensate for the
morphology difference, the robot will receive the difference
between its current state and the next state 𝑠𝑡+1 − 𝑠𝑡 , which is
sent to the PD controllers for the trajectory following. Then
the robot mimics human movements by sequentially visiting all
the collected states of human hands in a demonstration. The
state-action pairs of the simulated robot hands are recorded
at 60 Hz. The demonstrations used in the experiments were
collected from two demonstrators. They performed the tasks
using the hand-tracking device without much practice and tried
to show different but reasonable and human-like strategies.

Demonstrations collected with the human motion tracking
device contain various suboptimal strategies, unnecessary
movements, and noises, which could be depicted with eq. 12
and 13. For each collected demonstration, when replaying the
collected actions in sequence, the robot can repeat human
behaviors, but suboptimal strategies, unnecessary movements,
and noises could be obviously noticed. It becomes much

cleaner after filtering, as shown in Fig.4. Assigning exotic
actions with average values could indeed filter out much noise.
However, it will also lose many details of human movements.

Our work is built upon a baseline of bimanual manipulation
tasks of [5]. We designed new functions and APIs to collect
and visualize human demonstrations and made necessary
modifications to the PPO controller and task definitions. The
main parameters of the PPO controller are shown in table
II. These values are shared in all the following experiments.
Because of the randomness when sampling new actions at each
step during the exploration, the learning processes of the same
task could be very different. Therefore, multiple tests are done
for each task with the same settings. The mean and variance of
the learning curves are shown in the figures for comparison.

TABLE II: Parameters of the PPO controller

Parameters Description Value

𝛾 Discount rate 0.96

𝑙𝑟 Learning rate 3 × 10−4

𝑛𝑠 Update intervals 8

𝑛𝑚 Number of mini-batches 4

𝜖 Clip range of the policy update 0.2

𝐻𝑝 Size of the policy network [1024, 1024, 512]
𝐻𝑣 Size of the value network [1024, 1024, 512]
𝐹𝑎 Activation function Elu

𝑁𝑖𝑡 Max number of iteration for each trial 4000

The learning framework IBC-RL is evaluated with four
kinds of bimanual dexterous manipulation tasks in Sec. V-
A. The results of some ablation studies are shown in Sec. V-B,
which validate the main problems and support the design of the
framework. At last, the limitations of the framework exposed
in the experiments are summarized in Sec. V-C.

A. Evaluation of the framework

The new learning framework IBC-RL is evaluated with four
tasks: ‘Open the Scissor’, ‘Grasp and Place’, ‘Close the Door’,
and ‘Swing the cup’ (see Fig. 3). All the tasks have been
divided into two subtasks: ‘Reach’ and ‘Manipulation’. In
the ‘Reach’ subtask, robots learn how to move their hands
from where they are initialized to the target objects. In the
‘Manipulation’ subtask, robots learn how to manipulate the
objects to transform them from the initial state to the target
state. The results of the experiments could demonstrate the
validity of IBC-RL and also illustrate its limitations.

In all four tasks, the following distances need to be measured

Fig. 5: The results of the ‘Grasp and Place’ task. When learning with
IBC-RL, the learning of the second subtask ’manipulation’ starts from
1200 its. The rewards have been regularized into the range [0, 1] for
comparison. For each method, the mean and variance of the results
of 5 repeated tests have been plotted in the figure.

and are used in the reward functions:

𝑟𝑑 =

5∑︁
𝑖=1

𝐷 (𝒑𝑟 𝑓 [𝑖] − 𝒑𝑟ℎ)

𝑙𝑑 =

5∑︁
𝑖=1

𝐷 (𝒑𝑙 𝑓 [𝑖] − 𝒑𝑙ℎ)

𝐷 (𝒙) =
√︂
Σ𝑛
𝑖=1

(
𝒙 [𝑖]

)2
,

(20)

in which 𝑟𝑑 is the distance between the right hand and the right
handle of the object. 𝒑𝑟 𝑓 is the array that stores the positions
of five fingers of the right hand. 𝒑𝑟ℎ is the position vector of
the right handle of the object. 𝑙𝑑 , 𝒑𝑙 𝑓 , and 𝒑𝑙ℎ have similar
meanings, but they are about the left hand and the left handle
of the object.

1) Grasp and Place: In this task, robots need to put the
cube into the cup. The reward function

𝑟 = exp(−10 · 𝑟𝑑) + exp(−10 · 𝑙𝑑)

+10 · exp(−10 · 𝐷 (𝒑𝑟ℎ − 𝒑𝑙ℎ))
(21)

punishes the distances between the hands and the objects,
and the distance between two objects. The results of the
experiments are shown in Fig. 5.

Pure PPO controller is not intelligent enough to learn a valid
policy by itself in difficult tasks like ‘Grasp and Place’ [5]. Due
to the imperfection of human demonstrations, initializing the
learning with entire demonstrations could only offer limited
help. But with IBC-RL, robots are able to perfectly perform
the task within 4000 iterations. They could roughly learn how
to reach the objects after 1200 iterations. Then demonstrations
of the ‘manipulation’ subtask are fed to robots. In the following
iterations, they gradually learn how to put the cube into
the cup and also optimize the detailed operations (See the
recorded video, which visualizes the learning process [48]).
After training, robots can learn a much better strategy than
those demonstrated by human teachers. The movements of

(a) IBC-RL vs Pure RL (b) IBC-RL vs Warm-start RL

Fig. 6: The results of the ‘Open the Scissor’ task. When learning with
IBC-RL, the learning of the second subtask ’manipulation’ starts from
500 its. The rewards have been regularized into the range [0, 1] for
comparison. For each method, the mean and variance of the results
of 5 repeated tests have been plotted in the figure.

robots are also more efficient and precise. The controllers
trained with different methods are compared with each other
(See the recorded video [49]).

It is worth noting that robots are still unable to learn
specific behaviors with IBC-RL, like picking up the cube,
even if human teachers have shown similar behaviors in
demonstrations. Because such specific behavior is not defined
in the reward function, robots will not receive any rewards
for doing these human-like behaviors. They will learn a more
direct and concise way to reach a higher reward.

2) Open the Scissor: In this task, the robot needs to open
a scissor that is initialized to be closed. The reward function

𝑟 = 2 − 𝑟𝑑 − 𝑙𝑑 + (0.59 + 𝜃𝑜) · 5 (22)

punishes the distances between the hands and the scissor
handles and awards the distance between the two handles.
𝜃𝑜 is the joint angle of the scissor, which will increase when
opening the scissor. The results of the experiments are shown
in Fig. 6.

Fig. 6a compares the learning processes with pure RL and
IBC-RL. Pure PPO controller is able to learn a valid policy
but requires about 6000 iterations. With IBC-RL, it could
achieve the same performance with only about 3000 iterations.
Also, by replaying the demonstrations of subtasks, the learning
becomes more stable without many performance drops. On the
other hand, the performance of a pure PPO controller drops
every time the exploration gets stuck or goes wrong. Fig. 6b
compares the learning processes with warm-start PPO and
IBC-RL. Apparently, our framework outperforms the other
one which cannot converge within 4000 iterations and suffers
from performance drops.

In this task, the contact of robot hands and objects is not
steady during the operations, which increases the uncertainty
of explorations and may also mislead the learning. Replaying
demonstrations to correct the direction of exploration could
offer more help in this case.

3) Close the Door: In this task, robots need to close the
doors which are initialized to be open. The reward function

𝑟 = 3 − 𝑟𝑑 − 𝑙𝑑 − |ℎ𝑟ℎ − ℎ𝑙ℎ | · 2 (23)

(a) IBC-RL vs Pure RL (b) IBC-RL vs Warm-start RL

Fig. 7: The results of the ‘Close the door’ task. When learning with
IBC-RL, the learning of the second subtask ’manipulation’ starts from
1500 its. The rewards have been regularized into the range [0, 1] for
comparison. For each method, the mean and variance of the results
of 5 repeated tests have been plotted in the figure.

punishes the distances between the hands and the door handles,
and the distance between the two handles. Robots need to
continuously apply forces on the doors to keep them closed.
ℎ𝑟ℎ and ℎ𝑙ℎ are the horizontal positions of the right handle
and left handle of the door, respectively. The results of the
experiments are shown in Fig. 7.

Fig. 7a compares the learning processes with pure RL and
IBC-RL in the ‘Close the door’ task. This task is simpler
than ‘Open the Scissor,’ and the pure PPO controller can
roughly learn the task after about 5000 iterations, but it cannot
stably perform the task. And it is still much slower than
IBC-RL, which could perfectly perform the task after only
3000 iterations. Also, the learning processes of IBC-RL are
more stable with fewer performance drops. Fig. 7b compares
the learning processes with warm-start PPO and IBC-RL.
Initializing the controller with entire demonstrations nearly
offers no help to the learning here.

In this task, demonstrations given by human teachers do
not respect the definition of the reward function. In demon-
strations, we use hands to directly push the door rather than
pushing the handles, which may be a more natural way for most
people. This could explain why the average performance of the
controller with IBC-RL could not outperform the others when
learning the first subtask. The learning is guided by the reward
function, meaning that robots cannot utilize human knowledge
in the first subtask and must learn by themselves. For the second
subtask, robots could learn from human demonstrations again,
and thus the learning has been accelerated.

4) Swing the Cup: In this task, robots need to hold the cup
handles and rotate the cup 90 degrees. The reward function

𝑟𝑜𝑡 = 2 · arcsin(𝐷 (𝒒𝑑))

𝑟 = −𝑟𝑑 − 𝑙𝑑 + 1/(|𝑟𝑜𝑡 | + 0.1) · 5 − 1
(24)

punishes the distances between the hands and the cup handles
and the difference between the current pose and the target
pose of the cup. 𝒒𝑑 is the difference between the quaternions
of the object rotation and the target rotation. Robot hands are
initialized near the cup handles, and robots do not need to
switch their hands for a rotation of 90 degrees, which makes
this task easier. The results of the experiments are shown in

(a) IBC-RL vs Pure RL (b) IBC-RL vs Warm-start RL

Fig. 8: The results of the ‘Swing the Cup’ task. When learning with
IBC-RL, the learning of the second subtask ’manipulation’ starts from
800 its. The rewards have been regularized into the range [0, 1] for
comparison. For each method, the mean and variance of the results
of 5 repeated tests have been plotted in the figure.

Fig. 8.
Fig. 8a compares the learning processes with pure RL and

IBC-RL. In simple tasks like ‘Swing the Cup’, a pure PPO
controller is already able to learn the task quite fast. Therefore,
IBC-RL could not accelerate the learning much at an early
stage, but it could still help with the convergence. Human
demonstrations could help the controller learn how to get
close to the target position more effectively and keep the cup
in the target pose, which saves about two or three thousand
iterations of learning. Fig. 8b compares the learning processes
with warm-start PPO and IBC-RL. It again proves that IBC-
RL is able to solve the forgetting problem and always enables
robots to utilize human knowledge during learning.

B. Ablation studies

Some ablation studies are done to validate the main
problems in designing the learning framework and support
the main choices we made.

1) Human demos gradually vanish during the RL pro-
cess: This is a common problem when integrating human
knowledge with the RL [3], [35]. If only imitating human
demonstrations before the RL starts, the robot could not
precisely repeat the movements shown in the demonstrations
again after RL and thus could not reach a higher reward.
In other words, the knowledge learned from demonstrations
will be gradually forgotten in the RL. In the beginning, entire
demonstrations are shown to the robot, but it could only utilize
the initial part of them.

We proved that this problem does exist and could be
alleviated by learning from demonstrations of subtasks instead
of learning the entire task in a single time. We use the expert
demonstrations collected with a well-trained controller, which
can demonstrate a near-optimal policy. In the ‘Grasp and Place’
task, the segmented demonstrations have been proven to be
able to offer more help and result in a controller with better
performance (See Fig. 9).

Fig. 9a compares the learning processes of pure PPO and
that initialized with the demonstrations of the entire task. Pure
PPO is not able to learn the task. The learning initialized with
complete expert demonstrations is able to converge within
several hundred iterations. However, the robot fails to learn

(a) Entire demo vs Pure RL (b) Segmented vs Entire

Fig. 9: The left figure compares the learning processes of pure
PPO (orange line) and warm-starting PPO with demonstrations of
the entire task (blue line). The right figure compares the learning
processes of warm-starting PPO with demonstrations of the entire
task (orange line) and PPO with demonstrations for subtasks (blue
line)

how to perform the second half of the task well, which
is moving the cube exactly into the cup. And with more
explorations in the following RL iterations, the performance
becomes less stable. On average, the trained robot could not
learn to perform the task well as the demonstrations did. The
second half of the demonstrations is gradually forgotten by
robots during RL. Similar findings are shown in [3]. In the
experiment where the robot needs to grab a hammer and hit
on a nail, it could hold the hammer but cannot precisely hit on
the nail after RL.

Fig. 9b compares the learning processes initialized with
the demonstrations of the entire task and learns two subtasks
(‘reach’ and ‘manipulation’) sequentially. In the ‘reach’ sub-
task, we show the robot how to put its hands on the cup and
the cube, respectively. After it learns for 300 iterations with
RL, it will move to the ‘manipulation’ subtask, and we will
then show it how to put the cube into the cup. In this way,
the learning process becomes more stable and could reach a
higher reward. The performance of the controller after training
is comparable to the expert demonstrations.

2) Effect of action noises: We studied the influence of
action noises on the learning processes by corrupting expert
demonstrations. At each step, a new action is sampled within
a multivariate normal distribution centered at the optimal
action of the current state. The variance of the distribution
is measured by a parameter 𝑛. Actions carried out by robots
during the explorations will be noisier with a larger 𝑛.
The degree of noise on expert demonstrations is gradually
increased in the ‘Grasp and Place (gap)’ task (See Fig. 10a) and
the ‘Open the Scissor (sci)’ task (See Fig. 10b). In both tasks,
demonstrations with more noise contribute less to learning.
With 𝑛 = 3.0, they almost provide no help at all.

The imperfect demonstrations considered in our work
contain not only random sensing noises but also suboptimal
strategies and other unnecessary movements, which makes it
even more difficult for robots to utilize human knowledge.

3) Multiple human demos or single human demo:
Learning from a single human demonstration will make the
controller overfit a suboptimal strategy and the noises, which
increases the workload of later optimizations through RL. On
the other hand, robot learning from multiple human demon-

(a) Grasp and Place (gap) (b) Open the Scissor (sci)

Fig. 10: Comparison of the learning processes with different degrees
of noise (𝑛 from 0 to 3) in the tasks ‘Grasp and Place (gap)’ (left) and
‘Open the Scissor (sci)’ (right). Demonstrations are helpless when
𝑛 = 3 (The green line)

Fig. 11: Comparison of the learning processes of the robot that learns
with multiple human demonstrations and with a single demonstration.
In the green curve, robots learn with all six demonstrations, and the
green shade indicates the variance of the results of repeated tests. In
the orange curve, robots learn with only one of the six demonstrations,
and the orange shade indicates the variance of the learning results with
different demonstrations.

strations may suffer from conflicted labels [50]. Therefore,
several tests have been done with the ‘Open Scissor’ task to
validate our choice.

Fig. 11 compares the learning processes with six human
demonstrations and with one of them each time. Training
with multiple human demonstrations outperforms that with a
single demonstration, even compared with the best one with the
highest reward. The learning processes with multiple demon-
strations in Fig. 11 are also more stable since the learning is
heavily influenced by the quality of the demonstration when
only a single one is used. In the ‘Grasp and Place’ task, the
controller cannot even learn anything with only a single human
demonstration since the strategy demonstrated for this task is
far from the optimal one with a pretty low reward. The results
of the experiments in Fig. 11 also prove the fact that with
multiple human demonstrations, robots will be able to learn the
general direction for further explorations, which could reduce
the influence of conflicted labels and avoid focusing too much
on the details of each imperfect demonstration.

4) Entire demo or demo for the subtasks: In previous
research, which works with expert demonstrations [3], [35],
demonstrations of the entire tasks are fed to the robot and

Fig. 12: Comparison of replaying demonstrations of the entire task
and those of the subtasks. In the red curve, perfect demonstrations
are replayed around 1300 and 2200 iterations. In the green curve,
demonstrations of the first subtask are fed to robots at the beginning.
Demonstrations of the second subtask are fed to robots at 400 its and
then replayed at 2800 iterations. In blue and orange curves, human
demonstrations of the entire task are fed to robots at the beginning
and then replayed around 2000 and 2400 iterations, respectively.

used for policy updates during the learning. Several tests have
been done to determine if it is still appropriate to replay entire
demonstrations or if it is better to replay the demonstrations of
the subtasks (see Fig. 12).

When robots are retrained with perfect demonstrations
(red curve in Fig. 12), they could recover soon from the
interruptions and continue to learn. However, replaying entire
demonstrations severely corrupts learning when robots are fed
with imperfect human demonstrations. It needs much more
iterations to recover (blue and orange curves in Fig. 12).
Every time the demonstrations are fed to robots, the learning
suffers from the noise signals, which significantly slows down
the learning process. After each interruption, the learning
requires more than 500 RL iterations to recover. On the other
hand, replaying demonstrations for the subtasks avoids feeding
unnecessary noisy data repeatedly to robots and thus does
not corrupt the learning too much (green curve in Fig. 12).
The learning could recover soon from corruption and avoid
unnecessary interactions with the environment. It can recover
within 100 or 200 iterations in our tests. Therefore, when
learning with imperfect human demonstrations, replaying
demonstrations of the subtasks could be a better choice, which
can help the controller get rid of the local minima while also
having less interruption on the learning.

C. Limitations of the framework
1) Imperfect demonstrations make fewer improvements

on simple tasks: Unlike the expert ones, imperfect human
demonstrations could only provide general guidance to the
controller during the explorations, which means the learning
still heavily relies on the explorations of RL. Therefore, as
shown in Fig. 8, IBC-RL could not accelerate the learning
much at an early stage for simple tasks like ‘Swing the Cup.’
But the imperfect demonstrations could still be useful to
accelerate the convergence of learning to reach the target pose
and hold the cup there.

2) Human demonstrations may not follow the definition
of the reward function: The strategies shown in human
demonstrations result in human-like behaviors, but they may
be given low scores if assessed with the reward function. For
example, in the ‘Close the Door’ task, human teachers may
prefer to close the door with the hands put directly on the body
of the doors, while the reward function requires the hands to
be fixed on the handles. Since our method still relies on the
exploration of RL, which is guided by the reward function, the
first part of the human demonstrations (put the hands on the
door) is actually an error to the controller which needs to be
fixed in the later learning iterations. In this task, as shown in
Fig.7, the learning could not be accelerated in the first 2000
iterations since the controller needs to fix the error and learn
how to push the door with the hands on the handles by itself.

3) More expressive reward functions are necessary:
With the LfD methods, robots are able to learn almost the
same behaviors from human teachers. Again, since IBC-RL
could not learn a good enough policy directly from human
demonstrations and still relies on the exploration of RL, the
reward function fully decides what the controller is able to
learn, which may cause trouble in some cases. For example, in
the ‘Grasp and Place’ task, it could not learn how to pick up
the cube since the reward function only punishes the distance
between the hands and the objects, and the robot could already
get the highest reward without holding the cube in hand.
Similarly, in the ‘Open the door’ task, the robot could not
learn to hold the handles even if we show this behavior in
demonstrations.

VI. CONCLUSIONS
We have proposed a new learning framework (IBC-RL)

that enables robots to utilize imperfect human demonstrations
in RL. Under this framework, robots gradually learn all the
subtasks in sequence. Related demonstrations are fed to robots
just as guidance and only when necessary to avoid repeated
corruption to the learning. With four dexterous bimanual
manipulation tasks, we have demonstrated that IBC-RL could
enable robots to learn much faster and steadier. It could even
empower robots to perform more complicated tasks that cannot
be learned with pure RL or other RL-based methods when
expert demonstrations are unavailable. Our work could release
the reliance on human experts and accurate human motion-
tracking devices to a certain degree.

According to the results of the experiments, there are also a
few limitations of IBC-RL that one needs to be aware of before
applying it. The learning with this framework still relies on the
explorations of RL, which means the reward function fully
determines what the robot can learn and what it will try to
learn. Therefore, one could not expect the robot to master the
skills that are not defined in the reward function, even if human
teachers have demonstrated them. For the same reason, the
demonstrations fed to the robot should also respect the reward
function. Otherwise, they will be useless or even harmful to
learning. The robot could get only general guidance for later
explorations from imperfect demonstrations. Therefore, they
may not be very helpful in tasks that are easy to learn.

In our work, we have primarily demonstrated the efficiency
of the IBC-RL framework when working with imperfect
demonstrations. It still has great potential that could be further
developed. In the future, it could be applied to more complex
manipulation tasks, which could be decomposed into more
subtasks since the step-by-step learning method of IBC-RL
is practically more suitable for long-horizon tasks. Robots
could also break the requirement for expert teachers and
accurate teaching interfaces and learn various complex tasks
with all kinds of human demonstrators. The framework could
be further developed by replacing BC with a more effective
method that could enable robots to benefit from very different
suboptimal strategies demonstrated by human teachers. By
taking the average, BC cannot efficiently deal with the different
suboptimal strategies since many details have been abandoned.
In the meantime, more tests need to be done to further
evaluate and optimize this learning framework. For example,
it should be tested with other human-robot interfaces and
more demonstrators and also compared with other learning
frameworks.

References
[1] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. Mc-

Grew, J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray et al.,
“Learning dexterous in-hand manipulation,” The International Journal
of Robotics Research, vol. 39, no. 1, pp. 3–20, 2020.

[2] H. Zhu, A. Gupta, A. Rajeswaran, S. Levine, and V. Kumar, “Dexter-
ous manipulation with deep reinforcement learning: Efficient, general,
and low-cost,” in 2019 International Conference on Robotics and
Automation (ICRA). IEEE, 2019, pp. 3651–3657.

[3] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman,
E. Todorov, and S. Levine, “Learning complex dexterous manipulation
with deep reinforcement learning and demonstrations,” arXiv preprint
arXiv:1709.10087, 2017.

[4] A. Billard and D. Kragic, “Trends and challenges in robot manipula-
tion,” Science, vol. 364, no. 6446, p. eaat8414, 2019.

[5] Y. Chen, Y. Yang, T. Wu, S. Wang, X. Feng, J. Jiang, Z. Lu,
S. M. McAleer, H. Dong, and S.-C. Zhu, “Towards human-
level bimanual dexterous manipulation with reinforcement learning,”
in Thirty-sixth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2022. [Online]. Available:
https://openreview.net/forum?id=D29JbExncTP

[6] F. Xie, A. Chowdhury, M. De Paolis Kaluza, L. Zhao, L. Wong, and
R. Yu, “Deep imitation learning for bimanual robotic manipulation,”
Advances in neural information processing systems, vol. 33, pp. 2327–
2337, 2020.

[7] A. Nagabandi, K. Konolige, S. Levine, and V. Kumar, “Deep dynamics
models for learning dexterous manipulation,” in Conference on Robot
Learning. PMLR, 2020, pp. 1101–1112.

[8] Y.-H. Wu, N. Charoenphakdee, H. Bao, V. Tangkaratt, and M. Sugiyama,
“Imitation learning from imperfect demonstration,” in International
Conference on Machine Learning. PMLR, 2019, pp. 6818–6827.

[9] “Isaac gym - preview release,” Jul 2022. [Online]. Available:
https://developer.nvidia.com/isaac-gym

[10] C. Yu and P. Wang, “Dexterous manipulation for multi-fingered
robotic hands with reinforcement learning: a review,” Frontiers in
Neurorobotics, vol. 16, 2022.

[11] A. S. Polydoros and L. Nalpantidis, “Survey of model-based rein-
forcement learning: Applications on robotics,” Journal of Intelligent
& Robotic Systems, vol. 86, no. 2, pp. 153–173, 2017.

[12] A. Plaat, W. Kosters, and M. Preuss, “High-accuracy model-based
reinforcement learning, a survey,” Artificial Intelligence Review, pp.
1–33, 2023.

[13] M. T. Mason and J. K. Salisbury Jr, “Robot hands and the mechanics of
manipulation,” 1985.

[14] A. Bicchi and R. Sorrentino, “Dexterous manipulation through rolling,”
in Proceedings of 1995 IEEE International Conference on Robotics
and Automation, vol. 1. IEEE, 1995, pp. 452–457.

https://openreview.net/forum?id=D29JbExncTP
https://developer.nvidia.com/isaac-gym

[15] L. Han, Y.-S. Guan, Z. Li, Q. Shi, and J. C. Trinkle, “Dextrous
manipulation with rolling contacts,” in Proceedings of International
Conference on Robotics and Automation, vol. 2. IEEE, 1997, pp.
992–997.

[16] M. Cherif and K. K. Gupta, “Planning quasi-static fingertip manipula-
tions for reconfiguring objects,” IEEE Transactions on Robotics and
Automation, vol. 15, no. 5, pp. 837–848, 1999.

[17] Y. Aiyama, M. Inaba, and H. Inoue, “Pivoting: A new method of
graspless manipulation of object by robot fingers,” in Proceedings of
1993 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS’93), vol. 1. IEEE, 1993, pp. 136–143.

[18] L. Han and J. C. Trinkle, “Dextrous manipulation by rolling and
finger gaiting,” in Proceedings. 1998 IEEE International Conference
on Robotics and Automation (Cat. No. 98CH36146), vol. 1. IEEE,
1998, pp. 730–735.

[19] K. Hertkorn, M. A. Roa, and C. Borst, “Planning in-hand object
manipulation with multifingered hands considering task constraints,”
in 2013 IEEE International Conference on Robotics and Automation.
IEEE, 2013, pp. 617–624.

[20] Q. Lu, N. Baron, A. B. Clark, and N. Rojas, “Systematic object-invariant
in-hand manipulation via reconfigurable underactuation: Introducing the
ruth gripper,” The International Journal of Robotics Research, vol. 40,
no. 12-14, pp. 1402–1418, 2021.

[21] C. Konnaris, C. Gavriel, A. A. Thomik, and A. A. Faisal, “Ethohand: A
dexterous robotic hand with ball-joint thumb enables complex in-hand
object manipulation,” in 2016 6th IEEE International Conference on
Biomedical Robotics and Biomechatronics (BioRob). IEEE, 2016, pp.
1154–1159.

[22] D. Andronas, S. Xythalis, P. Karagiannis, G. Michalos, and S. Makris,
“Robot gripper with high speed, in-hand object manipulation capabili-
ties,” Procedia CIRP, vol. 97, pp. 482–486, 2021.

[23] N. Chavan-Dafle, R. Holladay, and A. Rodriguez, “Planar in-hand
manipulation via motion cones,” The International Journal of Robotics
Research, vol. 39, no. 2-3, pp. 163–182, 2020.

[24] N. Chavan-Dafle and A. Rodriguez, “Sampling-based planning of
in-hand manipulation with external pushes,” in Robotics Research.
Springer, 2020, pp. 523–539.

[25] M. Pfanne, M. Chalon, F. Stulp, H. Ritter, and A. Albu-Schäffer, “Object-
level impedance control for dexterous in-hand manipulation,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 2987–2994, 2020.

[26] Q. Li, C. Elbrechter, R. Haschke, and H. Ritter, “Integrating vision,
haptics and proprioception into a feedback controller for in-hand
manipulation of unknown objects,” in 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2013, pp. 2466–
2471.

[27] N. C. Dafle, A. Rodriguez, R. Paolini, B. Tang, S. S. Srinivasa,
M. Erdmann, M. T. Mason, I. Lundberg, H. Staab, and T. Fuhlbrigge,
“Extrinsic dexterity: In-hand manipulation with external forces,” in 2014
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2014, pp. 1578–1585.

[28] H. Van Hoof, T. Hermans, G. Neumann, and J. Peters, “Learning robot
in-hand manipulation with tactile features,” in 2015 IEEE-RAS 15th
International Conference on Humanoid Robots (Humanoids). IEEE,
2015, pp. 121–127.

[29] I. Popov, N. Heess, T. Lillicrap, R. Hafner, G. Barth-Maron, M. Vecerik,
T. Lampe, Y. Tassa, T. Erez, and M. Riedmiller, “Data-efficient deep
reinforcement learning for dexterous manipulation,” arXiv preprint
arXiv:1704.03073, 2017.

[30] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from sim-
ulation to the real world,” in 2017 IEEE/RSJ international conference
on intelligent robots and systems (IROS). IEEE, 2017, pp. 23–30.

[31] T. Chen, J. Xu, and P. Agrawal, “A system for general in-hand object
re-orientation,” in Conference on Robot Learning. PMLR, 2022, pp.
297–307.

[32] M. Pfeiffer, S. Shukla, M. Turchetta, C. Cadena, A. Krause, R. Siegwart,
and J. Nieto, “Reinforced imitation: Sample efficient deep reinforcement
learning for mapless navigation by leveraging prior demonstrations,”
IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 4423–4430,
2018.

[33] P. Rivera, J. Oh, E. Valarezo, G. Ryu, H. Jung, J. H. Lee, J. G. Jeong,
and T.-S. Kim, “Reward shaping to learn natural object manipulation
with an anthropomorphic robotic hand and hand pose priors via on-
policy reinforcement learning,” in 2021 International Conference on

Information and Communication Technology Convergence (ICTC).
IEEE, 2021, pp. 167–171.

[34] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International conference on machine learning. PMLR, 2018,
pp. 1861–1870.

[35] M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot, N. Heess,
T. Rothörl, T. Lampe, and M. Riedmiller, “Leveraging demonstrations for
deep reinforcement learning on robotics problems with sparse rewards,”
arXiv preprint arXiv:1707.08817, 2017.

[36] H. Liu, Z. Huang, J. Wu, and C. Lv, “Improved deep reinforcement
learning with expert demonstrations for urban autonomous driving,” in
2022 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2022, pp.
921–928.

[37] A. Gupta, C. Eppner, S. Levine, and P. Abbeel, “Learning dexterous
manipulation for a soft robotic hand from human demonstrations,” in
2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2016, pp. 3786–3793.

[38] J. Ho and S. Ermon, “Generative adversarial imitation learning,”
Advances in neural information processing systems, vol. 29, 2016.

[39] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, J. Peters
et al., “An algorithmic perspective on imitation learning,” Foundations
and Trends® in Robotics, vol. 7, no. 1-2, pp. 1–179, 2018.

[40] B. Burchfiel, C. Tomasi, and R. Parr, “Distance minimization for
reward learning from scored trajectories,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 30, no. 1, 2016.

[41] Y. Gao, H. Xu, J. Lin, F. Yu, S. Levine, and T. Darrell, “Rein-
forcement learning from imperfect demonstrations,” arXiv preprint
arXiv:1802.05313, 2018.

[42] R. Jeong, J. T. Springenberg, J. Kay, D. Zheng, Y. Zhou, A. Galashov,
N. Heess, and F. Nori, “Learning dexterous manipulation from subopti-
mal experts,” arXiv preprint arXiv:2010.08587, 2020.

[43] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proxi-
mal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[44] S. Amarjyoti, “Deep reinforcement learning for robotic manipulation-
the state of the art,” arXiv preprint arXiv:1701.08878, 2017.

[45] O. Kroemer, S. Niekum, and G. Konidaris, “A review of robot learning
for manipulation: Challenges, representations, and algorithms,” The
Journal of Machine Learning Research, vol. 22, no. 1, pp. 1395–1476,
2021.

[46] O. Kroemer, C. Daniel, G. Neumann, H. Van Hoof, and J. Peters, “To-
wards learning hierarchical skills for multi-phase manipulation tasks,”
in 2015 IEEE international conference on robotics and automation
(ICRA). IEEE, 2015, pp. 1503–1510.

[47] V. Tangkaratt, B. Han, M. E. Khan, and M. Sugiyama, “Variational
imitation learning with diverse-quality demonstrations,” in Proceedings
of the 37th International Conference on Machine Learning, 2020, pp.
9407–9417.

[48] Z. Du, “Training process of ibc-rl with ’grasp and place’ task,” Feb
2023. [Online]. Available: https://youtu.be/LdILg6l2bEQ

[49] ——, “The comparison of the controllers trained with three different
methods,” Feb 2023. [Online]. Available: https://youtu.be/p4yV-
gE0H5w

[50] M. E. Taylor, H. B. Suay, and S. Chernova, “Integrating reinforce-
ment learning with human demonstrations of varying ability,” in The
10th International Conference on Autonomous Agents and Multiagent
Systems-Volume 2, 2011, pp. 617–624.

https://youtu.be/LdILg6l2bEQ
https://youtu.be/p4yV-gE0H5w
https://youtu.be/p4yV-gE0H5w

A
Appendix - Demonstration Collection

Figure A.1: Overview of the teaching scheme

The general teaching scheme is shown in Fig. A.1. When performing demonstrations for a task, one
unit of robot hands and the object is simulatedwith Isaac Gym. By observing the state of the robot’s hands
Srobot and the object Sobject, the human teacher moves his hands to complete the task. The trajectories of
the human hands τh are recorded and followed by the robot by taking actions Uh. Some transformations
on the collected trajectory are needed here to compensate for themorphology difference. In themeantime,
the states and actions of the robot τni are recorded as demonstrations for task learning with IBC-RL.
Human teachers could supervise the learning process and interrupt the learning by sending commands,
such as replaying demonstrations, starting the next subtask, etc. If necessary, new demonstrations could
be recorded for robots.

When teleoperating the simulated robot hands, a trajectory of human hands τh : {X1, X2, ..., Xn}
is recorded by the motion-tracking device. In the meantime, the state changes of human hands △X =
Xn−Xn−1 are sent to the controller for state tracking. In this way, the simulated robot hands could repeat
the movements of human hands simultaneously. Sec. A.1 introduces in detail how the trajectories of
human hands are recorded and the transformationsmade for themorphology difference. Sec. A.2 explains
how the robot follows the trajectories and how the demonstrations for later learning are recorded.

A.1 TRAJECTORY RECORDING

A.1.1 HUMAN-ROBOT INTERFACE
A Leap Sensor is used as the humanmotion tracking device in our experiments [3]. As shown in Fig. A.2a,
it captures the real-time movements of human hands and repeats them with a pair of modeled hands
without noticeable delay. The hand model in Leap Sensor has a similar structure compared with the
human hand shown in Fig. A.2b. Without much morphology difference, the repeated movements are

1

(a) Leap Sensor (b) Human hand (c) Robot hand

Figure A.2: Leap sensor and its hand model are shown in Fig. A.2a. The structure of a human hand is shown in Fig. A.2b [1].
And the structure of the robot hand simulated with Isaac Gym is shown in Fig. A.2c [2]

close to the original ones shown by human demonstrators. However, due to the limited sensing area and
the inaccuracy of sensing with infrared rays, it is hard for human teachers to perform optimal strategies,
and the collected data are noisy.

We built our work based on the official ROS driver for the Leap Motion Controller [4] and further
extended their work for motion tracking of both hands simultaneously. The statesXh of the hand models
are represented with the Cartesian coordinates of the 52 joints and the orientations of two palms. The
message containing these states is published at 100 Hz, and our trajectory generator, which subscribes to
the publisher, receives this message at 60 Hz. A recorded trajectory is formed with a sequence of states
τ ′ = {X ′

1, X
′
2, ..., X

′
n}, which are expressed in the coordinate frame of the Leap Sensor.

A.1.2 STATE TRANSFORMATION
The transformations of the collected states are necessary mainly for two reasons. First, the structure
of the hand models in Leap Sensor is different from that of the simulated shadow robot hand [2] as
shown in Fig. A.2c. Such morphology difference needs to be compensated for. Otherwise, the collected
demonstrations will be meaningless and not instructive enough. Second, most of the actuators on robot
hands only generate torques and control the rotations of the joints. However, only positions of the joints
are available from the Leap sensor, and certain analytical computations are necessary to acquire their
angles.

The cosine of the angle of joint b could be derived from its coordinates and the coordinates of the two
joints a, c next to it doing the inner product between the two vectors bc⃗ and ba⃗. Thus,

cos(θb) = cal_angle(a, b, c)

=
(xc − xb) · (xa − xb) + (yc − yb) · (ya − yb) + (zc − zb) · (za − zb)√

(xc − xb)2 + (yc − yb)2 + (zc − zb)2 ·
√
(xa − xb)2 + (ya − yb)2 + (za − zb)2

,
(A.1)

in which (xa, ya, za) are the 3-D coordinates of joint a, (xb, yb, zb) of b, and (xc, yc, zc) of c.
All the joint angles on fingers are calculated with eq. A.1 and then minus π to match the expressions

in the robot hand system. The joints THJ4, FFJ3, MFJ3, RFJ3, and LFJ3 rotate fingers horizontally and are
approximated using eq. A.1 but with the intermediate joint of the same finger and the proximal joints of
the finger next to it. The results are further tuned manually to compensate for the morphology difference.

2

The angles of joints THJ2 and THJ3 could not be calculated accurately enough since their movements
will affect each other. They are assigned with fixed values θTHJ2 = 0, θTHJ3 = 1.1. The coordinates
and orientations of the palms remain unchanged. At last, all the angles are trimmed into the ranges
of the joint movement. The calculations are shown in the table. A.1. After transformations, each state
Xn contains 40 angles of the joints and also the coordinates and orientations of two hands. The collected
states {X1, X2, ..., Xn} are then passed to the controller sequentially in time for the trajectory following.

Table A.1: Transformations of states

Joints Calculation Range

THJ0 cal_angle(thumb_tip, thumb_distal, thumb_intermediate)− π [-1.571, 0]

THJ1 cal_angle(thumb_distal, thumb_intermediate, thumb_proximal)− π [-0.524, 0.524]

THJ2 0.0 [-0.209, 0.209]

THJ3 1.1 [0, 1.222]

THJ4 cal_angle(thumb_intermediate, thumb_proximal, palm_normal) + 1.1 [-1.047, 1.047]

FFJ1 cal_angle(index_distal, index_intermediate, index_proximal)− π [0, 1.571]

FFJ2 cal_angle(index_intermediate, index_proximal, index_metacarpal)− π [0, 1.571]

FFJ3 cal_angle(index_intermediate, index_proximal,middle_proximal)− 1.71 [-0.349, 0.349]

MFJ1 cal_angle(middle_distal,middle_intermediate,middle_proximal)− π [0, 1.571]

MFJ2 cal_angle(middle_intermediate,middle_proximal,middle_metacarpal)− π [0, 1.571]

MFJ3 cal_angle(middle_intermediate,middle_proximal, index_proximal) + 1.57 [-0.349, 0.349]

RFJ1 cal_angle(ring_distal, ring_intermediate, ring_proximal)− π [0, 1.571]

RFJ2 cal_angle(ring_intermediate, ring_proximal, ring_metacarpal)− π [0, 1.571]

RFJ3 cal_angle(ring_intermediate, ring_proximal,middle_proximal) + 1.3 [-0.349, 0.349]

LFJ1 cal_angle(pinky_distal, pinky_intermediate, pinky_proximal)−math.pi [0, 1.571]

LFJ2 cal_angle(pinky_intermediate, pinky_proximal, pinky_metacarpal − π [0, 1.571]

LFJ3 cal_angle(pinky_intermediate, pinky_proximal,middle_proximal) + 1.3 [-0.349, 0.349]

LFJ4 cal_angle(pinky_proximal, palm_pos, palm_normal) + 1.0 [0, 0.785]

WRJ0 −palm_rot[1] ∗ 1.5 [-0.698, 0.489]

WRJ1 −palm_rot[0] ∗ 0.5− 0.5 [-0.489, 0.14]

A.2 REPLICATE MOVEMENTS IN SIMULATION
The robot hands follow the trajectories with PD controllers, as shown in Fig. A.3, where the control signals
are calculated with the state errors and their derivatives as

ut = Kp · e(st) +Kd ·
d

dt
e(st)

e(st) = eh(st) + es(st), er(st) = △X = Xt+1 −Xt

(A.2)

3

Figure A.3: Trajectory following with PD controllers

in which Kp and Kd are weighting constants of the proportional and derivative sections, respectively.
eh(st) defines the target movements that should be made at time step t. And er(st) is the residual error in
previous movements at time step t. PD controllers are easy to implement without much manual tuning
of the parameters. They could enable robots to follow the given state sequences and do not need any
additional knowledge or a model of the system. However, the control is not optimal, and delays are
inevitable. This is one of the reasons for the suboptimal strategies in demonstrations. But it could be
ignored compared with other factors considered in our experiments.

Our work uses the Issac Gym engine, and relevant packages for simulation [5]. They already provide a
function (gym.set_dof_position_target_tensor(θ)) to control the rotations of all the joints with inner-
defined PD controllers. Therefore, we use this function to follow the states of rotating joints by providing
the target angles. For the control of the movements and rotations of entire robot hands, we built PD
controllers as shown in table. A.2.

Table A.2: Parameters of PD controllers

Kp Kd

Position 1000 200

Rotation 3000 500

The controllers for the movements in the x, y, and z axes change the positions of robot hands, in which
Kp = 1000,Kd = 200. The controllers for the ‘roll,’ ‘yaw,’ and ‘pitch’ rotations change the orientations of
robot hands, in whichKp = 3000,Kd = 500. After calculation, all the control signals are regularized into
[-1,1]. At each time step, e(st) = eh(st) + er(st) is taken as the input of PD controllers, and the control
signals θ, u are passed to the robot. The robot will repeat his movements when the human demonstrator
performs the task. In this process, the state and action pairs (s, u) of the robot are recorded at 60 Hz and
then used for learning. See the recorded video [6], which is an example of recorded demonstrations for
the ‘Grasp and Place’ task.

The collected demonstrations are imperfect in the experiments mainly for the following reasons. First,
they are collected from non-expert users of Leap Sensor without much practice. The limited sensing
area and the transformation errors have increased the difficulty in controlling the simulated robot hands.
Therefore, unnecessary movements and suboptimal strategies are inevitable. Second, the human demon-
strator has intentionally shown different strategies. Unfortunately, we did not invite many demonstrators
for the experiments since the focus of our work is not to check if humans are good at demonstrating but to
deal with various demonstrations theymay give. The demonstrations were collected from two demonstra-
tors, and they tried to show different but reasonable and human-like strategies. At last, the performance
of the demonstrators is also restricted by the limited control horizon.

4

References

[1] “Dactyly,” Jan 2023. [Online]. Available: https://en.wikipedia.org/wiki/Dactyly

[2] “Shadow dexterous hand series - research and development tool,” Nov 2022. [Online]. Available:
https://www.shadowrobot.com/dexterous-hand-series/

[3] Ultraleap, “Tracking: Leap motion controller.” [Online]. Available: https://www.ultraleap.com/
product/leap-motion-controller/

[4] warp1337, “Warp1337/rosleapmotion: Leap motion ros integration.” [Online]. Available: https:
//github.com/warp1337/rosleapmotion

[5] “Isaac gym - preview release,” Jul 2022. [Online]. Available: https://developer.nvidia.com/
isaac-gym

[6] Z. Du, “An example of demonstrations shown to the robot in ‘grasp and place’ task,” Feb 2023.
[Online]. Available: https://youtu.be/G2ZaoOWVPpA

5

	INTRODUCTION
	Related work
	Robot dexterous manipulation
	Reinforcement learning with human demonstrations
	Human-robot interfaces
	Learning with imperfect human demonstrations

	Background on Robot Learning
	Reinforcement Learning
	Proximal Policy Optimization
	Reward Function

	Formalization of Imperfect Demonstration

	Interactive Teaching Framework
	Learning pipeline
	Behavior cloning with imperfect demonstrations
	Demonstrations for subtasks
	Active demonstration replay

	Bimanual Manipulation Experiments
	Evaluation of the framework
	Grasp and Place
	Open the Scissor
	Close the Door
	Swing the Cup

	Ablation studies
	Human demos gradually vanish during the RL process
	Effect of action noises
	Multiple human demos or single human demo
	Entire demo or demo for the subtasks

	Limitations of the framework
	Imperfect demonstrations make fewer improvements on simple tasks
	Human demonstrations may not follow the definition of the reward function
	More expressive reward functions are necessary

	CONCLUSIONS
	References

