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A B S T R A C T

We propose and analyse an optimization method that uses a machine learning approach to solve multi-
objective, constrained propeller optimization problems. The method uses an online learning strategy where
explainable supervised classifiers learn the location of the Pareto front and advise search strategies. The
classifiers are trained with orthogonal features that capture geometric variation in radial distribution of pitch,
skew, camber and chordlength. Based on orthogonal features, the classifiers predict whether or not a design
lies on the Pareto front. If the design is predicted to lie on the Pareto front, the method verifies this with
an evaluation. If the design is predicted to not lie on the Pareto front with a high confidence level, then
the design is ignored. This skipped evaluation reduces the computational effort of optimization. The method is
demonstrated on a cavitating, unsteady flow case of the Wageningen B-4 70 propeller with P/D = 1.0 operating
in the Seiun-Maru wake. Compared to the classical Non-dominated Sorting Genetic Algorithm — III (NSGA-III)
the optimization method is able to reduce 30% of evaluations per generation while reproducing a comparable
Pareto front. Trade-offs between suction side, pressure side, tip-vortex cavitation and efficiency are identified
from the Pareto front. The non-elitist NSGA-III search algorithm in conjunction with the explainable supervised
classifiers also find very diverse solutions. Among the solutions, a design with no pressure side cavitation, low
suction side cavitation and reasonable tip-vortex cavitation is found.
1. Introduction

Global trade is expected to increase the traffic density of ship-
ping lanes on seas, oceans, and also rivers. Consequently, the Green
House Gas (GHG), NOx, SOx, and noise emissions from shipping will
increase making it more difficult to meet stricter emission regula-
tions (International Maritime Organization, 2021) and noise reduction
guidelines (International Maritime Organization, 2014). The Interna-
tional Maritime Organisation (IMO) aims to achieve a 50% reduction
in GHG emissions by 2050 compared to 2008 levels (IMO, 2019) and
ports have also started to incentivize silent ships with harbour due rate
discounts (Port of Vancouver, 2017). Against this background, there
is strong emphasis on making ship propellers more quiet and more
efficient.

For vessels there are various sources of airborne and underwater
noise (Abrahamsen, 2012). Compared to air, noise travels faster and
farther in water. Underwater noise is generated by water flow on
vessels, auxiliary machinery and equipment, diesel generators, prime
movers, electric motors and propellers; however, cavitating propellers
are expected to be the dominant source of underwater noise. Averson
et al. (Arveson and Vendittis, 2000) report the underwater radiated

∗ Corresponding author.
E-mail address: P.DoijodeSumanth@tudelft.nl (P.S. Doijode).

noise for M/V Overseas Harriette at different ship speeds (propeller
rpm). It was found that after cavitation inception, the noise hump
between 50–100 Hz gets more pronounced with increasing speed. This
noise hump is typically associated with the broad band spectrum of tip
vortex noise (Pennings et al., 2016) which is often the dominant source
of underwater radiated noise. Thus, one opportunity to make propellers
quieter is by reducing noise radiation of tip-vortex cavities.

To improve efficiency and reduce tip-vortex cavitation noise, an
optimal blade loading is required. Blade loading plays an important
role in propeller design as blade sections are continuously exposed to
different angles of attack in the non-uniform wake-field they operate
in. For a rigid propeller, the blade loading distribution is optimized
by modifying the geometry. Traditionally, in addition to efficiency
objectives, indirect noise constraints as a limit on cavitation volume
or area have been implemented (Brizzolara and Gaggero, 2009; Garg
et al., 2017). Acoustic objectives have been considered but the focus
has been limited to radiated sound power at blade passage frequen-
cies (Mulcahy et al., 2014). The hydroacoustic design and optimization
problem of propellers is of immense strategic importance and is most
likely well researched in defence. However, there is limited knowledge
vailable online 6 May 2022
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Nomenclature

𝑓∗ Posterior mean prediction for input 𝑥∗
𝜖 independent and identically distributed

noise
𝜂 Open-water efficiency, 𝐽 .𝐾𝑡∕2𝜋𝐾𝑞
𝛾 Skew angle in radians
𝜆 Rake angle in radians
V Posterior variance prediction
 (𝜇, 𝜎2) Normal distribution
R𝑐𝑎𝑟𝑡 A Cartesian frame of reference
R𝑐𝑦𝑙 A cylindrical frame of reference
R𝑜𝑟𝑡ℎ A reference frame defined by orthogonal

vectors
𝐟 Latent function values, 𝐟 = (𝑓 (𝑥1),… ,

𝑓 (𝑥𝑁 ))𝑇

𝜙(�⃗�) Feature map of input �⃗�
𝜌∞ Free-stream density
𝛴 Diagonal matrix of singular values
𝜎2𝑛 Noise Variance
E[X] Expectation of any matrix 𝑋
K 𝑛 × 𝑛 Gram matrix
k∗ The vector K(𝑋, 𝑥∗)
R[X, X] Correlation coefficient matrix of any matrix

𝑋
𝜃 Pitch angle in radians
𝜇, 𝜇∗ The mean vector for rows of 𝑀 and 𝑀∗

𝑝 A point on a B-Spline surface
𝑟𝑖 Vector from origin to the mid-chord loca-

tion
𝑠 A design vector of classical design variables
�⃗� The design vector of orthogonal parameters
𝐶𝑓 Skin Friction Coefficient
𝐷 Propeller diameter
𝑓 Real valued function 𝑓 (𝑥) ∶ R𝑁 → R
𝑓𝑜𝑏𝑗 Real valued objective function 𝑓𝑜𝑏𝑗 (𝑥) ∶

R𝑛 → R
𝑔 A real valued constraint function 𝑔(𝑥) ∶

R𝑛 → R
𝐽 Advance ratio, 𝑣∞∕𝜔𝐷
𝑘′ Number of orthonormal parameters
𝑘(𝑥, 𝑥∗) Kernel function evaluation at inputs 𝑥 and

𝑥∗
𝐾𝑞 Torque Coefficient, 𝑀𝑥∕𝜌∞𝑣2𝑟𝑒𝑓𝐿

3
𝑟𝑒𝑓

𝐾𝑡 Thrust Coefficient, 𝑇 ∕𝜌∞𝑣2𝑟𝑒𝑓𝐿
2
𝑟𝑒𝑓

𝑀 Data Matrix of all propeller geometries in
R𝑁 ′×𝑘

𝑐𝑦𝑙
𝑀∗ Parameter matrix for B-Spline discretiza-

tion
𝑀𝑥 Torque
𝑁 Number of propellers in universal set
𝑁𝑖,𝑝(𝑡) A 3rd order 𝑝th degree basis function
𝑝𝑎𝑡𝑚 Absolute atmospheric pressure
𝑆 The sample matrix of classical design

variables
𝑠(�⃗�) The Silhouette Score of a vector �⃗�
𝑠𝑖 The 𝑖th classical design variable in 𝑠

and reporting in the public domain. Access to specialized simulation
software, models based on propriety data and intellectual property
restrictions (due to sensitivity or embargo) result in hydroacoustic
2

i

𝑇 Thrust
𝑡 Knots of the B-Spline surface
𝑇0 Target Thrust
𝑈 Left singular vector matrix
𝑢, 𝑣 B-Spline surface parameters
𝑉 Right singular vector matrix
𝑣∞ Open-Water Speed
𝑣𝑐𝑎𝑣 Cavitation inception speed
𝑣𝑠ℎ𝑖𝑝 Ship speed
𝑋 The parameter matrix
𝑥∗ A new query vector
𝑥𝑖 The 𝑖th orthogonal parameter in �⃗�
𝑦 A real valued range
𝑦𝑐 Performance label for designs
k Dimensionality

optimization of propellers being tractable to very few academic re-
search groups. In North America, Yin Lu Young’s group at Michigan
University focuses on flexible composite propellers (Young et al., 2016)
as a way towards designing quieter and more efficient propellers. One
of the focus areas at the group is to design shape adaptive propellers,
which have a bend twist coupling to optimize propeller loading (Plu-
cinski et al., 2007; Motley et al., 2009; Liu and Young, 2009) and
improve efficiency. Given the challenging structural modelling for com-
posites (Maljaars and Kaminski, 2015), cavitation and noise constraints
are secondary considerations. In Europe, MARIN has focused on devel-
oping and demonstrating tools for hydroacoustic design and optimiza-
tion of propellers (Foeth, 2015; Huisman and Foeth, 2017). Rickard
Bensow’s group at Chalmers University has investigated algorithms,
strategies and methods for hydrodynamic optimization of propellers
with cavitation considerations (FlorianVesting, 2011; Vesting and Ben-
sow, 2014; Vesting, 2015). In Asia, Nakashima propellers, for example,
have focused on achieving better cavitation behaviour and improved
efficiency for large vessels (Tendo et al., 2019). Better cavitation be-
haviour is expected to result in lower cavity volume fluctuations and
thus lower pressure fluctuations and noise.

Up to approximately 2015, the focus in the aforementioned studies
was predominantly on optimizing for efficiency and controlling sheet
cavitation. In parallel, efforts were underway to better predict tip-
vortex cavitation behaviour with simulations (Oprea, 2013; Gaggero
et al., 2014; Liebrand et al., 2021). Thus, while propellers with better
sheet cavitation behaviour were designed and introduced, the dom-
inant source of noise was tending to be the cavitating tip-vortex.
However, predicting tip-vortex cavitation on propellers continues to be
too resource intensive for optimization. Recently, Bosschers .J (Boss-
chers, 2018a) proposed an Empirical Tip Vortex (ETV) model which
offers one approach to hydroacoustic optimization of propellers with
tip-vortex considerations. In addition to noise and efficiency design ob-
jectives, propeller design must also account for constraints on hull exci-
tation (Bosschers, 2009), cavitation erosion (van Terwisga et al., 2007),
ship speed and thrust. State of the art optimization methods are able
to tackle this multi-objective constrained problem; however, there are
three challenges which make them computationally expensive (Doijode
et al., 2022):

The first challenge is that most optimization methods tend to ap-
roach the optimization problem with classical design variables. How-
ver, they could lead to multicollinearity (Allen, 1997) which makes it
ifficult to isolate the impact of changing individual design variables on
bjectives and constraints. By solving multicollinearity, there is an op-
ortunity to reduce computational cost of optimization by reducing the
umber of objective/constraint evaluations to isolate the sensitivities of

ndividual classical design variables.
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Consider a function

𝜙 = 𝑓 (�⃗�(𝑠)), (1)

where �⃗� represents the mesh and 𝑠 is the design vector. By chain rule,

𝜕𝑓
𝜕𝑠

=
𝜕𝑓

𝜕�⃗�
⋅
𝜕�⃗�
𝜕𝑠

= 𝐽1 ⋅ 𝐽2, (2)

where 𝐽1 is the Jacobian of the function with respect to the mesh and
𝐽2 is the Jacobian of the mesh with respect to the design variables. The
optimization problem is free of multicollinearity if both 𝐽1 and 𝐽2 are
rthonormal matrices. The orthonormality of 𝐽1 is determined by the
low physics and 𝐽2 by the chosen design variables. Any design variable
hich affects multiple nodes on the mesh will lead to 𝐽2 which is not
rthonormal. This is because the blade surface is often defined with
plines and changes in mesh nodes are strongly correlated. Different
lassical design variables also tend to change the same mesh nodes.
hus, it is difficult to isolate the impact of individual design variables
n objectives and constraints.

The second challenge is that in the preliminary design phase, Bound-
ry Element Methods (BEM) and Empirical Tip Vortex (ETV) model
end to have uncertainties (Vaz et al., 2015). These uncertainties results
rom numerical methods, domain discretization and physical models.
n specific regions in the design space, these uncertainties could lead
o the similar efficiency or cavitation performance being predicted by
EM and ETV for very different designs. Consequently, optimization
ethods could converge to solutions whose operational performance is

ignificantly different from predicted performance.
The third challenge is that the computational cost of optimization

or realistic cases is relatively high even in the preliminary design
hase. Most commonly Artificial Neural Networks, Krigging, iKrigging,
ascading Neural Networks (Vesting and Bensow, 2014) have been
sed to reduce the cost of optimization. More recently Deep Learn-
ng (Goodfellow et al., 2016) has also gained traction in propeller
esign and optimization (Miglianti et al., 2020). In addition, explain-
ble machine learning approaches (Abedjan et al., 2019) presents
ery interesting opportunities to provide or extrapolate performance
uarantees, which is not possible with other approaches for propeller
anufacturers. These developments are relatively new in the maritime

ndustry. However, the models used in explainable machine learning
uch as Gaussian mixture models and Naive-Bayes are fundamental
ethods which are well known. Explainable machine learning can be
sed to predict where lucrative designs may be found in the design
pace and also provide insight into why the regions are lucrative.

To address the first challenge of multicollinearity, we propose an
rthogonal feature set which has been demonstrated to capture geomet-
ic variations more accurately than classical design variables (Doijode
t al., 2022). To address the second challenge and to account for
ncertainties in preliminary design phases, performance predictions are
ssumed to have a mean and variance. Solutions dominate, i.e., lie on
he Pareto front only when the mean is high and there is no overlap in
he 95% confidence intervals of performance with compared solutions.
his reduces the risk of false positives on whether a solution dominates
r not. Consequently, Design and Optimization (D&O) strategies are
xpected to yield a range of solutions whose predicted performance
oes not differ significantly from operational performance. To address
he third challenge of computational cost, soft explainable supervised
lassifiers with online training are used. The classifiers are taught
he location of the Pareto front and, when sufficiently trained, they
ould potentially exclude designs which lie meaningfully away from
he Pareto front, making the optimization method efficient.

The first challenge is that most optimization methods tend to ap-
roach the optimization problem with classical design variables. How-
ver, they could lead to multicollinearity (Allen, 1997) which makes it
ifficult to isolate the impact of changing individual design variables on
bjectives and constraints. By solving multicollinearity, there is an op-
ortunity to reduce computational cost of optimization by reducing the
3

t

umber of objective/constraint evaluations to isolate the sensitivities of
ndividual classical design variables. Consider a function

= 𝑓 (�⃗�(𝑠)), (3)

where �⃗� represents the mesh and 𝑠 is the design vector. By chain rule,

𝜕𝑓
𝜕𝑠

=
𝜕𝑓

𝜕�⃗�
⋅
𝜕�⃗�
𝜕𝑠

= 𝐽1 ⋅ 𝐽2, (4)

where 𝐽1 is the Jacobian of the function with respect to the mesh and
𝐽2 is the Jacobian of the mesh with respect to the design variables. The
optimization problem is free of multicollinearity if both 𝐽1 and 𝐽2 are
orthonormal matrices. The orthonormality of 𝐽1 is determined by the
low physics and 𝐽2 by the chosen design variables. Any design variable
hich affects multiple nodes on the mesh will lead to 𝐽2 which is not
rthonormal. This is because the blade surface is often defined with
plines and changes in mesh nodes are strongly correlated. Different
lassical design variables also tend to change the same mesh nodes.
hus, it is difficult to isolate the impact of individual design variables
n objectives and constraints.

The second challenge is that in the preliminary design phase, BEM
nd ETV model tend to have uncertainties (Vaz et al., 2015). These un-
ertainties results from numerical methods, domain discretization and
hysical models. In specific regions in the design space, these uncertain-
ies could lead to the similar efficiency or cavitation performance being
redicted by BEM and ETV for very different designs. Consequently,
ptimization methods could converge to solutions whose operational
erformance is significantly different from predicted performance.

The third challenge is that the computational cost of optimization
or realistic cases is relatively high even in the preliminary design
hase. Most commonly Artificial Neural Networks, Krigging, iKrigging,
ascading Neural Networks (Vesting and Bensow, 2014) have been
sed to reduce the cost of optimization. More recently Deep Learn-
ng (Goodfellow et al., 2016) has also gained traction in propeller
esign and optimization (Miglianti et al., 2020). In addition, explain-
ble machine learning approaches (Abedjan et al., 2019) presents
ery interesting opportunities to provide or extrapolate performance
uarantees, which is not possible with other approaches for propeller
anufacturers. These developments are relatively new in the maritime

ndustry. However, the models used in explainable machine learning
uch as Gaussian mixture models and Naive-Bayes are fundamental
ethods which are well known. Explainable machine learning can be
sed to predict where lucrative designs may be found in the design
pace and also provide insight into why the regions are lucrative.

To address the first challenge of multicollinearity, we propose an
rthogonal feature set which has been demonstrated to capture geomet-
ic variations more accurately than classical design variables (Doijode
t al., 2022). To address the second challenge and to account for
ncertainties in preliminary design phases, performance predictions are
ssumed to have a mean and variance. Solutions dominate, i.e., lie on
he Pareto front only when the mean is high and there is no overlap in
he 95% confidence intervals of performance with compared solutions.
his reduces the risk of false positives on whether a solution dominates
r not. Consequently, D&O strategies are expected to yield a range
f solutions whose predicted performance does not differ significantly
rom operational performance. To address the third challenge of compu-
ational cost, soft explainable supervised classifiers with online training
re used. The classifiers are taught the location of the Pareto front and,
hen sufficiently trained, they could potentially exclude designs which

ie meaningfully away from the Pareto front, making the optimization
ethod efficient.

In this paper, we propose an optimization method to solve multi-
bjective constrained optimization problems based on the above ma-
hine learning strategies. The method referred to as DO is detailed in
ection 2. It is demonstrated on a case with the starting point as a
ageningen B-4 70 propeller with P/D = 1.0 operating in the Seiun-
aru wakefield. Sections 2.1–2.6 detail the modules of DO. Section 3

ompares the performance of classical NSGA-III optimization with DO.

he results are summarized in Section 4.
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Fig. 1. Dynamic optimization flowchart.

2. Dynamic optimization

Dynamic Optimization is a method for multiobjective, constrained
propeller optimization problems where search agents are advised by
supervised classifiers. The method is detailed in Algorithm 1 and the
flowchart in Fig. 1. As inputs, the method takes the objectives, con-
straints and iteration limits. When the optimization begins, for the 𝑖th
iteration, an objective driven search strategy such as Non-dominated
4

Algorithm 1 Dynamic Optimization for multi objective applications
Input: 𝑓1, 𝑓2, ..., 𝑓𝑛, 𝑔1, 𝑔2, ..., 𝑔𝑚,max_iter, thresh_iter
Output:𝑆𝑝𝑎𝑟𝑒𝑡𝑜

1: procedure Dynamic Optimization
2: 𝑆𝑝𝑎𝑟𝑒𝑡𝑜, 𝑆, 𝐹 ← ∅
3: 𝑖 ← 0
4: use_clf ← false
5: while 𝑖 ≤ max_iter do
6: 𝑆𝑖 ← SEARCH(*params)
7: 𝑆 ← 𝑆 ∪ 𝑆𝑖
8: for 𝑗 ← (0 → 𝑙𝑒𝑛(𝑆𝑖)) do
9: 𝑠 ← 𝑆𝑖,𝑗

10: Generate geometry and mesh (�⃗�∗) for 𝑠
11: �⃗�∗ ← PROJECTION(R𝑜𝑟𝑡ℎ𝑜, 𝑘′, �⃗�∗) ⊳ See Algorithm 3
12: if use_clf then
13: if 𝑓 (�⃗�∗) = 1 AND 𝑝(�⃗�∗|𝜇0, 𝜎20 ) ≤ 0.90 then ⊳ The

classifier 𝑓 ∶ R⃗𝑘′
𝑜𝑟𝑡ℎ𝑜 → R

14: Analyse design 𝑠

15: 𝐹 ← 𝐹 ∪
⎡

⎢

⎢

⎣

⎡

⎢

⎢

⎣

𝑓1
⋮
𝑓𝑛

⎤

⎥

⎥

⎦

⎤

⎥

⎥

⎦

16: else
17: continue ⊳ Skipped an evaluation, thus reduced

cost of optimization
18: end if
19: else
20: Analyse design 𝑠

21: 𝐹 ← 𝐹 ∪
⎡

⎢

⎢

⎣

⎡

⎢

⎢

⎣

𝑓1
⋮
𝑓𝑛

⎤

⎥

⎥

⎦

⎤

⎥

⎥

⎦

22: end if
23: Train Supervised Classifier, 𝑓 ∶ R⃗𝑘′

𝑜𝑟𝑡ℎ𝑜 → R

24: if min(10-k Cross Validation) ≤ 0.75 AND 𝑖 ≥ thresh_iter
then

25: use_clf ← true
26: else
27: use_clf ← false
28: end if
29: if Converged then
30: break
31: end if
32: end for
33: end while
34: 𝑦𝑐 ← 𝐿𝐴𝐵𝐸𝐿𝑆(𝐹 , 𝜖) ⊳ See Algorithm 4
35: 𝑆𝑝𝑎𝑟𝑒𝑡𝑜 ← 𝑆𝑝𝑎𝑟𝑒𝑡𝑜 ∪ {𝑠𝑖|𝑆[𝑦𝑐 == 1]}
36: return 𝑆𝑝𝑎𝑟𝑒𝑡𝑜
37: end procedure

Sorting Genetic Algorithm — II (NSGA-II), NSGA-III (Deb and Jain,
2013), Particle Swarm optimization (PSO), Nelder–Mead (NM) or oth-
ers generate samples 𝑆𝑖. For each sample 𝑠 ∈ 𝑆𝑖, the geometries and
meshes are generated. A set of orthogonal features �⃗�∗ ∈ R𝑘′ which
are projections of the i-th mesh in a 𝑘′ dimensional hyperspace is
computed. Until there are sufficient samples to train and validate, the
classifier is not used. When the classifier is not used, designs 𝑠 ∈ 𝑆𝑖
are analysed with Computational Fluid Dynamics (CFD) or BEM. After
each design is analysed they are assigned a label. Interesting designs
are labelled as 𝑦𝑐 = 1 and clearly inferior designs are labelled 𝑦𝑐 = 0.
If the design lies on the Pareto front and has an efficiency greater than
𝑎 × 𝜂𝑚𝑎𝑥, where 𝑎 = 0.85 is an input parameter. With 𝑎, it is possible to
control the explore/exploit bias. A higher value of 𝑎 makes the search
more exploitative. For details on assigning labels see Algorithm 4.

After the first two samples are evaluated, the supervised classifier
is trained with orthogonal parameters (�⃗�) as features and target labels
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Table 1
Objectives and Constraints.
Obj./Cons. Description

max 𝑓1(𝑠) = 𝜂 Maximize efficiency
min 𝑓2(𝑠) = 𝑉𝑐𝑎𝑣,𝑏 Minimize suction surface cavity
min 𝑓2(𝑠) = 𝑉𝑐𝑎𝑣,𝑓 Minimize pressure surface cavity
min 𝑓4(𝑠) =

𝜕2𝑉𝑐𝑎𝑣

𝜕2 𝑡
Minimize cavity volume acceleration

min 𝑓5(𝑠) = max (𝑟𝑐 ) Minimize tip vortex cavity radius

min 𝑓6(𝑠) = max (|𝐶𝑝|) = max
(

|

|

|

|

|

𝑝−𝑝𝑟,∞
1
2
𝜌∞

(

𝑣2𝑠ℎ𝑖𝑝+2𝜋𝜔𝑟2
)

|

|

|

|

|

)

Minimize peak pressures. 𝜔 is the propeller rotation rate
in revolutions per second. 𝑝∞ = 1.01325𝑒5 Pa,
𝜌∞ = 1025 kgm−3.

𝑔1(𝑠) = 𝑇 − 𝑇0 = 0 Thrust constraint. Note that this is not changed during
optimization.

𝑔2(𝑠) = 𝑣𝑠ℎ𝑖𝑝 − 𝑣𝑠ℎ𝑖𝑝,0 = 0 Ship speed constraint. Note that this is not changed
during optimization.

𝑔3(𝑠) = max
(

‖

‖

‖

‖

𝑠𝜃,𝑖−𝑠𝜃,𝑖+1
𝑠𝜃,𝑖+1

‖

‖

‖

‖

)

− 0.3 ≤ 0 Fairing constraint for pitch

𝑔4(𝑠) = max
(

‖

‖

‖

‖

𝑠𝛾,𝑖−𝑠𝛾,𝑖+1
𝑠𝛾,𝑖+1

‖

‖

‖

‖

)

− 0.3 ≤ 0 Fairing constraint for skew

𝑔5(𝑠) = max
(

‖

‖

‖

‖

𝑠𝑐ℎ𝑜𝑟𝑑,𝑖−𝑠𝑐ℎ𝑜𝑟𝑑,𝑖+1
𝑠𝑐ℎ𝑜𝑟𝑑,𝑖+1

‖

‖

‖

‖

)

− 0.3 ≤ 0 Fairing constraint for chord-length

𝑔6(𝑠) = max
(

‖

‖

‖

‖

𝑠𝑐𝑎𝑚,𝑖−𝑠𝑐𝑎𝑚,𝑖+1
𝑠𝑐𝑎𝑚,𝑖+1

‖

‖

‖

‖

)

− 0.3 ≤ 0 Fairing constraint for camber
(𝑦𝑐 ∈ [0, 1]). After at least 10 samples are evaluated, it is possible
to validate the classifier with 10-fold cross-validation studies. In such
a case, if the classifier has a mean 10-fold cross-validation score of
75% or higher the classifier is used. Weighted average precision scores
are used for cross-validation. In iterations where the classifier is used,
design labelled as 𝑦𝑐 = 1 are analysed to confirm the prediction.
Else, the design is not analysed when 𝑝(�⃗�|𝜇0, 𝜎20 ) ≥ 𝑝𝑡ℎ(�⃗�|𝜇0, 𝜎20 ), where
𝑡ℎ(�⃗�|𝜇0, 𝜎20 ) is the threshold for the probability that 𝑦𝑐 = 0. A high
hreshold indicates a high confidence that the design is much further
way from the Pareto front. Thus, by skipping analysis of designs which
ie away from the Pareto front, computational cost of optimization is
educed. In our demonstration 𝑝𝑡ℎ(�⃗�|𝜇0, 𝜎20 ) = 0.9. The method catches
ost false positives. However, there is a risk that false negatives are
issed. This risk can be mitigated by increasing 𝑝𝑡ℎ(�⃗�|𝜇0, 𝜎20 ). If after an

teration or generation the convergence criteria are met, the optimizer
eports the Pareto front and exits. Else, it continues to the next iteration
r generation.

.1. Objective and constraints

For demonstration of DO, we optimize the Wageningen B-4 70
ropeller with P/D = 1.0 as the starting point. The blade is operating
n the effective wake of the Seiun-Maru vessel with 𝑣𝑠ℎ𝑖𝑝,0 = 10.80 m∕s
nd 𝑇0 = 577.4𝑘𝑁 (Maljaars, 2019). The full scale measurements
or flow characteristics around the hull and resulting propeller inflow
nd turbulence are reported by ITTC (Faresi, 1990). Particulars of the
eiun-Maru vessel are also provided in Kato and Kodama (2003).

The optimization problem has multiple objectives and constraints.
able 1 lists and describes the objectives and constraints. The goal

s to maximize efficiency and minimize (a) cavity volume, (b) cavity
olume acceleration, (c) vortex cavity radius and (d) peak pressure. The
fficiency and cavitation behaviour are predicted with PROCAL (Vaz
nd Bosschers, 2006). The radius of the vortex cavity is predicted
ith the ETV-2 model (Bosschers, 2018b). In addition to thrust and

hip-speed constraints, fairing constraints are specified to guide search
owards solutions without high geometric variations along the radius.
n order to match the thrust requirement, the propeller rotation rate is
odified while the ship-speed is maintained a constant.

It is recognized that the skewed Seiun-Maru propeller is a good
tarting point for the demonstration. In the scope of this research, to
emonstrate DO in an explore biased optimization, we prefer to start
5

rom a design much further away from a known local optimum. In
Table 2
Bounds of design variables.

Variable Lower bound Upper bound

𝛥𝜃 (rad) −0.36 036
𝛥𝛾 (rad) −0.063 0.063
𝑠𝑐𝑎𝑚𝑏𝑒𝑟 (rad) −0.045 0.045
𝑠𝑐ℎ𝑜𝑟𝑑 (–) 0.76 1.24
n (rps) 0 inf

the current demonstration, the baseline propeller is the Wageningen
B-4 70 propeller with P/D = 1.0. The baseline performance is detailed
in Section 3.1. This starting point implies a more challenging task for
the optimization algorithm. At the same time, it increases the chances
of finding new design solutions and search directions, compared to
starting from an already more optimal design. The starting propeller
geometry, effective wake and operating conditions are illustrated in
Fig. 2.

2.2. Design variables

The blade is parametrized with four equispaced hydrofoil cross-
sections at locations [0, 𝑠𝑝𝑎𝑛3 , 2𝑠𝑝𝑎𝑛3 , 𝑠𝑝𝑎𝑛]. Four parameter [𝜃, 𝛾, 𝑠𝑐ℎ𝑜𝑟𝑑 ,
𝑠𝑐𝑎𝑚𝑏𝑒𝑟] are used as design variables to modify the cross-sections. They
are intended to change pitch, skew, chordlength and camber respec-
tively. While 𝜃, 𝛾 are modified for all four cross-sections, 𝑠𝑐𝑎𝑚𝑏𝑒𝑟, 𝑠𝑐ℎ𝑜𝑟𝑑
are modified for the last three cross-sections. The modifications are in
the sequence 𝜃, 𝛾, 𝑠𝑐ℎ𝑜𝑟𝑑 and 𝑠𝑐𝑎𝑚𝑏𝑒𝑟. The fifth design variable is the
propeller rotation rate 𝑛(𝑟𝑝𝑠).

The baseline geometry and the location of the hydrofoils is illus-
trated in Fig. 3. The bounds of the 14 design variables are listed in
Table 2. The bounds result from the applicability range for PROCAL.
The found solution lies away from the bounds (see Table 4b) thus,
it is demonstrated that the applicability bounds of PROCAL are not
restrictive.

The schemes for geometry modification are detailed below.

Parameter 𝜃: Fig. 4(b) illustrates the change in geometry when 𝜃 is
varied. The target cross-section is rotated about a vector parallel to
𝑧-axis passing through the midchord of the section. An increase in 𝜃

results in the blade experiencing a higher inflow angle thus also higher
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Fig. 2. (a) Wageningen B4-70 propeller base geometry and (b) Effective wakefield of Seiun-Maru vessel, 𝑉𝑒 =
√

𝑉 2
𝑥 + 𝑉 2

𝑦 + 𝑉 2
𝑧 . The wakefield was provided by MARIN for this research

and is available on request.
Fig. 3. Blade hydrofoils.

loading. Pitch is expected to be very sensitive to 𝜃. It is also possible
that 𝜃 influences the camber of the hydrofoil.

Parameter 𝛾: Fig. 5 illustrates the change in geometry when 𝛾 is varied.
The target cross-section is rotated at the mid-chord vector about the 𝑥-
axis. Skew is expected to be very sensitive to 𝛾. The proposed parameter
helps control the rate at which loading on the blade increases in the
wake-field. By doing so, it helps regulate cavity volume acceleration.

Parameter 𝜆: Fig. 6 illustrates the change in geometry when 𝜆 is varied.
The target cross-section is modified by rotating Mid-chord vector (𝑟𝑖)
about the 𝑦-axis. Rake is expected to be very sensitive to 𝜆.

Camber : The schematic for modifying hydrofoil camber is illustrated in
Fig. 7. Camber is modified by rotating each of the coordinates defining
6

the hydrofoil about the 𝑥-axis. The angle of rotation is

𝜙 =
𝜙′2𝑠𝑖𝑛(𝜙′)𝑠𝑐𝑎𝑚𝑏𝑒𝑟,𝑖

𝑐
, (5)

where 𝑐 = 3.9453 is a smoothing constant that can be defined by the
designer and 𝜙′ = 𝑥−𝑥𝑡𝑒

𝑥𝑙𝑒−𝑥𝑡𝑒
⋅𝜋. Note that the camber modification does not

influence the leading edge or trailing edge thus, pitch is not expected to
be impacted by changes in 𝑠𝑐𝑎𝑚𝑏𝑒𝑟. The coordinates of the cross-section
are transformed as

𝑝′ =
[

𝑝𝑥 𝑝𝑦 𝑝𝑧
]

⎡

⎢

⎢

⎣

1 0 0
0 𝑐𝑜𝑠𝜙 −𝑠𝑖𝑛𝜙
0 𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙

⎤

⎥

⎥

⎦

. (6)

Increasing camber for the cross-section is expected to increase load-
ing while also shifting the centre of pressure for the blade. For flexible
propellers, increased loading could introduce bending forces on the
blade. Furthermore, the shift in centre of pressure could lead to a
twisting moment about the inertial axis.

Chord-length: The schematic for modifying hydrofoil chord-length is
illustrated in Fig. 8. Chord-length is modified in two steps. The first
step, illustrated in Fig. 8(a), involves scaling the hydrofoil along the
mid-chord vector by 𝑠𝑐ℎ𝑜𝑟𝑑 . The coordinates of the cross-section are
transformed as

𝑝′ =
[

𝑝𝑥 𝑝𝑦 𝑝𝑧
]

⎡

⎢

⎢

⎣

𝑠𝑐ℎ𝑜𝑟𝑑 0 0
0 𝑠𝑐ℎ𝑜𝑟𝑑 0
0 0 𝑠𝑐ℎ𝑜𝑟𝑑

⎤

⎥

⎥

⎦

. (7)

The second step, illustrated in Fig. 8(b), involves translating it back
to the initial radial location as

𝑝′ =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 𝛿𝑥
0 0 0 𝛿𝑦
0 0 0 𝛿𝑧
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝑝𝑥
𝑝𝑦
𝑝𝑧
1

⎤

⎥

⎥

⎥

⎥

⎦

, (8)

where [𝛿𝑥, 𝛿𝑦, 𝛿𝑧] = 𝑟 − 𝑟𝑠𝑐𝑎𝑙𝑒𝑑 .
One limitation of the above proposed parameters is that the pitch,

skew and rake are indirectly influenced. Furthermore, the sequence in
which the parameters are varied could determine whether skew and
rake are preserved or not. It is also possible that modifying 𝜃 could
impact the camber. However, it is to be noted that even with very
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Fig. 4. (a) Mid-chord vector (𝑟𝑖), (b) change in geometry resulting from 𝛥𝜃.
Fig. 5. Change in geometry resulting from 𝛥𝛾.

Fig. 6. Change in geometry resulting from 𝛥𝜆.

Fig. 7. Schematic illustrating camber modification.
7

carefully considered and more robust alternatives, 𝐽2 in Eq. (4) will
not be orthonormal if varying one parameter influences multiple mesh
nodes on the discretized blade geometry. Consequently the parameter-
ization is not orthogonally independent. This problem will be tackled
in Section 2.5, where we derive a set of orthogonal parameters.

2.3. NSGA-III

For the current multi-objective constrained optimization problem
we choose NSGA-III, as it is an established method on 3 to 15 objective
optimization problems with convex, concave, disjointed and differently
scaled Pareto fronts (Deb and Jain, 2013). The framework of NSGA-III
is similar to that of NSGA-II with modifications to mating selection and
survival (Blank et al., 2019).

Algorithm 2 NSGA-III survival selection
Input: 𝑅𝑡, 𝑁,𝑍, �̂�∗, �̂�𝑛𝑎𝑑𝑖𝑟

Output:𝑃 (𝑡+1)

procedure Survivors
(

𝐹1, 𝐹2, ...
)

← 𝑛𝑜𝑛_𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑_𝑠𝑜𝑟𝑡
(

𝑅𝑡)

𝑆 = ∅, 𝑖 = 1
while |𝑆| + |𝐹𝑖| ≤ 𝑁 do

𝑆 ← 𝑆 ∪ 𝐹𝑖
𝑖 = 𝑖 + 1

end while
𝐹𝐿 ← 𝐹𝑖
if |𝑆| + |𝐹𝐿| > 𝑁 then

�̄�, 𝐹𝐿, �̂�∗, �̂�𝑛𝑎𝑑𝑖𝑟 ← 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒
(

𝑆, 𝐹𝐿, �̂�∗, �̂�𝑛𝑎𝑑𝑖𝑟
)

𝜌, 𝜋, 𝑑 ← 0
for 𝑘 ← 1 𝑡𝑜 |𝑆| do

𝜋𝑘, 𝑑𝑘 ← 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒
(

�̄�𝑘, 𝑍
)

𝜌𝜋𝑘 ← 𝜌𝜋𝑘 + 1
end for
𝑆 ← 𝑆 ∪ 𝑛𝑖𝑐ℎ𝑖𝑛𝑔

(

𝐹𝐿, 𝑛 − |𝑆|, 𝜌, 𝜋, 𝑑
)

end if
𝑃 (𝑡+1) ← 𝑆
return 𝑃 (𝑡+1)

end procedure

Algorithm 2 details the selection of the survivors set (𝑆) for NSGA-
III. At the t -th generation, the selection procedure takes as inputs (a)
𝑅𝑡 = 𝑃 𝑡 ∪ 𝑄𝑡, where 𝑃 𝑡 is the parent population, 𝑄𝑡 is the offspring
population, (b) the population size 𝑁 , (c) the reference directions 𝑍
and, (d) �̂�∗ and �̂�𝑛𝑎𝑑𝑖𝑟 which are bounds to normalize individuals in
the selection set 𝑆. The output is 𝑃 (𝑡+1) = 𝑆. The first step involves
non-dominated sorting of merged population 𝑅𝑡 into hierarchical fronts
(𝐹 , 𝐹 ,…). The fronts are sequentially appended to the initially null
1 2
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Fig. 8. Schematic illustrating chordlength modification.
Table 3
Bounds for variance study.

Variable Lower bound Upper bound

𝛥𝜃 (rad) −0.6 0.6
𝛥𝛾 (rad) −0.2 0.2
𝑠𝑐𝑎𝑚𝑏𝑒𝑟 (rad) −0.10 0.10
𝑠𝑐ℎ𝑜𝑟𝑑 (–) 0.60 1.40
𝛥𝜆 (rad) −0.10 0.10

set 𝑆 until |𝑆| + |𝐹𝑖| ≤ 𝑁 . When |𝑆| + |𝐹𝐿| > 𝑁 , the splitting front
𝐹𝐿 is identified. Individuals in 𝑆 and 𝐹𝐿 are then normalized by using
�̂�∗ and the nadir point estimation �̂�𝑛𝑎𝑑𝑖𝑟 as lower and upper bounds
respectively. The individuals in �̄�, 𝐹𝐿 are assigned to a reference di-
rection 𝜋𝑘 with the shortest perpendicular distance 𝑑𝑘. We generate
the reference directions based on the Riesz s-energy concept to obtain
a well-spaced distribution over the optimal Pareto front (Blank et al.,
2021). The niching method selects 𝑁 − |𝑆| individuals based on niche
counts (𝜌), 𝜋𝑘 and 𝑑𝑘 and appends them to 𝑆.

2.4. Geometry & mesh

The blade geometry is defined by a single B-Spline surface defined
as

𝑝(𝑢, 𝑣) =
𝑚
∑

𝑖=0

𝑛
∑

𝑗=0
𝑁𝑖,𝑑1 (𝑢)𝑁𝑗,𝑑2 (𝑣)𝑃𝑖,𝑗 , (9)

where 𝑢, 𝑣 ∈ [0.0, 1.0] are knots in the 𝑢 and 𝑣 directions; 𝑃𝑖,𝑗 is the con-
trol point of the 𝑖th row and 𝑗th column; 𝑚+1 and 𝑛+1 are the number
of rows and columns the control points are organized in; 𝑑1, 𝑑2 are the
degree of the B-Splines in 𝑢 and 𝑣 direction respectively and; 𝑁𝑖,𝑑1 and
𝑁𝑗,𝑑2 are the basis functions in the 𝑢 and 𝑣 direction respectively. The
surface is fitted to hydrofoil cross-sections in Cartesian coordinates at
different radial locations. In our case 𝑑1 = 3 as the spline is closed
in 𝑢 direction and 𝑑2 = 8 to find an optimal fit for a hydrofoil with
camber and thickness distribution with fewer control points. The basis
functions for each directions are defined as

𝑁𝑖,0(𝑡) =

{

1; 𝑡𝑖 ≤ 𝑡 < 𝑡𝑖+1
0; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(10)

𝑁𝑖,𝑑 =
𝑡 − 𝑡𝑖 𝑁𝑖,𝑑−1(𝑡) +

𝑡𝑖+𝑑+1 − 𝑡
𝑁𝑖+1,𝑑−1(𝑡). (11)
8

𝑡𝑖+𝑑 − 𝑡𝑖 𝑡𝑖+𝑑+1 − 𝑡𝑖+1
where 𝑡 is the knot value and 𝑑 is the degree of the spline. The
surface mesh is generated by uniformly discretizing the B-Spline surface
in the B-Spline parametric space. The discrete nodes in the B-Spline
parametric space are

𝑀∗
𝑚×𝑛 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(0.0, 0.0) ⋯
(

0.0,
(𝑗 − 1)
(𝑛 − 1)

)

⋯ (0.0, 1.0)

⋮ ⋱ ⋮
(

(𝑖 − 1)
(𝑚 − 1)

, 0.0
) (

(𝑖 − 1)
(𝑚 − 1)

,
(𝑗 − 1)
(𝑛 − 1)

)

⋮

⋮ ⋱ ⋮
(1.0, 0.0) ⋯ ⋯ ⋯ (1.0, 1.0)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(12)

where 𝑚 is the number of nodes on the hydrofoil cross-section and 𝑛 is
the number of cross-sections along the radius. The nodes correspond to
the mesh for the 𝑖th propeller �⃗�𝑖 ∈ R3×𝑚×𝑛

𝑐𝑎𝑟𝑡

�⃗�𝑖 = {𝑝(𝑚∗
𝑖𝑗 )|𝑚

∗
𝑖𝑗 ∈ 𝑀∗

𝑚×𝑛}. (13)

2.5. Orthogonal parameters

The primary objective of the proposed parametric model is to alle-
viate the limitations of classical design variables. Thus, the parametric
model must (a) accurately quantify geometric variations, (b) yield
orthogonally independent parameters and, (c) be generalized for all
possible geometries. To satisfy the above requirements, the parameter-
ization is based on the coordinates of the blades’ surface mesh such
that all possible variations of all possible families are represented and
the relation between geometry and design objectives is not obscured.
The parameters of the proposed model are derived by projecting the
surface mesh of propellers in an orthonormal hyperspace R𝑜𝑟𝑡ℎ to
ensure that the parameters are orthogonally independent. We define an
orthonormal hyperspace R𝑜𝑟𝑡ℎ with a geometry variance study where
pitch, skew, rake, chord-length and camber are individually varied
within the bounds listed in Table 3. Chord-length and camber are varied
for the last three hydrofoils. 100 equispaced samples are taken within
the bounds for each variable.

Our data matrix 𝑀 is stacked with meshes of all propellers in the
variance study and then transformed into cylindrical coordinates:

�̃� =
⎡

⎢

⎢

�⃗�1
⋮

⎤

⎥

⎥

, (14)

⎣�⃗�𝑁⎦
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Fig. 9. B4-70 propeller (a) inviscid velocity distribution, (b) pressure field on blade, (c) skin friction coefficient and, (d) fraction of cavitating vertices on mesh panel.
|𝑣| =

√

𝑣2𝑥 + 𝑣2𝑦 + 𝑣2𝑧 and IsCav ∈ [0.00, 0.25, 0.50, 0.75, 1.00].
Algorithm 3 Subspace Projection

Input: R𝑜𝑟𝑡ℎ𝑜, 𝑘′, �⃗�∗

Output:�⃗�
procedure Projection

R ← R𝑜𝑟𝑡ℎ𝑜
�⃗�∗ ← 0𝑘′+1
�⃗�∗𝑘′+1 ← |�⃗�∗

|

for 𝑗 = 1 to 𝑘′ do

�⃗�∗𝑗 ← 𝑐𝑜𝑠−1
(

�⃗�∗⋅R∶,𝑗

|�⃗�∗
||R∶,𝑗 |

)

end for
return �⃗�∗

end procedure

𝑀 = 𝑇 (�̃�), 𝑇 ∶ R𝑁×𝑘
𝑐𝑎𝑟𝑡 → R𝑁×𝑘

𝑐𝑦𝑙 . (15)

The origin of R𝑜𝑟𝑡ℎ is chosen to be the mean of all propeller meshes,

𝜇 =
∑𝑁

𝑖=1 �⃗�𝑖 , (16)
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𝑁

thus, the translated data matrix is

𝑀 ′ =
⎡

⎢

⎢

⎣

�⃗�1 − 𝜇
⋮

�⃗�𝑁 − 𝜇

⎤

⎥

⎥

⎦

. (17)

We factorize 𝑀 ′ using thin Singular Value Decomposition (SVD)

𝑀 ′
𝑘×𝑁 = 𝑈𝑘×𝑁𝛴𝑁×𝑁𝑉 ′

𝑁×𝑁 . (18)

In this worked example, the orthonormal reference frame is defined
as the product of 𝑘′ = 10 right and left singular vectors.

R𝑜𝑟𝑡ℎ = 𝑈𝑘×𝑘′ ⋅ 𝑉
′
𝑘′×𝑘′ . (19)

Algorithm 3 details the procedure to project �⃗�∗ sampled by NSGA-
III in R𝑜𝑟𝑡ℎ𝑜 yielding the orthogonal parameters �⃗�∗. For the orthogonal
parameters, 𝜕�⃗�

𝜕�⃗� is an orthonormal matrix. This is expected to solve the
problem of multicollinearity.

2.6. Naive-Bayes classifier

We use an explainable supervised classifier to guide search towards
more lucrative regions in the design space. Naive-Bayes classifier was
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Fig. 10. Comparison of Pareto fronts of classical NSGA-III optimization (left) with DO (right) after 7 generations. The high dimensional Pareto front is illustrated as a combinations
of efficiency vs. 𝑉𝑐𝑎𝑣,𝑓 , 𝑉𝑐𝑎𝑣,𝑏 and 𝜕2𝑉𝑐𝑎𝑣

𝜕2 𝑡
.

demonstrated to work reliably (Doijode et al., 2022) and is also consid-
ered in this demonstration. The Naive-Bayes classifier predicts labels as

𝑦𝑐 = argmax𝑗 𝜋𝑗𝑝(�⃗�𝑖|𝜇𝑗 , 𝜎2𝑗 ), (20)

where 𝑗 maximizes the probability of �⃗�𝑖 occurring. The probability of
�⃗�𝑖 occurring given the mean and variance 𝜇𝑗 , 𝜎2𝑗 for the 𝑗th cluster is

𝑝(�⃗�𝑖|𝜇𝑗 , 𝜎2𝑗 ) =
𝑘′
∏

𝑑=1

1
√

2𝜋𝜎2
.exp

(

−
|𝑥𝑖,𝑑 − 𝜇𝑗,𝑑 |2

2𝜎2𝑗,𝑑

)

. (21)
10

𝑗,𝑑
Where 𝑘′ is the number of orthogonal parameters, 𝑥𝑖,𝑑 is the 𝑑th
parameter in �⃗�𝑖, 𝜇𝑗,𝑑 and 𝜎2𝑗,𝑑 are the mean and variance of 𝑋∶,𝑑 .
Implementations in SciKit-Learn (Pedregosa et al., 2011) are used.

For the worked optimization problem in this paper, it is assumed
that the clusters are fundamentally of two types (a) interesting designs
and (b) un-interesting designs. The former lies on the Pareto front and
the latter either lies meaningfully away and/or cannot be evaluated due
to limitations of the numerical method. The expectation for propeller
design is that the current hypothesis of the two fundamental cluster
types holds for most cases. It is, however, recognized that propeller
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Fig. 11. Comparison of Pareto fronts of classical NSGA-III optimization (left) with DO (right) after 7 generations. The high dimensional Pareto front is illustrated as a combinations
of efficiency vs. 𝑟𝑐,𝑚𝑎𝑥 and 𝑚𝑎𝑥(𝐶𝑝).
Algorithm 4 Assign Labels
Input: 𝐹 , 𝜖
Output:𝑦𝑐

procedure Labels
𝑁 ← 𝑙𝑒𝑛(𝐹 )
𝑦𝑐 ← [0, ..., 𝑁 − 1]
𝑛𝑒𝑥𝑡_𝑝𝑜𝑖𝑛𝑡 ← 0
𝜎 ← 𝜖𝐹
𝐹𝑙𝑜𝑤 ← 𝐹 − 1.96 𝜎

√

𝑁
⊳ Lower bound of 95% confidence interval

𝐹ℎ𝑖𝑔ℎ ← 𝐹 + 1.96 𝜎
√

𝑁
⊳ Upper bound of 95% confidence interval

while 𝑛𝑒𝑥𝑡_𝑝𝑜𝑖𝑛𝑡 < 𝑁 do
𝑚𝑎𝑠𝑘 ← {𝑦|𝐹ℎ𝑖𝑔ℎ[𝑖] < 𝐹𝑙𝑜𝑤[𝑛𝑒𝑥𝑡_𝑝𝑜𝑖𝑛𝑡] ∀𝑖 ∈ [0, 𝑁 − 1]}
𝑚𝑎𝑠𝑘[𝑛𝑒𝑥𝑡_𝑝𝑜𝑖𝑛𝑡] ← 1
𝑦𝑐 ← 𝑦𝑐 [𝑚𝑎𝑠𝑘]
𝐹 ← 𝐹 [𝑚𝑎𝑠𝑘]
𝐹𝑙𝑜𝑤 ← 𝐹𝑙𝑜𝑤[𝑚𝑎𝑠𝑘]
𝐹ℎ𝑖𝑔ℎ ← 𝐹ℎ𝑖𝑔ℎ[𝑚𝑎𝑠𝑘]
𝑛𝑒𝑥𝑡_𝑝𝑜𝑖𝑛𝑡 ← ∑𝑛𝑒𝑥𝑡_𝑝𝑜𝑖𝑛𝑡−1

𝑖=0 𝑚𝑎𝑠𝑘[𝑖] + 1
end while
𝑦𝑐 ← {𝑦|𝑦𝑐 [𝑖] = 1 AND 𝐹𝑖 ≥ 0.85𝜂𝑚𝑎𝑥 ∀𝑖 ∈ [0, 𝑁 − 1}
return 𝑦𝑐

end procedure

design is a complex problem. It is quite possible that the set of inter-

esting designs will be spread out over multiple clusters with additional
11
constraints/requirements which define an acceptable design. In such
cases, One-vs-Rest (OvR) multiclass strategies (Scikit Learn, 2021) must
be employed to have reliable classifier performance.

The labels 𝑦𝑐 ∈ [0, 1] are determined by whether the designs lie on
the Pareto front and whether they have a high efficiency. To account
for uncertainties, it is assumed that designs have a mean and variance
in performance. A design dominates when the mean of the predicted
performance is higher and there is no overlap in the 95% confidence
interval with the compared solution. The 95% confidence interval is
based on the assumption that there is a 15% uncertainty in predicted
performance (Vaz et al., 2015). Algorithm 4 detail the procedure to
assign labels. As inputs it takes objective function values and assumed
uncertainty (𝜖). It returns the labels for all sampled points.

3. Results

The Pareto fronts resulting from classical NSGA-III and DO opti-
mization are compared. The trade-offs in objectives as observed from
the Pareto front are detailed. A solution with minimal suction sur-
face cavitation, no pressure surface cavitation and moderate tip-vortex
cavitation is identified and described.

3.1. Baseline performance

The performance of the baseline Wageningen B-4 70 P/D = 1.0
propeller operating in the wake of Seiun-Maru is estimated by PROCAL.
For this worked example, the baseline performance prediction has local
discontinuities in the pressure and velocity fields at the blade tip as
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Fig. 12. Trade-off between 𝑉𝑐𝑎𝑣 and 𝑟𝑐,𝑚𝑎𝑥 as found by NSGA-III optimization (left) and DO (right). The Pareto front visualized with (a, (b) 𝑉𝑐𝑎𝑣,𝑏 as abscissa and, (c, (d) 𝑉𝑐𝑎𝑣,𝑓 as
abscissa.
illustrated in Fig. 9. Thus, it is difficult to interpret the results to identify
sources of energy losses and cavitation behaviour. These discontinuities
are expected to result from panels being relatively more skewed at
the blade tip. Consequently, DO is also tasked with identifying designs
which can be analysed reliably by PROCAL.

3.2. Pareto front

Both classical NSGA-III optimization and DO are iterated through 7
generation with 72 individuals in the population. For DO the classifier
is used to guide search from the second generation onwards. Figs. 10–
11 compares the Pareto front after the 7-th generation for classical
NSGA-III and DO. The high dimensional Pareto front is plotted with
𝜂 as the abscissa and 𝑉𝑐𝑎𝑣,𝑏, 𝑉𝑐𝑎𝑣,𝑓 , 𝜕2𝑉𝑐𝑎𝑣

𝜕2𝑡
, 𝑟𝑐,𝑚𝑎𝑥, 𝑚𝑎𝑥(𝐶𝑝) as ordinates

to illustrate the trade-off with efficiency. Blue dots represent designs
which lie on the Pareto front (𝑦𝑐 = 1) and the red crosses represent
dominated solutions (𝑦𝑐 = 0). It is observed that the Pareto fronts are
comparable for both NSGA-III and DO.

Figs. 10(a)–10(d) illustrate the trade-off between 𝑉𝑐𝑎𝑣,𝑏, 𝑉𝑐𝑎𝑣,𝑓 and
𝜂. It is observed that improving efficiency over 52% is always accompa-
nied by a cavitation penalty. This is because up to 𝜂 = 52%, efficiency
can be increased without significantly loading the mid section of the
propeller however, the tip is heavily loaded. This leads to larger tip-
vortices as shown in Fig. 11(a). In this region, where 𝜂 ∈ [40%, 52%],
lower mid-section loading also suggests lower supervelocities at the
12
mid-section compared to the tip. Consequently, higher rotational losses
are expected. Furthermore, up to 𝜂 = 52%, viscous losses are expected to
be reduced since, the gain in efficiency does not lead to an exponential
cavitation penalty, . Thus, for region 𝜂 > 52%, gain in efficiency is
expected to result from reduced rotational losses.

From Figs. 10(e)–10(f), it is observed that the cavity volume accel-
eration is better contained despite a growth in cavity volume. This is
likely because skew is also optimized. From Figs. 11(c)–11(d) it can
be observed that reducing 𝑚𝑎𝑥(𝐶𝑝) results in more efficient propellers.
This is because higher peak pressures lead to higher induced losses
which can be modelled in BEM. In addition to induced losses, higher
peak pressures may also lead to flow separation which requires scale re-
solving simulations, such as Large Eddy Simulations (LES) or Detached
Eddy Simulations (DES).

Figs. 11(c)–11(d) also show that very high values of 𝑚𝑎𝑥(𝐶𝑝) are
observed. The bounds of 𝑚𝑎𝑥(𝐶𝑝) are determined by the stagnation
pressure at the leading edge and the vapour pressure due to cavitation.
Excessively high values of 𝑚𝑎𝑥(𝐶𝑝) may indicate numerical artefacts,
which are often observed at nodes on the leading edge when BEM
is used. By specifying the minimization of 𝑚𝑎𝑥(𝐶𝑝) as an objective,
we encourage search algorithms to minimize these unrealistic spikes.
However, since we use the same panel distribution for each propeller,
we do not expect an effect on the relative ranking of the designs.

From Figs. 11(a)–11(b), it is observed that 𝑟𝑐,𝑚𝑎𝑥 can be reduced
down to 4 cm and efficiency can be increased suggesting a reduction
in rotational losses. However, further reducing 𝑟 results in an
𝑐,𝑚𝑎𝑥



Applied Ocean Research 124 (2022) 103174P.S. Doijode et al.
Fig. 13. Evolution of Naive-Bayes label predictions over generations, with blue dots (𝑦𝑐 = 1) indicating solutions that lie on the Pareto front. In all plots, the 𝑥-axis is 𝑥0 and
𝑦-axis is 𝑥11. The plots are for (a) Generation I, (b) Generation IV and (c) Generation VII. Left: Ground reality, Center: The label predicted by Naive-Bayes classifier, Right: The
cluster probabilities.
Fig. 14. Values of the confusion matrix, tp — True Positive, tn — True Negative, fp
— False Positive, fn — False Negative.
13
efficiency penalty. The penalty is expected to result from growth in
cavity volume both on the pressure and suction surface of the propeller.
Fig. 12 illustrates the trade-off between 𝑉𝑐𝑎𝑣 and 𝑟𝑐,𝑚𝑎𝑥. It is observed
from Figs. 12(a)–12(b) that reducing 𝑟𝑐,𝑚𝑎𝑥 results in a higher 𝑉𝑐𝑎𝑣,𝑏.
This suggests that a trade-off exists between higher tip v/s higher
mid-section loading.

3.3. Naive-Bayes classifier

Fig. 13 illustrates the label predictions made by the trained Naive-
Bayes classifier. In Figs. 13(a)–13(c), the left most subplot illustrates the
ground reality. Interesting designs which lie on the Pareto front have
𝑦𝑐 = 1. The centre subplot illustrates the label predicted by the trained
classifier and the right most subplot illustrates the 𝑝(�⃗�|𝜇0, 𝜎20 ). It is
observed that the classifier learns the location of the Pareto front by the
first generation visible as a light blue band in Fig. 13(a). The learning is
reinforced in further generations, i.e. the classifier gets more confident
of the location of the Pareto front. This is visible as the blue band
intensifies. This is also observed from the so-called confusion matrix
whose values are plotted in Fig. 14. It is observed that the true positive
predictions(tp) for designs that lie on the Pareto front steadily increases
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Fig. 15. Percentage of evaluations reduced per generation.

Fig. 16. Parallel coordinate plot of explored designs and designs that lie on the Pareto
front.

generation over generation. As the model becomes more accurate in
predicting the location of the Pareto front, it is possible to reduce
evaluations of designs which are expected to lie meaningfully away
from the Pareto front reducing the computational cost of optimization.

Fig. 15 shows the percentage of reduced evaluations per generation
as the optimization progresses. From the third generation onwards the
classifier reduces at least 30% of evaluations. With online learning, the
classifier is better able to identify the Pareto front as the optimization
progresses and the percentage of reduced evaluations increases steadily
to 40%.

3.4. Pareto solutions

Fig. 16 shows the so-called Parallel Coordinate plot for explored
designs (-) and the designs of interest that lie on the Pareto front with
𝑉𝑐𝑎𝑣,𝑓 = 0.0𝑚3 (-). There are 19 diverse designs of interest. Among
the designs, increasing efficiency comes with a trade-off with either
increasing suction side cavitation, higher cavity volume acceleration or
tip-vortex radius as detailed in Section 3.2. In the Parallel Coordinate
plot, if 𝛥𝜃, 𝛥𝛾, 𝑠𝑐𝑎𝑚𝑏𝑒𝑟 < 0, the pitch, skew and camber for the hydrofoil
cross-section have reduced. Otherwise, they have remained the same
or increased compared to the baseline geometry. If 𝑠𝑐ℎ𝑜𝑟𝑑 < 1.0, the
hydrofoil chord-length has reduced. Otherwise, the chord-length has
either remained the same or increased.

For the current operating point, a cavitation free solution was not
found. Although the maximum efficiency is 𝑚𝑎𝑥(𝜂) = 63.49%, the
corresponding solution has a large suction surface cavity. Solutions
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Table 4
Design parameters and performance for the least cavitating design.
𝑓𝑖 Units Value

𝜂 – 5.2023e1 %

𝑉𝑐𝑎𝑣,𝑏 m3 3.2972e−4

𝑉𝑐𝑎𝑣,𝑓 m3 0.0000
𝜕2𝑉𝑐𝑎𝑣

𝜕2 𝑡
m3s−1 1.7486e−1

𝑟𝑐,𝑚𝑎𝑥 m 5.761e−2

𝑚𝑎𝑥(𝐶𝑝) – 8.2648e1

(a) Predicted objective function values.

Variable Units Value

𝛥𝜃1 rad 4.1000e−2
𝛥𝜃2 rad −1.8405e−1
𝛥𝜃3 rad 7.5432e−2
𝛥𝜃4 rad 2.7701e−1
𝛥𝛾1 rad 3.5201e−1
𝛥𝛾2 rad 1.3164e−1
𝛥𝛾3 rad 3.6064e−1
𝛥𝛾4 rad −2.2871e−1
𝑠𝑐ℎ𝑜𝑟𝑑,2 – 1.1440
𝑠𝑐ℎ𝑜𝑟𝑑,3 – 9.8151e−1
𝑠𝑐ℎ𝑜𝑟𝑑,4 – 1.0800
𝑠𝑐𝑎𝑚𝑏𝑒𝑟,2 – 1.9978e−2
𝑠𝑐𝑎𝑚𝑏𝑒𝑟,3 – −3.7130e−4
𝑠𝑐𝑎𝑚𝑏𝑒𝑟,4 – 2.0544e−3

(b) Design parameters

without pressure side cavitation and much lower suction surface cavi-
tation are found on the Pareto front. Among solutions without pressure
side cavitation, the design with the minimum suction side cavitation
is illustrated in Fig. 17. Fig. 17(c) compares the pitch distribution of
this optimized design and baseline. Compared to the baseline design,
the pitch at the root section is slightly decreased while the pitch at
the blade tip has been increased substantially. Fig. 17(d) compares the
skew distribution of the optimized design and baseline. The skew at
the mid-section and at the tip has been increased. Fig. 17(e) compares
the chordlength distribution of this optimized design and baseline. The
chordlength is measured for the expanded hydrofoil. It is noted that
the chordlength of the mid-section has increased substantially. The
chordlength of the tip-section has reduced compared to the baseline.
From Fig. 17(f) it is observed that the rake of the blade has also
changed from the baseline while 𝜆 has not been varied. As mentioned
in Section 2.2, the change most likely results from the sequence in
which 𝜃, 𝛾, 𝑠𝑐ℎ𝑜𝑟𝑑 , 𝑠𝑐𝑎𝑚𝑏𝑒𝑟 are varied. Furthermore, it could also result
from residuals in fitting of B-Spline curve to the cross-section and
lofting operation of a B-Spline surface through the fit curves. Table 4b
lists the design parameters. In the table, the design parameters provide
insight into how the geometry has changed. The chordlength at the root
and tip has reduced while that at the mid-section has increased. The
camber of the hydrofoil has been reduced at the root and mid-section
while it has increased at the tip.

Fig. 18 illustrates the pressure, velocity, skin-friction coefficient and
cavitation behaviour resulting from the previously mentioned changes
to the baseline. Table 4a lists the objective function values. It is ob-
served that the blade loading is optimized to eliminate discontinuities
at the blade tip in velocity and pressure field when compared with
the baseline. Nonetheless, Design 1 seems to have mitigated adverse
pressure gradients. However, suction pressure at the blade root and
along the leading edge indicate a risk of cavitation. It is observed
that loading on the mid-section is reduced as the blade is de-pitched
and camber is reduced. In order to meet the thrust constraint, the
loading is shifted more towards the blade tip by increasing the tip
pitch and camber. Consequently, 𝑉𝑐𝑎𝑣,𝑏 is reduced and 𝑟𝑐,𝑚𝑎𝑥 increases.
Due to higher tip loading the torque requirement and rotational losses
increases resulting in lower hydrodynamic efficiency.
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Fig. 17. Design solution with minimum suction side cavitation volume:(a) geometry, (b) comparison with baseline geometry, (c) pitch distribution of baseline and design, (d)
skew distribution of baseline and design and, (e) chordlength distribution of baseline and design and, (f) rake distribution of baseline and design.
4. Conclusion

An optimization method to solve multi-objective, constrained opti-
mization problems based on machine learning strategies is proposed.
The method referred to as Dynamic Optimization (DO) is demonstrated
on the hydrodynamic optimization of Wageningen B-4 70 propeller
with P/D = 1.0 operating in the Seiun-Maru wakefield. Compared to
classical NSGA-III optimization, DO is able to reduce at least 30%
of evaluations per generation while reproducing a comparable Pareto
front. The gain in computational efficiency of optimization is achieved
15
with an online learning strategy using the Naive-Bayes classifier, which
identifies the location of the Pareto front and designs that are located
close to the front. Both classical NSGA-III and DO identify similar
trade-offs between suction side, pressure side, tip-vortex cavitation and
efficiency. For the current demonstration case, improving efficiency is
accompanied by a cavitation penalty. It is possible to reduce suction
side cavitation and eliminate pressure side cavitation fully. Reducing
suction side cavitation requires a higher tip loading resulting in a larger
tip vortex. Nonetheless, a non-elitist search strategy results in a Pareto
front with very diverse designs.
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Fig. 18. Design 1 (a) inviscid velocity distribution, (b) pressure field on the blade, (c) skin friction coefficient and, (d) fraction of cavitating mesh panels. |𝑣| =
√

𝑣2𝑥 + 𝑣2𝑦 + 𝑣2𝑧 and
IsCav ∈ [0.00, 0.25, 0.50, 0.75, 1.00].
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