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Adaptive time-delay estimation and
control of optimized Stewart robot

Farzam Tajdari

Abstract
Aiming at a more efficient and accurate performance of parallel manipulators in the existence of complex kinematics and

dynamics, a robust generalizable methodology is proposed here for an integrated 6-DOF Stewart platform with rotary

time-delayed actuators torque control. The suggestedmethod employs a time-delay linear–quadratic integral regulator with
online artificial neural network gain adjustment. The unknown time-delay is estimated through a novel robust adaptive

estimator. The global asymptotic stability of the estimator is proved via a Lyapunov function. The controller is developed in

MATLAB software and implemented on the robot designed in ADAMS software to ensure that the real-time tracking error

of a nonlinear system with an unknown time-delay is kept to a minimum. The sensitivity of the controller to the parameter

choices is studied via implementing the controller in ADAMS software and is validated by investigating the performance on

a naturalistic fabricated robot. The approach is assessed using simulation and experimental tests to show the feasibility,

optimum, and zero-error convergence of the technique developed.

Keywords
time-delay actuator, adaptive estimator, torque control, robust control, artificial neural network

1. Introduction

Parallel mechanisms over serial manipulators are alterna-
tively suggested in applications such as surgeries (Orekhov
et al., 2016; Saeedi-Hosseiny et al., 2021; Tajdari et al.,
2020b) and scanning (Huang et al., 2018; Lee et al., 2022)
which require higher acceleration and speed, better accu-
racy, and lighter weight (Taghirad, 2013). In particular, the
highly precise scans of the human body for surgeries, the
creation of anatomically adaptable rehabilitation devices
(Nomura et al., 2016), and the next generation of Ultra
Personalized Products and Services (UPPS) (Minnoye et al.,
2022) attract more interest according to the necessity of
robot-influenced health and human survival. One chal-
lenging scanning scenario as the implementation candidate
for this study is rapid automatic breast scanning (Sun et al.,
2018), although it is a very complex operation due to the
flexibility and deformability of the breast tissue, particularly
in motion scanning. The high accuracy requires a clear
understanding of the control of such parallel robots that
investigate complex dynamic, sophisticated control ap-
proaches (Shoham et al., 2003), and implementation ob-
jections such as a sensor or actuator time-delays (Jin et al.,
2017).

The key goal of parallel robot control design is to achieve
an exact continuation of the target direction and orienta-
tion of dynamic or static variables in the robot’s moving

end-effector (Merlet, 2006). While multiple control systems
(Ju et al., 2022), such as optimal feedback robotics control
(Tourajizadeh et al., 2016), monitoring backstage adaptive
control (Huang and Fu, 2004), sliding mode (SM) (Zhu
et al., 2022; Tajdari et al., 2017a), model predictive control
(Hu et al., 2022), and PID controllers (Velasco et al., 2020),
are available, fewer control procedures are utilized for
Stewart robots with rotary actuators because of the extra
complexity of the robot’s dynamics. The reverse dynamic
control methods are especially important for controlling the
motion of the end-effector directly through the manipu-
lators. The rotary robot torque control, which is an opening
for further application of identification techniques, non-
linear control methods, and impedance manipulator control,
is explored in limited studies (Yang et al., 2019).

Moreover, among the state-of-the-art studies that ad-
dressed the control of the rotary Stewart robot, few of them
investigated the time-delay as an undeniable part of such
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robots emphasizing high accuracy. Time-delay control
(TDC) is often an efficient way of tackling the issues listed
above. The TDC scheme is widely utilized for significant
applications, such as robot manipulators (Baek et al., 2021),
underwater vehicles (Qi and Cai, 2021), and robots with
flexibilities (Xu and Xu, 2022). Meanwhile, the use of time-
delayed control commands will necessarily profit estima-
tion errors, that is, time-delay estimation (TDE) errors, in
practical control methodologies implementations.

In presence of high uncertainties and nonlinearities, for
example, saturation, the TDE errors will be increased
which causes instability of the closed-loop control system.
Thus, the TDC approach is mainly employed as a general
solution that benefits from its model-free feature. Addi-
tional robust control strategies, such as SM control (Li and
Chen, 2018), terminal SM control (TSM) (Fu et al., 2022),
and adaptive robust control (Ma et al., 2018), are now also
being employed to ensure high precision and robustness.
Because of the model-free TDE approach and the em-
ployed robust control techniques, TDE-based control
schemes may provide great control efficiency straight-
forwardly. The bulk of current TDE-based control
schemes, on the other hand, is strictly confined to constant
control gain, ensuring that fixed gain is always utilized.
However, time-varying dynamic disruptions usually occur
in practical implementations, which may result in the
control output degrading. As previously mentioned (Wang
et al., 2018a), control precision is roughly proportional to
control of the gain. With a greater control gain, better
control precision and faster dynamical reaction are fea-
sible. Moreover, there will be a significant noise effect, as
well as control device instability, when an inappropriately
high control gain is used. Similarly, when the control gain
is set too low, the control scheme degrades and may even
fail to track the desired trajectory. Because control tasks
and requirements for parallel manipulators vary with time,
maintaining adequate detailed control output under
complicated situations while utilizing a fixed control gain
is typically quite challenging. As a result, adaptive TDC
(ATDC) methods with self-tuning power gain have been
suggested and investigated to solve the aforementioned
concerns (Baek et al., 2017; Tajdari and Toulkani, 2021).
However, it is challenging to utilize in real applications
due to its inherent noise susceptibility and the usage of
many control settings. As a result, the built algorithm was
only demonstrated using simulations with a single degree
of freedom (DOF). Then, for the control gain (Baek et al.,
2017), an auto-tuning algorithm was developed. Although
the ATDC systems discussed above have produced in-
triguing theoretical and experimental findings, the dis-
advantages are several (Wang et al., 2018b): First, the
adaptive legislation that has been suggested cannot
quickly and accurately reflect the tracking error (Jin et al.,
2016), or might create significant chatters owing to the
usage of the discontinuous function, and second, the

designed ATDC schemes (Baek et al., 2017) used tradi-
tional linear ATDC schemes.

This paper seeks to establish and test for the complex
parallel structure of a novel robust torque control approach
in presence of huge time-delay with the actuators to opti-
mize torques and reduce tracking errors in order to resolve
all the challenges listed above. Moreover, the controller is
validated through a valid nonlinear test-bed through the
ADAMS model proposed in Tajdari and Toulkani (2021)
and assessed experimentally via a fabricated robot. In
Tajdari et al. (2020a) and Tajdari and Toulkani (2021),
a robust optimal torque controller for the same Stewart
platform is discussed; however, the works did not in-
vestigate the impact of time-delay on the performance of the
robot and also optimal design of the platform which are
extensively studied in this paper. In addition, an in-
troductory version of this study is presented in Tajdari et al.
(2021), which is collaborated here with optimal design of
the robot dynamic; architecting of a robust estimator for the
time-varying time-delay; a more rigorous concept; a com-
prehensive verification on the stability of controller pa-
rameters for the proposed control law; studying on the
degree of robustness regarding parameter selection via
numerical experiments; and extra numerical experiments,
including a scenario grants a state-of-the-art regular control
method and a scenario, which contains extra disturbances
via the fabricated robot.

2. Equation of motion

2.1. Kinematics equation

The torques manipulated with motors and their rotational
angles are the variables capable to be controlled in a Stewart
platform that is actuated with rotary motors. A relationship
between the variables of the motors and the location of the
end-effector is reported as follows

L ¼ f
�
X

�
, θM ¼ g

�
L
�
; (1)

where the end-effector’s variables are presented as
X ¼ ½f θ ψ x y z �T , where the rotation angles
include f, ψ, and θ of the end-effector about the X, Y, and Z
axis, respectively, and the locations of the end-effector
center of mass are defined as x, y, and z according to the
fixed coordinate XYZ, presented in Figure 1(a). In addition,
the L ¼ ½ L1 L2 L3 L4 L5 L6 �T addresses the dis-
tance from the joints on the fixed base ðPi

!Þ to the corre-
sponded joints on the end-effector ðpi!Þ. Finally,
θM ¼ ½ θM1 θM2 θM3 θM4 θM5 θM6 �T represents the
motor angular depicted in Figure 1(a). To reveal the con-
nection between Li and θMi, the results of the same model in
Tajdari et al. (2020a) are extracted fromVan Nguyen and Ha
(2018); Szufnarowski (2013); then
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θMi¼�
0B@asind

0B@ Ciffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

i þB2
i

q
1CA�acosd

0B@ Biffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

i þB2
i

q
1CAþ180

1CA
(2)

where Ai,Bi, Ci 2UðX Þ and

Ai ¼ 2
��� u!i

������� L!ix

���SinðθhÞ � ��� L!iy

���CosðθhÞ
�
,

Bi ¼ 2
��� u!i

������� L!ix

���CosðβÞCosðθhÞ
þ ��� L!iy

���CosðβÞSinðθhÞ � ��� L!iz

���SinðβÞ�
Ci ¼

��� l!i

���2 � ��� L!i

���2
(3)

where θh defines the angle between P
!

i and X
!

in the XYZ
axis, and β is the motor installation angle to the horizon. The
defined formula in (2) explains that measuring the X via
a sensor mounted on the end-effector results in determining
the corresponding operating angle value of each motor,
which is useful to practically implement position controller
approaches on such robots.

2.2. Kinetics equations

Here, employing the Newton–Euler method, the dynamic
formulation of the Stewart platform equipped with six rotary
motors is concluded from Van Nguyen and Ha (2018);
Szufnarowski (2013). The platform includes, as shown in
Figure 1, a moving plate as the end-effector, a sedentary plate
as the base, six rotary actuators as manipulators to move the
end-effector, and six legs connected to their corresponded
motors. The spherical joints are utilized to carry the end-
effector and the backbone to the six legs.

The formulation extraction is summarized to introduce the
different complex properties of the structures and outcomes. The

analyzed Stewart platform is drawn in Figure 1(a). The kinetics
formulations regarding the end-effector are extracted as

ΣM
!¼ I α! (4)

ΣF
!¼ m a! (5)

where α! defines the vector of the angular acceleration, and
a! determines the vector of the linear acceleration of the
end-effector’s center of mass. Furthermore, matrix m
consists of the mass value (m) of the end-effector, and
matrix I contains the end-effector moment of inertia around
x, y, and z axes; then"

I 03×3
03×3 m

#
€X ¼

�
M
F

	
(6)

where

I ¼ diag


Ixx, Iyy, Izz

�
, m ¼ diagðm,m,mÞ (7)

M ¼ �
Mx,My,Mz

T
,F ¼ �

Fx,Fy,Fz

T
; (8)

where M and F, depicted in Figure 1(a), explain all the
torques and the forces applied to the end-effector, re-
spectively. Referring the manipulated torques control, the
dynamic equations are extracted as a controllable variable–
torque relationship as follows"

I 03×3
03×3 m

#
€X ¼

�
M
F

	
¼ τ6×6T (9)

where T ¼ ½ T1 T2 T3 T4 T5 T6 �T , and each of
the Ti is representing the manipulated torque by its
corresponded ith motor. In more detail, the kinetics

Figure 1. The Stewart platform mechanism: (a) defined variables and vectors and (b) the top view of the designed Stewart platform in

SolidWorks software.
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equations are formulated employing their unit vectors
as explained in (10)

ΣM
!¼ Σ r!i × F

!
li ¼ Σ p!i × e!li

���F!li

��� ¼ Σ e!Mi

���F!li

��� (10)

in which e!Mi ¼ p!i × e!li (i.e., e
!determines the unit vector

of its corresponding vector). Then

ΣF
!¼ Σeli

!��� Fli

�!��� (11)

thus

�
M
F

	
¼

�
eM1 / eM6

el1 / el6

	24Fl1

«
Fl6

35 (12)

where

τ1 ¼
�
eM1 / eM6

el1 / el6

	
: (13)

As F
!

li ¼ e!li � e!NijT
!

ij
.
j u!ij, where e!Ni is the unit vector

of T
!

i, then

24Fl1

«
Fl6

35 ¼

2666664
e!l1 � e!N1��� u!1

��� / 0

« 1 «

0 /
e!l6 � e!N6��� u!6

���

3777775
24 T1

«
T6

35: (14)

Considering

τ2 ¼

e!l1 � e!N1��� u!1

��� / 0

« 1 «

0 /
e!l6 � e!N6��� u!6

���

26666666664

37777777775
(15)

and "
I 03×3

03×3 m

#
€X ¼

�
M
F

	
¼ τ6×6T ¼ τ1τ2T (16)

Hence, the final dynamic transfer matrix explains the
torque–force relationship on the end-effector based on the
motor torques is τ = τ1τ2, which leads us to directly apply
the torque control methods as follows

€X ¼ τtotT (17)

where

τtot ¼
"

I 03× 3
03× 3 m

#�1

τ: (18)

2.3. Optimal design of the dynamic robot platform

In order to establish the optimal kinematic and dynamic per-
formance of the robot, a number of simplified assumptions were
considered, and the rest of the parameters are optimally de-
signed based on the desired work-space of the end-effector
including dynamic and static features. As the future application
of the robot is collaborating to carry a breast scanner mentioned
in the Introduction section, the dimensions of end-effector and
base of the robot are considered predefined. According to
Figure 1(a) and Figure 1(b), the assumed parameters are
summarized in Table 1(a), and ui and li are optimized through
the following cost function

Jtot ¼
�
Minimizing : JL, JT
Maximizing : JWS , Ju, Jl

(19)

where Jtot is the total cost function that includes both
minimization and maximization terms. Regarding the
minimization, JL consists of the length of each element of L
formulated as

JL ¼
X6

i¼1

jLij2 (20)

As the desired work-space is predefined, JL explains the
minimum possible dimension that covers the work-space.
Continuously, JT denotes the maximum possible torque on
each motor. Considering X is periodically changing with
frequency of 6 Hz (6 times more than the practical fre-
quency used in the Results section), then €X ¼ �36X , and
from (17), we will have

JT ¼
����τ�1
tot

�
�36X

�����2 (21)

Regarding the maximization, the moving links’ cost
functions are assumed as below

Ju ¼
X6

i¼1

juij2 (22)

Jl ¼
X6

i¼1

jlij2: (23)

Continuously, JWS belongs to the maximumwork-space and
is explained as follows
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JWS ¼
�����
"

X � X 0

θM � θM0

#�����
2

(24)

where X 0 ¼ ½0; 0; 0:38; 0; 0; 0, �T and
θM0 ¼ ½90°, 90°, 90°, 90°, 90°, 90°�T . Thus, the optimal
problem is finding a set of optimal design parameters li and
ui such that

minJtot ¼ JL þ JT � JWS � Ju � Jl (25)

subject to

� π
6
ðradÞ ≤f ≤

π
6
ðradÞ

�π
6
ðradÞ ≤ θ ≤ π

6
ðradÞ

�π
6
ðradÞ ≤ψ ≤

π
6
ðradÞ

�0:08ðmÞ ≤ x ≤ 0:08ðmÞ
�0:08ðmÞ ≤ y ≤ 0:08ðmÞ
0:3ðmÞ ≤ z ≤ 0:46ðmÞ
0° ≤ θMi ≤ 180°

�1:5ðN :mÞ ≤ Ti ≤ 1:5ðN :mÞ
0:05ðmÞ ≤ ui ≤ 0:2ðmÞ
0:1ðmÞ ≤ li ≤ 0:6ðmÞ

and with a conditional constraint of�
z� z0 ≤ 0 for lower boundary
z0 � z ≤ 0 for upper boundary

(26)

Two conditional constraints are proposed to lead the op-
timization process towards the farthest maximum point
(z = 0.46 m) and farthest minimum point (z = 0.3 m)
locations that the end-effector should travel from its initial
location (z0 = 0.38 m). By applying the algorithm in
Lagarias et al. (1998) such as Tajdari et al. (2022a), the
optimal parameters are designed, and for each of the
constraints, the minimum values are obtained, as reported
in Table 1(b). Thus, the maximum of the optimal values for
each of the parameters is selected to make sure that both
the constraint conditions are covered, and then ui =
0.11(m) and li = 0.404(m).

2.4. Nonlinear model

In terms of controller assessment, it is necessary to
prepare a realistic nonlinear model that can describe the
actual robot. As certain dynamical constraints, for ex-
ample, the collision of objects, stiffness, and elasticity
of rigid bodies, and friction between hard surfaces, are
not easy to be modeled in MATLAB software; an
ADAMS model (Tajdari and Toulkani, 2021) is estab-
lished based on the optimally designed dimensions in
the Optimal Design of the Dynamic Robot Platform

Table 1. The parameters and assumptions used for the robot’s dimension.

(a) The choice of options

Parameter Value Description

Rup 0.12 (m) Norm pi
Rdown 0.22 (m) Norm Pi
θ0 5° Angle joint on base

θ1 15° Angle joint on end-effector

β 70° The motor installing angle

(b) Optimal parameter results

Parameter

Constraint

z�z0 ≤ 0 z0�z ≤ 0

ui (m) 0.065 0.108

li (m) 0.363 0.404

(c) Dynamical features of Stewart platform’s components

Component Dimension (m) Inertia [Ix, Iy, Iz] (× 10�4 kg.m2) Mass (kg) Quantity

li 0.404 [16, 16, 0.01] 0.08 6

ui 0.11 [0.01, 0.58, 0.6] 0.04 6

End-effector Circle (Rup = 0.12) [30, 30, 60] 4 1

Base Circle (Rdown = 0.22) [270, 270, 540] 7 1

Tajdari 5



section. Since the ability to encrypt and apply multiple
control methods in ADAMS software is missing, the
model is controlled online with MATLAB software.
Second, the machine 3D model in the SolidWorks
program is shown in Figure 1(b). Then, the 3D model
can be imported into ADAMS and the aforementioned
constraints in the Kinetics Equations section are applied
to the model of the robot, such as joint sizes, materials,
body densities, rigidity towards each other, and friction
between hard surfaces. The parameters in Figure 1(b)
and Figure 1(a) are explained in Table 1(a), and
Table 1(c) reports the used dynamic parameters. Ac-
cording to the table, the platform includes 14 compo-
nents of mass and moment of inertia.

3. Adaptive time-delay estimator design

We aim at designing a novel adaptive estimator to es-
timate the actuators’ time-delay. To do so, the needed
assumptions are presented, and then the integration of
the method to the designed time-delay optimal con-
troller is explained, and ultimately, the convergence of
the estimated time-delay value and the method’s global
asymptotic stability are investigated. In total, by com-
paring the designed torque (T) and measured used torque
(Ts) on the actuators, the estimator defines the exact
value of the time-delay for each motor. Let us define the
integral error states (Eμ)

Eμ ¼
Z

T
�
t � bμΔt�� TsðtÞ dt; (27)

where Ts naturally has an unknown delay with T, and bμ is the
estimated delayed steps between the 2 signals of T and Ts.
Thus, the integral error system led to

_Eμ ¼ T
�
t � bμΔt� � TsðtÞ; (28)

which can be rewritten as

_X ¼ Beue þ re; (29)

where

X ¼
Z

T
�
t � bμΔt� dt, (30)

Be ¼ 1, re ¼ TsðtÞ; (31)

and ue is the controllable variable to control the X and is
assumed as a combination of X and re as follows

ue ¼ �bμX þ bμre; (32)

where bμ is the unknown matrice of the time-delay value
that should be estimated. Then, the system in (29) is
controlled via model reference adaptive control

(MRAC) (Slotine et al., 1991; Tajdari and Roncoli,
2021), which allows estimating the unknown parame-
ters bμ and minimize the tracking error simultaneously.
By assuming ~a ¼ h�bμ bμ i

, the feedback control law is

ue ¼ ~a

�
X
re

	
: (33)

A model reference is considered as

_XM ¼ �AMXM þ BMre; (34)

where pair (AM, BM) are optional matrices that establish
a stable dynamic of the model reference. Considering the
error between the integral states and the model reference as
e = X�XM, then

_e ¼ _X � _XM

¼ Be

�
� bμX þ bμre�þ re þ AMXM � BMre þ AMX � AMX

¼ �AM ðX � XM Þ þ Be

�
� bμþ AM

Be

�
X þBe

�bμ� BM � I

Be

�
re

¼ �AMeþ Be

�
� bμþ AM

Be

�
X þBe

�bμ� BM � I

Be

�
re;

(35)

which is concluded to

e ¼ Be

sI þ AM

�
�bμþ AM

Be
bμ� BM � I

Be

	"X
re

#
,

¼ jBej
sI þ AM

�
�bμSnðBeÞ þ AM

jBej bμSnðBeÞ � BM � I

jBej
	 "X

re

#
;

(36)

where s represents the Laplace variable, I is the identity
matrix, and Sn is the sign operator. The error dynamic of
(36) remains stable by the time, as AM was selected as
a stable matrix (means AM has negative eigenvalues), if ~a is
bounded or ~a is converging (Tajdari and Roncoli, 2022).
Please note that AM and BM are usually chosen as constant
matrices. Then, to define the stability of the system, let’s
propose

ue ¼ SnðBeÞ~a
�
X
re

	
; (37)

To study the convergence of ~a, the Lyapunov function given
below is proposed

V ¼ XTPX þ ~aTΓ�1~a; (38)

where P ≥ 0 and Γ > 0 imply that V > 0. For stability, it
would be enough if _V ≤ 0 (Tajdari et al., 2022b), and
then
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dV
dt

¼ _X
TPX þXTP _X þ _~a

T
Γ�1~aþ ~aTΓ�1 _~a: (39)

By replacing v ¼
�
X
re

	
in (37), we obtain ue ¼ SnðBeÞvT~a;

thus

dV
dt

¼ 2X TPBe signðBeÞvT~aþ 2 _~a
T
Γ�1~a: (40)

If it is assumed that PBe ¼ CT , e = XTCT, and dV=dt ¼ 0,
then (40) results in

�2 SnðBeÞevT~a ¼ 2 _~aΓ�1~a (41)

thus, to guarantee the stability and convergence of estimated
values, the changes in the unknown parameters over time
should follow the adaptation rule as

_~a ¼ �ΓSnðBeÞevT : (42)

To implement the parameter estimation in a discrete form, it
is considered that _~aðkÞ ¼ ~ðaðkÞ � ~aðk � 1ÞÞ

.
Δt, and then

the adaptation rule in (42) would be

~aðkÞ ¼ ~aðk � 1Þ � Δt


Γ SnðBeÞevT

�
(43)

Based on our observations, when j _~aj> 1, the estimated
values of ~a are highly fluctuating which results in a de-
terioration of the estimator performance. To prohibit this,
the Γ called growth ratio is designed as follows to keep Γ ≤ 1
and to guarantee a smooth convergence

ΓðkÞ ¼

8>>><>>>:
1

_~aðkÞ�� ��ν1 , if _~aðkÞ�� �� > 1,
_~aðkÞ�� ��ν2 , if _~aðkÞ�� �� ≤ 1: (44)

Moreover, as the estimated number of delayed iterations
should be an integer value, the implemented number of
delayed iterations as μ is considered as follows

μ ¼ floor
�bμþ 0:5

�
: (45)

4. Discussion

Avalue of 0.5 is added to bμ to avoid fluctuation of μ around
an integer value with a deviation less than 0.5 which es-
tablishes a region of attraction with a length of 1 around the
integer value.

In (44), ν1 and ν2 are very effective to the changes of Γ by
the time. And, the huge parameters of Γ can lead the system
to an unstable condition as the system and control scheme is
very dependent on the estimated time-delay. Thus, Γ should
be chosen so that the estimator is fast enough with the least
overshoot. For the possible domain of ν1 and ν2, four
conditions exist according to (44) as follows.

1. ν1 < 0 and ν2 < 0: Which is unstable as Γ would be
very big number; thus, we have overshoots.

2. ν1 < 0 and ν2 > 0: For some cases that j _~aðkÞj > 1, Γ
would be very huge resulting in instability.

3. ν1 ≥ 0 and ν2 ≥ 0: Some stable points may be found
here as with this condition, Γ is bounded.

4. ν1 > 0 and ν2 < 0: For small values of j _~aðkÞj, Γ would
be very huge which is more probable to happen than
condition 2.

Accordingly, in this study, the proper values of ν1 and ν2
are investigated in condition 3, as they will be explained in
the Sensitivity Analysis section.

5. Controller design

Because the developed dynamic platform in the
ADAMS software in Tajdari and Toulkani (2021)
consists of the nonlinear parameters of the actual
platform, this is accurately a nonlinear Stewart system,
and the proposed controller must be able to penalize
tracking errors in the presence of nonlinearities to
monitor those systems (Åström and Hägglund, 1995). In
addition to the robustness, parallel manipulator input
signals optimization is a problem to be tackled during
the control design process. Therefore, an optimal
control scheme for the linear–quadratic integral (LQI)
is an appropriate choice for the nonlinear control
problem.

5.1. State-space equations

The state-space and dynamic equations of the Stewart robot
can be established as below

_xðtÞ ¼ AcxðtÞ þ BcðtÞTðtÞ þ dcðtÞ (46)

where x consists of the main states in X and the speed of the
states with size N × 1 (where N = 2n). Consequently, the
dynamic of error can be defined as

_eðtÞ ¼ AceðtÞ þ BcðtÞTðtÞ þ dcðtÞ: (47)

Accordingly, vector dc represents the time-variant dis-
turbance. e belongs to the error of the states and is
proposed as e ¼ x� xd , where xd explains the desired
values of each states. Matrix Ac contains all the ai,j
elements in (48) which presents the system dynamics.
Furthermore, matrix Bc contains bi,j elements in (49)
which presents the interconnections between the applied
torques and corresponding states. ai,j and bi,j can be
written as

ai, j ¼
�
1 if i ¼ 2n� 1, and j ¼ iþ 1

0 otherwise
(48)
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and

bi, j ¼
(

τtot

�
i

2
, j

�
if i ¼ 2n,

0 otherwise

(49)

where n = 1, …, 6. Because in any actual system the ex-
istence of disturbances, for example, uncertainties in dy-
namic parameters, is undeniable, an integral controller is
employed to eliminate constant disturbances (Åström and
Hägglund, 1995). The main control issue extracted from
(47) can therefore be reformulated by taking into account
integral states (z) of S (i.e., as many as the number of links),
explained by

_zðtÞ ¼ CceðtÞ (50)

where Cc includes ci, j determined as follows

ci, j ¼
�
1 if i ¼ n, and j ¼ 2 i� 1

0 otherwise
(51)

Thus, by integrating the integral states into the state-
space formulation, the final dynamic error of the system is
proposed as

_e ¼ AeðtÞ þ BðtÞTðtÞ þ dðtÞ (52)

accordingly

e ¼
�
e
z

	
, d ¼

"
dc

0S×1

#
(53)

A ¼
"
Ac 0H×S

Cc 0S×S

#
,B ¼

"
Bc

0S×n

#
,C ¼

"
Cc 0n×S
0S×2n IS×S

#
(54)

5.2. Time-delay control scheme

By assuming a time-delay of η for the system in (52) (η is the
summation of all the delays including actuator and sensor),
the time-variant form of the system is written as

_eðtÞ ¼ AeðtÞ þ BTðt � ηÞ, yðtÞ ¼ CeðtÞ: (55)

Accordingly, the solution for the well-known differential
equation in (55) is presented in Karafyllis and Krstic (2013)

_eðtÞ ¼ eAtðt�t0Þeðt0Þ þ
Z t

t0

eAðt�νÞBTðνÞdν: (56)

In the discrete-time domain and considering only one step
delay, t can be considered as

t0 ¼ k Δt, t ¼ kΔt þ Δt: (57)

Generally, it may happen that the resolution of the time step
(Δt) cannot cover the delay of η; then η = μΔt+η0 and

eðk þ 1Þ ¼eAΔteðkÞ þ
Z η0

0

eAðΔt�νÞBdνTðk � 1Þ

þ
Z Δt

η0

eAðΔt�νÞBdνTðkÞ
(58)

where kΔt�ζ = �ν and T(k�1) are the delayed outputs of
T(k) for one time step. From now on, the μ number of steps
delayed output is shown as Tk�μ which is considered as
extra states to be a controller as follows

e1dis ¼
�

e
Tk�1

	
: (59)

Then, the state-space in (58) is formulated as

e1disðk þ 1Þ ¼ A1dise1disðkÞ þ B1disTðkÞ (60)

where

A1dis ¼
24 eAΔt

Z η0

0

eAðΔt�νÞBdν

0n×ðNþSÞ 0n×n

35

B1dis ¼

2664
Z Δt

η0

eAðΔt�νÞBdν

�������
In×n

3775,C1dis ¼ ½ C 0S×n �
(61)

where n is the number of the system inputs, S is the number
of integral states, N denotes the number of elements in
matrix _e in (47), and I is the identity matrix. Now, the
discrete system with μ steps delay is explained which can be
written as

e1disðk þ 1Þ ¼ A1dise1disðkÞ þ B1disTk�μ

yðkÞ ¼ C1dise1disðkÞ:
(62)

Considering each delay line of the control signal as
a single state of the discrete system and the total
number of variables in e1dis as H = N+S+n, then the state
variable matrix of the discrete system with the new
states is

edisðHþμnÞ×1 ¼

2664
e1dis

edisHþ1 :Hþn

«
edisHþðμ�1Þnþ1 :Hþμn

3775 ¼

2664
e1dis
Tk�μ

«
Tk�1

3775 (63)

and, the system with μ-step delay is

edisðk þ 1Þ ¼ AdisedisðkÞ þ BdisTk

yðkÞ ¼ CdisedisðkÞ
(64)

where
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Adis ¼

2664
A1dis B1dis 0H×ðμ�1Þn

0ðμ�1Þn×H 0ðμ�1Þn×n Iðμ�1Þn×ðμ�1Þn

0n×H 0n×n 0n×ðμ�1Þn

3775
Bdis ¼

"
0ðHþðμ�1ÞnÞ×n

In×n

#
,Cdis ¼ ½C1dis 0S×ðHþμnÞ �:

(65)

Now, the following quadratic cost function (Tajdari et al.,
2019) can be defined over an infinite time horizon, which is
determined for the minimization of all states and control inputs

minJ ¼
X∞

k¼0

�
edisðkÞTCT

disQCdisedisðkÞ þ TT ðkÞRTðkÞ
(66)

where

Q ¼ ωQIðHþμnÞ×ðHþμnÞ,R ¼ ωRIn×n: (67)

The Q and R matrices are weight matrices that tend to
minimize the error of all states and the control signals. And,
ωQ > 0 and ωR > 0 are formulated for weighing matrices.

A linear–quadratic regulator (LQR) is used to solve
resultant optimal control problems (66), (67), in which the
goal is to stabilize feedback gains via the assumption
considering the stability and detectability conditions, ful-
filled according to Tajdari et al. (2020a) via the Hautus test
(Williams and Lawrence, 2007).

5.3. Controller gains

In order to solve the LQI problem, a linear feedback control
law is proposed as follows

TðkÞ ¼ �KedisðkÞ (68)

where

K ¼ 

Rþ BT

disPBdis

��1
BT
disPAdis; (69)

P ¼ CT
disQCdis þ AT

disPAdis � AT
disPBdis



Rþ BT

disPBdis

��1
:

(70)

The result is K in (69) as an optimal gain, and Navvabi and
Markazi (2019) investigate the algebraic Riccati equation
(70). In addition, in terms of realistic execution, the cal-
culated K is divided into three sections

K ¼ ½KP KI KU �; (71)

leading to the reformulation of the optimum control law as

TðkÞ ¼ �KPeðkÞ � KIzðkÞ � KUuðkÞ; (72)

where u ¼ ½Tk�1,Tk�μ,…,Tk�1�T . For realistic im-
plementations, the final control law (72) is dramatically

efficient, as the computational effort regulated by the input
benefits KP, KI, and KU presents significantly lower values.

5.4. Anti-windup approach

In functional implementations, due to complexities such as
input saturation problems, exact values of the desired states
cannot always be obtained. Therefore, the anti-windup
system has been incorporated as investigated in Åström
and Rundqwist (1989), into the proposed controller. The
scheme amends the integral part of the dynamic controller
(72) as

zðk þ 1Þ ¼ðI þ ΛKIÞzðkÞ þ
�
CΔt þ ΛKP

�
eðkÞ

þ ΛKUuðkÞ þ ΛsatðTðkÞÞ
(73)

where Λ2R
S×n and ðI þ ΛKIÞ 2R

S×S . As the
torque saturation is virtually included in the actual
machine input T(k), the saturation operator is shown
below

satðToÞ ¼
8<:

Tmin
o , if To ≤ Tmin

o

Tmax
o , if To ≥Tmax

o

To, otherwise,

(74)

where o determines the index of each controlled input in T,
and Tmin

o and Tmax
o denote the lower and upper limits

corresponded to input To. Note that the integral states dy-
namic in (73) reduces to (50), while the T(k) may not reach
the saturation limit. Numerical tests further clarify that the T
preference of various nominal values has little effect on the
execution of the controller and the integral controller’s
ability to ignore disturbances (Åström and Hägglund, 1995)
can be calculated.

5.5. The closed-loop anti-windup system stability
analysis

A main restriction to the consistency of the closed-loop
structure conveys the matrix Λ, which implies that the
stable eigenvalues of I+ΛKI are λ (Kapoor et al., 1998). For
example, this can be accomplished by classic pole
placement or a specific algorithm in Kapoor et al. (1998).
Notice that when inputs are not saturated, the stability of
the system is shown by the Hautus test in Williams and
Lawrence (2007), whereas Λ must be constructed ac-
cordingly if inputs are saturated, since it may affect the
stability of (73). For (52) stability analysis, it is reworded
as

edisðk þ 1Þ ¼ AedisðkÞ þ ðBþ RawΛÞsatðTðkÞÞ; (75)

where
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Raw ¼

24 0N×S

IS×S

0μn×S

35,A ¼

2664
Að1 :N , : Þ�

CΔt þ ΛKP, I þ ΛKI ,ΛKU

	
AðH þ 1 : end, : Þ

3775
(76)

Referring to da Silva and Tarbouriech (2006), if a sym-
metric positive definite matrix is found as
Waw 2R

ðHþSÞ×ðHþSÞ, a diagonal positive definite matrix is
found as Saw 2R

F×F , and a matrix is found as Zaw 2R
S×F ,

subject to

Ξ ¼
24 Waw �WawK

0 �WawA
0

�KWaw 2Saw SB0 þ Z 0
awR

0
aw

�AWaw BSaw þ RawZaw Waw

35 > 0

(77)

then, for Zaw = ΛSaw, the system in (75) is globally as-
ymptotically stable. In this formulation, the matrixWaw can
be specified as follows

Waw ¼ ζ IðHþSÞ×ðHþSÞ; (78)

where a single parameter is a ζ that should be determined
correctly. This analysis reveals that the global asymptotic
stability of the closed-loop system can be dealt with when
optimizing controller parameters by testing the condition of
(77) for a reasonable domain of λ and ζ . This shows the
global robustness of the closed-loop system, as defined in
Khalil and Grizzle (2002), in the presence of disruptions and
uncertainties.

5.6. Sensitivity analysis

To evaluate the suggested technique, the dynamic
compensators (72) and (73) are added to the nonlinear
ADAMS model, while λ is known as 0.5 for all the 6
stable poles of I+ΛKI in (73). Next, a series of tests are
conducted to set the parameters of the controller. In the
10 (s) time-domain experiments, the time step is
considered to be Δt = 0.1 (s) (corresponding to the
frequency implemented in the Experiment Setup sec-
tion). As follows, the defined variables ðX dÞ are
modified

X dðtÞ ¼ ½φdðtÞ, θdðtÞ,ψdðtÞ, xdðtÞ, ydðtÞ, zdðtÞ�T

¼
h π
12

,
π
12

,
π
12

, 0:04; 0:04, :08
iT
SinðtÞ

þ ½0; 0; 0; 0; 0, :38�T
(79)

As discussed in the Adaptive Time-Delay Estimator Design
section, a reference model should be built with stable dy-
namics, where one of the states is the integral of the other
state. Thus, a two-state system is used with a globally stable
dynamic around re, as follows

_X r ¼ ArXr þ Brre (80)

Ar ¼
�

0 1
�10 �2

	
,Br ¼

�
0
10

	
; (81)

where XM ¼ Xr1;1. Studying the sensitivity of the controller
(Tajdari et al., 2022c) to the parameters wQ, wR, λ, ν1, and ν2
selection, employing as evaluation metric is utilized as the
average percentage of final error Ep composed of Epi cor-
responded to each variables of matrix X in (1) as

Epi ¼
X

tend
i � X

tend
di

Ami

× 100: (82)

In (82), i = 1, …, H/2, tend = 10 (s), and Ami indicates the
peak-to-peak amplitude of the desire values ðX diÞ of relative
variable ðX iÞ (for the cases that desire is constant, Ami is
considered as 1). Thus, the average percentage of final error
ðEpÞ is formulated as

Ep ¼ 2

H

XH
2

i¼1

Epi: (83)

It can be inferred from Figure 2 (top-left) related to the no-
time-delay experiments, which demonstrates how the Ep

obtained varies by pairing the weights (wQ and wR) used in
cost functions (66) and (67). Regarding Figure 2(top-right),
where μ = 8, the values of Ep over the variations of the
parameters ν1 and ν2 employed in the adaptive estimator in
(44) are depicted. The presented analysis in this figure
enables the controller to acquire a low value of Ep (blue
areas) for a broad variety of parameters. Accordingly, wQ =
1, wR = 4, ν1 = 2, and ν2 = 2 are selected from the blue areas
as they have the least sensitivity. This illustrates the benefit
of the controller in specifying the parameters, explains less
work to adjust the control parameters in order to achieve
acceptable results. Since appropriate results are obtained
from computational experiments (with an acceptable Ep),
there are, however, some cases (e.g., the saturation of
multiple inputs) that may not occur in software simulations.
These instances can result in unstable conditions for the
system.

In line with the Closed-Loop Anti-Windup System
Stability Analysis section, the stability of the closed-loop
system is investigated. In other words, it evaluates if the Ξ
matrix in (77) is a positive definite matrix for a large variety
of λ and ζ . In order to be succinct, the results for λ ≡ λ1 ¼
… ¼ λ6 are clarified in Figure 2(bottom-left), which
demonstrates that there are no unstable values for the
0 ≤ λ≤1 region. This inferred that Ξ is positive definite. As
a consequence, this indicates that the apportion of λ1,… and
λ6 within the ð0; 1Þ set provides accurate results in terms of
Ep (Figure 2(bottom-left)) and maintains the asymptotic
consistency of the closed-loop system. Therefore, λ is
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picked as λ ¼ 0:5. According to Figure 2(bottom-left),
global system stability has the lowest sensitivity of λ at
this point as the point is located in the middle of the dark
blue area.

In addition, the sensitivity of the delayed steps to the
performance of the robot reveals the allowed domain of
delay which should be considered in the design of the robot
during the motor selection process. To this end, a set of
experiments is performed to investigate the effects of μ in
domain of 0–100 in terms of Ep whilewQ = 1,wR = 4, ν1 = 2,
ν2 = 2, and λ ¼ 0:5. The results of the experiments are
reported in Figure 2(bottom-right) which shows that the
speed of error is increasing at μ = 30, and after μ = 84, there
is no value for Ep as robot’s dynamic states passed the
allowed work-space. Thus, the acceptable performance of
the controller is in the domain of 0 ≤ μ ≤ 30 which has the
least error highlighted with dark blue color in
Figure 2(bottom-right).

5.7. ANN estimator design for wQ and wR

Since the parameters of dynamic equations in (46) are time-
variants, Bdis(k) in (64) is accordingly time-variant re-
garding (49). Thus, in answer to the particular direction, it is
theoretically assumed that the mechanism has different
behavior in different directions. Accordingly, the use of
intelligent methods means nonlinearity of the mechanism
and the optimization process, and complexity of the
problem. Since the cost function of the optimal problem in

(66) is based on wQ and wR, estimating the true values of wQ

and wR in each step is a solution to the nonlinearities, where
wQ determines the degree of the penalization of the error of
the states, and wR optimizes the torques built. An advanced
artificial neural network (ANN)–based input–output esti-
mator is therefore designed to estimate wQ and wR online,
where state error functions and torque functions are selected
parameters as the estimator’s inputs. The functions in-
troduced in Tajdari and Toulkani (2021) imply that for any
arbitrary variable of ϵ, the density function is

ρϵðkÞ ¼ VϵðϵðkÞÞ ¼ ðwin þ 1Þ ϵðkÞPk
i¼k�win

ϵðiÞ (84)

where ρϵ is the density of the variable. Actually, (84) is
sensitive when ϵ(k) is sufficiently greater than average of
the variable with window size win+1. The criterion explains
a smooth and logical stimulation to changes of the variable
(Tajdari and Toulkani, 2021). Consequently, the inputs of
the intelligent estimator are ρe1×6 and ρT1×6, and the outputs
are wQ1×1 and wR1×1 as shown in Figure 3(a). To design an
ANN-based estimator, a set of data including the inputs–
output is essential. Therefore, the controller of (72) with
integral states of (73) is used as a master for the estimator.
To collect data, the output of the controller is used, while
win = 30, Tmax

o ¼ 1:5 N.m, and Tmin
o ¼ �1:5 N.m, and μ = 0,

5, 10, 20, and 30 steps. And for the controller parameters,
the blue area was selected in Figure 2(top-left), where 0.1 ≤
wR ≤ 4 andwR >wQ. To consider the effects of the frequency

Figure 2. Numerical analysis: Sensitivity analysis based on Ep for a domain of wQ and wR, where λ ¼ 0:5, ν1 = 2, and ν2 = 2 (top-left).

Sensitivity analysis based on Ep for a domain of ν1 and ν2, where λ ¼ 0:5, wQ = 1, and wR = 4 (top-right). Number of negative eigenvalues in

Ξ, where wQ = 1, wR = 4, ν1 = 2, and ν2 = 2 for a domain of λ and ζ (bottom-left). Sensitivity analysis based on Ep for a domain of μ, where Ep
while wQ = 1, wR = 4, ν1 = 2, ν2 = 2, and λ ¼ 0:5 (bottom-right).
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of the desired values, the mentioned experiments were
repeated with the frequencies of 0.5, 2, 4, and 6 Hz; thus, the
final data-set consists of 375 experiments, and during all the
experiments, the sample time is 0.1 s, and spent-time is 10 s.
This concludes with the input–output data-set with 37,500
samples. The ANN estimator uses the back-propagation
algorithm provided in Kosko and Burgess (1998) to train
unknown estimator parameters. Therefore, randomly se-
lected 70% of the data-set is considered for training (Tajdari
et al., 2017b), and the remaining 30% is used to validate the
obtained model. The structure of the ANN estimator is de-
signed through numerical solutions. Regarding Table 2(a),
the error of Ep is extracted for a different number of hidden
layers and a different number of nodes through running the
simulated system with the same conditions used to collect
the training data of the ANN estimator. The table shows the
network consists of 4 hidden layers and 7 nodes and has
the minimum error which is used as the final structure of the
estimator shown in Figure 3(a). Figure 3(b) shows the closed-
loop optimal feedback control diagram of the proposed
systemwhere the estimator updates the controller gains ofwQ

and wR in each time step regarding the density functions.
To assess the stability of the final structure of the ANN

estimator, the input section of the training data-set is used as the
input of the estimator, and the output of the estimator is com-
pared with the output section of the training data-set. For the
comparison, mean absolute percentage error (MAPE), Standard
deviation error (SDE), and correlation coefficient (R2) are used
which are explained in Ghaffari et al. (2018). Accordingly, the
estimator has an average value of 0.081 and 0.064 in terms of

MAPE and SDE, respectively, explaining a small error with the
desired output data. In addition, the R2 average value of 0.98
defines a high correlation between the output of the estimator and
the desired output data, which shows a stable performance of the
estimator.

5.8. Robustness level

In order to evaluate the degree of robustness of the con-
troller to the unknown disturbances and uncertainty, the
closed-loop control system is experimentally assessed with
the parameters discussed in the Sensitivity Analysis section
through the ADAMS model in presence of white noise with
a variety of amplitudes both on the input torque of the
system and the mass value of the end-effector. Accordingly,
the implemented torques (T(k)) in (75) and mass (m) in (18)
are replaced with ~TðkÞ composed of ~TiðkÞ (where i
shows corresponding index of each controlled input inside
vector ~T ) and ~mðkÞ as the following

~TiðkÞ ¼ TiðkÞ þ ηTT
max
i ξTi ðkÞ

~mðkÞ ¼ mþ ηmmξ
mðkÞ (85)

where ξTi and ξ
m are the random number generators (RNGs)

that randomly suggest a number in the domain [0, 1] in each
time step. By implementing (85) in (18), and (75), the
robustness of the proposed controller is investigated
through a set of numerical experiments for a domain of ηT
and ηm in range [0, 0.5]. The results of the experiments are
reported in Figure 4, which implies that the controller has

Figure 3. The schematic structure: (a) designed ANN estimator structure and (b) closed-loop control diagram.
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acceptable performances in terms of Ep for huge noise on m
(i.e., the domain of ηm ≤ 0.45, which is blue area), as it was
expected regarding the features of the integral controller
able to reject the unknown disturbances. However, the
controller fails when the disturbances on the torques are
comparatively high (i.e., the domain of ηT > 0.3, which is
the red area). This happens because there are no possible
control actions as most of the torques are saturated, and
practically, the controller has not any role in the behavior of
the system.

6. Experiment setup

The robot in Figure 1 is generated to test the controller in an
actual nonlinear system of natural disturbances. As shown
in Figure 5, 6 servo motors of mx-64, with the specifications

explained in Table 2(b) of Robotis (2019), are used as
torque manipulators and are operated directly by MATLAB
software through USB2Dynamixel (Robotis, 2019). In
addition, a 9-DOF absolute IMU fusion breakout-BNO055
is used to calculate the end-effector position and angles ðX Þ,
and sensor data will be filtered and imported into the
MATLAB via Arduino Mega 2560. The BNO055 sensor,
located in the center of the end-effector, spits out Euler

Figure 4. Reported Ep for a domain of ηm and ηT .

Figure 5. Fabricated rotary parallel robot.

Table 2. Structural information.

(a) Ep value per different structure of the ANN estimator

Number of hidden layer

Number of nodes

1 2 3 4 5 6 7 8 9 10

1 28.6 24.4 20.9 17.9 15.5 13.8 12.9 10.1 11.9 12.1

2 23.7 20.1 17.1 14.5 12.4 11.1 10.6 8.1 10.4 11.1

3 19.6 16.5 14.1 11.8 10.1 6.7 6.5 2.7 4.1 4.7

4 18.1 15.4 13.1 11.1 9.5 6.1 2.1 3.1 3.4 3.9

5 17.1 14.8 12.9 11.1 10.1 3.1 2.7 3.1 13.4 3.4

(b) Motor specifications

Item Description

Resolution 4096 (pulse/rev)

Dimensions (W × H × D) 40.2 × 61.1 × 41 (mm)

Stall torque 5.5 (Nm) (at 11.1 (V), 3.9 (A))

Physical connection RS485/TTL Multidrop Bus
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angles and vectors as mentioned in Adafruit (2019). The
final product frequency for the transmission and receiving
of data is roughly 10 Hz. In addition, the motor saturation
limit is set to 1.5 N.m due to safety and motor damage
prevention.

7. Results

The simulation and experiment results are generated by
implementing the proposed controller (72), with in-
tegral states in (73), where win = 30, μ = 8, Δt = 0.1 s,
Tmax
o ¼ 1:5 N.m, Tmin

o ¼ �1:5 N.m, ν1 = 2, and ν2 = 2 on
the ADAMS model in the Nonlinear Model section and
the manufactured robot in the Experiment Setup sec-
tion, while the desired variables ðX dÞ are considered as
following

X dðtÞ ¼ ½ φdðtÞ, θdðtÞ,ψdðtÞ, xdðtÞ, ydðtÞ, zdðtÞ �T

¼
h π
12

,
π
12

,
π
12

, 0:02; 0:02, :08
iT
SinðtÞ

þ ½ 0; 0; 0; 0; 0, :38 �T
(86)

where t is the time.m = 4 kg andm = 5 kg are considered for
the simulation tests and experiment tests, respectively. Six
control methodologies are compared in total as

• Controller i: LQR controller.

• Controller ii: LQI controller without anti-windup
scheme.

• Controller iii: Time-delay LQI controller with anti-
windup scheme.

• Controller iv: Time-delay LQR controller with ANN
estimator.

• Controller v: Time-delay LQI controller with ANN es-
timator and with anti-windup scheme.

• Controller vi: Time-delay LQI controller with ANN
estimator and without anti-windup scheme.

7.1. Simulation results

Figure 6 (left) shows the main states for the case m =
4 kg, and although controllers i and ii are theoretically
stable without any actuator delay as discussed in Tajdari
et al. (2020a), they cannot control the robot in presence
of the time-delay (cyan and purple line) due to the
singularity of the robots dynamic (resulted from the
instability of pair ðAc,BcÞ in (47)). However, other
controllers iii, iv, and v introduced in the Controller
Gains section present a stable performance with finite
errors. Controller v performs to achieve perfect tracking

Figure 6. Controlled case performance through the ADAMS model where m = 4 kg. Main states ðXÞ (left). Error of main states

ðX � XdÞ (right).
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(looking at the blue line in Figure 6(left)) and rejects the
errors by the time as shown in Figure 6(right). The error
reduction has been concluded by the zero-error feature
of the integral states and with the well-specified con-
troller time-variant parameters of wQ and wR reported in
Figure 7 (right). However, the controller iv produces
considerable errors, especially in the critical points of
the desired path. The performances of the controller iv
(black line) regarding the x, y, and z in Figure 6(right),
show the deviation, although the controller tries to
generate a resemble periodic movement similar to the
desire values, and the estimated parameters presented in
Figure 7(left). In addition, the performance of the
adaptive time-delay estimator is depicted in Figure 8
(left), (right), and (bottom) for controllers iii, iv, and v,
respectively. Here, only a single graph is reported for
each experiment as the estimated values were the same
for each of the motors regarding each of the controllers

because equal constant delay is considered for the
motors (μ = 8). To compare the results numerically
concerning the monitoring error, a criterion with the
accumulated absolute percentage error Eac is added as

Eac ¼ 2

H

XH
2

i¼1

Z t

0

0@����X iðtÞ � X diðtÞ
����

Ami

× 100

1Adt (87)

where Eac is the sum of all absolute amounts, from the
beginning to the end of the simulation, where i = 1,…, H/2,
tend = 10 s, and Ami represent the peak-to-peak magnitude of
the desired values ðX diÞ of the relative vector ðX iÞ (where
the desire is constant, Ami is presumed to be 1). The output
of the controllers is then defined separately based on the
parameters in Table 3(a). As for the table, all controllers
without the time-delay scheme ( controllers i and ii) failed as
expected, at around t = 0.7 s as shown in Figure 6(left and

Figure 7. Online estimated wQ and wR, where m = 4 kg. Controller iv (left). Controller v (right).

Figure 8. Online estimated of μ in the simulation case, where m = 4 kg.
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right). Although time-delay controllers iii, iv, and v kept the
system in the allowed work-space according to Table 3(a),
controller v had a significant advantage for 73% and 88%
over controllers iii and iv, respectively. This reflects the
advantages of integrating the integral states and the ANN
estimator’s ability to reject disturbances and uncertainties.

In comparison, Figure 9 displays the torques that have
been applied to the device for the three time-delay
controllers iii, iv, and v. Comparing the torques in
Figure 9(left, and bottom) with Figure 9(right), the

control effort generated by controllers iii and v are re-
duced by the time as the errors are decreasing. Also, the
controllers’ torques have more trembling (from t = 0(s)
till t = 5(s)) compared to controller iv that resulted from
more sensitivity of the integral states to the tracking error
due to (50), while the amplitude of the control signals
generated by controller iv is increasing due to consid-
erable tracking error. Regarding the figure, no saturation
is observed due to the end-effector light mass selection as
m = 4 kg. However, in practical applications, saturation

Table 3. Accumulative absolute percentage error (Eac) report through the ADAMS model for the simulation case and through the

fabricated robot for the experimental case.

(a) Where m = 4 kg

Controller i ii Iii iv v

Eac NaN NaN 713.81 1648.03 192.56

(b) Where m = 5 kg

Case Controller Eac

Simulation v 260.01

vi NaN

Experiment v 293.45

Figure 9. Motor torques in the simulation case, where m = 4 kg.
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may accrue. Thus, two more simulation experiments
were performed via controllers v and vi wherem = 5 kg to
study the impact of the anti-windup scheme, as shown in
Figure 10. Accordingly, controller vi (purple line) shows
unstable performance and made the system to be stopped
around t = 4(s) as the states passed the allowed work-
space domain. In contrary, the controller v reveals
a stable performance by converging the controller’s and
estimator’s parameters in Figure 11(left) and 8 and re-
ducing tracking error by the time. Regarding the

controller v, the torques are saturated for a while depicted
in Figure 13(right) specifically from t=0(s) till t=5(s).

7.2. Experiment results

The controller v is applied on the robot introduced in the
Experiment Setup section to verify and investigate the
efficiency of the proposed controller in the case of
actual disturbances and uncertainties. The same desire
values in (86) are used to compare the simulation

Figure 10. Controlled case performance where m = 5 kg. Main states ðXÞ (left). Error of main states ðX � XdÞðX � XdÞ (right).

Figure 11. Online estimated wQ and wR with controller v, where m = 5 kg. Simulation case (left). Experiment case (right).
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output. All other control parameters and initial con-
ditions are assumed to be the same as the Simulation
Results section, and m = 5 kg. In Figure 10(left), the
controller performances in the main states are de-
scribed. And comparing the effects of the controller v in
simulation and experimental tests, Figure 10(right)
reveals that the proposed controller is stable enough to
sustain zero-error convergence in the face of natural
uncertainties and disruptions. The output of the con-
trollers is then defined separately based on the pa-
rameters in Table 3(b). According to the table, only the
controller with the anti-windup scheme could keep the
states in the allowed work-space and thus the controller
vi failed due to the saturation accrued as in
Figure 13(left). Regarding the table, the other controller
v, for both cases of the simulation and experiments

shows acceptable performance. Looking at the ap-
proximate wQ and wR trajectories in Figure 11, con-
troller v has appropriate actions in both situations, and
the output is more fluctuating in the experimental case
as the ANN estimator attempts to resolve more un-
certainties, that is, resolution of sensors, unpredictable
internal time-delays, and natural disruptions. In addi-
tion, the estimated time-delay depicted in Figure 12(b)
is different from a motor to another motor contrary to
the simulation results in Figure 12(a), although the
same time-delay value is manually manipulated for the
servo motors. This may happen because of the sensor
lag and other unknown delays of the motor gearbox, etc.
Accordingly, although the torques in Figure 13 (bottom)
are saturated for several time intervals, especially for
T1, the controller shows stable and zero-error

Figure 12. Online estimated of μ using controller v, where m = 5 kg: (a) simulation case and (b) experiment case per each motor.
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convergence thanks to the well-designed estimator and
the anti-windup scheme.

8. Conclusion

This paper investigates a novel robust control methodol-
ogy integrated with an innovative adaptive time-delay
estimator for a Stewart parallel robot integrated with the
delayed rotary actuator. To achieve the desired value of the
end-effector states, the implemented robot dynamic in
ADAMS software is controlled online through the in-
telligent time-delay tuning of the LQI controller’s pa-
rameter. The robustness, as well as the adaptive estimator
scheme, that is, the ANN estimator, elaborates on easy
practical implementation, without the need for lengthy and
costly measurements of the dynamic parameters. Fur-
thermore, the simulation outputs depicted that the proper
time-delay LQI controller with an intelligent estimator
outperformed the other compared methods to control the
dynamics of the device and eliminate the error of con-
trolling in presence of the disturbing dynamic forces and
the huge delay of the actuators in the ADAMS model.
According to the validation of the controller through
practical implementation of the controller on a fabricated
robot, the perfect tracking was achieved and the TDE was
successful. Further improvements contain designing an
adaptive estimator with self-tuning the growth ratio of the
adaptation rule emphasizing a more automated framework.

In addition, a more complex robot platform will be dis-
cussed by mounting a second Stewart robot on the end-
effector of the discussed robot in this paper which may
challenge the proposed controller.
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