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SUMMARY

Suppose we have a target radiance distribution, a light source, and a plane for receiving
light. How do we design a reflector that can give a similar result as the target radiance
distribution? The inverse reflector problem is of high interest for light designers and
related industries, such as lamp manufacture, headlight and street light design, and
interior designs. There have been some researches on this specific topic. Nevertheless,
the existing algorithms are either not fully compatible with parallel acceleration or have a
narrow application scope (can only handle the far-field problem).

This thesis’s goal is to design a method that can have a fast approximation of the
inverse reflector problem and handle different application scenarios. The core of the
proposed method in this thesis is a modified simulated annealing algorithm. I first give
the definition of the inverse reflector problem and explain why I choose simulated an-
nealing in the proposed method by analysing the related works and various optimisation
algorithms. Then, I detail what issues the plain simulated annealing algorithm will have
and why it cannot achieve satisfactory results. Moreover, to solve the issues and improve
performance, I propose additional strategies, such as Phong tessellation, randomisation
strategy, multi-level strategy, history-decision strategy and penalising strategy. I also
discuss the system design based on the proposed method and how to accelerate the
optimisation process in this system.

I evaluate and validate the proposed method by running test cases in different sce-
narios and compare the results with other algorithms. The results show that the method,
as a general optimisation algorithm, can achieve good results in different application
scenarios. The compatibility, speed and accuracy are the main advantages. The result of
the proposed method can also serve as the initial guess for a finer optimisation.

vii
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This thesis is concerned with the problem of designing light sources that project a specific
light pattern onto a surface, such as illustrated in Figure 1.1. More formally, we define the
inverse reflector problem as: given a target radiance distribution, a light source and a
receiving plane, how do we design a reflector to match the target radiance distribution on
the plane?

This is a problem of high interest for the light designing and related industry, such
as lamp manufacturing, headlight and street light design and interior designs. For ex-
ample, a car’s headlight can be designed to illuminate farther straight ahead, but less
on the adjacent lane to avoid obfuscating the view of the cars coming in the opposite
direction, as illustrated in Figure 1.2. Traditionally, an experienced designer models the
reflector by iteratively modifying it until matching the target radiance distribution. This
method requires extremely high experience, and its efficiency is very low as it is very
time-consuming.

Figure 1.1: The designed reflectors can project specific light patterns onto the wall. Image reproduced from [1]

The motivation of our work is primarily the industrial need and the shortcoming of
existing algorithms. The inverse reflector problem is a high-dimensional global optimisa-
tion problem, which is hard to be directly solved efficiently with existing algorithms. The
goal of our method is to have a quick and decent approximation, that can then be used as
input to more complex and slow solvers that require a good initial solution to converge
properly.

Existing algorithms are either not fully compatible with parallel acceleration or have a
narrow application scope. For example, some of them can only handle the far-field inverse
reflector problem, in which the distance between the receiving plane and the reflector
is assumed infinitely large. Some algorithms also restrict the incident light rays to be
parallel and are not compatible with other kinds of light source. This simplification is not
suitable for many real applications. Although some methods achieve impressive results
for the restricted cases, they cannot be easily extended to more general and practical
scenarios. In this work, we propose a general and efficient method to solve the inverse
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reflector problem that does not suffer from these limitations while still being able to
achieve appealing results.

(a) A car headlight that illuminates a specific
area. Image reproduced from [2]

(b) A design that projects an ’@’ symbol light
pattern onto the floor using a lamp and re-
fractive lens in the form of a center table.
Image reproduced from [1]

Figure 1.2: The headlight and lamp can be designed for specific purposes by solving the inverse reflector
problem

1.1. GENERAL PROBLEM FORMULATION
The inverse reflector problem can be abstracted into an optimisation problem with a
scenario consisting of:

• the reflector

• the receiving plane

• the light source

The overview of the test scenario is shown in Figure 1.3. The light source can be of any
type such as point light or directional, for instance. In addition, we assume that the
reflector is perfect-mirror since most of the desired reflectors are designed to be mirror-
like. Nevertheless, we will also show that our method is general enough to handle other
types of materials such as refractive lenses. Furthermore, our method can also handle
multi-reflectors and multi-light sources without any additional extension.

The inverse surface problem can be summarised as a optimisation problem:

min
S

Er r or (RT ,R)

wher e

{
R = Tr ace(L,S)

hmi n ≤ H(Si j ) ≤ hmax

• Er r or (RT ,R): the distance between the target and current radiance distribution.

• R = Tr ace(L,S): the radiance distribution R for given light source L and reflector S.

• H(Si j ): The height (offset relative to the initial position) of each vertex Si j in re-
flector S must be within a specific range due to limitations of practical fabrication.



1

4 1. INTRODUCTION

Figure 1.3: An illustration of the test scenario, with the receiving plane on the left, the light source in the middle
and the reflector on the right.

(During optimisation, only the height of each vertex can be changed, which will be
detailed in the following chapters)

• As an optimisation problem, there can be other constraints that are determined by
users and application scenarios.

This is the high-level definition of the inverse reflector problem. The aim is to design the
reflector S, which can minimise the distance between the target radiance distribution
RT and current radiance distribution R. The method should give a fast approximation
of the inverse reflector problem within a given amount of time while ensuring the result
quality. The final optimised mesh should also take into consideration the possibility to be
fabricated by machines. It is much simpler to fabricate smooth surfaces or lenses than
surfaces with high frequencies. Figure 1.4 shows an example with extreme discontinuities
during optimisation. The result is almost impossible to be fabricated since most machines
cannot mill the surface with such small concave angles. The strategies for ensuring surface
smoothness will be detailed in the following chapters.

1.2. TECHNIQUES: CUDA AND OPTIX7
Since the goal is to achieve a fast approximation of the inverse reflector problem, we rely
on the GPU to boost the performance of our method. At the same time, we aim to design
a method that can leverage the GPU’s parallel capabilities.

GPU is mainly used for graphics and rendering due to its specially designed architec-
ture. Previously, there were many efforts to utilise the GPU’s powerful parallel computing
capability for general-purpose computing. There was, however, no general-purpose
computing platform. One common method was to convert the computing problem
into a form that OpenGL or DirectX can handle, such as matrix transformations. This
method’s low efficiency and narrow application scope are the main problems. The con-
cept of GPGPU was proposed under such a background, which aims at utilising GPUs for
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Figure 1.4: The reflector surface with high frequencies and extreme discontinuity is almost impossible to be
fabricated by machines in practice.

general-purpose computing instead of only rendering.
The GPU architecture is continually updated in terms of design, memory, streaming

processor. It is not realistic to design various programs for different GPU architectures.
CUDA is a general-purpose parallel computing platform designed for GPUs. Programmers
and researchers can ignore most of the hardware level details and still utilise the GPU’s
powerful computing capability. Compared with graphics APIs such as OpenGL and
DirectX, CUDA is mainly designed for general-purpose computing instead of rendering,
which means it is highly flexible and compatible with different computing purposes.
CUDA-based programs can utilise GPUs, and GPUs can then provide a much higher
FLOPS than CPU when guaranteeing high arithmetic intensity. Typical algorithms that
CUDA can parallelise include reduce, scan, sort.

OptiX7 is a CUDA-centred ray tracing acceleration API. The core of OptiX7 is to accel-
erate the traversal of the scene, which aims to compute the intersection between the ray
and scene objects. Despite giving built-in methods like instancing and primitive intersec-
tion, OptiX7 is still highly flexible. It provides explicit control for memory management,
multiple GPUs, acceleration structure builds, shader binding table, custom primitive and
intersection, making it possible to be integrated into most application scenarios.

Since Optix7 is CUDA-centred, CUDA’s concepts and programming rules are still ap-
plicable when integrating OptiX7 into a CUDA project. OptiX7 and CUDA share the same
API for memory management and device pointer. OptiX7 significantly accelerates the
acceleration structure building and scene traversal, making programmers and researchers
focus more on the algorithm itself instead of the performance. DXR and Vulkan can be
candidates for ray tracing and also provide similar features. I chose OptiX7 to implement
the system since the developer overhead brought by integrating it to the C++/CUDA based
project with an Nvidia graphics card is small.
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2.1. RELATED WORK
The inverse reflector problem has been a research field of high interest for a long time.
One of the first methods for inverse reflector design is proposed by Patow et al. [3]. They
solved the problem with a modified brute-force search algorithm. However, they simplify
the problem scenario and focus more on far-field, in which the distance to the receiving
plane is assumed to be infinitely large, as shown in Figure 2.1. Since their proposed
algorithm relies on brute-force search, there is no straightforward way to narrow the high-
dimensional search space during optimisation, which makes the complexity extremely
high. The high computational cost and restriction to the far-field scenario renders their
method inapplicable to many industrial scenarios.

Figure 2.1: The distance between light source and receiving plane is infinitely large in far-field inverse reflector
problem. Image reproduced from [3]

The inverse reflector problem can be abstracted as a non-convex optimisation prob-
lem in a high dimensional search space. Finckh et al. [1] proposed a method based on a
general optimisation method, namely Simultaneous Perturbation Stochastic Approxima-
tion (SPSA) [4], and a spline-based surface representation, as shown in Figure 2.2. SPSA is
a typical gradient-based stochastic optimisation algorithm proven to be robust and stable
and to converge to a global minimum in high-dimensional cases. The gradients at the
control points are used to guide the stochastic optimisation direction. SPSA requires a
number of ray tracing simulations for the objective (error) function evaluation during
the optimisation process. Generally, the Monte Carlo method is necessary for simulating
different distributions of the incident light rays and their interaction with surfaces. For
example, the light source might emit radiance with respect to specific distributions. How-
ever, the "gradient-based" algorithm requires a high sample-rate ray tracing to reduce the
variance of the Monte Carlo, otherwise it would result in inaccurate gradients. Moreover,
the ray-intersection computation for spline-based surfaces brings significant overhead.

The recently proposed differentiable renderer Mitsuba 2 [5] solved the inverse reflec-
tor and caustics design problem with gradient descent by differentiable rendering, in
which the differentiable rendering can preserve the accurate gradient information. But
compared with the traditional ray tracing techniques, the performance (speed and GPU
memory usage) of differentiable rendering can be the issue. Also, gradient descent, as a
local optimisation algorithm, cannot approximate the global optimum in many cases.

Weyrich et al. [7] solved this problem from a different perspective. In their method,



2.1. RELATED WORK

2

9

Figure 2.2: The SPSA-based method needs to compute the intersection of ray and B-spline surface. Image
reproduced from [1]

Figure 2.3: The Gaussian decomposition of the target radiance distribution. Image reproduced from [6]

the radiance distribution is abstracted as a reflectance function, from which it is possible
to infer the required distribution of microfacets slope. It first uses the microfacets slope
distribution to generate unconnected microfacets and then uses simulated annealing to
optimise the energy (error) and smooth the surface, as shown in Figure 2.4.

Inspired by the idea of a one-to-one mapping between microfacet and radiance, Pa-
pas et al. [6] proposed to first decompose the target radiance distribution into Gaussian
radiance kernels, as shown in Figure 2.3, and designed a surface patch for each of the
Gaussian radiance kernels. It then optimises the patches’ permutation until achieving a
similar result to the target radiance distribution. Their algorithm can provide a very accu-
rate result, especially when handling complex radiance distributions, such as the Lenna
image. However, the main limitation is that it can only solve the problem in scenarios with
a collimated light source and each patch should be designed under the same conditions.
Every patch needs to be ensured to receive exactly the same incident light rays because
they will be permuted in further optimisation. Also, the complexity of their method
increases exponentially with the number of Gaussian kernels in the decomposition. Their
algorithm does not follow an "evaluation-update-evaluation" way of optimisation, so
modern ray tracing techniques cannot accelerate the evaluation/simulation part in their
algorithm’s pipeline.

For the collimated light source cases, Schwartzburg et al. [8] proposed a method based
on optimal transport. Their method computes the desired normal distribution by optimal
transport between the initial radiance distribution and target radiance distribution. Then,
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it optimises the refractive surface according to the optimal transport result and gener-
ates a surface that has similar normal distribution as the desired normal distribution.
Yue et al. [9] proposed a method that computes the mapping between incident light rays
distribution and desired radiance distribution by solving a sequence of Poisson equations.
Both the optimal transport and Poisson based algorithms can achieve accurate results
when finally converging.

Although achieving accurate results, the optimal transport and Poisson based algo-
rithms still have significant issues like low generality and compatibility. This kind of
algorithms can only be applied to cases with a refractive lens and collimated light source,
and additional pre-assumptions are needed for the algorithm to work. For example, inter-
reflection is not taken into account in algorithms based on optimal transport or Poisson
equation, since the mapping computation cannot infer the possible interreflection and
self-occlusion.

(a) Target radiance distribution and decon-
volved microfacet distribution

(b) Generate surface according to micro-
facets distribution

(c) Surface after optimisation on microfacets

Figure 2.4: Reflector design by microgeometry fabrication. Image reproduced from [7]

2.2. CHOICE OF OPTIMISATION METHODS
For the inverse reflector problem, the choice of optimisation methods depends on the
problem characteristics. Various optimisation methods have different features and are
not appropriate for all kinds of optimisation problems. In this section, the problem
characteristics will be detailed, and the choice of the optimisation method will be justified.

2.2.1. PROBLEM CHARACTERISTICS AND GENERAL IDEAS
The characteristics of the problem indicate which kind of optimisation method is more
appropriate. There are three main characteristics of the inverse reflector problem:

• Search space is continuous in high dimensionality
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• Global minimum is surrounded by many local minimums

• Small error generally means closer to the global minimum in a global view

Firstly, the optimisation problem is in a continuous search space in high dimensional-
ity. This characteristic makes it almost impossible to solve the problem with an analytic
solution, in which case heuristic-based algorithms should be considered. This problem
is also not a convex optimisation, and its global minimum is surrounded by many local
minimums, which means it is necessary to apply global optimisation methods instead of
local ones.

There are two main ideas for solving the inverse reflector problem. The first idea is to
directly analyze the radiance distribution and design the corresponding surface patches,
such as the algorithm proposed by Papas et al. [6]. The second idea is the analysis-by-
synthesis method, which is to iteratively update the mesh and optimise until the mesh
can lead to a similar result as the target radiance distribution.

In optics, one common way to solve the inverse reflector problem is to analyse the
radiance distribution and then extract the useful information (direction, slope, normal,
BRDF) to build the desired surface. The most widely used techniques include Monge-
Ampère solver [10] and tackling the optimal transport problem. The advantage is that
these methods can give an accurate result when they are able to converge. But the main
shortcoming is that such an optimisation algorithm requires a good initial guess for
convergence, and its process is a black-box that is hard for users to control and tune
optimisation. Compared with analysis-by-synthesis optimisation methods, this kind of
algorithm does not rely on the per-iteration ray tracing simulation. In the cases where
fast approximations and process control are required, this type of algorithm lacks explicit
control on the optimisation process. Moreover, this class of algorithms, such as the
algorithm proposed by Schwartzburg et al. [8], normally has more constraints on the test
scenario since it is not based on a general optimisation method. In brief, the main issues
are the requirement for a good initial guess and the lack of both generality and explicit
process control.

The second class of algorithms is based on general optimisation methods. The iterative
local/global optimisation method includes gradient descent, quasi-Newton method, ge-
netic algorithm, simulated annealing, and other stochastic/continuous or gradient-based
algorithms, such as Simultaneous Perturbation Stochastic Approximation (SPSA) [4]. Our
project focuses on this class of algorithms for a few reasons. First, they have been widely
used and proven to be effective and robust in various optimisation contexts, especially
in such high-dimension optimisation problems. Moreover, it is more general than the
first class of algorithms, being able to handle more diverse scenarios. Second, the itera-
tive analysis-by-synthesis process also makes it possible to gain significant performance
improvement in the ray tracing simulation part with GPU-based implementations.

2.2.2. COMPARISON OF GLOBAL OPTIMISATION METHODS
There are several candidates for the global optimisation method, including gradient-
based optimisation method, genetics algorithms, Tabu search, and simulated annealing.
In this section, the candidates will be compared with each other, and the choice of the
optimisation method for the inverse reflector problem will be reasoned.
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GRADIENT-BASED OPTIMISATION METHOD

The gradient is thought to be a good way to guide the direction of the optimisation pro-
cess, especially when handling high-dimensional optimisation problems. Simultaneous
Perturbation Stochastic Approximation (SPSA) is a typical gradient-based stochastic opti-
misation algorithm, which is proven to be robust and stable and to converge to a global
minimum in high-dimensional cases. Albeit such good attributes, the "gradient-based"
characteristic can bring issues related to the variance of Monte Carlo ray tracing that
cannot preserve accurate gradient information. A high sample rate is not practical for
a performance-oriented system. Also, the choice of SPSA parameters is more based on
experience and convention than mathematics proof and intuitive understanding [4],
which makes it hard to tune it to order for it to be compatible with different test scenarios
and cases. Generally speaking, most of the gradient-based methods share the same disad-
vantages as SPSA. Although the results are not necessarily bad, we still decide to avoid
gradient-based methods as candidates for solving the inverse reflector problem since we
target high performance.

GENETIC ALGORITHMS AND TABU SEARCH

Typically, for the high-dimensional global optimisation it is not possible to directly find
an accurate analytic solution. Due to this nature of the optimisation problem, we mainly
focus on heuristics and metaheuristics global optimisation, aiming to find a feasible
solution within limited time and memory. Genetic algorithm and Tabu search are both
candidates for global heuristic optimisation. As shown in Figure 2.5, they are algorithms
which require a population to be allocated in memory.

Genetic algorithms [11] are a typical choice for global optimisation, which is one of
the candidates for the proposed method in this thesis. The main idea is to simulate the
natural selection process. The initial population containing a set of individuals (solutions
encoded as chromosome and genes) will evolve by crossover and mutation until the
population converges and becomes stable. Genetic algorithms can scale well to high
dimensional problems. For the inverse reflector problem, it is trivial to encode surface
representations, such as heightmaps and triangle meshes, into a chromosome string
and then crossover and mutate. Nevertheless, the size of the population needs to be
extremely large in order to have enough span over the whole search space. The crossover
and mutation across the whole population may bring performance issues. Moreover, due
to GPU memory limitation, storing a population with enough individuals for evolution
is also a challenge. Currently, for test cases in this thesis, the GPU memory limitation is
not an issue. However, when more complex scenarios are taken into account in practical
applications, this issue can be difficult to be solved.

The Tabu search algorithm [12] is another widely-used heuristics global optimisation
algorithm, which uses a table recording the previous state (movement) to ensure that
the optimisation process will not go backwards and get stuck into a local minimum. The
size of the table heavily depends on the complexity of the optimisation problem. For
such an optimisation problem in a continuous high-dimensional search space, the search
space needs to be first discretised to be further processed. Also, the table size needs to
be extremely large to ensure that it records enough states to which the optimiser should
not go back, since it might be stuck to the local minimum if the table size is not large
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enough. All in all, the inverse reflector problem’s characteristics such as "continuous"
and "high-dimensional" makes it very challenging to be optimised with such algorithms
which need a state record table.

SIMULATED ANNEALING

Simulated annealing [13] is our choice for the optimisation method. It is a probabilistic
method for approximating the global optimum within a given amount of time, appropriate
for cases where a feasible solution and convergence speed matter more than an accurate
solution. The main idea is to simulate the annealing in metallurgy. The atoms will move
drastically when the temperature is high and gradually converge to a stable state in each
cooling schedule temperature. The energy will converge to a minimum together with
the temperature in the cooling schedule. The way of escaping from the local minimum
in simulated annealing is by the judge function. Like the annealing in metallurgy, the
optimiser will have a high probability of accepting a random guess in the neighbour
solution space when the temperature is high, which makes it possible to escape from the
local minimum. The energy will gradually converge to a minimum when the temperature
is decreasing subject to the cooling schedule.

Simulated annealing has several useful attributes. It is well scalable with the dimen-
sions. As shown in Figure 2.5, simulated annealing is a no-memory heuristics optimisation
algorithm, which means it does not require large memory space for storing a table as
the genetic algorithm does. In each iteration, simulated annealing does not require as
many objective (error) function evaluations as the genetic algorithm does. Furthermore,
simulated annealing’s compatibility is high since it only requires the definition of the
energy function and the solution space, without any additional requirements such as
discrete space, Markov chain model and complex solution encoding. As a heuristics
algorithm, simulated annealing is suitable for those problems which require a feasible
solution within a given amount of time. Our proposed algorithm for the inverse reflec-
tor problem is a simulated annealing-centred algorithm, with many other optimisation
strategies. In the next chapter, our algorithm and strategy will be explained in detail.
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Figure 2.5: The category of heuristics algorithms [14]
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Our proposed system is based on a general optimisation method, simulated annealing,
with many additional strategies and methods. This chapter will describe how general sim-
ulated annealing works in the inverse reflector problem without any additional strategies.
We will then discuss why the plain simulated annealing approach is not able to achieve
satisfactory results, and discuss the proposed improvements in the following chapter.

3.1. GENERAL SIMULATED ANNEALING PIPELINE
The key idea of simulated annealing is to generate a new solution in the neighbour search
space at each iteration and accept the modification with a probability. Unlike other local
optimisation methods such as gradient-descent, it allows us to go in the wrong direction
with a probability, giving it the ability to escape from local minima.

An overview of the simulated annealing algorithm is shown in Figure 3.1. For each
iteration, the optimiser generates a neighbour solution based on the current solution
and evaluates it. If the error has decreased the new solution is accepted. Otherwise, the
optimiser can still accept it within a certain probability related to the current temperature.
The probability function is defined as:

P (e,e
′
,T ) = D(x) =

{
1, if e

′ < e;

exp(−(e
′ −e)/T ), otherwise

(3.1)

where e is the current energy, e
′

is the energy of the new solution, and T is the
temperature. Moreover, after each iteration the temperature decreases according to the
following cooling schedule:

Tnew = a ∗Tcur r ent (3.2)

where a is the cooling schedule factor under the condition a < 1.0. Typically, a is set
to a value around 0.95, and multiple iterations are conducted for each temperature in the
cooling schedule.

As shown in Equation (3.1), if the new solution results in a higher error the acceptance
probability is computed with the energy difference and temperature. Normally, the higher
the temperature the higher the tolerance for a worse solution. After enough iterations the
optimisation converges to a local or global optimum.

There are two crucial parts: the objective function evaluation, which in our case needs
ray tracing simulation; and the neighbour solution generation, which needs an explicit
surface representation definition. Both directly affect the optimisation performance.

The plain simulated annealing is a single-pass process since the temperature only
decreases according to the cooling schedule and the optimisation finally converges when
the temperature is low enough. As the inverse reflector problem is a high-dimensional,
complex and non-convex optimisation problem, single-pass simulated annealing usually
cannot reach the global minimum since it might not be able to escape from the local
minima when it is far from the global optimum and the temperature is low. One standard
method is setting a low-speed cooling schedule, in which the temperature will decrease
slowly, but it will significantly decrease the performance, which means the convergence
speed is low and the number of iterations needed for a good approximation is high, and
cannot achieve a good approximation in the early phase.
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To find the balance between quality and performance, we apply a re-heat strategy,
turning it into a multi-pass process. In this case, the optimiser starts with a high initial
temperature. If it cannot find a better solution within N iterations, the optimiser will
re-heat with a smaller initial temperature i ni tnew =β∗i ni tcur r ent and then continue the
optimisation, as shown in Figure 3.2. The reason for using a smaller initial temperature is
that after several passes the current error is already relatively low and the optimisation
does not require the same initial temperature as before. Furthermore, a high initial
temperature as before also slows the convergence process. This strategy can help the
optimiser converge to a feasible solution in the early phase and finally converge to an
accurate solution if it runs for enough iterations.

Figure 3.1: The pipeline of general simulated annealing

3.2. OBJECTIVE FUNCTION
The objective function is what the simulated annealing aims to optimise. For the inverse
reflector problem, the objective function can be defined as the distance between the
current and target radiance distribution. We will first define how we represent the radiance
distribution followed by details on the radiance error function.

3.2.1. RADIANCE DISTRIBUTION REPRESENTATION
To obtain the radiance distribution on the receiving plane, the optimiser needs to do the
ray tracing simulation in the test scenario Figure 1.3. The radiance distribution is the
result of the ray tracing simulation. It is highly related to the objective function definition
and evaluation. Ideally, the radiance distribution should be discrete to be processed
in GPU. In addition, radiance intensity in the distribution representation should also
comply with the physical definition, which means there is a positive correlation between
received radiance and the radiance intensity in the definition. An explicit discrete radiance
distribution representation is necessary for the objective function evaluation.

Intuitively, the radiance intensity depends on how much radiance each unit surface
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Figure 3.2: Re-heat temperature strategy: when the optimiser is unable to decrease the error after a number of
iterations it re-heats by raising the temperature. For each re-heat pass the initial temperature is lower than the

previous pass.

receives. Since the simulation generates light rays and traces them, the natural way to
evaluate the radiance intensity is to record how many light rays hit each unit area. We
define the sum of the intensity of all light rays that hit the unit surface as the radiance
intensity. For the radiance distribution definition, the receiving plane is discretised by
a regular subdivision, in which all cells have the same size, as shown in Figure 3.3. The
number of cells depends on the resolution of the radiance distribution. High resolution
will need more cells and vice versa. During ray tracing, the number of light rays that hit
each cell is recorded. After the ray tracing simulation, every cell is mapped to a pixel in
the radiance distribution in order to evaluate the objective function.

3.2.2. RADIANCE ERROR FUNCTION

The evaluation of the radiance error function measures the distance between the current
radiance representation and target radiance representation. Intuitively, the objective
function we want to minimise is the difference between target and current result, which
is also called the error function. There are different ways to define an error function. The
most widely-used ones include Root Mean Square Error (RMSE) and Mean Average Error
(MAE). In our project, we choose MAE as the error function. The reasons are:

• the MAE error function is easy to be normalised in the range [0,1] given that we
know the total number of generated light rays. The normalised values comply more
with the human’s visual system and are more easily interpreted compared with
RMSE.
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Figure 3.3: The discrete radiance distribution is represented by the number of light ray that hits each cell.

• With RMSE, the outliers’ error has more influence since every element will be
squared before averaged. In contrast, for the inverse reflector problem, the outliers
should not contribute too much to the final error function since we mainly focus
on the overall quality (of the radiance pattern/shape). An appropriate tolerance
for outliers is needed as a small number of outliers do not affect the overall quality
much.

The natural way for computing error is to convert radiance distributions to normalised
grey-level images, and then compute the error between them. Nevertheless, the original
radiance intensity value is lost after normalisation. A critical point is that the radiance
distribution used in the objective function is not normalised to grey levels (0-255). Instead,
it directly uses the count of ray hits inside each cell as the definition of radiance distri-
bution. As shown in Figure 3.4, images in the same radiance pattern might be in totally
different radiance intensity. For the inverse reflector problem, the radiance distribution
with the same pattern is not sufficient for ensuring high-quality results since the radiance
intensity should also be considered. If we measure the error with normalised grey levels,
we will lose the radiance intensity information during optimisation. The normalised
grey level can be easily disturbed by the maximum and minimum value, especially for
Monte Carlo ray tracing without a high sampling rate. A single outlier that is above the
maximum or below the minimum values affects the entire images’ grey levels, i.e., almost
all values are modified when normalised. Fluctuations in the values are undesired during
the optimisation as it cannot approach the global optimum in a stable manner. Due to the
reasons above, even if the input target radiance distribution is an 8-bit grey level image,
our system still needs to normalise it by the total number of generated light rays and
convert "grey levels" to "radiance intensity". In our proposed method, the normalised
grey-level images are only used for display purpose.

Although we do not normalise the hit number to grey level during the MAE error
computation, the final error value normalisation is still necessary for the optimisation
process. The error value will be used in the judge function to decide whether the current
solution should be accepted or rejected, which is the critical part of simulated annealing.
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(a) High radiance intensity (b) Low radiance intensity

Figure 3.4: Images with the same radiance pattern but totally different radiance intensity

It is also related to the temperature, cooling schedule, and acceptance probability function.
A normalised error in the range [0,1] renders the choice of optimisation parameters much
simpler, as will be detailed in the next chapter.

Assuming the total number of light rays is N in the ray tracing simulation, the largest
possible error is then 2N , in which case there is no overlap of radiance between target
and result. The smallest error is naturally 0, in which case the target and result radiance
distribution are exactly the same. In each iteration during the optimisation, the objective
function (error) will always be normalised from [0,2N ] to [0,1].

According to the analysis above, the formal definition of the L1-norm Error Function
with respect to the radiance distribution R is:

Er r orR (RT ,R) = (
∑
i j

∣∣R(i , j )−RT (i , j )
∣∣)/(2N ) (3.3)

where R and RT are, respectively, the current and target radiance distributions and 2N is
the normalisation factor.

3.3. GENERATING NEIGHBOR SOLUTION WITH MESH UPDATES
The definition of surface representation is necessary for generating a neighbour solution.
The choice of surface representation is related to the optimisation convergence, ray
tracing simulation and performance. We consider two mains candidates for surface
representation:

• spline-based meshes (such as NURBS)

• triangle meshes generated from the heightmaps

Spline-based representations, such as NURBS, is commonly used to generate smooth
meshes, in which the control points define the mesh’s geometry. The smoothness comes
from the use of polynomials in its definition, that also guarantees C 1 or higher continuity.
The problem of spline-based meshes is, however, performance. The polynomial definition
of the geometry imposes extra challenges for ray tracing. There are two common ways
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to render spline-based mesh: tessellation before ray tracing and direct intersection using
Newton method. Nevertheless, both are significantly costly in terms of performance.
Furthermore, when creating acceleration structures for ray tracing, the bounding volumes
for spline patches are also more challenging to define. Finally, for optimisation with a
complex target radiance distribution, the spline-based mesh cannot be flexible enough to
capture all details since it cannot be arbitrarily deformed and needs to comply with the
polynomial surface definition.

On the other hand, triangle meshes can be generated from heightmaps, as shown
in Figure 3.5. Compared with spline-based meshes, the advantage mainly lies in perfor-
mance. The intersection point with a triangle primitive has an analytical solution, making
the traversal much more efficient. Also, the bounding volumes of triangle primitives can
be explicitly defined and require less computation than with spline patches. Further,
the heightmap processes can generally be parallelised, such as the mesh update and
surface normal computation. Hence, in terms of ray tracing, a triangle mesh generated
from height map typically achieves better performance than spline-based representation.
Unlike spline-based meshes, a single vertex movement in the triangle mesh affects a small
local area, making it flexible to match any shape of geometry detail. Also, the impact
of the vertex movement on a triangle mesh and corresponding radiance distribution is
much easier to be predicted than with a spline-based mesh. The main problem of the
triangle meshes is discontinuity as they only guarantee C0 continuity, which might bring
additional problems if the final mesh is to be physically fabricated.

Figure 3.5: The heightmap is defined by a 2D spatial grid with a height value for each position. It is typically
encoded in the form of a grey-level image. From the heighmap it is trivial to generate a triangle mesh by the

elevating the vertices by their height (grey-level) values.

In brief, heightmaps are our choice for surface representation since they are highly
flexible, compatible and fast. The problem of discontinuity can be avoided by additional
strategies as will be seen in the next chapter. Finally, the heightmap can be mathematically
defined as a 2D matrix with a height value for each vertex:
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S :R2 7→R, zi , j = S(i , j ) (3.4)

where zi , j is the height in position (i , j ). Before the ray tracing simulation, the
heightmap is converted to a triangle mesh defined by a vertex list and an index list
within a uniform grid. This is actually the same as the general definition of a triangle
mesh and can be easily processed by CUDA and OptiX7.

In the general simulated annealing algorithm there are two common ways to generate
a neighbour solution. The optimiser can either change one element or add an offset to
each element during each iteration. Both of them can generate a neighbour solution that
is close to the current solution. Since adding an offset to each element might affect the
entire surface too much, introduce new random factors, and makes it hard to control
the step size, we choose to move only one vertex during each iteration. The size of
the displacement is related to the current temperature. The higher the temperature,
the more drastic the displacement. The neighbour solution generation follows a two
step-procedure:

1. randomly choose a vertex from the current mesh;

2. add a random offset to the vertex where the maximum displacement depends on
the current temperature.

In this way, the optimiser will generate a neighbour solution and evaluate the solution
with the objective function in each iteration. With the definition of radiance distribution
and neighbour solution generation, the general simulated annealing follows the pipeline
shown as Figure 3.1.

3.4. RESULTS
Based on the definitions of radiance distribution and surface representation a simple
simulated annealing optimiser can be constructed. According to our tests, the general
simulated annealing can indeed work in the inverse reflector problem, since it can achieve
a radiance distribution similar to the target radiance distribution, as shown in Figure 3.6.
Nevertheless, there are still many issues to be considered:

• The mesh may not be smooth enough having less chances to achieve a fabricatable
result.

• The radiance distribution result is not smooth since the number of the triangle
mesh vertices is limited due to the performance issue, as too many vertices can
greatly slow the ray tracing simulation.

• The energy conservation is low since a large part of the radiance is reflected away
and never reaches the receiving plane. The result has a similar radiance pattern to
the target radiance distribution but not a similar radiance intensity. Consequently
the error is not low even if the radiance patterns are almost identical.
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(a) Target radiance distribution (b) Radiance distribution after opti-
misation

(c) Optimised mesh

Figure 3.6: Result with general simulated annealing (Error: 0.300265, energy conservation: 0.409506, Iterations:
288768, resolution: 200×200, mesh size: 201×201)

• Even though the final converged error is high, the convergence speed is not actually
fast and the method converges slowly. For the example in Figure 3.6, the error
cannot decrease any further after around 50000 iterations.

• The optimisation process cannot capture features in different sizes and directions.
The final surface geometry may only contain sharp spikes which are different from
the original shapes of the desired surface geometry that possibly exists, as shown in
Figure 3.6.

Given the main issues listed above, we have developed several strategies to overcome
these limitations. In the next chapter, we will discuss how we tackled each of these
problems.
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4.1. SMOOTH RENDERING
The first issue of the general simulated annealing is the lack of smoothness in the resulting
mesh. A low-resolution triangle mesh generated from a heightmap with the uniform grid
has large discontinuities. It may also lead to many artefacts and convergence problems
such as discontinuities in resulting radiance distribution. We can increase the number of
vertices to achieve a smoother result, but it comes at a performance cost since ray tracing
of a large triangle mesh can bring considerable overhead and any modification to a single
vertex can only impact little on the final result. Instead, we consider applying smoothing
techniques after the ray-triangle intersection test, thus approximating the result of ray-
tracing a high-resolution mesh while keeping the complexity of the ray tracing algorithm
low.

NORMAL INTERPOLATION

Normal interpolation is a common method for smooth shading. The idea is to first
define the surface normal at each vertex and then interpolate inside the primitives using
barycentric coordinates. In OptiX7 the barycentric coordinates are already available
inside the shader program, so we do not need to explicitly compute them. Nevertheless,
we still need to compute the normals per vertex.

Fortunately, when handling heightmaps, computing the normals is not a costly pro-
cess. We can define the vertex normal vector by its gradient direction. Each vertex gradient
can be computed by applying the central difference filter to the heightmap values:

v(i , j ) = (
S(i −1, j )−S(i +1, j )

2
,

S(i , j −1)−S(i , j +1)

2
,1) (4.1)

where S(i , j ) is the heightmap value at vertex (i , j ), and v(i , j ) is the resulting normal
at vertex (i , j ). The resulting normal will be normalised before used in the shader program.
By computing the normal at each vertex we can build a normal map associated to the
heightmap. The normal map computation can be fully parallelised in GPU and, once
ready, the optimiser can directly access the generated normal map in GPU memory. The
ray tracing with normal interpolation can be summarised in the following two steps:

• Generate a normal map in the GPU by filtering the heightmap with the central
difference kernel.

• Interpolate the vertices’ normals using the barycentric coordinates and compute
the direction of the reflected light ray using the interpolated normal.

During ray tracing, the ray tracer will use the interpolated normals to compute the direc-
tions of the reflected rays, which already gives a much smoother result compared with
the flat shading method, as shown in Figure 4.1.

GEOMETRY SMOOTHNESS: PN TRIANGLES AND PHONG TESSELLATION

Although normal interpolation smoothes the normal inside each primitive, the intersec-
tion point between the ray and the triangle still lies on its generating plane. The origin of
the reflected ray also affects the final radiance distribution, especially for low-resolution
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(a) Test scenario in 3D view (b) The radiance distribution on the
receiving plane with flat shading

(c) The radiance distribution on the
receiving plane with normal inter-
polation

Figure 4.1: Normal interpolation can achieve a much smoother result compared with flat shading.

meshes. One standard method for smooth rendering at geometry level is the spline-based
surface which can guarantee C 1 continuity. Nevertheless, the performance overhead
and incompatibility with the general ray tracing pipeline are still issues, as discussed in
Section 3.3.

Another solution is to use local approaches, such as PN triangles [15] and Phong
tessellation [16]. Compared with other spline-based surface representations, they are
compatible with the existing rendering pipeline based on triangle meshes and do not
require pre-tessellating the original triangle mesh at a higher resolution. The main idea
is to build a smooth patch for each triangle on demand i.e., when a ray intersects the
triangle. This kind of algorithm does not need any additional information except for the
vertices coordinates and normals, hence, it is fully compatible and easily integrated into
the current rendering pipeline.

The idea behind PN triangles is to define a list of 10 control points that control the
geometry of each primitive patch, as shown in Figure 4.2(a). Every control point is
interpolated from the original vertex and normals. These 10 points are then interpolated
with a cubic polynomial to obtain a smoothed position on the surface. Using PN triangles
to define the ray’s intersection point can lead to a much smoother radiance distribution
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(a) The PN patch geometry
is determined by 10 control
points.

(b) Original triangle mesh (c) Mesh with PN triangles

Figure 4.2: PN triangle can smoothen the original triangle mesh. [15]

result on the receiving surface, as shown in Figure 4.3(d). However, the intense vector
operations do bring an overhead of approximately 5-10% to the whole system.

Phong tessellation is another way of achieving smooth geometry. As shown in Fig-
ure 4.4, the basic idea is to first find a plane which is orthogonal to each vertex normal.
Then, project the intersected point of the flat triangle primitive onto the corresponding
tangent planes and obtain three projected points. Finally, use the barycentric weights to
interpolate the three projected points to achieve the final interpolated position on the
smooth patch. Compared with the flat shading method, Phong tessellation with normal
interpolation results in a smoother radiance distribution and rendering, as shown in
Figure 4.3 and Figure 4.6.

During the main optimisation phase, Phong tessellation is applied to achieve smooth
rendering. However, during the optimisation, the ray tracer does not modify the triangle
mesh’s geometry but only corrects the position when computing the reflected point
position. The actual geometry for computing reflected point position is different from
the final triangle mesh result. After optimisation, the triangle mesh geometry still needs
to be tessellated before fabrication. In the final phase of the pipeline, the optimiser will
apply Phong tessellation to the optimised mesh and produce the actual triangle mesh
that complies with the triangle mesh geometry used in ray tracing, as shown in Figure 4.5.

According to our test results, Phong tessellation is faster and smoother than PN
triangles. Since the ray tracing result with the Phong tessellation is different from directly
ray tracing the triangle mesh, it also means that the final optimised mesh will not produce
the final radiance distribution if actually fabricated without further tessellation.

4.2. MESH UPDATES WITH GAUSSIAN KERNELS
In general simulated annealing, the way to update mesh has several issues that negatively
affect the optimisation process. To solve the issues, the mesh update strategy with kernels
and randomisation is introduced to the proposed method.

For each iteration during simulated annealing, the optimiser needs to generate a
new guess solution in the neighbour search space. For the inverse reflector problem, a
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(a) Test scenario (b) Flat shading (c) Shading with normal inter-
polation

(d) Shading with PN triangle (e) Shading with Phong tessel-
lation

Figure 4.3: Comparison of different shading method: (b)(c)(d)(e) are radiance distribution on the receiving
plane. Phong tessellation gives the smoothest result.

natural way to generate a neighbour solution is to update the triangle mesh/heightmap by
displacing a single vertex. However, this trivial strategy brings additional issues. First, the
change is too localised when the mesh size is large since each single vertex can only affect
a small region of the whole surface. It also means that a single vertex cannot influence
the radiance distribution too much and, consequently, the information provided by this
iteration is not significant enough to decide whether the optimisation is going in the right
direction.

The other problem is that, although the surface representation used in our project
cannot ensure C 1 continuity, we still want the result to be as smooth as possible due to the
limitation of fabrication. Changing a single vertex may result in large mesh discontinuity,
as shown in Figure 4.7 and Figure 4.9(a).

To avoid excessive discontinuity and low stability during the optimisation we use
Gaussian kernels to update the mesh. The idea is that in each iteration, the optimiser will
randomly select the index of a vertex in the current heightmap mesh and update it by
adding a Gaussian footprint centered on this vertex, as shown in Figure 4.8.
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Figure 4.4: Phong tessellation: the position is interpolated with the three points projected onto the
perpendicular surfaces. [16]

(a) (b) (c)

Figure 4.5: Final optimised mesh still needs to be Phong tessellated before fabrication

4.3. RANDOMISATION OF KERNEL SHAPES
In a practical application, the target surface geometry may have different feature shapes.
An important observation is that a single Gaussian kernel is insufficient for capturing
all different types of details. For example, if the target geometry is a surface as shown
in Figure 4.10, the optimisation with a single default isotropic Gaussian kernel cannot
converge to a satisfactory result. An anisotropic kernel may match the target geometry
better and help the optimisation converge much faster. To ensure the optimiser can be
compatible with different shapes of surface geometry, we apply a randomisation strategy
to pick different types of kernels. The randomisation strategy among kernel shapes is
introduced to solve the issues.

4.3.1. BASIC RANDOMISATION STRATEGY
The basic randomisation strategy is straightforward. The idea is to pre-define a list of
different shapes of Gaussian kernels. The Gaussian kernel’s shape is completely defined
by the following 2×2 covariance matrix:

∑=
(

δ2
x ρδxδy

ρδxδy δ2
y

)
(4.2)
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(a) Original surface (b) Radiance distribution re-
sult without Phong tessellation

(c) Radiance distribution result
with Phong tessellation

Figure 4.6: Comparison of radiance distributions: shading with Phong tessellation (right) can give a smoother
radiance distribution than flat shading (middle).

where δ2
x and δ2

y are the variances and ρ is the correlation. The covariance matrix
is used to control the shape of the generated Gaussian kernels but note that the size of
the kernel does not depend on the size of the covariance matrix, as shown in Figure 4.11.
The kernel size is actually defined by the size of the discrete matrix used to represent the
Gaussian distribution.

During optimisation, the optimiser randomly selects one Gaussian kernel shape
to update the mesh at each iteration. This strategy ensures that various features can
be captured while optimising the mesh, especially when handling complex radiance
distribution and geometry. The overview of the strategy is shown in Figure 4.12. According
to our test results, for a target geometry with different surface features, the optimisation
with kernel shape randomisation converges around 15% faster than without it.

4.3.2. HISTORY-BASED DECISION STRATEGY
The randomisation strategy can work in most cases, but it still brings some overhead
since the chances of selecting an unsuitable kernel are not low. The shape and the total
number of Gaussian kernels selected for optimisation are also critical points. Although
a large number of kernels with different shapes may help to achieve a better result, it
may also decrease convergence speed in certain cases due to the randomisation across
a large number of kernels with different shapes. An idea inspired by Q-Learning [17] is
to dynamically adjust the probability of selecting each kernel and find the best kernel
selection strategy to maximise the expected value (error decrease).

Q-learning is a typical model-free algorithm in reinforcement learning, maximising
the expected value in any finite Markov decision process (FMDP). The key idea is to use a
table to record the mapping between state-action and quality:

Q(s, a) : S × A →R. (4.3)

where S is the solution space including all the possible states and A is the space
including all the possible actions. Table Q records the quality for each state-action
transition combination. Then, the Q-table is used to adjust the probability of the state’s
transition.
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Figure 4.7: The mesh will form a very thin peak if we only displace the selected vertex

However, for the inverse reflector problem, the main problem of Q-Learning is that
although it is model-free (which means it does not need to construct a full Markov process
model), it can only guarantee that the optimisation works when the process can be
theoretically modelled into an FMDP. In our global optimisation problem, the process
we are handling is in a continuous space instead of a discrete space. Even if we merge
the states by dividing the continuous search space into discrete blocks or by sampling,
the number of states is still too large to construct a full Markov process model since the
inverse reflector problem is an extremely high dimensional optimisation problem. There
have been researches into Q-Learning which points out that, under specific conditions, Q-
Learning can also have good performance even if the problem model is not an FMDP [18].
But unfortunately, our case still does not satisfy those conditions.

Our solution is to simplify the Q-Learning to a much simpler model, which is a history-
based decision strategy. The history-based decision strategy can be summarised as the
Q-Learning strategy in which all states are merged into one single state. The best-matched
shape for optimisation is usually the shape with the largest reward (error decrease). The
history-based strategy is to build a table to record the reward of each shape. The table
is then used to adjust the probabilities of selecting each shape of kernels during the
optimisation process. There are two phases where the history-based decision strategy
can be applied: pre-process and run-time.

PRE-PROCESS

Before the primary optimisation process, the optimiser conducts a pre-process history-
based strategy, which helps to obtain some pre-knowledge of the target geometry. The
optimiser uses a list of kernels with different shapes (predefined or random-generated) to
initialise the pre-process with a small number of iterations. The result of the reward record
directs the decision of which kernel shapes should be used in the main optimisation phase.
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Figure 4.8: Generate neighbor solution by adding the Gaussian kernel (top-right) to a random position (top-left).
The resulting surface (bottom) does not contain large discontinuities as it would if we had only displaced the

randomly selected vertex as illustrated in Figure 4.7

(a) Surface with high frequencies: optimisa-
tion without Gaussian kernel

(b) Smooth surface: optimisation with Gaus-
sian kernel

Figure 4.9: Optimised surface and the corresponding radiance distribution on the receiving plane: the smooth
surface optimised with Gaussian kernel (right) is much simpler to be fabricated than the surface with high

frequencies (left).

The best N shapes of kernels contributing the most significant error decrease are selected
to the main optimisation phase. This selection is illustrated in Figure 4.13.

RUN-TIME

The run-time history-based strategy is to dynamically adjust the probabilities of each ker-
nel after every batchSize iterations. During the main optimisation phase, a table records
each kernel’s contribution. The table is used to adjust the probability of acceptance of
each kernel shape, as shown in Figure 4.14.

A typical downside of such history-based optimisation is that it can easily lead the
global optimisation process to a local minimum since some shapes’ acceptance proba-
bility can become too high. In contrast, others decrease to 0 and have no chance to be
accepted anymore, as it will never be picked its probability will never increase. We solve
this problem by setting a minimum probability for each shape of kernels. Also, to avoid
the table from changing too fast, we update the table with a batch strategy, which means



4

34 4. OPTIMISATION STRATEGIES

Figure 4.10: The shown radiance distribution is generated by the mesh on the left. For this case, an anisotropic
kernel can be a better choice compared with an isotropic kernel. Note that in reality we do not actually have a

target geometry, this is for illustration purposes only, but if we have this target distribution we expect the
resulting mesh to be similar to this one.

(a) (b) (c)

Figure 4.11: Three kernels with same covariance matrix, but different sizes

it only updates after a certain number of iterations (batchSize). It lowers the risk of being
stuck in a local minimum and increases the convergence speed.

4.4. MULTI-LEVEL STRATEGIES
One of the main problems of the inverse reflector design is that the search space’s dimen-
sions are too high to have enough search within a limited number of iterations. If we
directly run global optimisation on such a large search space, it will be difficult for the
optimiser to reach the global minimum within a reasonable amount of time.

One common way of solving such a problem is to apply "dimensionality reduction",
that is, to reduce or compact the high-dimensional variables in the objective function
into a lower-dimensional one while still ensuring that it is representative enough and
maintaining most of the original characteristics. Spline-based surface representations
can decrease the degree of freedom in such global optimisation problems since it only
uses a small number of control points to represent the whole surface.
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Figure 4.12: Randomisation: choose a random kernel shape for the mesh update.

Instead, we use a multi-resolution, or multi-level, strategy to limit the dimensionality
during optimisation. With a multi-level strategy, the optimiser always starts from a coarse
low-dimensional problem. When it converges to a solution at this level, the search space
is refined into a higher dimension by interpolation. According to our test results, in a
high-dimensional optimisation problem, the final solution with a multi-level strategy
can be much closer to the global minimum than the direct single-level strategy within a
limited amount of time.

In our project, we use multi-level strategies in three aspects: the resolution of the
target radiance distribution; the resolution of a heightmap/triangle mesh; and the size of
the Gaussian kernel.

MULTI-LEVEL RESOLUTION OF TARGET RADIANCE DISTRIBUTION

The optimiser starts with a coarse target radiance distribution by filtering the original
radiance distribution with a linear box filter. Once convergence is reached, the resolution
of the target radiance distribution is increased and the optimisation starts again. The
different resolutions of target radiance distribution are obtained by interpolating the
original input. After iterative repetition of this process, the optimisation will finally reach
the final convergence. This strategy can significantly decrease (around 20%) the time
needed for convergence, especially when handling complex target radiance distribution.
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Figure 4.13: Pre-process: select N best-matched kernels for main optimisation phase. In this case N = 3

Figure 4.14: Run-time: dynamically adjust the probabilities of selecting each kernel.

MULTI-LEVEL TRIANGLE MESH SIZE

Similarly, we adjust the mesh resolution. The initial triangle mesh is coarse, containing a
small number of vertices. After convergence, the optimiser increases the mesh’s size by
interpolating the triangle mesh to a finer mesh. The interpolation is bilinear inside each
cell of the triangle mesh (or the heightmap), and after interpolation, the optimiser runs a
triangulation and assemble the new vertices into a new triangle mesh. Every optimisation
pass uses the previous level’s optimisation result after interpolation as the initial triangle
mesh. In this way, the optimiser arrives closer to the optimum without losing the result
information of the previous level’s optimisation. An example of this process is shown in
Figure 4.15.

MULTI-LEVEL GAUSSIAN KERNEL

Finally, we also use a multi-level strategy for the Gaussian kernels. The reason for this is
slightly different from the previous ones. Ideally, the reflector optimisation should have
a good coarse shape first, and then optimise the small details on the reflector’s surface.
The target geometry might have features with the same shape but at different scales. To
capture these features in different scales, we need to apply kernels with different sizes.
The randomisation across the whole list of kernels with different shapes and sizes can be
too costly, thus a multi-level strategy is again important. The optimiser starts with large
Gaussian kernels and gradually decreases the kernel’s size to capture the fine details.

The multi-level strategies mainly helps with the convergence speed. Generally, the op-
timiser using multi-level strategies can converge much faster than a single-pass optimiser,
as shown in Table 4.1. The multi-level strategy is shown in Algorithm 1.
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Figure 4.15: The result gradually approaches to the target by increasing the mesh size. (top row: mesh in 3D
view; bottom row: resulting radiance distribution on the receiving plane)

Algorithm 1: Pseudo-code for the Multi-level strategy.

while !meshSize_max() do
while !resolution_max() do

while !kernelSize_min() do
Optimize_SA();
Decrease kernelSize;

end
Increase resolution;

end
Increase meshSize;

end

Case Num. Iter.(No multi-level) Iter.(multi-level)
Figure 4.16(a) 8.9×105 3.7×105

Figure 4.16(d) 2.1×105 1.3×105

Table 4.1: Number of iterations needed for convergence (same error threshold for both ’multi-level’ and ’no
multi-level’)

4.5. PENALTY AND MESH SMOOTHNESS

By far, the error function (objective function) only takes the radiance distribution infor-
mation into account. Nevertheless, in practical applications, there might be additional
constraints that are different from the ideal scenario. For instance, the boundary condi-
tion will force the surface to be within a specific range. The penalising strategy is a typical
way to put constraints on the optimisation problem. Moreover, the way to achieve further
mesh smoothness will be discussed in this section.
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(a) Alphabet inverse ’V’,
Resolution: 200×200

(b) Mesh size: 101×101 (c) Error: 0.087; Iterations:
3.7×105

(d) Headlight, Resolution:
50×50

(e) Mesh size: 13×13 (f) Error: 0.096; Iterations:
1.3×105

Figure 4.16: Test cases for Table 4.1 (left: target radiance distribution; middle: optimised triangle mesh; right:
resulting radiance distribution; light source: collimated light source)

4.5.1. TYPICAL PENALISING STRATEGIES
For constraints/conditions, we can attribute a penalty function that can guide the ob-
jective function in certain conditions. In this way, the optimiser is forced to go into the
search space where the penalty is not high. We explicitly created penalty functions for
four cases:

• Energy conservation;

• High-frequency error;

• Concave valleys with a small angle;

• Boundaries.

ENERGY CONSERVATION

For the energy conservation constraint is to avoid solutions where the surface is reflecting
light away from the receiving plane. Assuming the total radiance energy reaching the
reflector is E , and the total radiance energy on receiving plane is Er , then the energy
conservation is defined as Er /E . Energy conservation can be of high interest in practical
applications since we do not only care about the radiance patterns, but also the radiance
intensity. As shown in Figure 4.17, even if the resulting radiance distribution has the
desired shape, the optimiser bent half of the surface away to lower the error, which is an
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(a) Part of radiance cannot reach receiving plane (b) Most of radiance can reach the receiving
plane

Figure 4.17: The result can be in same radiance pattern but totally different energy conservation

undesirable solution. The idea is to add a penalty when the energy conservation is lower
than a specific threshold. The total error then becomes:

Errornew = Errorold

( Er
E )

, i f
Er

E
< Threshold (4.4)

The final error will be divided by energy conservation when it is lower than a specific
threshold. If the energy conservation is too low, the error will be scaled up and the
optimiser will be forced to increase the energy conservation in order to decrease the total
error.

HIGH FREQUENCIES

Human eyes are normally more sensitive to high-frequency areas such as edges. Typically,
we would prefer a radiance distribution result that has similar high-frequency features to
the target radiance distribution. Sobel filter is a common way to extract high-frequency
information from an image. The idea is to compute the MAE error between the target and
current radiance distribution after applying the Sobel filter. The Sobel MAE error is added
to the total error, hence, the optimiser tries to minimise the objective function together
with the high-frequency error.

The corresponding penalty is:

PenaltySobel(RT ,R) = α

2N
(
∑
i j

∣∣Sobel(R(i , j ))−Sobel(RT (i , j ))
∣∣) (4.5)

where α is a factor to give more or less importance to the Sobel error. It is worth
noting that we do not recommend setting the Sobel α to higher than 0.2 under normal
circumstances. One reason is that the high α values affect the optimisation process
since it can make the optimiser put huge effort into optimising the high-frequency error
instead of the radiance error part we mainly care about. The other reason is, in the actual
optics design application, the light does not follow the perfect-mirror reflection as we
assume in this work. The radiance on the receiving plane will become smoother and more
blurry due to the scattering effect. For complex target radiance distribution, it is almost
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impossible for the reflector to capture all the high-frequency details. So it is unnecessary
to over-weight the Sobel part.

CONCAVE VALLEYS WITH A SMALL ANGLE AND BOUNDARIES

Concave valleys and boundaries can also be part of the penalties. Generally, the machine
for fabricating lenses cannot mill surfaces with small concave angles or outside the
boundaries (which means the height value must be within a specific range [hmi n ,hmax ]).
The way to compute the penalty is to scan over the whole surface and find the vertices
which do not satisfy the constraints on concave valleys and boundaries. The constraints
such as the angle of concave valleys and boundaries depend more on the limitation of
the machine that will be used for fabrication. The advantage of the run-time penalising
method is that it can avoid ruining the original optimised surface when compared to
applying a post-processing method. Of course, it comes at the cost of more per-iteration
overhead. Currently, according to some simplified tests, the penalising strategy works,
although it is not yet fully implemented. Some further tests and research may be needed
in future.

4.5.2. FURTHER MESH SMOOTHNESS
Even with the penalties above, the resulting surface might still have regions that are
not smooth enough. For further mesh smoothness, we applied two kinds of methods:
run-time and post-processing.

The ways to ensure the mesh smoothness in run-time include:

• Limit the minimal size of Gaussian kernel

• Penalise the non-smoothness surface by energy conservation

The size of the Gaussian kernel affects the smoothness of the mesh. A very small kernel
can lead to many spikes in the final optimised surface mesh. For example, if we optimise
the surface with only 1×1 Gaussian kernel, the optimisation process will degenerate to
move a single vertex in each iteration. The final result will not be smooth, as shown in
Figure 4.18(b). So one of the most direct ways to ensure mesh smoothness is to limit the
minimal size of the Gaussian kernel.

Another way to smooth the mesh is post-processing filtering. We apply smooth
filtering on the resulting heightmap to smooth the sharp areas. As shown in Figure 4.19,
an appropriate post-processing filter can make the mesh smoother and maintain the
most original radiance distribution when the limitation of the manufacturing machine
is of high interest. The overhead of post-processing is negligible compared to run-time
strategies. Nevertheless, for cases where the result accuracy is much more important than
smoothness, run-time strategies can be a better choice.

The final pipeline of the algorithm is shown in Figure 5.1. The design considers the
theoretical feasibility, complexity, compatibility and performance with CUDA and OptiX7.
We mainly focused on the algorithm design in this chapter, and in the next chapter, we
explain how to integrate the entire pipeline with CUDA and OptiX7.
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(a) Target radiance distri-
bution

(b) Optimisation with 1×1
Gaussian kernel: small an-
gles of the concave valleys
lead to high frequencies in
the final mesh.

(c) Optimisation with
multi-level Gaussian ker-
nels: the final optimised
mesh is much smoother in
general.

Figure 4.18: The mesh (b) has concave valleys with smaller angles than the mesh (c), and it is more difficult to
be fabricated.

(a) Before filtering (b) After 3×3 box filtering

Figure 4.19: An appropriate post-filtering can smoothen the mesh





5
SYSTEM DESIGN AND

DEVELOPMENT

43



5

44 5. SYSTEM DESIGN AND DEVELOPMENT

The proposed reflector design system uses OptiX7 and C++/CUDA. In this chapter, we
explain the details in building the system and how we optimised its performance. For the
basic concepts of ray tracing, we refer the reader to an introduction to the topic [19].

5.1. OVERVIEW OF THE REFLECTOR DESIGN SYSTEM
The reflector design system is overall a global optimisation process. The GPU and CPU
work cooperatively, in which the CPU is used for flow-control of the optimisation pipeline,
and the GPU is used to accelerate compute-intensive tasks. The full pipeline is divided
into two main phases: Pre-configuration and Main optimisation phase. The overview of
the pipeline is shown in Figure 5.1.

Figure 5.1: The pipeline overview: CPU and GPU work cooperatively

In the pre-configuration phase, the optimiser will first perform initialisation steps
and allocate memory. More specifically, memory is allocated for the heightmap, radiance
distribution buffer and Gaussian kernels. This single-time initialisation and memory
allocation are much faster than dynamically operations during optimisation. Especially
for the Gaussian kernels, computing a sample from a Gaussian distribution during opti-
misation can be much slower than looking up pre-computed values. In addition, in this
phase we set the parameters for simulated annealing, such as temperature, max iterations,
cooling schedule, step size and resolution.

We also want to avoid re-configuring the OptiX7 modules before launching the ray
tracer in each iteration. The OptiX7 configurations mainly including shader program
compilation, shader binding table and acceleration structure are all done in the pre-
configuration. The acceleration structure supports the dynamic update without rebuild-
ing if it uses built-in primitives, such as triangles. The performance gains more from
pre-building the acceleration structure and dynamically updating than rebuilding it at
each iteration.

The main phase is where the iterative optimisation happens. There are two key
points here: workflow control and cooperative work on CPU and GPU. The workflow is
controlled by the CPU, including all the steps like objective function evaluation, judge
function, invoking the GPU execution, etc. The workflow controlled by the CPU is similar
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to the general simulated annealing algorithm running solely on the CPU, except for the
parallelised parts optimised by GPU. The system is specifically designed for cooperative
work on both CPU and GPU. The GPU is responsible for the compute-intensive tasks, and
the CPU is responsible for the workflow control. For example, when handling the objective
function evaluation, the CPU will invoke the GPU to run the ray tracing simulation. The
cooperative work between CPU and GPU can significantly increase the performance of
the optimisation process.

5.2. RAY TRACING SCHEME FOR SIMULATION
The ray tracing scheme for simulation is developed with ray tracing API OptiX7, which
is responsible for the most compute-intensive part in the pipeline. In this section, the
ray tracing scheme design and the application of Phong tessellation in OptiX7 will be
detailed.

5.2.1. ITERATIVE RAY TRACING WITH OPTIX7
The core of the OptiX7 program is the shaders which mainly define how light rays interact
with the traversable that include all objects in a scene. OptiX7 also builds an acceleration
structure before the actual ray tracing. The main performance overhead of ray tracing
lies in the intersection test, and the primary purpose of the acceleration structure is to
accelerate the intersection test. In OptiX7, the shader binding table binds data to shaders;
thus, the program can be compatible with different scenarios. The OptiX7’s device-side
API mainly contained eight kinds of programs, as shown in Figure 5.2. And almost all of
them except for the scene traversal are programmable.

Figure 5.2: The full shading pipeline on GPU includes eight kinds of program [20]

Although the full OptiX7 shading pipeline includes eight kinds of programs, it can be
simplified. For the purpose of our ray tracing simulation we mainly concentrate on the
ray generation, closest-hit and intersection programs. Since the primitive in our scenario
is the triangle, the built-in intersection shader is sufficient. The ray generation program is
the entry point of the Optix7 Program, in which the light rays are generated according to
the user definition of the light source. The closest-hit program is called every time when
the ray tracer finds the closest hit point. It can be used to define how the light rays interact
with the surface.

One of the most simple way to build a ray tracer is by shooting rays from the camera
and recursively following the rays after each intersection. In this case the program needs
to call the Trace() function recursively until it stops. The result would then be traced
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back to the camera to define the pixel colors. However, recursion affects performance,
especially when handling inner-reflections. In recursive ray tracing, it is always necessary
to build a stack to store the information required when returning.

We convert the original recursive scheme to an iterative ray tracing scheme with the
per-ray-data that is to communicate between various shader programs. Note that we
do not need to trace back to the origin of the rays, as we are only interested in the final
intersection with the receiving plane. We also do not shoot rays from the camera but from
the light-source, as the viewer is not relevant for our purposes.

As shown in Listing 5.1, the per-ray-data will carry ray origin, direction, depth and
a boolean value indicating where it should trace again. The rayGeneration() generates
new light rays according to the current per-ray-data. The closesetHitSurface() handles the
ray reflected from the reflector and returns the ray information back to rayGeneration(),
and the rayGeneration() then generates light rays with the per-ray-data until it meets the
end condition. If it hits the receiving plane, it will call closestHitImage() and update the
current radiance distribution according to the previous radiance distribution definition.

Listing 5.1: Shader programs

struct RayPayload
{

vec3 rayOrigin , rayDirection ;
bool traceAgain ; int depth ;

} ;
void rayGeneration ( )
{

RayPayload payload { } ;
do
{

traceRay ( . . . ) ;
} while ( payload . traceAgain && depth < threshold ) ;

}
void closestHitSurface ( )
{

payload . traceAgain = true ;
payload . rayOrigin = hitLocation ;
payload . rayDirection = . . . ; / / compute

}
void closestHitImage ( )
{

payload . traceAgain = f a l s e ;
UpdateRadianceImage ( ) ;

}

5.2.2. CORRECT REFLECTION POSITION BY PHONG TESSELLATION
Phong tessellation in the rasterisation program is usually implemented in the geometry
shaders, in which we can add/delete primitives. In OptiX7, there is no such shader
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that can directly handle geometry and primitive. Running Phong tessellation in GPU
before every iteration is doable, however, the tessellation and rebuilding the acceleration
structure implies a large overhead. Our method does not directly tessellate the triangle
mesh. Instead, it corrects the reflected position according to the interpolation of Phong
tessellation.

The reflected point is corrected by Phong tessellation inside the closest-hit shader. The
shader program first retrieves the position and normal of three vertices of the intersected
triangle. In addition, OptiX7 provides a built-in function to retrieve the barycentric
coordinates and the primitive index. Hence, all the information needed to perform Phong
tessellation can be obtained inside the closest-hit shader. The closest-hit shader saves
the interpolated geometry position to per-ray-data and returns it to the ray generation
program. The ray generation program then generates the reflected ray with the corrected
reflected position saved in per-ray-data.

One issue is that the reflected ray might be blocked by the original primitive in the
acceleration structure, since it is not modified. For instance, the corrected reflected
point might move backwards compared with the original one, and the reflected light rays
will be blocked by the original acceleration structure, as shown in Figure 5.3. To solve
this problem, we make the per-ray-data carry a boolean value to indicate whether the
corrected reflected point moves backwards. In this case, it skips the first intersection and
continues ray tracing.

Figure 5.3: The corrected reflected ray can be blocked by the original flat primitive. In this case, another
undesired call of the closest-hit will be generated.

5.3. ACCELERATION

For a system based on cooperation between CPU and GPU, the performance can vary a
lot. Good system design and development are essential for achieving high performance.
For developing the inverse reflector design system, there are several typical ways to get
acceleration, including parallelised operations, minimisation of memory exchange and
allocation, which will be detailed in this section. Moreover, practical tricks for accelerating
a CUDA/OptiX7 program are also applied to this system for further acceleration.
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5.3.1. PARALLELISED OPERATIONS

In the inverse reflector design pipeline, several compute-intensive operations can be
accelerated by parallelisation, including error function evaluation, matrix computation
and data update, which can be much more efficient than sequential operations.

ERROR FUNCTION EVALUATION

The most intuitive way to compute the error function is to transfer the radiance distribu-
tion result from GPU to CPU to compute the error. However, there are two issues with this
approach. First, the data exchange between the CPU and GPU brings overhead. Second,
the sequential computation of the error-function is slow when the resolution is high.
Since OptiX7 and CUDA share the same API for accessing GPU memory, it is possible to
compute the error function inside the GPU using CUDA kernels and avoid the workload
on CPU.

To increase the reflector design system’s performance, we strictly limit the data ex-
change between CPU and GPU. Before the main optimisation starts, the target radiance
distribution is transferred once to GPU. During the main optimisation phase, the op-
timiser computes the errors in the GPU and only transfers back to the CPU a single
floating-point scalar, the total error. This value is used for further optimisation, such as
judge function. The overhead of sending one floating-point number is negligible when
compared to sending the entire radiance distribution back to CPU. Moreover, the actual
computation of the MAE between two matrices is faster in the GPU.

COMPUTATION AND DATA UPDATE

Our system performs a few local operations on 2D matrices, including computing normal
maps, Sobel filtering, convolution, etc. This type of computation can be easily parallelised
since each entry’s result is independent of the others. For 2D convolution, further acceler-
ation is possible by using separable filters, in which the 2D Kernel is decomposed into
two 1D kernels and filtering is realized in each dimension separately. The complexity of
computing the result will decrease from O(N M) to O(N +M).

In the pre-configuration, the GPU memory is allocated for the data and will not be
re-allocated in the main optimisation. For all the data update that can be parallelised, we
accelerate it with GPU. In addition, most update operations are also run in the GPU, such
as updating the heightmap, triangle mesh, acceleration structure, radiance distribution
and normal map. For example, the mesh update with the Gaussian kernel is implemented
in GPU. As mentioned before, the Gaussian kernels are initialised and pre-allocated
as matrices in GPU memory. During the main optimisation, the mesh update is an
add operation between the heightmap matrix and Gaussian matrix, which can be fully
parallelised. Other operations are similarly parallelised.

Since all the data updates are in-place operations inside GPU, there will be no addi-
tional memory exchange overhead between CPU and GPU during optimisation. The data
update with GPU is much faster than it with CPU. For example, in certain cases, such as
the mesh update, the GPU implementation is 100% faster than the CPU version, as shown
in Table 5.1. Furthermore, the GPU implementation time increases much slower with
mesh size than the CPU version.
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MeshSize Time (CPU multi-thread) Time (GPU)
51×51 69 secs 48 secs
101×101 87 secs 50 secs
201×201 160 secs 53 secs
401×401 563 secs 70 secs

Table 5.1: Time spent in every 1×105 iterations with different mesh update methods (Radiance distribution
resolution: 100×100)

5.3.2. PRACTICAL ACCELERATION TRICKS

Programming with CUDA and OptiX7 has a lot of tricks that can significantly improve
performance. In this part, we will introduce some acceleration tricks used in our project.

USE PAYLOAD REGISTERS TO SAVE PER-RAY-DATA

The per-ray-data is the data used to communicate between various shader programs.
Typically, the easiest way to use the per-ray-data is to compact the structure into a device
pointer. When the program needs to use it in other shader programs, it can decode the
pointer and retrieve the per-ray-data. However, in this case, the device pointer refers to
the global memory, which is much slower.

One way to avoid such performance overhead is to make use of the payload registers.
In GPU programming, the registers are by far faster than the global memory. The Optix-
Trace() function provides payload registers with a maximum of 8×32 bits unsigned ints.
So if the struct of per-ray-data size is less than 8×32 bits, we can encode the per-ray-data
with the bits and communicate between various shader programs.

In this way, the shaders will not need to encode the data structure with a device pointer
and decode it from global memory. The shaders can directly access the payload registers,
saving all the information needed for the computation inside shaders.

REDUCE SCHEDULING OVERHEAD AND INCREASE GPU USAGE

The computation cost of the ray tracing simulation in each iteration is low. The total
number of generated light rays is far more than the maximum number of parallel lines,
making it impossible for all light rays to be computed in parallel simultaneously. If each
thread only generates a single light ray, the overhead brought by thread/block scheduling
is very high. It is better to set a fixed number of generated rays for each thread, which can
minimise the overhead of thread/block scheduling. In our case, we set this number to 32.
Compared with 1 ray per thread, it gives about 20-40% performance improvement in our
test. And in most cases, 32 rays per thread is a bit faster (5%-10%) than 16 and 64.

Since the kernel launch time is too short, the GPU cannot be fully occupied due to the
frequent status switch between CPU and GPU. One way to increase GPU usage is multiple
streams launch. The system will launch concurrent ray tracing kernel functions with
multiple streams (one kernel launch per stream), and separate streams can overlap to fill
up the idle time. In this way, the system will batch the ray tracing simulations, including
multiple mesh updates and objective function evaluations, to maximise GPU usage.
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COMMON ACCELERATION TRICKS IN CUDA
There are also some typical acceleration tricks in GPU programming that we tried to
follow in this project:

• Shared memory: shared memory is the memory shared with all threads within the
same block. It is much faster than directly accessing the global memory;

• Memory coalescence: memory coalescence with half-warp alignment helps im-
prove the performance of CUDA programming;

• Avoid double floating-point computation;

• Avoid divergence and idle threads.

These tricks can accelerate the system to some extent, but not very significantly. They
are common tricks instead of specifically appropriate for our system since the main
overhead inside the ray tracing simulation has already been fully optimised inside OptiX7.
For more details about acceleration tricks in CUDA, we refer the reader to the CUDA
programming guide [21].
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6.1. RESULTS

We tested our method in two ways. In the first, we generate the target distribution from a
given geometry, hence, we can compare our resulting geometry with the ground-truth.
In the second, we do not know the ground-truth geometry and we only have the target
radiance distribution, which can be an image, for example.

Figure 6.1(a) illustrates the original geometry for the first type of test. Given this
geometry we produced the radiance distribution depicted in Figure 6.1(b) by ray-tracing.
Given this distribution as input, the optimiser arrived at the geometry in Figure 6.1(c)
with resulting radiance distribution shown in Figure 6.1(d). Note that, even though the
target and resulting radiance distributions are very similar, the ground-truth and resulting
geometries are not.

For the second type of test, we defined simple radiance patterns, such as alphabet
letters and a headlight shape as shown in Figure 6.2 and Figure 6.3. We also defined more
complex patterns by using a gray-scale image as input, such as the one in Figure 6.4. The
optimisation process is the same as the test cases with simple radiance patterns in the
first type of test. The only difference is that the target distribution is not generated by
ray-tracing and we do not know the ground truth geometry.

Case Radiance Res. Mesh size level Iteration Time
Figure 6.2(c) 502 → 2002 252 → 1012 5.3×105 337 secs
Figure 6.2(f) 502 → 2002 252 → 1012 3.7×105 239 secs
Figure 6.2(i) 252 → 502 72 → 132 1.3×105 75 secs
Figure 6.3(c) 502 → 2002 252 → 1012 9.2×105 548 secs
Figure 6.4 502 → 2002 512 → 4012 5.6×106 83 mins

Table 6.1: Parameters and records in test cases (Multi-level: for level N, ResN = 2×ResN−1. The mesh size also
doubles for each level, but it will be automatically set to the closest odd number if it is an even number.)

Run Iteration Time Energy Error
1st 1.3×105 75 secs 0.989 0.096
2nd 1.7×105 92 secs 1.0 0.092
3rd 1.4×105 81 secs 0.997 0.103
4th 1.7×105 95 secs 1.0 0.089

Table 6.2: Multiple runs for the same test case 6.2(g) (headlight shape)

Case Kernel(a) Kernel(b) Kernel(c) Kernel(d) Kernel(e)
Figure 6.2(a) 0.30 0.13 0.25 0.15 0.17
Figure 6.8(a) 0.23 0.32 0.10 0.21 0.14

Table 6.3: Final estimated weights of pre-defined kernels in Figure 6.5
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(a) Target geometry (Mesh size: 5×5) (b) Target radiance distribution (Resolution:
100×100)

(c) Result geometry (Mesh size: 9×9) (d) Result radiance distribution (Resolution:
100×100)

Figure 6.1: Optimised result with both target geometry and radiance distribution (Error: 0.0354, Iterations: 4096,
Energy Conservation: 0.9987)

6.2. ANALYSIS AND DISCUSSION

To evaluate and validate the proposed method, I perform a performance analysis based
on the recorded test data in different scenarios. As a general inverse reflector problem
solver, the proposed method still has several issues to be discussed. Both the advantages
and disadvantages will be explained in this section.

6.2.1. PERFORMANCE ANALYSIS

The performance of the proposed method includes three parts: convergence speed,
accuracy and compatibility. In this section, each of them will be analysed in detail.
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CONVERGENCE SPEED

The convergence speed is highly related to the desired result quality and hardware. Our
proposed method aims to find a balance between quality and speed, and its convergence
speed is good according to tests. In our experiment environment, for simple cases like
Figure 6.2 and Figure 6.3, our algorithm normally converges between 1-30 minutes. For
complex cases, like Figure 6.4, our algorithm converges within 30 mins to several hours.
For cases with a large triangle mesh, although the mesh process runs fully on GPU, the
speed (iterations/sec) is slower since it reaches the maximal number of parallel running
threads for mesh processing on GPU, as shown in Table 6.1. It works the same for cases
with a large radiance resolution.

Compared with other gradient-based algorithms like SPSA shown in Figure 6.10, our
algorithm’s significant advantage is that it does not require high sample-rate ray tracing.
The reason is that the gradient itself cannot be accurate when ray tracing with a low
sample-rate. And for the gradient-based algorithms, any random factor can significantly
affect the computed gradient, considerably lowering the algorithms’ compatibility and
generality. Most of the overhead in the pipeline is in the ray tracing simulation, and the
required high sample-rate ray tracing in SPSA may bring a lot of overhead compared with
our proposed algorithm.

Some accuracy-oriented algorithms are specifically designed for certain application
scenarios, such as "parallel incident light rays", "incident rays perpendicular to the
surface", "far-field", etc. Since our algorithm is performance-oriented, the final result
is not as highly accurate as accuracy-oriented algorithms, as shown in Figure 6.11. The
proposed method can achieve an accurate solution fast in simple cases. When solving
problems with a complex radiance distribution, although the result is not as precise as
the accuracy-oriented algorithms, it is still reasonable and fast enough to serve as the
initial guess for further approximation, which is, also the goal from the start (Section 1).

By now, the analyse of the convergence speed comparison between different algo-
rithms is theoretical, since the original papers do not provide detailed data for all test
cases. Moreover, even for cases with detailed data, the comparison is not in the same
conditions (same machines). This analysis aims to show the potential advantages of the
proposed method.

ACCURACY AND ENERGY CONSERVATION

For the tests in Figure 6.2 and Figure 6.3, the normalised error is under 0.10. As shown in
Figure 6.1, we also note that the optimisation does not necessarily arrive at a geometry
close to the original one. Nevertheless, it can still give a radiance distribution that is
similar to the target radiance distribution. We conclude that this is because there are
multiple solutions for a single optimisation problem, which means different geometric
shapes might give the same result radiance distribution. Compared to the SPSA algorithm,
our method presents significantly better results, as shown in Figure 6.10 and Figure 6.11.

Energy conservation is highly related to the penalty in the objective function. For
test cases where no energy conservation penalty is applied, the energy conservation will
fluctuate intensively during optimisation. Moreover, the energy conservation of the final
optimised result is low, as shown in Figure 6.7. For test cases where energy conservation
constraint is applied, the energy conservation will gradually increase to a high level and
then becomes stable since the low energy conservation makes the error extremely high.
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When handling test cases with a point light source, the initial energy conservation is
low, and the error will be extremely high since it is amplified when divided by the energy
conservation rate. During optimisation, the energy conservation gradually increases until
it is close to the threshold, as shown in Figure 6.6(b).

COMPATIBILITY

Since our proposed method is based on a general global optimisation algorithm, it is
highly compatible with many scenarios, in contrast to methods that are specifically
designed for certain scenarios. For example, our method has no restriction on the light
source, as long as we can generate sufficient light rays. The method proposed by Papas [6],
on the other hand, only works for collimated light source.

Moreover, we are not limited to the reflector case, our algorithm naturally handles
the refractive lens design problem. We only have to consider the refractive index for lens
design during ray-tracing. The assumption is that we can consider the lens interface as a
surface, thus ignoring volumetric effects. Figure 6.8 shows an example of the refractive
lens case optimised with our method. The optimisation algorithm is also stable since it
does not require a good initial guess and the results do not vary much in different runs, as
shown in Table 6.2. We expect that running the optimisation twice is usually enough to
avoid a "bad" run.

In brief, any scenario that can be ray-traced is a valid case for our method, making it
highly general.

6.2.2. DISCUSSION
According to the analysis, the results are accurate, especially with simple target radiance
distributions. The converge speed is also very reasonable given our initial goal to produce
a first approximation for more complex optimisation algorithms. It can converge in a
few minutes, especially for the test cases with simple patterns. Moreover, our proposed
algorithm has much higher compatibility and generality than other specifically designed
algorithms, enabling it to perform well in various test scenarios.

One of the main problems is that it cannot accurately result in complex radiance
distributions, such as the Lenna case. When compared with other accuracy-oriented
algorithms, we are still far from the optimal, as shown in Figure 6.11. Our optimiser does
not thoroughly learn the correspondence between radiance distribution and geometry
since our optimisation process solely relies on a random walk in the neighbour search
space. We use strategies to accelerate the optimisation process, however, some of them
have side-effects that might affect performance. For example, the randomisation strategy
may increase the performance and compatibility for most test cases. On the other hand,
it might decrease the convergence speed since some of the kernels might not contribute
to the total error decrease in rare cases, although in most cases the issue can be solved
by the history-based decision strategy. Further, the history-based decision strategy can
increase the convergence speed. Still, it will also increase the risk of being stuck to a local
minimum since some kernels might have a much higher probability than others.

Another issue is the choice of parameters. The optimisation process has many param-
eters, and different choices of parameters can lead to different results. For example, the
slow cooling schedule can usually lead to a more accurate solution than the fast cooling
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schedule, but it will also slow the convergence speed. To ensure this algorithm’s effec-
tiveness and efficiency, the parameters must be carefully chosen, including temperature,
cooling schedule, kernel size, kernel shape, etc. This can be a problem for those who do
not have experience tuning an optimisation process. For more experienced users, our
method’s parameters can be understood intuitively, and it can also give much higher
flexibility to users when applied to different applications.
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(a) Alphabet ’E’, Resolu-
tion: 200×200

(b) Mesh size: 101×101 (c) Error: 0.083; Energy
Conservation: 0.976; Iter-
ations: 5.3×105

(d) Alphabet ’V’, Resolu-
tion: 200×200

(e) Mesh size: 101×101 (f) Error: 0.087; Energy
Conservation: 0.988; Iter-
ations: 3.7×105

(g) Headlight, Resolution:
50×50

(h) Mesh size: 13×13 (i) Error: 0.096; Energy
Conservation: 1.0; Itera-
tions: 1.3×105

Figure 6.2: The results with simple target radiance distribution (collimated light source)
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(a) Symbol ’@’, Resolution:
200×200

(b) Mesh size: 101×101 (c) Error: 0.086; Energy
Conservation: 0.965; Iter-
ations: 9.2×105

(d) Chinese charac-
ter ’Light’, Resolution:
200×200

(e) Mesh size: 201×201 (f) Error: 0.070; Energy
Conservation: 0.994; Iter-
ations: 1.3×106

Figure 6.3: The results with other binary image inputs (collimated light source)

(a) Lenna (Resolution:
200×200)

(b) Mesh size: 401×401 (c) Error: 0.104; Energy
Conservation: 0.948; Iter-
ations: 5.6×106

Figure 6.4: The results with complex target radiance distribution

(a) (b) (c) (d) (e)

Figure 6.5: Five selected kernels used in tests of kernel weights
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(a) (b)

Figure 6.6: Reflector design case Figure 6.9: error and energy conservation

Figure 6.7: Energy conservation will fluctuate without constraint
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(a) (b)

Figure 6.8: Refractive lens design (collimated light source, square initial surface)

(a) (b) (c)

Figure 6.9: Reflector design (point light source, non-square reflector, energy threshold: 0.95)

(a) Our algorithm (b) SPSA [1]

Figure 6.10: Accuracy comparison with SPSA in simple cases
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(a) Gaussian decomposi-
tion + permutation [6]

(b) SPSA [1] (c) Our algorithm

Figure 6.11: Accuracy comparison between different algorithms
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7.1. CONCLUSION
This thesis proposes a general optimisation method for a fast approximation for designing
reflectors and lenses. Compared with other algorithms which are also based on general
optimisation methods, the proposed method has a high convergence speed and accuracy.
It can obtain an accurate result when handling complex radiance distributions. Although
our proposed algorithm is not as accurate as the accuracy-oriented algorithms, the result
accuracy is enough to serve as an initial guess for further optimisation. Its advantage in
generality is clear when compared against accuracy-oriented algorithms. Our proposed
method can handle a wide range of scenarios, such as point light source, user-defined
light source, refractive lens design, etc.

The design and implementation of the proposed method was also presented in detail
in this thesis. Our system uses OptiX7 and CUDA to leverage the compute capability of
GPUs, while the CPU is only used for workflow control and not responsible for any inten-
sive computing tasks. To gain performance, we parallelise all the intensive computations
such as ray tracing, mesh updates, error computation, etc. This system also minimises
the memory exchange, memory allocation and adopts multiple strategies.

Nevertheless, our proposed system design is independent of the ray tracing framework
and should be able to be implemented in any sequential-parallel computing platform.

We believe the high performance and generality of our system is a useful step towards
creating faster tools for many application scenarios, such as lamp manufacture, headlight
design, lens design, among others.

7.2. FUTURE WORK
We believe there is still plenty of room to further increase the performance and accuracy
of our method. Below are a few possibilities that we deem particularly interesting.

EXTRACTION OF SURFACE/RADIANCE FEATURES

In the field of Computer Vision, it is common to extract features from images and analyse
them. In our project, the optimiser does not learn by extracting features (except for the
high-frequency features used in Sobel error) from the target radiance distribution since
the main optimisation process is based on a random walk in the neighbour search space.
Basically, the input radiance distribution is not thoroughly analysed before the main
optimisation. Instead, it is simply used as the target radiance distribution in the error
computation. By further analysing the target distribution, valuable information could be
extracted to help guide the optimisation process.

Moreover, in some researches of accuracy-oriented algorithms [6] [8], it has been
shown that we can find the relevance between surface patch geometry and radiance
distribution. The issue of such approaches is the high overhead of computing the mapping
between radiance distribution and the geometric surface. However, in the modern optics
industry there is a lot of training data that has a mapping between radiance distribution
and surface geometry. This data could be used to train a neural network to learn this
mapping between radiance and geometry. After training, using the neural network should
be fast enough to be incorporated in our method and possibly achieve faster and more
accurate results than the current random walk strategy. Furthermore, it can also help find
the best initial shapes of kernels used in the randomisation strategy.
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ADAPTIVE BLOCK-WISE OPTIMISATION

Compared with other global optimisation problems, the inverse reflector problem has
the potential to be divided into several small problems. According to research like the
Gaussian decomposition used in inverse reflector problem [6], the radiance distribution
has the potential to be divided into small blocks and solved, respectively. Also, the research
in Mitsuba 2 [5] confirmed that even a local optimisation method like gradient descent
can solve the problem. Theoretically, there must be a reflector that can give the same
radiance distribution in the corresponding area. Then it is also possible to solve the whole
problem by solving the sub-problems and combining the solutions. The complexity of a
target radiance distribution in various blocks can differ a lot, then the small problem in
different complexity can be solved with different computing intensities. In our current
optimisation scheme, the degree of refinement (mesh size, resolution, kernel size) is
the same for the whole surface. The search space dimensionality can be extremely high
when handling complex radiance distribution, which needs a large mesh size. If the
block-wise optimisation is feasible, we can then tune the refinement level for different
blocks. The optimiser will apply the most suitable optimisation strategy for each block.
The adaptive block-wise optimisation, if available, can significantly reduce the search
space dimensionality and increase the convergence speed, especially when handling
complex radiance distributions.

MATERIAL AND SCATTERING

So far, we have assumed that the surface used in the optimisation process is a perfect
mirror or a lens with a fixed refractive index. Our proposed method can work well under
such assumption. However, for practical applications, it might be interesting to consider
different materials such as metal, plastics, etc. The generality and compatibility of the
proposed method are essential in practical applications, and it should be compatible with
different materials and scattering/transmittance BxDFs. For such cases, we need to take
the BxDF of different materials into account, as the light rays will not reflect in a perfect-
mirror way. Instead, they will scatter and transmit with respect to a certain probability
density distribution or even absorbing part of radiance energy during transmitting. The
problem complexity can be far higher than the perfect-mirror case.

Nevertheless, since our algorithm is based on a general global optimisation method, it
is also compatible with application scenarios like this. The time needed for convergence
will naturally increase as many more rays are necessary to capture the scattering effects
properly.

We have tested some cases with a fuzzy factor when computing the reflected direction,
which is a very simple BRDF. Still, the compatibility and generality with different materials
need further research and experiment, and further modification might also be applicable
if it is necessary to improve the compatibility with different materials.
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